

Crew Rostering in Thai Airways Case

 Using Greedy Algorithm

BY

Thanaphat Limgitnuwat

A THESIS SUBMITTED IN PARTIAL FULFILLMENT OF

THE REQUIREMENTS FOR THE DEGREE OF MASTER OF

ENGINEERING (LOGISTICS AND SUPPLY CHAIN SYSTEMS

ENGINEERING)

SIRINDHORN INTERNATIONAL INSTITUTE OF TECHNOLOGY

THAMMASAT UNIVERSITY

ACADEMIC YEAR 2014

Crew Rostering in Thai Airways Case

Using Greedy Algorithm

BY

 Thanaphat Limgitnuwat

A THESIS SUBMITTED IN PARTIAL FULFILLMENT OF

THE REQUIREMENTS FOR THE DEGREE OF MASTER OF

ENGINEERING (LOGISTICS AND SUPPLY CHAIN SYSTEMS

ENGINEERING)

SIRINDHORN INTERNATIONAL INSTITUTE OF TECHNOLOGY

THAMMASAT UNIVERSITY

ACADEMIC YEAR 2014

Page ii

Abstract

CREW ROSTERING IN THAI AIRWAYS CASE
 USING GREEDY ALGORITHM

by

THANAPHAT LIMGITNUWAT

Master of Engineering in Logistics and Supply Chain Systems Engineering (LSCSE),
Sirindhorn International Institute of Technology, Thammasat University, 2015

This thesis presents a crew rostering in Thai Airways case by using Greedy

Algorithm. Crew rostering is the process that is used to assign suitable task to specific crew.

The result of this experiment is formulated in form of crew timetable. The objective is to
balance workload and perdiem simultaneously in order to increase fairness and reduce airline

operation cost. Standard Deviation (SD) was declared in order to balance workload and

perdiem. Thus, this experiment focus on SD of workload and perdiem minimization. This

thesis can be divided into two main phases; construction phase and improvement phase. The
construction phase is used for constructing the simple crew timetable. The improvement

phase is used for reducing SD of workload and perdiem from construction phase. Moreover,

improvement phase can be divided into four techniques including change pairing directly,
change pairing descending, change pairing ascending, and high workload and perdiem

distribution technique. These techniques were tested on five different methods which consist

of workload minimization, perdiem minimization, workload and perdiem minimization
simultaneously without bound, workload and perdiem minimization simultaneously with

workload bound, and workload and perdiem minimization simultaneously with perdiem

bound. In this thesis, C programming language and Microsoft Visual C++ 2010 program were

applied to compile the solution. The result shows not too high SD of workload and perdiem
reduction because of nature of greedy algorithm that can find only global optimal solution in

some point. Even though, the compilation time is very short, approximately one to five

seconds depending on the complexity of code, number of instances and constraints, and
performance of complier tool.

Keywords: Crew Rostering, Greedy Algorithm, Heuristic, Scheduling

Page iii

Acknowledgements

First of all, I would like to take this opportunity to express my sincere

thanks to my family, who always support and encourage me through good and bad

times. I also truthfully express gratitude to my advisor, Assistant Professor Dr.

Chawalit Jeenanunta, for everything throughout many years of my research. The next

special thanks are for my friend; Mathus Tuachob, and Wittawat Jikrittum, who

always help me with theory, algorithm, and programming. They recommended many

important solutions that help me to complete the coding. Another special thanks to

Nitipon Tansakul, and Pimnapa Pongsayaporn for their support and useful comments

of my work. I also want to thanks Sophea Horng, Pongwat Poomchoompol, and

Khiriphach Makarangkurn for their help with documents and programs. I also

appreciate Tapanee Sunthornsaratul, Eksiri Laksuwong, and Parichart Pornpisitchok

for always being there when I need support.

 I am greatly grateful to the examination committee Assistant Professor Dr.

Aussadavut Dumrongsiri and the external examiner Assistant Professor Dr. Pornthipa

Ongkunaruk for their useful comments and suggestions. I also would like to extend

my gratitude to Associate Professor Dr. Navee Chiadamrong and Associate Professor

Dr. Jirachai Buddhakulsomsiri for their advices to get through my hard time.

Finally, I would like to thank all staffs from Sirindhorn International Institute

of Technology (SIIT), Thammasat University and Thai Airways Company for

providing an opportunity and all the necessary information.

Page iv

Table of Contents

Chapter Title Page

Signature Page i

Abstract ii
Acknowledgements iii

Table of Contents iv

List of Tables vi
List of Figures vii

 1 Introduction 1

 1.1 Problem Statement 3

 1.2 Objective 4
 1.3 Overview of Research 4

2 Literature Review 5

 2.1 Greedy Algorithm 5

 2.2 Crew Rostering 6

 2.3 Airline Scheduling 9

3 Problem Formulation and Methodology 11
 3.1 ACRP of Thai Airways 11

3.1.1 Test Instances 12

 3.2 Methodology 13

4 Greedy Algorithm for Solving ACRP Problem 17

 4.1 Greedy Algorithm 17

 4.2 Solution Model 18
4.2.1 Construction Phase 20

4.2.2 Improvement Phase 21

4.2.2.1 Change pairing directly 21

4.2.2.1 Change pairing descending 28
4.2.2.1 Change pairing ascending 35

4.2.2.1 High workload and perdiem distribution 42

5 Results and Discussions 49

 5.1 Result and Discussion 49
 5.2 Minimize SD of workload 49

 5.3 Minimize SD of perdiem 52

 5.4 Minimize SD of workload and perdiem simultaneously 54
 without bound

 5.5 Minimize SD of workload and perdiem simultaneously 58

 with workload bound

 5.6 Minimize SD of workload and perdiem simultaneously 62
 with perdiem bound

 5.7 Compare solution 66

6 Conclusion and Further Study 79

 6.1 Conclusion 79

Page v

 6.2 Further Study 79

References 80

Appendices 82

Appendix A 83

Appendix B 87

Appendix C 98

Page vi

List of Tables

Tables Page
 1.1 Weekly roster 3

 1.1 Weekly roster 3

 3.1 Thai Airways crew division 11

 3.2 Thai Airways fleets 11
 3.3 Examples of pairing data 12

 3.4 Test instances 13

 3.5 Rest period constraint 14
 3.6 Crew time table format 14

 5.1 SD of workload table using workload minimization 50

 5.2 SD of perdiem table using workload minimization 51

 5.3 SD of workload table using perdiem minimization 52
 5.4 SD of perdiem table using perdiem minimization 53

 5.5 SD of workload table using workload and perdiem minimization 54

 without bound
 5.6 SD of perdiem table using workload and perdiem minimization 55

 without bound

 5.7 Total normalized workload and perdiem SD (Twp) without 57
 bound table

 5.8 SD of workload table using workload and perdiem minimization 59

 with workload bound

 5.9 SD of perdiem table using workload and perdiem minimization 60
 with workload bound

 5.10 Total normalized workload and perdiem SD (Twp) with workload 61

 bound table
 5.11 SD of workload table using workload and perdiem minimization 63

 with perdiem bound

 5.12 SD of perdiem table using workload and perdiem minimization 64
 with perdiem bound

 5.13 Total normalized workload and perdiem SD (Twp) with perdiem 65

 bound table

 5.14 Result comparison SD of workload 67
 5.15 Result comparison SD of perdiem 68

 5.16 Result comparison of percentage changed of total normalized 70

 workload and perdiem

Page vii

List of Figures

Figures Page
 3.1 Example pairing for one day 12

 3.1 Example pairing for two days 12

 4.1 Example of good Greedy Algorithm 17

 4.2 Example of problem that Greedy Algorithm cannot solve 18
 4.3 Solution of exchange money 18

 4.4 Flow chart of construction phase 19

 4.5 Flow chart of change pairing directly with workload minimization 22
 4.6 Flow chart of change pairing directly with perdiem minimization 23

 4.7 Flow chart of change pairing directly with workload and perdiem 24

 minimization simultaneously without bound

 4.8 Flow chart of change pairing directly with workload and perdiem 25
 minimization simultaneously with workload bound

 4.9 Flow chart of change pairing directly with workload and perdiem 26

 minimization simultaneously with perdiem bound
 4.10 Flow chart of change pairing descending with workload 29

 minimization

 4.11 Flow chart of change pairing descending with perdiem 30
 minimization

 4.12 Flow chart of change pairing descending with workload and 31

 perdiem minimization simultaneously without bound

 4.13 Flow chart of change pairing descending with workload and 32
 perdiem minimization simultaneously with workload bound

 4.14 Flow chart of change pairing descending with workload and 33

 perdiem minimization simultaneously with perdiem bound
 4.15 Flow chart of change pairing ascending with workload 36

 minimization

 4.16 Flow chart of change pairing ascending with perdiem 37
 minimization

 4.17 Flow chart of change pairing ascending with workload and 38

 perdiem minimization simultaneously without bound

 4.18 Flow chart of change pairing ascending with workload and 39
 perdiem minimization simultaneously with workload bound

 4.19 Flow chart of change pairing ascending with workload and 40

 perdiem minimization simultaneously with perdiem bound
 4.20 Flow chart of high workload and perdiem distribution with 43

 workload minimization

 4.21 Flow chart of high workload and perdiem distribution with 44

 perdiem minimization
 4.22 Flow chart of high workload and perdiem distribution with 45

 workload and perdiem minimization simultaneously without

 bound
 4.23 Flow chart of high workload and perdiem distribution with 46

 workload and perdiem minimization simultaneously with

 workload bound
 4.24 Flow chart of high workload and perdiem distribution with 47

 workload and perdiem minimization simultaneously with

 perdiem bound

 5.1 Total normalized SD of all techniques without bound graph 58
 5.2 Total normalized SD of all techniques with workload bound graph 62

 5.3 Total normalized SD of all techniques with perdiem bound graph 66

 5.4 Compare SD of workload by using change pairing directly technique 71

Page viii

 5.5 Compare SD of perdiem by using change pairing directly technique 72

 5.6 Compare SD of workload by using change pairing descending 73
 technique

 5.7 Compare SD of perdiem by using change pairing descending 74

 technique

 5.8 Compare SD of workload by using change pairing ascending 75
 Technique

 5.9 Compare SD of perdiem by using change pairing ascending 76

 technique
 5.10 Compare SD of workload by using high workload and perdiem 77

 distribution technique

 5.11 Compare SD of perdiem by using high workload and perdiem 78
 distribution technique

Page 1

Chapter 1

Introduction

 After the Wright brothers successfully flew using a powered aircraft in 1903,

the first airline was established six years later. Today, there are hundreds of airlines in

all areas of the world. The airline industry had a profit of about US$369 billion in

2004 and profits doubled to US$746 billion in 2014. Due to the popularity of air

transportation, many airlines are planning to expand their routes and fleets. Thus,

more crews and other employees are being hired. The approximate crew requirement

in 2020 will be more than 550,000. Consequently, management of crew pairing, crew

scheduling, and fleet assignment is a complex process. Thus, this thesis focuses on

applying the Greedy Algorithm to solve crew rostering problems at Thai Airways. In

addition, this experiment uses data from Thai Airways to find a solution of workload

and perdiem balancing optimization. The crew scheduling or crew rostering involves

the process of assigning crew pairing or flight route, crews, and other information.

Crew scheduling contains two major phases: crew pairing and crew rostering. Crew

pairing is the management process of the flight legs within the same fleet that starts

and ends at the same crew base. The meaning of crew base is the original airport, or

hometown of the crew member. There are many constraints that crew pairing needs to

consider, such as, airline union, government rules, and airline regulations. As a result,

the objective of crew pairing is to manage a set of flights that start and end at home

base station and also minimize the total crew cost. Table 1.1 shows the two-day

pairing that has John F. Kennedy International Airport as a home base; thus, one

pairing should include at least two flight trips: away, and departure.

Page 2

Table 1.1 Example of crew pairing

Moreover, another phase of crew scheduling is crew rostering. The purpose of

crew rostering is to assign individual crew members to a crew pairing which is usually

on a monthly basis. There are three main methods to roster a crew, such as, assigning

high priority employees to the high priority pairing, developing monthly rosters for

individual crew members based on their requests, and developing monthly rosters for

each day of the month without considering the crew request. Generally, there are

different processes to assign the roster to cockpit aircrew members (captain, and first

officer), and cabin aircrew members because cockpit aircrew members may require

licenses to fly with specific type of aircraft. Moreover, crew rostering will be

developed on a weekly basis instead of as a monthly roster because it is easier and

less complex to solve. Table 1.2 shows the weekly roster of 14 captains and 4

pairings, where each pair needs to fly every day in a week. Then, the 4 weekly rosters

are combined to be the monthly roster.

Page 3

Table 1.2 weekly roster

The Greedy Algorithm is a solution that attempts to find the global optimal

solution by considering the local optimal solution as a priority. The method to solve

problem of the Greedy Algorithm is choosing the stage that offers the most obvious

and immediate benefit. The disadvantage of this algorithm is that it may not find the

global optimal solution of the problem. After finishing this stage, it cannot reconsider

the rest of direction or other phase again. Thus, it is very useful for some small

instances problem.

1.1 Problem Statement

 Due to the high operation cost of airlines and increasing crew hiring, the

complexity of crew scheduling or crew rostering is significant. Thus, this thesis

proposes the experiment on balancing workload and perdiem (salary) in order to

increase fairness and reduce airline operation cost. The complexity of crew rostering

comes from priority, perdiem, rest time, workload, different types of fleet, block time,

and specific regulations in some countries. Thus, this thesis proposes a Greedy

Algorithm technique to solve ACRP (Airline Crew Rostering Problem). The

experiment consists of two phases: a construction phase, and an improvement phase.

The construction phase aims to construct a simple crew table for revision to balance

workload and perdiem in the improvement phase. The construction phase can be

divided in to four techniques, such as change pairing directly, change pairing

descending, change pairing ascending, and high crew distribution.

Page 4

1.2 Objective

The objective is to balance workload and perdiem. To achieve the objective,

Standard Deviation (SD) purposed to minimize. The Standard Deviation indicates the

variation of all data and the best solution of SD is close to zero. This thesis proposes

three different minimization experiments: minimize SD of workload, minimize SD of

perdiem, and minimize both SD of workload and perdiem at the same time.

1.3 Overview of Research

This thesis report is organized as follows. Literature reviews are described in

chapter 2. Chapter 3 explains about problem formulation and the method to solve

crew rostering problem. Chapter 4 proposes a Greedy Algorithm with two phases,

such as, construction phase, and improvement phase. Chapter 5 explains the results

after applying the Greedy Algorithm. Finally, chapter 6 interprets the discussion and

further study

Page 5

Chapter 2

Literature Review

 The review of literature that is related to the use of the Greedy Algorithm for

crew rostering is presented in this chapter, which is organized into three parts as

follows:

2.1 Greedy Algorithm

2.2 Crew Rostering

2.3 Airline Scheduling

2.1 Greedy Algorithm

 The Greedy Algorithm is a popular method to find an optimal solution. It

focuses on the best or highest benefit first. Thus, it is very useful and easy to apply to

a small problem. So, there have been several researches that study the Greedy

Algorithm, the most significant of which are mentioned below.

 N. Lesh and M.Mitzenmacher (2005) introduces Bubble Search for applying

with Greedy Heuristics. This program concerns the algorithm sequence for adding

elements. These problems can be solved by using Bubble Search to select the closest

element or path. Thus, the applied Greedy Heuristics is a consequence in

effectiveness.

 A.G. Logodimos and V. Leopoulos (2000) investigate Greedy heuristic

algorithms for manpower shift planning. The instances of this experiment came from

a food manufacturing company. The objective is to manage personal schedule tasks.

The important thing to find is a minimum workforce in a working day period. They

proposed Manpower Shift Planning (MSP) by creating the linear programming. They

also proposed Greedy Heuristics Algorithm be used in the experiments. Consequently,

the outcome solution was very satisfactory in terms of quality and computational

time.

 Kahraman et al. (2010) presented about multiprocessor task scheduling in

multistage hybrid flow-shops using a parallel greedy algorithm approach. Their

experiment was about the Hybrid Flow Shop Scheduling with Multiprocessor Task

(HFSMT) problem. They also applied a parallel greedy algorithm (PGA) to get the

solution. Two techniques are proposed to solve this problem: the Destruction

technique, and Construction technique. In conclusion, they successfully applied this

technique for making a span deduction.

Page 6

Lin and Ying (2014) aimed to solve the personnel task scheduling problem by

proposing an effectiveness and efficiency of three-phase algorithm for solving the

shift minimization personnel task scheduling problem (SMPTSP). They tested the

problem set that was inspired from employee scheduling application in order to

demonstrate the increasing of efficiency. In conclusion, their algorithm was effective,

efficient, and robust to the problem.

Korhan and Fatih (2014) experimented on greedy algorithm for solving the

traveling sales man problem with time windows (TSPTW). The objective is to sum up

travel cost or makespan minimization. The greedy algorithm is used for changing the

neighborhood in Variable Neighborhood Search (VNS). In order of changing, the

algorithm will remove previous neighborhood and construct the new best

neighborhood solution. The result shows better performance compared to the

literature.

2.2 Crew Rostering

Ernst et al. (2004) focused on staff scheduling and rostering, reviewing the

applications, methods and models. The problem of this paper is the difficulty of

satisfying the staff demand, such as, flexible workplace agreements, shift equity, staff

preferences, and part-time work. The objective is to find the best technique for

solving the staff scheduling and rostering problem. Thus, it can be categorized into 6

problems: demand modeling, days off scheduling, shift scheduling, line of work

construction, task assignment, and staff assignment. This study also classifies the

solutions and techniques into 5 methods: demand modeling, artificial intelligence

approaches, constraint programming, metaheuristics, and mathematical programming

approaches.

Yinghui et al. (2007) studied how to solve the problem of automatically

generating crew rostering. The objective was to find the optimal crew rostering table

while minimizing cost and maximizing profit. There are two techniques included in

this study, a Genetic Algorithm (GA), and a simulated annealing algorithm.

Moreover, the combination of simulated annealing and genetic algorithm proposed in

this paper received satisfied results for multiple objectives.

Azadeh et al. (2013) examined Particle Swarm Optimization (PSO) which

aimed to minimize total cost of crew assignment. The problem is in the form of an

NP-hard problem. This method achieved a more effective result than other algorithms.

Moreover, they studied and experimented about Genetic Algorithm (GA) and Ant

Colony Optimization (ACO) to get the solution of a high number of instances.

El Moudanis et al. (2010) attempted to construct the assignment of the crew

staff as a set of pairings covering all the scheduled flights. Also, this paper developed

the new mathematical formulation of the crew scheduling problem. The objective is to

minimize operation cost. The technique for solving this airline crew rostering problem

is a bi-criterion method. The constraints are regulations of Civil Aviation, workload,

number of crews, and cost. Thus, the mathematical programming and artificial

intelligence techniques do not contribute an exact solution in pure mathematical terms

Page 7

but appear to be quite adapted to give real support to the decision making process by

providing, through a comprehensive process, an improved approximation of the set of

non-inferior solutions attached to this bi-criterion decision problem.

Kharraziha et al. (1996) focused on large scale crew rostering to develop

Carmen Systems’ crew rostering product that currently is used by several major

European airline and railway companies. In the largest problem, around 7,000 crew

members are assigned roughly 22,000 tasks. The objective of this paper was to

optimize the crew roster of European airlines and railways. This paper also

implemented the technique used by Carmen Systems, a developer and vendor of

resource optimization software.

Souai and Teghem (2009) developed a genetic algorithm based approach for

the integrated airline crew-pairing and rostering problem that aimed to manage crew

pairing and rostering by dividing the problem into two sub-problems; the airline crew

pairing problem which consists of finding a set of trips that cover all the flights

planned for a given period of time, and the airline crew rostering problem which

consists of assigning the pairings found by solving the first sub-problem to the named

airline crew members. The objective is to minimize the total cost.

Teodorovic Lucic (1998) attempted to solve the aircrew rostering problem

consisting of the assignment of crew members to plan rotations. The basic algorithm

for solving the aircrew rostering problem is a modification of the day-by-day heuristic

method. The objective is to find a satisfactory solution that enables all crew members

to have an approximately equal workload. In addition, the multi-criteria decision

making problem has been solved using fuzzy control methods. The reason is that

using fuzzy control methods makes it possible to accommodate qualitative criteria.

Bianco et al. (1992) focused on the problem of planning work schedules in a

given time horizon which evenly distributes the workload among the drivers in a mass

transit system. An integer programming formulation was applied in this experiment.

The objective is to minimize operation cost. This paper implemented a heuristic

algorithm that uses a lower bound derived from the mathematical formulation. The

computational results show that problems involving 130 duties and a planning period

of 7 days may be solved by the Heuristic Rostering Problem (HRP) algorithm in

upmost 100 seconds on a personal computer.

Potthoff and Huisman (2010) developed some algorithms for crew re-

scheduling. The main Dutch railway operator, NS, periodically changes the schedules

in its Operational Control Centers. Currently, there is no decision support at all in

these centers. So, this paper constructed a crew scheduling model to support the

Dutch railway crew timetable. The objective was to minimize the total costs of the

duties. So, this paper applied the very successful heuristic in the crew scheduling

package to solve the remaining set covering problem. This heuristic is based on the

ideas of Caprara et al. (1999) with some local improvement heuristics.

Dawid et al. (2001) developed a new algorithm that incorporates several

strategies that exploit problem-specific knowledge in order to solve even large

problems in very short runtimes. The data of this experiment came from real data

from a medium-sized European airline. The objective was to minimize total costs and

develop the optimal crew time table. Moreover, it uses a branch-and-bound technique

to solve real world rostering problems for airline crews. In addition, this paper

Page 8

implemented the enhanced model with downgrading method to solve European airline

crew scheduling. The result outperforms standard optimizers and finds feasible

solutions for large-scale crew rostering problems within a reasonable time.

Gamache et al. (2007) developed a graph coloring model for a feasibility

problem in monthly crew scheduling with preferential bidding. It also proposed a new

methodology based on a graph coloring model and a Tabu search algorithm for

determining if the problem contains at least one feasible solution. The objective was

to minimize operation cost. The column generation and branch-and-bound techniques

were considered. In addition, the mathematical programming and artificial

intelligence techniques do not produce an exact solution in pure mathematical terms

but appear to be quite adapted to support decision making, by providing, through a

comprehensive process, an improved approximation of the set of non-inferior

solutions attached to this bi-criterion decision problem. Moreover, this algorithm only

needs a few seconds to prove that no backtrack will be needed.

Panta and Dusan (2007) aimed to solve crew rostering problem that an airline

usually hire many aircrew members to solve this monthly problem. This experiment

emphasizes on managing the pilot schedule. Thus, they applied Simulated Annealing,

Genetic Algorithm, and Tabu Searching techniques to solve the crew rostering

problem. In conclusion, the experiment can be applied with large scale of problem

with several criteria. The results are satisfied with acceptable CPU times.

Page 9

2.3 Airline Scheduling

Deng and Lin (2011) formulated the airline crew scheduling problem as a

Traveling Salesman Problem and introduced an ant colony optimization algorithm to

solve it. In addition, the performance was evaluated by performing computational

tests regarding real cases as the test problems. The objective was to minimize total

crew costs. Traveling Salesman Problems (TSP) and Ant Colony Optimization (ACO)

were applied to this paper. The results showed that an ACO-based algorithm can be a

potential technique for airline crew scheduling.

Christodoulou and Stamatopoulos (2002) considered the crew assignment

problem, which is a sub-problem of the airline crew scheduling problem. The

objective of this method is to allocate the crew pairing. Moreover, this study proposed

to optimize the allocation of a tested set of crew pairings to crew members in a way

that a set of constraints is satisfied. Constraint Logic Programming (CLP) was applied

in this paper to support a hybrid scheme combining the features of traditional logic

programming and the efficiency of constraint solving. Also, this report proposed a

formulation of the crew assignment problem as a constraint satisfaction problem and

used a branch-and-bound technique combined with some heuristics in order to find

quickly a solution identical, or at least very close to the optimal solution.

Zeghal and Minoux (2006) aimed to solve the Crew Assignment Problem

(CAP) that is currently decomposed into two independent sub-problems which are

modeled and solved sequentially: the well-known Crew Pairing Problem followed by

the Working Schedules Construction Problem. The objective was to minimize the

total cost. The implementation of heuristic method provided good solutions in

reasonable computation times using CPLEX 6.0.2: guaranteed exact solutions are

obtained for 60% of the test instances and solutions within 5% of the lower bound for

the others.

Yan et al. (2008) developed a stochastic-demand scheduling model because of

the daily passenger demands in actual operations. They employed arc-based and

route-based strategies to develop two heuristic algorithms that can be used to solve

the model. The objective was to minimize cost. Heuristic algorithms were applied for

solving two models: a Stochastic-Demand Flight Scheduling Model (SDFSM), and a

Deterministic Demand Flight Scheduling Model (DDFSM). In addition, to solve the

SDFSM, based on arc-based and route-based strategies, they developed two solution

algorithms. Also, DDFSM can solve by fixing the selected flights and fleet routes

Weide, Ryan, and Ehrgott (2010) solved the two original problems, the

integrated aircraft routing and crew pairing problem, to optimality. Starting from a

minimal cost solution, they produced a series of solutions which are increasingly

robust. Using data from domestic airline schedules they evaluated the benefits of the

approach as well as the trade-off between cost and robustness. They extended their

approach considering the aircraft routing problem together with two crew pairing

problems, one for technical crew and one for flight attendants.

Weinert and Proksch (1999) tried to solve airline crew pairing by applying a

simulated annealing algorithm to the model. They analyzed various ways to improve

Page 10

the performance of their simulated annealing algorithm. Run time can be saved by

using an initial solution which reflects characteristics of the problem and by storing

move costs. The permutation based move sampling did not exhibit any advantage.

Solution quality can be improved by setting the penalty term for relaxed constraints as

low as possible in combination with a post processing routine, summarizing simulated

annealing with a specific problem in local improvement heuristic that operates on a

larger neighborhood, and the use of multiple independent runs.

Chu (2007) proposed GP models for an integrated problem of crew duties

assignment for baggage services section staff at the Hong Kong International Airport.

The problem is solved via decomposition into its duties generating phase-a GP

planner, followed by its GP scheduling and rostering phase. The results can be

adopted as a good crew schedule in the sense that it is feasible, satisfying various

work conditions, and ‘‘optimal’’ in minimizing idle shifts.

Halatsis and et al. (2008) proposed the technique to solve the airline crew

scheduling problem. They categorized the problem into four types depending on

pairing selection, pairing construction, crew assignment, and duty construction. The

Constraint Programming was proposed to construct the formulation and model. In

conclusion, they received good solution results.

Mercier and Soumis (2005) developed an integrated aircraft routing, crew

scheduling, and flight retiming model in order to minimize airline operation cost and

construct crew scheduling. This experiment proposed a formulation and Benders

decomposition for solving a problem. They experiment on two airline data with seven

instances. The result can reduce crew operation cost, and number of operation

aircrafts. It also provides a suitable aircraft for a maintenance procedure.

Claude and Nidhi (2007) try to solve crew scheduling problem by combining

two main phases; planning, and operation. The planning phase can be divided into

two sections; working patterns construction and individual crew assignment. The

operation phase will be re-planned but in smaller scale than planning phase. Thus, this

experiment shows pairing construction and pairing assignment in s single step

method, and solution based on tree search, column generation, and shortest-path

algorithm.

Page 11

Chapter 3

Problem Formulation and Methodology

This section explains airline crew rostering (ACRP) in the case of Thai

Airways. Rules and limitations of Thailand’s department of civil aviation are included

in the section. The methodology also is presented in this chapter.

3.1 ACRP of Thai Airways

Thai Airways is one of the biggest airlines in the world with flights to various

destinations such as Asia, Africa, Australia and New Zealand, North America,

Europe, and domestically. The Regional Asia routes comprise about 2,036 flights and

Thai Airways also has a lot of employees (more than five thousand) which makes

ACRP complicated and difficult to solve. Table 3.1 shows details of Thai Airways’

crew divisions which are In-flight Manager (IM), Air Purser (AP), First class crew

(F), E-business class crew (E), R-business class crew (R), and Economic class crew

(Y). Table 3.2 shows various types of aircraft. These aircraft require a different

number of crew.

Table 3.1 Thai Airways crew division

Position Male Female Total

IM 171 56 227

AP 208 196 404

F 798 1,271 2,069

E 482 1,111 1,593

R 335 452 787

Y 337 526 963

Table 3.2 Thai Airways fleets

Aircraft Type No. of Aircraft No. of Seat

Boeing 747-400: 74R 6 375

Boeing 747-400: 74N 6 374

Boeing 777-300 6 364

Boeing 777-300ER 11 348

Boeing 777-200 8 309

Boeing 777-200ER 6 292

Boeing 787-8 4 264

Boeing 737-400 2 149

Airbus 380-800 6 507

Airbus 330-300: 333 7 305

Airbus 330-300: 330 8 299

Airbus 330-300: 33H 7 299

Airbus 320-200 5 168 / 174

Airbus 340-600 6 266

Page 12

3.1.1 Test Instances

This section presents experiment data from Thai Airways. The instances data

from table 3.4 is composed of start flight day (Day), total block time, adjusted arrival

day and departure day (Adjusted ArrDay-DepDay), arrival day and departure day

(ArrDay-DepDay), perdiem or salary (TTL THB), and workload score. Adjusted

ArrDay-DepDay came from the calculation from Thai Airways. This thesis will

convert adjusted arrival day and departure day, and arrival day and departure day into

a variable named operation day which includes the number of days consumed in each

pairing. Figure 3.1 and 3.2 show detail of flight pairings which consume one

operation day.

Figure 3.1 Example pairing for one day Figure 3.2 Example pairing for two days

Table 3.3 Examples of pairing data

Table 3.4 shows all different instances that are considered in this project.

These instances can be divided into three categories and every category further

divided into three sub-categories depending on size of pairing and distance of each

flight. TA84S represents small pairing with eighty-four flight tasks and short haul

which serve regional Asia countries, for example, South Korea, India, Indonesia,

Philippines, and Singapore. TA84M represents small pairing and various distance

routes of Asia, and Australia and New Zealand. TA84L represents small pairing with

forty-five crews and long distance routes to Europe, Australia and New Zealand, and

North America. TA150S represents medium pairing with regional Asia routes.

TA140M represents medium pairing and various distance routes. TA146L represents

medium pairing with long distance routes. TA330S represents the largest number of

pairings (330) with short distance routes. TA334M represents the largest pairing with

various distance routes. TA238L represents large pairing with long distance routes.

Page 13

Table 3.4 Test instances

Instance
No. of

Pairs

No. of Inflight

Managers (IM)

Duration of

Pairs

Duration of

Schedule

TA84S 84 30
Short

haul
14 Days

TA84M 84 30 Various haul 14 Days

TA84L 84 45
Long

haul
14 Days

TA150S 150 60
Short

haul
14 Days

TA140M 140 65 Various haul 14 Days

TA146L 146 65
Long

haul
14 Days

TA330S 330 150
Short

haul
14 Days

TA334M 334 150 Various haul 14 Days

TA238L 238 120
Long

haul
14 Days

3.2 Methodology

 In this thesis, the objective is to solve the crew rostering problem in Thai

Airways by using the Greedy Algorithm. The objective is to manage the crew

scheduling alignment with workload balancing and perdiem balancing,

simultaneously with condition of flight time limitation. Workload means the service

cost of crew duty for each flight leg. Perdiem is the value or money that consequently

results from workload, while flight time means the time that an aircraft stands by at

the departure airport to landing at the destination airport. Moreover, the flight time

and rest period are crew pairing constraints, which are declared by the Department of

Civil Aviation of Thailand. The flight time limitation is set as follows:

 Every 7 days must have flight time less than 34 hours.

 Every 28 days must have flight time less than 110 hours.

 Every 365 days must have flight time less than 1,000 hours.

Page 14

Table 3.5 Rest period constraint

 We can construct the crew pairing by using table 3.5 for implementation of

crew rostering. From the above information, we can conclude that the flight time per

week must be less than 34 hours. Constructing the experiment using the Greedy

Algorithm involves the following steps. This experiment is defined to test on fourteen

days. The solution will result in the form of crew time table shown in table 3.6. In the

table, a row represents working day D = {D1, D2,…, D14 }, flight duty, workload and

perdiem. Columns represent number of crew C = {C1, C2,…,Cn} in each experiment.

The number inside the table should be pairing id P = {P1, P2,…,Pn};

Table 3.6 Crew time table format

Page 15

The objective is to align the crew roster with workload and perdiem balancing.

The method is minimization of Standard Deviation (SD). SD is used to measure

variation of value and a solution will be optimal when the value of SD is close to zero.

Equation 3.1 shows the SD formulation.

𝜎 = √∑(𝑥−�̅�)
2

𝑁−1
 (3.1)

 Where;

 𝜎 = Standard Deviation

 x = Value of workload or perdiem

 �̅� = Mean of workload or perdiem

 N = Total number of workload or perdiem

This thesis primarily focuses on three scenarios: minimizing SD of workload

and perdiem simultaneously without bound, minimizing SD of workload and perdiem

simultaneously with workload bound, and minimizing SD of workload and perdiem

simultaneously with perdiem bound. This thesis also examines minimizing only

workload and perdiem. The experiment is constructed as two different phases for

creating a crew schedule: a Construction Phase and an Improvement Phase. The

Construction Phase involves creating a crew schedule or crew time table by assign

pairing instances into a schedule under constraint conditions. The Improvement Phase

aims to reduce target SD by applying a Greedy Algorithm. The improvement phase

can be divided into four main techniques:

1. Change pairing directly

2. Change pairing descending

3. Change pairing ascending

4. High crew distribution

 Due to the significantly different values of SD of workload and perdiem, the

method to reduce both SD of workload and perdiem together is normalization. The

instance values of workload and perdiem will normalize after being imported to the

program. After normalization, SD of workload and perdiem will combine to be the

target SD. The normalization and combination method are formulated in equation 3.2

as follows:

Page 16

Where;

T = Total normalized workload and perdiem value

Mw = Maximum value of workload

Mp = Maximum value of perdiem

c = Index of workload and perdiem where c = 1, 2, …,x

W = Workload of pair c

P = Perdiem of pair c

 The normalization is not used when minimizing only workload and perdiem. It

is applied in the construction phase for minimizing workload and perdiem

simultaneously in order to standardize both values. The reason that normalization is

not applied to minimize only workload and perdiem is to prove the related

significance between workload and perdiem.

𝑇𝑤𝑝𝑐 =
𝑊𝑐

𝑀𝑤
+

𝑃𝑐

𝑀𝑝
 (3.2)

Page 17

Chapter 4

Greedy Algorithm for Solving ACRP Problem

4.1 Greedy Algorithm

A Greedy Algorithm is the method to solve the problem by choosing the

obvious and immediate benefit. Usually, a Greedy Algorithm is proper for simple

problems. Since a Greedy Algorithm does not support reconsideration of data, it has

probability to find only a local optimal solution but not a global optimal solution.

Normally, the components of a Greedy Algorithm are a candidate set, a selection

function, a feasibility function, an objective function, and a solution function. Also,

there are many methods to solve the optimal solution problem in form of Greedy

Algorithm such as, Huffman encoding, Minimum spanning tree, Traveling Salesman

Problem, Dijkstra’s Algorithm, Kruskal’s Algorithm and Prim’s Algorithm.

The simple process of the Greedy Algorithm can be explained according to

Figure 4.1. The objective of this problem is to exchange $27 by using the least

number of coins. The sequence of change is highest value of coins first. The variable

coins for the change are $10, $5, and $2 coins. Normally, a Greedy Algorithm must

use the most beneficial way to solve the problem. Thus, the method in the solution is

to change two $10 coins, one $5coin, and one $2 coin back. So, this simple problem

can be solved very easily.

Figure 4.1 Example of good Greedy Algorithm

Page 18

In Figure 4.2, the objective is to exchange $21 with the same coins values

from Figure 4.1, i.e., $10, $5, and $2. The Greedy Algorithm cannot solve this

problem because it will find only the way to exchange money with minimum coins,

thus, there will be a remainder of $1. If the solution used the human method or other

algorithm, the solution will solve completely as shown in Figure 4.3. The method is to

exchange one $10, one $5, and three $2 coins.

Figure 4.2 Example of problem that Greedy Algorithm cannot solve

Figure 4.3 Solution of exchange money

4.2 Solution Model

 This section presents a crew rostering approach that is implemented using a

Greedy Algorithm. C language was introduced as a tool for formulating the solution.

This language runs on Microsoft Visual C++ 2010 Express compiler. This experiment

aims to minimize both workload and perdiem simultaneously. The experiment can be

divided into two phases: construction and improvement. The purpose for the

construction phase is to create a simple crew schedule without being concerned about

SD. Thus, the improvement phase aims to reduce SD of workload and perdiem. The

Improvement Phase can be divided into application of four techniques as follows:

- Change pairing directly

- Change pairing descending

- Change pairing ascending

- High crew distribution

Page 19

Normalize workload and perdiem

Check empty space

and Total Flight Duty limitation

Assign pairing, workload, and perdiem to crew

Default crew table

Calculate SD of workload and perdiem

Pairing

Assignment

Function

Combine SD of workload and perdiem

 to target SD

Import data instance from Excel file

Figure 4.4 flow chart of construction phase

Page 20

4.2.1 Construction Phase

 This process constructs a crew schedule or crew time table while considering

any limitations or constraints. One constraint is total flight duty hours per week. This

process will create a fourteen-day crew table. The rows consist of day in week, SD of

workload, and SD of perdiem. Columns consist of the number of crew which depends

on each instance. The construction phase involves a set of crew C = {C1, C2,…, Ci}

where i is maximum of crews in each instance, day of work D = {D1, D2,…, Di}, start

working day Std = {Std1, Std2,…, Stdi}, and pairing P = {P1, P2,…, Pi}. In Figure 4.4,

the steps of construction are presented as follow:

Step 1: Convert Thai Airways data from excel file to text file. The test data include

start of day (Day), operation day, total flight duty or total block time, perdiem, and

workload. All data is separated by “ | “ instead of “ , “ because commas may cause

errors in later processes.

Step 2: Import data text file into the program. These data are collected in structure

name “pair[]” which consists of variables; day, operate_day, fduty, perdiem, and

workload.

Step 3: Normalizes value of workload and perdiem create total normalized workload

and perdiem by using equation 3.2.

Step 4: Construct pairing that loops from P1 to Pi. Then, check available day or empty

task day of crew C1 to Ci which have day Dx that matches with start working day Stdx

of pair Px.

Step 5: If a matched working day slot is found, assign id number of pairing Px in to

crew schedule. In addition the size of each pairing must be equal to size of the

operation day. That means if Px has operation day about three days and Cx has

matched available working day at D1, program will book Px from D1 to D3. In pairing

assignment process, value of total flight duty, workload, and perdiem are assigned to

each crew. The program also checks total flight duty limitation every time before

booking. After completing the assignment process, the program will focus on the next

pairing, Px+1, until it finishes Pi.

Step 6: If the pairing assignment process does not complete, the program will delete

total flight duty, workload, and perdiem in the specific crew information. Then, it will

processes to focus new available crew from Cx+1 until Ci.

Step 7: After it completes assigning all pairings to crews, the program will calculate

SD of both workload and perdiem to create a target SD. The target SD will be setup to

be the default SD for comparison in the improvement phase. All values and

information in the completed construction crew table are also setup to be the default

table.

Page 21

4.2.2 Improvement Phase

 The purpose of this phase is to reduce Standard Deviation (SD) of workload

and perdiem by using the target SD and applying a Greedy Algorithm. The main idea

of this phase is compare each target SD with the default SD and choose lowest SD

for setup to be initial or default SD. The table that has the selected target SD is also

setup to be the initial or default table. The first default table came from construction

phase. The default table always changes after finishing the improvement process.

This experiment also created workload and perdiem bound limitations. The

process to limit workload bound occurred after a program sorted the workload at first

iteration, the result was limited by the value of minimum and maximum total

workload for all of the next iterations. The iterations after first iteration will be sorted

by perdiem. The perdiem bound limitation is similar to the workload bound limitation.

The process to limit perdiem bound occurred after a program sorted the perdiem at

first iteration, the result was limited by the value of minimum and maximum total

perdiem for all of the next iterations. The iterations after first iteration will be sorted

by workload.

 This thesis presents four methods of SD reduction. The techniques of

improvement phase are presented as follow:

- Change pairing directly

- Change pairing descending

- Change pairing ascending

- High crew distribution

4.2.2.1 Change pairing directly

This technique presents simple SD reduction by changing pairing positions of

every crew in the crew schedule. The idea is to find minimum SD for every one step

changed. The solution will continuously decrease SD to meet the local optimal

solution. In the worst case, this technique may end after a single iteration if there is no

lower SD to select. The reason for this comes from the nature of a Greedy Algorithm

to always select the smallest value.

 This technique will change selected pairing Px for every available crew C1 –

Ci. After one step of pairing change, the program will calculate the target SD of the

whole crew table to find the minimum target SD. This process continues until it has

finished moving all of pairing P1 – Pi. The iteration can be assigned for more efficient

target SD minimization. From figure 4.5, the target SD of workload minimization is

SD of workload. Figure 4.6 shows the target SD of perdiem minimization is SD of

perdiem. Figure 4.7, 4.8, and 4.9 shows the SD of workload and perdiem as a target

SD.

Page 22

Import data, SD, and table from

 Construction Phase

Check empty space

and Total Flight Duty limitation

Assign pairing, workload, and perdiem to crew

Compare SD of workload

Result Table

Calculate SD of workload

Collect SD of workload

Lower

Greater

and not

last

pairing

Pairing

Assignment

Function

Check iteration

Finish

Not finish

Figure 4.5 flow chart of change pairing directly with workload minimization

Page 23

Import data, SD, and table from

 Construction Phase

Check empty space

and Total Flight Duty limitation

Assign pairing, workload, and perdiem to crew

Compare SD of perdiem

Result Table

Calculate SD of perdiem

Collect SD of perdiem

Lower

Greater

and not

last

pairing

Pairing

Assignment

Function

Check iteration

Finish

Not finish

Figure 4.6 flow chart of change pairing directly with perdiem minimization

Page 24

Import data, SD, and table from

 Construction Phase

Check empty space

and Total Flight Duty limitation

Assign pairing, workload, and perdiem to crew

Compare SD of Twp

Calculate SD of normalized workload and

perdiem (Twp) which limited by perdiem bound

(except first iteration)

Pairing

Assignment

Function

Lower

Greater

and not

last

pairing

Collect SD of Twp

Result Table

Check iteration

Finish

Not finish

Figure 4.7 flow chart of change pairing directly with workload and perdiem

minimization simultaneously without bound

Page 25

Import data, SD, and table from

 Construction Phase

Check empty space

and Total Flight Duty limitation

Assign pairing, workload, and perdiem to crew

Compare SD of Twp

Calculate SD of normalized workload and

perdiem (Twp) which limited by workload bound

(except first iteration)

Pairing

Assignment

Function

Declare workload bound

Lower

Greater

and not

last

pairing

Collect SD of Twp

Assign

workload

bound

Result Table

Check iteration

Finish

Not finish

Figure 4.8 flow chart of change pairing directly with workload and perdiem

minimization simultaneously with workload bound

Page 26

Import data, SD, and table from

 Construction Phase

Check empty space

and Total Flight Duty limitation

Assign pairing, workload, and perdiem to crew

Compare SD of Twp

Calculate SD of normalized workload and

perdiem (Twp) which limited by perdiem bound

(except first iteration)

Pairing

Assignment

Function

Declare perdiem bound

Lower

Greater

and not

last

pairing

Collect SD of Twp

Assign

perdiem

bound

Result Table

Check iteration

Finish

Not finish

Figure 4.9 flow chart of change pairing directly with workload and perdiem

minimization simultaneously with perdiem bound

Page 27

Step 1: This step needs to import data from the construction phase, such as

summation of workload value, perdiem value, and total block time period for

workload minimization, and perdiem minimization, and summation of normalized

workload value, normalized perdiem value, and total flight duty period for workload

and pediem minimization simultaneously without bound, workload and pediem

minimization simultaneously with workload bound, and workload and pediem

minimization simultaneously with perdiem bound. The target SD from construction

phase which is the SD of whole crew table is also included. The SD of construction

phase set to be the default comparison SD with other new improvement phase. The

construction phase crew table also is setup to be the default table for the pairing

changing process.

Step 2: This process aims to reduce SD from construction phase. The method is to

move pairing Px to every available crew C1 – Ci. In the first step, the program will

check the crew Cx+1, where x is crew id that stores pairing Px, to see if it matches the

available size of Px operation day or not. This process also checks total flight duty

limitation. If matched, the program will remove the old Px at crew Cx. Total flight

duty, total workload, and total perdiem also are removed from Cx information. Then

the program will book the value of Px and assign value of flight duty, workload, and

perdiem to Cx information.

After finishing booking, the program will proceed to step 3 to calculate SD of

workload for workload minimization, SD of perdiem for perdiem minimization, and

SD of total normalized workload and perdiem (Twp) for workload and perdiem

minimization simultaneously with workload bound, perdiem bound, and without

bound. But if booking is not complete, the program will focus on the next crew Cx+2

and execute step 2 again. This process will continue until the end of crew Cx-1.

Step 3: In this step, the program calculates a whole crew table to find the target SD.

The target SD will change every time that a pairing is moved because the total

workload and perdeim value of each crew is changed. The calculated target SD after

first iteration must less than bound limitation. The calculated target SD is stored in

array parameter for comparison in the next step. From figure 4.8, the highest and

lowest SD of workload will declare to be the limitation of workload bound. From

figure 4.9, the highest and lowest SD of perdiem will declare to be the limitation of

perdiem bound.

Step 4: The objective of this step is to find a minimum target SD. This step occurs

after the check available function result is true. The array of target SD will be

compared with initial or default SD. After the comparison process, the minimum

target SD will be set to be the default SD also with minimum target SD table.

Page 28

4.2.2.2 Change pairing descending

This technique is similar to the previous Change Pairing Directly technique.

The additional process is total workload and perdiem descending. The idea is to

distribute or reduce high combined total workload and perdiem of crew Cx. The

method is also similar to the previous technique by sorting descending target SD first

and then continuously moving or changing position of pairing with high combined

total workload and perdiem to others crews. The solution will continuously decrease

target SD to meet the local optimal solution.

This technique will change selected pairing Px for every available crew C1 –

Ci. After one step of pairing change, the program will calculate the target SD of the

whole crew table and set the minimum SD to be the default SD for comparison. This

process continues until it has finished moving all of pairing P1 – Pi. The iteration can

be added for more efficient target SD minimization. From figure 4.10, the target SD

of workload minimization is SD of workload. Figure 4.11 shows the target SD of

perdiem minimization is SD of perdiem. Figure 4.12, 4.13, and 4.14 shows the SD of

workload and perdiem as a target SD.

Page 29

Sort SD of workload descending

Check empty space

and Total Flight Duty limitation

Assign pairing, workload, and perdiem to crew

Compare SD of workload

Result Table

Calculate SD of workload

Pairing

Assignment

Function

Collect SD of workload

Lower

Greater

and not

last

pairing

Import data, SD, and table from

 Construction Phase

Check Iteration

Finish

Not finish

Figure 4.10 flow chart of change pairing descending with workload minimization

Page 30

Sort SD of perdiem descending

Check empty space

and Total Flight Duty limitation

Assign pairing, workload, and perdiem to crew

Compare SD of perdiem

Result Table

Calculate SD of perdiem

Pairing

Assignment

Function

Collect SD of perdiem

Lower

Greater

and not

last

pairing

Import data, SD, and table from

 Construction Phase

Check iteration

Finish

Not finish

Figure 4.11 flow chart of change pairing descending with perdiem minimization

Page 31

Sort SD of total normalized workload and perdiem

(Twp) descending

Check empty space

and Total Flight Duty limitation

Assign pairing, workload, and perdiem to crew

Compare SD of Twp

Result Table

Calculate SD of Twp

Pairing

Assignment

Function

Collect SD of Twp

Lower

Greater

and not

last

pairing

Import data, SD, and table from

 Construction Phase

Check iteration

Finish

Not finish

Figure 4.12 flow chart of change pairing descending with workload and perdiem

minimization simultaneously without bound

Page 32

Import data, SD, and table from

 Construction Phase

Check empty space

and Total Flight Duty limitation

Assign pairing, workload, and perdiem to crew

Compare SD of Twp

Result Table

Calculate SD of normalized workload and

perdiem (Twp) which limited by workload bound

except first iteration

Pairing

Assignment

Function

Declare workload bound

Lower

Greater

and not

last

pairing

Collect SD of Twp

Assign

workload

bound

Sort SD of workload descending

Check iteration

Finish

Not finish

Sort SD of

perdiem

 descending

Figure 4.13 flow chart of change pairing descending with workload and perdiem

minimization simultaneously with workload bound

Page 33

Import data, SD, and table from

 Construction Phase

Check empty space

and Total Flight Duty limitation

Assign pairing, workload, and perdiem to crew

Compare SD of Twp

Result Table

Calculate SD of normalized workload and

perdiem (Twp) which limited by perdiem bound

except first iteration

Pairing

Assignment

Function

Declare perdiem bound

Lower

Greater

and not

last

pairing

Collect SD of Twp

Assign

perdiem

bound

Sort SD of perdiem descending

Check iteration

Finish

Not finish

Sort SD of

workload

 descending

Figure 4.14 flow chart of change pairing descending with workload and perdiem

minimization simultaneously with perdiem bound

Page 34

Step 1: This step needs to import data from the construction phase, such as

summation of normalized workload value, normalized perdiem value, and total flight

duty period from all of crews. The target SD from the construction phase also

included. The SD of the construction phase is used to be the default comparison SD

with other new improvement phase creating. The construction phase crew table is also

setup to be the default table for pairing changing process.

Step 2: This step will sort target SD in descending order. From figure 4.10, the

workload minimization will sort by SD of workload. Figure 4.11 shows perdiem

minimization that used SD of perdiem for sorting. The no bound part will use the

summation normalized SD of workload and perdiem (Twp) according to figure 4.12.

From figure 4.13, the workload bound will sort by SD of workload in the first

iteration and perdiem in the remaining iterations. Similarly, for perdiem bound, it will

sort by SD of perdiem in first iteration and workload in the remaining iterations

according to figure 4.14. Thus, the sequence of crew will be changed but the

information of each crew is still the same.

Step 3: This process aims to reduce target SD. The method is move pairing Px to

every available crew C1 – Ci. In the first step, the program will check the crew Cx+1,
where x is the crew id that stores pairing Px, to see if it matches the available size with

Px operation day or not. This process also checks total flight duty limitation. If

matched, the program will remove the old Px at crew Cx. Total flight duty, total

workload, and total perdiem also are removed from Cx information. Then the program

will book the value of Px and assign the value of flight duty, workload, and perdiem to

Cx information. After finishing booking, the program will proceed to step 4 to

calculate target SD. If not finished, the program will focus on the next crew Cx+2 and

execute step 3 again. This process will continue until the end of crew Cx-1.

Step 4: In this step, the program calculates a whole crew table to find the target SD.

The target SD will change every time that a pairing is moved because the total

workload and perdiem value of each crew is changed. The calculated target SD is

stored in an array parameter for next step comparison.

 From first iteration, the highest and lowest SD of workload will declare to be

the limitation of workload bound. And the highest and lowest SD of perdiem will

declare to be the limitation of perdiem bound. These bound will applied in step 3 in

the rest iterations.

Step 5: The objective of this step is to find the minimum target SD. This step occurs

after check available function result is true. The array of target SD will be compared

with initial or default SD. After finishing the comparison process, the minimum target

SD will be set to be default SD also with minimum target SD table.

Page 35

4.2.2.3 Change workload ascending

 This is method is similar to previous techniques by applying target SD

ascending sorting. The idea is to find and analyze the differences between unsort,

descending sort, and ascending sort techniques. This method requires the target SD

from construction phase for sorting. This technique also moves all pairings P1 – Pi to

all crews C1 – Ci. The result should be different because the sequence of crews was

changed and, thus, the total SD of workload and perdiem of each crew will changed.

 From figure 4.15, the target SD of workload minimization is SD of

workload. Figure 4.16 shows the target SD of perdiem minimization is SD of

perdiem. Figure 4.17, 4.18, and 4.19 shows the SD of workload and perdiem as a

target SD.

Page 36

Sort SD of workload ascending

Check empty space

and Total Flight Duty limitation

Assign pairing, workload, and perdiem to crew

Compare SD of workload

Result Table

Calculate SD of workload

Pairing

Assignment

Function

Collect SD of workload

Lower

Greater

and not

last

pairing

Import data, SD, and table from

 Construction Phase

Check Iteration

Finish

Not finish

Figure 4.15 flow chart of change pairing ascending with workload minimization

Page 37

Sort SD of perdiem ascending

Check empty space

and Total Flight Duty limitation

Assign pairing, workload, and perdiem to crew

Compare SD of perdiem

Result Table

Calculate SD of perdiem

Pairing

Assignment

Function

Collect SD of perdiem

Lower

Greater

and not

last

pairing

Import data, SD, and table from

 Construction Phase

Check iteration

Finish

Not finish

Figure 4.16 flow chart of change pairing ascending with perdiem minimization

Page 38

Sort SD of total normalized workload and perdiem

(Twp) ascending

Check empty space

and Total Flight Duty limitation

Assign pairing, workload, and perdiem to crew

Compare SD of Twp

Result Table

Calculate SD of Twp

Pairing

Assignment

Function

Collect SD of Twp

Lower

Greater

and not

last

pairing

Import data, SD, and table from

 Construction Phase

Check iteration

Finish

Not finish

Figure 4.17 flow chart of change pairing ascending with workload and perdiem

minimization simultaneously without bound

Page 39

Import data, SD, and table from

 Construction Phase

Check empty space

and Total Flight Duty limitation

Assign pairing, workload, and perdiem to crew

Compare SD of Twp

Result Table

Calculate SD of normalized workload and

perdiem (Twp) which limited by workload bound

except first iteration

Pairing

Assignment

Function

Declare workload bound

Lower

Greater

and not

last

pairing

Collect SD of Twp

Assign

workload

bound

Sort SD of workload ascending

Check iteration

Finish

Not finish

Sort SD of

perdiem

 ascending

Figure 4.18 flow chart of change pairing ascending with workload and perdiem

minimization simultaneously with workload bound

Page 40

Import data, SD, and table from

 Construction Phase

Check empty space

and Total Flight Duty limitation

Assign pairing, workload, and perdiem to crew

Compare SD of Twp

Result Table

Calculate SD of normalized workload and

perdiem (Twp) which limited by perdiem bound

except first iteration

Pairing

Assignment

Function

Declare perdiem bound

Lower

Greater

and not

last

pairing

Collect SD of Twp

Assign

perdiem

bound

Sort SD of perdiem ascending

Check iteration

Finish

Not finish

Sort SD of

workload

 ascending

Figure 4.19 flow chart of change pairing ascending with workload and perdiem

minimization simultaneously with perdiem bound

Page 41

Step 1: This step needs to import data from the construction phase, such as

summation of normalized workload value, normalized perdiem value, and total flight

duty period from all crews. The target SD from construction phase is also included.

The SD of construction phase is used as the default comparison SD with other new

improvement phase creating. The construction phase crew table is also setup to be the

default table for the pairing change process.

Step 2: This step will sort target SD in ascending order. From figure 4.15, the

workload minimization will sort by SD of workload. Figure 4.16 shows perdiem

minimization that used SD of perdiem for sorting. The no bound part will use the

summation normalized SD of workload and perdiem (Twp) according to figure 4.17.

From figure 4.18, the workload bound will sort by SD of workload in the first

iteration and perdiem in the remaining iterations. Similarly, for perdiem bound, it will

sort by SD of perdiem in first iteration and workload in the remaining iterations

according to figure 4.19. Thus, the sequence of crew will be changed but the

information of each crew is still the same.

Step 3: This process aims to reduce target SD. The method is to move pairing Px to

every available crew C1 – Ci. In the first step, the program will check the crew Cx+1,
where x is crew id that stores pairing Px, to see if it matches the available size of Px

operation day or not. This process also checks total flight duty limitation. If matched,

the program will remove the old Px at crew Cx. Total flight duty, total workload, and

total perdiem also are removed from Cx information. Then the program will book

value of Px and assign the value of flight duty, workload, and perdiem to Cx

information. After finishing booking, the program will proceed to step 4 to calculate

target SD. If not finished, the program will focus on the next crew Cx+2 and execute

step 3 again. This process will continue until the end of crew Cx-1.

Step 4: In this step, the program will calculate a whole crew table to find the target

SD. The target SD will change every time that a pairing is moved because the total

workload and perdeim value of each crew is changed. The calculated target SD is

stored in an array parameter for next step comparison.

From first iteration, the highest and lowest SD of workload will declare to be

the limitation of workload bound. And the highest and lowest SD of perdiem will

declare to be the limitation of perdiem bound. These bound will applied in step 3 in

the rest iterations.

Step 5: The objective of this step is to find the minimum target SD. This step occurs

after check available function result is true. The array of target SD will be compared

with initial or default SD. After finishing the comparison process, the minimum target

SD will setup to be the default SD also with minimum target SD table.

Page 42

4.2.2.4 High workload and perdiem distribution

 This techniques aims to minimize target SD by dispersing the pairing that

made the combined workload and perdiem greater to other crews in the table. The

solution will continuously decrease Target SD to meet the local optimal solution. In

addition, the data for selected distribution depends on the objective of SD

minimization. In addition, figure 4.20 shows target SD of workload minimization is

SD of workload. Figure 4.21 shows the target SD of perdiem minimization is SD of

perdiem. Figure 4.22, 4.23, and 4.24 shows the SD of workload and perdiem as a

target SD.

 This technique sorts the target SD descending first. Then, the crews will be

divided into two groups, upper class and lower class, for disperse pairing from upper

class to lower class. The upper class is the sequence of crews from the crew with

highest workload for workload minimization method, perdiem for perdiem

minimization method, and total normalized of workload and perdiem for workload

bound, perdiem bound, and without bound method to the crew before mean or

average of total workload and perdiem. The lower class represents crews from

average workload for workload minimization method, perdiem for perdiem

minimization method, and total normalized of workload and perdiem for workload

bound, perdiem bound, and without bound method to the end of crew id. This

classification method can be formulated as follows:

𝑚 =
∑ 𝑇𝑤𝑝𝑐

𝑖
𝑐=1

𝑁
 (4.1)

Where;

 𝑚 = Mean of workload

N = total number of workload or perdiem

i = Max workload id

c = Index of crew where c = 1, 2,…, i

Twp = Total normalize of workload and perdiem of

crew c

Thus,

bT = Set of upper class {bT1, bT2,…,bTm-1}

sT = Set of lower class {sTm, sTm-1,…,sTi}

Page 43

Sort SD of workload descending

Divide crews into two categories;

Upper class and lower class

Check empty space

and Total Flight Duty limitation

Compare SD of workload

Result Table

Calculate SD of workload

Pairing

Assignment

Function

Collect SD of workload

Lower

Greater

Import data, SD, and table from

 Construction Phase

Assign pairing, workload, and perdiem to crew

Check iteration

Finish

Not finish

Figure 4.20 flow chart of high workload and perdiem distribution with workload

minimization

Page 44

Sort SD of perdiem descending

Divide crews into two categories;

Upper class and lower class

Check empty space

and Total Flight Duty limitation

Compare SD of perdiem

Result Table

Calculate SD of perdiem

Pairing

Assignment

Function

Collect SD of perdiem

Lower

Greater

Import data, SD, and table from

 Construction Phase

Assign pairing, workload, and perdiem to crew

Check iteration

Finish

Not finish

Figure 4.21 flow chart of high workload and perdiem distribution with perdiem

minimization

Page 45

Sort SD of total normalized workload and perdiem

(Twp) descending

Divide crews into two categories;

Upper class and lower class

Check empty space

and Total Flight Duty limitation

Compare SD of Twp

Result Table

Calculate SD of Twp

Pairing

Assignment

Function

Collect SD of Twp

Lower

Greater

Import data, SD, and table from

 Construction Phase

Assign pairing, workload, and perdiem to crew

Check iteration

Finish

Not finish

Declare workload bound

Figure 4.22 flow chart of high workload and perdiem distribution with workload

and perdiem minimization simultaneously without bound

Page 46

Sort SD of workload descending

Divide crews into two categories;

Upper class and lower class

Check empty space

and Total Flight Duty limitation

Compare SD of Twp

Result Table

Calculate SD of normalized workload and

perdiem (Twp) which limited by workload bound

except first iteration

Pairing

Assignment

Function

Collect SD of Twp

Lower

Greater

Import data, SD, and table from

 Construction Phase

Assign pairing, workload, and perdiem to crew

Check iteration

Finish

Not finish

Declare workload bound

Assign

workload

bound

Sort SD of

perdiem

descending

Figure 4.23 flow chart of high workload and perdiem distribution with workload

and perdiem minimization simultaneously with workload bound

Page 47

Sort SD of perdiem descending

Divide crews into two categories;

Upper class and lower class

Check empty space

and Total Flight Duty limitation

Compare SD of Twp

Result Table

Calculate SD of normalized workload and

perdiem (Twp) which limited by perdiem bound

except first iteration

Pairing

Assignment

Function

Collect SD of Twp

Lower

Greater

Import data, SD, and table from

 Construction Phase

Assign pairing, workload, and perdiem to crew

Check iteration

Finish

Not finish

Declare perdiem bound

Assign

perdiem

bound

Sort SD of

workload

descending

Figure 4.24 flow chart of high workload and perdiem distribution with workload

and perdiem minimization simultaneously with perdiem bound

Page 48

Step 1: Program will import data from the construction phase, such as crew table,

target SD, total workload, total perdiem, and total flight duty of each crew.

Step 2: This step will sort target SD in descending order. From figure 4.20, the

workload minimization will sort by SD of workload. Figure 4.21 shows perdiem

minimization that used SD of perdiem for sorting. The no bound part will use the

summation normalized SD of workload and perdiem (Twp) according to figure 4.22.

From figure 4.23, the workload bound will sort by SD of workload in the first

iteration and perdiem in the remaining iterations. Similarly, for perdiem bound, it will

sort by SD of perdiem in first iteration and workload in the remaining iterations

according to figure 4.24. Thus, the sequence of crew will be changed but the

information of each crew is still the same.

Step 3: This step will divide set of crews C = (C1, C2,…, Ci) into two categories:

upper class bT = (bT1, bT2,…,bTm-1) and lower class sT = (sTm, sTm-1,…,sTi) by using

equation 4.1. This process aims to distribute crew pairing from high crews with

workload for workload minimization method, perdiem for perdiem minimization

method, and combined workload and perdiem for workload bound, perdiem bound,

and non-bound method to other lower class crew.

Step 4: Given pairing Px, where x is target for moving, the program selects the highest

pairing that causes each crew in upper class bTx to have high combined workload and

perdiem. Px is setup to be moving pairing. Then, the program checks total flight duty

limitation and available day of sTm with value of operation size and start day of Px. If

it is successful, the value of Px will added to crew table and crew information. The

value of total flight duty, workload, and perdiem also are added to sTm. Pairing Px that

originally was stored at bTx will be deleted. After the completed booking process, this

program continues to execute step 4 again until the end of upper class bTm-1.

If there are no available spaces, the program continue to the next sTm-1 until

sTit. After that, the program will focus on the next upper class bTx and execute step 4

again.

Step 5: After moving a Px to some lower class, the target SD will be calculated. This

SD will be collected every time a Px is moved. The comparison will start after Px

finished moving to all possible crews in lower class sT = (sTm, sTm-1,…,sTi). The

collected target SDs are compared to find the minimum SD. The crew table with

minimum target SD will be set to be the initial table or default table and, then, step 4

is executed again.

This step also creates the limitation bound. From first iteration, the highest and

lowest SD of workload will declare to be the limitation of workload bound. And the

highest and lowest SD of perdiem will declare to be the limitation of perdiem bound.

These bound will applied in step 4 in the rest iterations.

Step 6: This technique will end after complete bTm-1 at step 4. The expected result

should show greater balance for both workload and perdiem.

Page 49

Chapter 5

Results and Discussion

 This chapter explains the result from solving ACRP (Airline Crew Rostering

Problem) problem by applying the Greedy Algorithm. This project focused on three

main objectives: to minimize workload, minimize perdiem, and minimize both

workload and perdiem. The solution techniques can be divided into two phases: a

construction phase and an improvement phase. The expected result of the construction

phase is a simple crew time table. The expected outcome of the improvement phase is

to reduce the SD of target objective as much as possible. This thesis focuses on

minimizing workload and perdiem simultaneously, but also experiments on

minimizings only workload and perdiem. The results have five main parts which are,

minimize SD of workload only, minimize SD of perdiem only, minimize SD of

workload and perdiem simultaneously without any bound, minimize SD of workload

and perdiem simultaneously with workload bound, and minimize SD of workload and

perdiem simultaneously with perdiem bound. In addition, only the minimization of

workload and perdiem did not use normalization method. The results in this chapter

will be shown in the form of tables that consist of iteration, SD of workload, SD of

perdiem, and percentage SD changed or reduction from construction phase.

5.1 Result and Discussion

 This section discusses the combined results of SD of workload and perdiem

from all techniques. The result of all improvement phases is very different and

interesting. The idea is to compare the differences and find the best improvement

technique. This experiment used nine instances and much iteration. Iterations indicate

the number of compile cycles and can adjust to change to any value. Various

iterations can make the resulting SD of workload and perdiem different. This

experiment tested three different methods: minimize SD of workload alone, minimize

SD of perdiem alone, and minimize SD of both workload and perdiem at the same

time. All of the result will be comparing and discussed at the end of this section.

5.2 Minimize SD of workload

 This section shows the result of SD of workload minimization only while

ignoring perdiem. The result shows good solutions in the SD of workload. The

solutions were obtained by four techniques: change pairing directly, change pairing

descending, change pairing ascending, and high workload and perdiem distribution.

Page 50

Table 5.1: SD of workload table using workload minimization

Instance Iteration

SD of

Construction

Phase

SD of each Improvement Phase

Change

pairing

directly

Change

pairing

descending

Change

pairing

ascending

High

workload

distribution

1 25.8306 9.0750 9.0750 9.1122 13.8453

TA84S 10 25.8306 9.0750 9.0750 9.1122 13.2422

100 25.8306 9.0750 9.0750 9.1122 13.2422

1 41.4780 9.2450 9.2450 8.0025 24.3254

TA84M 10 41.4780 9.2450 9.2450 8.0025 21.2779

100 41.4780 9.2450 9.2450 8.0025 21.2779

1 28.2833 20.0357 20.0357 20.0598 16.0043

TA84L 10 28.2833 20.0357 20.0357 20.0598 14.5692

100 28.2833 20.0357 20.0357 20.0598 14.5692

1 23.3733 8.1383 8.1383 7.7622 14.4219

TA150S 10 23.3733 7.5526 7.5526 7.7502 11.7359

100 23.3733 7.5526 7.5526 7.7502 11.7359

1 26.6441 16.9032 16.9032 17.1479 16.4588

TA140M 10 26.6441 15.8973 15.8973 15.8951 13.4063

100 26.6441 15.8973 15.8973 15.8951 13.4063

1 19.0579 14.2010 14.2010 14.2010 12.7461

TA146L 10 19.0579 14.1544 14.1544 14.1544 12.0618

100 19.0579 14.1544 14.1544 14.1544 12.0618

1 21.8071 13.8690 13.8690 13.8157 15.3869

TA330S 10 21.8071 13.4339 13.4339 13.5513 14.2736

100 21.8071 13.4339 13.4339 13.5513 14.2736

1 24.4522 15.8078 15.8078 15.8078 17.5612

TA334M 10 24.4522 14.5659 14.5659 14.5659 16.6937

100 24.4522 14.5659 14.5659 14.5659 16.6937

1 19.8712 17.0812 17.0812 17.0812 13.2343

TA238L 10 19.8712 17.0812 17.0812 17.0812 12.3839

100 19.8712 17.0812 17.0812 17.0812 12.3839

 From table 5.1, all of the improvement phase can produce satisfactory results.

The result of improvement phases can reduce high value of SD of workload from the

construction phase. Most of the improvement techniques produced a different optimal

SD of workload in every instances test. The change pairing directly technique resulted

in the best solutions in test instances TA84S, TA150S, TA330S, and TA334M, with

minimal SD of workloads of 9.0750, 7.5526, 13.4339, and 14.5659, respectively.

Interestingly, the most successful minimized instances are short distance routes. The

reason may be the delicate changing pairing method that moves every possible crew

to produces minimum SD of workload.

 Another best technique is high workload distribution. The results were

satisfactory on test instances TA84L, TA140M, TA146L, and TA238L which had

minimum SDs of 14.5692, 13.4063, 12.0618, and 12.3839, respectively. The

interesting finding is that the most successful minimized instances are long distance

routes. The reason is that this technique is designed to reduce SD of workload by

dividing crews into two classes. The class of high total workload will disperse high

Page 51

workload pairing to crews in another class. Consequently, total workloads of all crews

were satisfactorily balanced.

 The remaining techniques, change pairing descending and change pairing

ascending, produced a few satisfactory solutions. The change pairing descending

technique produced at test instance TA334M the same solution as the change pairing

directly technique. Another, change pairing ascending can produce two satisfactory

solutions: TA84M, and TA334M. The interesting thing is this method mostly

produced optimal solution in various distance route instances. Moreover, the most

results of the three change pairing methods; directly, descending, and ascending are

similar. From this we can conclude that the unsort and sort methods before

improvement have little effect on the result

Table 5.2: SD of perdiem table using workload minimization

Instance Iteration

SD of

Construction

Phase

SD of each Improvement Phase

Change

pairing

directly

Change

pairing

descending

Change

pairing

ascending

High

workload

distribution

1 4952.6465 4932.8921 4932.8398 4940.8657 5249.7915

TA84S 10 4952.6465 4932.8921 4932.8398 4940.8657 5303.6177

100 4952.6465 4932.8921 4932.8398 4940.8657 5303.6177

1 11208.2412 5418.5239 5754.2432 5355.6890 8761.6152

TA84M 10 11208.2412 5418.5239 5754.2432 5355.6890 8289.5449

100 11208.2412 5418.5239 5754.2432 5355.6890 8289.5449

1 6143.6514 4533.1421 4745.6099 4516.3062 3629.8899

TA84L 10 6143.6514 4533.1421 4745.6094 4516.3062 3382.1333

100 6143.6514 4533.1421 4745.6094 4516.3062 3382.1333

1 4638.0747 5324.5317 5324.5308 5395.1660 4529.4263

TA150S 10 4638.0747 5158.8940 5158.8936 5371.4683 4446.7505

100 4638.0747 5158.8940 5158.8936 5371.4683 4446.7505

1 7169.1719 4964.2559 4937.7622 4986.1797 4980.9150

TA140M 10 7169.1719 4971.8882 4948.4253 4971.8882 4517.5200

100 7169.1719 4971.8882 4948.4253 4971.8882 4517.5200

1 4999.6504 4206.8076 4206.8071 4206.8081 3907.7407

TA146L 10 4999.6504 4058.6511 4058.6506 4058.6511 3790.8203

100 4999.6504 4058.6511 4058.6506 4058.6511 3790.8203

1 6022.7490 5955.3721 5963.4233 5958.6055 5661.6704

TA330S 10 6022.7490 5890.8311 5946.7412 5941.9111 5622.9077

100 6022.7490 5890.8311 5946.7412 5941.9111 5622.9077

1 7148.8438 6474.2012 6475.4458 6470.8467 6269.1968

TA334M 10 7148.8438 6329.3433 6328.3052 6324.6396 6239.8481

100 7148.8438 6329.3433 6328.3052 6324.6396 6239.8481

1 6331.2549 5972.3550 5972.3555 5972.3535 5385.1401

TA238L 10 6331.2549 5972.3535 5972.3555 5972.3535 5291.8179

100 6331.2549 5972.3545 5972.3555 5972.3535 5291.8179

Page 52

From table 5.2, most of improvement techniques result in a satisfactory SD of

perdiem. There are some techniques that produced higher SDs than the SDs of the

construction phase such as change pairing directly, change pairing descending, and

change pairing ascending in instance TA150S. The change pairing ascending in this

instance produced a less satisfactory result, at 5371.4683, than other techniques.

However, the high workload distribution still produced an acceptable SD of perdiem,

in this case about 4446.7505. We can conclude that there is no clear relation between

workload and perdiem in this instance.

 The high workload distribution can produce most of the satisfied solutions,

such as TA84L, TA150S, TA140M, TA146L, TA330S, TA334M, and TA238L,

whose SDs of perdiem are 3382.1333, 4446.7505, 4517.5200, 3790.8203, 5622.9077,

6239.8481, and 5291.8179, respectively. So, this obviously shows that the workload

distribution can reduce SD of perdiem and also SD of long distance route workload.

 Another change pairing method can produce two optimal solutions, such as

TA84S for change pairing descending technique, and TA84M for change pairing

ascending technique.

5.3 Minimize SD of perdiem

 This section shows the result of SD of perdeim minimization only, by ignoring

workload. The result shows good solutions in SD of perdiem.

Table 5.3 SD of workload table using perdiem minimization

Instance Iteration
SD of

Construction

Phase

SD of each Improvement Phase

Change

pairing
directly

Change

pairing
descending

Change

pairing
ascending

High

perdiem
distribution

1 25.8306 40.9871 40.7937 40.7949 20.7698

TA84S 10 25.8306 40.9871 40.7937 41.8933 20.1775

100 25.8306 40.9871 40.7937 41.8933 20.1775

1 41.4780 34.7609 33.8553 35.8218 25.3657

TA84M 10 41.4780 30.1491 30.2490 35.1450 21.2231

100 41.4780 30.1491 30.2490 35.1450 21.2231

1 28.2833 20.7667 20.0373 20.8992 16.2396

TA84L 10 28.2833 20.7667 20.0373 20.8992 15.6292

100 28.2833 20.7667 20.0373 20.8992 15.6292

1 23.3733 37.4462 36.2416 36.4622 19.3914

TA150S 10 23.3733 35.6293 34.0828 34.6036 17.8067

100 23.3733 35.6293 34.0828 34.6036 17.8067

1 26.6441 32.4200 32.3181 31.4286 16.9465

TA140M 10 26.6441 26.4240 24.2467 23.2702 14.5087

100 26.6441 26.4240 24.2467 23.2702 14.5087

1 19.0579 21.4943 21.8900 21.9899 14.0848

TA146L 10 19.0579 19.7913 21.0767 21.0767 13.3307

100 19.0579 19.7913 21.0767 21.0767 13.3307

1 21.8071 29.3076 29.5491 29.0551 17.6498

TA330S 10 21.8071 26.3895 27.0843 25.9532 17.0778

100 21.8071 26.3895 27.0843 25.9532 17.0778

Page 53

1 24.4522 32.5122 32.7639 32.5239 20.2152

TA334M 10 24.4522 30.5178 30.5211 30.2585 19.4801

100 24.4522 30.5178 30.5211 30.2585 19.4801

1 19.8712 19.5419 20.2365 19.5461 15.3938

TA238L 10 19.8712 19.5412 20.1902 19.5453 14.9090

100 19.8712 19.5412 20.1902 19.5453 14.9090

 Table 5.3 shows the incredible result from high perdiem distribution

technique. All of results from this technique are better solutions than other techniques.

The reason is it can disperse many with high total workload from one crew to other

crews. The remaining techniques produce very high SD of workload especially

change pairing descending and ascending techniques that produce four high SD each.

Table 5.4 SD of perdiem table using perdiem minimization

Instance Iteration

SD of

Construction

Phase

SD of each Improvement Phase

Change

pairing

directly

Change

pairing

descending

Change

pairing

ascending

High

perdiem

distribution

1 4952.6460 1557.1240 1477.4646 1565.8047 4443.5234

TA84S 10 4952.6460 1557.1240 1477.4646 1481.8721 4376.6812

100 4952.6460 1557.1240 1477.4646 1481.8721 4376.6812

1 11208.2402 2926.1685 2944.9614 2791.6023 8809.3418

TA84M 10 11208.2402 2741.8958 2741.9299 2516.7654 8228.6641

100 11208.2402 2741.8958 2741.9299 2516.7654 8228.6641

1 6143.6519 4644.1855 4561.5308 4647.9175 3525.0706

TA84L 10 6143.6519 4644.1855 4561.5303 4647.9175 3422.9509

100 6143.6519 4644.1855 4561.5303 4647.9175 3422.9509

1 4683.0742 1547.6014 1560.1687 1510.0592 3673.5864

TA150S 10 4683.0742 1474.6520 1474.8788 1342.0878 3538.0178

100 4683.0742 1474.6520 1474.8788 1342.0878 3538.0178

1 7169.1729 3148.3926 3277.9463 3192.0593 5021.6162

TA140M 10 7169.1729 2848.7959 2965.1982 2848.2712 4615.4595

100 7169.1729 2848.7959 2965.1982 2848.2712 4615.4595

1 4999.6499 3113.5918 3168.1221 3168.1221 3469.8267

TA146L 10 4999.6499 2981.0764 3017.8857 3017.8860 3235.1953

100 4999.6499 2981.0764 3017.8857 3017.8860 3235.1953

1 6022.7480 3224.1492 3391.2781 3360.9858 5176.2012

TA330S 10 6022.7480 3075.2869 3249.9578 3207.0588 5071.7715

100 6022.7480 3075.2869 3249.9578 3207.0588 5071.7715

1 7148.8447 4038.0454 3950.5808 3958.8188 5641.5400

TA334M 10 7148.8447 3881.4170 3811.6323 3811.0105 5514.3535

100 7148.8447 3881.4170 3811.6323 3811.0105 5514.3535

1 6331.2559 4672.3589 4653.7144 4672.3574 5037.9883

TA238L 10 6331.2559 4672.3589 4653.7144 4672.3574 4966.5522

100 6331.2559 4672.3589 4653.7144 4672.3574 4966.5522

Page 54

In contrast with previous result, table 5.4 shows that most high perdiem results

came from the high perdiem distribution technique. There is only one satisfactory

result, TA84L, which is a small test instance and long distance route. The best results

in this experiment are from the change pairing ascending technique with 2516.7654,

1342.0878, 2848.2712, and 3811.0105 from instances TA84M, TA150S, TA140M,

and TA334M respectively. Most of the good solutions are for various range flights.

The other two techniques also produce good solutions. The change pairing directly

techniques produced the best solutions in instances TA146L and TA330S. The change

pairing descending techniques produced the best solutions in instances TA84S and

TA238L.

5.4 Minimize SD of workload and perdiem simultaneously without bound

 This section aims to minimize SD of both workload and perdiem

simultaneously. Due to the highly different values of SD between workload and

perdeim, normalization was applied to solve this problem. This solution did not apply

any workload or perdiem bound.

Table 5.5 SD of workload table using workload and perdiem minimization without

bound

Instance Iteration

SD of

Construction

Phase

SD of each Improvement Phase

Change

pairing

directly

Change

pairing

descending

Change

pairing

ascending

High WL

and PD

distribution

 1 25.8306 12.8448 10.4426 13.0062 26.1736

TA84S 10 25.8306 12.2737 10.1846 11.3851 17.7565

 100 25.8306 12.2737 10.1846 11.3852 17.7565

 1 41.4780 15.9578 15.4209 15.9578 21.7941

TA84M 10 41.4780 11.1579 12.3778 11.1570 21.4041

 100 41.4780 11.1570 12.3778 11.1570 21.4041

 1 28.2833 20.1555 20.9574 20.1555 26.1290

TA84L 10 28.2833 20.1555 20.9574 20.1555 26.1290

 100 28.2833 20.1555 20.9574 20.1555 26.1290

 1 23.3733 10.2592 9.1113 9.9664 14.8895

TA150S 10 23.3733 9.4683 9.2989 9.1962 14.8895

 100 23.3733 9.4683 9.2989 9.1962 14.8895

 1 26.6441 15.8752 15.4932 15.8698 25.2845

TA140M 10 26.6441 15.1985 15.4537 15.4448 25.2282

 100 26.6441 15.1985 15.4537 15.4448 25.2282

 1 19.0579 15.4303 15.4303 15.4303 18.3158

TA146L 10 19.0579 15.4303 15.4303 15.4303 18.3158

 100 19.0579 15.4303 15.4303 15.4303 18.3158

 1 21.8071 14.3296 14.5260 14.5260 20.3814

TA330S 10 21.8071 13.2523 13.4412 13.4412 20.4866

 100 21.8071 13.2523 13.4412 13.4412 20.4866

 1 24.4522 16.5527 16.5527 16.5527 23.5936

TA334M 10 24.4522 15.1432 15.1432 15.1432 22.9227

Page 55

 100 24.4522 15.1432 15.1432 15.1432 22.9227

 1 19.8712 18.0734 18.0734 18.0734 20.0006

TA238L 10 19.8712 18.0734 18.0734 18.0734 20.0006

 100 19.8712 18.0734 18.0734 18.0734 20.0006

 From Table 5.5, this experiment gives a satisfactory solution with reduction of

all SD of workload. However, the result did not complete with a good optimal

solution. The best technique to minimize SD of workload is the change pairing

directly technique which gave best results in instances TA84M, TA84L, TA140M,

TA146L, TA330S, TA334M, and TA238L. The result can shows that this technique is

proper for the various mix route and long distance route. Another interesting

technique is change pairing ascending technique which gave the best result in all long

distance routes and most various distance routes, such as TA84M, TA84L, TA150S,

TA146L, TA334M, and TA238L. The change pairing descending technique yielded

satisfactory results in four instances: TA84S, TA146L, TA334M, and TA238L. The

high workload and perdiem distribution technique cannot produce any best result at

all and gives the worst result in every test instance.

Table 5.6 SD of perdiem table using workload and perdiem minimization without

bound

Instance Iteration

SD of

Construction
Phase

SD of each Improvement Phase

Change

pairing

directly

Change

pairing

descending

Change

pairing

ascending

High WL

and PD

distribution

 1 4952.6460 2712.8418 2493.4668 2673.1040 3014.9819

TA84S 10 4952.6460 2400.2322 2423.3892 2336.9780 2470.4265

 100 4952.6460 2400.2322 2423.3892 2336.9778 2470.4265

 1 11208.2402 3678.1956 3865.2637 3678.1950 4571.7173

TA84M 10 11208.2402 3959.2625 3967.3340 3959.2622 4207.0645

 100 11208.2402 3959.2625 3967.3340 3959.2622 4207.0645

 1 6143.6519 4557.7705 4873.2905 4557.7710 5463.3770

TA84L 10 6143.6519 4557.7705 4873.2905 4557.7700 5463.3765

 100 6143.6519 4557.7705 4873.2905 4557.7700 5463.3765

 1 4683.0742 3165.5696 2884.9604 3100.9329 5480.1914

TA150S 10 4683.0742 2537.6790 2439.6409 2861.1836 5480.1914

 100 4683.0742 2537.6790 2439.6409 2861.1836 5480.1914

 1 7169.1729 4519.6846 4660.0034 4591.3013 5085.0986

TA140M 10 7169.1729 4498.1973 4625.7358 4578.6187 5085.0986

 100 7169.1729 4498.1973 4625.7358 4578.6187 5085.0986

 1 4999.6499 3133.8350 3133.8350 3133.8352 4725.9521

TA146L 10 4999.6499 3133.8350 3133.8350 3133.8352 4725.9521

 100 4999.6499 3133.8350 3133.8350 3133.8352 4725.9521

 1 6022.7480 4289.7637 4367.2773 4367.2773 5297.5420

TA330S 10 6022.7480 4127.5513 4156.7324 4156.7319 5210.0557

 100 6022.7480 4127.5513 4156.7324 4156.7319 5210.0557

 1 7148.8447 5199.1387 5199.1396 5199.1387 6045.2754

TA334M 10 7148.8447 5090.5605 5090.5601 5090.5615 6079.0552

Page 56

 100 7148.8447 5090.5605 5090.5601 5090.5615 6079.0552

 1 6331.2559 5653.2837 5653.2827 5653.2842 5846.9331

TA238L 10 6331.2559 5653.2837 5653.2827 5653.2842 5846.9331

 100 6331.2559 5653.2837 5653.2827 5653.2842 5846.9331

From table 5.6, most results show highly significant reductions. The lower

value of SD of perdiem means a reduction of unbalanced salary. The change pairing

directly technique, change pairing descending technique, and change pairing

ascending technique produce similar numbers of best results, which are 3, 4, and 3,

respectively. The change directly pairing technique reduces SD of workload in

instances TA140M, TA146L, and TA330S. The change pairing descending technique

can significantly reduce SD in instances TA150S, TA146L, TA334M, and TA238L.

Another interesting technique is change pairing ascending which has the best results

in instances TA84S, TA84M, and TA84L. Interestingly, this technique gives

satisfactory solutions in all short distance route instances. In contrast, the high

workload and perdiem distribution produces the worst solution for all instances that is

the same with SD of workload in table 5.5.

 Table 5.7 shows total normalized SD of workload and perdiem and percentage

of total workload and perdeim SD reduction from construction phase. The high value

of percentage indicates the efficiency of the improvement algorithm. From this table,

the change pairing directly technique can produce SD of workload and perdiem

satisfaction in most instances, except TA84S, and TA150S. It also gives the best

average percentage reduction which is 38.6216% with average total normalized SD of

workload and perdiem about 0.4442. On the other hand, the high workload and

perdiem distribution produces the worst total normalized SD of workload and perdiem

in all case instances. It produces considerably less percentage reduction of about

18.6357%. The other two techniques also produce five best reductions with non-worst

reduction but in different instances. The change pairing descending produced best

total normalized SD of workload and perdiem reduction in instances TA84S,

TA150S, TA146L, TA334M, and TA238L. The change pairing ascending produced

best total normalized SD of workload and perdiem reduction in instances TA84M,

TA84L, TA146L, TA334M, and TA238L.

Page 57

Table 5.7 Total normalized workload and perdiem SD (Twp) without bound table

Instance
SD of Construction

phase

SD and percent changed of each Improvement Phase

SD Tech 1
SD Changed

Tech 1 (%)
SD Tech 2

SD Changed

Tech 2 (%)
SD Tech 3

SD Changed

Tech 3 (%)
SD Tech 4

SD Changed

Tech 4 (%)

TA84S 1.3080 0.6285 51.9454 0.5865 55.1571 0.5997 54.1526 0.7585 42.0091

TA84M 1.6257 0.5226 67.8555 0.5414 66.6999 0.5226 67.8555 0.6965 57.1551

TA84L 0.6710 0.4883 27.2245 0.5153 23.1982 0.4883 27.2245 0.6078 9.4080

TA150S 0.7183 0.3353 53.3130 0.3257 54.6558 0.3531 50.8323 0.6305 12.2197

TA140M 0.7169 0.4297 40.0579 0.4396 38.6823 0.4371 39.0331 0.5921 17.4033

TA146L 0.4713 0.3353 28.8630 0.3353 28.8630 0.3353 28.8630 0.4490 4.7450

TA330S 0.5998 0.3882 35.2807 0.3922 34.6086 0.3922 34.6086 0.5408 9.8394

TA334M 0.6059 0.4055 33.0763 0.4055 33.0763 0.4055 33.0763 0.5396 10.9454

TA238L 0.5162 0.4647 9.9784 0.4647 9.9784 0.4647 9.9784 0.4956 3.9960

AVG 0.8037 0.4442 38.6216 0.4451 38.3244 0.4443 38.4027 0.5900 18.6357

Page 58

Figure 5.1 Total normalized SD of all techniques without bound graph

 Figure 5.1 shows SD reduction from the construction phase (dark blue line).

The three change pairing directly, descending, and ascending produced similar results.

The average total normalized SD of workload and perdiem of these methods are very

close; about 0.4442 for directly, 0.4451 for descending, and 0.4443 for ascending. The

high workload and perdiem distribution produced higher total normalized SD of

workload and perdiem than others methods (light blue line).

5.5 Minimize SD of workload and perdiem simultaneously with workload bound

 This section shows the result of SD of workload and perdiem minimization with

workload bound. The workload limitation aims to reduce the variation of total workload

and perdiem value. This method needs normalization to minimize SD of both workload

and perdiem simultaneously. Thus, the table of total normalization SD of workload and

perdiem also shows in this section.

0.00

0.20

0.40

0.60

0.80

1.00

1.20

1.40

1.60

1.80

TA84S TA84M TA84L TA150S TA140M TA146L TA330S TA334M TA238L

Total normalized SD of all techniques without bound

SD of construction phase

SD of change pairing directly

SD of change pairing descending

SD of change pairing ascending

SD of high workload and perdiem distribution

Page 59

Table 5.8 SD of workload table using workload and perdiem minimization with

workload bound

Instance Iteration

SD of

Construction

Phase

SD of each Improvement Phase

Change

pairing

directly

Change

pairing

descending

Change

pairing

ascending

High WL

and PD

distribution

 1 25.8306 12.8448 10.4426 13.0062 13.4145

TA84S 10 25.8306 11.3168 10.1846 12.7126 12.8267

 100 25.8306 11.3168 10.1846 12.7126 12.8267

 1 41.4780 15.9578 15.9578 14.3837 21.7941

TA84M 10 41.4780 13.0765 11.5588 11.4641 18.6937

 100 41.4780 13.0765 11.5588 11.4641 18.6937

 1 28.2833 20.1555 20.9574 20.1555 26.1290

TA84L 10 28.2833 20.1555 20.9574 20.1555 17.5597

 100 28.2833 20.1555 20.9574 20.1555 17.5597

 1 23.3733 10.2592 10.3194 9.9664 15.0243

TA150S 10 23.3733 8.8061 9.0043 10.0552 14.4971

 100 23.3733 8.8061 9.0043 10.0552 14.4971

 1 26.6441 15.9752 15.4932 15.8698 25.3626

TA140M 10 26.6441 15.8752 15.2929 15.2889 19.4284

 100 26.6441 15.8752 15.2929 15.2889 19.4282

 1 19.0579 15.4303 15.4303 15.4303 18.3116

TA146L 10 19.0579 15.4303 15.4303 15.4303 18.3415

 100 19.0579 15.4303 15.4303 15.4303 18.3415

 1 21.8071 14.3296 14.5260 14.5260 20.2821

TA330S 10 21.8071 14.0231 14.4956 13.8558 20.4675

 100 21.8071 14.0231 14.4956 13.8558 20.4675

 1 24.4522 16.5527 16.5527 16.5527 23.0720

TA334M 10 24.4522 16.4198 15.8150 16.2938 23.3990

 100 24.4522 16.4198 15.8150 16.2938 23.3990

 1 19.8712 18.0734 18.0734 18.0734 20.4340

TA238L 10 19.8712 18.0734 18.0734 18.0734 14.6170

 100 19.8712 18.0734 18.0734 18.0734 14.6170

From table 5.8, there are two techniques which produce four best solutions and

the other two techniques produce two best solutions with different number of worst

solutions. The change pairing descending technique produces four best solutions, such

as TA84S, TA140M, TA146L, and TA334M, with two worst solutions; TA84L and

TA238L. The change pairing ascending technique also produces four best solutions

which are TA84M, TA140M, TA146L, and TA330S. Most of the best solutions come

from various route instances. The change pairing directly produces only two best

solutions, TA150S and TA146L. This is similar to high workload and perdiem

distribution techniques which produce the best solutions in TA84L, and TA238L but

the rest of its instances are the worst solutions. The most interesting thing is all of its

best solutions come from long distance route instances. The reason is that this

technique disperses high pairings that cause high workload and perdiem away to less

total workload and perdiem crew.

Page 60

Table 5.9 SD of perdiem table using workload and perdiem minimization with

workload bound

Instance Iteration

SD of

Construction

Phase

SD of each Improvement Phase

Change

pairing

directly

Change

pairing

descending

Change

pairing

ascending

High WL

and PD

distribution

1 4952.6460 2712.8418 2493.4666 2673.1040 5186.4365

TA84S 10 4952.6460 2717.9968 2423.3889 2463.5803 4761.7637

100 4952.6460 2717.9968 2423.3889 2463.5803 4761.7637

1 11208.2402 3678.1956 3678.1956 3872.7554 4571.7173

TA84M 10 11208.2402 3872.2119 4040.2937 4055.3579 4090.7754

100 11208.2402 3872.2119 4040.2937 4055.3579 4090.7754

1 6143.6519 4557.7705 4873.2905 4557.7710 5463.3770

TA84L 10 6143.6519 4557.7705 4873.2905 4557.7705 4616.1416

100 6143.6519 4557.7705 4873.2905 4557.7705 4616.1416

1 4683.0742 3165.5696 3066.2192 3100.9326 5256.8228

TA150S 10 4683.0742 3300.2295 3304.9180 2383.4795 3931.7058

100 4683.0742 3300.2295 3304.9180 2383.4795 3931.7058

1 7169.1729 4519.6846 4660.0044 4591.3022 5104.9624

TA140M 10 7169.1729 4519.6846 4683.1929 4652.2412 4147.2964

100 7169.1729 4519.6846 4683.1929 4652.2412 4147.2964

1 4999.6499 3133.8350 3133.8350 3133.8350 4726.2998

TA146L 10 4999.6499 3133.8350 3133.8350 3133.8350 4589.9175

100 4999.6499 3133.8350 3133.8350 3133.8350 4589.9175

1 6022.7480 4289.7637 4367.2788 4367.2769 5366.4932

TA330S 10 6022.7480 4218.7290 4372.8999 4278.3794 4808.0405

100 6022.7480 4218.7290 4372.8999 4278.3794 4808.0405

1 7148.8447 5199.1387 5199.1396 5199.1387 6094.9028

TA334M 10 7148.8447 5184.9219 5247.7534 5219.4507 5346.5132

100 7148.8447 5184.9219 5247.7534 5219.4507 5346.5132

1 6331.2559 5653.2837 5653.2837 5653.2842 5943.8994

TA238L 10 6331.2559 5653.2837 5653.2837 5653.2842 5863.3257

100 6331.2559 5653.2837 5653.2837 5653.2842 5863.3257

 From table 5.9, all techniques can produce satisfactory solutions especially the

change pairing directly technique that can produce many best results, such as TA84M,

TA84L, TA146L, TA330S, TA334M, and TA238L. This technique mostly produced

good solutions in high number of pairing cases and long distance route instances. The

change pairing descending produced the best solutions in instances TA84S, TA146L,

and TA338L. The change pairing ascending also produced the three best solutions in

TA84L, TA150S TA146L. Finally, the high workload and perdiem distribution

technique can produce only one best solution, TA140M, while producing many worst

solutions.

Page 61

Table 5.10 Total normalized workload and perdiem SD (Twp) with workload bound table

Instance
SD of Construction

phase

SD and percent changed of each Improvement Phase

SD Tech

1

SD Changed

Tech 1 (%)

SD Tech

2

SD Changed

Tech 2 (%)
SD Tech 3

SD Changed

Tech 3 (%)
SD Tech 4

SD Changed

Tech 4 (%)

TA84S 1.3080 0.6555 49.8820 0.5865 55.1572 0.6476 50.4857 0.9960 23.8504

TA84M 1.6257 0.5431 66.5925 0.5358 67.0398 0.5358 67.0423 0.6460 60.2672

TA84L 0.6710 0.4883 27.2245 0.5153 23.1982 0.4883 27.2245 0.4619 31.1582

TA150S 0.7183 0.3770 47.5144 0.3806 47.0041 0.3345 53.4225 0.5166 28.0709

TA140M 0.7169 0.4397 38.6579 0.4404 38.5709 0.4387 38.7980 0.4678 34.7511

TA146L 0.4713 0.3353 28.8630 0.3353 28.8630 0.3353 28.8630 0.4424 6.1450

TA330S 0.5998 0.4033 32.7740 0.4174 30.4074 0.4040 32.6471 0.5202 13.2781

TA334M 0.6059 0.4244 29.9556 0.4204 30.6242 0.4245 29.9335 0.5116 15.5627

TA238L 0.5162 0.4647 9.9784 0.4647 9.9784 0.4647 9.9784 0.4347 15.7811

AVG 0.8037 0.4590 36.8269 0.4552 36.7604 0.4526 37.5994 0.5552 25.4294

Page 62

 Table 5.10 presents total normalized SD of workload and perdeim, and

percentage reduction from SD of construction phase. The best average solution

technique is the change pairing ascending technique which produced average total

normalized workload and perdeim SD about 0.4526, a reduction of SD from the

construction phase of about 37.5994%. The values for change pairing directly and

change pairing descending are close to the change pairing ascending technique at

0.4590, and 0.4552, respectively. The average worst solution comes from the high

workload and perdiem technique which produced the worst solutions for most

instances, except TA84L, and TA238L. The reason is it can reduce a lot of high

working day pairing.

Figure 5.2 Total normalized SD of all techniques with workload bound graph

 Figure 5.2 represents comparison of all improvement techniques. This graph

shows that all techniques can reduce total normalization SD of workload and perdiem,

but not too much compared with non-bound method. The high workload and perdiem

distribution produced the worst results, especially in TA146L, and TA238L. The other

methods also produced results similar to high workload and distribution method.

5.6 Minimize SD of workload and perdiem simultaneously with perdiem bound

This section shows the result of SD of workload and perdiem minimization with

perdiem bound. The perdiem limitation also construct for reduce the variation of total

workload and perdiem value. The method also applied normalization algorithm in order to

standardize value of workload and perdiem.

0.00

0.20

0.40

0.60

0.80

1.00

1.20

1.40

1.60

1.80

TA84S TA84M TA84L TA150S TA140M TA146L TA330S TA334M TA238L

Total normalized SD of all techniques with workload

bound

SD of construction phase

SD of change pairing directly

SD of change pairing descending

SD of change pairing ascending

SD of high workload and perdiem distribution

Page 63

Table 5.11 SD of workload table using workload and perdiem minimization with

perdiem bound

Instance Iteration

SD of

Construction

Phase

SD of each Improvement Phase

Change

pairing

directly

Change

pairing

descending

Change

pairing

ascending

High WL

and PD

distribution

 1 25.8306 12.8448 10.4426 13.0062 30.6717

TA84S 10 25.8306 11.0263 10.4426 10.1427 28.8094

 100 25.8306 11.0263 10.4426 10.1427 28.8094

 1 41.4780 15.9578 15.9578 15.9578 25.0943

TA84M 10 41.4780 15.9578 15.9578 13.1517 19.8105

 100 41.4780 15.9578 15.9578 13.1517 19.8105

 1 28.2833 20.1555 21.1011 20.1555 26.1290

TA84L 10 28.2833 20.1555 21.1011 20.1555 17.1138

 100 28.2833 20.1555 21.1011 20.1555 17.1138

 1 23.3733 10.2592 10.0024 10.0270 17.7764

TA150S 10 23.3733 10.8423 11.4715 9.4126 15.4658

 100 23.3733 10.8423 11.4715 9.4126 15.4658

 1 26.6441 15.8752 15.4932 15.8676 25.3031

TA140M 10 26.6441 15.8752 15.4932 15.2847 19.6962

 100 26.6441 15.8752 15.4932 15.2847 19.6962

 1 19.0579 15.4303 15.4303 15.4303 18.6793

TA146L 10 19.0579 15.4303 15.4303 15.4303 18.4734

 100 19.0579 15.4303 15.4303 15.4303 18.4734

 1 21.8071 14.3296 14.5260 14.5268 19.2230

TA330S 10 21.8071 14.0333 14.5260 13.8594 16.6858

 100 21.8071 14.0333 14.5260 13.8594 16.6858

 1 24.4522 16.5527 16.5527 16.5527 23.1487

TA334M 10 24.4522 16.5527 16.7255 16.2434 21.9446

 100 24.4522 16.5527 16.7255 16.2434 21.9446

 1 19.8712 18.0734 18.0734 18.0734 20.0679

TA238L 10 19.8712 18.0734 18.0734 18.0734 15.5680

 100 19.8712 18.0734 18.0734 18.0734 15.5680

The interesting thing in table 5.11 is there are two techniques that produce

opposite results to each other: the change pairing ascending technique and high

workload and perdiem distribution technique. The change pairing ascending

techniques produced good solutions in TA84S, TA84M, TA150S, TA140M, TA146L,

TA330S, and TA334M. The other two instances are the worst compared with the high

workload and perdiem distribution which produced best solution in these two

instances. The two best solutions come from long destination routes similar to other

experiments.

Page 64

Table 5.12 SD of perdiem table using workload and perdiem minimization with

perdiem bound

Instance Iteration

SD of

Construction

Phase

SD of each Improvement Phase

Change
pairing

directly

Change
pairing

descending

Change
pairing

ascending

High WL
and PD

distribution

1 4952.6460 2712.8418 2493.4668 2673.1042 2508.3445

TA84S 10 4952.6460 2609.4407 2493.4668 2824.9751 2408.4204

100 4952.6460 2609.4407 2493.4668 2824.9751 2408.4204

1 11208.2402 3678.1956 3678.1956 3678.1958 4395.8457

TA84M 10 11208.2402 3678.1956 3678.1956 3766.6455 3728.0747

100 11208.2402 3678.1956 3678.1956 3766.6455 3728.0747

1 6143.6519 4557.7705 4765.2573 4557.7705 5463.3770

TA84L 10 6143.6519 4557.7705 4765.2568 4557.7705 3485.3069

100 6143.6519 4557.7705 4765.2568 4557.7705 3485.3069

1 4683.0742 3165.5696 3016.8967 2999.4424 3873.4058

TA150S 10 4683.0742 2997.5266 2624.4651 2965.9031 3518.6279

100 4683.0742 2997.5266 2624.4651 2965.9031 3518.6279

1 7169.1729 4519.6846 4660.0034 4591.3013 5026.7549

TA140M 10 7169.1729 4519.6846 4660.0034 4636.9380 4050.0896

100 7169.1729 4519.6846 4660.0034 4636.9380 4050.0896

1 4999.6499 3133.8350 3133.8350 3133.8350 4452.2598

TA146L 10 4999.6499 3133.8350 3133.8350 3133.8350 4371.8535

100 4999.6499 3133.8350 3133.8350 3133.8350 4371.8535

1 6022.7480 4289.7637 4367.2778 4367.2788 5077.1250

TA330S 10 6022.7480 4238.6699 4367.2778 4378.7500 5255.8032

100 6022.7480 4238.6699 4367.2778 4378.7500 5255.8032

1 7148.8447 5199.1387 5199.1382 5199.1382 5989.0928

TA334M 10 7148.8447 5199.1387 5122.2197 5213.6665 5618.5679

100 7148.8447 5199.1387 5122.2197 5213.6665 5618.5679

1 6331.2559 5653.2837 5653.2842 5653.2827 5813.6294

TA238L 10 6331.2559 5653.2837 5653.2827 5653.2827 5291.3511

100 6331.2559 5653.2837 5653.2827 5653.2827 5291.3511

 Table 5.12 shows that the high workload and perdiem distribution can produce

a lot of good solutions, such as TA84S, TA84L, TA140M, and TA238L. The

interesting thing is this technique will reduce a lot of SD in workload or perdiem in

order to minimize total SD of workload and perdiem. The change pairing descending

techniques also produced four best results in TA84M, TA150S, TA146L, and

TA334M. The change pairing directly produced best solutions in instances TA84M,

TA146L, and TA330S. The change pairing ascending can produce only one best

result, TA146L, in contrast with SD of workload result where it produced a lot of best

solutions.

Page 65

Table 5.13 Total normalized workload and perdiem SD (Twp) with perdiem bound table

Instance
SD of Construction

phase

SD and percent changed of each Improvement Phase

SD Tech

1

SD Changed

Tech 1 (%)

SD Tech

2

SD Changed

Tech 2 (%)
SD Tech 3

SD Changed

Tech 3 (%)
SD Tech 4

SD Changed

Tech 4 (%)

TA84S 1.3080 0.6329 51.6149 0.6027 53.9212 0.6461 50.6058 0.9899 24.3201

TA84M 1.6257 0.5682 65.0484 0.5682 65.0484 0.5347 67.1104 0.6297 61.2657

TA84L 0.6710 0.4883 27.2245 0.5108 23.8637 0.4883 27.2245 0.3928 41.4489

TA150S 0.7183 0.3903 45.6548 0.3751 47.7754 0.3640 49.3147 0.5044 29.7806

TA140M 0.7169 0.4397 38.6579 0.4418 38.3663 0.4379 38.9143 0.4664 34.9469

TA146L 0.4713 0.3353 28.8630 0.3353 28.8630 0.3353 28.8630 0.4328 8.1690

TA330S 0.5998 0.4044 32.5826 0.4176 30.3864 0.4091 31.7912 0.4918 18.0156

TA334M 0.6059 0.4266 29.5976 0.4250 29.8507 0.4237 30.0722 0.5074 16.2597

TA238L 0.5162 0.4647 9.9784 0.4647 9.9784 0.4647 9.9784 0.4195 18.7296

AVG 0.8037 0.4612 36.5802 0.4601 36.4504 0.4560 37.0972 0.5372 28.1040

Page 66

 Table 5.13 shows similar result with table 5.10. The best average solution is

the change pairing ascending technique and the worst solution is the high workload

and perdiem distribution technique. The values also are similar, with the average total

normalized SD of workload and perdiem, and percentage changed of the change

pairing ascending technique of 0.4560 and 37.0972%, respectively. The average total

normalized SD of workload and perdiem, and percentage changed of high workload

and perdiem distribution are 0.5372 and 28.1040%. The change pairing descending

can produce only two best solutions, less than the workload bound result.

Figure 5.3 Total normalized SD of all techniques with perdiem bound graph

 Figure 5.3 shows the best SD reduction in instances TA84S, and TA84M. But

similar to the workload bound method, all techniques reduced SD only slightly from

the construction phase. The graph shows very little reduction in instances TA146L

and TA238L. However, all three change pairing techniques can reduce higher total

normalized SD of workload and perdiem than the high workload and perdiem

distribution technique.

5.7 Compare solution

 This section shows the comparison of SD minimization in each instance

between all three methods: minimize both workload and perdiem, minimize workload,

and minimize paerdiem. These tables also show the best and worst SD of each

instance. The results are divided into two tables, workload and perdiem.

0.00

0.20

0.40

0.60

0.80

1.00

1.20

1.40

1.60

1.80

TA84S TA84M TA84L TA150S TA140M TA146L TA330S TA334M TA238L

Total normalized SD of all techniques with perdiem

bound

SD of construction phase

SD of change pairing directly

SD of change pairing descending

SD ofchange pairing ascending

SD of high workload and perdiem distribution

Page 67

Table 5.14 Result comparison SD of workload

Instance Method Best WL
Best

Tech

Worst

WL

Worst

Tech

 min only workload 9.075 1 13.2422 4
 min only perdiem 20.1775 4 41.8933 3

TA84S min both without bound 10.1846 2 17.7565 4

 min both with workload bound 10.1846 2 12.8267 4
 min both with perdiem bound 10.1427 3 28.8094 4

 min only workload 8.0025 3 21.2779 4

 min only perdiem 21.2231 4 35.145 3

TA84M min both without bound 11.1570 1,3 21.4041 4
 min both with workload bound 11.4641 3 18.6937 4

 min both with perdiem bound 13.1517 3 19.8105 4

 min only workload 14.5692 4 21.1109 2
 min only perdiem 15.6292 4 20.8992 3

TA84L min both without bound 20.1555 1,3 26.1290 4

 min both with workload bound 17.5597 4 20.9574 3

 min both with perdiem bound 17.1138 4 20.1555 1,3

 min only workload 7.5526 1 11.7359 4

 min only perdiem 17.8067 4 35.6293 1

TA150S min both without bound 9.1962 3 14.8895 4
 min both with workload bound 8.8061 1 14.4971 4

 min both with perdiem bound 9.4126 3 15.4658 4

 min only workload 13.4063 4 15.8951 3

 min only perdiem 14.5087 4 26.424 1
TA140M min both without bound 15.1985 1 25.2282 4

 min both with workload bound 15.2929 2,3 19.4282 4

 min both with perdiem bound 15.2847 3 19.6962 4

 min only workload 12.0618 4 14.1544 1,2,3
 min only perdiem 13.3307 4 21.0767 2,3

TA146L min both without bound 15.4303 1,2,3 18.3158 4

 min both with workload bound 15.4303 1,2,3 18.3415 4
 min both with perdiem bound 15.4303 1,2,3 18.4734 4

 min only workload 13.4339 1 14.2736 4

 min only perdiem 17.0778 4 27.0843 2

TA330S min both without bound 13.2523 1 20.4866 4
 min both with workload bound 13.8558 3 20.4675 4

 min both with perdiem bound 13.8594 3 16.6858 4

 min only workload 14.5659 1,2,3 16.6937 4
 min only perdiem 19.4801 4 30.5211 2

TA334M min both without bound 15.1432 1 22.9227 4

 min both with workload bound 15.8150 2 23.3990 4

 min both with perdiem bound 16.2434 3 21.9446 4

 min only workload 12.3839 4 17.0812 1,2,3

 min only perdiem 14.909 4 20.1902 2

TA238L min both without bound 18.0734 1 20.0006 4
 min both with workload bound 14.6170 4 18.0734 1,2,3

 min both with perdiem bound 15.5680 4 18.0734 1,2,3

From table 5.14, the high workload or perdiem distribution technique (Tech 4)

produced mostly the best solution in minimize only workload and perdiem methods.

This is in contrast with minimize workload and perdeim simultaneously method

which produced most of the worst solutions. The high workload and perdiem

Page 68

distribution technique produces best SD of workload solution in most of long range

flight instances. In TA84L and TA238L, it produced the best solution in most

methods except minimize both workload and perdiem simultaneously without bound

method.

The change pairing ascending mostly produced results in minimize workload

and perdiem simultaneously method for all of without bound, workload bound, and

perdiem bound. This technique yielded satisfactory results in most of small route and

various mixed distance routes. However, this technique produced the worst solution

for long distance routes.

Table 5.15 Result comparison SD of perdiem

Instance Method Best PD
Best
Tech

Worst PD
Worst
Tech

 min only workload 4932.8398 2 5303.6177 4

 min only perdiem 1477.4646 2 4376.6812 4
TA84S min both without bound 2336.9778 3 2470.4265 4

min both with workload

bound
2423.3889 2 4761.7637 4

 min both with perdiem bound 2408.4204 4 2824.9751 3

 min only workload 5355.6890 3 8289.5449 4

 min only perdiem 2516.7654 3 8228.6641 4

TA84M min both without bound 3959.2622 3 4207.0645 4

min both with workload

bound
3872.2119 1 4090.7754 4

 min both with perdiem bound 3678.1956 1,2 3766.6455 3

 min only workload 3382.1333 4 4745.6094 2
 min only perdiem 3422.9509 4 4647.9175 3

TA84L min both without bound 4557.7700 3 5463.3765 4

min both with workload

bound
4557.7705 1,3 4873.2905 2

 min both with perdiem bound 3485.3069 4 4765.2568 2

 min only workload 4446.7505 4 5371.4683 3

 min only perdiem 1342.0878 3 3538.0178 4
TA150S min both without bound 2439.6409 2 5480.1914 4

min both with workload

bound
2383.4795 3 3931.7058 4

 min both with perdiem bound 2624.4651 3 3518.6279 4

 min only workload 4517.5200 4 4971.8882 1,3

 min only perdiem 2848.2712 3 4615.4595 4

TA140M min both without bound 4498.1973 1 5085.0986 4

min both with workload

bound
4147.2964 4 4683.1929 2

 min both with perdiem bound 4050.0896 4 4660.0034 2

 min only workload 3790.8203 4 4058.6511 1,3
 min only perdiem 2981.0764 1 3235.1953 4

TA146L min both without bound 3133.8350 1,2 4725.9521 4

min both with workload

bound
3133.8350 1,2,3 4589.9175 4

 min both with perdiem bound 3133.8350 1,2,3 4371.8535 4

 min only workload 5622.9077 4 5946.7412 2

 min only perdiem 3075.2869 1 5071.7715 4
TA330S min both without bound 4127.5513 1 5210.0557 4

 min both with workload 4218.7290 1 4808.0405 4

Page 69

bound

 min both with perdiem bound 4238.6699 1 5255.8032 4

 min only workload 6239.8481 4 6329.3433 1

 min only perdiem 3811.0105 3 5514.3535 4

TA334M min both without bound 5090.5601 2 6079.0552 4

min both with workload

bound
5184.9219 1 5346.5132 4

 min both with perdiem bound 5122.2197 2 5618.5679 4

 min only workload 5291.8179 4 5872.3545 1

 min only perdiem 4653.7144 3 4966.5522 4
TA238L min both without bound 5653.2827 2 5846.9331 4

min both with workload

bound
5653.2837 1,2 5863.3257 4

 min both with perdiem bound 5291.3511 4 5653.2837 1

From table 5.15, the result shows various techniques that are suitable for

minimization in different scenarios. For example, the change pairing directly

technique is suitable for instances TA146L and TA330S for most methods, except

minimization only workload. In contrast, the high workload and perdiem distribution

technique is suitable for long distance routes in workload minimization. Moreover,

this technique produced a lot of worst solutions in many instances, for example;

TA84S, TA83M, TA150S, TA146L, TA330S, and TA334M.

Page 70

Table 5.16 Result comparison of percentage changed of total normalized workload and perdiem

Instance

Workload and perdiem minimization

simultaneously without bound

Workload and perdiem minimization

simultaneously with workload bound

Workload and perdiem minimization

simultaneously with perdiem bound

SD

Changed

Tech 1

(%)

SD

Changed

Tech 2

(%)

SD

Changed

Tech 3

(%)

SD

Changed

Tech 4

(%)

SD

Changed

Tech 1

(%)

SD

Changed

Tech 2

(%)

SD

Changed

Tech 3

(%)

SD

Changed

Tech 4

(%)

SD

Changed

Tech 1

(%)

SD

Changed

Tech 2

(%)

SD

Changed

Tech 3

(%)

SD

Changed

Tech 4

(%)

TA84S 51.9454 55.1571 54.1526 42.0091 49.8820 55.1572 50.4857 23.8504 51.6149 53.9212 50.6058 24.3201

TA84M 67.8555 66.6999 67.8555 57.1551 66.5925 67.0398 67.0423 60.2672 65.0484 65.0484 67.1104 61.2657

TA84L 27.2245 23.1982 27.2245 9.4080 27.2245 23.1982 27.2245 31.1582 27.2245 23.8637 27.2245 41.4489

TA150S 53.3130 54.6558 50.8323 12.2197 47.5144 47.0041 53.4225 28.0709 45.6548 47.7754 49.3147 29.7806

TA140M 40.0579 38.6823 39.0331 17.4033 38.6579 38.5709 38.7980 34.7511 38.6579 38.3663 38.9143 34.9469

TA146L 28.8630 28.8630 28.8630 4.7450 28.8630 28.8630 28.8630 6.1450 28.8630 28.8630 28.8630 8.1690

TA330S 35.2807 34.6086 34.6086 9.8394 32.7740 30.4074 32.6471 13.2781 32.5826 30.3864 31.7912 18.0156

TA334M 33.0763 33.0763 33.0763 10.9454 29.9556 30.6242 29.9335 15.5627 29.5976 29.8507 30.0722 16.2597

TA238L 9.9784 9.9784 9.9784 3.9960 9.9784 9.9784 9.9784 15.7811 9.9784 9.9784 9.9784 18.7296

AVG 38.6216 38.3244 38.4027 18.6357 36.8269 36.7604 37.5994 25.4294 36.5802 36.4504 37.0972 28.1040

Page 71

From table 5.16, the change pairing directly technique can produce high

percentage change for many instances, especially in minimize workload and perdiem

simultaneously without bound such as in instances TA84M, TA140M, TA146L,

TA330S, and TA334M. It also produced the best average percentage change of

38.6216%. Most cases in which it produced an optimal solution are various mixed

distance route instances. The change pairing descending produced the best solutions

in instances TA84S, TA150S, TA146L, and TA334M that also occurs in the no bound

method. The change pairing ascending produced three best solutions that also happen

in the no bound method as in TA84M, TA146L, and TA334M. The interesting thing

is all three change pairing techniques give best results for instance TA146L in all

situations. The high workload and perdiem distribution can produce only two best

solutions, in long distance route instances where all of them occur in minimization of

workload and perdiem simultaneously with perdiem bound. The average also shows

that the high workload and perdiem technique produce the worst percentage changes

which are 18.6357% for non-bound, 25.4294% for workload bound, and 28.1040%

for perdiem bound.

Figure 5.4 Compare SD of workload by using change pairing directly

technique

 From figure 5.4, the SD of workload of perdiem minimization is very

high because the method focuses on reducing only the SD of perdiem. This figure

shows that there is no relation between workload and perdiem. The other methods are

similar but the workload minimization method yields a high reduction. The

0.00

5.00

10.00

15.00

20.00

25.00

30.00

35.00

40.00

45.00

T
A

8
4
S

T
A

8
4
S

T
A

8
4
S

T
A

8
4
M

T
A

8
4
M

T
A

8
4
M

T
A

8
4
L

T
A

8
4
L

T
A

8
4
L

T
A

1
5
0
S

T
A

1
5
0
S

T
A

1
5
0
S

T
A

1
4
0
M

T
A

1
4
0
M

T
A

1
4
0
M

T
A

1
4
6
L

T
A

1
4
6
L

T
A

1
4
6
L

T
A

3
3
0
S

T
A

3
3
0
S

T
A

3
3
0
S

T
A

3
3
4
M

T
A

3
3
4
M

T
A

3
3
4
M

T
A

2
3
8
L

T
A

2
3
8
L

T
A

2
3
8
L

Compare SD of workload by using change pairing

directly technique

Minimize only workload

Minimize only perdiem

Minimize workload and perdiem without bound

Minimize workload and perdiem with workload bound

Minimize workload and perdiem with perdiem bound

Page 72

minimization of both workload and perdiem with perdiem bound produced higher

values than other methods, except the perdiem minimization method.

Figure 5.5 Compare SD of perdiem by using change pairing directly technique

 Figure 5.5 shows various results of minimization. The best method is

perdiem minimization but it also has the worst solution in instance TA84L. The

workload minimization method produced the worst solution for most instances,

except in TA84L. The three workload and perdiem simultaneous minimization

produced similar results. But the non-bound method mostly produced worse solutions

than others in short distance route instances.

0.00

1000.00

2000.00

3000.00

4000.00

5000.00

6000.00

7000.00

T
A

8
4
S

T
A

8
4
S

T
A

8
4
S

T
A

8
4
M

T
A

8
4
M

T
A

8
4
M

T
A

8
4
L

T
A

8
4
L

T
A

8
4
L

T
A

1
5
0
S

T
A

1
5
0
S

T
A

1
5
0
S

T
A

1
4
0
M

T
A

1
4
0
M

T
A

1
4
0
M

T
A

1
4
6
L

T
A

1
4
6
L

T
A

1
4
6
L

T
A

3
3
0
S

T
A

3
3
0
S

T
A

3
3
0
S

T
A

3
3
4
M

T
A

3
3
4
M

T
A

3
3
4
M

T
A

2
3
8
L

T
A

2
3
8
L

T
A

2
3
8
L

Compare SD of perdiem by using change pairing

directly technique

Minimize only workload

Minimize only perdiem

Minimize workload and perdiem without bound

Minimize workload and perdiem with workload bound

Minimize workload and perdiem with perdiem bound

Page 73

Figure 5.6 Compare SD of workload by using change pairing descending technique

 From Figure 5.6, the perdiem minimization method, and minimize both with

perdiem bound method did not produce good solutions. The perdiem minimization

method yield satisfaction in minimal solution in long distance route instance. The

perdiem bound method produced the worst solution in almost every instance except

for the perdiem minimization method that aims to reduce only SD of perdiem. The

other methods produced satisfactory minimization results.

0.00

5.00

10.00

15.00

20.00

25.00

30.00

35.00

40.00

45.00

T
A

8
4
S

T
A

8
4
S

T
A

8
4
S

T
A

8
4

M

T
A

8
4

M

T
A

8
4

M

T
A

8
4
L

T
A

8
4
L

T
A

8
4
L

T
A

1
5
0
S

T
A

1
5
0
S

T
A

1
5
0
S

T
A

1
4
0
M

T
A

1
4
0
M

T
A

1
4
0
M

T
A

1
4
6
L

T
A

1
4
6
L

T
A

1
4
6
L

T
A

3
3
0
S

T
A

3
3
0
S

T
A

3
3
0
S

T
A

3
3
4
M

T
A

3
3
4
M

T
A

3
3
4
M

T
A

2
3
8
L

T
A

2
3
8
L

T
A

2
3
8
L

Compare SD of workload by using change pairing

descending technique

Minimize only workload

Minimize only perdiem

Minimize workload and perdiem without bound

Minimize workload and perdiem with workload bound

Minimize workload and peridem with perdiem bound

Page 74

Figure 5.7 Compare SD of perdiem by using change pairing descending technique

 Figure 5.7 shows that the change pairing descending technique produced

closer results for all methods than the change pairing directly technique. The perdiem

minimization method also produced the best solution. But there has worst result in

long distance route instance. The three that minimize both SD of workload and

perdiem simultaneously produced similar results. Even though the workload bound

method yielded the worst result in TA150S instance and most of short distance route

instances.

0.00

1000.00

2000.00

3000.00

4000.00

5000.00

6000.00

7000.00

T
A

8
4
S

T
A

8
4
S

T
A

8
4
S

T
A

8
4

M

T
A

8
4

M

T
A

8
4

M

T
A

8
4
L

T
A

8
4
L

T
A

8
4
L

T
A

1
5
0
S

T
A

1
5
0
S

T
A

1
5
0
S

T
A

1
4
0
M

T
A

1
4
0
M

T
A

1
4
0
M

T
A

1
4
6
L

T
A

1
4
6
L

T
A

1
4
6
L

T
A

3
3
0
S

T
A

3
3
0
S

T
A

3
3
0
S

T
A

3
3
4
M

T
A

3
3
4
M

T
A

3
3
4
M

T
A

2
3
8
L

T
A

2
3
8
L

T
A

2
3
8
L

Compare SD of perdiem by using change pairing

descending technique

Minimize only workload

Minimize only perdiem

Minimize workload and perdiem without bound

Minimize workload and perdiem with workload bound

Minimize workload and perdiem with perdiem bound

Page 75

Figure 5.8 Compare SD of workload by using change pairing ascending technique

 Figure 5.8 shows the results of workload minimization, without bound

minimization, workload bound minimization, and perdiem bound minimization. The

figure shows that the change pairing ascending technique can produce best result of

SD of workload minimization for all methods except perdiem minimization method.

From the graph, the minimization of workload and perdiem simultaneously with

workload bound can produce average satisfactory results. However, it still produced

the worst result in instance TA84S.

0.00

5.00

10.00

15.00

20.00

25.00

30.00

35.00

40.00

45.00

T
A

8
4
S

T
A

8
4
S

T
A

8
4
S

T
A

8
4
M

T
A

8
4
M

T
A

8
4
M

T
A

8
4
L

T
A

8
4
L

T
A

8
4
L

T
A

1
5

0
S

T
A

1
5

0
S

T
A

1
5

0
S

T
A

1
4
0
M

T
A

1
4
0
M

T
A

1
4
0
M

T
A

1
4
6
L

T
A

1
4
6
L

T
A

1
4
6
L

T
A

3
3
0
S

T
A

3
3

0
S

T
A

3
3

0
S

T
A

3
3
4
M

T
A

3
3
4
M

T
A

3
3
4
M

T
A

2
3
8
L

T
A

2
3
8
L

T
A

2
3
8
L

Compare SD of workload by using change pairing

ascending technique

Minimize only workload

Minimize only perdiem

Minimize workload and perdiem without bound

Minimize workload and perdiem with workload bound

Minimize workload and perdiem with perdiem bound

Page 76

Figure 5.9 Compare SD of perdiem by using change pairing ascending technique

 From Figure 5.9, the result of the change pairing ascending can be seen as

fluctuating. The workload minimization method produced most of the worst solutions,

except in instance TA84L. The three non-bound, workload bound, and perdiem bound

methods produced similar results. The best method still is the perdiem minimization

method but it produced very high SD of workload. The workload bound method

produced average good solution especially in instance TA150S.

0.00

1,000.00

2,000.00

3,000.00

4,000.00

5,000.00

6,000.00

7,000.00

T
A

8
4
S

T
A

8
4
S

T
A

8
4
S

T
A

8
4
M

T
A

8
4
M

T
A

8
4
M

T
A

8
4
L

T
A

8
4
L

T
A

8
4
L

T
A

1
5
0
S

T
A

1
5
0
S

T
A

1
5
0
S

T
A

1
4
0
M

T
A

1
4
0
M

T
A

1
4
0
M

T
A

1
4
6
L

T
A

1
4
6
L

T
A

1
4
6
L

T
A

3
3
0
S

T
A

3
3
0
S

T
A

3
3
0
S

T
A

3
3
4
M

T
A

3
3
4
M

T
A

3
3
4
M

T
A

2
3
8
L

T
A

2
3
8
L

T
A

2
3
8
L

Compare SD of perdiem by using change pairing

ascending technique

Minimize only workload

Minimize only perdiem

Minimize workload and perdiem without bound

Minimize workload and perdiem with workload bound

Minimize workload and perdiem with perdiem bound

Page 77

Figure 5.10 Compare SD of workload by using high workload and perdiem

distribution technique

 Figure 5.10 shows the much fluctuated result especially in short, and various

distance route instances. The reason is there are more pairings for dispersal which

may cause many unexpected results. Thus, this technique is suitable for long distance

route instances. The three non-bound, workload bound method, and perdiem bound

methods produced high SD of workload in many test instances. The non-bound

method is the worst method in this technique. It results in high SD of workload in

many instances, for example, TA84L and TA146L.

0.00

5.00

10.00

15.00

20.00

25.00

30.00

35.00

T
A

8
4
S

T
A

8
4
S

T
A

8
4
S

T
A

8
4
M

T
A

8
4
M

T
A

8
4
M

T
A

8
4
L

T
A

8
4
L

T
A

8
4
L

T
A

1
5
0
S

T
A

1
5
0
S

T
A

1
5
0
S

T
A

1
4
0
M

T
A

1
4
0
M

T
A

1
4
0
M

T
A

1
4
6
L

T
A

1
4
6
L

T
A

1
4
6
L

T
A

3
3
0
S

T
A

3
3
0
S

T
A

3
3
0
S

T
A

3
3
4
M

T
A

3
3
4
M

T
A

3
3
4
M

T
A

2
3
8
L

T
A

2
3
8
L

T
A

2
3
8
L

Compare SD of workload by using high workload and

perdiem distribution

Minimize only workload

Minimize only perdiem

Minimize workload and perdiem without bound

Minimize workload and perdiem with workload bound

Minimize workload and perdiem with perdiem bound

Page 78

Figure 5.11 Compare SD of perdiem by using high workload and perdiem distribution

technique

 Figure 5.11 also shows the fluctuated result, with every method going up and

down in every test instance. The interesting thing is that workload minimization and

perdiem minimization methods produced very high SD of perdiem in instance

TA84M. The reason may be that the instance has only a few pairings for moving.

Another interesting thing is that all methods produced similar results in large pairing

size instances TA330S, TA334M, and TA238L. The reason may be there are many

pairing choices for moving.

0.00

1,000.00

2,000.00

3,000.00

4,000.00

5,000.00

6,000.00

7,000.00

8,000.00

9,000.00

10,000.00

T
A

8
4
S

T
A

8
4
S

T
A

8
4
S

T
A

8
4
M

T
A

8
4
M

T
A

8
4
M

T
A

8
4
L

T
A

8
4
L

T
A

8
4
L

T
A

1
5
0
S

T
A

1
5
0
S

T
A

1
5
0
S

T
A

1
4
0
M

T
A

1
4
0
M

T
A

1
4
0
M

T
A

1
4
6
L

T
A

1
4
6
L

T
A

1
4
6
L

T
A

3
3
0
S

T
A

3
3
0
S

T
A

3
3
0
S

T
A

3
3
4
M

T
A

3
3
4
M

T
A

3
3
4
M

T
A

2
3
8
L

T
A

2
3
8
L

T
A

2
3
8
L

Compare SD of perdiem by using high workload and

perdiem distribution technique

Minimize only workload

Minimize only perdiem

Minimize workload and perdiem without bound

Minimize workload and perdiem with workload bound

Minimize workload and perdiem with perdiem bound

Page 79

Chapter 6

Conclusion and Further Study

6.1 Conclusion

 This chapter proposed the method to solve Thai Airways Crew Rostering

Problem by using the Greedy Algorithm. The objective is to minimize SD of both

workload and perdiem simultaneously. The bound also was set to limit the variation

of results. Thus, this experiment includes minimization of workload and perdiem

simultaneously with non-bound, workload bound, and perdiem bound. This thesis also

experimented on minimizing workload and perdiem separately for comparison with

the objective result. A Greedy Algorithm was applied in this thesis because of its

simplicity and low computation time. The Greedy Algorithm in this thesis can be

divided into two phases: the construction phase and the improvement phase. First, the

construction phase aims to construct a simple crew table for the improvement phase.

Second, the improvement phase aims balance the SD of both workload and peridiem.

The improvement phase is divided into four techniques as follows:

- Change pairing directly

- Change pairing descending

- Change pairing ascending

- High combined workload and perdiem distribution

From the experiment, the result of minimization of both workload and perdiem

simultaneously for non-bound, workload bound, and perdiem bound mostly yielded

average SD minimization. Thus, this means it reduces both workload and perdiem,

and has no abnormally high SD. This differs from minimizing SD of workload and

perdiem separately, which produces some values of SD which are increased, not

reduced.

The different improvement techniques can produce different best solutions.

The change pairing ascending can produce a lot of best solutions in minimization of

workload and perdiem simultaneously with workload bound and perdiem bound,

which are 4, and 5 respectively. But after comparison to all situations, the change

pairing directly technique produced a greater number of best solutions than other

techniques. Most of the best solutions occur in non-bound situations. Moreover, the

high workload and perdiem distribution can produce a few best solutions, but mostly

produced the worst solutions in all situations.

 In conclusion, these techniques produced minimal SD of workload and

perdiem but not a global optimal solution. The reason for this comes from the nature

of the Greedy Algorithm to find only the optimal solution at some point of the

problem. Although the program compilation time is quite small, about one to five

seconds, it depends on the complexity of code, number of instances and constraints,

and performance of complier tool.

6.2 Further Study

 In further study, the researcher will continue to construct new implemented

solutions with various algorithms, such as Hill Climbing, in order to find a global

optimal solution in order to reduce more SD.

Page 80

References

Christian, Artigues, Michel, Gendreau, Louis-Martin, Rousseau, and et al., (2009).

Solving an

integrated employee timetabling and job-shop scheduling problem via hybrid branch-

and-

bound. Computers & Operations Research, 36, 2330 – 2340.

A.,T., Ernst, H., Jiang, M., Krishnamoorthy, and D., Sier., (2004). Staff scheduling

and rostering: A review of applications, methods and models. European Journal of

Operational Research, 153, 3–27.

Zhang, Yinghui, Rao, Yunbo, and Zhou, Mingtian., (2007). GASA Hybrid Algorithm

Applied in Airline Crew Rostering System. TSINGHUA SCIENCE AND

TECHNOLOGY, ISSN 1007-0214, 46/49, pp255-259.

Walid, El, Moudanis, Carlos, Albert, Nunes, Cosenza, and Felix, Mora-Camino.,

(2001). An Intelligent Approach for Solving the Airlines Crew Rostering Problem.

IEEE.

Nadia, Souai, and Jacques, Teghem., (2009). Genetic algorithm based approach for

the integrated airline crew-pairing and rostering problem. European Journal of

Operational Research, 199, 674–683.

Dusan, Teodorovic, and Panta, Lucic., (1998). A fuzzy set theory approach to the

aircrew rostering problem. Fuzzy Sets and Systems, 95. 261-271.

Lucio, Bianco, Maurizio, Bielli, Salvatore, Ricciardelli, and et al., (1992). A heuristic

procedure for the crew rostering problem. European Journal of Operational

Research, 58, 272-283.

Herbert, Dawid, Johannes, Konig, and Christine, Strauss., (2001). An enhanced

rostering model for airline crews. Computers & Operations Research, 28, 671-688.

Michel, Gamache, Alain, Hertz, and Jerome, Olivier, Ouellet., (2007). A graph

coloring model for a feasibility problem in monthly crew scheduling with preferential

bidding. Computers & Operations Research, 34, 2384 – 2395.

Guang-Feng, Deng, and Woo-Tsong, Lin., (2011). Ant colony optimization-based

algorithm for airline crew scheduling problem. Expert Systems with Applications, 38,

5787–5793.

F., M., Zeghal, and M., Minoux., (2006). Modeling and solving a Crew Assignment

Problem in air transportation. European Journal of Operational Research, 175, 187–

209.

Page 81

Shangyao, Yan, Ching-Hui, Tang, and Tseng-Chih, Fu., (2008). An airline scheduling

model and solution algorithms under stochastic demands. European Journal of

Operational Research, 190, 22–39.

Oliver, Weidea, David, Ryan, and Matthias, Ehrgott., (2010). An iterative approach to

robust and integrated aircraft routing and crew scheduling. Computers & Operations

Research, 37, 833 – 844.

Thomas, Emden-Weinert, and Mark, Proksch., (1999). Best Practice Simulated

Annealing for the Airline Crew Scheduling Problem. Journal of Heuristics, 5, 419–

436.

Sydney, C.,K., Chu., (2007). Generating, scheduling and rostering of shift crew-

duties:

Applications at the Hong Kong International Airport. European Journal of

Operational Research, 177, 1764–1778.

Azadeh, Hosseinabagi, Eivazy, and et al., (2013). A hybrid meta-heuristics algorithm

for optimization of crew scheduling. Applied Soft Computing, 13, 158-164.

Anne, Mercier, and Francois, Soumis., (2005). An integrated aircraft rputing, crew

scheduling and flight retiming model. Computer & Operations Research, 34, 2251-

2265.

Claude, P., Medard, and Nidhi, Sawhney., (2007). Airline crew scheduling from

planning to operations. European Journal of Operation Research, 183, 1013-1027.

Panta, Lucic, and Dusan, Teodorovic., (2007). Metaheuristics approach to the aircrew

rostering problem. Ann Oper Res, 155, 311-338.

Shih-Wei, Lin, and Kuo-Ching, Ying., (2014). Minimizing shifts for personnel task

scheduling problems: A three-phase algorithm. European Journal of Operation

Research, 237, 323-334.

Korhan, Karabulut, and M., Fatih, Tasgetiren., (2014). A variable iterated greedy

algorithm for the travelling salesman problem with time windows. Information

Sciences, 279, 383-395.

Page 82

Appendices

Page 83

Appendix A

Test Instance

 The test instance of small pairing with various mix distance route of Thai Airways, TA84M.

Pairing

No.

Day DepFlt ArrFlt Total Block Time Adjusted

ArrDay-

DepDay

ArrDay-

DepDay

TTL THB Workload

Score

Zone Station

1 1 315 316 8.92 1 1 4795.76 45.92 Regional Delhi

2 1 403 404 4.58 0 0 1993.66 32.58 Regional Singapore

3 1 465 466 18.33 2 1 10698.12 67.33 Australia NZ Melbourne

4 1 477 478 18.60 3 2 10698.12 67.60 Australia NZ Sydney

5 1 620 621 6.50 1 0 1998.23 36.50 Regional Manila

6 1 656 629 11.67 3 2 11073.55 56.67 Regional Seoul

7 2 315 316 8.92 1 1 4795.76 45.92 Regional Delhi

8 2 403 404 4.58 0 0 1993.66 32.58 Regional Singapore

9 2 465 466 18.33 2 1 10698.12 67.33 Australia NZ Melbourne

10 2 477 478 18.60 3 2 10698.12 67.60 Australia NZ Sydney

11 2 620 621 6.50 1 0 1998.23 36.50 Regional Manila

12 2 656 629 11.67 3 2 11073.55 56.67 Regional Seoul

13 3 315 316 8.92 1 1 4795.76 45.92 Regional Delhi

14 3 403 404 4.58 0 0 1993.66 32.58 Regional Singapore

15 3 465 466 18.33 2 1 10698.12 67.33 Australia NZ Melbourne

16 3 477 478 18.60 3 2 10698.12 67.60 Australia NZ Sydney

17 3 620 621 6.50 1 0 1998.23 36.50 Regional Manila

Page 84

18 3 656 629 11.67 3 2 11073.55 56.67 Regional Seoul

19 4 315 316 8.92 1 1 4795.76 45.92 Regional Delhi

20 4 403 404 4.58 0 0 1993.66 32.58 Regional Singapore

21 4 465 466 18.33 2 1 10698.12 67.33 Australia NZ Melbourne

22 4 477 478 18.60 3 2 10698.12 67.60 Australia NZ Sydney

23 4 620 621 6.50 1 0 1998.23 36.50 Regional Manila

24 4 656 629 11.67 3 2 11073.55 56.67 Regional Seoul

25 5 315 316 8.92 1 1 4795.76 45.92 Regional Delhi

26 5 403 404 4.58 0 0 1993.66 32.58 Regional Singapore

27 5 465 466 18.33 2 1 10698.12 67.33 Australia NZ Melbourne

28 5 477 478 18.60 3 2 10698.12 67.60 Australia NZ Sydney

29 5 620 621 6.50 1 0 1998.23 36.50 Regional Manila

30 5 656 629 11.67 3 2 11073.55 56.67 Regional Seoul

31 6 315 316 8.92 1 1 4795.76 45.92 Regional Delhi

32 6 403 404 4.58 0 0 1993.66 32.58 Regional Singapore

33 6 465 466 18.33 2 1 10698.12 67.33 Australia NZ Melbourne

34 6 477 478 18.60 3 2 10698.12 67.60 Australia NZ Sydney

35 6 620 621 6.50 1 0 1998.23 36.50 Regional Manila

36 6 656 629 11.67 3 2 11073.55 56.67 Regional Seoul

37 7 315 316 8.92 1 1 4795.76 45.92 Regional Delhi

38 7 403 404 4.58 0 0 1993.66 32.58 Regional Singapore

39 7 465 466 18.33 2 1 10698.12 67.33 Australia NZ Melbourne

40 7 477 478 18.60 3 2 10698.12 67.60 Australia NZ Sydney

41 7 620 621 6.50 1 0 1998.23 36.50 Regional Manila

42 7 656 629 11.67 3 2 11073.55 56.67 Regional Seoul

43 8 315 316 8.92 1 1 4795.76 45.92 Regional Delhi

44 8 403 404 4.58 0 0 1993.66 32.58 Regional Singapore

Page 85

45 8 465 466 18.33 2 1 10698.12 67.33 Australia NZ Melbourne

46 8 477 478 18.60 3 2 10698.12 67.60 Australia NZ Sydney

47 8 620 621 6.50 1 0 1998.23 36.50 Regional Manila

48 8 656 629 11.67 3 2 11073.55 56.67 Regional Seoul

49 9 315 316 8.92 1 1 4795.76 45.92 Regional Delhi

50 9 403 404 4.58 0 0 1993.66 32.58 Regional Singapore

51 9 465 466 18.33 2 1 10698.12 67.33 Australia NZ Melbourne

52 9 477 478 18.60 3 2 10698.12 67.60 Australia NZ Sydney

53 9 620 621 6.50 1 0 1998.23 36.50 Regional Manila

54 9 656 629 11.67 3 2 11073.55 56.67 Regional Seoul

55 10 315 316 8.92 1 1 4795.76 45.92 Regional Delhi

56 10 403 404 4.58 0 0 1993.66 32.58 Regional Singapore

57 10 465 466 18.33 2 1 10698.12 67.33 Australia NZ Melbourne

58 10 477 478 18.60 3 2 10698.12 67.60 Australia NZ Sydney

59 10 620 621 6.50 1 0 1998.23 36.50 Regional Manila

60 10 656 629 11.67 3 2 11073.55 56.67 Regional Seoul

61 11 315 316 8.92 1 1 4795.76 45.92 Regional Delhi

62 11 403 404 4.58 0 0 1993.66 32.58 Regional Singapore

63 11 465 466 18.33 2 1 10698.12 67.33 Australia NZ Melbourne

64 11 477 478 18.60 3 2 10698.12 67.60 Australia NZ Sydney

65 11 620 621 6.50 1 0 1998.23 36.50 Regional Manila

66 11 656 629 11.67 3 2 11073.55 56.67 Regional Seoul

67 12 315 316 8.92 1 1 4795.76 45.92 Regional Delhi

68 12 403 404 4.58 0 0 1993.66 32.58 Regional Singapore

69 12 465 466 18.33 2 1 10698.12 67.33 Australia NZ Melbourne

70 12 477 478 18.60 3 2 10698.12 67.60 Australia NZ Sydney

71 12 620 621 6.50 1 0 1998.23 36.50 Regional Manila

Page 86

72 12 656 629 11.67 3 2 11073.55 56.67 Regional Seoul

73 13 315 316 8.92 1 1 4795.76 45.92 Regional Delhi

74 13 403 404 4.58 0 0 1993.66 32.58 Regional Singapore

75 13 465 466 18.33 2 1 10698.12 67.33 Australia NZ Melbourne

76 13 477 478 18.60 3 2 10698.12 67.60 Australia NZ Sydney

77 13 620 621 6.50 1 0 1998.23 36.50 Regional Manila

78 13 656 629 11.67 3 2 11073.55 56.67 Regional Seoul

79 14 315 316 8.92 1 1 4795.76 45.92 Regional Delhi

80 14 403 404 4.58 0 0 1993.66 32.58 Regional Singapore

81 14 465 466 18.33 2 1 10698.12 67.33 Australia NZ Melbourne

82 14 477 478 18.60 3 2 10698.12 67.60 Australia NZ Sydney

83 14 620 621 6.50 1 0 1998.23 36.50 Regional Manila

84 14 656 629 11.67 3 2 11073.55 56.67 Regional Seoul

Page 87

Appendix B

Change pairing descending code

This section shows the change pairing descending technique in order to

minimize workload and perdiem simultaneously with workload bound that applied to

using with TA84M instance. In addition, code of change pairing directly, change

pairing descending, and change pairing ascending are similarly.

#include "stdio.h"

#include "string.h"

#include "math.h"

struct crew_pair {

 int day;

 int operate_day;

 float fduty;

 float perdiem;

 float workload;

}; struct crew_pair pair[84] = {0}; // number of pair

struct crew_sch {

 int icrew;

 int jday;

 int remain;

 int operate_day;

 float fduty;

 float workload;

 float fduty_unit;

 float workload_unit;

 float perdiem;
 float perdiem_unit;

}; struct crew_sch impair[84] = {0}; // number of pair

//define task

int task_size = 84; // number of pair

//schedule

int crew = 30;

int day_in_week = 14;

int schedule[30][30][14];

//Constraint

float max_fduty = 68.00;

void init_schedule(){

 int ii,jj,kk;

 for(ii=0; ii<crew; ii++){

 for(jj=0; jj<day_in_week; jj++){

 schedule[0][ii][jj]=0;

 }

 }

}

Page 88

void data_import(){

 FILE *fp1;

 int i = 0;

 if((fp1 = fopen("C:/Users/YURIWON/Documents/Visual Studio 2010/Projects/Thesis 2015

test 2/small mix.txt","r")) == NULL){
 printf("Cannot open");

 getch();

 }else{

 while((fscanf(fp1,"%d|%d|%f|%f|%f\n",&pair[i].day,&pair[i].operate_day,&pair[i].fduty,&pai

r[i].perdiem,&pair[i].workload)) != EOF){

 i++;

 } }

}

int main(){

 int ii,jj,kk,zz,cc,dd,mc,nd,xx,s_count;

 int icw = 0;

 int _id = 0;

 int remain = 0;

 int day = 0;

 int max_op = 0;

 float sum_fduty[30][30] = {0};

 float fduty_unit = 0;
 int remove_over = 0;

 float workload_unit = 0;

 float sum_workload[30][30] = {0};

 float temp_workload = 0;

 float avg_workload = 0;

 float sum_avg_workload = 0;

 float sum_perdiem[30][30] = {0};

 float perdiem_unit = 0;

 float temp_perdiem = 0;

 float avg_perdiem = 0;

 float sum_avg_perdiem = 0;

 int _going=0;
 int id_table = 0;

 int new_crew = 0;

 int new_day = 0;

 int new_remain = 0;

 int new_max_op = 0;

 int state = 1;

 int x_index = 0;

 int new_id = 0;

 float sd_workload[30] = {0};

 float sd_perdiem[30] = {0};

 int checkTF;
 float new_temp_workload;

 float new_temp_perdiem;

 float new_sum_avg_workload;

 float new_sum_avg_perdiem;

 int max_state=0;

 int icrew[84] = {0};

 int oo = 0;

 int pp =0;

Page 89

 float swap_temp_workload = 0;

 float swap_temp_perdiem = 0;

 float ftemp = 0;

 int swap_temp = 0;

 float max_temp_wl = 0;

 float max_temp_pd = 0;
 float stand_workload[84] = {0};

 float stand_perdiem[84] = {0};

 float stand_sd[30] = {0};

 float real_con_wl = 0;

 float real_con_pd = 0;

 float max_sum_wl[30] = {0};

 float min_sum_wl[30] = {0};

 float test_temp = 0;

 int iFlag = 1;

 FILE *fp2, *fp3;

 data_import();

 init_schedule();

 printf("\n\n -------------------- Construction Phase -------------------- \n\n");

 /*-------------------------Start Normalize--------------------------------*/

 for(xx = 0;xx < task_size;xx++){

 if(pair[xx].workload > max_temp_wl){

 max_temp_wl = pair[xx].workload;

 }

 if(pair[xx].perdiem > max_temp_pd){

 max_temp_pd = pair[xx].perdiem;

 }

 }

 for(xx=0;xx<task_size;xx++){

 stand_workload[xx] = pair[xx].workload / max_temp_wl;

 stand_perdiem[xx] = pair[xx].perdiem / max_temp_pd;

 }

 /*-------------------------End Normalize--------------------------------*/

 while(_id < task_size){

 day = pair[_id].day - 1;

 remain = pair[_id].operate_day;

 max_op = day + (pair[_id].operate_day-1);

 fduty_unit = pair[_id].fduty / pair[_id].operate_day;

 workload_unit = stand_workload[_id] / pair[_id].operate_day;

 perdiem_unit = stand_perdiem[_id] / pair[_id].operate_day;

 for(dd = day; dd <= max_op; dd++){ // check empty

 if(schedule[0][icw][dd] == 0){ // Have available space?

 while(remain != 0){ // Book table

 sum_fduty[0][icw] += fduty_unit;

 sum_workload[0][icw] += workload_unit;

Page 90

 sum_perdiem[0][icw] += perdiem_unit;

 if(sum_fduty[0][icw] <= max_fduty){

 schedule[0][icw][day] = _id+1;

 remain--;
 day++;

 }else{

remove_over = pair[_id].operate_day - remain;

sum_fduty[0][icw] -= (fduty_unit + (fduty_unit * remove_over));

sum_workload[0][icw] -= (workload_unit + (workload_unit * remove_over));

sum_perdiem[0][icw] -= (perdiem_unit + (perdiem_unit * remove_over));

 for(mc=0;mc<remove_over;mc++){

 day--;

 remain++;
 schedule[0][icw][day] = 0;

 }

 icw++;

 }

 if(day == day_in_week){

 remain = 0;

 }

 } // 1 means bookable , End while loop

 icw++;

 _id++;

 break;

 }else{

 icw++;

 break;

 }

 } // End of check empty

 if(icw == crew){ // check crew not over max_crew

 icw = 0;

 }

 } // End of while pairing loop

 for(ii=0;ii<crew;ii++){

 for(jj=0;jj<day_in_week;jj++){

 printf("%d ", schedule[0][ii][jj]);

 }

 printf("\t FD: %.2f",sum_fduty[0][ii]);

 printf("\t WL: %.2f",sum_workload[0][ii]);

 printf("\n");

 }

 // Find SD

 for(kk=0;kk<crew;kk++){

Page 91

 temp_workload += sum_workload[0][kk];

 temp_perdiem += sum_perdiem[0][kk];

 sum_fduty[0][kk] = sum_fduty[0][kk]; // 0 is default state 0

 sum_workload[0][kk] = sum_workload[0][kk]; // 0 is default state 0

 }

 avg_workload = temp_workload / crew;

 avg_perdiem = temp_perdiem / crew;

 for (zz=0;zz<crew;zz++){

 sum_avg_workload += pow((sum_workload[0][zz] - avg_workload),2);

 sum_avg_perdiem += pow((sum_perdiem[0][zz] - avg_perdiem),2);

 }

 sd_workload[0] = sqrt(sum_avg_workload/(crew-1));

 sd_perdiem[0] = sqrt(sum_avg_perdiem/(crew-1));

 stand_sd[0] = sd_workload[0] + sd_perdiem[0];

printf("\n Standard Deviation of workload is %.4f \n", sd_workload[0]);

printf("\n Standard Deviation of perdiem is %.4f \n", sd_perdiem[0]);

printf("\n Sum Standard Deviation %.4f \n", stand_sd[0]);

//============printf real SD===========

real_con_wl = sd_workload[0] * max_temp_wl;

real_con_pd = sd_perdiem[0] * max_temp_pd;

printf("\n ----- Real sd of workload is %.4f ----- \n",real_con_wl);
printf("\n ----- Real sd of perdiem is %.4f ----- \n",real_con_pd);

printf("\n WL mean: %.4f \n", avg_workload * max_temp_wl);

printf("\n PD mean: %.4f \n", avg_perdiem * max_temp_pd);

if((fp2 = fopen("C:/Users/YURIWON/Documents/Visual Studio 2010/Projects/Test PaRn/wl pd

improve 2/sort wl pd/result con small mix.xls","w"))==NULL){

 printf("\n Cannot create file to write \n");

 getch();

 }

 for(ii=0;ii<crew;ii++){

 for(jj=0;jj<day_in_week;jj++){

 fprintf(fp2,"%d ", schedule[0][ii][jj]);

 }

 fprintf(fp2,"\t fduty is %.2f",sum_fduty[0][ii]);

 fprintf(fp2,"\t workload is %.2f",sum_workload[0][ii]);

 fprintf(fp2,"\t perdiem is %.2f",sum_perdiem[0][ii]);

 fprintf(fp2,"\n");

 }

fprintf(fp2,"\n\n SD of sd_workload[0] is %.4f \n",sd_workload[0]);

fprintf(fp2,"\n\n SD of sd_perdiem[0] is %.4f \n",sd_perdiem[0]);

fclose(fp2);

printf("\n\n -------------------- Improvement Phase -------------------- \n\n");

Page 92

 for(ii=0;ii<crew;ii++){

 for(jj=0;jj<day_in_week;jj++){

 if(schedule[0][ii][jj] != 0){

 id_table = schedule[0][ii][jj];

 impair[id_table-1].remain++;

 }

 }

 } // End table loop

for(zz=0;zz<task_size;zz++){

 impair[zz].jday = pair[zz].day;

 impair[zz].fduty = pair[zz].fduty;

 impair[zz].workload = stand_workload[zz];

 impair[zz].perdiem = stand_perdiem[zz];

 impair[zz].operate_day = pair[zz].operate_day;
impair[zz].fduty_unit = impair[zz].fduty / impair[zz].operate_day;

 impair[zz].workload_unit = stand_workload[zz] / impair[zz].operate_day;

 impair[zz].perdiem_unit = stand_perdiem[zz] / impair[zz].operate_day;

}

 for(ii=0;ii<crew;ii++){

 for(jj=0;jj<day_in_week;jj++){

 schedule[1][ii][jj] = schedule[0][ii][jj];

 }

 }

 for(ii=0;ii<crew;ii++){

 sum_fduty[1][ii] = sum_fduty[0][ii];

 sum_workload[1][ii] = sum_workload[0][ii];

 sum_perdiem[1][ii] = sum_perdiem[0][ii];

 }

 stand_sd[1] = stand_sd[0];

 for(_going = 0; _going < 100; _going++){

 for(new_id = 0; new_id < task_size; new_id++){

 if(_going == 0){ // iteration

// Swap

for(ii=(crew-1);ii>0;ii--){ // sort by workload from least to greater

for(jj=1;jj<=ii;jj++){

 if(sum_workload[state][jj-1] < sum_workload[state][jj]){

 swap_temp_workload = sum_workload[state][jj-1];

 sum_workload[state][jj-1] = sum_workload[state][jj];

 sum_workload[state][jj] = swap_temp_workload;

 swap_temp_perdiem = sum_perdiem[state][jj-1];
 sum_perdiem[state][jj-1] = sum_perdiem[state][jj];

 sum_perdiem[state][jj] = swap_temp_perdiem;

 ftemp = sum_fduty[state][jj-1];

 sum_fduty[state][jj-1] = sum_fduty[state][jj];

 sum_fduty[state][jj] = ftemp;

 for(dd=0;dd<day_in_week;dd++){ // copy new sorted schedule, 1- 30

Page 93

 swap_temp = schedule[state][jj-1][dd];

 schedule[state][jj-1][dd] = schedule[state][jj][dd];

 schedule[state][jj][dd] = swap_temp;

 }

 }
 }

 }

}else{ // End if going == 0 & start if going == 1 // other iteration

 for(ii=(crew-1);ii>0;ii--){ // sort by workload from least to greater

 for(jj=1;jj<=ii;jj++){

 if(sum_perdiem[state][jj-1] < sum_perdiem[state][jj]){

 swap_temp_workload = sum_workload[state][jj-1];

 sum_workload[state][jj-1] = sum_workload[state][jj];

 sum_workload[state][jj] = swap_temp_workload;
 swap_temp_perdiem = sum_perdiem[state][jj-1];

 sum_perdiem[state][jj-1] = sum_perdiem[state][jj];

 sum_perdiem[state][jj] = swap_temp_perdiem;

 ftemp = sum_fduty[state][jj-1];

 sum_fduty[state][jj-1] = sum_fduty[state][jj];

 sum_fduty[state][jj] = ftemp;

 for(dd=0;dd<day_in_week;dd++){ // copy new sorted schedule, 1- 30

 swap_temp = schedule[state][jj-1][dd];
 schedule[state][jj-1][dd] = schedule[state][jj][dd];

 schedule[state][jj][dd] = swap_temp;

 }

 }

 }

 }

 } // End else going != 0

 for(ii=0;ii<crew;ii++){

 for(jj=0;jj<day_in_week;jj++){

 if(schedule[1][ii][jj] != 0){

 id_table = schedule[1][ii][jj];

 icrew[id_table-1] = ii;

 }

 }

 } // End table loop

 new_crew = icrew[new_id] + 1;

 if(new_crew == crew){

 new_crew = 0;

 }

 new_day = impair[new_id].jday -1;

 new_max_op = new_day + (impair[new_id].remain - 1);

 new_remain = impair[new_id].remain;

Page 94

 while(new_crew != icrew[new_id]){

 checkTF = 1;

 for(nd = new_day; nd <= new_max_op; nd++){

 if(schedule[state][new_crew][nd] == 0){

 checkTF *= 1;

 }else{

 checkTF *= 0;

 }

 } // End for nd loop

 if(_going != 0){

test_temp = (impair[new_id].workload_unit * impair[new_id].remain) +

sum_workload[state][new_crew];

if(test_temp >= min_sum_wl[state] && test_temp <= max_sum_wl[state]){

 iFlag = 1;

 }else{

 iFlag = 0;

 }

 } // End of limited bound

if(checkTF == 1 && ((impair[new_id].fduty_unit * impair[new_id].remain) +

sum_fduty[state][new_crew]) <= max_fduty && iFlag == 1){

 state++;

 // Copy code

 for(ii=0;ii<crew;ii++){

 for(jj=0;jj<day_in_week;jj++){

 schedule[state][ii][jj] = schedule[1][ii][jj];

 }

 }

for(ii=0;ii<crew;ii++){

 sum_fduty[state][ii] = sum_fduty[1][ii];

 sum_workload[state][ii] = sum_workload[1][ii];

 sum_perdiem[state][ii] = sum_perdiem[1][ii];

} // End of copy code

// Remove old pair

 for(cc = 0; cc < crew; cc++){

 for(dd = 0; dd < day_in_week; dd++){

 if(schedule[state][cc][dd] == new_id+1){

 schedule[state][cc][dd] = 0;

 sum_fduty[state][cc] -= impair[new_id].fduty_unit;

 sum_workload[state][cc] -= impair[new_id].workload_unit;

 sum_perdiem[state][cc] -= impair[new_id].perdiem_unit;

 }

 } // End for dd loop

Page 95

 } // End for cc loop

// Booking new pair

for(xx = new_day; xx <= new_max_op; xx++){

 schedule[state][new_crew][xx] = new_id + 1;

 sum_fduty[state][new_crew] += impair[new_id].fduty_unit;
 sum_workload[state][new_crew] += impair[new_id].workload_unit;

 sum_perdiem[state][new_crew] += impair[new_id].perdiem_unit;

}

// Cal SD

 new_temp_workload = 0;

 new_sum_avg_workload = 0;

 new_temp_perdiem = 0;

 new_sum_avg_perdiem = 0;

for(kk=0;kk<crew;kk++){

 new_temp_workload += sum_workload[state][kk];
 new_temp_perdiem += sum_perdiem[state][kk];

}

 avg_workload = new_temp_workload / crew;

 avg_perdiem = new_temp_perdiem / crew;

for (zz=0;zz<crew;zz++){

new_sum_avg_workload += pow((sum_workload[state][zz] - avg_workload),2);

 new_sum_avg_perdiem += pow((sum_perdiem[state][zz] - avg_perdiem),2);

}

sd_workload[state] = sqrt(new_sum_avg_workload/(crew-1));

 sd_perdiem[state] = sqrt(new_sum_avg_perdiem/(crew-1));

 stand_sd[state] = sd_workload[state] + sd_perdiem[state];

 new_crew++;

 max_state++;

 } else { // else of check not over 34 hrs

 new_crew++;

 }

 if(new_crew == crew){ // Use to continue crew loop

 new_crew = 0;

 }

 } // End while crew loop

 // compare state

for(s_count = 0; s_count < max_state; s_count++){

 if(stand_sd[1] >= stand_sd[s_count+2]){
 sd_workload[1] = sd_workload[s_count+2];

 sd_perdiem[1] = sd_perdiem[s_count+2];

 stand_sd[1] = sd_workload[1] + sd_perdiem[1];

 for(ii=0;ii<crew;ii++){

 for(jj=0;jj<day_in_week;jj++){

Page 96

 schedule[1][ii][jj] = schedule[s_count+2][ii][jj];

}

 }

for(ii=0;ii<crew;ii++){

 sum_fduty[1][ii] = sum_fduty[s_count+2][ii];

 sum_workload[1][ii] = sum_workload[s_count+2][ii];

 sum_perdiem[1][ii] = sum_perdiem[s_count+2][ii];

 }

 }

 } // End of for(s_count) , compare state

 max_state = 0;

 state = 1;

 } // End for new_id loop

 // find min & max workload

 if(_going == 0){

 min_sum_wl[state] = 888;

 for(cc = 0; cc < crew; cc++){

 if(sum_workload[state][cc] > max_sum_wl[state]){

 max_sum_wl[state] = sum_workload[state][cc];

 }

 if(sum_workload[state][cc] < min_sum_wl[state]){

 min_sum_wl[state] = sum_workload[state][cc];

 }

 }

 } // End find max min, do only first iteration

 } // End _going loop

printf("\n !!!!!!!!!!!!!!! Pass End new_id loop !!!!!!!!!!!!!!! \n");

 // Print improvement table

 printf("\n\n");

 for(ii=0;ii<crew;ii++){

 for(jj=0;jj<day_in_week;jj++){

 printf("%d ",schedule[1][ii][jj]);

 }

 printf("\t FD: %.2f",sum_fduty[1][ii]);

 printf("\t WL: %.2f",sum_workload[1][ii]);

 printf("\t PD: %.2f",sum_perdiem[1][ii]);

 printf("\n");

 }

printf("\n #### Max WL %.2f Min WL %.2f #####\n",max_sum_wl[state],min_sum_wl[state]);

 printf("\n\n SD of workload is %.4f \n",sd_workload[1]);

 printf("\n\n SD of perdiem is %.4f \n",sd_perdiem[1]);

 printf("\n\n SD of Sum Stand is %.4f \n",stand_sd[1]);

 real_con_wl = sd_workload[1] * max_temp_wl;

Page 97

 real_con_pd = sd_perdiem[1] * max_temp_pd;

 printf("\n ----- Real sd of workload is %.4f ----- \n",real_con_wl);

 printf("\n ----- Real sd of perdiem is %.4f ----- \n",real_con_pd);

 printf("\n ----- Normalize sd of workload is %.4f ----- \n",sd_workload[1]);

 printf("\n ----- Normalize sd of perdiem is %.4f ----- \n",sd_perdiem[1]);

 printf("\n ----- Total normalize SD %.4f ----- \n",stand_sd[1]);

 printf("\n Max workload: %.2f\n",max_temp_wl);

 printf("\n Max perdiem: %.2f\n",max_temp_pd);

 printf("\n WL mean: %.4f \n", avg_workload * max_temp_wl);

 printf("\n PD mean: %.4f \n", avg_perdiem * max_temp_pd);

 printf("\n WL mean: %.4f \n", avg_workload);

 printf("\n PD mean: %.4f \n", avg_perdiem);

// write to file

if((fp3 = fopen("C:/Users/YURIWON/Documents/Visual Studio 2010/Projects/Test PaRn/wl pd

improve 2/sort wl pd/result improve small mix.xls","w"))==NULL){

 printf("\n Cannoot create file to write \n");

 getch();

 }

 for(ii=0;ii<crew;ii++){

 for(jj=0;jj<day_in_week;jj++){
 fprintf(fp3,"\t %d", schedule[0][ii][jj]);

 }

 fprintf(fp3,"\t %.2f",sum_fduty[0][ii]);

 fprintf(fp3,"\t %.2f",sum_workload[0][ii] * max_temp_wl);

 fprintf(fp3,"\t %.2f",sum_perdiem[0][ii] * max_temp_pd);

 fprintf(fp3,"\t %.2f",sum_workload[0][ii]);

 fprintf(fp3,"\t %.2f",sum_perdiem[0][ii]);

 fprintf(fp3,"\n");

 }

fprintf(fp3,"\n\n SD of sd_workload[1] is %.4f \n",sd_workload[1] * max_temp_wl);

fprintf(fp3,"\n\n SD of sd_perdiem[1] is %.4f \n",sd_perdiem[1] * max_temp_pd);

 fclose(fp3);

 getch();

 return 0;

 } // End main

Page 98

Appendix C

High workload and perdiem distribution code

 This section shows code of the high workload and perdiem distribution

technique in order to minimize workload and perdiem simultaneously with workload

bound. The code use to modify for TA84M test instance.

#include "stdio.h"

#include "string.h"

#include "math.h"

struct crew_pair {

 int day;

 int operate_day;

 float fduty;

 float perdiem;
 float workload;

}; struct crew_pair pair[84] = {0}; // number of pair

//define task

int task_size = 84; // number of pair

//schedule

int crew = 30;

int day_in_week = 14;

int schedule[30][30][14];

int con_table[30][14];

//Constraint

float max_fduty = 34.00;

float new_wl_unit[30][84] = {0};

float new_pd_unit[30][30] = {0};

float new_fd_unit[30][84] = {0};

float new_tt_unit[30][84] = {0};

int new_day = 0;

int new_remain[30][84] = {0}; // no. of pair

void init_schedule(){
 int ii,jj,kk;

 for(ii=0; ii<crew; ii++){

 for(jj=0; jj<day_in_week; jj++){

 schedule[0][ii][jj]=0;

 }

 }

}

void data_import(){

 FILE *fp1;

 int i = 0;

if((fp1 = fopen("C:/Users/YURIWON/Documents/Visual Studio 2010/Projects/Thesis 2015 test

2/small mix.txt","r")) == NULL){

 printf("Cannot open");

 getch();

 }else{

Page 99

while((fscanf(fp1,"%d|%d|%f|%f|%f\n",&pair[i].day,&pair[i].operate_day,&pair[i].fduty,&pair[i].perdi

em,&pair[i].workload)) != EOF){

 i++;

 }
}

 fclose(fp1);

}

int find_max_wl(int ii, int state){ // ii is number of crew

int x_index =0;

float each_pair_wl[84] = {0};

float temp = 0;

int res_index = 0;
int jj,check_max;

 for(jj = 0; jj < day_in_week; jj++){

 if(schedule[1][ii][jj] != 0){

 x_index = schedule[1][ii][jj];

 each_pair_wl[x_index-1] += new_wl_unit[state][x_index-1];

 }

 }

 for(check_max = 0; check_max < task_size; check_max++){
 if(each_pair_wl[check_max-1] > temp){

 temp = each_pair_wl[check_max-1];

 res_index = check_max;

 }

 }

 return res_index;

} // End find_max_wl function

int find_max_pd(int ii, int state){ // ii is number of crew

int x_index =0;

float each_pair_wl[84] = {0};

float temp = 0;

int res_index = 0;

int jj,check_max;

 for(jj = 0; jj < day_in_week; jj++){

 if(schedule[1][ii][jj] != 0){

 x_index = schedule[1][ii][jj];

 each_pair_wl[x_index-1] += new_pd_unit[state][x_index-1];

 }

 }

 for(check_max = 0; check_max < task_size; check_max++){

 if(each_pair_wl[check_max-1] > temp){

 temp = each_pair_wl[check_max-1];

 res_index = check_max;

 }

Page 100

 }

 return res_index;

} // End find_max_wl function

int main(){

int ii,jj,kk,zz,cc,dd,mc,nd,ismall,ibig,xx;

int icw = 0;

int _id = 0;

int remain = 0;

int day = 0;

int max_op = 0;

float sum_fduty[30][30] = {0};

float fduty_unit = 0;

int remove_over = 0;

float workload_unit = 0;
float sum_workload[30][30] = {0};

float temp = 0;

float avg = 0;

float sum_avg = 0;

float result = 0;

int swap_temp;

int _going=0;

int id_table = 0;

int new_crew = 0;

int new_max_op = 0;

int state = 0;
int x_index = 0;

int id_index = 0;

int new_id = 0;

float sd[30] = {0};

float new_workload[30][30] = {0};

int checkTF;

float new_wl_temp = 0;

float new_pd_temp = 0;

int mean_crew = 0;

int max_state = 0;

int icrew[84] = {0};

int oo = 0;
int pp =0;

float sd_temp = 0;

float ftemp = 0;

int small_id = 0;

int big_id = 0;

int max_sd = 0;

float sub_sd = 0;

int s_count = 1;

int max_count = 0;

float temp_workload = 0;

float temp_perdiem = 0;
float new_sum_avg_workload;

float new_sum_avg_perdiem;

float sd_workload[30] = {0};

float sd_perdiem[30] = {0};

float perdiem_unit = 0;

float sum_perdiem[30][30] = {0};

float sum_avg_workload = 0;

float avg_perdiem = 0;

Page 101

float sum_avg_perdiem = 0;

float avg_workload = 0;

float avg_wl = 0;

float avg_pd = 0;

float sum_avg_wl = 0;

float sum_avg_pd = 0;
float max_temp_wl = 0;

float max_temp_pd = 0;

float stand_workload[84] = {0};

float stand_perdiem[84] = {0};

float stand_sd[30] = {0};

float real_con_wl = 0;

float real_con_pd = 0;

float total_stand[30][30] = {0};

float new_tt_temp = 0;

float max_sum_wl[30] = {0};

float min_sum_wl[30] = {0};

float test_temp = 0;
int iFlag = 1;

FILE *fp2, *fp3;

data_import();

init_schedule();

printf("\n\n -------------------- Construction Phase -------------------- \n\n");

/*-------------------------Start Normalize--------------------------------*/

for(xx = 0;xx < task_size;xx++){

 if(pair[xx].workload > max_temp_wl){

 max_temp_wl = pair[xx].workload;

 }

 if(pair[xx].perdiem > max_temp_pd){

 max_temp_pd = pair[xx].perdiem;

 }

}

for(xx=0;xx<task_size;xx++){

 stand_workload[xx] = pair[xx].workload / max_temp_wl; // represent pair[].crew

 stand_perdiem[xx] = pair[xx].perdiem / max_temp_pd;

}

/*-------------------------End Normalize--------------------------------*/

 while(_id < task_size){

 day = pair[_id].day - 1;
 remain = pair[_id].operate_day;

 max_op = day + (pair[_id].operate_day-1);

 fduty_unit = pair[_id].fduty / pair[_id].operate_day;

 workload_unit = stand_workload[_id] / pair[_id].operate_day;

 perdiem_unit = stand_perdiem[_id] / pair[_id].operate_day;

 for(dd = day; dd <= max_op; dd++){ // check empty

Page 102

 if(schedule[0][icw][dd] == 0){ // Have available space?

 while(remain != 0){ // Book table

 sum_fduty[0][icw] += fduty_unit;
 sum_workload[0][icw] += workload_unit;

 sum_perdiem[0][icw] += perdiem_unit;

 if(sum_fduty[0][icw] <= max_fduty * 2){

 schedule[0][icw][day] = _id+1;

 remain--;

 day++;

 }else{

 remove_over = pair[_id].operate_day - remain;
 sum_fduty[0][icw] -= (fduty_unit + (fduty_unit * remove_over));

 sum_workload[0][icw] -= (workload_unit + (workload_unit * remove_over));

 sum_perdiem[0][icw] -= (perdiem_unit + (perdiem_unit * remove_over));

 for(mc=0;mc<remove_over;mc++){

 day--;

 remain++;

 schedule[0][icw][day] = 0;

 }

 icw++;

 }

 if(day == day_in_week){

 remain = 0;

 }

 } // 1 means bookable , End while loop

 icw++;

 _id++;

 break;

 }else{

 icw++;

 break;

 }

 } // End of check empty

 if(icw == crew){ // check crew not over max_crew

 icw = 0;

 }

 } // End of while pairing loop

for(ii=0;ii<crew;ii++){

 for(jj=0;jj<day_in_week;jj++){

Page 103

 printf("%d ", schedule[0][ii][jj]);

 }

 printf("\t WL: %.2f",sum_workload[0][ii]);

 printf("\t PD: %.2f",sum_perdiem[0][ii]);

 printf("\n");

}

 for(kk=0;kk<crew;kk++){

 temp_workload += sum_workload[0][kk];

 temp_perdiem += sum_perdiem[0][kk];

 }

 avg_workload = temp_workload / crew;

 avg_perdiem = temp_perdiem / crew;

 for (zz=0;zz<crew;zz++){

 sum_avg_workload += pow((sum_workload[0][zz] - avg_workload),2);

 sum_avg_perdiem += pow((sum_perdiem[0][zz] - avg_perdiem),2);

 }

 sd_workload[0] = sqrt(sum_avg_workload/(crew-1));

 sd_perdiem[0] = sqrt(sum_avg_perdiem/(crew-1));

 stand_sd[0] = sd_workload[0] + sd_perdiem[0];

 printf("\n Standard Deviation of workload is %.4f \n", sd_workload[0]);

 printf("\n Standard Deviation of perdiem is %.4f \n", sd_perdiem[0]);

 printf("\n Sum Standard Deviation %.4f \n", stand_sd[0]);

 //============printf real SD===========

 real_con_wl = sd_workload[0] * max_temp_wl;

 real_con_pd = sd_perdiem[0] * max_temp_pd;

 printf("\n ----- Real sd of workload is %.4f ----- \n",real_con_wl);

 printf("\n ----- Real sd of perdiem is %.4f ----- \n",real_con_pd);

if((fp2 = fopen("C:/Users/YURIWON/Documents/Visual Studio 2010/Projects/Test PaRn/wl pd
improve 4/sort wl pd/result con small mix.xls","w"))==NULL){

 printf("\n Cannoot create file to write \n");

 getch();

 }

 for(ii=0;ii<crew;ii++){

 for(jj=0;jj<day_in_week;jj++){

 fprintf(fp2,"%d ", schedule[0][ii][jj]);

 }

 fprintf(fp2,"\t %.2f",sum_fduty[0][ii]);

 fprintf(fp2,"\t %.2f",sum_workload[0][ii]* max_temp_wl);

 fprintf(fp2,"\t %.2f",sum_perdiem[0][ii]* max_temp_pd);

 fprintf(fp2,"\n");

 }

 fprintf(fp2,"\n\n SD of sd_workload[0] is %.4f \n",sd_workload[0]* max_temp_wl);

Page 104

 fprintf(fp2,"\n\n SD of sd_perdiem[0] is %.4f \n",sd_perdiem[0]* max_temp_pd);

 fclose(fp2);

 printf("\n\n -------------------- Improvement Phase -------------------- \n\n");

 state = 1;

 for(ii=0;ii<crew;ii++){ // copy table

 for(jj=0;jj<day_in_week;jj++){

 schedule[state][ii][jj] = schedule[0][ii][jj];

 }

 }

 for(ii=0;ii<crew;ii++){ // copy workload

 sum_fduty[state][ii] = sum_fduty[0][ii];

 sum_workload[state][ii] = sum_workload[0][ii];

 sum_perdiem[state][ii] = sum_perdiem[0][ii];
 }

 sd_workload[state] = sd_workload[0]; // copy sd[0] to sd[state]

 sd_perdiem[state] = sd_perdiem[0];

 stand_sd[state] = sd_workload[state] + sd_perdiem[state];

for(_going = 0; _going < 100; _going++){ // interation

 if(_going == 0){

// swap table

for(ii=(crew-1);ii>0;ii--){

 for(jj=1;jj<=ii;jj++){

 if(sum_workload[state][jj-1] < sum_workload[state][jj]){

 new_wl_temp = sum_workload[state][jj-1];

 sum_workload[state][jj-1] = sum_workload[state][jj];

 sum_workload[state][jj] = new_wl_temp;

 new_pd_temp = sum_perdiem[state][jj-1];

 sum_perdiem[state][jj-1] = sum_perdiem[state][jj];

 sum_perdiem[state][jj] = new_pd_temp;

 ftemp = sum_fduty[state][jj-1];

 sum_fduty[state][jj-1] = sum_fduty[state][jj];

 sum_fduty[state][jj] = ftemp;

 for(dd=0;dd<day_in_week;dd++){

 swap_temp = schedule[state][jj-1][dd];

 schedule[state][jj-1][dd] = schedule[state][jj][dd];

 schedule[state][jj][dd] = swap_temp;

 }

 }
 }

 } // End swap

 }else{

 for(ii=(crew-1);ii>0;ii--){

 for(jj=1;jj<=ii;jj++){

 if(sum_perdiem[state][jj-1] < sum_perdiem[state][jj]){

 new_wl_temp = sum_workload[state][jj-1];

Page 105

 sum_workload[state][jj-1] = sum_workload[state][jj];

 sum_workload[state][jj] = new_wl_temp;

 new_pd_temp = sum_perdiem[state][jj-1];

 sum_perdiem[state][jj-1] = sum_perdiem[state][jj];

 sum_perdiem[state][jj] = new_pd_temp;

 ftemp = sum_fduty[state][jj-1];

 sum_fduty[state][jj-1] = sum_fduty[state][jj];

 sum_fduty[state][jj] = ftemp;

 for(dd=0;dd<day_in_week;dd++){

 swap_temp = schedule[state][jj-1][dd];

 schedule[state][jj-1][dd] = schedule[state][jj][dd];

 schedule[state][jj][dd] = swap_temp;

 }

 }

 }

 } // End swap

} // End swap wl & pd

for(xx = 0; xx < task_size; xx++){

 new_remain[state][xx] = 0;

}

 for(ii = 0; ii < crew; ii++){

 for(jj = 0; jj < day_in_week; jj++){

 if(schedule[state][ii][jj] != 0){

 id_index = schedule[state][ii][jj];
 new_remain[state][id_index-1]++;

 }

 }

 }

 for(cc = 0; cc < task_size; cc++){

 new_wl_unit[state][cc] = stand_workload[cc] / pair[cc].operate_day;

 new_pd_unit[state][cc] = stand_perdiem[cc] / pair[cc].operate_day;

 new_fd_unit[state][cc] = pair[cc].fduty / pair[cc].operate_day;

 }

 for(ibig = 0; ibig < (crew/2) -1; ibig++){

 if(_going == 0){

 new_id = find_max_wl(ibig,state) - 1 ;

}else{

 new_id = find_max_pd(ibig,state) - 1 ;

 }

 new_day = pair[new_id].day - 1;

 new_max_op = new_day + (new_remain[state][new_id] - 1);

 for(ismall = crew-1; ismall > (crew/2); ismall--){

 checkTF = 1;

 for(nd = new_day; nd <= new_max_op; nd++){

Page 106

 if(schedule[state][ismall][nd] == 0){

 checkTF *= 1;

 }else{

 checkTF *= 0;

 }

 }

if(_going != 0){

test_temp = (new_wl_unit[state][new_id] *new_remain[state][new_id]) +

sum_workload[state][ismall]; // test_temp should be array?

if(test_temp >= min_sum_wl[state] && test_temp <= max_sum_wl[state]){

 iFlag = 1;

 }else{

 iFlag = 0;

 }

 } // End of limited bound

if(checkTF == 1 && ((new_fd_unit[state][new_id] * new_remain[state][new_id]) +

sum_fduty[state][ismall]) < max_fduty * 2 && iFlag == 1){ // Booking

 state++;

 max_state++;

 // copy table from state 1

 for(ii=0;ii<crew;ii++){

 for(jj=0;jj<day_in_week;jj++){

 schedule[state][ii][jj] = schedule[1][ii][jj];

 }

}

// copy fduty workload perdiem

 for(ii=0;ii<crew;ii++){

 sum_fduty[state][ii] = sum_fduty[1][ii];

 sum_workload[state][ii] = sum_workload[1][ii];

 sum_perdiem[state][ii] = sum_perdiem[1][ii];

 }

 // find new remain
 for(xx = 0; xx < task_size; xx++){

 new_remain[state][xx] = 0;

 }

 for(ii = 0; ii < crew; ii++){

 for(jj = 0; jj < day_in_week; jj++){

 if(schedule[state][ii][jj] != 0){

 x_index = schedule[state][ii][jj];

 new_remain[state][x_index-1]++;

 }
 }

 }

if(_going != 0){

test_temp = (new_wl_unit[state][new_id] *new_remain[state][new_id]) +

sum_workload[state][ismall]; // test_temp should be array?

if(test_temp >= min_sum_wl[state] && test_temp <= max_sum_wl[state]){

Page 107

 iFlag = 1;

 }else{

 iFlag = 0;

 }

 } // End of limited bound

 if(iFlag == 1){

 // declare value per unit of fduty workload and perdiem

 for(cc = 0; cc < task_size; cc++){

 new_wl_unit[state][cc] = stand_workload[cc] / pair[cc].operate_day;

 new_pd_unit[state][cc] = stand_perdiem[cc] / pair[cc].operate_day;

 new_fd_unit[state][cc] = pair[cc].fduty / pair[cc].operate_day;

 }

// remove old pair

for(xx = new_day; xx <= new_max_op; xx++){

 schedule[state][ibig][xx] = 0;

 sum_fduty[state][ibig] -= new_fd_unit[state][new_id];

 sum_workload[state][ibig] -= new_wl_unit[state][new_id];

 sum_perdiem[state][ibig] -= new_pd_unit[state][new_id];

}

} // End of inside if iFlag == 1

// assign new pair

for(zz = new_day; zz <= new_max_op; zz++){

 schedule[state][ismall][zz] = new_id + 1;

 sum_fduty[state][ismall] += new_fd_unit[state][new_id];

 sum_workload[state][ismall] += new_wl_unit[state][new_id];

 sum_perdiem[state][ismall] += new_pd_unit[state][new_id];

}

// Cal SD

 temp_workload = 0;

 temp_perdiem = 0;

 for(kk=0;kk<crew;kk++){

 temp_workload += sum_workload[state][kk];

 temp_perdiem += sum_perdiem[state][kk];

 }

 avg_wl = 0;

 avg_pd = 0;

 sum_avg_wl = 0;

 sum_avg_pd = 0;

 avg_wl = temp_workload / crew;

 avg_pd = temp_perdiem / crew;

 for (zz=0;zz<crew;zz++){

 sum_avg_wl += pow((sum_workload[state][zz] - avg_wl),2);

 sum_avg_pd += pow((sum_perdiem[state][zz] - avg_pd),2);

 }

 sd_workload[state] = sqrt(sum_avg_wl/(crew-1));

 sd_perdiem[state] = sqrt(sum_avg_pd/(crew-1));

Page 108

 stand_sd[state] = sd_workload[state] + sd_perdiem[state];

 } // End of check available

 } // End of ismall loop

// Compare function

 for(s_count = 0; s_count < max_state; s_count++){

 if(stand_sd[1] >= stand_sd[s_count+2]){

 sd_workload[1] = sd_workload[s_count+2];

 sd_perdiem[1] = sd_perdiem[s_count+2];

 stand_sd[1] = stand_sd[s_count+2];

 for(ii=0;ii<crew;ii++){

 for(jj=0;jj<day_in_week;jj++){

 schedule[1][ii][jj] = schedule[s_count+2][ii][jj];

 }

 }

 for(ii=0;ii<crew;ii++){

 sum_fduty[1][ii] = sum_fduty[s_count+2][ii];

 sum_workload[1][ii] = sum_workload[s_count+2][ii];

 sum_perdiem[1][ii] = sum_perdiem[s_count+2][ii];

 }
 }

}

 state = 1;

 max_state = 0;

} // End of ibig loop

// find min & max workload

if(_going == 0){

min_sum_wl[state] = 888;

for(cc = 0; cc < crew; cc++){

if(sum_workload[state][cc] > max_sum_wl[state]){

 max_sum_wl[state] = sum_workload[state][cc];

 }

 if(sum_workload[state][cc] < min_sum_wl[state]){

 min_sum_wl[state] = sum_workload[state][cc];

 }

}

} // End find max min, do only first iteration
} // End _going Iteration

printf("\n\n\n >>>>> Improvement <<<<< \n");

 for(ii=0;ii<crew;ii++){

 for(jj=0;jj<day_in_week;jj++){

 printf("%d ",schedule[state][ii][jj]);

 }

Page 109

 printf("\t FD: %.2f",sum_fduty[state][ii]);

 printf("\t WL: %.2f",sum_workload[state][ii]);

 printf("\t PD: %.2f",sum_perdiem[state][ii]);

 printf("\n");

 }

printf("\n #### Max WL %.2f Min WL %.2f #####\n",max_sum_wl[state],min_sum_wl[state]);

printf("\n ----- SD of workload is %.4f ----- \n",sd_workload[1]);

printf("\n ----- SD of perdiem is %.4f ----- \n",sd_perdiem[1]);

printf("\n ----- Stand SD is %.4f ----- \n",stand_sd[1]);

real_con_wl = sd_workload[1] * max_temp_wl;

real_con_pd = sd_perdiem[1] * max_temp_pd;

printf("\n ----- Real sd of workload is %.4f ----- \n",real_con_wl);

printf("\n ----- Real sd of perdiem is %.4f ----- \n",real_con_pd);

// write to file

if((fp3 = fopen("C:/Users/YURIWON/Documents/Visual Studio 2010/Projects/Test PaRn/wl pd

improve 4/sort wl pd/result improve small mix.xls","w"))==NULL){

 printf("\n Cannoot create file to write \n");

 getch();

 }

 for(ii=0;ii<crew;ii++){

 for(jj=0;jj<day_in_week;jj++){

 fprintf(fp3,"%d ", schedule[state][ii][jj]);

 }

 fprintf(fp3,"\t %.2f",sum_fduty[state][ii]);

 fprintf(fp3,"\t %.2f",sum_workload[state][ii] * max_temp_wl);

 fprintf(fp3,"\t %.2f",sum_perdiem[state][ii] * max_temp_pd);

 fprintf(fp3,"\n");

 }

 fprintf(fp3,"\n\n SD workload is %.4f \n",sd_workload[1] * max_temp_wl);

 fprintf(fp3,"\n\n SD perdiem is %.4f \n",sd_perdiem[1] * max_temp_pd);

 fclose(fp3);

getch();

return 0;

} // End main

