

OPTIC DISC LOCALIZATION USING VESSEL

CLUSTERING AND ROTATIONAL 2D VESSEL

PROJECTION

BY

PONGSATE TANGSENG

A THESIS SUBMITTED IN PARTIAL FULFILLMENT OF

THE REQUIREMENTS FOR THE DEGREE OF MASTER OF

ENGINEERING (INFORMATION AND COMMUNICATION

TECHNOLOGY FOR EMBEDDED SYSTEMS)

SIRINDHORN INTERNATIONAL INSTITUTE OF TECHNOLOGY

THAMMASAT UNIVERSITY

ACADEMIC YEAR 2014

OPTIC DISC LOCALIZATION USING VESSEL

CLUSTERING AND ROTATIONAL 2D VESSEL

PROJECTION

BY

PONGSATE TANGSENG

A THESIS SUBMITTED IN PARTIAL FULFILLMENT OF

THE REQUIREMENTS FOR THE DEGREE OF MASTER OF

ENGINEERING (INFORMATION AND COMMUNICATION

TECHNOLOGY FOR EMBEDDED SYSTEMS)

SIRINDHORN INTERNATIONAL INSTITUTE OF TECHNOLOGY

THAMMASAT UNIVERSITY

ACADEMIC YEAR 2014

ii

Acknowledgements

 Foremost, I wish to express his profound to Asst. Prof. Pakinee Aimmanee,

the thesis advisor, for his advice on the development of this thesis. She always

provided me the insightful research plans and suggestions. Over the past two years, it

is valuable time of working under her guidance.

 Beside my advisor, I would like to thank all my thesis committee: Prof. Dr.

Stanislav S. Makhanov, chairperson of examination committee from Sirindhorn

International Institute of Technology (SIIT), Dr. Thepchai Supnithi, thesis committee

from National Electronics and Computer Technology Center (NECTEC), and Prof.

Dr. Hirohiko Kaneko, thesis committee from Tokyo Institute of Technology (Tokyo-

Tech) for their excellence comments and suggestions.

 I would like to thank Prof. Dr. Thanaruk Theeramunkong, the head of the

school. He had introduced me about this master degree program when I was an

undergraduate student. Finally, I would like to thank Thailand Advanced Institute of

Science and Technology (TAIST), National Science and Technology Development

Agency (NSTDA), Tokyo Institute of Technology, and Sirindhorn International

Institute of Technology (SIIT), Thammasat University (TU) for financial support. .

iii

Abstract

OPTIC DISC LOCALIZATION USING VESSEL CLUSTERING AND

ROTATIONAL 2D VESSEL PROJECTION

by

PONGSATE TANGSENG

Bachelor of Science, Sirindhorn International Institute of Technology, 2011

Detecting optic disc (OD) in a retinal image is important for the diagnosis

of numerous eye diseases. It helps ophthalmologists identify health condition of an

eye. This thesis presents two effective methods for analyzing the retinal vessel

structure that would be used for locating OD.

 The first method is Retinal Vessel Clustering. After acquiring vessel data

from retinal vessel segmentation, length and average contrast of each vessel is

measured. Vessels which are too short or too obscure are removed. The remaining

vessels are grouped based on distance between them. Each group is called cluster.

With an assumption that the location of OD is the centroid of the main branches of

vessels, clusters are used to find the location of the OD.

 The second method is called Rotational 2D Vessel Projection. The main

advantage of this method is that its performance is not affected by rotation of the

retinal image and it is robust to abnormalities caused by diseases. Vessels in retina

emerge from OD and can be observed in a retinal image as two main branches

opposite to each other. If the image is rotated to proper angles, those two main

branches will orient vertically. As a result, the area around the OD contains mostly

vertical vessel and a few or none of horizontal vessels. As, OD is a high-contrast area

because of dark vessels lying on a bright area, by rotating the image and repeatedly

finding OD using these properties, the position of OD can be identified.

Keywords: Optic Disc Detection, Medical Image Processing, Data Clustering

iv

Table of Contents

Chapter Title Page

Signature Page i

Acknowledgements ii

Abstract iii

Table of Contents iv

List of Figures vii

List of Tables ix

1 Introduction 1

1.1 Background 1

1.1.1 Human eyes 1

1.1.2 Human retina, optic nerve and optic disc (OD) 2

1.1.3 Glaucoma 3

1.2 Problem statements 5

1.3 Purpose of study 6

1.4 Arrangement of thesis 6

2 Preliminary and Literature Review 7

2.1 Image processing algorithms 7

2.1.1 Image rotation 7

2.1.1.1 Nearest-neighbor interpolation 8

2.1.1.2 Bilinear interpolation 9

2.1.2 Image threshold technique 10

2.1.3 Morphological operations 11

2.1.3.1 Dilation 12

2.1.3.2 Erosion 13

v

2.1.3.3 Opening 14

2.1.3.4 Closing 14

2.1.3.5 Top-hat 15

2.2 Graph theories 16

2.2.1 Directed and undirected graph 16

2.2.2 Weighted graph 16

2.2.3 Complete graph 17

2.2.4 Tree 17

2.2.5 Spanning tree 18

2.2.6 Minimum spanning tree 18

2.3 Existing methods of optic disc detection 19

3 Methodology 21

3.1 Approaches 21

3.1.1 Vessel Clustering 21

3.1.1.1 Input 21

3.1.1.2 Remove low contrast segment 23

3.1.1.3 Remove short segments 24

3.1.1.4 Group adjacent segments 25

3.1.1.5 Select thickest clusters and group adjacent clusters 26

3.1.1.6 OD location from final clusters 26

3.1.2 Rotational 2D Vessel Projection 27

3.1.2.1 Vessel segmentation 28

3.1.2.2 Finding possible OD locations 28

3.1.2.3 OD location voting algorithm 30

3.2 Experimental setup 33

3.2.1 Vessel Clustering 33

3.2.2 Rotational 2D Vessel Projection 34

4 Result and Discussion 35

vi

4.1 Result of Vessel Clustering Algorithm 35

4.2 Results of Rotational 2D Vessel Projection algorithm 37

5 Conclusion and Recommendation 40

References 41

Publication 45

Appendices 46

Appendix A: Vessel Clustering MATLAB source code 47

Appendix B: Rotational 2D Vessel Projection MATLAB source code 68

vii

List of Figures

Figures Page

 1.1 Parts of a human eye 1

 1.2 A retinal image 3

 1.3 Normal vision and vision of people with glaucoma 4

 1.4 Retinal image of a healthy eye and an eye with glaucoma 4

 2.1 The value of destination pixel is copied from the source. 8

 2.2 Original and rotated image using nearest-neighbor interpolation 8

 2.3 Concept of bilinear interpolation 9

 2.4 Original, nearest-neighbor, and bilinear interpolated image 10

 2.5 Original and Otsu thresholded image 10

 2.6 Process of dilation to a pixel 12

 2.7 Original and dilated image 12

 2.8 Process of erosion to a pixel 13

 2.9 Original and eroded image 13

 2.10 Original and opened image 14

 2.11 Original and closed image 15

 2.12 Original and top-hat filtered image 15

 2.13 Undirected and directed graph 16

 2.14 Weighted directed graph 17

 2.15 Complete undirected graph 17

 2.16 Tree 18

 2.17 Minimum spanning tree 21

 3.1 Vessel Clustering algorithm 21

 3.2 Input image and segmented vessel 22

 3.3 Vessel segmentation breaks vessels at junctions 22

 3.4 Area around a vessel pixel 24

 3.5 After remove low contrast segments 24

 3.6 Using minimum spanning tree with points in a segment 25

 3.7 After remove short segments 25

viii

 3.8 Clusters 25

 3.9 Final clusters 26

 3.10 OD location from final clusters 27

 3.11 Overview of Rotational 2D Vessel Projection 27

 3.12 Vessel segmentation 28

 3.13 Cao et al.’s method 29

 3.14 OD’s location from Cao et al.’s method on various angles 30

 3.15 Rotational 2D Vessel Projection algorithm 31

 3.16 Images from STARE database 33

 4.1 The OD location presented as the blue X mark from the Vessel Clustering 35

 4.2 Incorrect Vessel Clustering result from segmentation error 36

 4.3 Incorrect Vessel Clustering result from a conflict with the assumption 37

 4.4 Rotational 2D Vessel Projection result 37

 4.5 Examples of successful cases 39

 4.6 Examples of unsuccessful cases 39

ix

List of Tables

Tables Page

 3.1 A part of input to the algorithm 23

 4.1 Accuracy comparison in percent 38

1

Chapter 1

Introduction

1.1 Background

1.1.1 Human eyes

 Eyes are organs used to perceive visual information. They convert light to

electrical information and send it to our brain. They are one of the most complex

organs in human body and consist of many parts, which are crucial to our sense of

vision. The following figure illustrates parts of a human eye.

Figure 1.1: Parts of a human eye [1]

 The eye is a slightly asymmetrical globe, about an inch in diameter. At the

back of inner surface of an eye, there are photosensitive cells that can be simulated by

light and sent electrical signals to the brain.

2

 When light is reflected from an object of interest to an eye, the cornea refracts

the light, lead it through the pupil, to the lens. There is fluid called “aqueous humor”

filled in the space between lens and cornea. It provides nutrition to lens and cornea,

and inflates the cornea. The iris controls the amount of light entering the eye by

adjusting the size of pupil. Lens refracts and focuses the incoming light into an image

of the object of interest on the retina. Inside an eye, there is fluid called Vitreous

Humor that fills the central cavity and occupies approximate 80% of an eye. This

fluid is a transparent, jelly-like substance produced at birth and remains unchanged

throughout life. The retina is the most crucial part of vision and is described in the

next section.

1.1.2 Human retina, optic nerve and optic disc (OD)

 The neurosensory retina, usually called retina, is the second largest part of an

eye follows the vitreous humor, and is the largest part of the fundus which is the

interior surface of the eye. It is composed of light-sensitive layers. There are 2 types

of photoreceptor cells on retina: rod cells and cone cells, named after its shape. Rod

cells are sensitive to light and movement. The cells are scattered all over the retina. In

contrast, cone cells are sensitive to colors. There are 3 types of cone cell correspond

to three primary colors of visible light: red, green and blue. Cone cells cannot work

very well in the dark, so human can only see in grayscale in low-light environment.

They can be found only at the center of the retina (the area on the opposite side of the

pupil) called “fovea”. These cells convert light into electrical impulses and send it to

our brain via optic nerve to produce image.

 The optic nerve is a paired nerve that transmits visual information from the

retina to the brain. The optic nerve head or the optic disc (OD) is the point of exit for

optic nerve’s axons leaving the eye and can be observed as a round-shaped bright spot

inside a retinal image as seen in figure 1.2. Damages to optic nerve can causes loss of

vision in the eye. The following section gives an example of the eye disease,

Glaucoma, which affects the physical appearance of the OD.

3

Figure 1.2: A retinal image. [2]

1.1.3 Glaucoma

 Glaucoma is an eye-disease that can causes blindness by damaging eye’s optic

nerve. There are many types of glaucoma. One of them is called “Open-angle

Glaucoma”. The cause of open-angle glaucoma is the increasing of pressure inside the

eye (intraocular pressure).

 The aqueous humor, the fluid that filled the space between cornea and lens, is

normally constantly produced by the ciliary epithelium, which is a structure

supporting the lens. As fresh aqueous humor is produced by ciliary body, the part of

the eye that lies just behind the iris, an equal amount must be drained through a

drainage passageway (trabecular meshwork) around the edge of cornea. However, if

the drainage is damaged, the fluid will be drained too slowly, the intraocular pressure

will be increased. The effects of intermittent or persistent high pressure on delicate

retinal nerve fibers and the optic nerve damage it; result in permanent vision loss, as

shown in figure 1.3.

Optic Disc

4

Figure 1.3: Normal vision (left) and vision of people with glaucoma (right) [3]

 At first, open-angle glaucoma has no symptom. It does not cause any pain, and

the vision loss is not noticeable. The patience will notice the vision loss only in the

later stages of the disease, which make early detection utmost important. The vision

loss comes from damage to the optic nerve. At the present, there is no way to repair

the damaged optic nerve, so the vision loss is irreversible.

 One way to detect glaucoma at its early stage is to analyze the properties of

OD from the retina image. The ophthalmologist can analyze and diagnose any

abnormality from it. The examples of retina images without glaucoma and with

glaucoma are shown in figure 1.4.

Figure 1.4: Retinal images of a healthy eye (left) and an eye with glaucoma (right) [4]

5

1.2 Problem statements

 As stated in the previous section that one method of glaucoma detection is

diagnosing the structure of OD, however, the procedure is costly and need high

qualified staff. The computerized methods for optic disc detection and diagnosis could

reduce the cost of the process and the number of required specialists.

 This thesis concerns the development of an automatic, robust optic disc (OD)-

detection method. The performance of this method is compared to the performance of

several other automatic algorithms. OD-detection is an integral part of the screening

system for glaucoma disease.

 To locate the OD inside the retina photography, vessel structure and intensity

of regions are used. Many OD detection techniques were proposed. Most of them are

based on features of OD such as round shape and high brightness object in the image.

However, these techniques have limitations as there are other artifacts resulted from

diseases which may also be bright and round. Some techniques are based on

geographic properties of the vessel network. Some take advantages of both

approaches. Unfortunately, geographic properties of the vessel network are often

dependent to orientation of the photo of retina, which affect the process significantly.

As a result, new methods that robust to orientation of image are needed.

 This thesis presents two approaches to determine position of the optic disc in a

retinal image. These approaches mainly use vessels’ properties which are robust to

noises from diseases. The first one groups vessels into clusters, and then uses centroid

of the clusters as the OD. The second one uses voting result from geometry-and-

intensity based OD detection algorithm. Both approaches are robust to artifacts

resulted from diseases and orientation of the image.

6

1.3 Purpose of study

 To create OD detection algorithms that can locate the OD in retinal images

effectively and robust to noise and other disturbance caused by eye diseases and/or

image quality.

1.4 Arrangement of thesis

 The proposal is organized as follows: In chapter 2, related theories and the

existing methods for locating the OD are presented. In chapter 3, methodology of

Vessel Clustering and Rotational 2D Vessel Projection is presented. Chapter 4

contains experimental setup, result and discussion of the proposed methods.

Conclusion and recommendation are in chapter 5, followed by references, and list of

my publication. MATLAB source code of Vessel Clustering and Rotational 2D

Vessel Projection are in Appendix A and B respectively.

7

Chapter 2

Preliminary Principles and Literature Review

 This chapter contains preliminary principles and related theories in order to

provide readers the technical background about the thesis. It includes principles of

image processing algorithms and few topics in graph theories. At the end of this

chapter, existing methods of optic disc detection are reviewed.

2.1 Image processing algorithms

 Image processing is a process of performing specific operations on an image

in order to obtain desired information. This section describes image processing

algorithms used in this thesis.

2.1.1 Image rotation

 Image rotation performs a geometric transform from source image to

destination image. Value of every pixel of destination image is copied from source

image one pixel at a time. For a rotation at a clockwise angle () around user-specific

reference point (), value of destination pixel () is copied from source pixel

(). The coordinate of source pixel () related to destination pixel ()

can be calculated as:

 √() () ((

)) (2.1)

 √() () ((

)) (2.2)

 Note that the above equations apply to image rotation and y-axis of the image

coordination system goes downward. This process is illustrated in figure 2.1.

8

Figure 2.1: The value of destination pixel is copied from the source. The blue dot is

the reference point in this rotation.

 The coordinates at each pixel in a digital image must be integers but, results

() from above equations are not. This section presents two approaches to cope

with this problem: nearest-neighbor interpolation and bilinear interpolation.

2.1.1.1 Nearest-neighbor interpolation

 When the desired position is not in integer values, the simplest way to do is

just round them to integer. This method is called “Nearest-neighbor interpolation”,

because we round the floating-point numbers into the nearest integer. The weak point

of this method is that it gives blocky result since one or more pixels’ data of

destination image are copied from one pixel of source image. Figure 2.2 shows an

example of image rotation using nearest-neighbor interpolation.

(a)

(b)

Figure 2.2: (a) original image, (b) 30
o
 rotated image using nearest-neighbor

interpolation

9

2.1.1.2 Bilinear interpolation

 Instead of just rounding () coordinate into their nearest integers and

using value of those pixels, the interpolation of surrounding pixels is used to get a

better result. Bilinear interpolation uses value of 4 neighbor pixels: top-left, top-right,

bottom-left, and bottom-right of the source image to calculate the value of a pixel of

destination image. Figure 2.3 illustrates the concept of bilinear interpolation.

Figure 2.3: Concept of bilinear interpolation. Blue dots are pixels with known values.

Green dots come from interpolations of two top and two bottom dots, respectively.

The red dot is the final result, come from an interpolation of two green dots.

 Assume that () resulted from equation 2.1 and 2.2 is the red dot in figure

2.3. Since it is in the middle of four known value pixels, we can estimate its value

using the following equations:

 ⌊ ⌋ (2.3)

 ⌊ ⌋ (2.4)

 () (⌊ ⌋ ⌊ ⌋) (⌈ ⌉ ⌊ ⌋) (2.5)

 () (⌊ ⌋ ⌈ ⌉) (⌈ ⌉ ⌈ ⌉) (2.6)

 () () () (2.7)

where () is value of pixel at coordinate (x, y) of source image

 () is value of pixel at coordinate (x, y) of destination image

10

 From the equations, the value of surrounding source pixels are interpolated

into the destination pixels. The rotated image will appeared blurry instead of

pixelated. Figure 2.4 compares results of two interpolation methods.

(a)

(b)

(c)

Figure 2.4: (a) original image, (b) and (c) 30
o
 rotated image using nearest-neighbor

interpolation and bilinear interpolation respectively.

2.1.2 Image thresholding technique

 Thresholding is a process to separate pixels in an image into two groups,

usually based on intensity of each pixel. This thesis uses image thresholding for

extracting blood vessel, which is usually darker, in retinal images from background

which is usually brighter. The threshold value used in this thesis is calculated using

Otsu’s method. Figure 2.5 shows the result of a grayscale image before and after

being thresholded with Otsu’s method.

(a)

(b)

Figure 2.5: (a) original image, (b) thresholded image using Otsu’s method to calculate

the threshold value

11

 Otsu’s method selects the threshold value that maximizes the difference

between background and foreground. In other word, the selected threshold value will

maximize inter-class variance. It can be calculated by the following algorithm:

Algorithm 2.1: Otsu’s method for threshold value of a grayscale image.

2.1.3 Morphological operations

 Morphological operations alter shapes inside an image. They are suitable in

many applications ranging from object segmentation to noise reduction. The basic

morphological operations are dilation, erosion opening and closing. These basic

operations can be combined into more complicated operations. All of them require

two operators: an input image and a structuring element. An input image can be

binary or grayscale. A structuring element is a binary matrix m×n, while m and n

must be odd numbers.

 ⁄

 ⁄

 (∑) ⁄

 (∑) ⁄

 ()

12

2.1.3.1 Dilation

 The value of each pixel after applying the operation is equal to the maximum

value of its neighborhood. The neighborhood is the surrounding pixels in the same

shape and size of the structuring element centered at that pixel. Figure 2.6 shows the

processing of a particular pixel in the input image. Figure 2.7 shows the input image,

structuring element and the output after being dilated with structuring element.

(a)

(b)

(c)

Figure 2.6: (a) structuring element, (b) input image, (c) a dilated pixel

(a)

(b)

(c)

Figure 2.7: (a) structuring element, (b) input image, (c) dilated image

13

2.1.3.2 Erosion

 The value of each pixel after applying the operation is equal to the minimum

value of its neighborhood. The neighborhood is the surrounding pixels in the same

shape and size of the structuring element centered at that pixel. Figure 2.8 shows the

processing of a particular pixel in the input image. Figure 2.9 shows the input image,

structuring element and the output after being eroded with structuring element.

(a)

(b)

(c)

Figure 2.8: (a) structuring element, (b) input image, (c) an eroded pixel

(a)

(b)

(c)

Figure 2.9: (a) structuring element, (b) input image, (c) eroded image

2.1.3.3 Opening

 An opening operation is an erosion followed by a dilation using the same

structuring element. The operation removes parts of foreground that the element

14

cannot fit in, and then expands every foreground pixel to the element. As a result,

small foreground objects are removed while big foreground objects are expanded.

Figure 2.10 shows the input image, structuring element and the output after being

opened with structuring element.

(a)

(b)

(c)

Figure 2.10: (a) structuring element, (b) input image, (c) opened image

2.1.3.4 Closing

 A closing operation is a dilation followed by an erosion using the same

structuring element. The operation expands every foreground pixel to the element,

and then removes parts of foreground that the element cannot fit in. As a result, holes

and spaces that are dwindled according to the element. Figure 2.11 shows the input

image, structuring element and the output after being closed with structuring element.

15

(a)

(b)

(c)

Figure 2.11: (a) structuring element, (b) input image, (c) closed image

2.1.3.5 Top-hat

 A top-hat operation enhances bright points in an image. The operation can be

described as () where I is an input image, n is the structuring element,

denotes opening operation and is an output image. Figure 2.12 shows the input

image, structuring element and the output after being top-hat filtered with structuring

element.

(a)

(b)

(c)

Figure 2.12: (a) structuring element, (b) input image, (c) top-hat filtered image

16

2.2 Graph theories

2.2.1 Directed and undirected graph

 A graph G is a set of vertices V and edges E, (), where E is a set of

two-element subset of V. A graph can be undirected or directed graph. In an

undirected graph, the order of elements of each edge does not matter. In contrast, it

does matter in a directed graph. There is an arrow at one end of edge indicates the

direction. Figure 2.13 compares directed and undirected graph.

(a)

(b)

Figure 2.13: (a) undirected graph, (b) directed graph

2.2.2 Weighted graph

 In addition, each edge in a graph may associates with a value “weight”. The

weight in an edge can be used in various applications. For example, if a graph

represents a network of cities connected by roads, the weight of each edge might

represent the length of that road. Weight and direction can be used together. Figure

2.14 compares an undirected graph and a weighted directed graph.

17

(a)

(b)

Figure 2.14: (a) undirected graph, (b) weighted directed graph

2.2.3 Complete graph

 A complete undirected graph is a graph which every pair of distinct vertices is

connected by an edge. A complete directed graph is a graph which every pair of

distinct vertices is connected by a pair of unique edges (one for each direction). A

complete undirected graph has exactly () edges where is the number

of vertices in the graph. Figure 2.15 shows a 5-vertex complete undirected graph, .

Figure 2.15: 5-vertex complete undirected graph

2.2.4 Tree

 A tree is a special kind of an undirected graph that contain no cycle, e.g. there

is exactly one path connecting two vertices in the tree. A tree has exactly

edges where is the number of vertices in the graph. Figure 2.16 shows a tree with 5

vertices, .

18

Figure 2.16: tree with 5 vertices, .

2.2.5 Spanning tree

 A spanning tree of an undirected graph is a subgraph, which is also a tree, of a

graph that contains all vertices of that graph. A graph may have more than one

spanning tree.

2.2.6 Minimum spanning tree

 A minimum spanning tree of an undirected weighted graph is one of spanning

trees of that graph that has the smallest possible weight. A minimum spanning tree of

an undirected unweight graph can be any spanning tree of that graph. Figure 2.17

shows the minimum spanning tree of a graph.

(a)

(b)

Figure 2.17: (a) undirected weighted graph (b) its minimum spanning tree

 A commonly used algorithm to find a minimum spanning tree of a graph is

created by Joseph Kruskal in 1956, and can be described as follows:

19

Algorithm 2.2: Kruskal’s algorithm for finding minimum spanning tree of graph G

2.3 Existing methods of optic disc detection

 In this section, different techniques employed to automatically detect the OD

inside a retina image are reviewed.

 Several OD detection methods are available in literature. Features of OD such

as its brightness and round shape are often used to locate it. For example, Tolias and

Panas [5], Lalonde [6], Lu et al. [7], and Akram [8] used brightness as the main

feature to roughly determine OD position. Sinthanayothin et al. [9], Jelinek [10], and

Lupascu et al. [11] recognized the area with highest variance of intensity as OD.

Sagar et al. [12] implemented OD localization using Principle Component Analysis

(PCA) with pixels in the test image with the highest 5% intensity level and hue value

in the yellow color as candidate regions. A template of bright circular region is also

used by Osareh et al. [13] to locate OD.

 ()

 | | | |

 ()

20

 These methods perform quite well with images of healthy retina. However, the

methods may not work on images with poor quality resulting from poor lighting

condition, unhealthy retina, and/or other artifacts as they share a lot of common

features with the OD.

 Vessel structure is another feature in the retinal image that can be used to

detect OD. It is usually resistant to lighting condition and relatively prominent despite

in an unhealthy retina. Hoover and Goldbaum [14] used a technique called fuzzy

convergence to determine the origin of the blood vessel network which is OD. A

parabola-like model of vessel network is used by Ruggeri et al. [15], and Zhang and

Zhao [16] to locate the OD.

 Vessel structure and OD’s brightness can also be used together for OD

location detection. Kavitha and Devi [17] used brightness and convergent point of

blood vessels. Abramoff and Niemeijer [18] detected the approximate position of the

optic disc using kNN regression with feature vectors including number of vessels,

vessels’ width, and intensity. Mahfouz and Fahmy [19] and Cao et al. [20]

transformed the localization problem into two one dimension problems by projecting

the image features, namely, vessel structure, brightness and the size of the OD, onto

two perpendicular directions. Youssif et al. [26] used a vessels’ direction matched

filter which is based on vessels direction and image intensity to locate OD. Mahfouz

and Fahmy [19], Youssif et al. [26], and Cao et al [20]’s work have a major

disadvantage. Methods may not work well when the orientation of vessel is changed.

However, it is robust to noise and artifacts in images.

 This work proposes two methods that work even when the images are rotated.

The first method combines vessels into a few clusters, then find the centroid of them

and used it as the location of OD. The second one uses an improved version of Cao’s

approach to detect OD even when the image is tilted while still preserve its

robustness.

21

Chapter 3

Methodology

3.1 Approaches

3.1.1 Vessel Clustering

 Vessel Clustering is a new algorithm for clustering the main blood vessels in

retinal images. Grouping vessels that are relatively close and have similar properties

such as intensity and thickness are key concepts in our clustering algorithm. The

purposed method aims to increase the correctness of Vessel Clustering, which is used

to find the location of optic disc (OD). The algorithm is illustrated in figure 3.1.

Figure 3.1: Vessel Clustering algorithm

3.1.1.1 Input

 Input to the algorithm is a color retinal image and vessels data extracted from

it. Figure 3.2 shows segmented vessel of an input image. The segmentation algorithm

breaks the vessel network in a retinal image into many segments at bifurcation (one

22

vessel splits into two) and crossover (two vessel crossing) as shown in figure 3.3. The

data is points in Cartesian coordinate. Each point is a point in segment in the image.

In addition to x, y position, a point also includes segment ID, thickness of segment at

that point and intensity of green channel in the image as shown in table 3.1.

(a)

(b)

Figure 3.2: (a) input image, (b) segmented vessel

Figure 3.3: Vessel segmentation breaks vessel at junctions. Blue dots are vessel

points. The green dots mark segment’s end and the numbers are segments’ ID.

23

Table 3.1: A part of input to the algorithm. Each row is a point in a retinal image.

Segment ID X Y Thickness Green value

1 288.9723 19.1595 3.8472 2

1 288.0513 19.5249 3.8451 39

1 287.2596 20.0747 4.4436 39

1 286.5719 20.7743 3.9126 103

2 285.9628 21.5892 3.163 124

2 285.4069 22.4847 2.5235 124

2 284.8787 23.4264 3.206 115

3.1.1.2 Remove low contrast segment

 Contrast of a segment is a key feature. Segments with low contrast usually

insignificant and will be removed. Contrast of a segment shows how the segment

stands out from background. The process to calculate contrast of each segment is as

followed: At each point, an area in input image around the point with dimension

2*thickness+1 × 2*thickness+1 pixels is selected. The mean of green value in the area

is calculated and used as the threshold to identify background pixels in which brighter

than vessel pixels. Then, the mean of green value of background pixels is calculated.

The difference between green value of the point and the mean of background pixels is

kept as difference in green (DG) of the point. Means of DG of all points in a segment

is used as contrast of that segment. The threshold of DG value is the difference

between mean and standard deviation value of DG values of all points. Segments with

lower DG value than the threshold are removed. Let consider an example shown in

figure 3.4. Vessel pixels are gray-shaded pixels and the others are background.

Numbers are green value of each pixel. Let 45 be the green value of the point. The

thickness of the point is 3 so the size of window is 7 × 7 pixels. The threshold is mean

of green value of every point which is 71.87. The mean of background pixels is 82.6.

As a result, the DG of this point is 37.6. Figure 3.5 shows a comparison between

plotted vessel data before and after this step.

24

Figure 3.4: A square patch centered at a focused point (red) of a vessel which has

thickness of 3.

(a)

(b)

Figure 3.5: (a) segmented vessel, (b) after remove low contrast segments

3.1.1.3 Remove short segments

 The length of a segment is also a key feature. Short segments usually are noise

created in vessel segmentation step. The length of each segment is measured by

consider a segment as a weighted complete graph with points as nodes and distance

between nodes as weight of the edge. From the graph, minimum spanning tree is

created. And total weight of the tree is length of the segment as illustrate in figure 3.6.

Short segments are removed. The length of the vessels to be removed is equal to the

difference between mean and 0.25 times standard deviation value of all segment’s

length. Figure 3.7 shows a comparison between plotted vessel data before and after

this step.

25

(a)

(b)

(c)

Figure 3.6: (a) points in a segment, (b) complete weighted graph with distance

between each pair of points as weight, (c) minimum spanning tree

(a)

(b)

Figure 3.7: (a) after remove low contrast segment, (b) after remove short segments

3.1.1.4 Group adjacent segments

 Remaining segments are parts of significant segments. Distance between two

segments is the distance between the closest pair of points from those two segments.

Distance between every possible pairs of segments is calculated. Then, segments that

stay closer than 10 pixels are merged into a cluster. Figure 3.8 shows a comparison

between plotted vessel data before and after this step.

(a)

(b)

Figure 3.8: (a) after remove short segments, (b) clusters. Segments in same cluster are

marked with the same color.

26

3.1.1.5 Select thickest clusters and group adjacent clusters

 Summation of thickness (SoT) of each point in a cluster is used to determine

significant clusters. We selected 5 clusters with the most SoT as main clusters. At last,

main clusters that stay together closer than 25 pixels are grouped together and become

the output of the algorithm. Figure 3.9 shows a comparison between plotted vessel

data before and after this step.

(a)

(b)

(c)

Figure 3.9: (a) clusters, (b) 5 clusters with the most SoT, (c) final clusters. Segments

in same cluster are marked with the same color.

3.1.1.6 OD location from final clusters

 After final clusters are created, we uses the assumption of that the point that is

closest to all cluster is the center of the OD [22] to conclude the location of OD.

Figure 3.10 shows the result of applying method in [22] to final clusters.

27

(a) (b) (c)

Figure 3.10: OD location from applying [22] to final clusters (a) original image, (b)

final clusters, (c) OD location

3.1.2 Rotational 2D Vessel Projection

Figure 3.11: The overview of Rotational 2D Vessel Projection

 The overview of the method is illustrated in figure 3.11. A grayscale image is

obtained by extracting the green channel from the input image. The vessel

segmentation algorithm is applied to obtain a binary image of vessels. OD location

candidates come from result of Cao et al. [20] algorithm. Using our voting algorithm,

the final location of OD in the retinal image can be concluded. The details of each

step are presented in the following subsections.

28

3.1.2.1 Vessel segmentation

 Vascular structure is an important feature used by our method. Thus, first we

apply the vessel segmentation algorithm to extract vascular network from the

grayscale retinal image. To extract the vessel, we perform top-hat filtering on

complement of grayscale image with +-shaped structure to highlight vessel region.

Then, Otsu’s method is used to calculate threshold value of intensity of filtered image

and convert it into binary image. Figure 3.12 shows an example of this process.

(a)

(b)

(c)

Figure 3.12: Vessel segmentation (a) grayscale image (b) top-hat filtered image (c)

vessel image

3.1.2.2 Finding possible OD locations

 We used an algorithm proposed by Cao et al. [20] to approximate OD

location. Their assumption are, firstly the area around OD contains high density of

vertical vessels and contains low density of horizontal vessels, and secondly OD is

where the dark vessels lined on top of the bright area of the OD, thus produces high

intensity variance. After getting vessel image from vessel segmentation, two

morphological opening operations are performed to extract vessels in vertical and

horizontal direction from the vessel image.

 By subtracting number of vessel pixels in horizontal direction from vertical

direction at different value of x’s, horizontal position of OD is found. Then, using

29

variance of image intensity along vertical line on that horizontal position, location of

OD is obtained. Figure 3.13 illustrates Cao et al’s algorithm.

(a)

(b)

(c)

(d)

(e)

(f)

Figure 3.13: Cao et al.’s method (a) segmented vessel, (b) horizontal vessel, (c)

vertical vessel, (d) graph of area of vertical vessel minus horizontal vessel at each x-

position, (e) variance of intensity along x=a where a is x-position that is the highest

peak (red line in (d)), (f) Result

30

3.1.2.3 Rotational 2D Vessel Projection

 Cao et al.’s algorithm described in earlier section alone cannot be used with

tilted image because changing in orientation invalidates relationship of vertical and

horizontal vessel in their assumption. Figure 3.14 shows the result when the algorithm

is used on tilted images.

(a)

(b)

(c)

(d)

(e)

(f)

(g)

(h)

Figure 3.14: OD location from Cao et al.’s method on various angles in degree (a) -45

(b) -25 (c) -5 (d) 15 (e) 35 (f) 55 (g) 75 (h) 95

 As shown in figure 3.14, OD location from Cao et al.’s method is depended on

the orientation of the image. However, in some appropriate angles as in figure 3.14

(b)-(e), the method can locate OD correctly. Using this knowledge, the proposed

method can localize OD on the tilted image by iteratively rotating the input image in

small degree per step, for each iteration we repeat the following steps: apply Cao et

al.’s algorithm, record the OD location result from Cao et al.’s algorithm, convert the

OD coordinate obtained from Cao’s back by the same amount of degree to get the

tentative OD coordinate, and record a region of a circle centered at this tentative OD

coordinate. After the algorithm ends, the regions where the circles are on the most is

the location of OD. From the voting result from tentative OD coordinate, the

31

algorithm can roughly approximate the area in the image containing OD. The whole

process may take time due to the number of iterations it needs to perform. To speed it

up, the image’s width is downsized to 300 pixels while reserving the image’s aspect

ratio. Then the image is patched to a square shape. In our experiment, the image is

rotated from 0 until 180 degrees with increment of 5 degrees every iteration for every

iteration. According to our empirical study with 340 images from 4 public databases:

DRIVE [2], STARE [21], DIARETDB0 [24] and DIARETDB0 [25], OD in 339

images lie in the middle-height of the image. As a result, we eliminate the locations

that do not meet this requirement. Steps of our voting algorithm are described in

algorithm 3.1. Figure 3.15 illustrates steps in Rotational 2D Vessel Projection

algorithm.

Figure 3.15: Rotational 2D Vessel Projection algorithm

32

Algorithm 3.1: Rotational 2D Vessel Projection.

() (() ())

 ⁄
 ⁄

 (⁄)

 √

 ⁄
 ⁄

 () () ()

 () { () ()

Input: Grayscale retina image I
inc = 5
r: approximate optic disc radius = 20
w: image width = 300
θ
Voting score matrix Vw×w w h l v lue ’
Wh le θ < 8
 . I’ R e I u er l kw e by θ degree w h b l e r
interpolation
 . (b) OD l re ur ed by pply g C ’ lg r hm I’.
 3. if b < w/4 or b > 3w/4 then
 θ θ
 continue
 endif
 4. Convert (a, b) to polar coordinate system originated at (w/2, w/2).

 By

 5. R e (ρ θ2) back to original angle

 6. C ver (ρ θ2) back to Cartesian coordinate system

 7. Compute the score and update the voting score

 Where

 8. θ θ
endwhile
9. m = max(V)
10. {() | ()
11. ∑ | |
return C

33

3.2 Experimental setup

3.2.1 Vessel Clustering

 Images from the Structured Analysis of the Retina (STARE) research project

[21] are used to evaluate performance of OD localization by the proposed Vessel

Clustering algorithm and Rotational 2D Vessel Projection. STARE images are

provided by the Shiley Eye Center at the University of California, San Diego, and by

the Veterans Administration Medical Center in San Diego. The resolution of all

images is 700×605 pixels. There are 81 images in total, taken from both healthy and

unhealthy eyes. Images from the healthy group are clear. Vessels and OD are

prominent and the background is evenly illuminated. On the other hand, the unhealthy

ones’ vessels are not clear, often difficult to be identified. They also contain

abnormalities; some of them are bright and in circular shape like OD. In some cases,

the OD is also severely damages and loss its round shape. Some images are badly

illuminated; cause the vessel and OD to fade which is hard to find even with the

human eye. Figure 3.16 shows example of images from STARE database.

(a)

(b)

(c)

Figure 3.16: Images from STARE database. (a) healthy image, (b), (c) unhealthy

images

 Using the assumption of that the point that is closest to all cluster is the center

of the OD [22], the Vessel Clustering algorithm is evaluated [23] by finding the

accuracy of getting the location of OD. This algorithm is implemented and executed

34

using MATLAB running on a Microsoft Windows 7 desktop with Intel Core i7-

4500U @3GHz with 8GB RAM.

3.2.2 Rotational 2D Vessel Projection

 In addition to the dataset used with Vessel Clustering described in section

4.1.1, three additional datasets: DRIVE [2], DIARETDB0 [24], and DIARETDB1

[25], which consists of 40, 130 and 89 images, respectively, are used to evaluate

performance of Rotational 2D Vessel Projection algorithm. With 81 images from

STARE, a total of 340 retinal images were used. DRIVE images were obtained from a

diabetic retinopathy screening program in Netherlands. DIARETDB0 and

DIARETDB1 are provided by Laboratory of Information Processing, Lappeenranta

University of Technology. The emulation of image rotation is also performed to

validate the performance of the algorithm on rotated images. To emulate rotation of

retinal images, the input images are patched to square-shape and rotated to 8 angles:

2, 29, 58, 75, 103, 123, 142, and 172 degree counter-clockwise using bilinear

interpolation. These angles are chosen at random. The algorithm’s performance is

compared to that of Cao et al. Rotational 2D Vessel Projection algorithm is

implemented and executed using MATLAB running on a Microsoft Windows 7

laptop with Intel Core i7-4500U @3GHz with 8GB RAM.

35

Chapter 4

Result and Discussion

 In this chapter we report the result and discussion from two approaches

presented in the previous chapter. For evaluation scheme, the detected location of OD

is considered correct if it is within the OD region of the groundtruth. Results from two

approaches are described in the following sections.

4.1 Results of Vessel Clustering algorithm

 Using the proposed Vessel Clustering algorithm to locate the OD in retinal

images from STARE dataset, the accuracy and computational time per image obtained

are 92.59 % and 76 seconds per image. The examples of location obtained from our

first approach are provided in Figure 4.1

(a) (b)

(c) (d)

Figure 4.1: The OD location presented as the blue X mark from the Vessel Clustering.

36

 Despite very high performance of the proposed Vessel Clustering algorithm

(92.59%), it is still not perfect. There are three causes of imperfection of the

algorithm.

 First, since this algorithm’s input is the segmented vessel data, it relies on

vessel segmentation algorithm. The proposed algorithm can resist some amount of

vessel segmentation errors such as detecting abnormalities as vessels by removing

short and low contrast segments as stated in methodology. However, in some images,

the disease damages the eye so much so almost all vessels and OD disappear or are

almost completely unrecognizable resulting incorrect results.

(a) (b)

(c) (d)

Figure 4.2: Incorrect Vessel Clustering result from segmentation error (a) original

images, (b) vessel data, (c) final clusters, (d) OD location

 Second, normally, there are few, usually two, main branches of vessel

emerged from OD, thus the assumption is the centroid of vessel clusters (branches) is

the position of OD. However, in some images, the vessels inside OD are connected

into one branch of vessel which makes it impossible for the algorithm to work.

37

(a) (b) (c)

Figure 4.3: Incorrect Vessel Clustering result from a conflict with the assumption (a)

original images, (b) final clusters, (c) OD location

 Lastly, since this algorithm uses parameters such as the threshold of DG,

vessel length and distance between vessel segments to remove noise and grouping

vessel segments, then value of these parameters can be imperfect, result in error in

clustering steps.

4.2 Results of Rotational 2D Vessel Projection algorithm

For Rotational 2D Vessel Projection, the accuracy of Rotational 2D Vessel

Projection algorithm on STARE database is 87.65 % with average computation time

of 2.11 seconds per image. Figure 4.4 shows OD locations detected using Rotational

2D Vessel Projection on images from STARE database.

(a)

(b)

(c)

Figure 4.4: Rotational 2D Vessel Projection result. The blue crosses mark the OD.

38

Additional experiments are performed to evaluate performance on tilted images with

DRIVE [2], STARE [21], DIARETDB0 [24] and DIARETDB1 [25] database. In all

angles, the method is able to correctly locate the OD with average accuracy 94.93%

and average 2.12 seconds computing time. Table 4.1 shows the results of the proposed

method compare to the base method --Cao et al.’s. As it was proven experimentally

that it is superior to other methods ([9], [13], [14], [15], [19], [26]) in terms of

accuracy and computation time. Because our proposed method outperforms Cao’s, it

is thus better than those methods as well.

Table 4.1: Accuracy comparison in percent

Tilt angle (degree)
 DRIVE STARE DIARETDB0 DIARETDB1

Cao’s RVP Cao’s RVP Cao’s RVP Cao’s RVP

2 100 100 71.60 82.72 91.36 97.69 92.59 98.88

29 87.5 100 64.20 83.95 88.89 97.69 90.12 98.88

58 15 100 32.10 86.42 35.80 96.92 23.46 98.88

75 12.5 100 25.93 83.95 17.28 96.15 4.94 98.88

103 10 100 24.69 85.19 13.58 96.15 2.47 98.88

123 20 100 28.40 85.19 37.04 96.15 19.75 98.88

142 80 100 60.49 85.19 79.01 96.92 82.72 98.88

172 100 100 60.49 86.42 85.19 97.69 87.65 98.88

Average 53.125 100 45.99 84.88 56.02 96.92 50.46 98.88

 Figure 4.5 shows examples of correctly located OD using Rotational 2D

Vessel Projection. As shown in Table 4.1, effect of rotation on the performance of the

algorithm is very small, thus the algorithm is robust even when retinal image is tilted.

 Despite high performance, there are some errors. The errors are due to three

factors: uneven illumination, distractions from pathological changes, and uneven

background level. Figure 4.6 shows examples of images which OD is located

incorrectly. Figure 4.6a, vessel segmentation failed to extract vessel structure

correctly due to uneven illumination which affect segmentation of vessels. In figure

4.6b, distraction is falsely segmented as vessel, while in figure 4.6c, the distraction

39

causes high intensity variance near vessels. Figure 4.6d shows an image with uneven

background level, cause high intensity variance at the edge of retina.

(a)

(b)

(c)

(d)

(e)

(f)

Figure 4.5: Examples of successful cases

(a)

(b)

(c)

(d)

Figure 4.6: Examples of unsuccessful cases (a) uneven illumination (b) distraction

detected as vessels (c) distraction with high contrast near thick vessel (d) uneven

background level

40

Chapter 5

Conclusion and Recommendation

 In this thesis, we proposed a new clustering algorithm which is designed

specifically to group the main blood vessels into clusters. These clusters represent

main branches of blood vessels. The proposed method uses length, intensity, and

thickness of the vessels to detect main vessels and uses distances between vessels to

cluster two vessels or clusters that are close together. With assumption that the

centroid of the cluster is the location of OD, we find that the accuracy of the

algorithm in getting the location of the OD of images from STARE dataset is 92.59%

with 76 seconds computation time.

 Furthermore, inspired by projection idea and its limitations, a new method for

optic disc localization is also presented. In this work, a majority voting of OD location

reported based on vessel structure and intensity variance in various angles is used.

The method is able to localize the OD accurately despite rotational angle of the

image. The 94.93% accuracy on 8 random angles of 340 images from 4 public

datasets (2,720 images in total) with only slightly more than 2 seconds computing

time per image shows that the algorithm is very robust and fast.

 Although the performance of both algorithms is high, there are still rooms for

improvements. Both algorithms could use better algorithms for determining value of

parameters. Computation time of Vessel Clustering can be improved by optimizing

the step of measuring distance between segments. Rotational 2D Vessel Projection

could use better vessel segmentation algorithm that capable to detect and remove

distraction and can solve the problem of uneven background. It is also possible to use

the algorithm to specifying region of interest to detect boundary of retina in an image.

41

References

[1] Picture of the Eyes. Digital image. The Eyes (Human Anatomy)_ Diagram, Optic

Nerve, Iris, Cornea, Pupil, & More. WebMD, LLC., 2013. Web. 19 May

2015.

[2] J.J. Staal, M.D. Abramoff, M. Niemeijer, M.A. Viergever, B. van Ginneken,

"Ridge based vessel segmentation in color images of the retina", IEEE

Transactions on Medical Imaging, 2004, vol. 23, pp. 501-509.

[3] Normal Vision and the Same Scene as Viewed by a Person with Glaucoma. Digital

image. Facts About Glaucoma | National Eye Institute. The National Eye

Institute (NEI), n.d. Web. 19 May 2015.

[4] Burk, Scott, John S. Cohen, and Harry Quigley. Healthy Optic Nerve and Optic

Nerve in Eye with Glaucoma. Digital image.Optic Nerve Cupping |

Glaucoma Research Foundation. Glaucoma Research Foundation, 21 Aug.

2012. Web. 19 May 2015.

[5] Y.A. Tolias, S.M. Panas. (1998). A fuzzy vessel tracking algorithm for retinal

images based on fuzzy clustering, IEEE Transactions on Medical Imaging

17-2(1998) 263-273.

[6] M. Lalonde, M. Beaulieu, L. Gagnon. (2001). Fast and robust optic disc detection

using pyramidal decomposition and Hausdorff-based template matching,

IEEE Transactions on Medical Imaging 20-11(2001) 1193-1200.

[7] S. Lu, J. Liu, J.H. Lim, Z. Zhang, N.M. Tan, W.K. Wong, T.Y. Wong. (2010).

Automatic optic disc segmentation based on image brightness and contrast,

In SPIE Medical Imaging, International Society for Optics and Photonics

76234J(2010) 1-8.

42

[8] U.M. Akram, S.A. Khan. (2012). Automated detection of dark and bright lesions

in retinal images for early detection of diabetic retinopathy, Journal of

Medical Systems 36(2012) 3151-3162.

[9] C. Sinthanayothin, J.F. Boyce, H.L. Cook, T.H. Williamson. (1999) Automated

localisation of the optic disc, fovea, and retinal blood vessels from digital

colour fundus images, British Journal of Ophthalmology 83-8(1999) 902-

910.

[10] H.F. Jelinek, C. Depardieu, C. Lucas, D.J. Cornforth, W. Huang, M.J. Cree.

(2005). Towards vessel characterization in the vicinity of the optic disc in

digital retinal images, The Image and Vision Computing Conference.

[11] Lupascu, C.A.; Tegolo, D.; Di Rosa, L. (2008). Automated Detection of Optic

Disc Location in Retinal Images, Computer-Based Medical Systems, 2008.

CBMS ’08. 21st IEEE International Symposium on , vol., no., pp.17,22

[12] A.V. Sagar, S. Balasubramanian, V. Chandrasekaran. (2007). Automatic

Detection of Anatomical Structures in Digital Fundus Retinal Images, MVA

IAPR Conference on Machine Vision Applications (2007) 483-486.

[13] A. Osareh, M. Mirmehdi, B. Thomas, R. Markham. (2002). Colour morphology

and snakes for optic disc localisation, The 6th Medical Image Understanding

and Analysis Conference, BMVA Press (2002) 21-24.

[14] Hoover, A.; Goldbaum, M. (2003). Locating the optic nerve in a retinal image

using the fuzzy convergence of the blood vessels, Medical Imaging, IEEE

Transactions on , vol.22, no.8, pp.951,958

[15] Ruggeri, A.; Forrachia, M.; Grisan, E. (2003). Detecting the optic disc in retinal

images by means of a geometrical model of vessel network, Engineering in

Medicine and Biology Society, 2003. Proceedings of the 25th Annual

International Conference of the IEEE , vol.1, no., pp.902,905 Vol.1

43

[16] Zhang, D.; Zhao, Y. (2014). Novel Accurate and Fast Optic Disc Detection in

Retinal Images with Vessel Distribution and Directional Characteristics,

Biomedical and Health Informatics, IEEE Journal of , vol.PP, no.99, pp.1,1

[17] Kavitha, D.; Shenbaga Devi, S. (2005). Automatic detection of optic disc and

exudates in retinal images, Intelligent Sensing and Information Processing,

2005. Proceedings of 2005 International Conference on , vol., no.,

pp.501,506

[18] Abramoff, Michael D.; Niemeijer, M. (2006). The automatic detection of the

optic disc location in retinal images using optic disc location regression,

Engineering in Medicine and Biology Society, 2006. EMBS ’06. 28
th

 Annual

International Conference of the IEEE , vol., no., pp.4432,4435,

 [19] Mahfouz, A.E.; Fahmy, A.S. (2009). Ultrafast optic disc localization using

projection of image features, Image Processing (ICIP), 2009 16th IEEE

International Conference on , vol., no., pp.665,668

[20] Qinghui Cao, Jianli Liu, Qiuhong Zhao. (2013). Fast Automatic Optic Disc

Localization in Retinal Images, Image and Graphics (ICIG), 2013 Seventh

International Conference on , vol., no., pp.827,831

[21] Michael Goldbaum. (2003). The STARE Project Retrieved May, 2013, from

http://www.ces.clemson.edu/~ahoover/stare/

[22] Bornschlegel T., Muangnak N., Aimmanee P., Makhanov S. S., and

Uyyanonvara B. (2012). Finding curvess convergence using delaunay search.

In Proceedings of The First ASIAN Conference on Information Systems

(ACIS 2012) [CDROM]

http://www.ces.clemson.edu/~ahoover/stare/

44

[23] Maria Halkidi, Yannis Batistakis and Michalis Vazirgiannis. (2001). Clustering

Validation Techniques. Journal of Intelligent Information Systems, 17:107–

145

[24] Kauppi, T., Kalesnykiene, V., Kamarainen, J.-K., Lensu, L., Sorri, I., Uusitalo,

H., Klviinen, H., Pietil, J., (2006). DIARETDB0: Evaluation Database and

Methodology for Diabetic Retinopathy Algorithms. Retrieved January 11,

2015

[25] Kauppi, T., Kalesnykiene, V., Kamarainen, J.-K., Lensu, L., Sorri, I., Raninen

A., Voutilainen R., Uusitalo, H., Kälviäinen, H., Pietil, J. (2007).

DIARETDB1 diabetic retinopathy database and evaluation protocol. Medical

Image Understanding and Analysis, 2007 Eleventh International Conference

on, vol., no., pp

[26] A.A.H. Abdel-Razik Youssif, A.Z. Ghalwash, A.A.S. Abdel-Rahman Ghoneim.

(2008). Optic Disc Detection From Normalized Digital Fundus Images by

Means of a Vessels' Direction Matched Filter. Medical Imaging, IEEE

Transactions on , vol.27, no.1, pp.11,18, Jan. 2008

45

Publication

Tangseng, P., Muangnak, N., Aimmanee, P., Makanov, S. S., & Uyyanonvara, B.

(2013). A Study of Retinal Blood Vessel Clustering for Finding the Main Vessel

Convergence. Information Systems (ACIS), 2013 The Second Asian Conference on, 31

Oct – 2 Nov. 2013

46

Appendices

47

Appendix A

Vessel Clustering MATLAB source code

findDG.m

function findDG

 close all, clear all;

 vessel_path = '../input/vessels/';

 strDir = strcat(vessel_path,'im*.mat');

 listFile = dir(strDir);

 listFileCell = [{listFile.name}'];

 fileIDList = strtok(listFileCell, 'im*.');

 listFileCell = strcat(vessel_path,listFileCell);

 for i = 1 : size(fileIDList, 1)

 imageNumber = i;

 imageTxt = fileIDList{imageNumber, 1};

 fileName = listFileCell{imageNumber, 1};

 imname = strcat('im', imageTxt);

 RawData = load(strcat('../output/', imname,'.csv'));

 dataSize = size(RawData);

 rawNumberOfPoints = dataSize(1);

 oimg = imread(strcat('../input/original/', imname,'.jpg'));

 oimg_green = oimg(:, :, 2);

 [height width depth] = size(oimg_green);

 DG = NaN(1,rawNumberOfPoints);

 window = NaN(20);

 for i=1:rawNumberOfPoints

 points = RawData(i,[2,3,4,5]);

 points = round(points);

 x = points(1);

 y = points(2);

48

 thickness = points(3);

 green = points(4);

 if(isnan(thickness)) thickness=5; end

 xo = x-thickness;

 yo = y-thickness;

 xf = x+thickness;

 yf = y+thickness;

 if(xo<1) xo = 1;end

 if(yo<1) yo = 1;end

 if(xf>width) xf = width;end

 if(yf>height) yf = height;end

 window = oimg_green((yo:yf),(xo:xf));

 thres = mean(mean(window));

 meanBG = mean(window(window > thres));

 DG(i) = abs(green - meanBG);

 end

 RawData(:,6) = DG(:);

 imname = strcat('../output/',imname);

 csvwrite (strcat(imname,'DG.csv'),RawData);

 end

end

vesselClustering.m

function vesselClustering(imnum)

%clear all;

%imnum =

if(imnum < 10)

 imname = strcat('im000',int2str(imnum));

elseif(imnum < 100)

49

 imname = strcat('im00',int2str(imnum));

elseif(imnum<1000)

 imname = strcat('im0',int2str(imnum));

end

RawData = load(strcat(imname,'DG.csv'));

dataSize = size(RawData);

rawNumberOfPoints = dataSize(1);

rawGreen = RawData(:,6);

% find threshold

[mu sigma] = normfit(rawGreen);

%remove junk

nOfVessel = RawData(end,1);

gOfVessel = zeros(1,nOfVessel);

j=1;

%Summation of green value of each vessel

while (j<= rawNumberOfPoints)

 gOfVessel(RawData(j,1)) = gOfVessel(RawData(j,1)) + rawGreen(j);

 j = j + 1;

end

%Find number of points of each vessel

nOfPoints = zeros(1,nOfVessel);

for i=1:nOfVessel

 nOfPoints(i) = histc(RawData(:,1),i);

end

gOfVessel = gOfVessel./nOfPoints;

%mark the vessels that green outside the range

for i=1:nOfVessel

 if(gOfVessel(i)<mu-sigma)

 gOfVessel(i) = -1;

 end

end

%delete the vessels that green outside the range

for j = 1:nOfVessel

 if(gOfVessel(j)==-1)

 i=1;

50

 while(i<=rawNumberOfPoints)

 if(RawData(i,1)==j)

 RawData(i,:)=[];

 i=i-1;

 rawNumberOfPoints = rawNumberOfPoints-1;

 end

 i=i+1;

 end

 end

end

dataSize = size(RawData);

rawNumberOfPoints = dataSize(1);

%find number of vessel

vnum=1;

oldVnumList = unique(RawData(:,1));

pointNum=1;

i=1;

while i<=numel(oldVnumList)

 if(pointNum > rawNumberOfPoints)

 break;

 elseif(RawData(pointNum,1)==oldVnumList(i))

 RawData(pointNum,1)=vnum;

 pointNum = pointNum+1;

 else

 i=i+1;

 vnum=vnum+1;

 end

end

numberOfVessel = vnum;

%find number of points in a vessel

nOfPointsInVessel = [];

for i=1:numberOfVessel

 nOfPointsInVessel(i) = histc(RawData(:,1),i);

end

%Find length of each vessel

51

vesselLength = NaN(numberOfVessel,1);

i=1;

for vnum=1:numberOfVessel

 vesselPoints = zeros(1,2);

 while(i<=rawNumberOfPoints)

 if(RawData(i,1)==vnum)

 point = [RawData(i,2) RawData(i,3)] ;

 vesselPoints = cat(1,vesselPoints,point);

 i = i+1;

 elseif(RawData(i,1)>vnum)

 vesselPoints(1,:)=[];

 vesselLength(vnum) = getVesselLength(vesselPoints);

 break;

 end

 end

end

vesselPoints(1,:)=[];

vesselLength(vnum) = getVesselLength(vesselPoints);

vesselNumberList = (1:numberOfVessel);

[mu sigma] = normfit(vesselLength);

threshold = mu-sigma/2

%mark the vessel to be deleted

for(i=1:numberOfVessel)

 if(vesselLength(i)<threshold)

 vesselNumberList(i)=-1;

 end

end

thresholdedNumberOfPoints = rawNumberOfPoints;

thresholdedVesselLength = vesselLength;

thresholdedNumberOfVessel = numberOfVessel;

thresholdedData = RawData;

%delete shorter-than-threshold vessel

for(j = 1:numberOfVessel)

 if(vesselNumberList(j)==-1)

 i=1;

52

 while(i<=thresholdedNumberOfPoints)

 if(thresholdedData(i,1)==j)

 thresholdedData(i,:)=[];

 i=i-1;

 thresholdedNumberOfPoints =

thresholdedNumberOfPoints-1;

 end

 i=i+1;

 end

 end

end

j=1;

%delete length of shorter-than-threshold vessel

while(j<=thresholdedNumberOfVessel)

 if(thresholdedVesselLength(j)<threshold)

 thresholdedVesselLength(j)=[];

 nOfPointsInVessel(j)=[];

 j=j-1;

 thresholdedNumberOfVessel = thresholdedNumberOfVessel -1;

 end

 j=j+1;

end

%vessel is 3D matrix where

%vessel(i,j,1) means x value of jth point of ith vessel and

%vessel(i,j,2) means y value of jth point of ith vessel

vessel = zeros(thresholdedNumberOfVessel,max(nOfPointsInVessel),5);

vessel(:,:,:)=NaN;

n=1;

i=1;

for(j=1:thresholdedNumberOfPoints)

 vessel(i,n,1) = thresholdedData(j,2);

 vessel(i,n,2) = thresholdedData(j,3);

 vessel(i,n,3) = thresholdedData(j,4);

 vessel(i,n,4) = thresholdedData(j,5);

 vessel(i,n,5) = thresholdedData(j,6);

 if(n==nOfPointsInVessel(i))

53

 i=i+1;

 n=0;

 end

 n=n+1;

end

%find distance between every point to every vessel

%distanceMatrix is an NxMxK matrix whern N and K is the number of

vessel

%and M is maximum length of vessel

%The distanceMatrix(i,j,k) represents the distance between jth point

of ith vessel to kth vessel

%The distance is calculate by euclidean distance

%Since I can't use pdist effectively (for now), I created a function

distance2D(x1,y1,x2,y2) to calculate distance.

distanceMatrix =

NaN(thresholdedNumberOfVessel,max(nOfPointsInVessel),thresholdedNumbe

rOfVessel);

%i,l = vessel number

%j,m = point number in a vessel

for(i=1:thresholdedNumberOfVessel)

 for(j=1:nOfPointsInVessel(i))

 for(l=1:thresholdedNumberOfVessel)

 d= zeros(nOfPointsInVessel(l),1);

 for(m=1:nOfPointsInVessel(l))

 d(m) =

distance2D(vessel(i,j,1),vessel(i,j,2),vessel(l,m,1),vessel(l,m,2));

 end

 distanceMatrix(i,j,l) = min(d);

 end

 end

end

disBTWvessel = zeros(thresholdedNumberOfVessel);

%i,k = vessel numbet

%j = point number

for(i=1:thresholdedNumberOfVessel)

 for(k=1:thresholdedNumberOfVessel)

54

 if(i==k)

 disBTWvessel(i,k) = NaN;

 else

 disBTWvessel(i,k) = min(distanceMatrix(i,:,k));

 end

 end

end

thresholdDis = 15;

pairList = [0,0];

%make a list of pairs of vessel that the distance between them is

less than 10

%the list's name is pairList

for(i=1:thresholdedNumberOfVessel)

 for(j=1:i)

 if(disBTWvessel(i,j)<thresholdDis)

 pair = [i,j];

 pairList = cat(1,pairList,pair);

 end

 end

end

pairList(1,:)=[]

tmp = pairList;

clusterNumber = 1;

N=numel(tmp);

%make clusters

for i=1:N

 if(tmp(i)~=NaN)

 cluster=tmp(i);

 c=1;

 while(c<=numel(cluster))

 reference = cluster(c);

 j=1;

 while(j<=N)

 if(tmp(j)==reference) %found

 if(j<=N/2)

55

 [reference tmp(j+N/2)];

 cluster = [cluster tmp(j+N/2)];

 tmp(j,:)=NaN;

 else

 [reference tmp(j-N/2)];

 cluster = [cluster tmp(j-N/2)];

 tmp(j-N/2,:)=NaN;

 end

 end

 j=j+1;

 end

 c=c+1;

 end

 if(numel(cluster)>1)

 clusterList{clusterNumber}=unique(cluster);

 clusterNumber=clusterNumber+1;

 end

 end

end

maxEl = 0;

for i=1:numel(clusterList)

 [row num] = size(clusterList{i});

 if(maxEl < num)

 maxEl = num;

 end

end

clusterTable = NaN(numel(clusterList),maxEl);

for i=1:numel(clusterList)

 [row num] = size(clusterList{i});

 for j=1:num

 clusterTable(i,j) = clusterList{i}(1,j);

 end

end

clusterTable

pairedVesselNumberList = unique(pairList);

56

%create list of number of single vessel. => singleVesselNumberList

singleVesselNumberList = [1:thresholdedNumberOfVessel];

for(i=1:numel(pairedVesselNumberList))

 j=1;

 while(j<=numel(singleVesselNumberList))

 if(pairedVesselNumberList(i)==singleVesselNumberList(j))

 singleVesselNumberList(j)=[];

 end

 j=j+1;

 end

end

singleVesselNumberList

finalAnswer = zeros(1,6);

size(finalAnswer);

nOfVessel =

numel(pairedVesselNumberList)+numel(singleVesselNumberList);

%put single vessels into final answer

%i = single vessel's number

%point = [vesselNumber,x,y,thickness,length]

finalVesselNumber = 1;

[row col depth] = size(vessel);

for(i=1:numel(singleVesselNumberList))

 for(j=1:thresholdedNumberOfVessel)

 if(j==singleVesselNumberList(i))

 for(k=1:nOfPointsInVessel(j))

 point = [finalVesselNumber

reshape(vessel(j,k,:),[1,depth])];

 finalAnswer = cat(1,finalAnswer,point);

 end

 end

 end

 finalVesselNumber=finalVesselNumber+1;

end

[row col]=size(clusterTable);

57

nOfClusters = row;

%put clusters into final answer

%i = cluster's number

%j = number of vessel inside the ith cluster

for(i=1:row)

 for(j=1:col)

 vnum = clusterTable(i,j);

 if(isnan(vnum))

 break

 else

 for(k=1:nOfPointsInVessel(vnum))

 point = [finalVesselNumber

reshape(vessel(vnum,k,:),[1,depth])];

 finalAnswer = cat(1,finalAnswer,point);

 end

 end

 end

 finalVesselNumber=finalVesselNumber+1;

end

finalAnswer(1,:)=[];

finalVesselNumber=finalVesselNumber-1;

%clusterNoOfVessel

%Since the final answer consists of many single vessels first then

many

%clusters later, we gonna make a list of length of clusters by put

the

%length of single vessels to the list first then find and put the

length

%of clusters.

%put the length of single vessels to the list

clusterLengthList = NaN(1,finalVesselNumber);

for i=1:numel(singleVesselNumberList)

clusterLengthList(i)=thresholdedVesselLength(singleVesselNumberList(i

));

58

end

start = i;

%find and put the length of clusters

for n=1:nOfClusters

 aCluster = clusterTable(n,:);

 aCluster = aCluster(~(isnan(aCluster)));

 nOfVessel = numel(aCluster);

 clusterGraph = zeros(nOfVessel);

 for i=1:nOfVessel

 for j=1:i

 if(i~=j)

 clusterGraph(i,j) =

disBTWvessel(aCluster(i),aCluster(j));

 end

 end

 end

 cSparse = sparse(clusterGraph);

 [ST,pred] = graphminspantree(cSparse);

 clusterLengthList(start+n) = sum(sum(full(ST)))+

sum(thresholdedVesselLength(aCluster));

end

clusterLengthList

%find summation of thickness in each cluster.

data = finalAnswer;

dataSize = size(data);

numOfCluster = data(end,1);

%prepare some data

[nOfCluster nOfVessel] = size (clusterTable);

tmp = NaN(numel(singleVesselNumberList),nOfVessel);

tmp(:,1) = singleVesselNumberList;

clusterTable2 = [tmp ;clusterTable];

clusterNumberList = data(1:dataSize,1)';

clusterXList = data(1:dataSize,2)';

clusterYList = data(1:dataSize,3)';

59

clusterNumberOfPoints = dataSize(1);

clusterThickness = data(1:dataSize,4)';

cnum = 1;

thickSum = 0;

count=0;

%Make a list of summation of thickness of each clusters =>

clusterThicknessList

for i=1:clusterNumberOfPoints

 if(clusterNumberList(i)==cnum)

 if(~isnan(clusterThickness(i)))

 thickSum = thickSum + clusterThickness(i);

 end

 else

 clusterThicknessList(cnum)=thickSum;

 count=0;

 thickSum = clusterThickness(i);

 cnum = clusterNumberList(i);

 end

end

clusterThicknessList(cnum)=thickSum;

mainClusterThicknessList = clusterThicknessList;

mainClusterLengthList = clusterLengthList;

%find thickness threshold ()

tmp = [];

tmp = sort(clusterThicknessList,'descend');

nOfElement = numel(tmp);

if(nOfElement>=6)

 thicknessThreshold = tmp(6)

 i=1;

 while i<=numel(mainClusterThicknessList)

 if(mainClusterThicknessList(i)<=thicknessThreshold)

 mainClusterThicknessList(i)=[];

 mainClusterLengthList(i)=[];

 clusterTable2(i,:)=[];

 else

60

 i=i+1;

 end

 end

 i=1;

 %put thicker-than-threshold clusters to mainCluster

 mainClusterNumber = 0;

 mainCluster = zeros(1,6);

 for(i=1:numel(clusterThicknessList))

 if(clusterThicknessList(i)>thicknessThreshold)

 mainClusterNumber = mainClusterNumber + 1;

 for(k=1:clusterNumberOfPoints)

 if(data(k,1)==i)

 point = [mainClusterNumber,data(k,2:end)];

 mainCluster = cat(1,mainCluster,point);

 end

 end

 end

 end

 mainCluster(1,:)=[];

else

 mainCluster = data;

end

%Find distance between each cluster disBTWcluster

clusterTable2(all(clusterTable2==0,2),:)=[];

[nOfCluster nOfVessel]=size(clusterTable2)

disBTWcluster=NaN(nOfCluster);

for i=1:nOfCluster

 for j=1:i

 if(i~=j)

 cDisList=[];

 for k=1:nOfVessel

 if(~isnan(clusterTable2(i,k)))

 vlist = clusterTable2(j,:);

 vlist(isnan(vlist))=[];

 vDisList = [];

61

 for ii=1:numel(vlist)

 vDisList(ii) =

disBTWvessel(clusterTable2(i,k),vlist(ii));

 end

 cDisList(k) = min(vDisList);

 else

 break;

 end

 end

 disBTWcluster(i,j)=min(cDisList);

 end

 end

end

thresholdDis = 25;

pairList = [0,0];

%make a list of pairs of cluster that the distance between them is

less

%than 25. the list's name is pairList

for(i=1:nOfCluster)

 for(j=1:i)

 if(disBTWcluster(i,j)<thresholdDis)

 pair = [i,j];

 pairList = cat(1,pairList,pair);

 end

 end

end

pairList(1,:)=[]

pairedClusterNumberList = unique(pairList);

singleClusterNumberList = [1:nOfCluster];

for(i=1:numel(pairedClusterNumberList))

 j=1;

 while(j<=numel(singleClusterNumberList))

 if(pairedClusterNumberList(i)==singleClusterNumberList(j))

 singleClusterNumberList(j)=[];

 end

62

 j=j+1;

 end

end

singleClusterNumberList

tmp = pairList;

superClusterNumber = 1;

N=numel(tmp);

%make superClusters

for i=1:N

 if(tmp(i)~=NaN)

 superCluster=tmp(i);

 c=1;

 while(c<=numel(superCluster))

 reference = superCluster(c);

 j=1;

 while(j<=N)

 if(tmp(j)==reference) %found

 if(j<=N/2)

 [reference tmp(j+N/2)];

 superCluster = [superCluster tmp(j+N/2)];

 tmp(j,:)=NaN;

 else

 [reference tmp(j-N/2)];

 superCluster = [superCluster tmp(j-N/2)];

 tmp(j-N/2,:)=NaN;

 end

 end

 j=j+1;

 end

 c=c+1;

 end

 if(numel(superCluster)>1)

superClusterList{superClusterNumber}=unique(superCluster);

 superClusterNumber=superClusterNumber+1;

 end

63

 end

end

maxEl = 0;

for i=1:numel(superClusterList)

 [row num] = size(superClusterList{i});

 if(maxEl < num)

 maxEl = num;

 end

end

superClusterTable = NaN(numel(superClusterList),maxEl);

for i=1:numel(superClusterList)

 [row num] = size(superClusterList{i});

 for j=1:num

 superClusterTable(i,j) = superClusterList{i}(1,j);

 end

end

superClusterTable

data = mainCluster;

[nOfSupercluster nOfSubcluster] = size(superClusterTable);

tmp = NaN(numel(singleClusterNumberList),nOfSubcluster);

tmp(:,1) = singleClusterNumberList';

superClusterTable=[tmp;superClusterTable];

%Put points from mainCluster to superCluster

[nOfSupercluster nOfSubcluster] = size(superClusterTable);

[nOfPoints col] = size(data);

superCluster = zeros(1,col);

for suCnum=1:nOfSupercluster

 for cNum=1: nOfSubcluster

 if(isnan(superClusterTable(suCnum,cNum)))

 break;

 else

 for i=1:nOfPoints

 if(data(i,1)==superClusterTable(suCnum,cNum))

64

 point = [suCnum data(i,2:end)];

 superCluster = cat(1,superCluster,point);

 end

 end

 end

 end

end

superCluster(1,:)=[];

mainCluster = superCluster;

size(mainCluster);

resultPath =

strcat('C:\Users\pongsate1\Documents\MATLAB\output\',imname);

save (resultPath, 'mainCluster');

draw_clusteredVessels(imname);

getVesselLength.m

function length = getVesselLength(vesselPoints)

%getVesselLength find length of a vessel

%by considers the point(x,y) in a vessel as a node of a weighted

complete

%graph which distance between each points in a graph represented by

weight

%of the edge between them. Then find a minimum spanning tree of the

graph

%which represent how the points form a vessel. The summation of

weight in

%the tree is the length of the vessel

[row col]=size(vesselPoints);

v1graph = zeros(row);

for i=1:row

 for j=1:i

 if(i~=j)

 v1graph(i,j) =

distance2D(vesselPoints(i,1),vesselPoints(i,2),vesselPoints(j,1),vess

elPoints(j,2));

65

 end

 end

end

%view(biograph(v1graph,[],'ShowArrows','off','ShowWeights','on'))

v1sparse = sparse(v1graph);

[ST,pred] = graphminspantree(v1sparse);

length = sum(sum(full(ST)));

distance2D.m

function d = distance2D(x1,y1,x2,y2)

%This function find distance between 2 points in 2D

%Input 4 number x and y of 2 points output the distance

d = sqrt((x1-x2)^2 + (y1-y2)^2);

return;

draw_clusteredVessels.m

function draw_clusteredVessels(imname)

 %% drawing the cluster of vessel by different colors

 %% Define all path

 vessel_path = 'C:\Users\pongsate1\Documents\MATLAB\output\';

 % define color array

 color_array = ['r', 'g', 'b','c','m','y','k'];

 imageNo = strcat(imname,'.mat');

 disp('** Load Data');

 vessels = loadVessels(vessel_path, imageNo);

 % Merge sub vessels that have connection

 fig = figure;

 for m = 1: length(vessels)

 eV = vessels(1,m); % access matrix of vessels

 eVx = eV.M(:,1)'; % access x-coordinates

66

 eVy = eV.M(:,2)'; % access y-coordinates

 mod_value = mod(m, 7);

 if (mod_value == 0)

 mod_value = 7;

 end

 hold on;

 colorTxt = strcat('.', color_array(mod_value));

 plot(eVx, eVy, colorTxt, 'LineWidth', 1, 'Tag', num2str(m));

 end

 grid off;

 axis([1 700 1 605]);

 hold off;

 fileTxt = strcat(vessel_path,imname);

 fileTxt = strcat(fileTxt,'.tif');

 saveas(fig, fileTxt, 'tif');

 fprintf('finish\n');

end

function vessels = loadVessels(vesselPath, imageNumber)

 fileName = strcat(vesselPath,imageNumber);

 disp(['Starting to load vessels from file: ', fileName]);

 tic

 v=load(fileName);

 vesselsInFile = v.mainCluster;

 dimensionOfVessels = size(vesselsInFile);

 numberOfVessels = vesselsInFile(dimensionOfVessels(1), 1);

 for vesselNumber=1:numberOfVessels

 rows = find(vesselsInFile(:,1)== vesselNumber);

 x = vesselsInFile(rows, 3);

 y = vesselsInFile(rows, 2);

 M = [x y];

 % Exclude duplicates:

 M = unique(M, 'rows');

 vessels(vesselNumber).M = M;

67

 end

 toc

 disp(['Finished loading ', num2str(numberOfVessels), ' vessels

from file ', fileName, '.']);

end

68

Appendix B

Rotational 2D Vessel Projection MATLAB source code

ARfastOD.m

function time = ARfastOD(debug,set,imnum,startingAngle)

 [absImgPath,outPath] = getFilePath(set,imnum,startingAngle);

 if strcmpi(absImgPath,'')==1

 time = 0;

 return;

 end

 img = imread(absImgPath);

 tic

 [row col] = size(img);

 side = max(row,col/3);

 ratio = 300/side;

 img = imresize(img,ratio);

 cimg = img;

 img = img(:,:,2);

 % make the image a square image.

 [maxy,maxx] = size(img);

 difxy = abs(maxx-maxy);

 side = max(maxx,maxy);

 sqImg = zeros(side,'uint8');

 addSp = round(difxy/2);

 if(maxx > maxy)

 if(mod(difxy,2)==0)

 sqImg([addSp+1:side-addSp],:) = img;

 else

 sqImg([addSp:side-addSp],:) = img;

 end

 else

 if(mod(difxy,2)==0)

 sqImg(:,[addSp+1:side-addSp]) = img;

 else

 sqImg(:,[addSp:side-addSp]) = img;

69

 end

 end

 maxx = side;

 maxy = side;

 img = sqImg;

 maxThick = 6;

 img = imrotate(img,startingAngle,'bilinear','crop');

 [bwImg,filteredImg] = seg(img,maxThick);

 % class Answer

 Answer.xy=[0 0];

 Answer.angle=0;

 Answer.meanVar = [];

 Answer.diff = [];

 answer(1) = Answer;

 score = intmax();

 ansCount = 0;

 cAngle = 0;

 ODR = 20;

 step = 5;

 baseBwImg = bwImg;

 baseImg = img;

 outImg = zeros(maxy,maxx);

 for i=0:180/step

 angle = i*step;

 bwImg = imrotate(baseBwImg,angle,'bilinear','crop');

 img = imrotate(baseImg,angle,'bilinear','crop');

 outImg = imrotate(outImg,angle,'bilinear','crop');

 [height,width] = size(bwImg);

 [x,diff,bwH,bwV] = fastXPos(bwImg,maxThick);

 imGray = img;

 [y,meanVar] = fastYPos(imGray,x,ODR,maxThick);

 mid = maxy/2;

 % Draw circle at OD

70

 outSingle = zeros(maxy,maxx);

 if(y > height/4 && y<3*height/4)

 ansCount = ansCount+1;

 outImg = drawCircle(outImg,1,x,y,ODR);

 end

 answer(i+1).xy = [x y];

 answer(i+1).angle = angle;

 answer(i+1).meanVar = meanVar;

 answer(i+1).diff = diff;

 outImg = imrotate(outImg,-1*angle,'bilinear','crop');

 end

 % find brightest spot in outImg which is OD

 [I,J] = findBrightestSpot(outImg);

 OD = [I,J];

 time = toc;

 ref = [width/2 height/2];

 ODref = [OD(1)-ref(1) ref(2)-OD(2)]; %correct

 [THETA,RHO] = cart2pol(ODref(1),ODref(2));

 minDist = intmax();

 %find the answer that is closest to the OD to find the correct

angle.

 for i=0:180/step

 [THETA,RHO] = cart2pol(ODref(1),ODref(2));

 THETA = THETA+degtorad(answer(i+1).angle);

 [ODrotated(1),ODrotated(2)] = pol2cart(THETA,RHO);

 ODrotated = [ODrotated(1)+ref(1) ref(2)-ODrotated(2)];

 dist =

distance2D(answer(i+1).xy(1),answer(i+1).xy(2),ODrotated(1),ODrotated

(2));

 if(dist < minDist)

 ansIndex = i+1;

 ansOD = answer(i+1).xy;

 minDist = dist;

 end

71

 end

 if(debug == 1)

 bwImg = baseBwImg;

 img = baseImg;

 [x,diff,bwH,bwV] = fastXPos(bwImg,maxThick);

 [y,meanVar] = fastYPos(imGray,x,ODR,maxThick);

 figure('units','normalized','outerposition',[0 0 1 1]),

 subplot(2, 3, 1);

 imshow(bwImg);

 title('Vessel image')

 subplot(2, 3, 4);

 imshow(filteredImg);

 title('top-hat filtered image')

 subplot(2, 3, 6);

 imshow(img);

 hold on

 ansOD = OD;

 plot(ansOD(1),ansOD(2),'wx','MarkerSize',30);

 plot(ansOD(1),[0:height],'r','LineWidth',maxThick);

 plot([0:width],ansOD(2),'r','LineWidth',maxThick);

 hold off

 axis ij

 title(['Result ' int2str(imnum) ' at '

int2str(answer(ansIndex).angle) ' degree'])

 subplot(2, 3, 5);

 imshow(outImg,[]);

 hold on

 plot(OD(1),OD(2),'rx','MarkerSize',30);

 hold off

 title([int2str(ansCount) '/' int2str(180/step) ' result

candidates, best score = ' int2str(max(max(outImg)))])

 subplot(2, 3, 2);

 imshow(bwH);

 title('Horizontal Vessel')

 subplot(2, 3, 3);

 imshow(bwV);

 title('Vertical Vessel')

 else

72

 figure,

 imshow(baseImg,[]);

 hold on

plot(OD(1),OD(2),'x','LineWidth',3,'MarkerSize',30,'MarkerEdgeColor',

'b','MarkerFaceColor','r');

 hold off

 saveas(gcf,outPath);

 close

 end

seg.m

function [imgVessel,g2] = seg(img,maxThick)

 G = img;

 ig = imcomplement(G);

 maxThick = maxThick/2;

 if mod(maxThick,2)==0 maxThick = maxThick+1; end

 maxThick = maxThick*2;

 se = zeros(maxThick);

 se(:,ceil(maxThick/2)) = 1;

 se(ceil(maxThick/2),:) = 1;

 g2 = imtophat(ig,se);

 g2 = imadjust(g2);

 level = graythresh(g2);

 BW = im2bw(g2,level);

 imgVessel = BW;

drawCircle.m

function outImg = drawCircle(img,grayLevel,x,y,r)

 [imageSizeY imageSizeX] = size(img);

 [columnsInImage rowsInImage] = meshgrid(1:imageSizeX,

1:imageSizeY);

 centerX = x;

 centerY = y;

 radius = r;

73

 circlePixels = (rowsInImage - centerY).^2 + (columnsInImage -

centerX).^2 <= radius.^2;

 img(circlePixels) = img(circlePixels)+grayLevel;

 outImg = img;

distance2D.m

function d = distance2D(x1,y1,x2,y2)

%This function find distance between 2 points in 2D

%Input 4 number x and y of 2 points output the distance

 d = sqrt((x1-x2)^2 + (y1-y2)^2);

findBrightestSpot.m

function [xOut,yOut] = findBrightestSpot(img)

 brightestVal = max(max(img));

 thresImg = img==brightestVal;

 [row col] = size(thresImg);

 xs = 0;

 ys = 0;

 for i=1:row

 for j=1:col

 if(thresImg(i,j)==1)

 xs = xs+j;

 ys = ys+i;

 end

 end

 end

 xc = xs/sum(sum(thresImg));

 yc = ys/sum(sum(thresImg));

 xOut = xc;

 yOut = yc;

74

fastXPos.m

function [x,diff,bwH,bwV] = fastXPos(bwImg,maxThick)

 se1 = strel('line',maxThick,0);

 se2 = strel('line',maxThick,90);

 bwV = imopen(bwImg,se2);

 bwH = imopen(bwImg,se1);

 [height,width] = size(bwImg);

 nOfSlot = width/maxThick;

 V = zeros(1,width);

 H = zeros(1,width);

 D = zeros(1,width);

 for i=maxThick+1:width-maxThick

 slotV = bwV(:,[i-maxThick i+maxThick]);

 slotH = bwH(:,[i-maxThick i+maxThick]);

 V(i)=sum(sum(slotV));

 H(i)=sum(sum(slotH));

 D(i)=V(i)-H(i);

 end

 [M,I] = max(D);

 x = I;

 diff = D;

fastYPos.m

function [y,meanVar] = fastYPos(imGray,I,ODR,maxThick)

 [height,width] = size(imGray);

 Var = NaN(1,height);

 SV = zeros(1,height);

 meanVar = Var;

 for i=ODR+1:height-ODR-1

 if(I-ODR <= 0) I = ODR+1; end

 if(I+ODR >= width)

 I = width - ODR ;

 end

 wGray = imGray([i-ODR:i+ODR],[I-ODR:I+ODR]);

75

 wGray = wGray(wGray>25);

 Var(i) = var(double(wGray));

 end

 for i=ODR+1:height-ODR

 vv = Var(i-ODR:i+ODR);

 meanVar(i) = mean(vv(~isnan(vv)));

 end

 [M,y] = max(meanVar);

