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Abstract 

 

OPTIC DISC LOCALIZATION USING VESSEL CLUSTERING AND 

ROTATIONAL 2D VESSEL PROJECTION 

 

by 

PONGSATE TANGSENG 

 

Bachelor of Science, Sirindhorn International Institute of Technology, 2011 

 

Detecting optic disc (OD) in a retinal image is important for the diagnosis 

of numerous eye diseases. It helps ophthalmologists identify health condition of an 

eye. This thesis presents two effective methods for analyzing the retinal vessel 

structure that would be used for locating OD. 

 The first method is Retinal Vessel Clustering. After acquiring vessel data 

from retinal vessel segmentation, length and average contrast of each vessel is 

measured. Vessels which are too short or too obscure are removed. The remaining 

vessels are grouped based on distance between them. Each group is called cluster. 

With an assumption that the location of OD is the centroid of the main branches of 

vessels, clusters are used to find the location of the OD. 

 The second method is called Rotational 2D Vessel Projection. The main 

advantage of this method is that its performance is not affected by rotation of the 

retinal image and it is robust to abnormalities caused by diseases. Vessels in retina 

emerge from OD and can be observed in a retinal image as two main branches 

opposite to each other. If the image is rotated to proper angles, those two main 

branches will orient vertically. As a result, the area around the OD contains mostly 

vertical vessel and a few or none of horizontal vessels. As, OD is a high-contrast area 

because of dark vessels lying on a bright area, by rotating the image and repeatedly 

finding OD using these properties, the position of OD can be identified. 

 

Keywords: Optic Disc Detection, Medical Image Processing, Data Clustering 
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Chapter 1 

Introduction 

 

1.1 Background 

 

1.1.1 Human eyes 

 

 Eyes are organs used to perceive visual information. They convert light to 

electrical information and send it to our brain. They are one of the most complex 

organs in human body and consist of many parts, which are crucial to our sense of 

vision. The following figure illustrates parts of a human eye. 

 

 

Figure 1.1: Parts of a human eye [1] 

  

 The eye is a slightly asymmetrical globe, about an inch in diameter. At the 

back of inner surface of an eye, there are photosensitive cells that can be simulated by 

light and sent electrical signals to the brain.  
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 When light is reflected from an object of interest to an eye, the cornea refracts 

the light, lead it through the pupil, to the lens. There is fluid called “aqueous humor” 

filled in the space between lens and cornea. It provides nutrition to lens and cornea, 

and inflates the cornea. The iris controls the amount of light entering the eye by 

adjusting the size of pupil. Lens refracts and focuses the incoming light into an image 

of the object of interest on the retina. Inside an eye, there is fluid called Vitreous 

Humor that fills the central cavity and occupies approximate 80% of an eye. This 

fluid is a transparent, jelly-like substance produced at birth and remains unchanged 

throughout life. The retina is the most crucial part of vision and is described in the 

next section. 

 

1.1.2 Human retina, optic nerve and optic disc (OD) 

 

 The neurosensory retina, usually called retina, is the second largest part of an 

eye follows the vitreous humor, and is the largest part of the fundus which is the 

interior surface of the eye. It is composed of light-sensitive layers. There are 2 types 

of photoreceptor cells on retina: rod cells and cone cells, named after its shape. Rod 

cells are sensitive to light and movement. The cells are scattered all over the retina. In 

contrast, cone cells are sensitive to colors. There are 3 types of cone cell correspond 

to three primary colors of visible light: red, green and blue. Cone cells cannot work 

very well in the dark, so human can only see in grayscale in low-light environment. 

They can be found only at the center of the retina (the area on the opposite side of the 

pupil) called “fovea”. These cells convert light into electrical impulses and send it to 

our brain via optic nerve to produce image. 

 

 The optic nerve is a paired nerve that transmits visual information from the 

retina to the brain. The optic nerve head or the optic disc (OD) is the point of exit for 

optic nerve’s axons leaving the eye and can be observed as a round-shaped bright spot 

inside a retinal image as seen in figure 1.2. Damages to optic nerve can causes loss of 

vision in the eye. The following section gives an example of the eye disease, 

Glaucoma, which affects the physical appearance of the OD. 
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Figure 1.2: A retinal image. [2] 

 

1.1.3 Glaucoma 

 

 Glaucoma is an eye-disease that can causes blindness by damaging eye’s optic 

nerve. There are many types of glaucoma. One of them is called “Open-angle 

Glaucoma”. The cause of open-angle glaucoma is the increasing of pressure inside the 

eye (intraocular pressure).  

 

 The aqueous humor, the fluid that filled the space between cornea and lens, is 

normally constantly produced by the ciliary epithelium, which is a structure 

supporting the lens. As fresh aqueous humor is produced by ciliary body, the part of 

the eye that lies just behind the iris, an equal amount must be drained through a 

drainage passageway (trabecular meshwork ) around the edge of cornea. However, if 

the drainage is damaged, the fluid will be drained too slowly, the intraocular pressure 

will be increased. The effects of intermittent or persistent high pressure on delicate 

retinal nerve fibers and the optic nerve damage it; result in permanent vision loss, as 

shown in figure 1.3. 

 

 

Optic Disc 
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Figure 1.3:  Normal vision (left) and vision of people with glaucoma (right) [3] 

 

 At first, open-angle glaucoma has no symptom. It does not cause any pain, and 

the vision loss is not noticeable. The patience will notice the vision loss only in the 

later stages of the disease, which make early detection utmost important. The vision 

loss comes from damage to the optic nerve. At the present, there is no way to repair 

the damaged optic nerve, so the vision loss is irreversible. 

 

 One way to detect glaucoma at its early stage is to analyze the properties of 

OD from the retina image. The ophthalmologist can analyze and diagnose any 

abnormality from it. The examples of retina images without glaucoma and with 

glaucoma are shown in figure 1.4. 

 

 

Figure 1.4: Retinal images of a healthy eye (left) and an eye with glaucoma (right) [4] 
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1.2 Problem statements 

 

 As stated in the previous section that one method of glaucoma detection is 

diagnosing the structure of OD, however, the procedure is costly and need high 

qualified staff. The computerized methods for optic disc detection and diagnosis could 

reduce the cost of the process and the number of required specialists. 

 

 This thesis concerns the development of an automatic, robust optic disc (OD)-

detection method. The performance of this method is compared to the performance of 

several other automatic algorithms. OD-detection is an integral part of the screening 

system for glaucoma disease. 

 

 To locate the OD inside the retina photography, vessel structure and intensity 

of regions are used. Many OD detection techniques were proposed.  Most of them are 

based on features of OD such as round shape and high brightness object in the image.  

However, these techniques have limitations as there are other artifacts resulted from 

diseases which may also be bright and round. Some techniques are based on 

geographic properties of the vessel network. Some take advantages of both 

approaches. Unfortunately, geographic properties of the vessel network are often 

dependent to orientation of the photo of retina, which affect the process significantly. 

As a result, new methods that robust to orientation of image are needed. 

 

 This thesis presents two approaches to determine position of the optic disc in a 

retinal image. These approaches mainly use vessels’ properties which are robust to 

noises from diseases. The first one groups vessels into clusters, and then uses centroid 

of the clusters as the OD. The second one uses voting result from geometry-and-

intensity based OD detection algorithm. Both approaches are robust to artifacts 

resulted from diseases and orientation of the image. 
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1.3 Purpose of study 

 

 To create OD detection algorithms that can locate the OD in retinal images 

effectively and robust to noise and other disturbance caused by eye diseases and/or 

image quality. 

 

1.4 Arrangement of thesis 

 

 The proposal is organized as follows: In chapter 2, related theories and the 

existing methods for locating the OD are presented. In chapter 3, methodology of 

Vessel Clustering and Rotational 2D Vessel Projection is presented. Chapter 4 

contains experimental setup, result and discussion of the proposed methods. 

Conclusion and recommendation are in chapter 5, followed by references, and list of 

my publication. MATLAB source code of Vessel Clustering and Rotational 2D 

Vessel Projection are in Appendix A and B respectively. 
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Chapter 2  

Preliminary Principles and Literature Review 

 

 This chapter contains preliminary principles and related theories in order to 

provide readers the technical background about the thesis. It includes principles of 

image processing algorithms and few topics in graph theories. At the end of this 

chapter, existing methods of optic disc detection are reviewed. 

 

2.1 Image processing algorithms 

 

 Image processing is a process of performing specific operations on an image 

in order to obtain desired information. This section describes image processing 

algorithms used in this thesis. 

 

2.1.1 Image rotation 

 

 Image rotation performs a geometric transform from source image to 

destination image. Value of every pixel of destination image is copied from source 

image one pixel at a time. For a rotation at a clockwise angle ( ) around user-specific 

reference point (     ), value of destination pixel (     ) is copied from source pixel 

(     ). The coordinate of source pixel (     ) related to destination pixel (     ) 

can be calculated as: 

 

     √(     )  (     )     (     (
     

     
)   )     (2.1) 

        √(     )  (     )     (     (
     

     
)   ) (2.2) 

 

 Note that the above equations apply to image rotation and y-axis of the image 

coordination system goes downward. This process is illustrated in figure 2.1. 
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Figure 2.1: The value of destination pixel is copied from the source. The blue dot is 

the reference point in this rotation. 

 

 The coordinates at each pixel in a digital image must be integers but, results 

(     ) from above equations are not. This section presents two approaches to cope 

with this problem: nearest-neighbor interpolation and bilinear interpolation. 

 

2.1.1.1 Nearest-neighbor interpolation 

 

 When the desired position is not in integer values, the simplest way to do is 

just round them to integer. This method is called “Nearest-neighbor interpolation”, 

because we round the floating-point numbers into the nearest integer. The weak point 

of this method is that it gives blocky result since one or more pixels’ data of 

destination image are copied from one pixel of source image. Figure 2.2 shows an 

example of image rotation using nearest-neighbor interpolation. 

 

 

(a) 

 

(b) 

Figure 2.2: (a) original image, (b) 30
o
 rotated image using nearest-neighbor 

interpolation 
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2.1.1.2 Bilinear interpolation 

 

 Instead of just rounding (     ) coordinate into their nearest integers and 

using value of those pixels, the interpolation of surrounding pixels is used to get a 

better result. Bilinear interpolation uses value of 4 neighbor pixels: top-left, top-right, 

bottom-left, and bottom-right of the source image to calculate the value of a pixel of 

destination image. Figure 2.3 illustrates the concept of bilinear interpolation.  

 

Figure 2.3: Concept of bilinear interpolation. Blue dots are pixels with known values. 

Green dots come from interpolations of two top and two bottom dots, respectively. 

The red dot is the final result, come from an interpolation of two green dots. 

 

 Assume that (     ) resulted from equation 2.1 and 2.2 is the red dot in figure 

2.3. Since it is in the middle of four known value pixels, we can estimate its value 

using the following equations:  

        ⌊  ⌋ (2.3) 

        ⌊  ⌋ (2.4) 

    (    )     (⌊  ⌋ ⌊  ⌋)          (⌈  ⌉ ⌊  ⌋) (2.5) 

    (    )     (⌊  ⌋ ⌈  ⌉)         (⌈  ⌉ ⌈  ⌉) (2.6) 

     (     )  (    )  (  )  (2.7) 

where     (   ) is value of pixel at coordinate (x, y) of source image 

     (   ) is value of pixel at coordinate (x, y) of destination image 
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 From the equations, the value of surrounding source pixels are interpolated 

into the destination pixels. The rotated image will appeared blurry instead of 

pixelated. Figure 2.4 compares results of two interpolation methods. 

 

 

(a) 

 

(b) 

 

(c) 

Figure 2.4: (a) original image, (b) and (c) 30
o
 rotated image using nearest-neighbor 

interpolation and bilinear interpolation respectively. 

 

2.1.2 Image thresholding technique 

 

 Thresholding is a process to separate pixels in an image into two groups, 

usually based on intensity of each pixel. This thesis uses image thresholding for 

extracting blood vessel, which is usually darker, in retinal images from background 

which is usually brighter. The threshold value used in this thesis is calculated using 

Otsu’s method. Figure 2.5 shows the result of a grayscale image before and after 

being thresholded with Otsu’s method. 

 

 

(a) 

 

(b) 

Figure 2.5: (a) original image, (b) thresholded image using Otsu’s method to calculate 

the threshold value 
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 Otsu’s method selects the threshold value that maximizes the difference 

between background and foreground. In other word, the selected threshold value will 

maximize inter-class variance. It can be calculated by the following algorithm: 

 

 

Algorithm 2.1: Otsu’s method for threshold value of a grayscale image. 

 

2.1.3 Morphological operations 

 

 Morphological operations alter shapes inside an image. They are suitable in 

many applications ranging from object segmentation to noise reduction.  The basic 

morphological operations are dilation, erosion opening and closing. These basic 

operations can be combined into more complicated operations. All of them require 

two operators: an input image and a structuring element. An input image can be 

binary or grayscale. A structuring element is a binary matrix m×n, while m and n 

must be odd numbers. 

 

                                  

                                       

                                               

                                                

                            

                            

                                 

       ⁄  

       ⁄  

     (∑                         )   ⁄  

     (∑                         )   ⁄  

        (     )
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2.1.3.1 Dilation 

 

 The value of each pixel after applying the operation is equal to the maximum 

value of its neighborhood. The neighborhood is the surrounding pixels in the same 

shape and size of the structuring element centered at that pixel. Figure 2.6 shows the 

processing of a particular pixel in the input image. Figure 2.7 shows the input image, 

structuring element and the output after being dilated with structuring element. 

 

 

(a) 
 

(b) 

 

(c) 

Figure 2.6: (a) structuring element, (b) input image, (c) a dilated pixel 

 

 

(a) 

 

(b) 

 

(c) 

Figure 2.7: (a) structuring element, (b) input image, (c) dilated image 
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2.1.3.2 Erosion 

 

 The value of each pixel after applying the operation is equal to the minimum 

value of its neighborhood. The neighborhood is the surrounding pixels in the same 

shape and size of the structuring element centered at that pixel. Figure 2.8 shows the 

processing of a particular pixel in the input image. Figure 2.9 shows the input image, 

structuring element and the output after being eroded with structuring element. 

 

 

(a) 
 

(b) 

 

(c) 

Figure 2.8: (a) structuring element, (b) input image, (c) an eroded pixel 

 

 

(a) 

 

(b) 

 

(c) 

Figure 2.9: (a) structuring element, (b) input image, (c) eroded image 

 

2.1.3.3 Opening 

 

 An opening operation is an erosion followed by a dilation using the same 

structuring element. The operation removes parts of foreground that the element 
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cannot fit in, and then expands every foreground pixel to the element. As a result, 

small foreground objects are removed while big foreground objects are expanded. 

Figure 2.10 shows the input image, structuring element and the output after being 

opened with structuring element. 

 

 

(a) 

 

(b) 

 

(c) 

Figure 2.10: (a) structuring element, (b) input image, (c) opened image 

 

2.1.3.4 Closing 

 

 A closing operation is a dilation followed by an erosion using the same 

structuring element. The operation expands every foreground pixel to the element, 

and then removes parts of foreground that the element cannot fit in. As a result, holes 

and spaces that are dwindled according to the element. Figure 2.11 shows the input 

image, structuring element and the output after being closed with structuring element. 
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(a) 

 

(b) 

 

(c) 

Figure 2.11: (a) structuring element, (b) input image, (c) closed image 

 

2.1.3.5 Top-hat 

 

 A top-hat operation enhances bright points in an image. The operation can be 

described as      (   ) where I is an input image, n is the structuring element,   

denotes opening operation and    is an output image. Figure 2.12 shows the input 

image, structuring element and the output after being top-hat filtered with structuring 

element. 

 

 

(a) 

 

(b) 

 

(c) 

Figure 2.12: (a) structuring element, (b) input image, (c) top-hat filtered image 
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2.2 Graph theories 

 

2.2.1 Directed and undirected graph 

 

 A graph G is a set of vertices V and edges E,   (   ), where E  is a set of 

two-element subset of V. A graph can be undirected or directed graph. In an 

undirected graph, the order of elements of each edge does not matter. In contrast, it 

does matter in a directed graph. There is an arrow at one end of edge indicates the 

direction. Figure 2.13 compares directed and undirected graph. 

 

 

(a) 

 

(b) 

Figure 2.13: (a) undirected graph, (b) directed graph 

 

2.2.2 Weighted graph 

 

 In addition, each edge in a graph may associates with a value “weight”.  The 

weight in an edge can be used in various applications. For example, if a graph 

represents a network of cities connected by roads, the weight of each edge might 

represent the length of that road. Weight and direction can be used together. Figure 

2.14 compares an undirected graph and a weighted directed graph. 
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(a) 

 

(b) 

Figure 2.14: (a) undirected graph, (b) weighted directed graph 

 

2.2.3 Complete graph 

 

 A complete undirected graph is a graph which every pair of distinct vertices is 

connected by an edge. A complete directed graph is a graph which every pair of 

distinct vertices is connected by a pair of unique edges (one for each direction). A 

complete undirected graph    has exactly  (   )    edges where   is the number 

of vertices in the graph. Figure 2.15 shows a 5-vertex complete undirected graph,   . 

 

 

Figure 2.15:  5-vertex complete undirected graph    

 

2.2.4 Tree 

 

 A tree is a special kind of an undirected graph that contain no cycle, e.g. there 

is exactly one path connecting two vertices in the tree. A tree    has exactly     

edges where   is the number of vertices in the graph. Figure 2.16 shows a tree with 5 

vertices,   . 
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Figure 2.16: tree with 5 vertices,   . 

 

2.2.5 Spanning tree 

 

 A spanning tree of an undirected graph is a subgraph, which is also a tree, of a 

graph that contains all vertices of that graph. A graph may have more than one 

spanning tree. 

 

2.2.6 Minimum spanning tree 

 

 A minimum spanning tree of an undirected weighted graph is one of spanning 

trees of that graph that has the smallest possible weight. A minimum spanning tree of 

an undirected unweight graph can be any spanning tree of that graph.  Figure 2.17 

shows the minimum spanning tree of a graph.  

 

 

(a) 

 

(b) 

Figure 2.17: (a) undirected weighted graph (b) its minimum spanning tree 

 

 A commonly used algorithm to find a minimum spanning tree of a graph is 

created by Joseph Kruskal in 1956, and can be described as follows: 
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Algorithm 2.2: Kruskal’s algorithm for finding minimum spanning tree of graph G 

 

2.3 Existing methods of optic disc detection 

 

 In this section, different techniques employed to automatically detect the OD 

inside a retina image are reviewed. 

 

 Several OD detection methods are available in literature. Features of OD such 

as its brightness and round shape are often used to locate it. For example, Tolias and 

Panas [5], Lalonde [6], Lu et al. [7], and Akram [8] used brightness as the main 

feature to roughly determine OD position. Sinthanayothin et al. [9], Jelinek [10], and 

Lupascu et al. [11] recognized the area with highest variance of intensity as OD. 

Sagar et al. [12] implemented OD localization using Principle Component Analysis 

(PCA) with pixels in the test image with the highest 5% intensity level and hue value 

in the yellow color as candidate regions. A template of bright circular region is also 

used by Osareh et al. [13] to locate OD. 

 

                                           (     ) 

                                               

      |       |    |       |    

         

              

                 (               )                                    
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 These methods perform quite well with images of healthy retina. However, the 

methods may not work on images with poor quality resulting from poor lighting 

condition, unhealthy retina, and/or other artifacts as they share a lot of common 

features with the OD. 

 

 Vessel structure is another feature in the retinal image that can be used to 

detect OD. It is usually resistant to lighting condition and relatively prominent despite 

in an unhealthy retina. Hoover and Goldbaum [14] used a technique called fuzzy 

convergence to determine the origin of the blood vessel network which is OD. A 

parabola-like model of vessel network is used by Ruggeri et al. [15], and Zhang and 

Zhao [16] to locate the OD. 

 

 Vessel structure and OD’s brightness can also be used together for OD 

location detection. Kavitha and Devi [17] used brightness and convergent point of 

blood vessels. Abramoff and Niemeijer [18] detected the approximate position of the 

optic disc using kNN regression with feature vectors including number of vessels, 

vessels’ width, and intensity. Mahfouz and Fahmy [19] and Cao et al. [20] 

transformed the localization problem into two one dimension problems by projecting 

the image features, namely, vessel structure, brightness and the size of the OD, onto 

two perpendicular directions. Youssif et al. [26] used a vessels’ direction matched 

filter which is based on vessels direction and image intensity to locate OD. Mahfouz 

and Fahmy [19], Youssif et al. [26], and Cao et al [20]’s work have a major 

disadvantage. Methods may not work well when the orientation of vessel is changed. 

However, it is robust to noise and artifacts in images. 

 

 This work proposes two methods that work even when the images are rotated. 

The first method combines vessels into a few clusters, then find the centroid of them 

and used it as the location of OD. The second one uses an improved version of Cao’s 

approach to detect OD even when the image is tilted while still preserve its 

robustness. 
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Chapter 3 

Methodology 

 

3.1 Approaches 

 

3.1.1 Vessel Clustering 

 

 Vessel Clustering is a new algorithm for clustering the main blood vessels in 

retinal images. Grouping vessels that are relatively close and have similar properties 

such as intensity and thickness are key concepts in our clustering algorithm. The 

purposed method aims to increase the correctness of Vessel Clustering, which is used 

to find the location of optic disc (OD). The algorithm is illustrated in figure 3.1. 

 

 

Figure 3.1: Vessel Clustering algorithm 

 

3.1.1.1 Input 

 

 Input to the algorithm is a color retinal image and vessels data extracted from 

it. Figure 3.2 shows segmented vessel of an input image. The segmentation algorithm 

breaks the vessel network in a retinal image into many segments at bifurcation (one 
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vessel splits into two) and crossover (two vessel crossing) as shown in figure 3.3. The 

data is points in Cartesian coordinate. Each point is a point in segment in the image. 

In addition to x, y position, a point also includes segment ID, thickness of segment at 

that point and intensity of green channel in the image as shown in table 3.1.  

 

 

(a) 

 

(b) 

Figure 3.2: (a) input image, (b) segmented vessel 

 

 

Figure 3.3: Vessel segmentation breaks vessel at junctions. Blue dots are vessel 

points. The green dots mark segment’s end and the numbers are segments’ ID. 
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Table 3.1: A part of input to the algorithm. Each row is a point in a retinal image. 

Segment ID X Y Thickness Green value 

1 288.9723 19.1595 3.8472 2 

1 288.0513 19.5249 3.8451 39 

1 287.2596 20.0747 4.4436 39 

1 286.5719 20.7743 3.9126 103 

2 285.9628 21.5892 3.163 124 

2 285.4069 22.4847 2.5235 124 

2 284.8787 23.4264 3.206 115 

  

3.1.1.2 Remove low contrast segment 

 

 Contrast of a segment is a key feature. Segments with low contrast usually 

insignificant and will be removed. Contrast of a segment shows how the segment 

stands out from background. The process to calculate contrast of each segment is as 

followed: At each point, an area in input image around the point with dimension 

2*thickness+1 × 2*thickness+1 pixels is selected. The mean of green value in the area 

is calculated and used as the threshold to identify background pixels in which brighter 

than vessel pixels. Then, the mean of green value of background pixels is calculated. 

The difference between green value of the point and the mean of background pixels is 

kept as difference in green (DG) of the point. Means of DG of all points in a segment 

is used as contrast of that segment. The threshold of DG value is the difference 

between mean and standard deviation value of DG values of all points. Segments with 

lower DG value than the threshold are removed. Let consider an example shown in 

figure 3.4. Vessel pixels are gray-shaded pixels and the others are background. 

Numbers are green value of each pixel. Let 45 be the green value of the point. The 

thickness of the point is 3 so the size of window is 7 × 7 pixels. The threshold is mean 

of green value of every point which is 71.87. The mean of background pixels is 82.6. 

As a result, the DG of this point is 37.6.  Figure 3.5 shows a comparison between 

plotted vessel data before and after this step. 
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Figure 3.4: A square patch centered at a focused point (red) of a vessel which has 

thickness of 3. 

 

 

(a) 

 

(b) 

Figure 3.5: (a) segmented vessel, (b) after remove low contrast segments 

 

3.1.1.3 Remove short segments 

 

 The length of a segment is also a key feature. Short segments usually are noise 

created in vessel segmentation step. The length of each segment is measured by 

consider a segment as a weighted complete graph with points as nodes and distance 

between nodes as weight of the edge. From the graph, minimum spanning tree is 

created. And total weight of the tree is length of the segment as illustrate in figure 3.6. 

Short segments are removed. The length of the vessels to be removed is equal to the 

difference between mean and 0.25 times standard deviation value of all segment’s 

length. Figure 3.7 shows a comparison between plotted vessel data before and after 

this step. 
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(a) 

 

(b) 

 

(c) 

Figure 3.6: (a) points in a segment, (b) complete weighted graph with distance 

between each pair of points as weight, (c) minimum spanning tree 

 

 

(a) 

 

(b) 

Figure 3.7: (a) after remove low contrast segment, (b) after remove short segments 

 

3.1.1.4 Group adjacent segments 

 

 Remaining segments are parts of significant segments. Distance between two 

segments is the distance between the closest pair of points from those two segments. 

Distance between every possible pairs of segments is calculated. Then, segments that 

stay closer than 10 pixels are merged into a cluster. Figure 3.8 shows a comparison 

between plotted vessel data before and after this step. 

 

 

(a) 

 

(b) 

Figure 3.8: (a) after remove short segments, (b) clusters. Segments in same cluster are 

marked with the same color. 
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3.1.1.5 Select thickest clusters and group adjacent clusters 

 

 Summation of thickness (SoT) of each point in a cluster is used to determine 

significant clusters. We selected 5 clusters with the most SoT as main clusters. At last, 

main clusters that stay together closer than 25 pixels are grouped together and become 

the output of the algorithm. Figure 3.9 shows a comparison between plotted vessel 

data before and after this step. 

 

 

(a) 

 

(b) 

 

(c) 

Figure 3.9: (a) clusters, (b) 5 clusters with the most SoT, (c) final clusters. Segments 

in same cluster are marked with the same color. 

 

3.1.1.6 OD location from final clusters 

 

 After final clusters are created, we uses the assumption of that the point that is 

closest to all cluster is the center of the OD [22] to conclude the location of OD. 

Figure 3.10 shows the result of applying method in [22] to final clusters. 
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(a) (b) (c) 

Figure 3.10: OD location from applying [22] to final clusters (a) original image, (b) 

final clusters, (c) OD location 

 

3.1.2 Rotational 2D Vessel Projection 

 

 

Figure 3.11: The overview of Rotational 2D Vessel Projection 

 

 The overview of the method is illustrated in figure 3.11. A grayscale image is 

obtained by extracting the green channel from the input image. The vessel 

segmentation algorithm is applied to obtain a binary image of vessels. OD location 

candidates come from result of Cao et al. [20] algorithm. Using our voting algorithm, 

the final location of OD in the retinal image can be concluded. The details of each 

step are presented in the following subsections. 
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3.1.2.1 Vessel segmentation 

 

 Vascular structure is an important feature used by our method. Thus, first we 

apply the vessel segmentation algorithm to extract vascular network from the 

grayscale retinal image. To extract the vessel, we perform top-hat filtering on 

complement of grayscale image with +-shaped structure to highlight vessel region. 

Then, Otsu’s method is used to calculate threshold value of intensity of filtered image 

and convert it into binary image. Figure 3.12 shows an example of this process.   

 

 

(a) 

 

(b) 

 

(c) 

Figure 3.12: Vessel segmentation (a) grayscale image (b) top-hat filtered image (c) 

vessel image 

 

3.1.2.2 Finding possible OD locations 

 

 We used an algorithm proposed by Cao et al. [20] to approximate OD 

location. Their assumption are, firstly the area around OD contains high density of 

vertical vessels and contains low density of horizontal vessels, and secondly OD is 

where the dark vessels lined on top of the bright area of the OD, thus produces high 

intensity variance. After getting vessel image from vessel segmentation, two 

morphological opening operations are performed to extract vessels in vertical and 

horizontal direction from the vessel image. 

 

 By subtracting number of vessel pixels in horizontal direction from vertical 

direction at different value of x’s, horizontal position of OD is found. Then, using 
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variance of image intensity along vertical line on that horizontal position, location of 

OD is obtained. Figure 3.13 illustrates Cao et al’s algorithm. 

 

 

(a) 

 

(b) 

 

(c) 

 

(d) 

 

(e) 

 

(f) 

Figure 3.13: Cao et al.’s method (a) segmented vessel, (b) horizontal vessel, (c) 

vertical vessel, (d) graph of area of vertical vessel minus horizontal vessel at each x-

position, (e) variance of intensity along x=a where a is x-position that is the highest 

peak (red line in (d)), (f) Result 
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3.1.2.3 Rotational 2D Vessel Projection 

 

 Cao et al.’s algorithm described in earlier section alone cannot be used with 

tilted image because changing in orientation invalidates relationship of vertical and 

horizontal vessel in their assumption. Figure 3.14 shows the result when the algorithm 

is used on tilted images.  

 

 

(a) 

 

(b) 

 

(c) 

 

(d) 

 

(e) 

 

(f) 

 

(g) 

 

(h) 

Figure 3.14: OD location from Cao et al.’s method on various angles in degree (a) -45 

(b) -25 (c) -5 (d) 15 (e) 35 (f) 55 (g) 75 (h) 95 

 

 As shown in figure 3.14, OD location from Cao et al.’s method is depended on 

the orientation of the image. However, in some appropriate angles as in figure 3.14 

(b)-(e), the method can locate OD correctly. Using this knowledge, the proposed 

method can localize OD on the tilted image by iteratively rotating the input image in 

small degree per step, for each iteration we repeat the following steps: apply Cao et 

al.’s algorithm, record the OD location result from Cao et al.’s algorithm, convert the 

OD coordinate obtained from Cao’s back by the same amount of degree to get the 

tentative OD coordinate, and record a region of a circle centered at this tentative OD 

coordinate.  After the algorithm ends, the regions where the circles are on the most is 

the location of OD.  From the voting result from tentative OD coordinate, the 
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algorithm can roughly approximate the area in the image containing OD. The whole 

process may take time due to the number of iterations it needs to perform. To speed it 

up, the image’s width is downsized to 300 pixels while reserving the image’s aspect 

ratio. Then the image is patched to a square shape. In our experiment, the image is 

rotated from 0 until 180 degrees with increment of 5 degrees every iteration for every 

iteration.  According to our empirical study with 340 images from 4 public databases: 

DRIVE [2], STARE [21], DIARETDB0 [24] and DIARETDB0 [25], OD in 339 

images lie in the middle-height of the image. As a result, we eliminate the locations 

that do not meet this requirement. Steps of our voting algorithm are described in 

algorithm 3.1. Figure 3.15 illustrates steps in Rotational 2D Vessel Projection 

algorithm.  

 

Figure 3.15: Rotational 2D Vessel Projection algorithm  
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Algorithm 3.1: Rotational 2D Vessel Projection. 

 

  

(   )    (     (  )      (  )) 

       ⁄  
     ⁄    

         (    ⁄ ) 

  √        

        

              ⁄  
      ⁄         

 (   )   (   )   (           ) 

 (           )   {   (     )  (     )    

           
 

Input: Grayscale retina image I 
inc = 5 
r: approximate optic disc radius = 20 
w: image width = 300 
θ     
Voting score matrix Vw×w  w  h       l v lue   ’  
Wh le θ <  8   
  . I’   R    e I   u  er l  kw  e by θ degree w  h b l  e r 
interpolation 
  . (  b)  OD l        re ur ed by  pply  g C  ’   lg r  hm    I’. 
 3. if b < w/4 or b > 3w/4 then  
  θ   θ       
  continue 
    endif 
 4. Convert (a, b) to polar coordinate system originated at (w/2, w/2). 

    By 

 5. R    e (ρ θ2) back to original angle 

 6. C  ver  (ρ θ2) back to Cartesian coordinate system 

 7. Compute the score and update the voting score 

     Where 

 8. θ   θ       
endwhile 
9. m = max(V) 
10.   {(   )     |  (   )     
11.    ∑   | | 
return C 
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3.2 Experimental setup 

 

3.2.1 Vessel Clustering 

 

 Images from the Structured Analysis of the Retina (STARE) research project 

[21] are used to evaluate performance of OD localization by the proposed Vessel 

Clustering algorithm and Rotational 2D Vessel Projection. STARE images are 

provided by the Shiley Eye Center at the University of California, San Diego, and by 

the Veterans Administration Medical Center in San Diego. The resolution of all 

images is 700×605 pixels. There are 81 images in total, taken from both healthy and 

unhealthy eyes. Images from the healthy group are clear. Vessels and OD are 

prominent and the background is evenly illuminated. On the other hand, the unhealthy 

ones’ vessels are not clear, often difficult to be identified. They also contain 

abnormalities; some of them are bright and in circular shape like OD. In some cases, 

the OD is also severely damages and loss its round shape. Some images are badly 

illuminated; cause the vessel and OD to fade which is hard to find even with the 

human eye. Figure 3.16 shows example of images from STARE database. 

 

 

(a) 

 

(b) 

 

(c) 

Figure 3.16: Images from STARE database. (a) healthy image, (b), (c) unhealthy 

images 

 

 Using the assumption of that the point that is closest to all cluster is the center 

of the OD [22], the Vessel Clustering algorithm is evaluated [23] by finding the 

accuracy of getting the location of OD. This algorithm is implemented and executed 
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using MATLAB running on a Microsoft Windows 7 desktop with Intel Core i7-

4500U @3GHz with 8GB RAM. 

 

3.2.2 Rotational 2D Vessel Projection 

 

 In addition to the dataset used with Vessel Clustering described in section 

4.1.1, three additional datasets: DRIVE [2], DIARETDB0 [24], and DIARETDB1 

[25], which consists of 40, 130 and 89 images, respectively,  are used to evaluate 

performance of Rotational 2D Vessel Projection algorithm. With 81 images from 

STARE, a total of 340 retinal images were used. DRIVE images were obtained from a 

diabetic retinopathy screening program in Netherlands. DIARETDB0 and 

DIARETDB1 are provided by Laboratory of Information Processing, Lappeenranta 

University of Technology. The emulation of image rotation is also performed to 

validate the performance of the algorithm on rotated images. To emulate rotation of 

retinal images, the input images are patched to square-shape and rotated to 8 angles: 

2, 29, 58, 75, 103, 123, 142, and 172 degree counter-clockwise using bilinear 

interpolation. These angles are chosen at random. The algorithm’s performance is 

compared to that of Cao et al. Rotational 2D Vessel Projection algorithm is 

implemented and executed using MATLAB running on a Microsoft Windows 7 

laptop with Intel Core i7-4500U @3GHz with 8GB RAM. 
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Chapter 4  

Result and Discussion 

 

 In this chapter we report the result and discussion from two approaches 

presented in the previous chapter. For evaluation scheme, the detected location of OD 

is considered correct if it is within the OD region of the groundtruth. Results from two 

approaches are described in the following sections. 

 

4.1 Results of Vessel Clustering algorithm  

  

 Using the proposed Vessel Clustering algorithm to locate the OD in retinal 

images from STARE dataset, the accuracy and computational time per image obtained 

are 92.59 % and 76 seconds per image.  The examples of location obtained from our 

first approach are provided in Figure 4.1 

 

  

(a) (b) 

  

(c) (d) 

Figure 4.1: The OD location presented as the blue X mark from the Vessel Clustering. 
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 Despite very high performance of the proposed Vessel Clustering algorithm 

(92.59%), it is still not perfect. There are three causes of imperfection of the 

algorithm.  

 

 First, since this algorithm’s input is the segmented vessel data, it relies on 

vessel segmentation algorithm. The proposed algorithm can resist some amount of 

vessel segmentation errors such as detecting abnormalities as vessels by removing 

short and low contrast segments as stated in methodology. However, in some images, 

the disease damages the eye so much so almost all vessels and OD disappear or are 

almost completely unrecognizable resulting incorrect results.  

 

  

(a) (b) 

  

(c) (d) 

Figure 4.2: Incorrect Vessel Clustering result from segmentation error (a) original 

images, (b) vessel data, (c) final clusters, (d) OD location 

 

 Second, normally, there are few, usually two, main branches of vessel 

emerged from OD, thus the assumption is the centroid of vessel clusters (branches) is 

the position of OD. However, in some images, the vessels inside OD are connected 

into one branch of vessel which makes it impossible for the algorithm to work. 
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(a) (b) (c) 

Figure 4.3: Incorrect Vessel Clustering result from a conflict with the assumption (a) 

original images, (b) final clusters, (c) OD location 

  

 Lastly, since this algorithm uses parameters such as the threshold of DG, 

vessel length and distance between vessel segments to remove noise and grouping 

vessel segments, then value of these parameters can be imperfect, result in error in 

clustering steps. 

 

4.2 Results of Rotational 2D Vessel Projection algorithm 

 

For Rotational 2D Vessel Projection, the accuracy of Rotational 2D Vessel 

Projection algorithm on STARE database is 87.65 % with average computation time 

of 2.11 seconds per image. Figure 4.4 shows OD locations detected using Rotational 

2D Vessel Projection on images from STARE database. 

 

 

(a) 

 

(b) 

 

(c) 

Figure 4.4: Rotational 2D Vessel Projection result. The blue crosses mark the OD. 
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Additional experiments are performed to evaluate performance on tilted images with 

DRIVE [2], STARE [21], DIARETDB0 [24] and DIARETDB1 [25] database. In all 

angles, the method is able to correctly locate the OD with average accuracy 94.93% 

and average 2.12 seconds computing time. Table 4.1 shows the results of the proposed 

method compare to the base method --Cao et al.’s.  As it was proven experimentally 

that it is superior to other methods ([9], [13], [14], [15], [19], [26]) in terms of 

accuracy and computation time. Because our proposed method outperforms Cao’s, it 

is thus better than those methods as well. 

 

Table 4.1: Accuracy comparison in percent 

Tilt angle (degree)
 DRIVE STARE DIARETDB0 DIARETDB1 

Cao’s RVP Cao’s RVP Cao’s RVP Cao’s RVP 

2 100 100 71.60 82.72 91.36 97.69 92.59 98.88 

29 87.5 100 64.20 83.95 88.89 97.69 90.12 98.88 

58 15 100 32.10 86.42 35.80 96.92 23.46 98.88 

75 12.5 100 25.93 83.95 17.28 96.15 4.94 98.88 

103 10 100 24.69 85.19 13.58 96.15 2.47 98.88 

123 20 100 28.40 85.19 37.04 96.15 19.75 98.88 

142 80 100 60.49 85.19 79.01 96.92 82.72 98.88 

172 100 100 60.49 86.42 85.19 97.69 87.65 98.88 

Average 53.125 100 45.99 84.88 56.02 96.92 50.46 98.88 

 

 Figure 4.5 shows examples of correctly located OD using Rotational 2D 

Vessel Projection. As shown in Table 4.1, effect of rotation on the performance of the 

algorithm is very small, thus the algorithm is robust even when retinal image is tilted.  

 

 Despite high performance, there are some errors. The errors are due to three 

factors: uneven illumination, distractions from pathological changes, and uneven 

background level. Figure 4.6 shows examples of images which OD is located 

incorrectly. Figure 4.6a, vessel segmentation failed to extract vessel structure 

correctly due to uneven illumination which affect segmentation of vessels. In figure 

4.6b, distraction is falsely segmented as vessel, while in figure 4.6c, the distraction 
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causes high intensity variance near vessels. Figure 4.6d shows an image with uneven 

background level, cause high intensity variance at the edge of retina. 

 

 

(a) 

 

(b) 

 

(c) 

 

(d) 

 

(e) 

 

(f) 

Figure 4.5: Examples of successful cases 

 

 

(a) 

 

(b) 

 

(c) 

 

(d) 

Figure 4.6: Examples of unsuccessful cases (a) uneven illumination (b) distraction 

detected as vessels (c) distraction with high contrast near thick vessel (d) uneven 

background level 
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Chapter 5 

Conclusion and Recommendation 

 

 In this thesis, we proposed a new clustering algorithm which is designed 

specifically to group the main blood vessels into clusters. These clusters represent 

main branches of blood vessels. The proposed method uses length, intensity, and 

thickness of the vessels to detect main vessels and uses distances between vessels to 

cluster two vessels or clusters that are close together. With assumption that the 

centroid of the cluster is the location of OD, we find that the accuracy of the 

algorithm in getting the location of the OD of images from STARE dataset is 92.59% 

with 76 seconds computation time. 

 

 Furthermore, inspired by projection idea and its limitations, a new method for 

optic disc localization is also presented. In this work, a majority voting of OD location 

reported based on vessel structure and intensity variance in various angles is used. 

The method is able to localize the OD accurately despite rotational angle of the 

image. The 94.93% accuracy on 8 random angles of 340 images from 4 public 

datasets (2,720 images in total) with only slightly more than 2 seconds computing 

time per image shows that the algorithm is very robust and fast. 

 

 Although the performance of both algorithms is high, there are still rooms for 

improvements. Both algorithms could use better algorithms for determining value of 

parameters. Computation time of Vessel Clustering can be improved by optimizing 

the step of measuring distance between segments. Rotational 2D Vessel Projection 

could use better vessel segmentation algorithm that capable to detect and remove 

distraction and can solve the problem of uneven background. It is also possible to use 

the algorithm to specifying region of interest to detect boundary of retina in an image.  
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Appendix A 

Vessel Clustering MATLAB source code 

 

findDG.m 

 

function findDG 

     

    close all, clear all; 

    vessel_path = '../input/vessels/'; 

 

    strDir       = strcat(vessel_path,'im*.mat'); 

    listFile     = dir(strDir); 

    listFileCell = [{listFile.name}']; 

    fileIDList   = strtok(listFileCell, 'im*.'); 

    listFileCell = strcat(vessel_path,listFileCell); 

 

    for i = 1 : size(fileIDList, 1) 

        imageNumber = i; 

        imageTxt = fileIDList{imageNumber, 1}; 

        fileName = listFileCell{imageNumber, 1}; 

         

        imname = strcat('im', imageTxt); 

        RawData = load(strcat('../output/', imname,'.csv')); 

        dataSize = size(RawData); 

        rawNumberOfPoints = dataSize(1); 

        oimg = imread(strcat('../input/original/', imname,'.jpg')); 

        oimg_green = oimg(:, :, 2); 

        [height width depth] = size(oimg_green); 

 

        DG = NaN(1,rawNumberOfPoints); 

 

        window = NaN(20); 

        for i=1:rawNumberOfPoints 

            points = RawData(i,[2,3,4,5]); 

            points = round(points); 

            x = points(1); 

            y = points(2); 
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            thickness = points(3); 

            green = points(4); 

     

            if(isnan(thickness)) thickness=5; end         

     

            xo = x-thickness; 

            yo = y-thickness; 

            xf = x+thickness; 

            yf = y+thickness; 

     

            if(xo<1) xo = 1;end 

            if(yo<1) yo = 1;end 

            if(xf>width) xf = width;end 

            if(yf>height) yf = height;end 

     

            window = oimg_green((yo:yf),(xo:xf)); 

     

            thres = mean(mean(window)); 

            meanBG = mean(window(window > thres)); 

            DG(i) = abs(green - meanBG); 

        end 

        RawData(:,6) = DG(:); 

 

        imname = strcat('../output/',imname); 

        csvwrite (strcat(imname,'DG.csv'),RawData); 

         

    end 

end 

     

vesselClustering.m 

 

function vesselClustering(imnum) 

%clear all; 

%imnum =  

 

if(imnum < 10) 

    imname = strcat('im000',int2str(imnum)); 

elseif(imnum < 100) 
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    imname = strcat('im00',int2str(imnum)); 

elseif(imnum<1000) 

    imname = strcat('im0',int2str(imnum)); 

end 

 

 

RawData = load(strcat(imname,'DG.csv')); 

 

dataSize = size(RawData); 

rawNumberOfPoints = dataSize(1); 

rawGreen = RawData(:,6); 

 

% find threshold 

[mu sigma] = normfit(rawGreen); 

%remove junk 

nOfVessel = RawData(end,1); 

gOfVessel = zeros(1,nOfVessel); 

j=1; 

%Summation of green value of each vessel 

while (j<= rawNumberOfPoints) 

    gOfVessel(RawData(j,1)) = gOfVessel(RawData(j,1)) + rawGreen(j); 

    j = j + 1; 

end 

%Find number of points of each vessel 

nOfPoints = zeros(1,nOfVessel); 

for i=1:nOfVessel 

    nOfPoints(i) = histc(RawData(:,1),i); 

end 

gOfVessel = gOfVessel./nOfPoints; 

%mark the vessels that green outside the range 

for i=1:nOfVessel 

    if(gOfVessel(i)<mu-sigma) 

        gOfVessel(i) = -1; 

    end 

end 

%delete the vessels that green outside the range 

for j = 1:nOfVessel 

    if(gOfVessel(j)==-1) 

        i=1; 
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        while(i<=rawNumberOfPoints) 

            if(RawData(i,1)==j) 

                RawData(i,:)=[]; 

                i=i-1; 

                rawNumberOfPoints = rawNumberOfPoints-1; 

            end 

            i=i+1; 

        end 

    end 

end 

 

dataSize = size(RawData); 

rawNumberOfPoints = dataSize(1); 

 

%find number of vessel 

vnum=1; 

oldVnumList = unique(RawData(:,1)); 

pointNum=1; 

i=1; 

while i<=numel(oldVnumList) 

    if(pointNum > rawNumberOfPoints) 

        break; 

    elseif(RawData(pointNum,1)==oldVnumList(i)) 

        RawData(pointNum,1)=vnum; 

        pointNum = pointNum+1; 

    else 

        i=i+1; 

        vnum=vnum+1; 

    end 

end 

numberOfVessel = vnum; 

 

%find number of points in a vessel 

nOfPointsInVessel = []; 

for i=1:numberOfVessel 

    nOfPointsInVessel(i) = histc(RawData(:,1),i); 

end 

 

%Find length of each vessel 
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vesselLength = NaN(numberOfVessel,1); 

i=1; 

for vnum=1:numberOfVessel 

    vesselPoints = zeros(1,2); 

    while(i<=rawNumberOfPoints) 

        if(RawData(i,1)==vnum) 

            point = [RawData(i,2) RawData(i,3)] ; 

            vesselPoints = cat(1,vesselPoints,point); 

            i = i+1; 

        elseif(RawData(i,1)>vnum) 

            vesselPoints(1,:)=[]; 

            vesselLength(vnum) = getVesselLength(vesselPoints); 

            break; 

        end 

    end 

end 

vesselPoints(1,:)=[]; 

vesselLength(vnum) = getVesselLength(vesselPoints); 

vesselNumberList = (1:numberOfVessel); 

 

[mu sigma] = normfit(vesselLength); 

threshold = mu-sigma/2 

 

%mark the vessel to be deleted 

for(i=1:numberOfVessel) 

    if(vesselLength(i)<threshold) 

        vesselNumberList(i)=-1; 

    end 

end 

 

thresholdedNumberOfPoints = rawNumberOfPoints; 

thresholdedVesselLength = vesselLength; 

thresholdedNumberOfVessel = numberOfVessel; 

thresholdedData = RawData; 

 

%delete shorter-than-threshold vessel 

for(j = 1:numberOfVessel) 

    if(vesselNumberList(j)==-1) 

        i=1; 
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        while(i<=thresholdedNumberOfPoints) 

            if(thresholdedData(i,1)==j) 

                thresholdedData(i,:)=[]; 

                i=i-1; 

                thresholdedNumberOfPoints = 

thresholdedNumberOfPoints-1; 

            end 

            i=i+1; 

        end 

    end 

end 

j=1; 

 

%delete length of shorter-than-threshold vessel 

while(j<=thresholdedNumberOfVessel) 

    if(thresholdedVesselLength(j)<threshold) 

        thresholdedVesselLength(j)=[]; 

        nOfPointsInVessel(j)=[]; 

        j=j-1; 

        thresholdedNumberOfVessel = thresholdedNumberOfVessel -1; 

    end 

    j=j+1; 

end 

 

%vessel is 3D matrix where 

%vessel(i,j,1) means x value of jth point of ith vessel and 

%vessel(i,j,2) means y value of jth point of ith vessel 

 

vessel = zeros(thresholdedNumberOfVessel,max(nOfPointsInVessel),5); 

vessel(:,:,:)=NaN; 

n=1; 

i=1; 

for(j=1:thresholdedNumberOfPoints) 

    vessel(i,n,1) = thresholdedData(j,2); 

    vessel(i,n,2) = thresholdedData(j,3); 

    vessel(i,n,3) = thresholdedData(j,4); 

    vessel(i,n,4) = thresholdedData(j,5); 

    vessel(i,n,5) = thresholdedData(j,6); 

    if(n==nOfPointsInVessel(i)) 
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        i=i+1; 

        n=0; 

    end 

    n=n+1; 

end 

 

%find distance between every point to every vessel 

 

%distanceMatrix is an NxMxK matrix whern N and K is the number of 

vessel 

%and M is maximum length of vessel 

%The distanceMatrix(i,j,k) represents the distance between jth point 

of ith vessel to kth vessel 

%The distance is calculate by euclidean distance 

%Since I can't use pdist effectively (for now), I created a function 

distance2D(x1,y1,x2,y2) to calculate distance. 

 

distanceMatrix = 

NaN(thresholdedNumberOfVessel,max(nOfPointsInVessel),thresholdedNumbe

rOfVessel); 

%i,l = vessel number 

%j,m = point number in a vessel 

for(i=1:thresholdedNumberOfVessel) 

    for(j=1:nOfPointsInVessel(i)) 

        for(l=1:thresholdedNumberOfVessel) 

            d= zeros(nOfPointsInVessel(l),1); 

            for(m=1:nOfPointsInVessel(l)) 

                d(m) = 

distance2D(vessel(i,j,1),vessel(i,j,2),vessel(l,m,1),vessel(l,m,2)); 

            end 

            distanceMatrix(i,j,l) = min(d); 

        end 

    end 

end 

disBTWvessel = zeros(thresholdedNumberOfVessel); 

%i,k = vessel numbet 

%j = point number 

for(i=1:thresholdedNumberOfVessel) 

    for(k=1:thresholdedNumberOfVessel) 



 

54 

 

        if(i==k) 

            disBTWvessel(i,k) = NaN; 

        else 

            disBTWvessel(i,k) = min(distanceMatrix(i,:,k)); 

        end 

    end 

end 

 

thresholdDis = 15; 

pairList = [0,0]; 

 

%make a list of pairs of vessel that the distance between them is 

less than 10 

%the list's name is pairList 

for(i=1:thresholdedNumberOfVessel) 

    for(j=1:i) 

        if(disBTWvessel(i,j)<thresholdDis) 

            pair = [i,j]; 

            pairList = cat(1,pairList,pair); 

        end 

    end 

end 

pairList(1,:)=[] 

 

tmp = pairList; 

clusterNumber = 1; 

N=numel(tmp); 

 

%make clusters 

for i=1:N 

    if(tmp(i)~=NaN) 

        cluster=tmp(i); 

        c=1; 

        while(c<=numel(cluster)) 

            reference = cluster(c); 

            j=1; 

            while(j<=N) 

                if(tmp(j)==reference) %found 

                    if(j<=N/2) 
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                        [reference tmp(j+N/2)]; 

                        cluster = [cluster tmp(j+N/2)]; 

                        tmp(j,:)=NaN; 

                    else 

                        [reference tmp(j-N/2)]; 

                        cluster = [cluster tmp(j-N/2)]; 

                        tmp(j-N/2,:)=NaN; 

                    end 

                end 

                j=j+1; 

            end 

            c=c+1; 

        end 

        if(numel(cluster)>1) 

            clusterList{clusterNumber}=unique(cluster); 

            clusterNumber=clusterNumber+1; 

        end 

    end 

end 

 

maxEl = 0; 

for i=1:numel(clusterList) 

    [row num] = size(clusterList{i}); 

    if(maxEl < num) 

        maxEl = num; 

    end 

end 

 

clusterTable = NaN(numel(clusterList),maxEl); 

 

for i=1:numel(clusterList) 

    [row num] = size(clusterList{i}); 

    for j=1:num 

        clusterTable(i,j) = clusterList{i}(1,j); 

    end 

end 

clusterTable 

 

pairedVesselNumberList = unique(pairList); 
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%create list of number of single vessel. => singleVesselNumberList 

singleVesselNumberList = [1:thresholdedNumberOfVessel]; 

for(i=1:numel(pairedVesselNumberList)) 

    j=1; 

    while(j<=numel(singleVesselNumberList)) 

        if(pairedVesselNumberList(i)==singleVesselNumberList(j)) 

            singleVesselNumberList(j)=[]; 

        end 

        j=j+1; 

    end 

end 

singleVesselNumberList 

 

finalAnswer = zeros(1,6); 

size(finalAnswer); 

 

nOfVessel = 

numel(pairedVesselNumberList)+numel(singleVesselNumberList); 

 

%put single vessels into final answer 

%i = single vessel's number 

%point = [vesselNumber,x,y,thickness,length] 

finalVesselNumber = 1; 

[row col depth] = size(vessel); 

for(i=1:numel(singleVesselNumberList)) 

    for(j=1:thresholdedNumberOfVessel) 

        if(j==singleVesselNumberList(i)) 

            for(k=1:nOfPointsInVessel(j)) 

                point = [finalVesselNumber 

reshape(vessel(j,k,:),[1,depth])]; 

                finalAnswer = cat(1,finalAnswer,point); 

            end 

        end 

    end 

    finalVesselNumber=finalVesselNumber+1; 

end 

 

[row col]=size(clusterTable); 
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nOfClusters = row; 

%put clusters into final answer 

%i = cluster's number 

%j = number of vessel inside the ith cluster 

for(i=1:row) 

    for(j=1:col) 

        vnum = clusterTable(i,j); 

        if(isnan(vnum)) 

            break 

        else 

            for(k=1:nOfPointsInVessel(vnum)) 

                point = [finalVesselNumber 

reshape(vessel(vnum,k,:),[1,depth])]; 

                finalAnswer = cat(1,finalAnswer,point); 

            end 

        end 

    end 

    finalVesselNumber=finalVesselNumber+1; 

end 

finalAnswer(1,:)=[]; 

 

finalVesselNumber=finalVesselNumber-1; 

 

%clusterNoOfVessel 

 

%Since the final answer consists of many single vessels first then 

many 

%clusters later, we gonna make a list of length of clusters by put 

the 

%length of single vessels to the list first then find and put the 

length 

%of clusters. 

 

%put the length of single vessels to the list 

clusterLengthList = NaN(1,finalVesselNumber); 

for i=1:numel(singleVesselNumberList) 

    

clusterLengthList(i)=thresholdedVesselLength(singleVesselNumberList(i

)); 
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end 

start = i; 

%find and put the length of clusters 

for n=1:nOfClusters 

    aCluster = clusterTable(n,:); 

    aCluster = aCluster(~(isnan(aCluster))); 

    nOfVessel = numel(aCluster); 

    clusterGraph = zeros(nOfVessel); 

    for i=1:nOfVessel 

        for j=1:i 

            if(i~=j) 

                clusterGraph(i,j) = 

disBTWvessel(aCluster(i),aCluster(j)); 

            end 

        end 

    end 

    cSparse = sparse(clusterGraph); 

    [ST,pred] = graphminspantree(cSparse); 

     

    clusterLengthList(start+n) = sum(sum(full(ST)))+ 

sum(thresholdedVesselLength(aCluster)); 

end 

clusterLengthList 

 

%find summation of thickness in each cluster. 

 

data = finalAnswer; 

dataSize = size(data); 

numOfCluster = data(end,1); 

 

%prepare some data 

[nOfCluster nOfVessel] = size (clusterTable); 

tmp = NaN(numel(singleVesselNumberList),nOfVessel); 

tmp(:,1) = singleVesselNumberList; 

clusterTable2 = [tmp ;clusterTable]; 

 

clusterNumberList = data(1:dataSize,1)'; 

clusterXList = data(1:dataSize,2)'; 

clusterYList = data(1:dataSize,3)'; 



 

59 

 

clusterNumberOfPoints = dataSize(1); 

clusterThickness = data(1:dataSize,4)'; 

cnum = 1; 

thickSum = 0; 

count=0; 

 

%Make a list of summation of thickness of each clusters => 

clusterThicknessList 

for i=1:clusterNumberOfPoints 

    if(clusterNumberList(i)==cnum) 

        if(~isnan(clusterThickness(i))) 

            thickSum = thickSum + clusterThickness(i); 

        end 

    else 

        clusterThicknessList(cnum)=thickSum; 

        count=0; 

        thickSum = clusterThickness(i); 

        cnum = clusterNumberList(i); 

    end 

end 

clusterThicknessList(cnum)=thickSum; 

 

mainClusterThicknessList = clusterThicknessList; 

mainClusterLengthList = clusterLengthList; 

 

%find thickness threshold () 

tmp = []; 

tmp = sort(clusterThicknessList,'descend'); 

nOfElement = numel(tmp); 

 

if(nOfElement>=6) 

    thicknessThreshold = tmp(6) 

    i=1; 

    while i<=numel(mainClusterThicknessList) 

        if(mainClusterThicknessList(i)<=thicknessThreshold) 

            mainClusterThicknessList(i)=[]; 

            mainClusterLengthList(i)=[]; 

            clusterTable2(i,:)=[]; 

        else 
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            i=i+1; 

        end 

    end 

    i=1; 

     

    %put thicker-than-threshold clusters to mainCluster 

     

    mainClusterNumber = 0; 

    mainCluster = zeros(1,6); 

    for(i=1:numel(clusterThicknessList)) 

        if(clusterThicknessList(i)>thicknessThreshold) 

            mainClusterNumber = mainClusterNumber + 1; 

            for(k=1:clusterNumberOfPoints) 

                if(data(k,1)==i) 

                    point = [mainClusterNumber,data(k,2:end)]; 

                    mainCluster = cat(1,mainCluster,point); 

                end 

            end 

        end 

    end 

    mainCluster(1,:)=[]; 

     

else 

    mainCluster = data; 

end 

 

%Find distance between each cluster disBTWcluster 

clusterTable2(all(clusterTable2==0,2),:)=[]; 

[nOfCluster nOfVessel]=size(clusterTable2) 

disBTWcluster=NaN(nOfCluster); 

for i=1:nOfCluster 

    for j=1:i 

        if(i~=j) 

            cDisList=[]; 

            for k=1:nOfVessel 

                if(~isnan(clusterTable2(i,k))) 

                    vlist = clusterTable2(j,:); 

                    vlist(isnan(vlist))=[];    

                    vDisList = []; 
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                    for ii=1:numel(vlist) 

                        vDisList(ii) = 

disBTWvessel(clusterTable2(i,k),vlist(ii)); 

                    end 

                    cDisList(k) = min(vDisList); 

                else 

                    break; 

                end 

            end 

            disBTWcluster(i,j)=min(cDisList); 

        end 

    end 

end 

 

thresholdDis = 25; 

pairList = [0,0]; 

%make a list of pairs of cluster that the distance between them is 

less 

%than 25. the list's name is pairList 

for(i=1:nOfCluster) 

    for(j=1:i) 

        if(disBTWcluster(i,j)<thresholdDis) 

            pair = [i,j]; 

            pairList = cat(1,pairList,pair); 

        end 

    end 

end 

pairList(1,:)=[] 

 

pairedClusterNumberList = unique(pairList); 

 

singleClusterNumberList = [1:nOfCluster]; 

for(i=1:numel(pairedClusterNumberList)) 

 j=1; 

 while(j<=numel(singleClusterNumberList)) 

 

 if(pairedClusterNumberList(i)==singleClusterNumberList(j)) 

   singleClusterNumberList(j)=[]; 

  end 
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  j=j+1; 

 end 

end 

singleClusterNumberList 

 

 

tmp = pairList; 

superClusterNumber = 1; 

N=numel(tmp); 

 

%make superClusters 

for i=1:N 

    if(tmp(i)~=NaN) 

        superCluster=tmp(i); 

        c=1; 

        while(c<=numel(superCluster)) 

            reference = superCluster(c); 

            j=1; 

            while(j<=N) 

                if(tmp(j)==reference) %found 

                    if(j<=N/2) 

                        [reference tmp(j+N/2)]; 

                        superCluster = [superCluster tmp(j+N/2)]; 

                        tmp(j,:)=NaN; 

                    else 

                        [reference tmp(j-N/2)]; 

                        superCluster = [superCluster tmp(j-N/2)]; 

                        tmp(j-N/2,:)=NaN; 

                    end 

                end 

                j=j+1; 

            end 

            c=c+1; 

        end 

        if(numel(superCluster)>1) 

            

superClusterList{superClusterNumber}=unique(superCluster); 

            superClusterNumber=superClusterNumber+1; 

        end 
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    end 

end 

 

maxEl = 0; 

for i=1:numel(superClusterList) 

    [row num] = size(superClusterList{i}); 

    if(maxEl < num) 

        maxEl = num; 

    end 

end 

 

superClusterTable = NaN(numel(superClusterList),maxEl); 

 

for i=1:numel(superClusterList) 

    [row num] = size(superClusterList{i}); 

    for j=1:num 

        superClusterTable(i,j) = superClusterList{i}(1,j); 

    end 

end 

superClusterTable 

 

data = mainCluster; 

 

[nOfSupercluster nOfSubcluster] = size(superClusterTable); 

tmp = NaN(numel(singleClusterNumberList),nOfSubcluster); 

tmp(:,1) = singleClusterNumberList'; 

superClusterTable=[tmp;superClusterTable]; 

 

%Put points from mainCluster to superCluster 

[nOfSupercluster nOfSubcluster] = size(superClusterTable); 

[nOfPoints col] = size(data); 

superCluster = zeros(1,col); 

for suCnum=1:nOfSupercluster 

    for cNum=1: nOfSubcluster 

        if(isnan(superClusterTable(suCnum,cNum))) 

            break; 

        else 

            for i=1:nOfPoints 

                if(data(i,1)==superClusterTable(suCnum,cNum)) 
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                    point = [suCnum data(i,2:end)]; 

                    superCluster = cat(1,superCluster,point); 

                end 

            end 

        end 

    end 

end 

superCluster(1,:)=[]; 

 

mainCluster = superCluster; 

size(mainCluster); 

resultPath = 

strcat('C:\Users\pongsate1\Documents\MATLAB\output\',imname); 

save (resultPath, 'mainCluster'); 

draw_clusteredVessels(imname); 

 

getVesselLength.m 

 

function length = getVesselLength(vesselPoints) 

%getVesselLength find length of a vessel 

%by considers the point(x,y) in a vessel as a node of a weighted 

complete  

%graph which distance between each points in a graph represented by 

weight 

%of the edge between them. Then find a minimum spanning tree of the 

graph  

%which represent how the points form a vessel. The summation of 

weight in 

%the tree is the length of the vessel 

 

[row col]=size(vesselPoints); 

v1graph = zeros(row); 

for i=1:row 

    for j=1:i 

        if(i~=j) 

            v1graph(i,j) = 

distance2D(vesselPoints(i,1),vesselPoints(i,2),vesselPoints(j,1),vess

elPoints(j,2)); 
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        end 

    end 

end 

 

%view(biograph(v1graph,[],'ShowArrows','off','ShowWeights','on')) 

v1sparse = sparse(v1graph); 

[ST,pred] = graphminspantree(v1sparse); 

 

length = sum(sum(full(ST)));     

 

distance2D.m 

 

function d = distance2D(x1,y1,x2,y2) 

%This function find distance between 2 points in 2D 

%Input 4 number x and y of 2 points output the distance 

 

d = sqrt((x1-x2)^2 + (y1-y2)^2); 

return; 

 

draw_clusteredVessels.m 

 

function draw_clusteredVessels(imname) 

    %% drawing the cluster of vessel by different colors 

     

    %% Define all path 

    vessel_path = 'C:\Users\pongsate1\Documents\MATLAB\output\'; 

  

    % define color array 

    color_array = ['r', 'g', 'b','c','m','y','k']; 

    imageNo = strcat(imname,'.mat'); 

    disp('** Load Data'); 

    vessels = loadVessels(vessel_path, imageNo); 

     

    % Merge sub vessels that have connection 

    fig = figure; 

    for m = 1: length(vessels) 

        eV = vessels(1,m);        % access matrix of vessels 

        eVx = eV.M(:,1)';         % access x-coordinates 
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        eVy = eV.M(:,2)';         % access y-coordinates 

        mod_value = mod(m, 7); 

        if (mod_value == 0) 

            mod_value = 7; 

        end 

         

        hold on; 

        colorTxt = strcat('.', color_array(mod_value)); 

        plot(eVx, eVy, colorTxt, 'LineWidth', 1, 'Tag', num2str(m)); 

    end 

    grid off; 

    axis([1 700 1 605]); 

    hold off; 

    fileTxt = strcat(vessel_path,imname); 

    fileTxt = strcat(fileTxt,'.tif'); 

    saveas(fig, fileTxt, 'tif'); 

    fprintf('finish\n'); 

end 

 

function vessels = loadVessels(vesselPath, imageNumber) 

     

    fileName = strcat(vesselPath,imageNumber); 

    disp(['Starting  to load vessels from file: ', fileName]); 

    tic 

     

    v=load(fileName); 

    vesselsInFile = v.mainCluster; 

    dimensionOfVessels = size(vesselsInFile); 

    numberOfVessels = vesselsInFile(dimensionOfVessels(1), 1); 

     

    for vesselNumber=1:numberOfVessels 

        rows = find(vesselsInFile(:,1)== vesselNumber); 

        x = vesselsInFile(rows, 3); 

        y = vesselsInFile(rows, 2); 

        M = [x y]; 

         

        % Exclude duplicates: 

        M = unique(M, 'rows'); 

        vessels(vesselNumber).M = M; 
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    end 

    toc 

    disp(['Finished loading ', num2str(numberOfVessels), ' vessels 

from file ', fileName, '.']); 

end  
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Appendix B 

Rotational 2D Vessel Projection MATLAB source code 

 

ARfastOD.m 

 

function time = ARfastOD(debug,set,imnum,startingAngle) 

    [absImgPath,outPath] = getFilePath(set,imnum,startingAngle); 

    if strcmpi(absImgPath,'')==1 

        time = 0; 

        return; 

    end 

    img = imread(absImgPath); 

    tic 

    [row col] = size(img); 

    side = max(row,col/3); 

    ratio = 300/side; 

    img = imresize(img,ratio); 

    cimg = img; 

    img = img(:,:,2); 

 

    % make the image a square image. 

    [maxy,maxx] = size(img); 

    difxy = abs(maxx-maxy); 

    side = max(maxx,maxy); 

    sqImg = zeros(side,'uint8'); 

    addSp = round(difxy/2); 

    if(maxx > maxy) 

        if(mod(difxy,2)==0) 

            sqImg([addSp+1:side-addSp],:) = img; 

        else 

            sqImg([addSp:side-addSp],:) = img; 

        end 

    else 

        if(mod(difxy,2)==0) 

            sqImg(:,[addSp+1:side-addSp]) = img; 

        else 

            sqImg(:,[addSp:side-addSp]) = img; 
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        end 

    end 

    maxx = side; 

    maxy = side; 

    img = sqImg; 

    maxThick = 6; 

 

    img = imrotate(img,startingAngle,'bilinear','crop'); 

    [bwImg,filteredImg] = seg(img,maxThick); 

 

    % class Answer 

    Answer.xy=[0 0]; 

    Answer.angle=0; 

    Answer.meanVar = []; 

    Answer.diff = []; 

    answer(1) = Answer; 

 

    score = intmax(); 

    ansCount = 0; 

    cAngle = 0; 

    ODR = 20; 

    step = 5; 

    baseBwImg = bwImg; 

    baseImg = img; 

    outImg = zeros(maxy,maxx); 

     

    for i=0:180/step 

        angle = i*step; 

        bwImg = imrotate(baseBwImg,angle,'bilinear','crop'); 

        img = imrotate(baseImg,angle,'bilinear','crop'); 

        outImg = imrotate(outImg,angle,'bilinear','crop'); 

         

        [height,width] = size(bwImg); 

        [x,diff,bwH,bwV] = fastXPos(bwImg,maxThick); 

         

        imGray = img; 

        [y,meanVar] = fastYPos(imGray,x,ODR,maxThick);     

        mid = maxy/2; 

        % Draw circle at OD 
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        outSingle = zeros(maxy,maxx); 

        if(y > height/4 && y<3*height/4) 

            ansCount = ansCount+1; 

            outImg = drawCircle(outImg,1,x,y,ODR); 

        end 

         

        answer(i+1).xy = [x y]; 

        answer(i+1).angle = angle; 

        answer(i+1).meanVar = meanVar; 

        answer(i+1).diff = diff; 

         

        outImg = imrotate(outImg,-1*angle,'bilinear','crop'); 

    end 

 

    % find brightest spot in outImg which is OD 

    [I,J] = findBrightestSpot(outImg); 

    OD = [I,J]; 

    time = toc; 

     

    ref = [width/2 height/2]; 

    ODref = [OD(1)-ref(1) ref(2)-OD(2)]; %correct 

    [THETA,RHO] = cart2pol(ODref(1),ODref(2)); 

    minDist = intmax(); 

     

    %find the answer that is closest to the OD to find the correct 

angle. 

    for i=0:180/step 

        [THETA,RHO] = cart2pol(ODref(1),ODref(2)); 

        THETA = THETA+degtorad(answer(i+1).angle); 

        [ODrotated(1),ODrotated(2)] = pol2cart(THETA,RHO); 

        ODrotated = [ODrotated(1)+ref(1) ref(2)-ODrotated(2)]; 

        dist = 

distance2D(answer(i+1).xy(1),answer(i+1).xy(2),ODrotated(1),ODrotated

(2)); 

        if(dist < minDist) 

            ansIndex = i+1; 

            ansOD = answer(i+1).xy; 

            minDist = dist; 

        end 
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    end 

     

    if(debug == 1) 

        bwImg = baseBwImg; 

        img = baseImg; 

        [x,diff,bwH,bwV] = fastXPos(bwImg,maxThick); 

        [y,meanVar] = fastYPos(imGray,x,ODR,maxThick);     

        figure('units','normalized','outerposition',[0 0 1 1]), 

        subplot(2, 3, 1); 

            imshow(bwImg); 

            title('Vessel image') 

        subplot(2, 3, 4); 

            imshow(filteredImg); 

            title('top-hat filtered image') 

        subplot(2, 3, 6); 

            imshow(img); 

            hold on 

            ansOD = OD; 

            plot(ansOD(1),ansOD(2),'wx','MarkerSize',30); 

            plot(ansOD(1),[0:height],'r','LineWidth',maxThick); 

            plot([0:width],ansOD(2),'r','LineWidth',maxThick); 

            hold off 

            axis ij 

            title(['Result ' int2str(imnum) ' at ' 

int2str(answer(ansIndex).angle) ' degree']) 

        subplot(2, 3, 5); 

            imshow(outImg,[]); 

            hold on 

            plot(OD(1),OD(2),'rx','MarkerSize',30); 

            hold off 

            title([int2str(ansCount) '/' int2str(180/step) ' result 

candidates, best score = ' int2str(max(max(outImg)))]) 

        subplot(2, 3, 2); 

            imshow(bwH); 

            title('Horizontal Vessel') 

        subplot(2, 3, 3); 

            imshow(bwV); 

            title('Vertical Vessel') 

    else 
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        figure, 

        imshow(baseImg,[]); 

        hold on 

        

plot(OD(1),OD(2),'x','LineWidth',3,'MarkerSize',30,'MarkerEdgeColor',

'b','MarkerFaceColor','r'); 

        hold off 

        saveas(gcf,outPath); 

        close 

    end 

 

seg.m 

 

function [imgVessel,g2] = seg(img,maxThick) 

    G = img; 

    ig = imcomplement(G); 

    maxThick = maxThick/2; 

    if mod(maxThick,2)==0 maxThick = maxThick+1; end 

    maxThick = maxThick*2; 

     

    se = zeros(maxThick); 

    se(:,ceil(maxThick/2)) = 1; 

    se(ceil(maxThick/2),:) = 1; 

    g2 = imtophat(ig,se); 

    g2 = imadjust(g2); 

    level = graythresh(g2); 

    BW = im2bw(g2,level); 

    imgVessel = BW;  

 

drawCircle.m 

 

function outImg = drawCircle(img,grayLevel,x,y,r) 

    [imageSizeY imageSizeX] = size(img); 

    [columnsInImage rowsInImage] = meshgrid(1:imageSizeX, 

1:imageSizeY); 

    centerX = x; 

    centerY = y; 

    radius = r; 
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    circlePixels = (rowsInImage - centerY).^2 + (columnsInImage - 

centerX).^2 <= radius.^2; 

    img(circlePixels) = img(circlePixels)+grayLevel; 

    outImg = img; 

 

distance2D.m 

 

function d = distance2D(x1,y1,x2,y2) 

%This function find distance between 2 points in 2D 

%Input 4 number x and y of 2 points output the distance 

    d = sqrt((x1-x2)^2 + (y1-y2)^2); 

 

findBrightestSpot.m 

 

function [xOut,yOut] = findBrightestSpot(img) 

    brightestVal = max(max(img)); 

    thresImg = img==brightestVal; 

     

    [row col] = size(thresImg); 

    xs = 0; 

    ys = 0; 

    for i=1:row 

        for j=1:col 

            if(thresImg(i,j)==1)  

                xs = xs+j; 

                ys = ys+i;  

            end 

        end 

    end 

     

    xc = xs/sum(sum(thresImg)); 

    yc = ys/sum(sum(thresImg)); 

     

    xOut = xc; 

    yOut = yc; 
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fastXPos.m 

 

function [x,diff,bwH,bwV] = fastXPos(bwImg,maxThick) 

    se1 = strel('line',maxThick,0); 

    se2 = strel('line',maxThick,90); 

    bwV = imopen(bwImg,se2); 

    bwH = imopen(bwImg,se1); 

    [height,width] = size(bwImg); 

    nOfSlot = width/maxThick; 

    V = zeros(1,width); 

    H = zeros(1,width); 

    D = zeros(1,width); 

    for i=maxThick+1:width-maxThick 

        slotV = bwV(:,[i-maxThick i+maxThick]); 

        slotH = bwH(:,[i-maxThick i+maxThick]); 

        V(i)=sum(sum(slotV)); 

        H(i)=sum(sum(slotH)); 

        D(i)=V(i)-H(i); 

    end 

 

    [M,I] = max(D); 

     

    x = I; 

    diff = D; 

 

fastYPos.m 

 

function [y,meanVar] = fastYPos(imGray,I,ODR,maxThick) 

    [height,width] = size(imGray); 

    Var = NaN(1,height); 

    SV = zeros(1,height); 

    meanVar = Var; 

    for i=ODR+1:height-ODR-1 

        if(I-ODR <= 0) I = ODR+1; end 

        if(I+ODR >= width)  

            I = width - ODR ;  

        end 

        wGray = imGray([i-ODR:i+ODR],[I-ODR:I+ODR]); 
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        wGray = wGray(wGray>25); 

        Var(i) = var(double(wGray)); 

    end 

    for i=ODR+1:height-ODR 

        vv = Var(i-ODR:i+ODR); 

        meanVar(i) = mean(vv(~isnan(vv))); 

    end 

    [M,y] = max(meanVar); 

 


