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Abstract 

 

INVESTIGATION OF EFFECTIVE ELASTIC PROPERTIES OF FRAME-LIKE 

PERIODIC CELLULAR SOLIDS BY STRAIN-ENERGY-BASED 

HOMOGENIZATION 

 

by 

 

 

KASEM THEERAKITTAYAKORN 

 

 

B.Sc. in Biotechnology, King Mongkut's Institute of Technology Ladkrabang, 2005 

M.Sc. in Medical Science, Chulalongkorn University, 2009 

 

Periodic cellular solids are used in various applications such as tissue-engineering 

scaffolds, lightweight structural sandwich panels, energy absorption devices, and thermal 

insulating containers. When periodic cellular solids are used as load-bearing structures, the 

effective elastic properties of periodic cellular solids are of significant interest, and are among 

the main considerations of cellular solid design. The desired effective elastic properties of a 

periodic cellular solid can be obtained by appropriate selection of the base material and the 

topology of its unit cell. Homogenization methods can be used to calculate the effective elastic 

properties of a periodic cellular solid from its unit-cell structure and the finite element method 

can be used to analyze the unit cell. Many useful periodic cellular solids are frame-like 

structures. For such periodic cellular solids, beam elements can be used to accurately model 

their struts. In this study, the exact forms of the effective elastic constants of arbitrary frame-

like periodic cellular solids that can be modelled accurately by Euler beams are analytically 

derived by using the homogenization method based on equivalent strain energy. The exact 

forms are obtained in terms of some dimensionless factors, the characteristic length and volume 

of the unit cell, the area and moment of inertia of the struts, and Young’s modulus of the base 

material. In general, the dimensionless factors can be functions of the area and moment of 

inertia of the struts. However, in many practical cases, these factors are constant. When the 

dimensionless factors are constant, they can be determined by exact curve fitting using finite 

element results with different areas and moments of inertia of the struts. In these cases, the 

closed-form solutions of the effective elastic constants will be obtained from exact curve fitting. 

By using the closed-form effective elastic constants obtained from exact curve fitting, 

mechanical characteristics of periodic cellular solids with various unit-cell topologies can be 



 

iv 

 

determined. This allows advantages and disadvantages of different unit-cell topologies to be 

studied. The closed-form effective elastic constants also allow the effect of strut sectional 

properties on the effective elastic constants to be thoroughly investigated. In addition to the 

closed-form effective elastic constants obtained from the exact forms with exact curve fitting, 

the closed-form effective elastic constants can also be derived in a symbolic computation 

platform. In summary, by using the closed-form effective elastic constants, unit-cell topologies 

and strut sectional properties can be appropriately chosen to suit different applications. 

 

Keywords: Periodic cellular solid, Homogenization, Effective elastic property, Euler beam 

element 
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Chapter 1 

Introduction 

 

1.1 General 

 
Periodic cellular solids are cellular solids that are composed of repeating structures 

called unit cells (Fig. 1). The unit cells in a periodic cellular solids are joined to each other and 

regularly aligned to form the structure of the solid. Porous structures of cellular solids can 

provide advantageous properties such as light weight, low density, high permeability, low 

thermal conductivity, and high energy absorption. For periodic cellular solids, their complicated 

unit-cell structures can provide extraordinary properties over normal cellular solids. For 

instance, periodic cellular solids can exhibit extreme mechanical properties, such as Poisson’s 

ratio close to −1, 0, and 0.5 (Milton, 1992; Sigmund, 1995). Due to these special properties 

that are difficult or impossible to find in natural materials, periodic cellular solids can be very 

useful in various engineering applications and are of interest to researchers. 

 

Fig. 1 A periodic cellular solid and its unit cell. 

 

The properties of a periodic cellular solid depend on the base material and its unit cell 

topology. The desired effective elastic properties of a periodic cellular solid can be obtained by 

appropriate selection of the base material and the topology of its unit cell. There are a great 

variety of shapes that can be used as unit-cell topologies. Among them, polyhedrons are the 

shapes that are convenient to fabricate and use. A polyhedron is a 3D shape bounded by a set 

Unit cell

Periodic cellular solid
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of polygons that are joined at their edges to completely close a space. When polyhedrons are 

used as unit cells, they are often made of edges only in order that the resulting solids become 

open-cell structures. When unit cells are composed of only struts connected together at their 

ends, their periodic cellular solids resemble frame structures. Besides some common shapes, 

new topologies of unit cells can be designed and obtained from various methods in order to 

gain periodic cellular solids which possess desired properties. 

A periodic cellular solid will behave as a homogeneous material when there are a 

significantly large number of unit cells in the solid. If the number of unit cells in a periodic 

cellular solid is small, the solid will not behave as a homogeneous material. If, however, the 

number of unit cells is continuously increased, the behavior of the solid will converge to that 

of a homogeneous material, and the apparent elastic properties of the solid will converge to 

constants, which are its effective elastic properties. In other words, if the size of the unit cell is 

sufficiently small when compared to the size of the whole solid, the apparent properties will 

converge to the effective properties. The effective elastic properties are important mechanical 

properties of periodic cellular solids especially when the periodic cellular solids are used as 

load-bearing structures. 

The effective elastic properties of periodic cellular solids can be designed by changing 

their unit-cell topologies because their effective elastic properties are in fact defined by their 

unit cells. The effective elastic properties of periodic cellular solids can be determined from 

their unit cells by using homogenization methods (Suquet, 1987; Sigmund, 1995; Luxner, 

Stampfl, & Pettermann, 2005; Drago & Pindera, 2007). Generally, homogenization methods 

define the effective constitutive material law of a material as a relationship between some 

average stress and some average strain. The effective elastic constants can be obtained by 

analyzing the material under appropriate boundary conditions at far-field. When a periodic 

cellular solid is considered, periodic boundary conditions can be used and the average stress 

and average strain can be computed directly from the solid’s unit cell due to the periodicity. 

The homogenization method based on equivalent strain energy (Zhang et al., 2007; Dai & 

Zhang, 2009; Alzebdeh, 2012) is a convenient method for finding the effective elastic constants 

of periodic cellular solids. The method determines the effective elastic constants of a periodic 

cellular solid from strain energy values of the solid’s unit cell that is subjected to some 

prescribed strain modes. These strain energy values can be obtained from finite element 

analysis (FEA) of the unit cell. Since the finite element method (FEM) is a numerical method, 

the effective elastic constants are generally obtained numerically. 
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1.2 Statement of the problem 

 
Although computing the effective elastic constants of periodic cellular solids 

numerically using FEM is certainly useful, the effective elastic constants have to be numerically 

obtained for each solid, one by one. As a result, investigation of how topologies and shapes of 

unit cells affect the effective elastic constants of the resulting periodic cellular solids can be 

difficult to perform. It will be quite beneficial if the closed-form effective elastic constants of 

periodic cellular solids can be found.  

It is apparent that there exist no general closed-form effective elastic constants for 

periodic cellular solids of arbitrary shapes. However, many useful periodic cellular solids are 

generated by connecting slender strut members and, therefore, resemble frame structures. These 

frame-like periodic cellular solids can be modelled accurately as frame structures using beam 

elements. For frame-like periodic cellular solids, it is sometimes possible to analytically 

determine their closed-form effective elastic constants using, for example, manual calculations 

(Zhu, Knott, & Mills, 1997; Gibson & Ashby, 1999; Wang & McDowell, 2004) or symbolic 

FE programs. The problems are that manual calculations are tedious and prone to errors and 

symbolic FE programs are not commonly available. Another possible alternative is to determine 

the exact forms of the effective elastic constants for arbitrary frame-like periodic cellular solids. 

Unlike periodic cellular solids that are not frame-like, it is quite possible that frame-like 

periodic cellular solids share certain basic forms of their effective elastic constants. This is 

because the effective elastic constants are derived from strain energy values of unit cells under 

prescribed strain modes and strain energy of different beams can be written in the same form. 

The exact forms of the effective elastic constants for arbitrary frame-like periodic cellular solids 

will allow the closed-form effective elastic constants of frame-like periodic cellular solids 

having different unit-cell topologies to be determined via exact curve fitting.  

If the closed-form effective elastic constants of periodic cellular solids having a certain 

unit-cell topology is known, it will be possible to determine the degrees of homogeneity of 

periodic solids with different numbers of unit cells. As aforementioned, if the number of unit 

cells in a periodic cellular solid is continuously increased, the behavior of the solid will 

converge to that of a homogeneous material and the apparent elastic constants of the solid will 

converge to its effective elastic constants. Knowing the limiting values of the apparent elastic 

constants from the closed-form solutions allows the degrees of homogeneity to be determined.  

In addition to the degrees of homogeneity, the closed-form effective elastic constants 

of frame-like periodic cellular solids having a certain unit-cell topology also allow the effect of 

relative unit-cell strut sizes to be investigated. One of the most important effects of relative 
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unit-cell strut sizes is the degree of isotropic symmetry. Changing relative strut sizes within 

unit cells can change the degree of isotropic symmetry of the resulting periodic solid. The 

closed-form effective elastic constants permit design of frame-like periodic cellular solids for 

isotropic symmetry by appropriate sizing of unit-cell struts to be performed. 

 

1.3 Objectives 

 

The objectives of this study are as follows: 

 

1) To study the applicability of Euler beam elements in the determination of the 

effective elastic constants of frame-like periodic cellular solids. 

2) To derive the exact forms of the effective elastic constants of arbitrary frame-like 

periodic cellular solids using the homogenization method based on equivalent 

strain energy. 

3) To investigate the degrees of homogeneity of frame-like periodic cellular solids 

with respect to the relative sizes between unit cells and solids. 

4) To develop a methodology to design frame-like periodic solids for isotropic 

symmetry by appropriate sizing of unit-cell struts. 

 

1.4 Scope of study 

 

The scope of this study is as follows: 

 

1) Materials are assumed to be linear elastic. 

2) Periodic cellular solids are frame-like and their struts can be accurately modelled 

as Euler beams. 

3) Homogenization based on equivalent strain energy is used to determine the 

effective elastic properties. 
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Chapter 2  

Literature Review 

 
There are many useful periodic cellular solids whose structures are frame-like (Gibson 

& Ashby, 1999; Wallach & Gibson, 2001; Luxner, Stampfl, & Pettermann, 2005; Jang et al., 

2013). For this type of periodic structure, using beam theories via beam elements can be a good 

alternative. The suitability of beam elements for modeling periodic cellular solids depends on 

how much their structures are frame-like. A periodic cellular solid is more frame-like if its 

structure consists only of struts whose cross-sectional dimensions are much smaller than their 

longitudinal dimensions. In other words, a periodic cellular solid is more frame-like if its 

elements are slenderer. Beam elements have been used to successfully model such frame-like 

periodic cellular solids by many researchers (Zhu, Knott, & Mills, 1997; Grenestedt, 1998; 

Onck, Andrews, & Gibson, 2001; Kwon, Cooke, & Park, 2003; Luxner, Stampfl, & Pettermann, 

2005; Doyoyo & Hu, 2006; Lipperman, Ryvkin, & Fuchs, 2008; Luxner, Stampfl, & 

Pettermann, 2009; Thiyagasundaram, Sankar, & Arakere, 2010). 

Beam elements are used in the determination of the effective elastic constants of open-

cell foams represented by equisided and elongated tetrakaidecahedral unit cells by 

Thiyagasundaram, Sankar, and Arakere (2010). The maximum relative density considered in 

their work is 3.45%. The relative density is defined as the ratio between the mass densities of 

the cellular solid and its base material. The effective elastic constants are obtained from FEA 

of each unit cell. The unit cells are modeled by both Euler and Timoshenko beam elements and 

are subject to periodic displacement boundary conditions. The obtained results from the finite 

element (FE) models employing Euler beam elements match well with the results from the 

analytical models by Zhu, Knott, and Mills (1997), Sullivan, Ghosn, and Lerch (2008), and 

Sullivan and Ghosn (2009). These analytical models employ the Euler beam theory and, 

therefore, do not consider shear deformation in beams. The results from the FE models using 

Euler and Timoshenko beam elements are found to be comparable in most cases. The models 

using Euler beam elements yield larger Young’s moduli than the ones using Timoshenko beam 

elements when the struts have smaller slenderness ratios. This is clearly due to the omission of 

shear deformation in the Euler beam elements. Beam elements are also used by Kwon, Cooke, 

and Park (2003) in the determination of the effective Young’s moduli and the failure strengths 

of open-cell metal foams represented by tetrakaidecahedral unit cells. The relative densities 

under consideration range approximately from 6% to 8%. The effective Young’s moduli are 

obtained directly from the deformation of unit cells under appropriate loading without the use 
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of a homogenization method. The results from Kwon, Cooke, and Park (2003) compare quite 

satisfactorily with experimental results. 

 

Table 1 Closed forms for the effective elastic constants by Wang and McDowell (2004). 

 

Unit cell 
 𝐸𝑖

∗

𝐸
 𝑣𝑖𝑗

∗  
𝐺𝑖𝑗
∗

𝐸
 

Square 

 

𝑊

𝐿
 𝑣 (

𝑊

𝐿
) 

1

2
(
𝑊

𝐿
)
3

 

Mixed cell 

 

(
2√2 + 2

2√2 + 1
)(
𝑊

𝐿
) 

1

2√2 + 1
 

1

2√2
(
𝑊

𝐿
) 

Triangle 

 

2

√3
(
𝑊

𝐿
) 

1

3
 

√3

4
(
𝑊

𝐿
) 

Hexagon 

 

4√3

3
(
𝑊

𝐿
)
3

 1 
1

√3
(
𝑊

𝐿
)
3

 

Diamond 

 

1

√3
(
𝑊

𝐿
) 

1

3
 

√3

4
(
𝑊

𝐿
) 

Kagome 

 

1

√3
(
𝑊

𝐿
) 

1

3
 

√3

8
(
𝑊

𝐿
) 

Rectangle 

 

𝑊1

𝐿1
 for 

𝐸1
∗

𝐸
 

𝑊2

𝐿2
 for 

𝐸2
∗

𝐸
 

𝑣 (
𝑊1
𝐿1
)for 𝑣12

∗   

𝑣 (
𝑊2
𝐿2
)for 𝑣21

∗   

𝑊1
3 𝑊2

3

𝐿1𝐿2(𝐿1𝑊1
3 + 𝐿2𝑊2

3)
 

 

Timoshenko beam elements are used by Luxner, Stampfl, and Pettermann (2005) to 

obtain the effective Young’s moduli of 3D periodic cellular solids having relative densities 

ranging from 10% to 20%. In their work, four different unit-cell structures are considered. The 

relation between the effective Young’s modulus and the relative density for each cellular solid 

and in each orthotropic direction is empirically written from the FE results of its unit cell as an 

L

L

L

L

L

L
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exponential regression function. To compensate for the lack of joint dimensions when beam 

elements are used, models with increased element rigidity in the vicinity of joints are also 

employed. The results obtained from the models using beam elements are compared with those 

using solid elements as well as experiments. It is found that the mechanical behavior of the 

considered periodic cellular structures is represented well by the models using beam elements. 

It is also found that the increase of the rigidity of elements in the vicinity of joints does not 

guarantee better results. 

When periodic cellular solids are frame-like and can be modelled accurately using 

beam elements, it is sometimes possible to analytically derive their effective elastic constants. 

By considering each unit-cell strut as a beam or a rod, analytical forms of the effective Young’s 

moduli 𝐸𝑖
∗, shear moduli 𝐺𝑖𝑗

∗ , and Poisson’s ratios 𝑣𝑖𝑗
∗  for 2D periodic cellular solids are derived 

by Wang and McDowell (2004). In their study, seven different unit-cell structures are 

considered. The effective elastic constants are written in terms of the characteristic length 𝐿 of 

the unit cell, the widths 𝑊 of the rectangular unit-cell struts, and Young’s modulus of the base 

material 𝐸. The closed forms for the effective elastic constants from their study are shown in 

Table 1. After that, the effective elastic constants are further derived in terms of the relative 

density. A multiscale procedure is proposed by Vigliotti and Pasini (2012) to analytically 

determine the effective constitutive matrices of arbitrary 2D periodic cellular solids. In the 

analysis, Euler beam elements are used and the unit cells are assumed to have unit thickness. 

The procedure is applied to three unit-cell structures, namely the triangle, hexagon, and kagome 

unit cells. The effective constitutive matrices [𝑐𝑖𝑗
∗ ] are written as functions of Young’s modulus 

of the base material, the characteristic length of the unit cell, the area 𝐴 and the moment of 

inertia 𝐼 of the struts. Their results are shown as follows: 

For a triangle periodic cellular solid, 

[𝑐𝑖𝑗
∗ ] =  

3𝐸

4√3𝐿3
[

3(𝐴𝐿2 + 4𝐼) 𝐴𝐿2 − 12𝐼 0

3(𝐴𝐿2 + 4𝐼) 0

𝑆𝑦𝑚 𝐴𝐿2 + 12𝐼

], (1) 

For a hexagon periodic cellular solid, 

[𝑐𝑖𝑗
∗ ] =  

𝐸𝐴

2√3𝐿(𝐴𝐿2 + 12𝐼)
[
𝐴𝐿2 + 36𝐼 𝐴𝐿2 − 12𝐼 0

𝐴𝐿2 + 36𝐼 0
𝑆𝑦𝑚 24𝐼

], (2) 

For a kagome periodic cellular solid, 
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[𝑐𝑖𝑗
∗ ] =  

√3𝐸

8𝐿3
[

3(𝐴𝐿2 + 2𝐼) 𝐴𝐿2 − 6𝐼 0

3(𝐴𝐿2 + 2𝐼) 0

𝑆𝑦𝑚 𝐴𝐿2 + 6𝐼

]. (3) 

Analytical forms of the effective Young’s moduli, Poisson’s ratios, and shear moduli 

for several periodic cellular solids are given by Gibson and Ashby (1999). The analytical forms 

are derived from the unit cells of the solids that are modelled as frames. Analytical forms of the 

effective Young’s moduli, shear moduli, and Poisson’s ratios for open-cell foams represented 

by tetrakaidecahedral unit cells are derived by Zhu, Knott, and Mills (1997) by applying the 

Euler beam theory to the unit-cell struts. In their work, the bending, axial, and torsional 

rigidities are considered. The equations of the effective elastic constants are obtained by direct 

consideration of the stiffness of the unit cell without the use of a homogenization method. The 

consideration of the stiffness of the unit cell is done via the principle of stationary potential 

energy. The obtained equations of the effective elastic constants are written in terms of the 

characteristic length of the unit cell, the sectional properties of the unit-cell struts, and the elastic 

constants of the base material. Because torsional rigidity is considered, the polar moment of 

inertia 𝐽 is also included in the equations, i.e. 

𝐸𝑖
∗ = 

6√2𝐸𝐼

𝐿4 (1 +
12𝐼
𝐴𝐿2

)
, (4) 

𝑣𝑖𝑗
∗ = 

1

2
(
𝐴𝐿2 − 12𝐼

𝐴𝐿2 + 12𝐼
) , (5) 

𝐺𝑖𝑗
∗ = 

6𝐸𝐴𝐼

12√2𝐼𝐿2 + √2𝐴𝐿4 (
8𝐸𝐼 + 𝐺𝐽
5𝐸𝐼 + 𝐺𝐽

)
. 

(6) 

The approach employed by Zhu, Knott, and Mills (1997) is also used by Sullivan, 

Ghosn, and Lerch (2008) and Sullivan and Ghosn (2009) to obtain analytical forms of the 

effective Young’s moduli, shear moduli, and Poisson’s ratios of open-cell foams represented 

by elongated tetrakaidecahedral unit cells. 

Homogenization methods are based on the assumption that the sizes of unit cells are 

infinitely small compared to the sizes of solids. Hence, the obtained effective elastic properties 

from homogenization methods are valid for solids that are composed of sufficient large 

numbers of unit cells. The effects of the relative sizes between solids and their unit cells on the 

apparent elastic properties are investigated by some researchers. For example, the effects of the 

relative sizes between 2D hexagon periodic cellular solids and their unit cells on Young’s 

modulus, shear modulus, and hardness are numerically investigated by Onck, Andrews, and 
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Gibson (2001). In the study, the solids subject to uniaxial compression, simple shear, and 

indentation are simulated. For the uniaxial compression and simple shear, the hexagon periodic 

cellular solids have infinite numbers of unit cells in the dimension along the applied loads and 

have finite numbers of unit cells in the other dimension. For indentation, the solids are set to be 

large enough so that there is no influence from the boundaries. The obtained results show that 

all elastic properties are affected by the relative sizes. At low relative sizes between the solid 

and its unit cell, the apparent elastic properties are much different from the effective elastic 

properties. However, the apparent elastic properties will approach to the effective elastic 

properties when the relative size increases. The experimental results from their companion 

paper (Andrews et al., 2001) also show the same convergence behavior. In the experiments, 

open-cell and closed-cell aluminum foams at various relative sizes of solids and their unit cells 

are investigated. Wallach and Gibson (2001) employed FEM to find Young’s moduli of 

triangulated aluminum alloy modeled by truss elements. The solids are composed of unit cells 

aligned only in one plane. The number of unit cells in the solid plane is varied and Young’s 

modulus in each axis is determined. The result shows that when the number of unit cells 

increases, Young’s modulus converges to a constant. Dai and Zhang (2 0 0 8 )  numerically 

determined flexural rigidities and deflections of sandwich cantilever beams that have periodic 

cellular cores. The numbers of the unit cells in the cores are varied. The convergences of the 

results confirm the effect of the relative sizes between solids and its unit cells on the apparent 

mechanical properties of the solids. 

Many attempts are devoted to achieve frame-like periodic solids that have isotropic 

symmetry. Arranging unit-cell struts to obtain isotropic symmetry intuitively is not easy. It is 

however possible to create algorithms to find unit-cell topologies that give isotropic symmetry. 

Quite often, isotropic symmetry is considered as a constraint in topology optimization of unit 

cells. In the work by Neves et al. (2000), mathematical programming techniques are used to 

obtain optimal designs of 2D periodic solids under design constraints on material volume 

fractions and material symmetries. In their study, 2D periodic solids are treated as 2D 

continuums. Orthotropic, square, and isotropic symmetries are considered as design constraints. 

In the work by Challis et al. (2008), the level-set method of topology optimization is used to 

design 3D isotropic two-phase periodic multifunctional composites, and isotropic symmetry is 

considered as a design constraint. Isotropic symmetry is also considered as a constraint in 

topology optimization of 2D periodic trusses by Guth et al. (2012) and of 3D periodic trusses 

by Guth et al. (2015). 
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Chapter 3 

Strain-Energy-Based Homogenization 

  

When periodic cellular solids are used as load-bearing structures, the effective elastic 

properties of periodic cellular solids are of significant interest and are among the main 

considerations of cellular solid design. A periodic cellular solid behaves like a homogeneous 

material when there are a significantly large number of unit cells in the solid. The apparent 

mechanical elastic properties of a periodic cellular solid depend the number of unit cells in the 

solid. However, the properties will converge to constants called effective properties when the 

number of unit cells is sufficiently large. The desired effective elastic properties of a periodic 

cellular solid can be obtained by appropriate selection of the base material and the architecture 

of its unit cell. A homogenization method can be used to calculate the effective elastic 

properties of a periodic cellular solid from its unit-cell structure (Suquet, 1987; Sigmund, 1995; 

Fang, Starly, & Sun, 2005; Luxner, Stampfl, & Pettermann, 2005; Liu, Deng, & Lu, 2006; 

Drago & Pindera, 2007; Dai & Zhang, 2009; Huang, Radman, & Xie, 2011; Guinovart-Díaz et 

al., 2012). In general, homogenization methods define the effective constitutive material law of 

a material as a relationship between some average stress and some average strain. The effective 

elastic constants can be obtained by analyzing the material under appropriate boundary 

conditions at far-field. For a periodic cellular solid, periodic boundary conditions can be used 

and the average stress and average strain can be computed directly from the solid’s unit cell 

due to the periodicity. 

 

3.1 Definition of the effective material properties 

 
The main concept of homogenization methods is to replace a material with 

inhomogeneity in a small scale with an equivalent homogeneous material in a large scale. The 

concept is depicted in Fig. 2. In the small scale, the material properties are not uniform due to 

inhomogeneity. However, in the large scale, the average material properties can become 

uniform if the inhomogeneity is perfectly random or perfectly periodic. Thus, if the material 

properties are defined in the large scale using the concept of averaging, then the material can 

be modelled as a homogeneous material. As aforementioned, generally, homogenization 

methods define the effective constitutive material law of a material as a relationship between 

some average stress and some average strain. Here, the definitions of the average stress, average 

strain, and effective material properties used in this study are shown. 
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Fig. 2 Concept of homogenization. 

 

Consider a domain 𝑉 of a periodic elastic solid in a coordinate system 𝑥𝑖 that is 

composed of a significantly large number of unit cells. Let 𝑆 be the boundary of 𝑉. Define the 

average of any quantity 𝑄 in 𝑉 (Suquet, 1987; Michel, Moulinec, & Suquet, 1999; Nemat-

Nasser & Hori, 1999; Drago & Pindera, 2007; Pindera et al., 2009) as 

〈𝑄〉 =
1

𝑉
∫𝑄𝑑𝑉
𝑉

. (7) 

A set of kinematic boundary conditions is applied to the domain 𝑉 such that it results 

in the following displacement field 𝑢𝑖, i.e. 

𝑢𝑖 = 𝜖𝑖𝑗
𝑜 𝑥𝑗 + 𝑢𝑖

𝑝
. (8) 

Here, 𝜖𝑖𝑗
𝑜  is a constant symmetric tensor. In addition, 𝑢𝑖

𝑝
 is a periodic displacement 

vector. Eq. (8) implies that the applied kinematic boundary conditions are periodic. The 

displacement field in Eq. (8) is extended everywhere in the domain 𝑉, including the inside of 

voids (Suquet, 1987). This can be reasoned by considering voids as the limit cases of infinitely 

soft inclusions (Suquet, 1987). The displacement 𝑢𝑖 in Eq. (8) yields the following strain, i.e. 

𝜖𝑖𝑗 = 𝜖𝑖𝑗
𝑜 +

1

2
(𝑢𝑖,𝑗

𝑝
+ 𝑢𝑗,𝑖

𝑝
) = 𝜖𝑖𝑗

𝑜 + 𝜖𝑖𝑗
𝑝
. (9) 

Since 𝑢𝑖
𝑝

 is periodic, 𝜖𝑖𝑗
𝑝

 is periodic. Subsequently, since 𝜖𝑖𝑗
𝑜  is constant and 𝜖𝑖𝑗

𝑝
 is 

periodic, the resulting strain 𝜖𝑖𝑗 is periodic. The average of 𝜖𝑖𝑗
𝑝

 can be shown to be equal to zero 

(Suquet, 1987). An average of a periodic quantity over the whole domain 𝑉 is the same as an 

average over one unit cell 𝑉𝐶. This gives 

Homogenization

Periodic cellular solid Equivalent homogeneous solid

Unit cell
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〈𝜖𝑖𝑗
𝑝 〉 =

1

𝑉
∫𝜖𝑖𝑗

𝑝
𝑑𝑉

𝑉

=
1

𝑉𝐶
∫ 𝜖𝑖𝑗

𝑝
𝑑𝑉

𝑉𝐶

=
1

2𝑉𝐶
∫ (𝑢𝑖,𝑗

𝑝
+ 𝑢𝑗,𝑖

𝑝
)𝑑𝑉

𝑉𝐶

=
1

2𝑉𝐶
∫ (𝑢𝑖

𝑝
𝑛𝑗 + 𝑢𝑗

𝑝
𝑛𝑖)𝑑𝑆

𝑆𝐶

= 0. 

(10) 

Here, 𝑆𝐶 denotes the boundary surface of the unit cell. On 𝑆𝐶, 𝑛𝑖 takes opposite values on 

positions that are periodically opposite to each other while 𝑢𝑖
𝑝
 takes identical values. It therefore 

follows that the integral on 𝑆𝐶 in the above equation vanishes. Note that 𝑢𝑖,𝑗
𝑝

 may not be 

continuous everywhere in 𝑉𝐶 because of the presence of inclusions. When inclusions are 

present, the divergence theorem has to be applied to each inclusion. However, the surface 

integral terms on the boundary surfaces of the inclusions inside 𝑉𝐶 from the divergence theorem 

cancel out and do not appear in Eq. (10). 

The relationship between the stress 𝜎𝑖𝑗 and the strain 𝜖𝑖𝑗 is written as 

𝜎𝑖𝑗 = 𝐶𝑖𝑗𝑘𝑙𝜖𝑘𝑙 , (11) 

where 𝐶𝑖𝑗𝑘𝑙 is the material constitutive tensor, which is periodic. As the strain 𝜖𝑖𝑗 is also 

periodic, the stress 𝜎𝑖𝑗 is periodic. Without loss of generality, write the stress as 

𝜎𝑖𝑗 = 𝜎𝑖𝑗
𝑜 + 𝜎𝑖𝑗

𝑝
, (12) 

where 𝜎𝑖𝑗
𝑜  is constant and 𝜎𝑖𝑗

𝑝
 is periodic, whose average 〈𝜎𝑖𝑗

𝑝〉 is zero. Define the effective 

material constitutive tensor 𝐶𝑖𝑗𝑘𝑙
∗  for an equivalent homogeneous continuum of the periodic 

solid as 

〈𝜎𝑖𝑗〉 = 𝐶𝑖𝑗𝑘𝑙
∗ 〈𝜖𝑘𝑙〉, (13) 

which can be written as 

𝜎𝑖𝑗
𝑜 = 𝐶𝑖𝑗𝑘𝑙

∗ 𝜖𝑘𝑙
𝑜 . (14) 

 

3.2 Homogenization based on equivalent strain energy 

 
The homogenization method based on equivalent strain energy is an efficient and 

convenient method for the determination of the effective elastic properties of frame-like 

periodic cellular solids. It has been successfully used by many researchers (Zhang et al., 2007; 

Wang et al., 2008; Dai & Zhang, 2009; Xu & Zhang, 2011) in various applications. In this 
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method, the effective elastic properties are calculated from the strain energy of unit cells under 

some prescribed periodic boundary conditions. 

 

3.2.1 Strain energy equation 

 
Consider the average strain energy density �̅� of the domain 𝑉 written as 

�̅� =
1

2𝑉
∫𝜎𝑖𝑗𝜖𝑖𝑗𝑑𝑉
𝑉

=
1

2𝑉𝐶
∫ 𝜎𝑖𝑗𝜖𝑖𝑗𝑑𝑉
𝑉𝐶

=
1

2𝑉
∫(𝜎𝑖𝑗

𝑜 + 𝜎𝑖𝑗
𝑝
)𝜖𝑖𝑗

𝑜𝑑𝑉
𝑉

+
1

2𝑉
∫𝜎𝑖𝑗𝜖𝑖𝑗

𝑝
𝑑𝑉

𝑉

 

=
1

2
𝜎𝑖𝑗
𝑜𝜖𝑖𝑗

𝑜 +
1

2
〈𝜎𝑖𝑗

𝑝〉𝜖𝑖𝑗
𝑜 +

1

2𝑉
∫𝜎𝑖𝑗𝜖𝑖𝑗

𝑝
𝑑𝑉

𝑉

=
1

2
𝜎𝑖𝑗
𝑜𝜖𝑖𝑗

𝑜 +
1

2𝑉
∫𝜎𝑖𝑗𝑢𝑖,𝑗

𝑝
𝑑𝑉

𝑉

 

=
1

2
𝜎𝑖𝑗
𝑜𝜖𝑖𝑗

𝑜 +
1

2𝑉𝐶
∫ 𝜎𝑖𝑗𝑢𝑖,𝑗

𝑝
𝑑𝑉

𝑉𝐶

. 

(15) 

The last integral in the above equation can be rewritten as 

1

2𝑉𝐶
∫ 𝜎𝑖𝑗𝑢𝑖,𝑗

𝑝
𝑑𝑉

𝑉𝐶

=
1

2𝑉𝐶
∫ 𝜎𝑖𝑗𝑢𝑖,𝑗

𝑝
𝑑𝑉

𝑉𝐶𝑆

=
1

2𝑉𝐶
∫ 𝜎𝑖𝑗𝑢𝑖

𝑝
𝑛𝑗𝑑𝑆

𝑆𝐶𝑆

=
1

2𝑉𝐶
∫ 𝑇𝑖𝑢𝑖

𝑝
𝑑𝑆

𝑆𝐶𝑆

 

=
1

2𝑉𝐶
∫ 𝑇𝑖𝑢𝑖

𝑝
𝑑𝑆

𝑆𝐶𝑆𝑉

+
1

2𝑉𝐶
∫ 𝑇𝑖𝑢𝑖

𝑝
𝑑𝑆

𝑆𝐶𝑆𝑆

= 0. 

(16) 

Here, 𝑉𝐶𝑆 denotes the solid part of the unit cell and 𝑆𝐶𝑆 denotes its boundary surface. In addition, 

𝑇𝑖 denotes the surface traction on 𝑆𝐶𝑆. Note that the equilibrium equation 𝜎𝑗𝑖,𝑗 = 0 is used in 

Eq. (16). When inclusions are present in 𝑉𝐶𝑆, 𝜎𝑖𝑗𝑢𝑖,𝑗
𝑝

 may not be continuous everywhere in 𝑉𝐶𝑆 

and the divergence theorem has to be applied to each inclusion. Fortunately, similar to Eq. (10), 

the surface integral terms on the boundary surfaces of the inclusions inside 𝑉𝐶𝑆 from the 

divergence theorem cancel out. In the above equation, the surface 𝑆𝐶𝑆 is divided into two parts. 

The two parts are the surface 𝑆𝐶𝑆𝑉 between the solid part and any existing voids, and the 

boundary surface 𝑆𝐶𝑆𝑆 between the solid part of the unit cell and the solid part of its adjacent 

cells. Fig. 3 shows an example of a 2D unit cell with its 𝑆𝐶𝑆𝑉 and 𝑆𝐶𝑆𝑆. On 𝑆𝐶𝑆𝑉, 𝑇𝑖 is zero. On 

𝑆𝐶𝑆𝑆, 𝑇𝑖 takes opposite values on positions that are periodically opposite to each other while 𝑢𝑖
𝑝

 

takes identical values. It therefore follows that both integrals on 𝑆𝐶𝑆𝑉 and 𝑆𝐶𝑆𝑆 in Eq. (16) 

vanish. The strain energy of the unit cell 𝑈𝐶  can then be obtained as 

𝑈𝐶 =
1

2
∫ 𝜎𝑖𝑗𝜖𝑖𝑗𝑑𝑉
𝑉𝐶

= �̅�𝑉𝐶 =
1

2
𝜎𝑖𝑗
𝑜𝜖𝑖𝑗

𝑜𝑉𝐶 =
1

2
𝐶𝑖𝑗𝑘𝑙
∗ 𝜖𝑘𝑙

𝑜 𝜖𝑖𝑗
𝑜𝑉𝐶 . (17) 
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Fig. 3 Boundary of a unit cell. 

 
By prescribing different modes of 𝜖𝑖𝑗

𝑜  to the unit cell with the help of Eq. (8) and 

computing the corresponding strain energy values by structural analysis, Eq. (17) allows 𝐶𝑖𝑗𝑘𝑙
∗  

to be computed (Sigmund, 1994; Sigmund, 1995; Zhang et al., 2007; Zhang et al., 2007). For 

example, for two-dimensional cases, using 𝜖11
𝑜 = 1, 𝜖22

𝑜 = 0, and 𝜖12
𝑜 = 𝜖21

𝑜 = 0 gives 

𝑈𝐶 =
1

2
𝐶1111
∗ 𝑉𝐶 . (18) 

This strain energy 𝑈𝐶  in Eq. (18) can be computed by FEM, and 𝐶1111
∗  can be easily obtained 

from Eq. (18).  

The derivation of the homogenization method based on equivalent strain energy shown 

here utilizes periodic kinematic boundary conditions. Note that a variant of the method that 

employs periodic natural boundary conditions also exists (Mohsen Karimian & Straatman, 

2007; Huang et al., 2009). 

 

3.2.2 Effective elastic properties computed from strain energy 

 

For a 3D orthotropic period cellular solid, Eq. (14) can be written in matrix form as 

 

Unit cell
2D periodic cellular solid

SCSV

SCSS
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𝝈𝑜 =

{
  
 

  
 
𝜎11
𝑜

𝜎22
𝑜

𝜎33
𝑜

𝜎12
𝑜

𝜎23
𝑜

𝜎13
𝑜 }
  
 

  
 

=

[
 
 
 
 
 
 
𝑐11
∗ 𝑐12

∗ 𝑐13
∗ 0 0 0

𝑐22
∗ 𝑐23

∗ 0 0 0

𝑐33
∗ 0 0 0

𝑐44
∗ 0 0

𝑆𝑦𝑚 𝑐55
∗ 0

𝑐66
∗ ]
 
 
 
 
 
 

{
  
 

  
 
𝜖11
𝑜

𝜖22
𝑜

𝜖33
𝑜

𝛾12
𝑜

𝛾23
𝑜

𝛾13
𝑜 }
  
 

  
 

= 𝒄∗𝝐𝑜. (19) 

The effective Young’s moduli 𝐸𝑖
∗, Poisson’s ratios 𝜈𝑖𝑗

∗ , and shear moduli 𝐺𝑖𝑗
∗  for the 

material can be expressed in terms of 𝑐𝑖𝑗
∗  as (Bower, 2010) 

𝐸1
∗ =

𝑐11
∗ 𝑐22

∗ 𝑐33
∗ + 2𝑐23

∗ 𝑐12
∗ 𝑐13

∗ − 𝑐11
∗ (𝑐23

∗ )2 − 𝑐22
∗ (𝑐13

∗ )2 − 𝑐33
∗ (𝑐12

∗ )2

𝑐22
∗ 𝑐33

∗ − (𝑐23
∗ )2

, 

𝐸2
∗ =

𝑐11
∗ 𝑐22

∗ 𝑐33
∗ + 2𝑐23

∗ 𝑐12
∗ 𝑐13

∗ − 𝑐11
∗ (𝑐23

∗ )2 − 𝑐22
∗ (𝑐13

∗ )2 − 𝑐33
∗ (𝑐12

∗ )2

𝑐11
∗ 𝑐33

∗ − (𝑐13
∗ )2

, 

𝐸3
∗ =

𝑐11
∗ 𝑐22

∗ 𝑐33
∗ + 2𝑐23

∗ 𝑐12
∗ 𝑐13

∗ − 𝑐11
∗ (𝑐23

∗ )2 − 𝑐22
∗ (𝑐13

∗ )2 − 𝑐33
∗ (𝑐12

∗ )2

𝑐11
∗ 𝑐22

∗ − (𝑐12
∗ )2

, 

𝜈12
∗ =

𝑐12
∗ 𝑐33

∗ − 𝑐13
∗ 𝑐23

∗

𝑐22
∗ 𝑐33

∗ − (𝑐23
∗ )2

,   𝜈21
∗ =

𝑐12
∗ 𝑐33

∗ − 𝑐13
∗ 𝑐23

∗

𝑐11
∗ 𝑐33

∗ − (𝑐13
∗ )2

, 

𝜈23
∗ =

𝑐11
∗ 𝑐23

∗ − 𝑐12
∗ 𝑐13

∗

𝑐11
∗ 𝑐33

∗ − (𝑐13
∗ )2

,   𝜈32
∗ =

𝑐11
∗ 𝑐23

∗ − 𝑐12
∗ 𝑐13

∗

𝑐11
∗ 𝑐22

∗ − (𝑐12
∗ )2

, 

𝜈13
∗ =

𝑐13
∗ 𝑐22

∗ − 𝑐12
∗ 𝑐23

∗

𝑐22
∗ 𝑐33

∗ − (𝑐23
∗ )2

,   𝜈31
∗ =

𝑐13
∗ 𝑐22

∗ − 𝑐12
∗ 𝑐23

∗

𝑐11
∗ 𝑐22

∗ − (𝑐12
∗ )2

, 

𝐺12
∗ = 𝑐44

∗ ,    𝐺23
∗ = 𝑐55

∗ ,   𝐺13
∗ = 𝑐66

∗ .   

(20) 

Since there are nine independent effective material constants, nine different modes of 

𝜖𝑖𝑗
𝑜  in Eq. (17) are required. Define these strain modes as 

𝝐𝑜(1) = [1 0 0 0 0 0]𝑇 ,    𝝐𝑜(2) = [0 1 0 0 0 0]𝑇 , 
 

𝝐𝑜(3) = [0 0 1 0 0 0]𝑇 ,    𝝐𝑜(4) = [1 1 0 0 0 0]𝑇 , 
 

𝝐𝑜(5) = [0 1 1 0 0 0]𝑇 ,    𝝐𝑜(6) = [1 0 1 0 0 0]𝑇 , 
(21) 

𝝐𝑜(7) = [0 0 0 1 0 0]𝑇 ,    𝝐𝑜(8) = [0 0 0 0 1 0]𝑇 ,  

𝝐𝑜(9) = [0 0 0 0 0 1]𝑇 . 
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Let 𝑈𝐶
(𝑖)

 denote the strain energy of the unit cell to which 𝝐𝑜 = 𝝐𝑜(𝑖) is applied. From 

Eq. (17), the coefficients in Eq. (19) can be obtained in terms of 𝑈𝐶
(𝑖)

 as 

𝑐11
∗ =

2𝑈𝐶
(1)

𝑉𝐶
, 𝑐22

∗ =
2𝑈𝐶

(2)

𝑉𝐶
, 𝑐33

∗ =
2𝑈𝐶

(3)

𝑉𝐶
, 

𝑐44
∗ =

2𝑈𝐶
(7)

𝑉𝐶
, 𝑐55

∗ =
2𝑈𝐶

(8)

𝑉𝐶
, 𝑐66

∗ =
2𝑈𝐶

(9)

𝑉𝐶
, 

𝑐12
∗ =

𝑈𝐶
(4)
− 𝑈𝐶

(1)
− 𝑈𝐶

(2)

𝑉𝐶
, 𝑐13

∗ =
𝑈𝐶
(6)
− 𝑈𝐶

(1)
− 𝑈𝐶

(3)

𝑉𝐶
,   

𝑐23
∗ =

𝑈𝐶
(5)
− 𝑈𝐶

(2)
− 𝑈𝐶

(3)

𝑉𝐶
. 

(22) 

By using Eq. (22) in Eq. (20), the effective material constants can be obtained from 𝑈𝐶
(𝑖)

. 

For an orthotropic periodic cellular solid under the plane stress condition, Eq. (14) can 

be written as 

𝝈𝑜 = {

𝜎11
𝑜

𝜎22
𝑜

𝜎12
𝑜
} = [

𝑐11
∗ 𝑐12

∗ 0

𝑐22
∗ 0

𝑆𝑦𝑚 𝑐33
∗
] {

𝜖11
𝑜

𝜖22
𝑜

𝛾12
𝑜
} = 𝒄∗𝝐𝑜. (23) 

The effective material constants can be expressed in terms of 𝐶𝑖𝑗
∗  as 

𝐸1
∗ =

𝑐11
∗ 𝑐22

∗ − (𝑐12
∗ )2

𝑐22
∗ , 𝐸2

∗ =
𝑐11
∗ 𝑐22

∗ − (𝑐12
∗ )2

𝑐11
∗ , 

𝜈12
∗ =

𝑐12
∗

𝑐22
∗ , 𝜈21

∗ =
𝑐12
∗

𝑐11
∗ , 

𝐺12
∗ = 𝑐33

∗ . 

(24) 

Since there are four independent effective material constants, four different modes of 

𝜖𝑖𝑗
𝑜  are required. Set these four modes of 𝜖𝑖𝑗

𝑜  to be (Zhang et al., 2007; Zhang et al., 2007) 

𝝐𝑜(1) = [1 0 0]𝑇 ,    𝝐𝑜(2) = [0 1 0]𝑇 , 

𝝐𝑜(3) = [1 1 0]𝑇 ,    𝝐𝑜(4) = [0 0 1]𝑇 . 

(25) 

Consequently, Eq. (17) yields 
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𝑐11
∗ =

2𝑈𝐶
(1)

𝑉𝐶
, 𝑐22

∗ =
2𝑈𝐶

(2)

𝑉𝐶
, 𝑐33

∗ =
2𝑈𝐶

(4)

𝑉𝐶
, 𝑐12

∗ =
𝑈𝐶
(3)
− 𝑈𝐶

(1)
− 𝑈𝐶

(2)

𝑉𝐶
. (26) 

Using Eq. (26) in Eq. (24) gives 

𝐸1
∗ =

2𝑈𝐶
(1)

𝑉𝐶
[1 −

(𝑈𝐶
(3)
−𝑈𝐶

(1)
− 𝑈𝐶

(2)
)
2

4𝑈𝐶
(1)
𝑈𝐶
(2)

], (27) 

𝐸2
∗ =

2𝑈𝐶
(2)

𝑉𝐶
[1 −

(𝑈𝐶
(3)
−𝑈𝐶

(1)
− 𝑈𝐶

(2)
)
2

4𝑈𝐶
(1)
𝑈𝐶
(2)

], (28) 

𝜈12
∗ =

𝑈𝐶
(3)
− 𝑈𝐶

(1)
− 𝑈𝐶

(2)

2𝑈𝐶
(2)

, (29) 

𝜈21
∗ =

𝑈𝐶
(3)
− 𝑈𝐶

(1)
− 𝑈𝐶

(2)

2𝑈𝐶
(1)

, (30) 

𝐺12
∗ =

2𝑈𝐶
(4)

𝑉𝐶
. (31) 
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Chapter 4 

Applicability of Euler Beam Elements 

 

In the determination of effective elastic properties, homogenization methods can 

employ FEM to analyze unit cells (Luxner, Stampfl, & Pettermann, 2005; Drago & Pindera, 

2007; Dai & Zhang, 2009). FEA using solid elements is extensively used in the determination 

of the effective elastic properties of periodic cellular solids (Lin et al., 2007; Xia, Ju, & Sasaki, 

2007; Jean & Engelmayr Jr, 2010). Solid elements are accepted as the most reliable elements 

since they offer the most accurate results with more details. However, creating FE models for 

analysis of unit cells using solid elements can be cumbersome. Besides the difficulty in creating 

meshes using solid elements, the most difficult task is probably the application of periodic 

boundary conditions to these 3D meshes. Some periodic cellular solids resemble frame 

structures. Their structures are composed of connecting slender struts (Wallach & Gibson, 

2001; Yan et al., 2006; Yeong et al., 2010). For such frame-like periodic cellular solids, unit-

cell struts can be represented by beam elements. When shear deformation in beams is 

negligible, the classical beam theory, on which the Euler beam element is based, is accurate. 

Subsequently, the Euler beam element can be effectively used. If there is no distributed load 

applied along the lengths of unit-cell struts, each strut can be represented by one Euler beam 

element. 

 

4.1 Beam element models 

 
In analysis of a frame-like periodic cellular solid, a unit cell has to be selected from the 

solid. Depending on individual judgment, various unit-cell configurations are possible. The 

boundary of the selected configuration may cut through the struts transversely or longitudinally. 

If solid elements are used, correct modeling and correct periodic boundary conditions can be 

quite evident although their implementation can be rather involved. Oppositely, if beam 

elements are used, correct modeling and correct periodic boundary conditions can be quite 

obscure but their implementation can be quite simple. Especially when there are struts that are 

cut longitudinally in the unit cell, FE modeling by beam elements requires careful consideration 

of beam elements’ sectional properties. 
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i

Beam models

ii

Unit cells  

Fig. 4 A periodic cellular solid and two different unit cells. 

 

Fig. 4 shows an example 2D periodic cellular solid, which is composed of square unit 

cells. The figure also shows two different unit-cell configurations. All struts of the unit cell in 

configuration i are cut transversely and all struts of the unit cell in configuration ii are cut 

longitudinally. When solid elements are used, the two configurations simply have different 

domains but the two domains do not require any special treatment. However, when beam 

elements are used, the axial and bending rigidities of struts in configuration ii must be only half 

of those in configuration i. If the unit cells of configuration ii are reassembled back together, 

each beam element and its adjacent element must together provide the original axial and 

bending rigidities. The half axial and bending rigidities can be obtained by simply reducing the 

values of the sectional area and moment of inertia by half.  

 

4.2 Periodic boundary conditions for beam element models 

 
In the determination of the effective properties of a frame-like periodic cellular solid 

from its unit cell, periodic boundary conditions have to be used. Periodic boundary conditions 

must satisfy the periodicity of the displacement field given by Eq. (8). Prescribing periodic 

boundary conditions requires two types of boundary prescription. The first type is the ordinary 

prescription of exact values of some degrees of freedom. The second type is the prescription of 

relative values between some degrees of freedom. The first type of boundary condition is 

required to prevent rigid body displacements. The second type of boundary condition comes 

from the periodic displacement field 𝑢𝑖
𝑝
 in Eq. (8). 
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Fig. 5 Periodic boundary conditions of unit cells. 

 

Fig. 5 shows the periodic boundary conditions of the example unit cells from the 

previous section. The figure shows the locations on the boundary where 𝑢𝑖
𝑝
 must be the same 

due to the periodicity. If any two nodal points on the boundary have the same 𝑢𝑖
𝑝
, the relative 

displacements between the two points can be obtained from Eq. (8) for each prescribed strain 

mode. Then, the obtained relative displacement conditions have to be prescribed on the two 

nodal points. For models that use beam elements, when 𝑢𝑖
𝑝
 of two nodal points are the same, 

their rotational degrees of freedom 𝜃 must also be the same. 

To elucidate the prescription of periodic boundary conditions for beam element models, 

the determination of the periodic boundary conditions for the periodic cellular solid which is 

composed of hexagon unit cells is shown as an example. The periodic cellular solid and the unit 

cell are shown in Fig. 6. The distance between the opposing struts of a hexagonal unit cell is 1 

mm. There are many possible unit-cell configurations, some of which are shown in Fig. 6. 

Between the three unit-cell configurations in Fig. 6, the H3 configuration has the smallest cut 

boundary surfaces. Consequently, the H3 configuration has the smallest number of relative 

displacement conditions.  

i

ii
2L

2L

2L

2L

L

L

L L

L

L

L L

Beam modelsUnit cells
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H1

H3

H1

H2

H2
H3H3

1 mm

 

Fig. 6 The periodic cellular solid and hexagon unit cells. 

 

The H3 configuration is selected as the example model. The H3 unit cell is modeled by 

4-noded quadrilateral plane stress elements and Euler beam elements. Fig. 7 shows the periodic 

boundary conditions of the H3 unit cell both for the models using solid elements and beam 

elements. All translational displacements of a selected node in each model are fixed to prevent 

rigid body displacements. For this unit-cell configuration, there are three pairs of boundaries 

where relative displacement conditions must be considered as shown in Fig. 7.  
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Fig. 7 Periodic boundary conditions of the H3 unit cell. 

 

The periodic displacement boundary conditions for the unit shear strain mode 

(𝜖11
𝑜 = 𝜖22

𝑜 = 0, 2𝜖12
𝑜 = 1) for the H3 unit cell modeled by beam elements are shown as 

follows. The displacements 𝑢1 of points A and C in the figure are written as 

𝑢1 (−
3

4√3
, 0) = 𝜖11

𝑜 𝑥1 + 𝜖12
𝑜 𝑥2 + 𝑢1

𝑝
(−

3

4√3
, 0)      

=   (0) (−
3

4√3
) + (

1

2
) (0) + 𝑢1

𝑝
(−

3

4√3
, 0)  =   𝑢1

𝑝
(−

3

4√3
, 0) , 

(32) 

1

1

A

B

C D

E

F

A

B

C D

E

F
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𝑢1 (−
3

4√3
, 1) = 𝜖11

𝑜 𝑥1 + 𝜖12
𝑜 𝑥2 + 𝑢1

𝑝
(−

3

4√3
, 1)      

=   (0) (−
3

4√3
) + (

1

2
) (1) + 𝑢1

𝑝
(−

3

4√3
, 1)  

=   
1

2
+ 𝑢1

𝑝
(−

3

4√3
, 1) . 

(33) 

Since 𝑢𝑖 = 0 at (−
3

4√3
, 0), Eq. (32) yields 

𝑢1
𝑝
(−

3

4√3
, 0) = 𝑢1 (−

3

4√3
, 0) = 0. (34) 

Since  𝑢1
𝑝
(−

3

4√3
, 1) = 𝑢1

𝑝
(−

3

4√3
, 0) = 0, Eq. (33) yields 

𝑢1 (−
3

4√3
, 1) =

1

2
. (35) 

For 𝑢1 of points F and D , they can be written as 

𝑢1 (
3

4√3
, 0)   =   (0) (

3

4√3
) + (

1

2
) (0) + 𝑢1

𝑝
(
3

4√3
, 0)  =   𝑢1

𝑝
(
3

4√3
, 0) , (36) 

𝑢1 (
3

4√3
, 1)   =   (0) (

3

4√3
) + (

1

2
) (1) + 𝑢1

𝑝
(
3

4√3
, 1)  =   

1

2
+ 𝑢1

𝑝
(
3

4√3
, 1) . (37) 

Since 𝑢1
𝑝
(
3

4√3
, 0) =  𝑢1

𝑝
(
3

4√3
, 1), Eqs. (36) and (37) give 

𝑢1 (
3

4√3
, 1)   =  𝑢1 (

3

4√3
, 0) +

1

2
. (38) 

For 𝑢1 of points B and E , they can be written as 

𝑢1 (−
3

2√3
,
1

4
)   =   (0) (−

3

2√3
) + (

1

2
) (
1

4
) + 𝑢1

𝑝
(−

3

2√3
,
1

4
)  

=   
1

8
+ 𝑢1

𝑝
(−

3

2√3
,
1

4
) . 

(39) 

𝑢1 (
3

2√3
,
1

4
)   =   (0) (

3

2√3
) + (

1

2
) (
1

4
) + 𝑢1

𝑝
(
3

2√3
,
1

4
)  =   

1

8
+ 𝑢1

𝑝
(
3

2√3
,
1

4
) . (40) 

Since 𝑢1
𝑝
(−

3

2√3
,
1

4
) =  𝑢1

𝑝
(
3

2√3
,
1

4
), Eqs. (39) and (40) yield 

𝑢1 (
3

2√3
,
1

4
)   =  𝑢1 (−

3

2√3
,
1

4
) . (41) 

Similarly, the following conditions can be obtained for 𝑢2, i.e. 

𝑢2 (−
3

4√3
, 1) =  𝑢2 (−

3

4√3
, 0), (42) 
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𝑢2 (
3

4√3
, 1) =  𝑢2 (

3

4√3
, 0) , (43) 

𝑢2 (
3

2√3
,
1

4
) =  𝑢2 (−

3

2√3
,
1

4
) +

3

2√3
 . (44) 

Note that the unit of length in the above equation is mm. The periodic boundary 

conditions for the other strain modes can be calculated in the same manner. 

 

4.3 Validity of the results from beam element models 

 
Models of periodic cellular solids that use Euler beam elements assume that their struts 

can be modelled accurately as Euler beams. Generally, if a strut is sufficiently slender, it can 

be modelled accurately as an Euler beam. In this section, the effect of beam slenderness on the 

accuracy of beam element models in the determination of the effective elastic constants of 

frame-like periodic solids is investigated. The accuracy is measured against the solutions 

obtained from models that use solid elements. The investigation is done with 2D periodic 

cellular solids. 

 

4.3.1 Investigation 

 
The applicability of the Euler beam element to the determination of the effective elastic 

properties of 2D periodic cellular solids is numerically investigated. The investigation is 

performed by comparing the effective elastic properties of various 2D periodic cellular 

structures obtained from FE models that employ 2D solid elements and beam elements. The 

investigated periodic cellular solids are shown in Fig. 8. Their unit-cell configurations are 

shown in the dashed frames. 
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Fig. 8 Periodic cellular solids and their unit cells. 

 

The characteristic length 𝐿 of each unit cell as shown in Fig. 8 is set to 1 mm. The unit 

cells are composed of struts with square cross sections. The widths 𝑊 of the sections are varied 

in order to vary the slenderness of the struts. The slenderness variation is performed to yield 

approximately 0.1 − 0.3 material volume fractions, 𝑚𝑣𝑓. Materials with such range of material 

volume fractions are commonly classified as cellular solids (Gibson & Ashby, 1999). The 

slenderness 𝑠 of a strut is defined as its length divided by the radius of gyration, i.e. 

𝑠 =
𝐿

√𝐼/𝐴
. (45) 

For the body-centered square unit cell and the square 𝑍𝑒3 unit cell, there are two groups 

of struts which have different lengths. In such case, their slenderness values are determined 

from the lengths of the shortest struts 𝐿𝑚𝑖𝑛 and are denoted as the minimum slenderness 𝑠𝑚𝑖𝑛. 

The constitutive material is assumed to be linear elastic isotropic with Young’s modulus 𝐸 

equal to 1 MPa and Poisson’s ratio 𝑣 equal to zero. 

The unit cells with different slenderness are model using solid and Euler beam 

elements. The effective elastic properties computed from the FE results using both types of 

element are compared. For solid element models, 4-noded quadrilateral plane stress elements 

are used. The homogenization method based on equivalent strain energy is used to calculate the 
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L

I)  Square

L

IV)  Hexagon
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III)  Triangle

LL

L
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effective elastic properties of each periodic cellular solid from its unit cell. The determined 

properties include the effective Young’s moduli, effective Poisson’s ratios, and effective shear 

moduli. FEA is performed using MSC.Marc Mentat software. Examples of solid and beam 

element models are shown in Fig. 9. 

 

 

Fig. 9 Solid (left) and beam (right) element models of the body-centered square unit cell. 

 

For the comparison to be meaningful, only converged FE solutions with respect to FE 

discretization will be used. The accuracies of the results obtained from a model with solid 

elements depend on the number of elements used in the model. In this study, the number of 

solid elements in each solid model is quadrupled until the model gives converged results. Since, 

in the determination of the effective elastic constants, FEA is used to determine strain energy 

of unit cells under prescribed strain modes, the convergence is defined based on strain energy 

values. Define the tolerance for convergence as 

𝑡𝑜𝑙𝑒𝑟𝑎𝑛𝑐𝑒 =  
|𝑈𝐶

′′ − 𝑈𝐶
′ |

𝑈𝐶
′′ . (46) 

Here, 𝑈𝐶
′  is the strain energy from the previous rougher mesh, and 𝑈𝐶

′′ is the strain energy from 

the latest finer mesh. The result is considered converged when the tolerance is less than 0.001. 

As aforementioned, the considered effective constants include the effective Young’ 

modulus, effective Poisson’s ratio, and effective shear modulus. The difference between an 

effective elastic constant obtained from a solid element model 𝑋𝑠𝑜𝑙𝑖𝑑
∗  and from a beam element 

model 𝑋𝑏𝑒𝑎𝑚
∗  is calculated in percentage as 
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𝑑𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑐𝑒 =  
𝑋𝑏𝑒𝑎𝑚
∗ − 𝑋𝑠𝑜𝑙𝑖𝑑

∗

𝑋𝑠𝑜𝑙𝑖𝑑
∗ × 100. (47) 

 

4.3.2 Results 

 
The computational times for Euler beam models compared to solid models are 

significantly different. The computational time for a beam model is generally in a few seconds 

whereas the computational time for a solid element model is in several minutes. The results of 

the investigation are shown in Table 2, Table 3, Table 4, Table 5, and Table 6, respectively, for 

the square, body-centered square, triangle, hexagon, and square 𝑍𝑒3 periodic cellular solids. 

All investigated periodic cellular solids have square symmetry except the square 𝑍𝑒3 solids. 

According to the results, the effective Young’s moduli and effective shear moduli obtained 

from the beam element models are lower than those obtained from the solid element models for 

all investigated solids and all strut slenderness values. As expected, the differences between the 

results are higher in the solids with lower strut slenderness. 

Within the considered range of material volume fractions (approximately 0.1 − 0.3), 

the highest differences between the results from the solid and beam element models are found 

in the square 𝑍𝑒3 solids, whose effective elastic properties in the two axes are unequal. For the 

square 𝑍𝑒3 solids, the highest differences are −9.36% and −21.01%, respectively, for the 

effective Young’s modulus 𝐸2
∗ in the vertical direction and the effective shear modulus.  

Among the periodic cellular solids with square symmetry, the differences of the 

effective Young’s moduli between the solid and beam element models are quite small. The 

differences are less than 5% and the highest difference of −4.84% is found in the hexagon 

periodic cellular solid with slenderness of 17.32. For the differences of the effective shear 

moduli, the highest difference of −18.49% is found in the square periodic cellular solid with 

slenderness of 17.32. 

For the square periodic cellular solids, there are only struts aligned in the two 

orthogonal directions. Euler beams do not consider Poisson’s effect on beam sections. Since 

Poisson’s effect in square unit cells comes from Poisson’s effect on beam sections, using Euler 

beam elements for square unit cells implies no Poisson’s effect in square unit cells. On the 

contrary, the solid element models will be able to capture Poisson’s effect in square unit cells 

even when the effect is very small. In fact, the effective Poisson’s ratios of the square periodic 

cellular solids are so small and can be considered as zero. Hence, the effective Poisson’s ratios 

of the square periodic cellular solids from the solid element models and those from the beam 
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element models are approximately similar. Likewise, this phenomenon is also found in the 

square 𝑍𝑒3 periodic cellular solids and can be discussed in the same way. 

For the body-centered square, triangle, hexagon periodic cellular solids, the effective 

Poisson’s ratios obtained from the beam element models are higher than those obtained from 

the solid element models for all strut slenderness values. The differences between the results 

are higher in the solids with lower strut slenderness. The highest difference of −7.96% is found 

in the triangle periodic cellular solid with slenderness of 34.64. 

When beam element models are used, the stiffness in the planes of beam cross sections 

is not considered. If this stiffness is considered, it will be more difficult to deform a beam inside 

a join volume because of the contribution of this stiffness from the other beams. When solid 

element models are used, the stiffness in the planes of beam cross sections is intrinsically 

considered. Therefore, the results from solid element models for 𝐸𝑖
∗ and 𝐺𝑖𝑗

∗  are more accurate 

and stiffer. For Poisson’s ratios, the same kind of stiffness will reduce the transverse 

deformation of the solid. As a result, smaller Poisson’s ratios are observed when solid element 

models are used. According to the results from the investigated unit cells, when the ratios 

𝑊/𝐿𝑚𝑖𝑛 of the unit cell struts are 0.1, beam element models will offer highly accurate results 

which are different from the solid element models’ results less than 10%. 
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Table 2 Results from solid and beam element models of square unit cells.  

 

𝑊

𝐿
 𝑆 𝑚𝑣𝑓 𝑋∗ Solid elements Beam elements 

Differences 

(%) 

0.05 69.28 0.0975 
𝐸𝑖
∗ 

(MPa) 
5.0360 × 10−2 5.0000 × 10−2 −0.72 

 
 

 𝑣𝑖𝑗
∗  3.0222 × 10−3 0.0000 × 100 −100.00 

 
 

 
𝐺𝑖𝑗
∗  

(MPa) 
6.5212 × 10−5 6.2500 × 10−5 −4.16 

0.10 34.64 0.1900 
𝐸𝑖
∗ 

(MPa) 
1.0144 × 10−1 1.0000 × 10−1 −1.42 

 
 

 𝑣𝑖𝑗
∗  6.0268 × 10−3 0.0000 × 100 −100.00 

 
 

 
𝐺𝑖𝑗
∗  

(MPa) 
5.4694 × 10−4 5.0000 × 10−4 −8.58 

0.20 17.32 0.3600 
𝐸𝑖
∗ 

(MPa) 
2.0598 × 10−1 2.0000 × 10−1 −2.90 

 
 

 𝑣𝑖𝑗
∗  1.2592 × 10−2 0.0000 × 100 −100.00 

 
 

 
𝐺𝑖𝑗
∗  

(MPa) 
4.9071 × 10−3 4.0000 × 10−3 −18.49 
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Table 3 Results from solid and beam element models of body-centered square unit cells.  

 

𝑊

𝐿𝑚𝑖𝑛
 𝑆𝑚𝑖𝑛 𝑚𝑣𝑓 𝑋∗ Solid elements Beam elements 

Differences 

(%) 

0.025 138.56 0.0835 
𝐸𝑖
∗ 

(MPa) 
2.5247 × 10−2 2.5016 × 10−2 −0.92 

 
 

 𝑣𝑖𝑗
∗  4.1112 × 10−1 4.1385 × 10−1 0.66 

 
 

 
𝐺𝑖𝑗
∗  

(MPa) 
2.5224 × 10−2 2.5006 × 10−2 −0.87 

0.05 69.28 0.1634 
𝐸𝑖
∗ 

(MPa) 
5.1172 × 10−2 5.0125 × 10−2 −2.05 

 
 

 𝑣𝑖𝑗
∗  4.0588 × 10−1 4.1275 × 10−1 1.69 

 
 

 
𝐺𝑖𝑗
∗  

(MPa) 
5.1017 × 10−2 5.0044 × 10−2 −1.91 

0.10 34.64 0.3123 
𝐸𝑖
∗ 

(MPa) 
1.0633 × 10−1 1.0100 × 10−1 −5.01 

 
 

 𝑣𝑖𝑗
∗  3.8831 × 10−1 4.0839 × 10−1 5.17 

 
 

 
𝐺𝑖𝑗
∗  

(MPa) 
1.0517 × 10−1 1.0035 × 10−1 −4.58 
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Table 4 Results from solid and beam element models of triangle unit cells. 

 

𝑊

𝐿
 𝑆 𝑚𝑣𝑓 𝑋∗ Solid elements Beam elements 

Differences 

(%) 

0.025 138.56 0.0847 
𝐸𝑖
∗ 

(MPa) 
2.9208 × 10−2 2.8880 × 10−2 −1.12 

 
 

 𝑣𝑖𝑗
∗  3.2906 × 10−1 3.3305 × 10−1 1.21 

 
 

 
𝐺𝑖𝑗
∗  

(MPa) 
1.0988 × 10−2 1.0839 × 10−2 −1.36 

0.05 69.28 0.1657 
𝐸𝑖
∗ 

(MPa) 
5.9259 × 10−2 5.7831 × 10−2 −2.41 

 
 

 𝑣𝑖𝑗
∗  3.2286 × 10−1 3.3222 × 10−1 2.90 

 
 

 
𝐺𝑖𝑗
∗  

(MPa) 
2.2398 × 10−2 2.1705 × 10−2 −3.10 

0.10 34.64 0.3164 
𝐸𝑖
∗ 

(MPa) 
1.2301 × 10−1 1.1624 × 10−1 −5.51 

 
 

 𝑣𝑖𝑗
∗  3.0466 × 10−1 3.2890 × 10−1 7.96 

 
 

 
𝐺𝑖𝑗
∗  

(MPa) 
4.7144 × 10−2 4.3734 × 10−2 −7.23 
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Table 5 Results from solid and beam element models of hexagon unit cells. 

 

𝑊

𝐿
 𝑆 𝑚𝑣𝑓 𝑋∗ Solid elements Beam elements 

Differences 

(%) 

0.05 69.28 0.0847 
𝐸𝑖
∗ 

(MPa) 
2.9137 × 10−4 2.8648 × 10−4 −1.68 

 
 

 𝑣𝑖𝑗
∗  9.8999 × 10−1 9.9008 × 10−1 0.01 

 
 

 
𝐺𝑖𝑗
∗  

(MPa) 
7.3212 × 10−5 7.1989 × 10−5 −1.67 

0.10 34.64 0.1657 
𝐸𝑖
∗ 

(MPa) 
2.3128 × 10−3 2.2421 × 10−3 −3.06 

 
 

 𝑣𝑖𝑗
∗  9.6063 × 10−1 9.6117 × 10−1  0.06 

 
 

 
𝐺𝑖𝑗
∗  

(MPa) 
5.8975 × 10−4 5.7163 × 10−4 −3.07 

0.20 17.32 0.3164 
𝐸𝑖
∗ 

(MPa) 
1.7335 × 10−2 1.6496 × 10−2 −4.84 

 
 

 𝑣𝑖𝑗
∗  8.5502 × 10−1 8.5714 × 10−1 0.25 

 
 

 
𝐺𝑖𝑗
∗  

(MPa) 
4.6725 × 10−3 4.4412 × 10−3 −4.95 
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Table 6 Results from solid and beam element models of square 𝑍𝑒3 unit cells. 

 

𝑊

𝐿𝑚𝑖𝑛
 𝑆𝑚𝑖𝑛  𝑚𝑣𝑓 𝑋∗ Solid elements Beam elements 

Differences 

(%) 

0.10 34.64 0.0975 
𝐸1
∗ 

(MPa) 
5.0360 × 10−2 5.0000 × 10−2 −0.67 

 
 

 
𝐸2
∗ 

(MPa) 
2.0602 × 10−3 1.9231 × 10−3 −6.65 

   𝑣12
∗  4.3374 × 10−3 0.0000 × 100 −100.00 

   𝑣21
∗  1.0598 × 10−1 0.0000 × 100 −100.00 

 
 

 
𝐺𝑖𝑗
∗  

(MPa) 
1.0576 × 10−4 9.9950 × 10−5 −5.50 

0.20 17.32 0.1900 
𝐸1
∗ 

(MPa) 
1.0124 × 10−1 1.0000 × 10−1 −1.23 

 
 

 
𝐸2
∗ 

(MPa) 
1.4997 × 10−2 1.3793 × 10−2 −8.03 

   𝑣12
∗  1.3874 × 10−2 0.0000 × 100 −100.00 

   𝑣21
∗  9.3659 × 10−2 0.0000 × 100 −100.00 

 
 

 
𝐺𝑖𝑗
∗  

(MPa) 
8.9584 × 10−4 7.9840 × 10−4 −10.88 

0.40 8.66 0.3600 
𝐸1
∗ 

(MPa) 
2.0507 × 10−1 2.0000 × 10−1 −2.47 

 
 

 
𝐸2
∗ 

(MPa) 
8.6106 × 10−2 7.8049 × 10−2 −9.36 

   𝑣12
∗  3.8280 × 10−2 0.0000 × 100 −100.00 

   𝑣21
∗  9.1170 × 10−2 0.0000 × 100 −100.00 

 
 

 
𝐺𝑖𝑗
∗  

(MPa) 
8.0384 × 10−3 6.3492 × 10−3 −21.01 
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Chapter 5 

Exact Forms of the Effective Elastic Constants 

 

The equations of the effective elastic constants of periodic cellular solids that can be 

modelled accurately as frame structures can be obtained from elaborate analytical structural 

analysis of their unit cells. These equations for periodic cellular solids with different unit-cell 

architectures are naturally not the same. Thus, new analytical structural analysis has to be 

performed every time a new topology is considered. These equations, in fact, share certain basic 

forms. This study aims to derive the exact forms of the effective elastic constants of arbitrary 

frame-like periodic cellular solids that can be modelled accurately using Euler beams. The 

forms are derived analytically by using the homogenization method based on equivalent strain 

energy. 

In the derivation, the Euler beam theory is employed. The cross sections of all struts in 

a periodic cellular solid with an arbitrary topology are set to be the same, and are also set to 

have the same moment of inertia in all directions. The exact forms of the effective elastic 

constants are obtained in terms of some dimensionless factors, the characteristic length and 

volume of the unit cell, the area and moment of inertia of the struts, and Young’s modulus of 

the base material. The dimensionless factors are different for different topologies of solids. In 

general, these factors can be functions of the area and moment of inertia of the struts. However, 

if these factors are constant, the forms can be used as exact parametric forms. The constant 

factors for periodic cellular solids with a particular topology can be determined by exact curve 

fitting using FE results with different areas and moments of inertia. After that, the obtained 

equations can be tested using additional FE results with areas and moments of inertia that are 

different from the fitting data. If exact fitting is achieved with the additional FE results, the 

obtained equations are valid and elaborate analytical structural analysis can be avoided. On the 

contrary, if exact fitting cannot be achieved with the additional FE results, it means that some 

of the dimensionless factors are not constant and the results of the curve fitting should not be 

used. The exact forms of the effective elastic constants proposed in this study are checked by 

using them with several topologies of 2D and 3D periodic cellular solids. The obtained effective 

elastic constants are compared with exact solutions from symbolic FE computations and/or the 

literature. 
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5.1 Exact forms 

 
Using Eqs. (9) and (11) in the equilibrium equation gives 

𝜎𝑗𝑖,𝑗 = (𝐶𝑗𝑖𝑘𝑙𝜖𝑘𝑙),𝑗
= [𝐶𝑗𝑖𝑘𝑙(𝜖𝑘𝑙

𝑜 + 𝜖𝑘𝑙
𝑝
)]
,𝑗
= 0, (48) 

which subsequently yields 

(𝐶𝑗𝑖𝑘𝑙𝜖𝑘𝑙
𝑝
)
,𝑗
= −(𝐶𝑗𝑖𝑘𝑙𝜖𝑘𝑙

𝑜 )
,𝑗
= −𝐶𝑗𝑖𝑘𝑙,𝑗𝜖𝑘𝑙

𝑜 . (49) 

The unknown of Eq. (49) is 𝜖𝑘𝑙
𝑝

. It is shown by Suquet (1987) that Eq. (49) gives 𝜖𝑘𝑙
𝑝

 that is 

directly proportional to 𝜖𝑘𝑙
𝑜 , i.e. 

𝜖𝑖𝑗
𝑝 (𝑥𝑚) = 𝜖𝑘𝑙

𝑜 𝐻𝑖𝑗𝑘𝑙(𝑥𝑚), (50) 

where the components of 𝐻𝑖𝑗𝑘𝑙 are periodic functions of position. Consequently, 𝑢𝑖
𝑝
 can be 

written as 

𝑢𝑖
𝑝(𝑥𝑚) = 𝜖𝑘𝑙

𝑜 𝑄𝑖𝑘𝑙(𝑥𝑚) + 𝑐𝑖, (51) 

where the components of 𝑄𝑖𝑘𝑙 are periodic functions of position and 𝑐𝑖 is a constant tensor. 

A difference between 𝑢𝑖’s of any two points 𝑥𝑚
𝑎  and 𝑥𝑚

𝑏  can be written as 

𝑢𝑖(𝑥𝑚
𝑏 ) − 𝑢𝑖(𝑥𝑚

𝑎 ) = [𝜖𝑖𝑙
𝑜𝑥𝑙

𝑏 + 𝜖𝑘𝑙
𝑜 𝑄𝑖𝑘𝑙(𝑥𝑚

𝑏 ) + 𝑐𝑖] − [𝜖𝑖𝑙
𝑜𝑥𝑙

𝑎 + 𝜖𝑘𝑙
𝑜 𝑄𝑖𝑘𝑙(𝑥𝑚

𝑎 ) + 𝑐𝑖]

= 𝜖𝑖𝑙
𝑜(𝑥𝑙

𝑏 − 𝑥𝑙
𝑎) + 𝜖𝑘𝑙

𝑜 [𝑄𝑖𝑘𝑙(𝑥𝑚
𝑏 ) − 𝑄𝑖𝑘𝑙(𝑥𝑚

𝑎 )]

= 𝜖𝑘𝑙
𝑜 {𝛿𝑘𝑖(𝑥𝑙

𝑏 − 𝑥𝑙
𝑎) + [𝑄𝑖𝑘𝑙(𝑥𝑚

𝑏 ) − 𝑄𝑖𝑘𝑙(𝑥𝑚
𝑎 )]} = 𝜖𝑘𝑙

𝑜 𝑆𝑖𝑘𝑙(𝑥𝑚
𝑎 , 𝑥𝑚

𝑏 ). 

(52) 

In addition, the derivative of 𝑢𝑖 with respect to 𝑥𝑗 is equal to 

𝑢𝑖,𝑗(𝑥𝑚) = 𝜖𝑖𝑙
𝑜𝑥𝑙,𝑗 + 𝜖𝑘𝑙

𝑜 𝑄𝑖𝑘𝑙,𝑗(𝑥𝑚) = 𝜖𝑖𝑗
𝑜 + 𝜖𝑘𝑙

𝑜 𝑄𝑖𝑘𝑙,𝑗(𝑥𝑚)

= 𝜖𝑘𝑙
𝑜 {𝛿𝑘𝑖𝛿𝑙𝑗 + 𝑄𝑖𝑘𝑙,𝑗(𝑥𝑚)} = 𝜖𝑘𝑙

𝑜 𝑍𝑖𝑗𝑘𝑙(𝑥𝑚). 
(53) 

Consider a beam element 𝐽 that belongs to a unit cell shown in Fig. 10. Let 𝐿𝐽 be the 

length of the beam element and 𝐿 be the characteristic length of the unit cell. 𝐿𝐽 and 𝐿 are related 

through 𝐿𝐽 = ℎ𝐽𝐿. Without loss of generality, the coordinate 𝑥1 is set along the longitudinal 

axis of the element. The strain energy of the element from axial deformation is given by 
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𝑈𝑎𝐽 =
𝐸𝜁𝐽𝐴

2𝐿𝐽
(𝑢1

𝑏 − 𝑢1
𝑎)
2
. (54) 

Here, 𝐸 denotes Young’s modulus of the base material while 𝐴 denotes the sectional area of 

the struts in the periodic solid. Note that all elements in the periodic solid have the same material 

and sectional properties. In the above equation, 𝜁𝐽 is a constant used for adjusting the rigidity 

of the beam element. If the beam element is used to model a beam of the unit cell that is a result 

of cutting longitudinally a strut of the periodic solid shared by 𝑁 adjacent unit cells, then 𝜁𝑗 is 

equal to 1/𝑁. If the beam element represents a whole strut of the solid, then 𝜁𝐽 is equal to 1. 

 

Fig. 10 A general beam element in a unit cell. 

 
Eq. (52) gives 

𝑢1
𝑏 − 𝑢1

𝑎 = [
𝜖𝑘𝑙
𝑜 𝑆1𝑘𝑙(𝑥1

𝑎 , 𝑥1
𝑏)

𝐿
] 𝐿 = 𝜓1𝐽𝐿, 

𝑢2
𝑏 − 𝑢2

𝑎 = [
𝜖𝑘𝑙
𝑜 𝑆2𝑘𝑙(𝑥1

𝑎, 𝑥1
𝑏)

𝐿
] 𝐿 = 𝜓2𝐽𝐿, 

(55) 

where 𝜓1𝐽 and 𝜓2𝐽 are dimensionless functions of 𝜖𝑖𝑗
𝑜 . Consequently, 𝑈𝑎𝐽 can be expressed as 

𝑈𝑎𝐽 =
𝐸𝜁𝐽𝐴

2𝐿𝐽
𝜓1𝐽
2 𝐿2 =

𝐸𝜁𝐽𝐴

2ℎ𝐽
𝜓1𝐽
2 𝐿 = 𝛼𝐽𝐸𝐴𝐿, (56) 

where 𝛼𝐽 is a dimensionless function of 𝜖𝑖𝑗
𝑜 . 

Next, consider the strain energy from bending deformation in the 𝑥1 − 𝑥2 plane, which 

is expressed as 
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𝑈𝑏3𝐽 =
𝐸𝜁𝐽𝐼

2𝐿𝐽
[4 ((𝜃3

𝑎)2 + 𝜃3
𝑎𝜃3

𝑏 + (𝜃3
𝑏)
2
) −

12

𝐿𝐽
(𝑢2

𝑏 − 𝑢2
𝑎)(𝜃3

𝑎 + 𝜃3
𝑏)

+
12

𝐿𝐽
2 (𝑢2

𝑏 − 𝑢2
𝑎)
2
]. 

(57) 

Here, 𝐼 denotes the moment of inertia of the struts in the periodic solid. 

Eq. (52) gives 

𝜃3
𝑎 = 𝑢2,1

𝑎 = 𝜖𝑘𝑙
𝑜 𝑍21𝑘𝑙(𝑥1

𝑎) = �̂�3𝐽
𝑎 , 

𝜃3
𝑏 = 𝑢2,1

𝑏 = 𝜖𝑘𝑙
𝑜 𝑍21𝑘𝑙(𝑥1

𝑏) = �̂�3𝐽
𝑏 , 

(58) 

where �̂�3𝐽
𝑎  and �̂�3𝐽

𝑏  are dimensionless functions of 𝜖𝑖𝑗
𝑜 . Consequently, 𝑈𝑏3𝐽 becomes 

𝑈𝑏3𝐽 =
𝐸𝜁𝐽𝐼

2ℎ𝐽𝐿
[4 ((�̂�3𝐽

𝑎 )
2
+ �̂�3𝐽

𝑎 �̂�3𝐽
𝑏 + (�̂�3𝐽

𝑏 )
2
) −

12

ℎ𝐽
𝜓2𝐽(�̂�3𝐽

𝑎 + �̂�3𝐽
𝑏 ) +

12

ℎ𝐽
2 𝜓2𝐽

2 ]

= 𝛽3𝐽
𝐸𝐼

𝐿
, 

(59) 

where 𝛽3𝐽 is a dimensionless function of 𝜖𝑖𝑗
𝑜 . Similarly, the strain energy due to bending 

deformation in the 𝑥1 − 𝑥3 plane can be written as 𝑈𝑏2𝐽 = 𝛽2𝐽𝐸𝐼/𝐿. 

It follows that the strain energy of the element is equal to 

𝑈𝐽 = 𝛼𝐽𝐸𝐴𝐿 + 𝛽2𝐽
𝐸𝐼

𝐿
+ 𝛽3𝐽

𝐸𝐼

𝐿
= 𝛼𝐽𝐸𝐴𝐿 + 𝛽𝐽

𝐸𝐼

𝐿
. (60) 

Similar to 𝛼𝐽, 𝛽𝐽 is also a dimensionless function of 𝜖𝑖𝑗
𝑜 . 

The strain energy of a unit cell is the sum of the strain energy from all strut members. 

For 3D periodic cellular solids, Eqs. (20), (22), and (60) give 

𝐸𝑖
∗ =

𝐸

𝑉𝐶
[
 
 
 𝜙𝑖1(𝐴𝐿)

3 + 𝜙𝑖2(𝐴
2𝐼𝐿) + 𝜙𝑖3 (

𝐴𝐼2

𝐿 ) + 𝜙𝑖4 (
𝐼
𝐿)

3

(𝐴𝐿)2 + 𝜙𝑖5(𝐴𝐼) + 𝜙𝑖6 (
𝐼
𝐿)

2

]
 
 
 
, (61) 

𝜈𝑖𝑗
∗ =

𝜑𝑖𝑗1(𝐴𝐿)
2 +𝜑𝑖𝑗2(𝐴𝐼) + 𝜑𝑖𝑗3 (

𝐼
𝐿)

2

(𝐴𝐿)2 + 𝜑𝑖𝑗4(𝐴𝐼) + 𝜑𝑖𝑗5 (
𝐼
𝐿)

2 , (62) 
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𝐺𝑖𝑗
∗ =

𝐸

𝑉𝐶
[𝜂𝑖𝑗1(𝐴𝐿) + 𝜂𝑖𝑗2 (

𝐼

𝐿
)], (63) 

where 𝜙𝑖𝑘, 𝜑𝑖𝑗𝑘, and 𝜂𝑖𝑗𝑘 are dimensionless factors. 

For 2D periodic cellular solids, Eqs. (27)−(31), and (60) give 

𝐸𝑖
∗ =

𝐸

𝑉𝐶
[
𝜙𝑖1(𝐴𝐿)

2 + 𝜙𝑖2(𝐴𝐼) + 𝜙𝑖3 (
𝐼
𝐿
)
2

𝐴𝐿 + 𝜙𝑖4 (
𝐼
𝐿
)

], (64) 

𝜈𝑖𝑗
∗ =

𝜑𝑖𝑗1(𝐴𝐿) + 𝜑𝑖𝑗2 (
𝐼
𝐿
)

𝐴𝐿 + 𝜑𝑖𝑗3 (
𝐼
𝐿
)

, (65) 

𝐺12
∗ =

𝐸

𝑉𝐶
[𝜂1(𝐴𝐿) + 𝜂2 (

𝐼

𝐿
)], (66) 

where 𝜙𝑖𝑘, 𝜑𝑖𝑗𝑘, and 𝜂𝑘 are dimensionless factors. 

For periodic cellular solids with a particular topology, whose dimensionless factors in 

the exact forms in Eqs. (61)−(66) are constants, these constant factors can be obtained by exact 

curve fitting using FE results. As an example, consider 𝐸1
∗ given by Eq. (64). This equation can 

be rearranged as  

(𝐴𝐿)2𝜙11 + (𝐴𝐼)𝜙12 + (
𝐼

𝐿
)
2

𝜙13 − (
𝐸1
∗𝑉𝐶
𝐸
) (
𝐼

𝐿
)𝜙14 = (

𝐸1
∗𝑉𝐶
𝐸
) (𝐴𝐿).  (67) 

By using a unit cell with a fixed set of 𝐸, 𝑉𝐶, and 𝐿, Eq. (27) can be used to compute 

𝐸1
∗ for four different combinations of 𝐴 and 𝐼. The strain energy required by Eq. (27) can be 

obtained from FEA of the considered unit cell under the relevant strain modes. The four sets of 

𝐸1
∗, 𝐴 and 𝐼 are then substituted into Eq. (67) to create four simultaneous linear equations as 

shown in the following equation: 
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[
 
 
 
 
 
 
 
 
 (𝐴1𝐿)

2 𝐴1𝐼1 (
𝐼1
𝐿
)
2

−(
𝐸1(1)
∗ 𝑉𝐶

𝐸
)(
𝐼1
𝐿
)

(𝐴2𝐿)
2 𝐴2𝐼2 (

𝐼2
𝐿
)
2

−(
𝐸1(2)
∗ 𝑉𝐶

𝐸
)(
𝐼2
𝐿
)

(𝐴3𝐿)
2 𝐴3𝐼3 (

𝐼3
𝐿
)
2

−(
𝐸1(3)
∗ 𝑉𝐶

𝐸
)(
𝐼3
𝐿
)

(𝐴4𝐿)
2 𝐴4𝐼4 (

𝐼4
𝐿
)
2

−(
𝐸1(4)
∗ 𝑉𝐶

𝐸
)(
𝐼4
𝐿
)
]
 
 
 
 
 
 
 
 
 

{

𝜙11
𝜙12
𝜙13
𝜙14

} =

{
 
 
 
 

 
 
 
 (
𝐸1(1)
∗ 𝑉𝐶

𝐸
) (𝐴1𝐿)

(
𝐸1(2)
∗ 𝑉𝐶

𝐸
)(𝐴2𝐿)

(
𝐸1(3)
∗ 𝑉𝐶

𝐸
)(𝐴3𝐿)

(
𝐸1(4)
∗ 𝑉𝐶

𝐸
)(𝐴4𝐿)

}
 
 
 
 

 
 
 
 

. (68) 

Solving the obtained system of linear equations yields 𝜙11, 𝜙12, 𝜙13, and 𝜙14, and the 

expression of 𝐸1
∗ in Eq. (64) is obtained. Since 𝜙11, 𝜙12, 𝜙13, and 𝜙14 may not be constants as 

assumed, the obtained expression of 𝐸1
∗ must be tested by other combinations of 𝐴 and 𝐼 that 

are different from the ones used in the exact curve fitting. 

 

5.2 Reduced exact forms 

 
Some of the exact forms for 3D periodic cellular solids can be reduced into the forms for 

2D periodic cellular solids when symmetry of unit cells is available. If a 3D periodic cellular 

solid has 𝑈𝐶
(1)
= 𝑈𝐶

(2)
, 𝑈𝐶

(5)
= 𝑈𝐶

(6)
, and 𝑈𝐶

(8)
= 𝑈𝐶

(9)
, it has tetragonal symmetry with 𝑥3 as the 

axis of rotational symmetry. It follows that 𝐸1
∗ = 𝐸2

∗, 𝜈12
∗ = 𝜈21

∗ , 𝜈13
∗ = 𝜈23

∗ , 𝜈31
∗ = 𝜈32

∗ , and 

𝐺23
∗ = 𝐺13

∗ . By taking the conditions of 𝑈𝐶
(1) = 𝑈𝐶

(2)
, and 𝑈𝐶

(5) = 𝑈𝐶
(6)

 into account when 

considering Eqs. (20), (22), and (60), the exact forms of 𝐸3
∗, 𝜈31

∗ , and 𝜈32
∗  can be reduced into 

those for 2D periodic cellular solids in Eqs. (64) and (65). 

If a 3D periodic cellular solid has 𝑈𝐶
(1) = 𝑈𝐶

(2) = 𝑈𝐶
(3)

, 𝑈𝐶
(4) = 𝑈𝐶

(5) = 𝑈𝐶
(6)

, and 𝑈𝐶
(7) =

𝑈𝐶
(8) = 𝑈𝐶

(9)
, it has cubic symmetry. It follows that 𝐸1

∗ = 𝐸2
∗ = 𝐸3

∗, 𝜈12
∗ = 𝜈13

∗ = 𝜈21
∗ = 𝜈23

∗ =

𝜈31
∗ = 𝜈32

∗ , and 𝐺12
∗ = 𝐺23

∗ = 𝐺13
∗ . The conditions of 𝑈𝐶

(1) = 𝑈𝐶
(2) = 𝑈𝐶

(3)
, and 𝑈𝐶

(4) = 𝑈𝐶
(5) =

𝑈𝐶
(6)

 can be used with Eqs. (20), (22), and (60) to reduce the exact forms of all Young’s moduli 

and Poisson’s ratios into the forms for 2D periodic cellular solids in Eqs. (64) and (65). 
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5.3 Results 

 
In order to check the validity of the proposed exact forms of the effective elastic 

constants, the forms are used with 2D and 3D periodic cellular solids of various topologies 

shown in Fig. 11 and Fig. 12. The dash lines show the boundary edges of the selected unit cells. 

It is assumed that the dimensionless factors in all exact forms are constant, and these constants 

are then obtained from exact curve fitting using FE results. For any 3D unit-cell topology, 

whose geometry clearly show tetragonal or cubic symmetry, the reduced exact forms of 

effective Young’s moduli and Poisson’s ratios, if they exist, are used instead of the original 

forms. After the factors in the exact forms are obtained from the exact curve fitting, the obtained 

expressions are tested using additional FE results with the areas and moments of inertia outside 

the fitting data in order to determine whether the obtained expressions are valid or not. Finally, 

the obtained expressions are also compared with the exact solutions from symbolic FEA in 

MATLAB and/or the literature. The symbolic FEA by MATLAB is described in a master’s 

degree thesis by Sam (2015). 

 Table 7 shows the volumes 𝑉𝐶 of the unit cells in Fig. 11 and Fig. 12. Here, 𝐿 represents 

the characteristic length of each unit cell as defined in Fig. 11 and Fig. 12 while 𝑇 denotes the 

thickness of a 2D unit cell. In the exact curve fitting, the base Young’s modulus 𝐸 and the 

characteristic length 𝐿 for every case are both set to 1. For the 2D cases, the unit thickness is 

assumed, i.e. 𝑇 = 1. The combinations of 𝐴 and 𝐼 used in the exact curve fitting are arbitrarily 

selected based on convenience and do not physically represent real sections. Mathematically, 

it is not necessary to use physically real sections to perform exact curve fitting. The employed 

combinations of 𝐴 and 𝐼 are shown in Table 8. The effective elastic constants for these 

combinations of 𝐴 and 𝐼 are directly obtained from Eqs. (20), (22), and Eqs. (27)−(31) using 

strain energy from FEA of the unit cells under the required strain modes. Subsequently, the 

obtained effective elastic constants are used for the exact curve fitting.  
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Table 7 Volume of unit cells. 

 
Unit cell Volume 𝑉𝐶 

2D 

Square 𝐿2𝑇 

Body-centered square 𝐿2𝑇 

Diamond square 𝐿2𝑇 

Triangle 
√3

2
𝐿2𝑇 

Hexagon 
3√3

2
𝐿2𝑇 

Diamond 𝐿2𝑇 

Elongated diamond 
√3

2
𝐿2𝑇 

3D 

Cubic 𝐿3 

Body-centered cubic 𝐿3 

Face-centered cubic 𝐿3 

Cuboctahedron 2√2𝐿3 

Tetrakaidecahedron 16√2𝐿3 

Octahedron 2√2𝐿3 

Tetragonal bipyramid 
√14

4
𝐿3 

 

 

Table 8 Areas and moments of inertia for exact curve fitting. 

 

No. of 

dimensionless 

factors 

(𝐴, 𝐼) 

2D 3D 

6 - (1, 6), (2, 5), (3, 4), (4, 3), (5, 2), (6, 1) 

5 - (1, 6), (2, 5), (3, 4), (4, 3), (5, 2) 

4 (1, 4), (2, 3), (3, 2), (4, 1) (1, 6), (2, 5), (3, 4), (4, 3) 

3 (1, 4), (2, 3), (3, 2) (1, 6), (2, 5), (3, 4) 

2 (1, 4), (2, 3) (1, 6), (2, 5) 
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Fig. 11 Two-dimensional unit cells. 

  

IV) Triangle

L

L

V) Hexagon

VII) Elongated diamondVI) Diamond

L

III) Diamond squareII) Body-centered square

LL

I) Square

L

L
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Fig. 12 Three-dimensional unit cells. 

  

IV) Cuboctahedron
V) Tetrakaidecahedron

I) Simple cubic

L

II) Body-centered cubic

L

III) Face-centered cubic

L

VI) Octahedron VII) Tetragonal bipyramid
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Table 9-Table 14 show the expressions of effective Young’s moduli, Poisson’s ratios, 

and shear moduli obtained from the exact curve fitting. The volumes 𝑉𝐶 in Table 9-Table 14 

can be obtained from Table 7. It must be noted that, for the square and cubic unit cells, the 

obtained systems of linear equations for effective Young’s moduli and Poisson’s ratios have 

multiple solutions of the dimensionless factors. However, all of the solutions yield the same 

expressions shown in Table 9, Table 10, Table 12, and Table 13. The problems of multiple 

solutions with the square and cubic unit cells happen because effective Young’s moduli are 

functions of 𝐴 only, and the effective Poisson’s ratios are not functions of 𝐴 and 𝐼 at all. As a 

result, the proposed exact forms become too generic, and permit multiple solutions of the 

dimensionless factors that can, in fact, represent in the same final expressions. In fact, for 3D 

periodic cellular solids, whose reduced exact forms of effective Young’s moduli and Poisson’s 

ratios exist due to symmetry, the reduced exact forms must be used to avoid this kind of 

problem. 

The expressions obtained from the exact curve fitting in Table 9-Table 14 are tested 

with two sets of 𝐴 and 𝐼. For 2D unit cells, 𝑇 × 𝑇 square struts with 𝑇 = 0.1 for the first set 

and 0.2 for the second set are used. Note that 𝑇 is also the thickness of each 2D unit cell. For 

3D unit cells, circular struts with diameter 𝐷 = 0.1 and 0.2 are used. In testing, base Young’s 

modulus 𝐸 and the characteristic length 𝐿 are still set to 1. First, the effective elastic constants 

for the test sets of 𝐴 and 𝐼 are computed from the expressions from the exact curve fitting. Then, 

the effective elastic constants are directly determined from Eqs. (20), (22), and Eqs. (27)−(31) 

using strain energy from FEA of the unit cells. The effective elastic constants from the 

expressions from the exact curve fitting and from the FE results are compared in Table 15 and 

Table 16. Note that, when there are distinct effective elastic constants for different directions, 

the values in Table 15 and Table 16 are ordered in the same way as in Table 9-Table 14. It is 

found that all of the effective elastic constants from the expressions obtained from the exact 

curve fitting and from the FE results are identical except for effective shear moduli of the 

hexagonal and tetrakaidecahedral solids. The large differences in the cases of effective shear 

moduli of the hexagonal and tetrakaidecahedral solids imply that the real exact solutions of 

effective shear moduli of these two solids have some dimensionless factors that are not 

constants as assumed. Therefore, effective shear moduli of the hexagonal and 

tetrakaidecahedral solids from the curve fitting are not correct and should not be used.  

Table 9-Table 14, the exact solutions of the effective elastic constants from elaborate 

symbolic FE computations are also given. Symbolic FEA is performed in MATLAB to 

symbolically determine strain energy under different strain modes. The symbolic expressions 

of strain energy are then used to symbolically compute the effective elastic constants. It can be 
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seen from the comparison with the exact solutions in Table 9-Table 14 that, except for effective 

shear moduli of the hexagonal and tetrakaidecahedral solids, the effective elastic constants 

obtained from this study are the same as the exact solutions. This confirms the comparison 

results reported in Table 15 and Table 16, where effective shear moduli of the hexagonal and 

tetrakaidecahedral solids yield large errors with the test data. It must be noted that the exact 

solutions of effective shear moduli of the hexagonal and tetrakaidecahedral solids can still be 

written in the exact forms proposed in this study. However, some of their dimensionless factors 

are not constant. 
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Table 9 Effective Young’s moduli for 2D periodic cellular solids. 

Unit cell 

Effective Young’s moduli 

Present study Exact solutiona 

Square 𝐸𝑖
∗ =

𝐸

𝑉𝐶
[
1.00000(𝐴𝐿)2 + 0.00000(𝐴𝐼) + 0.00000 (

𝐼
𝐿
)
2

𝐴𝐿 + 0.00000 (
𝐼
𝐿
)

] 𝐸𝑖
∗ =

𝐸

𝑉𝐶
(𝐴𝐿) 

Body-centered 

square 
𝐸𝑖
∗ =

𝐸

𝑉𝐶
[
1.41421(𝐴𝐿)2 + 48.00000(𝐴𝐼) + 0.00000 (

𝐼
𝐿
)
2

𝐴𝐿 + 9.94113 (
𝐼
𝐿
)

] 𝐸𝑖
∗ =

𝐸

𝑉𝐶

[
 
 
 
 
√2(𝐴𝐿)2 + 48(𝐴𝐼)

𝐴𝐿 + (
24√2

2 + √2
) (
𝐼
𝐿
)
]
 
 
 
 

=
𝐸

𝑉𝐶
[
1.41421(𝐴𝐿)2 + 48(𝐴𝐼)

𝐴𝐿 + 9.94113 (
𝐼
𝐿
)

] 

Diamond square 𝐸𝑖
∗ =

𝐸

𝑉𝐶
[
1.41421(𝐴𝐿)2 + 48.00000(𝐴𝐼) + 0.00000 (

𝐼
𝐿
)
2

𝐴𝐿 + 9.94113 (
𝐼
𝐿
)

] 

𝐸𝑖
∗ =

𝐸

𝑉𝐶
[
(2 + 2√2 )(𝐴𝐿)2 + (96 + 48√2 )𝐴𝐼

(2 + √2 )𝐴𝐿 + 24√2 (
𝐼
𝐿
)

] 

=
𝐸

𝑉𝐶
[
1.41421(𝐴𝐿)2 + 48(𝐴𝐼)

𝐴𝐿 + 9.94113 (
𝐼
𝐿
)

] 

Triangle 𝐸𝑖
∗ =

𝐸

𝑉𝐶
[
1.00000(𝐴𝐿)2 + 12.00000(𝐴𝐼) + 0.00000 (

𝐼
𝐿
)
2

𝐴𝐿 + 4.00000 (
𝐼
𝐿
)

] 𝐸𝑖
∗ =

𝐸

𝑉𝐶
[
(𝐴𝐿)2 + 12(𝐴𝐼)

𝐴𝐿 + 4 (
𝐼
𝐿
)

] 
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Table 9 (Continued) Effective Young’s moduli for 2D periodic cellular solids. 

Unit cell 

Effective Young’s moduli 

Present study Exact solutiona 

Hexagon 𝐸𝑖
∗ =

𝐸

𝑉𝐶
[
0.00000(𝐴𝐿)2 + 72.00000(𝐴𝐼) + 0.00000 (

𝐼
𝐿
)
2

𝐴𝐿 + 36.00000 (
𝐼
𝐿
)

] 𝐸𝑖
∗ =

𝐸

𝑉𝐶
[

72(𝐴𝐼)

𝐴𝐿 + 36 (
𝐼
𝐿
)
] 

Diamond 𝐸𝑖
∗ =

𝐸

𝑉𝐶
[
0.00000(𝐴𝐿)2 + 24.00000(𝐴𝐼) + 0.00000 (

𝐼
𝐿
)
2

𝐴𝐿 + 12.00000 (
𝐼
𝐿
)

] 𝐸𝑖
∗ =

𝐸

𝑉𝐶
[

24(𝐴𝐼)

𝐴𝐿 + 12 (
𝐼
𝐿
)
] 

Elongated 

diamond 

 

𝐸1
∗ =

𝐸

𝑉𝐶
[
0.00000(𝐴𝐿)2 + 8.00000(𝐴𝐼) + 0.00000 (

𝐼
𝐿
)
2

𝐴𝐿 + 4.00000 (
𝐼
𝐿
)

] 𝐸1
∗ =

𝐸

𝑉𝐶
[

8(𝐴𝐼)

𝐴𝐿 + 4 (
𝐼
𝐿
)
] 

𝐸2
∗ =

𝐸

𝑉𝐶
[
0.00000(𝐴𝐿)2 + 72.00000(𝐴𝐼) + 0.00000 (

𝐼
𝐿
)
2

𝐴𝐿 + 36.00000 (
𝐼
𝐿
)

] 𝐸2
∗ =

𝐸

𝑉𝐶
[

72(𝐴𝐼)

𝐴𝐿 + 36 (
𝐼
𝐿
)
] 

a) All exact solutions are from symbolic computations in MATLAB.
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Table 10 Effective Poisson’s ratios for 2D periodic cellular solids. 

 

Unit cell 

Effective Poisson’s ratios 

Present study Exact solutiona 

Square 𝑣𝑖𝑗
∗ = 0.00000 𝑣𝑖𝑗

∗ = 0 

Body-

centered 

square 

𝑣𝑖𝑗
∗ =

0.41421(𝐴𝐿) − 9.94113 (
𝐼
𝐿
)

𝐴𝐿 + 9.94113 (
𝐼
𝐿
)

 

 

𝑣𝑖𝑗
∗ =

(√2 − 1)(𝐴𝐿) − (24√2 − 24) (
𝐼
𝐿
)

𝐴𝐿 + (24√2 − 24) (
𝐼
𝐿
)

 

=
0.41421(𝐴𝐿) − 9.94113 (

𝐼
𝐿
)

𝐴𝐿 + 9.94113 (
𝐼
𝐿
)

 

Diamond 

square 
𝑣𝑖𝑗
∗ =

0.41421(𝐴𝐿) − 9.94113 (
𝐼
𝐿
)

𝐴𝐿 + 9.94113 (
𝐼
𝐿
)

 

 

𝑣𝑖𝑗
∗ =

(√2 − 1)(𝐴𝐿) − (24√2 − 24) (
𝐼
𝐿
)

𝐴𝐿 + (24√2 − 24) (
𝐼
𝐿
)

 

=
0.41421(𝐴𝐿) − 9.94113 (

𝐼
𝐿
)

𝐴𝐿 + 9.94113 (
𝐼
𝐿
)

 

Triangle 𝑣𝑖𝑗
∗ =

0.33333(𝐴𝐿) − 4.00000 (
𝐼
𝐿
)

𝐴𝐿 + 4.00000 (
𝐼
𝐿
)

 𝑣𝑖𝑗
∗ =

(
1
3
) (𝐴𝐿) − 4 (

𝐼
𝐿
)

𝐴𝐿 + 4 (
𝐼
𝐿
)

 

Hexagon 𝑣𝑖𝑗
∗ =

1.00000(𝐴𝐿) − 12.00000 (
𝐼
𝐿
)

𝐴𝐿 + 36.00000 (
𝐼
𝐿
)

 𝑣𝑖𝑗
∗ =

𝐴𝐿 − 12 (
𝐼
𝐿
)

𝐴𝐿 + 36 (
𝐼
𝐿
)
 

Diamond 𝑣𝑖𝑗
∗ =

1.00000(𝐴𝐿) − 12.00000 (
𝐼
𝐿
)

𝐴𝐿 + 12.00000 (
𝐼
𝐿
)

 𝑣𝑖𝑗
∗ =

𝐴𝐿 − 12 (
𝐼
𝐿
)

𝐴𝐿 + 12 (
𝐼
𝐿
)
 

Elongated 

diamond 

 

𝑣12
∗ =

0.33333(𝐴𝐿) − 4.00000 (
𝐼
𝐿
)

𝐴𝐿 + 4.00000 (
𝐼
𝐿
)

 𝑣12
∗ =

(
1
3
) (𝐴𝐿) − 4 (

𝐼
𝐿
)

𝐴𝐿 + 4 (
𝐼
𝐿
)

 

𝑣21
∗ =

3.00000(𝐴𝐿) − 36.00000 (
𝐼
𝐿
)

𝐴𝐿 + 36.00000 (
𝐼
𝐿
)

 𝑣21
∗ =

3(𝐴𝐿) − 36 (
𝐼
𝐿
)

𝐴𝐿 + 36 (
𝐼
𝐿
)

 

a) All exact solutions are from symbolic computations in MATLAB. 
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Table 11 Effective shear moduli for 2D periodic cellular solids. 

 

Unit cell 
Effective shear modulus 

Present study Exact solutiona 

Square 𝐺12
∗ =

𝐸

𝑉𝐶
[0.00000(𝐴𝐿) + 6.00000 (

𝐼

𝐿
)] 𝐺12

∗ =
𝐸

𝑉𝐶
[6 (

𝐼

𝐿
)] 

Body-

centered 

square 
𝐺12
∗ =

𝐸

𝑉𝐶
[0.70711(𝐴𝐿) + 6.00000 (

𝐼

𝐿
)] 

𝐺12
∗ =

𝐸

𝑉𝐶
[(
√2

2
) (𝐴𝐿) + 6 (

𝐼

𝐿
)] 

=
𝐸

𝑉𝐶
[0.70711(𝐴𝐿) + 6 (

𝐼

𝐿
)] 

Diamond 

square 𝐺12
∗ =

𝐸

𝑉𝐶
[0.70711(𝐴𝐿) + 13.45584 (

𝐼

𝐿
)] 

𝐺12
∗ =

𝐸

𝑉𝐶
[(
√2

2
) (𝐴𝐿) + (18√2 − 12) (

𝐼

𝐿
)] 

=
𝐸

𝑉𝐶
[0.70711(𝐴𝐿) + 13.45584 (

𝐼

𝐿
)] 

Triangle 𝐺12
∗ =

𝐸

𝑉𝐶
[0.37500(𝐴𝐿) + 4.50000 (

𝐼

𝐿
)] 

𝐺12
∗ =

𝐸

𝑉𝐶
[(
3

8
) (𝐴𝐿) + (

9

2
) (
𝐼

𝐿
)] 

𝐺12
∗ =

𝐸

𝑉𝐶
[0.375(𝐴𝐿) + 4.5 (

𝐼

𝐿
)] 

Hexagon 𝐺12
∗ =

𝐸

𝑉𝐶
[1.39205(𝐴𝐿) + 0.01933 (

𝐼

𝐿
)] 𝐺12

∗ =
𝐸

𝑉𝐶
[(

18𝐼

𝐴𝐿2 + 12𝐼
) (𝐴𝐿)] 

Diamond 𝐺12
∗ =

𝐸

𝑉𝐶
[0.50000(𝐴𝐿) + 0.00000 (

𝐼

𝐿
)] 𝐺12

∗ =
𝐸

𝑉𝐶
[(
1

2
) (𝐴𝐿)] 

Elongated 

diamond 𝐺12
∗ =

𝐸

𝑉𝐶
[0.37500(𝐴𝐿) + 0.00000 (

𝐼

𝐿
)] 

𝐺12
∗ =

𝐸

𝑉𝐶
[(
3

8
) (𝐴𝐿)] 

=
𝐸

𝑉𝐶
[0.375(𝐴𝐿)] 

a) All exact solutions are from symbolic computations in MATLAB. 
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Table 12 Effective Young’s moduli for 3D periodic cellular solids. 

 

Unit cell 

Effective Young’s moduli 

Present study Exact solutiona 

Cubic 𝐸𝑖
∗ =

𝐸

𝑉𝐶
[
1.00000(𝐴𝐿)2 + 0.00000(𝐴𝐼) + 0.00000 (

𝐼
𝐿
)
2

𝐴𝐿 + 0.00000 (
𝐼
𝐿
)

] 𝐸𝑖
∗ =

𝐸

𝑉𝐶
(𝐴𝐿) 

Body-centered 

cubic 
𝐸𝑖
∗ =

𝐸

𝑉𝐶
[
1.30312(𝐴𝐿)2 + 48.15078(𝐴𝐼) + 0.00000 (

𝐼
𝐿
)
2

𝐴𝐿 + 4.84990 (
𝐼
𝐿
)

] 

𝐸𝑖
∗ =

𝐸

𝑉𝐶

[
 
 
 
 (
12√3 + 9

8√3 + 9
) (𝐴𝐿)2 + (

192√3 + 768

8√3 + 9
) (𝐴𝐼)

𝐴𝐿 + (
64√3

8√3 + 9
) (
𝐼
𝐿
)

]
 
 
 
 

 

=
𝐸

𝑉𝐶
[
1.30312(𝐴𝐿)2 + 48.15078(𝐴𝐼)

𝐴𝐿 + 4.84990 (
𝐼
𝐿
)

] 

Face-centered 

cubic 
𝐸𝑖
∗ =

𝐸

𝑉𝐶
[
2.09384(𝐴𝐿)2 + 57.94113(𝐴𝐼) + 369.07458 (

𝐼
𝐿
)
2

𝐴𝐿 + 16.31095 (
𝐼
𝐿
)

] 

𝐸𝑖
∗ =

𝐸

𝑉𝐶

[
 
 
 
 (
9 + 4√2 

7
) (𝐴𝐿)2 + (24√2 + 24)𝐴𝐼 + (

3456√2 − 2304
7

) (
𝐼
𝐿
)
2

𝐴𝐿 + (
216 − 72√2 

7
) (
𝐼
𝐿
)

]
 
 
 
 

 

=
𝐸

𝑉𝐶
[
2.09384(𝐴𝐿)2 + 57.94113(𝐴𝐼) + 369.07458 (

𝐼
𝐿
)
2

𝐴𝐿 + 16.31095 (
𝐼
𝐿
)

] 

Cuboctahedron 𝐸𝑖
∗ =

𝐸

𝑉𝐶
[
1.33333(𝐴𝐿)2 + 48.00000(𝐴𝐼) + 0.00000 (

𝐼
𝐿
)
2

𝐴𝐿 + 4.00000 (
𝐼
𝐿
)

] 𝐸𝑖
∗ =

𝐸

𝑉𝐶
[
(
4
3
) (𝐴𝐿)2 + 48(𝐴𝐼)

𝐴𝐿 + 4 (
𝐼
𝐿
)

] =
𝐸

𝑉𝐶
[
1.33333(𝐴𝐿)2 + 48(𝐴𝐼)

𝐴𝐿 + 4 (
𝐼
𝐿
)

] 
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Table 12 (Continued) Effective Young’s moduli for 3D periodic cellular solids. 

 

Unit cell Effective Young’s moduli 

 Present study Exact solutiona 

Tetrakai-

decahedron 
𝐸𝑖
∗ =

𝐸

𝑉𝐶
[
0.00000(𝐴𝐿)2 + 192.00000(𝐴𝐼) + 0.00000 (

𝐼
𝐿
)
2

𝐴𝐿 + 12.00000 (
𝐼
𝐿
)

] 𝐸𝑖
∗ =

𝐸

𝑉𝐶
[
192(𝐴𝐼)

𝐴𝐿 + 12 (
𝐼
𝐿
)
] 

Octahedron 𝐸𝑖
∗ =

𝐸

𝑉𝐶
[
1.33333(𝐴𝐿)2 + 48.00000(𝐴𝐼) + 0.00000 (

𝐼
𝐿
)
2

𝐴𝐿 + 4.00000 (
𝐼
𝐿
)

] 𝐸𝑖
∗ =

𝐸

𝑉𝐶
[
(
4
3
) (𝐴𝐿)2 + 48(𝐴𝐼)

𝐴𝐿 + 4 (
𝐼
𝐿
)

] =
𝐸

𝑉𝐶
[
1.33333(𝐴𝐿)2 + 48(𝐴𝐼)

𝐴𝐿 + 4 (
𝐼
𝐿
)

] 

Tetragonal 

bipyramid 

𝐸1
∗ = 𝐸2

∗

=
𝐸

𝑉𝐶
[
0.11765(𝐴𝐿)3 + 101.24370(𝐴2𝐼𝐿) + 859.15966 (

𝐴𝐼2

𝐿
) + 0.00000 (

𝐼
𝐿
)
3

(𝐴𝐿)2 + 58.28571(𝐴𝐼) + 85.91597 (
𝐼
𝐿
)
2 ] 

𝐸1
∗ = 𝐸2

∗ =
𝐸

𝑉𝐶
[
(
2
17
) (𝐴𝐿)3 + (

12,048
119

) (𝐴2𝐼𝐿) + (
102,240
119

) (
𝐴𝐼2

𝐿
)

(𝐴𝐿)2 + (
408
7
) (𝐴𝐼) + (

10,224
119

) (
𝐼
𝐿
)
2 ] 

=
𝐸

𝑉𝐶
[
0.11765(𝐴𝐿)3 + 101.24370(𝐴2𝐼𝐿) + 859.15966 (

𝐴𝐼2

𝐿
)

(𝐴𝐿)2 + 58.28571(𝐴𝐼) + 85.91597 (
𝐼
𝐿
)
2 ] 

 

𝐸3
∗ =

𝐸

𝑉𝐶
[
5.76471(𝐴𝐿)2 + 49.41176(𝐴𝐼) + 0.00000 (

𝐼
𝐿
)
2

𝐴𝐿 + 4.94118 (
𝐼
𝐿
)

] 

𝐸3
∗ =

𝐸

𝑉𝐶
[
(
98
17
) (𝐴𝐿)2 + (

840
17

) (𝐴𝐼)

𝐴𝐿 + (
84
17
) (
𝐼
𝐿
)

] 

=
𝐸

𝑉𝐶
[
5.76471(𝐴𝐿)2 + 49.41176(𝐴𝐼)

𝐴𝐿 + 4.94118 (
𝐼
𝐿
)

] 

a) All exact solutions are from symbolic computations in MATLAB. The same exact solution for the tetrakaidecahedral cell is also obtained by 

Zhu, Knott, and Mills (1997)  
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Table 13 Effective Poisson’s ratios for 3D periodic cellular solids. 

 

Unit cell 

Effective Poisson’s ratios 

Present study Exact solutiona 

Cubic 𝑣𝑖𝑗
∗ = 0.00000 𝑣𝑖𝑗

∗ = 0 

Body-centered cubic 𝑣𝑖𝑗
∗ =

0.30312(𝐴𝐿) − 4.84990 (
𝐼
𝐿
)

𝐴𝐿 + 4.84990 (
𝐼
𝐿
)

 𝑣𝑖𝑗
∗ =

(
4√3

8√3 + 9
) (𝐴𝐿) − (

64√3

8√3 + 9
) (
𝐼
𝐿
)

𝐴𝐿 + (
64√3

8√3 + 9
) (
𝐼
𝐿
)

=
0.30312(𝐴𝐿) − 4.84990 (

𝐼
𝐿
)

𝐴𝐿 + 4.84990 (
𝐼
𝐿
)

 

Face-centered cubic 𝑣𝑖𝑗
∗ =

0.22654(𝐴𝐿) − 5.43698 (
𝐼
𝐿
)

𝐴𝐿 + 16.31095 (
𝐼
𝐿
)

 𝑣𝑖𝑗
∗ =

(
3 − √2 
7

) (𝐴𝐿) + (
72 − 24√2 

7
) (
𝐼
𝐿
)

(𝐴𝐿) + (
216 − 72√2 

7
) (
𝐼
𝐿
)

 =
0.22654(𝐴𝐿) − 5.43698 (

𝐼
𝐿
)

𝐴𝐿 + 16.31095 (
𝐼
𝐿
)

 

Cuboctahedron 𝑣𝑖𝑗
∗ =

0.33333(𝐴𝐿) − 4.00000 (
𝐼
𝐿
)

𝐴𝐿 + 4.00000 (
𝐼
𝐿
)

 𝑣𝑖𝑗
∗ =

(
1
3
) (𝐴𝐿) − 4 (

𝐼
𝐿
)

𝐴𝐿 + 4 (
𝐼
𝐿
)

 

Tetrakai-decahedron 𝑣𝑖𝑗
∗ =

0.50000(𝐴𝐿) − 6.00000 (
𝐼
𝐿
)

𝐴𝐿 + 12.00000 (
𝐼
𝐿
)

 𝑣𝑖𝑗
∗ =

(
1
2
) (𝐴𝐿) − 6 (

𝐼
𝐿
)

𝐴𝐿 + 12 (
𝐼
𝐿
)

 

Octahedron 𝑣𝑖𝑗
∗ =

0.33333(𝐴𝐿) − 4.00000 (
𝐼
𝐿
)

𝐴𝐿 + 4.00000 (
𝐼
𝐿
)

 𝑣𝑖𝑗
∗ =

(
1
3
) (𝐴𝐿) − 4 (

𝐼
𝐿
)

𝐴𝐿 + 4 (
𝐼
𝐿
)
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Table 13 (Continued) Effective Poisson’s ratios for 3D periodic cellular solids.   

 

a) All exact solutions are from symbolic computations in MATLAB. The same exact solution for the tetrakaidecahedral cell is also obtained by 

Zhu, Knott, and Mills (1997) 

Unit cell 
Effective Poisson’s ratios 

Present study Exact solutiona 

Tetragonal 

bipyramid 

𝑣13
∗ = 𝑣23

∗ =
0.00840(𝐴𝐿)2 + 7.05882(𝐴𝐼) − 85.91597 (

𝐼
𝐿
)
2

(𝐴𝐿)2 + 58.28571(𝐴𝐼) + 85.91597 (
𝐼
𝐿
)
2  

𝑣13
∗ = 𝑣23

∗ =
(
1
119

) (𝐴𝐿)2 + (
120
17

) (𝐴𝐼) − (
10,224
119

) (
𝐼
𝐿
)
2

(𝐴𝐿)2 + (
408
7
) (𝐴𝐼) + (

10,224
119

) (
𝐼
𝐿
)
2  

=
0.00840(𝐴𝐿)2 + 7.05882(𝐴𝐼) − 85.91597 (

𝐼
𝐿
)
2

(𝐴𝐿)2 + 58.28571(𝐴𝐼) + 85.91597 (
𝐼
𝐿
)
2  

𝑣31
∗ = 𝑣32

∗ =
0.41176(𝐴𝐿) − 4.94118 (

𝐼
𝐿
)

𝐴𝐿 + 4.94118 (
𝐼
𝐿
)

 

𝑣31
∗ = 𝑣32

∗ =
(
7
17
) (𝐴𝐿) − (

84
17
) (
𝐼
𝐿
)

𝐴𝐿 + (
84
17
) (
𝐼
𝐿
)

 

=
0.41176(𝐴𝐿) − 4.94118 (

𝐼
𝐿
)

𝐴𝐿 + 4.94118 (
𝐼
𝐿
)

 

𝑣12
∗ = 𝑣21

∗ =
0.88235(𝐴𝐿)2 − 42.15126(𝐴𝐼) − 85.91597 (

𝐼
𝐿
)
2

(𝐴𝐿)2 + 58.28571(𝐴𝐼) + 85.91597 (
𝐼
𝐿
)
2  

𝑣12
∗ = 𝑣21

∗ =
(
15
17
) (𝐴𝐿)2 − (

5,016
119

) (𝐴𝐼) − (
10,224
119

) (
𝐼
𝐿
)
2

(𝐴𝐿)2 + (
408
7
) (𝐴𝐼) + (

10,224
119

) (
𝐼
𝐿
)
2  

=
0.88235(𝐴𝐿)2 − 42.15126(𝐴𝐼) − 85.91597 (

𝐼
𝐿
)
2

(𝐴𝐿)2 + 58.28571(𝐴𝐼) + 85.91597 (
𝐼
𝐿
)
2  
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Table 14 Effective shear moduli for 3D periodic cellular solids. 

 

Unit cell 
Effective Shear moduli 

Present study Exact solutiona 

Cubic 𝐺𝑖𝑗
∗ =

𝐸

𝑉𝐶
[0.00000(𝐴𝐿) + 6.00000 (

𝐼

𝐿
)] 𝐺𝑖𝑗

∗ =
𝐸

𝑉𝐶
[6 (

𝐼

𝐿
)] 

Body-centered 

cubic 
𝐺𝑖𝑗
∗ =

𝐸

𝑉𝐶
[0.76980(𝐴𝐿) + 12.15840 (

𝐼

𝐿
)] 

𝐺𝑖𝑗
∗ =

𝐸

𝑉𝐶
[(
4√3

9
) (𝐴𝐿) + (

54 + 32√3

9
) (
𝐼

𝐿
)] 

=
𝐸

𝑉𝐶
[0.76980(𝐴𝐿) + 12.15840 (

𝐼

𝐿
)] 

Face-centered 

cubic 
𝐺𝑖𝑗
∗ =

𝐸

𝑉𝐶
[0.70711(𝐴𝐿) + 10.24264 (

𝐼

𝐿
)] 

𝐺𝑖𝑗
∗ =

𝐸

𝑉𝐶
[
√2 

2
(𝐴𝐿) + (6 + 3√2) (

𝐼

𝐿
)] 

=
𝐸

𝑉𝐶
[0.70711(𝐴𝐿) + 10.24264 (

𝐼

𝐿
)] 

Cuboctahedron 𝐺𝑖𝑗
∗ =

𝐸

𝑉𝐶
[1.00000(𝐴𝐿) + 7.50000 (

𝐼

𝐿
)] 𝐺𝑖𝑗

∗ =
𝐸

𝑉𝐶
[𝐴𝐿 + (

15

2
) (
𝐼

𝐿
)] 

Tetrakai-

decahedron 
𝐺𝑖𝑗
∗ =

𝐸

𝑉𝐶
[7.42983(𝐴𝐿) + 0.06604 (

𝐼

𝐿
)] 𝐺𝑖𝑗

∗ =
𝐸

𝑉𝐶
[

120𝐼

2𝐴𝐿2 + 15𝐼
] (𝐴𝐿) 

Octahedron 𝐺𝑖𝑗
∗ =

𝐸

𝑉𝐶
[1.00000(𝐴𝐿) + 7.50000 (

𝐼

𝐿
)] 𝐺𝑖𝑗

∗ =
𝐸

𝑉𝐶
[𝐴𝐿 + (

15

2
) (
𝐼

𝐿
)] 

Tetragonal 

bipyramid 

𝐺13
∗ = 𝐺23

∗ =
𝐸

𝑉𝐶
[0.43750(𝐴𝐿)

+ 13.62043 (
𝐼

𝐿
)] 

𝐺13
∗ = 𝐺23

∗ =
𝐸

𝑉𝐶
[(
7

16
) (𝐴𝐿) + (

110,271

8,096
) (
𝐼

𝐿
)] 

=
𝐸

𝑉𝐶
[0.4375(𝐴𝐿) + 13.62043 (

𝐼

𝐿
)] 

𝐺12
∗ =

𝐸

𝑉𝐶
[0.50000(𝐴𝐿) + 2.75000 (

𝐼

𝐿
)] 

𝐺12
∗ =

𝐸

𝑉𝐶
[(
1

2
) (𝐴𝐿) + (

11

4
) (
𝐼

𝐿
)] 

=
𝐸

𝑉𝐶
[0.5(𝐴𝐿) + 2.75 (

𝐼

𝐿
)] 

a) All exact solutions are from symbolic computations in MATLAB. The same exact 

solution for the tetrakaidecahedral cell is also obtained by Zhu, Knott, and Mills (1997) 
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Table 15 Testing of the expressions obtained by exact curve fitting for 2D periodic cellular solids. 

 

Unit cell 𝐸 𝐿 𝑇 

Effective Young’s modulus Effective Poisson’s ratio Effective shear modulus 

Present 

study, 𝑎 

 

FEM, 𝑏 
Difference, 

 (𝑎 − 𝑏)/𝑏 

Present 

study, 𝑎 
FEM, 𝑏 

Difference, 

(𝑎 − 𝑏)/𝑏 

Present 

study, 𝑎 
FEM, 𝑏 

Difference, 

(𝑎 − 𝑏)/𝑏 

Square 

1.0 1.0 0.1 1.000×10-1 1.000×10-1 0.000 0.000×100 0.000×100 
No 

difference 
5.000×10-4 5.000×10-4 0.000 

1.0 1.0 0.2 2.000×10-1 2.000×10-1 0.000 0.000×100 0.000×100 
No 

difference 
4.000×10-3 4.000×10-3 0.000 

Body-

centered 

square 

1.0 1.0 0.1 1.442×10-1 1.442×10-1 0.000 4.026×10-1 4.026×10-1 0.000 7.121×10-2 7.121×10-2 0.000 

1.0 1.0 0.2 3.047×10-1 3.047×10-1 0.000 3.689×10-1 3.689×10-1 0.000 1.454×10-1 1.454×10-1 0.000 

Diamond 

square 

1.0 1.0 0.1 1.442×10-1 1.442×10-1 0.000 4.026×10-1 4.026×10-1 0.000 7.183×10-2 7.183×10-2 0.000 

1.0 1.0 0.2 3.047×10-1 3.047×10-1 0.000 3.689×10-1 3.689×10-1 0.000 1.504×10-1 1.504×10-1 0.000 

Triangle 
1.0 1.0 0.1 1.162×10-1 1.162×10-1 0.000 3.289×10-1 3.289×10-1 0.000 4.373×10-2 4.373×10-2 0.000 

1.0 1.0 0.2 2.370×10-1 2.370×10-1 0.000 3.158×10-1 3.158×10-1 0.000 9.007×10-2 9.007×10-2 0.000 

Hexagon 
1.0 1.0 0.1 2.242×10-3 2.242×10-3 0.000 9.612×10-1 9.612×10-1 0.000 5.358×10-2 5.716×10-4 9.274×101 

1.0 1.0 0.2 1.650×10-2 1.650×10-2 0.000 8.571×10-1 8.571×10-1 0.000 1.072×10-1 4.441×10-3 2.314×101 

diamond 
1.0 1.0 0.1 1.980×10-3 1.980×10-3 0.000 9.802×10-1 9.802×10-1 0.000 5.000×10-2 5.000×10-2 0.000 

1.0 1.0 0.2 1.538×10-2 1.538×10-2 0.000 9.231×10-1  9.231×10-1 0.000 1.000×10-1 1.000×10-1 0.000 

Elongated 

diamond 

1.0 1.0 0.1 
7.672×10-4 

6.726×10-3 

7.672×10-4 

6.726×10-3 

0.000 

0.000 

3.289×10-1 

2.883×100 

3.289×10-1 

2.883×100 

0.000 

0.000 
4.330×10-2 4.330×10-2 0.000 

1.0 1.0 0.2 
6.077×10-3 

4.949×10-2 

6.077×10-3 

4.949×10-2 

0.000 

0.000 

3.158×10-1 

2.571×100 

3.158×10-1 

2.571×100 

0.000 

0.000 
8.660×10-2 8.660×10-2 0.000 
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Table 16 Testing of the expressions obtained by exact curve fitting for 3D periodic cellular solids. 

 

Unit cell 𝐸 𝐿 𝐷 

Effective Young’s modulus Effective Poisson’s ratio Effective shear modulus 

Present 

study, 𝑎 

 

FEM, 𝑏 
Difference, 

 (𝑎 − 𝑏)/𝑏 

Present 

study, 𝑎 
FEM, 𝑏 

Difference, 

(𝑎 − 𝑏)/𝑏 

Present 

study, 𝑎 
FEM, 𝑏 

Difference, 

(𝑎 − 𝑏)/𝑏 

Cubic 

1.0 1.0 0.1 7.854×10-3 7.854×10-3 0.000 0.000×100 0.000×100 
No 

difference 
2.945×10-5 2.945×10-5 0.000 

1.0 1.0 0.2 3.142×10-2 3.142×10-2 0.000 0.000×100 0.000×100 
No 

difference 
4.712×10-4 4.712×10-4 0.000 

Body-

centered 

cubic 

1.0 1.0 0.1 1.044×10-2 1.044×10-2 0.000 2.992×10-1 2.992×10-1 0.000 6.106×10-3 6.106×10-3 0.000 

1.0 1.0 0.2 4.418×10-2 4.418×10-2 0.000 2.875×10-1 2.875×10-1 0.000 2.514×10-2 2.514×10-2 0.000 

Face-

centered 

cubic 

1.0 1.0 0.1 1.656×10-2 1.656×10-2 0.000 2.276×10-1 2.276×10-1 0.000 5.604×10-3 5.604×10-3 0.000 

1.0 1.0 0.2 6.764×10-2 6.764×10-2 0.000 2.307×10-1 2.307×10-1 0.000 2.302×10-2 2.302×10-2 0.000 

Cubocta-

hedron 

1.0 1.0 0.1 3.776×10-3 3.776×10-3 0.000 3.300×10-1 3.300×10-1 0.000 2.790×10-3 2.790×10-3 0.000 

1.0 1.0 0.2 1.598×10-2 1.598×10-2 0.000 3.201×10-1 3.201×10-1 0.000 1.132×10-2 1.132×10-2 0.000 

Tetrakai-

decahedron 

1.0 1.0 0.1 4.134×10-5 4.134×10-5 0.000 4.926×10-1 4.926×10-1 0.000 2.579×10-3 1.296×10-5 1.980×102 

1.0 1.0 0.2 6.470×10-4 6.470×10-4 0.000 4.709×10-1 4.709×10-1 0.000 1.032×10-2 2.044×10-4 4.949×101 

Octahedron 
1.0 1.0 0.1 3.776×10-3 3.776×10-3 0.000 3.300×10-1 3.300×10-1 0.000 2.790×10-3 2.790×10-3 0.000 

1.0 1.0 0.2 1.598×10-2 1.598×10-2 0.000 3.201×10-1 3.201×10-1 0.000 1.132×10-2 1.132×10-2 0.000 

Tetragonal 

bipyramid 

1.0 1.0 0.1 
1.468×10-3 

4.851×10-2 

1.468×10-3 

4.851×10-2 

0.000 

0.000 

1.233×10-2 

4.074×10-1 

8.259×10-1 

1.233×10-2 

4.074×10-1 

8.259×10-1 

0.000 

0.000 

0.000 

3.745×10-3 

4.213×10-3 

3.745×10-3 

4.213×10-3 

0.000 

0.000 

1.0 1.0 0.2 
1.102×10-2 

1.953×10-1 

1.102×10-2 

1.953×10-1 

0.000 

0.000 

2.226×10-2 

3.945×10-1 

6.774×10-1 

2.226×10-2 

3.945×10-1 

6.774×10-1 

0.000 

0.000 

0.000 

1.584×10-2 

1.702×10-2 

1.584×10-2 

1.702×10-2 

0.000 

0.000 
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Chapter 6  

Degrees of Homogeneity  

 

As aforementioned, if the sizes of unit cells in a frame-like periodic solid are 

sufficiently small when compared to the size of the whole solid, the solid behaves like a 

homogeneous material. Such a periodic cellular solid will exhibit the effective elastic properties 

and a homogenization method can be used to determine these effective properties. If the sizes 

of unit cells are not sufficiently small when compared to the size of the whole solid, its apparent 

elastic properties can be different from the effective elastic properties. It is advantageous to 

know how small is sufficiently small. 

The degrees of homogeneity can be determined from the relative sizes between the 

solids and their unit cells, which can be defined as the ratio between the solid size and the unit-

cell size. Periodic cellular solids with different unit-cell topologies require different numbers 

of unit cells to reach their effective elastic properties. The number of unit cells that is required 

for a periodic cellular solid to exhibit the effective elastic properties can also be used to 

determine the relative size between the solid and its unit cells required for homogenization. A 

periodic cellular solid that requires a low number of unit cells for its apparent elastic properties 

to converge to the effective elastic properties can be said to have a high degree of homogeneity. 

On the contrary, a periodic cellular solid that requires a large number of unit cells for its 

apparent elastic properties to converge to the effective elastic properties can be said to have a 

low degree of homogeneity. 

  

6.1 Investigation of the degrees of homogeneity 

 
Here, the degrees of homogeneity of some common frame-like periodic solids are 

investigated by determining, for each solid, the number of unit cells required for the apparent 

elastic properties to converge to the effective elastic properties. Both 2D and 3D frame-like 

periodic solids with various geometrical shapes are numerically investigated. The apparent 

effective properties of the considered periodic cellular solids with various numbers of unit cells 

are determined by FEA. The degrees of homogeneity are then obtained by comparing the 

obtained apparent elastic constants with the exact effective elastic constants calculated from the 

exact forms with exact curve fitting. If the dimensionless factors in the exact forms are not 

constant, the exact solutions from symbolic FEA will be used instead. 
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Fig. 13 2D solid and boundary conditions. 

 

 

 

Fig. 14 3D solid and boundary conditions. 

 

The investigated 2D periodic cellular solids include square, body-centered square, 

triangle, hexagon, diamond, and elongated diamond cellular solids. Their configurations can be 

seen in Fig. 11. The investigated 3D periodic cellular solids include cubic, body-centered cubic, 
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cuboctahedron, tetrakaidecahedron, octahedron, and tetragonal bipyramid cellular solids. Their 

configurations can be found in Fig. 12. The characteristic lengths 𝐿 of unit cells are 1 mm. For 

2D periodic cellular solids, the struts have 0.1×0.1 mm square cross sections. For 3D periodic 

cellular solids, the struts have circular cross sections with 0.1 mm diameter. The base material 

is assumed to be linear elastic isotropic with Young’s modulus equal to 1 MPa and Poisson’s 

ratio equal to zero. 

The apparent elastic properties are determined from the periodic cellular solids under 

uniaxial compression and pure shear. The uniaxial compression is simulated by prescribing 

uniform vertical displacement boundary conditions while allowing free lateral displacements. 

FEA is performed using MSC.Marc Mentat software. Examples of FE models and the uniaxial 

boundary conditions are shown in Fig. 13 and Fig. 14 for 2D and 3D solids, respectively. 

Denote the number of unit cells in an orthogonal direction of a solid by 𝑛𝐶. The total number 

of unit cells in a 2D periodic cellular solid is therefore equal to 𝑛𝐶 × 𝑛𝐶 while that in a 3D solid 

is equal to 𝑛𝐶 × 𝑛𝐶 × 𝑛𝐶. In the investigation, 𝑛𝐶 is increased and the apparent elastic constants 

are computed for different values of 𝑛𝐶. Define a relative elastic property as the ratio between 

the apparent elastic property of a solid and the effective elastic property of the equivalent 

homogeneous solid. A percentage difference is used to investigate the convergence of an 

apparent elastic property to its corresponding effective elastic property. This percentage 

difference is defined as 

Percentage difference =
Apparent property − Effective property

Effective property
× 100. (69) 

In this study, the convergence of an apparent elastic property to its corresponding effective 

elastic property is considered achieved when the percentage difference of less than 1% is 

obtained. 

 

6.2 Results 

 
The effective elastic properties of the investigated periodic cellular solids from the 

exact solutions are concluded in Table 17. The apparent elastic properties of the 2D periodic 

cellular solids for different values of 𝑛𝐶 are shown in Table 18, Table 19, Table 20, Table 21, 

Table 22, and Table 23 for the square, body-center square, triangle, hexagon, diamond, and 

elongated diamond cellular solids, respectively. Note that the superscript 𝑛 is used to represent 

apparent elastic properties. The values of 𝑛𝐶 of the 2D cellular solids are increased to 512, 

which is sufficient for the apparent elastic properties of all considered 2D cellular solids to 
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converge to the effective elastic properties. It is found that the square, diamond, and elongated 

diamond solids need only one unit cell to exhibit the effective elastic properties. Therefore, the 

square, diamond, and elongated diamond solids can be regarded as 2D cellular solids that have 

the highest degrees of homogeneity. For the body-centered square solid, the apparent Young’s 

modulus and Poisson’s ratio converge when 𝑛𝐶 is equal to 2 while the apparent shear modulus 

converges when 𝑛𝐶 is equal to 1. For the triangle solid, the apparent Young’s modulus, 

Poisson’s ratio, and shear modulus converge when the values of 𝑛𝐶 are equal to 32, 256, and 1, 

respectively. For the hexagon solid, the apparent Young’s modulus, Poisson’s ratio, and shear 

modulus converge when the values of 𝑛𝐶 are equal to 128, 8, and 512, respectively. 

Consequently, the degrees of homogeneity are the highest in the square, diamond, and 

elongated diamond cellular solids, followed by the body-centered square, triangle, and hexagon 

cellular solids, respectively. 

 

Table 17 Effective elastic properties of the investigated periodic cellular solids. 

Unit cell 𝐸𝑖
∗ (MPa) 𝑣𝑖𝑗

∗  𝐺𝑖𝑗
∗  (MPa) 

2D 

Square 1.000×10-1 0.000×100 5.000×10-4 

Body-centered square 1.442×10-1 4.026×10-1 7.121×10-2 

Triangle 1.162×10-1 3.289×10-1 4.373×10-2 

Hexagon 2.242×10-3 9.612×10-1 5.716×10-4 

Diamond 1.980×10-3 9.802×10-1 5.000×10-2 

Elongated diamond 
7.672×10-4 

6.077×10-3 

3.289×10-1 

2.883×100 
4.330×10-2 

3D 

Cubic 7.854×10-3 0.000×100 2.945×10-5 

Body-centered cubic 1.044×10-2 2.992×10-1 6.106×10-3 

Cuboctahedron 3.776×10-3 3.300×10-1 2.790×10-3 

Tetrakaidecahedron 4.134×10-5 4.926×10-1 1.296×10-5 

Octahedron 3.776×10-3 3.300×10-1 2.790×10-3 

Tetragonal bipyramid 
1.468×10-3 

4.851×10-2 

8.259×10-1 

1.233×10-2 

4.074×10-1 

4.213×10-3 

3.745×10-3 

 

 

 
The apparent elastic properties of the 3D periodic cellular solids for different values of 

𝑛𝐶 are shown in Table 24, Table 25, Table 26, Table 27, Table 28, and Table 29 for the cubic, 

body-centered cubic, cuboctahedron, tetrakaidecahedron, octahedron, and tetragonal bipyramid 

cellular solids, respectively. The values of 𝑛𝐶   of the 3D cellular solids are increased to 64, 

which is sufficient for the convergence of most of the considered 3D cellular solids. When 𝑛𝐶 

is equal to 64, the apparent Young’s modulus and Poisson’s ratio of the cuboctahedron solid 
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still do not converge to its effective properties under the employed convergence criterion. 

Nevertheless, one cuboctahedron unit cell can exhibit the effective shear modulus. When 𝑛𝐶 is 

equal to 64, the tetrakaidecahedron solid has 3,194,880 nodes and the FE mesh becomes too 

large to be solved by the computers used in this study. Thus, there is no result for the 

tetrakaidecahedron solid when 𝑛𝐶 is equal to 64. When 𝑛𝐶 is equal to 32, only the apparent 

shear modulus of the tetrakaidecahedron solid converges to the effective shear modulus while 

the other apparent elastic properties still do not converge to their effective values under the 

employed convergence criterion. For the body-centered cubic solid, the apparent Young’s 

modulus, Poisson’s ratio, and shear modulus converge when the values of 𝑛𝐶 are equal to 2, 4, 

and 8, respectively. It is found that the cubic, octahedron, and tetragonal bipyramid solids need 

only one unit cell to exhibit the effective elastic properties. Therefore, the cubic, octahedron, 

and tetragonal bipyramid solids can be regarded as 3D cellular solids that have the highest 

degrees of homogeneity. 

The convergences of the apparent Young’s moduli, Poisson’s ratios, and shear moduli 

of 2D periodic cellular solids are shown in Fig. 15,  

Fig. 16, and Fig. 17, respectively. In the figures, the elastic constants are shown as the 

relative constants which are the ratios between the apparent elastic constants of the solids and 

the effective elastic constants. For the elongated diamond cellular solids, Young’s moduli for 

the two axes are different but the relative Young’s moduli are found to be the same. As a result, 

the convergences of the apparent Young’s moduli for the two axes are the same, and they are 

shown in the same figure. For the 3D periodic cellular solids, the convergences of the apparent 

Young’s moduli, Poisson’s ratios, and shear moduli are shown in Fig. 18, Fig. 19, and Fig. 20, 

respectively. For the tetragonal bipyramid cellular solids, the convergences of the apparent 

elastic constants in different directions are found to be the same. Therefore, these results are 

only shown in one figure. 
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Table 18 Apparent elastic properties of the square periodic cellular solids. 

 

𝑛𝐶 
𝐸𝑖
𝑛 

(MPa) 

𝐸𝑖
𝑛 − 𝐸𝑖

∗

𝐸𝑖
∗ × 100 𝑣𝑖𝑗

𝑛  
𝑣𝑖𝑗
𝑛 − 𝑣𝑖𝑗

∗

𝑣𝑖𝑗
∗ × 100 

𝐺𝑖𝑗
𝑛  

(MPa) 

𝐺𝑖𝑗
𝑛 − 𝐺𝑖𝑗

∗

𝐺𝑖𝑗
∗ × 100 

1 1.000×10-1 0.000 0.000×100 - 5.000×10-4 0.000 

2 1.000×10-1 0.000 0.000×100 - 5.000×10-4 0.000 

4 1.000×10-1 0.000 0.000×100 - 5.000×10-4 0.000 

8 1.000×10-1 0.000 0.000×100 - 5.000×10-4 0.000 

16 1.000×10-1 0.000 0.000×100 - 5.000×10-4 0.000 

32 1.000×10-1 0.000 0.000×100 - 5.000×10-4 0.000 

64 1.000×10-1 0.000 0.000×100 - 5.000×10-4 0.000 

128 1.000×10-1 0.000 0.000×100 - 5.000×10-4 0.000 

256 1.000×10-1 0.000 0.000×100 - 5.000×10-4 0.000 

512 1.000×10-1 0.000 0.000×100 - 5.000×10-4 0.000 

 

 

 

 

Table 19 Apparent elastic properties of the body-centered square periodic cellular solids. 

 

𝑛𝐶 
𝐸𝑖
𝑛 

(MPa) 

𝐸𝑖
𝑛 − 𝐸𝑖

∗

𝐸𝑖
∗ × 100 𝑣𝑖𝑗

𝑛  
𝑣𝑖𝑗
𝑛 − 𝑣𝑖𝑗

∗

𝑣𝑖𝑗
∗ × 100 

𝐺𝑖𝑗
𝑛  

(MPa) 

𝐺𝑖𝑗
𝑛 − 𝐺𝑖𝑗

∗

𝐺𝑖𝑗
∗ × 100 

1 1.427×10-1 -1.074 4.100×10-1 -1.837 7.096×10-2 -0.350 

2 1.439×10-1 -0.224 3.991×10-1 -0.873 7.107×10-2 -0.190 

4 1.441×10-1 -0.072 4.026×10-1 -0.014 7.114×10-2 -0.099 

8 1.442×10-1 -0.018 4.026×10-1 -0.019 7.117×10-2 -0.050 

16 1.442×10-1 -0.005 4.026×10-1 -0.008 7.119×10-2 -0.250 

32 1.442×10-1 -0.001 4.026×10-1 -0.005 7.120×10-2 -0.012 

64 1.442×10-1 0.000 4.026×10-1 -0.004 7.121×10-2 -0.006 

128 1.442×10-1 0.000 4.026×10-1 -0.003 7.121×10-2 -0.002 

256 1.442×10-1 0.000 4.026×10-1 -0.003 7.121×10-2 -0.001 

512 1.442×10-1 0.000 4.026×10-1 0.000 7.121×10-2 0.000 
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Table 20 Apparent elastic properties of the triangle periodic cellular solids. 

 

𝑛𝐶 
𝐸𝑖
𝑛 

(MPa) 

𝐸𝑖
𝑛 − 𝐸𝑖

∗

𝐸𝑖
∗ × 100 𝑣𝑖𝑗

𝑛  
𝑣𝑖𝑗
𝑛 − 𝑣𝑖𝑗

∗

𝑣𝑖𝑗
∗ × 100 

𝐺𝑖𝑗
𝑛  

(MPa) 

𝐺𝑖𝑗
𝑛 − 𝐺𝑖𝑗

∗

𝐺𝑖𝑗
∗ × 100 

1 1.074×10-1 -7.603 3.070×10-1 -6.663 4.373×10-2 0.000 

2 1.077×10-1 -7.381 8.678×10-2 -73.614 4.373×10-2 0.000 

4 1.115×10-1 -4.045 4.356×10-1 -32.448 4.373×10-2 0.000 

8 1.139×10-1 -2.015 3.829×10-1 -16.407 4.373×10-2 0.000 

16 1.151×10-1 -1.003 3.559×10-1 -8.205 4.373×10-2 0.000 

32 1.157×10-1 -0.501 3.424×10-1 -4.101 4.373×10-2 0.000 

64 1.160×10-1 -0.251 3.356×10-1 -2.050 4.373×10-2 0.000 

128 1.161×10-1 -0.127 3.323×10-1 -1.025 4.373×10-2 0.000 

256 1.162×10-1 -0.065 3.306×10-1 -0.512 4.373×10-2 0.000 

512 1.162×10-1 -0.034 3.306×10-1 -0.256 4.373×10-2 0.000 

 

 

 

 

 

Table 21 Apparent elastic properties of the hexagon periodic cellular solids. 

 

𝑛𝐶 
𝐸𝑖
𝑛 

(MPa) 

𝐸𝑖
𝑛 − 𝐸𝑖

∗

𝐸𝑖
∗ × 100 𝑣𝑖𝑗

𝑛  
𝑣𝑖𝑗
𝑛 − 𝑣𝑖𝑗

∗

𝑣𝑖𝑗
∗ × 100 

𝐺𝑖𝑗
𝑛  

(MPa) 

𝐺𝑖𝑗
𝑛 − 𝐺𝑖𝑗

∗

𝐺𝑖𝑗
∗ × 100 

1 1.036×10-3 -53.811 1.734×100 -80.457 1.440×10-4 -74.811 

2 1.073×10-3 -52.131 4.849×10-1 -49.546 2.486×10-4 -56.516 

4 1.699×10-3 -24.207 9.466×10-1 -1.519 3.454×10-4 -39.574 

8 1.998×10-3 -10.896 9.618×10-1 -0.063 4.306×10-4 -24.667 

16 2.132×10-3 -4.924 9.624×10-1 -0.125 4.912×10-4 -14.067 

32 2.191×10-3 -2.278 9.619×10-1 -0.076 5.284×10-4 -7.563 

64 2.218×10-3 -1.081 9.616×10-1 -0.040 5.492×10-4 -3.927 

128 2.230×10-3 -0.523 9.614×10-1 -0.020 5.602×10-4 -2.000 

256 2.236×10-3 -0.256 9.613×10-1 -0.017 5.658×10-4 -1.007 

512 2.236×10-3 -0.126 9.613×10-1 -0.006 5.658×10-4 -0.503 
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Table 22 Apparent elastic properties of the diamond periodic cellular solids. 

 

𝑛𝐶 
𝐸𝑖
𝑛 

(MPa) 

𝐸𝑖
𝑛 − 𝐸𝑖

∗

𝐸𝑖
∗ × 100 𝑣𝑖𝑗

𝑛  
𝑣𝑖𝑗
𝑛 − 𝑣𝑖𝑗

∗

𝑣𝑖𝑗
∗ × 100 

𝐺𝑖𝑗
𝑛  

(MPa) 

𝐺𝑖𝑗
𝑛 − 𝐺𝑖𝑗

∗

𝐺𝑖𝑗
∗ × 100 

1 1.980×10-3 0.000 9.802×10-1 0.000 5.000×10-2 0.000 

2 1.980×10-3 0.000 9.802×10-1 0.000 5.000×10-2 0.000 

4 1.980×10-3 0.000 9.802×10-1 0.000 5.000×10-2 0.000 

8 1.980×10-3 0.000 9.802×10-1 0.000 5.000×10-2 0.000 

16 1.980×10-3 0.000 9.802×10-1 0.000 5.000×10-2 0.000 

32 1.980×10-3 0.000 9.802×10-1 0.000 5.000×10-2 0.000 

64 1.980×10-3 0.000 9.802×10-1 0.000 5.000×10-2 0.000 

128 1.980×10-3 0.000 9.802×10-1 0.000 5.000×10-2 0.000 

256 1.980×10-3 0.000 9.802×10-1 0.000 5.000×10-2 0.000 

512 1.980×10-3 0.000 9.802×10-1 0.000 5.000×10-2 0.000 

 

 

 

 

Table 23 Apparent elastic properties of the elongated diamond periodic cellular solids. 

 

𝑛𝐶 
𝐸𝑖
𝑛 

(MPa) 

𝐸𝑖
𝑛 − 𝐸𝑖

∗

𝐸𝑖
∗ × 100 𝑣𝑖𝑗

𝑛  
𝑣𝑖𝑗
𝑛 − 𝑣𝑖𝑗

∗

𝑣𝑖𝑗
∗ × 100 

𝐺𝑖𝑗
𝑛  

(MPa) 

𝐺𝑖𝑗
𝑛 − 𝐺𝑖𝑗

∗

𝐺𝑖𝑗
∗ × 100 

1 
7.672×10-4 

6.726×10-3 

0.000 

0.000 

3.289×10-1 

2.884×100 

0.000 

0.000 
4.330×10-2 0.000 

2 
7.672×10-4 

6.726×10-3 

0.000 

0.000 

3.289×10-1 

2.883×100 

0.000 

0.000 
4.330×10-2 0.000 

4 
7.672×10-4 

6.726×10-3 

0.000 

0.000 

3.289×10-1 

2.883×100 

0.000 

0.000 
4.330×10-2 0.000 

8 
7.672×10-4 

6.726×10-3 

0.000 

0.000 

3.289×10-1 

2.883×100 

0.000 

0.000 
4.330×10-2 0.000 

16 
7.672×10-4 

6.726×10-3 

0.000 

0.000 

3.289×10-1 

2.883×100 

0.000 

0.000 
4.330×10-2 0.000 

32 
7.672×10-4 

6.726×10-3 

0.000 

0.000 

3.289×10-1 

2.883×100 

0.000 

0.000 
4.330×10-2 0.000 

64 
7.672×10-4 

6.726×10-3 

0.000 

0.000 

3.289×10-1 

2.883×100 

0.000 

0.000 
4.330×10-2 0.000 

128 
7.672×10-4 

6.726×10-3 

0.000 

0.000 

3.289×10-1 

2.883×100 

0.000 

0.000 
4.330×10-2 0.000 

256 
7.672×10-4 

6.726×10-3 

0.000 

0.000 

3.289×10-1 

2.883×100 

0.000 

0.000 
4.330×10-2 0.000 

512 
7.672×10-4 

6.726×10-3 

0.000 

0.000 

3.289×10-1 

2.883×100 

0.000 

0.000 
4.330×10-2 0.000 
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Fig. 15 Convergences of the relative Young’s moduli of the 2D periodic cellular solids.  
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Fig. 16 Convergences of the relative Poisson’s ratios of the 2D periodic cellular solids.  
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Fig. 17 Convergences of the relative shear moduli of the 2D periodic cellular solids.  
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Table 24 Apparent elastic properties of the cubic periodic cellular solids. 

 

𝑛𝐶 
𝐸𝑖
𝑛 

(MPa) 

𝐸𝑖
𝑛 − 𝐸𝑖

∗

𝐸𝑖
∗ × 100 𝑣𝑖𝑗

𝑛  
𝑣𝑖𝑗
𝑛 − 𝑣𝑖𝑗

∗

𝑣𝑖𝑗
∗ × 100 

𝐺𝑖𝑗
𝑛  

(MPa) 

𝐺𝑖𝑗
𝑛 − 𝐺𝑖𝑗

∗

𝐺𝑖𝑗
∗ × 100 

1 7.854×10-3 0.000 0.000×100 - 2.945×10-5 0.000 

2 7.854×10-3 0.000 0.000×100 - 2.945×10-5 0.000 

4 7.854×10-3 0.000 0.000×100 - 2.945×10-5 0.000 

8 7.854×10-3 0.000 0.000×100 - 2.945×10-5 0.000 

16 7.854×10-3 0.000 0.000×100 - 2.945×10-5 0.000 

32 7.854×10-3 0.000 0.000×100 - 2.945×10-5 0.000 

64 7.854×10-3 0.000 0.000×100 - 2.945×10-5 0.000 

 

 

Table 25 Apparent elastic properties of the body-centered cubic periodic cellular solids. 

 

𝑛𝐶 
𝐸𝑖
𝑛 

(MPa) 

𝐸𝑖
𝑛 − 𝐸𝑖

∗

𝐸𝑖
∗ × 100 𝑣𝑖𝑗

𝑛  
𝑣𝑖𝑗
𝑛 − 𝑣𝑖𝑗

∗

𝑣𝑖𝑗
∗ × 100 

𝐺𝑖𝑗
𝑛  

(MPa) 

𝐺𝑖𝑗
𝑛 − 𝐺𝑖𝑗

∗

𝐺𝑖𝑗
∗ × 100 

1 1.031×10-2 -1.206 3.016×10-1 0.817 3.480×10-3 -43.008 

2 1.041×10-3 -0.309 2.957×10-1 -1.152 5.515×10-3 -9.670 

4 1.043×10-3 -0.082 2.991×10-1 -0.014 6.015×10-3 -1.480 

8 1.044×10-2 -0.020 2.992×10-1 0.014 6.094×10-3 -0.199 

16 1.044×10-2 -0.004 2.992×10-1 0.008 6.104×10-3 -0.026 

32 1.044×10-2 0.000 2.992×10-1 0.007 6.106×10-3 0.000 

64 1.044×10-2 0.000 2.992×10-1 0.000 6.106×10-3 0.000 

 

 
Table 26 Apparent elastic properties of the cuboctahedron periodic cellular solids. 

 

𝑛𝐶 
𝐸𝑖
𝑛 

(MPa) 

𝐸𝑖
𝑛 − 𝐸𝑖

∗

𝐸𝑖
∗ × 100 𝑣𝑖𝑗

𝑛  
𝑣𝑖𝑗
𝑛 − 𝑣𝑖𝑗

∗

𝑣𝑖𝑗
∗ × 100 

𝐺𝑖𝑗
𝑛  

(MPa) 

𝐺𝑖𝑗
𝑛 − 𝐺𝑖𝑗

∗

𝐺𝑖𝑗
∗ × 100 

1 2.053×10-4 -94.562 9.779×10-1 196.343 2.790×10-3 0.000 

2 1.754×10-3 -53.545 6.976×10-1 -55.632 2.790×10-3 0.000 

4 2.650×10-3 -29.819 5.019×10-1 -47.176 2.790×10-3 0.000 

8 3.193×10-3 -1.539 4.130×10-1 -23.857 2.790×10-3 0.000 

16 3.482×10-3 -7.782 3.712×10-1 -11.866 2.790×10-3 0.000 

32 3.629×10-3 -3.889 3.504×10-1 -5.904 2.790×10-3 0.000 

64 3.703×10-3 -1.939 3.399×10-1 -2.939 2.790×10-3 0.000 
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Table 27 Apparent elastic properties of the tetrakaidecahedron periodic cellular solids 

 

𝑛𝐶  
𝐸𝑖
𝑛 

(MPa) 

𝐸𝑖
𝑛 − 𝐸𝑖

∗

𝐸𝑖
∗ × 100 𝑣𝑖𝑗

𝑛  
𝑣𝑖𝑗
𝑛 − 𝑣𝑖𝑗

∗

𝑣𝑖𝑗
∗ × 100 

𝐺𝑖𝑗
𝑛  

(MPa) 

𝐺𝑖𝑗
𝑛 − 𝐺𝑖𝑗

∗

𝐺𝑖𝑗
∗ × 100 

1 2.824×10-5 -31.694 2.104×10-1 -57.281 1.176×10-5 -9.246 

2 2.979×10-5 -27.938 1.687×10-1 -65.749 1.108×10-5 -14.482 

4 3.506×10-5 -15.198 3.201×10-1 -35.022 1.198×10-5 -7.497 

8 3.813×10-5 -7.756 4.065×10-1 -17.470 1.246×10-5 -3.816 

16 3.974×10-5 -3.867 4.500×10-1 -8.640 1.271×10-5 -1.925 

32 4.055×10-5 -1.916 4.714×10-1 -4.292 1.283×10-5 -0.967 

 

 

Table 28 Apparent elastic properties of the octahedron periodic cellular solids 

 

𝑛𝐶 
𝐸𝑖
𝑛 

(MPa) 

𝐸𝑖
𝑛 − 𝐸𝑖

∗

𝐸𝑖
∗ × 100 𝑣𝑖𝑗

𝑛  
𝑣𝑖𝑗
𝑛 − 𝑣𝑖𝑗

∗

𝑣𝑖𝑗
∗ × 100 

𝐺𝑖𝑗
𝑛  

(MPa) 

𝐺𝑖𝑗
𝑛 − 𝐺𝑖𝑗

∗

𝐺𝑖𝑗
∗ × 100 

1 3.776×10-3 0.000 3.301×10-1 0.030 2.790×10-3 0.000 

2 3.776×10-3 0.000 3.300×10-1 0.000 2.790×10-3 0.000 

4 3.776×10-3 0.000 3.300×10-1 0.000 2.790×10-3 0.000 

8 3.776×10-3 0.000 3.300×10-1 0.000 2.790×10-3 0.000 

16 3.776×10-3 0.000 3.300×10-1 0.000 2.790×10-3 0.000 

32 3.776×10-3 0.000 3.300×10-1 0.000 2.790×10-3 0.000 

64 3.776×10-3 0.000 3.300×10-1 0.000 2.790×10-3 0.000 
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Table 29 Apparent elastic properties of the tetragonal bipyramid periodic cellular solids 

 

𝑛𝐶 
𝐸𝑖
𝑛 

(MPa) 

𝐸𝑖
𝑛 − 𝐸𝑖

∗

𝐸𝑖
∗ × 100 𝑣𝑖𝑗

𝑛  
𝑣𝑖𝑗
𝑛 − 𝑣𝑖𝑗

∗

𝑣𝑖𝑗
∗ × 100 

𝐺𝑖𝑗
𝑛  

(MPa) 

𝐺𝑖𝑗
𝑛 − 𝐺𝑖𝑗

∗

𝐺𝑖𝑗
∗ × 100 

1 
1.468×10-3 

4.851×10-2 

0.000 

0.000 

8.259×10-1 

1.233×10-2 

4.074×10-1 

0.000 

0.000 

0.000 

4.213×10-3 

3.745×10-3 
0.000 

0.000 

2 
1.468×10-3 

4.851×10-2 

0.000 

0.000 

8.259×10-1 

1.233×10-2 

4.074×10-1 

0.000 

0.000 

0.000 

4.213×10-3 

3.745×10-3 

0.000 

0.000 

4 
1.468×10-3 

4.851×10-2 

0.000 

0.000 

8.259×10-1 

1.233×10-2 

4.074×10-1 

0.000 

0.000 

0.000 

4.213×10-3 

3.745×10-3 

0.000 

0.000 

8 
1.468×10-3 

4.851×10-2 

0.000 

0.000 

8.259×10-1 

1.233×10-2 

4.074×10-1 

0.000 

0.000 

0.000 

4.213×10-3 

3.745×10-3 

0.000 

0.000 

16 
1.468×10-3 

4.851×10-2 

0.000 

0.000 

8.259×10-1 

1.233×10-2 

4.074×10-1 

0.000 

0.000 

0.000 

4.213×10-3 

3.745×10-3 

0.000 

0.000 

32 
1.468×10-3 

4.851×10-2 

0.000 

0.000 

8.259×10-1 

1.233×10-2 

4.074×10-1 

0.000 

0.000 

0.000 

4.213×10-3 

3.745×10-3 

0.000 

0.000 

64 
1.468×10-3 

4.851×10-2 

0.000 

0.000 

8.259×10-1 

1.233×10-2 

4.074×10-1 

0.000 

0.000 

0.000 

4.213×10-3 

3.745×10-3 

0.000 

0.000 
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Fig. 18 Convergences of the relative Young’s moduli of the 3D periodic cellular solids.  

0.0

0.2

0.4

0.6

0.8

1.0

1.2

0 10 20 30 40 50 60 70

R
el

at
iv

e 
Y

o
u

n
g
's

 m
o
d

u
lu

s

No. of unit cells in one dimension

(I) Cubic

0.0

0.2

0.4

0.6

0.8

1.0

1.2

0 10 20 30 40 50 60 70

R
el

at
iv

e 
Y

o
u

n
g
's

 m
o
d

u
lu

s

No. of unit cells in one dimension

(II) Body-centered cubic

0.0

0.2

0.4

0.6

0.8

1.0

1.2

0 10 20 30 40 50 60 70

R
el

at
iv

e 
Y

o
u

n
g
's

 m
o
d

u
lu

s

No. of unit cells in one dimension

(III) Cuboctahedron

0.0

0.2

0.4

0.6

0.8

1.0

1.2

0 10 20 30 40 50 60 70

R
el

at
iv

e 
Y

o
u

n
g
's

 m
o
d

u
lu

s

No. of unit cells in one dimension

(IV) Tetrakaidecahedron

0.0

0.2

0.4

0.6

0.8

1.0

1.2

0 10 20 30 40 50 60 70

R
el

at
iv

e 
Y

o
u

n
g
's

 m
o
d

u
lu

s

No. of unit cells in one dimension

(V) Octahedron

0.0

0.2

0.4

0.6

0.8

1.0

1.2

0 10 20 30 40 50 60 70

R
el

at
iv

e 
Y

o
u

n
g
's

 m
o
d

u
lu

s

No. of unit cells in one dimension

(VI) Tetragonal bipyramid



 

70 
 

 
 

 

 
 

 

 
 

 

Fig. 19 Convergences of the relative Poisson’s ratios of the 3D periodic cellular solids. 
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Fig. 20 Convergences of the relative shear moduli of the 3D periodic cellular solids.
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Chapter 7 

Design for Isotropic Symmetry by Member Sizing 

 

The geometry of unit cells is usually selected in such a way that their equivalent 

homogeneous materials are orthotropic materials. It is not difficult to arrange unit-cell struts so 

that the effective elastic properties in all orthotropic directions are the same. A 2D orthotropic 

material having the same properties in its two orthotropic directions is said to have square 

symmetry. A 3D orthotropic material having the same properties in its three orthotropic 

directions is said to have cubic symmetry. Few standard frame-like unit-cell topologies give 

periodic solids that have isotropic symmetry. Examples include triangular, hexagonal, and 

kagome unit cells. Isotropic symmetry of periodic solids having these three unit-cell topologies 

is considered in the works by Srikantha Phani, Woodhouse, and Fleck (2006), Fleck and Qiu 

(2007), and Srikantha Phani and Fleck (2008). In the work by Srikantha Phani, Woodhouse, 

and Fleck (2006), wave propagation in these isotropic periodic solids is investigated. The 

fracture toughness of elastic-brittle periodic solids having these three unit-cell topologies is 

studied by Fleck and Qiu (2007). In addition, boundary layer phenomena in these isotropic 

periodic solids are investigated by Srikantha Phani and Fleck (2008). Elastic boundary layers 

are regions of localized elastic deformations near free edges of periodic solids. 

Arranging unit-cell struts to obtain isotropic symmetry intuitively is not easy. It is 

however possible to create algorithms to find unit-cell topologies that give isotropic symmetry. 

Quite often, isotropic symmetry is considered as a constraint in topology optimization of unit 

cells. In the work by Neves, Rodrigues, and Guedes (2000), mathematical programming 

techniques are used to obtain optimal designs of 2D periodic solids under design constraints on 

material volume fractions and material symmetry. In their study, 2D periodic solids are treated 

as 2D continuums. Orthotropic, square, and isotropic types of symmetry are considered as 

design constraints. In the work by Challis, Roberts, and Wilkins (2008), the level-set method 

of topology optimization is used to design 3D isotropic two-phase periodic multifunctional 

composites, and isotropic symmetry is considered as a design constraint. Isotropic symmetry is 

also considered as a constraint in topology optimization of 2D periodic trusses by Guth, 

Luersen, and Muñoz-Rojas (2012) and of 3D periodic trusses by Guth, Luersen, and Muñoz-

Rojas (2015). 

There are also some research works that are concerned with design of periodic solids 

that are not frame-like for extreme elastic properties (Grima et al., 2012; Shufrin, Pasternak, & 

Dyskin, 2012; Shan et al., 2015). For example, in the work by Shan et al. (2015), the design of 
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2D isotropic auxetic periodic solids is considered. The main objective of their work is to 

demonstrate that 2D auxetic materials with isotropic symmetry can be realized by perforating 

sheets in periodic cut patterns with either six-fold or three-fold rotational symmetry. Two-

dimensional unit-cell designs that yield 2D auxetic structures with isotropic symmetry are also 

proposed by Shufrin, Pasternak, and Dyskin (2012). In their work, each unit-cell design consists 

of a flexible arch frame with a sufficiently rigid hexagonal core at the center. In the work by 

Grima et al. (2012), sheets that are isotropic and auxetic are obtained by connecting rigid 

triangles in proper arrangements.  

For some unit-cell topologies, it is possible to obtain isotropic symmetry by appropriate 

selection of relative sizes of struts within the unit cells. Generally, these unit cells must have 

struts that are aligned with the unit cells’ orthogonal axes as well as struts that are oblique to 

the orthogonal axes. Different sizes for struts that are aligned with the orthogonal axes and for 

struts that are oblique to these axes can be used to adjust the degrees of isotropic symmetry of 

resulting periodic solids.  

This chapter presents a simple strategy to allow some common frame-like unit cells 

that do not in general yield periodic solids with isotropic symmetry to be used to create periodic 

solids with isotropic symmetry. The proposed methodology is based on appropriate sizing of 

unit-cell struts. Frame-like periodic solids are modelled as frames, whose struts are modelled 

as Euler beams. In the proposed methodology, the unit cell under consideration is set to have 

two different variable strut sizes. The closed-form effective elastic constants of a periodic solid 

having the considered unit-cell topology are then derived. By using the closed-form effective 

elastic constants, an equation to enforce isotropic symmetry can be analytically constructed. 

This equation is thereafter used to determine the relationship between the two variable strut 

sizes in the unit cell that results in isotropic symmetry. The closed-form effective elastic 

constants of periodic solids are derived by the homogenization method based on equivalent 

strain energy. In the homogenization method based on equivalent strain energy, the effective 

elastic constants of a periodic solid are derived from strain energy of a unit cell of the solid 

under various strain modes. These strain modes are contrived by periodic kinematic boundary 

conditions. In this study, a symbolic FE program written in MATLAB (Sam, 2015) is used to 

analytically compute strain energy under these strain modes. The employed symbolic FE 

program is a generic symbolic object-oriented FE program that is capable of performing 

symbolic FE analysis and generating symbolic results. The obtained analytical expressions of 

the strain energy are subsequently used to symbolically compute the effective elastic constants. 

Finally, the proposed methodology is tested with some 2D and 3D frame-like periodic solids 

with standard unit-cell topologies.  
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7.1 Isotropic symmetry of elastic solids 

 
As aforementioned, a 3D orthotropic material having the same properties in its three 

orthotropic directions is said to have cubic symmetry. For a 3D orthotropic periodic solid 

having cubic symmetry, the effective material constitutive tensor is expressed in matrix form 

as 

 

𝒄∗ =

[
 
 
 
 
 
 
𝑐11
∗ 𝑐12

∗ 𝑐12
∗ 0 0 0

𝑐11
∗ 𝑐12

∗ 0 0 0

𝑐11
∗ 0 0 0

𝑐44
∗ 0 0

𝑆𝑦𝑚 𝑐44
∗ 0

𝑐44
∗ ]
 
 
 
 
 
 

. (70) 

Note that 𝑐11
∗ , 𝑐12

∗ , and 𝑐44
∗  are three independent material constants. For the material to be 

isotropic, the ratio �̂� shown below must be equal to 1 (Bower, 2010), i.e. 

�̂� =
2𝑐44

∗

𝑐11
∗ − 𝑐12

∗ = 1. (71) 

Eqs. (70) and (71) imply that isotropic elastic materials have only two independent material 

constants. 

For an orthotropic periodic solid under the plane stress condition, the effective material 

constitutive tensor is expressed in matrix form as 

𝒄∗ = [

𝑐11
∗ 𝑐12

∗ 0

𝑐22
∗ 0

𝑆𝑦𝑚 𝑐33
∗
]. (72) 

For the above 2D material to be isotropic, the ratio �̂� shown below must be equal to 1 (Bower, 

2010), i.e. 

�̂� =
2𝑐33

∗

𝑐11
∗ − 𝑐12

∗ = 1. (73) 

Eqs. (71) and (73) are used to enforce isotropic symmetry in this study. 
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7.2 Design for isotropic symmetry by member sizing 

 

Eqs. (71) and (73) are the conditions for periodic elastic solids to be isotropic. Each 

equation can be used as a design criterion to obtain isotropic symmetry. In this study, the 

equations are used to determine relative strut sizes that are required for isotropic symmetry. 

The proposed design methodology for isotropic symmetry is described below. 

 

7.2.1 Two-dimensional frame-like periodic solids 

 
The proposed methodology to design for isotropic symmetry is introduced using a 

diamond-square unit cell as an example. Consider a diamond-square unit cell of thickness 𝑇 

shown in Fig. 21. The unit cell contains horizontal, vertical, and diagonal struts, and all struts 

have rectangular cross sections. Obviously, square symmetry can be easily obtained by using 

one cross section for all horizontal and vertical struts, and one cross section for all diagonal 

struts. If all struts have the same cross section, periodic solids having this unit-cell topology 

will be orthotropic solids with only square symmetry. However, if two different cross sections 

are used, one for the horizontal and vertical struts and the other for the diagonal struts, it is 

possible to obtain isotropic symmetry. Using two different cross sections allows the relative 

stiffness between the horizontal and vertical directions and the diagonal directions to be so 

adjusted that isotropic symmetry is obtained. Let 𝐸 denote Young’s modulus of the base 

material. Let 𝐿 denote the characteristic length of the unit cell as defined in Fig. 21. Let 𝐿𝑚 =

𝜓𝑚𝐿 denote the length of the shortest strut among the horizontal and vertical struts, and let 

𝐿𝑛 = 𝜓𝑛𝐿 denote the length of the shortest strut among the diagonal struts. Here, 𝜓𝑚 and 𝜓𝑛 

are two constants. In addition, let 𝐴𝑚 and 𝐼𝑚 denote the sectional area and moment of inertia 

of the horizontal and vertical struts while 𝐴𝑛 and 𝐼𝑛 denote those of the diagonal struts. The 

coefficients 𝑐𝑖𝑗
∗  in Eq. (72) can be written as functions of 𝐸, 𝐿, 𝑇, 𝐴𝑚, 𝐼𝑚, 𝐴𝑛, and 𝐼𝑛, i.e. 

𝑐𝑖𝑗
∗ = 𝑐𝑖𝑗

∗ (𝐸, 𝐿, 𝑇, 𝐴𝑚, 𝐼𝑚, 𝐴𝑛, 𝐼𝑛). (74) 

Let 𝑊𝑚 denote the width of the horizontal and vertical struts while 𝑊𝑛 denote the width of 

the diagonal struts. In addition, let 𝑚 = 𝑊𝑚/𝐿𝑚 = 𝑊𝑚/(𝜓𝑚𝐿) and 𝑛 = 𝑊𝑛/𝐿𝑛 = 𝑊𝑛/(𝜓𝑛𝐿). 

By keeping the other parameters constant, the coefficients 𝑐𝑖𝑗
∗  in Eq. (73) become functions of 

𝑚 and 𝑛, i.e. 
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𝑐𝑖𝑗
∗ = 𝑐𝑖𝑗

∗ (𝑚, 𝑛). (75) 

Consequently, the condition of isotropic symmetry in Eq. (73) becomes 

2𝑐33
∗ (𝑚, 𝑛)

𝑐11
∗ (𝑚, 𝑛) − 𝑐12

∗ (𝑚, 𝑛)
= 1 (76) 

It can be seen that, if the value of 𝑚 is prescribed, then the value of 𝑛 can be computed 

from Eq. (76), and vice versa. It is important to note that the values of 𝑚 and 𝑛 must not be too 

large that the resulting struts cannot be represented by Euler beams. 

 

 

Fig. 21 Diamond-square cellular solid and its beam element unit cell. 

 

7.2.2 Three-dimensional frame-like periodic solids 

 

For 3D frame-like periodic solids, as an example, consider a body-centered cubic unit cell 

shown in Fig. 22(c). Similar to the diamond-square unit cell, the body-centered cubic unit cell 

contains horizontal, vertical, and diagonal struts. All struts are set to have circular cross 

sections. For this unit cell, cubic symmetry can be obtained by using one cross section for all 

horizontal and vertical struts, and the other cross section for all diagonal struts. If all struts have 

the same cross section, periodic solids having this unit-cell topology are orthotropic solids with 
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cubic symmetry. Similar to the methodology for 2D periodic solids, in order to obtain isotropic 

symmetry, two different cross sections are used, one for the horizontal and vertical struts, and 

one for the diagonal struts Again, let 𝐴𝑚 and 𝐼𝑚 denote the sectional area and moment of inertia 

of the horizontal and vertical struts while 𝐴𝑛 and 𝐼𝑛 denote those of the diagonal struts. The 

coefficients 𝑐𝑖𝑗
∗  in Eq. (70) can be written as functions of 𝐸, 𝐿, 𝑇, 𝐴𝑚, 𝐼𝑚, 𝐴𝑛 , and 𝐼𝑛. Let 𝐷𝑚 

denote the diameter of horizontal and vertical struts while 𝐷𝑛 denote the diameter of diagonal 

struts. In addition, let 𝐿𝑚 = 𝜓𝑚𝐿 denote the length of the shortest strut among the horizontal 

and vertical struts, and let 𝐿𝑛 = 𝜓𝑛𝐿 denote the length of the shortest strut among the diagonal 

struts. Moreover, let 𝑚 = 𝐷𝑚/𝐿𝑚 = 𝐷𝑚/(𝜓𝑚𝐿) and 𝑛 = 𝐷𝑛/𝐿𝑛 = 𝐷𝑛/(𝜓𝑛𝐿). By keeping the 

other parameters constant, the coefficients 𝑐𝑖𝑗
∗  in Eq. (70) become functions of 𝑚 and 𝑛, which 

can be shown also by Eq. (75). Consequently, the condition of isotropic symmetry in Eq. (71) 

becomes 

2𝑐44
∗ (𝑚, 𝑛)

𝑐11
∗ (𝑚, 𝑛) − 𝑐12

∗ (𝑚, 𝑛)
= 1 (77) 

Similar to Eq. (76), Eq. (77) allows the value of 𝑛 to be computed when the value of 𝑚 is 

prescribed and vice versa. 

 

Fig. 22 Considered unit cells. 

(a) Body-centered square

L

(b) Diamond square

L

(d) Face-centered cubic

L

(c) Body-centered cubic

L
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7.3 Results 

 

To show the validity of the proposed methodology, it is used to design 2D and 3D 

periodic solids having unit-cell topologies shown in Fig. 22 for isotropic symmetry. The 2D 

unit cells are set to have rectangular struts with thickness of 𝑇 while the 3D unit cells are set to 

have circular struts. In all examples, two different cross sections are used for the unit cell, one 

for the horizontal and vertical struts, and one for the diagonal struts. In the following derivation, 

𝐴𝑚 and 𝐼𝑚 denote the sectional area and moment of inertia of the horizontal and vertical struts 

while 𝐴𝑛 and 𝐼𝑛 denote those of the diagonal struts. As aforementioned, a symbolic FE program 

is used to determine the analytical expressions of strain energy of the unit cells in Fig. 22 under 

the strain modes in Eqs. (21) and (25). After that, these analytical expressions of strain energy 

are used to derive the coefficients 𝑐𝑖𝑗
∗ . The details of each example are shown below. 

 

7.3.1 Body-centered square  

 
The first example is the body-centered square unit cell in Fig. 22. The coefficients 𝑐𝑖𝑗

∗  

are obtained from symbolic analysis as 

𝑐11
∗ = 𝑐22

∗ =
𝐸

2𝐿3𝑇
(2𝐿2𝐴𝑚 + √2𝐿

2𝐴𝑛 + 24√2𝐼𝑛), (78) 

𝑐12
∗ =

√2𝐸

2𝐿3𝑇
(𝐿2𝐴𝑛 − 24𝐼𝑛), (79) 

𝑐33
∗ =

𝐸

2𝐿3𝑇
(√2𝐿2𝐴𝑛 + 12𝐼𝑚), (80) 

which, for isotropic symmetry, yield 

�̂� =
√2𝐿2𝐴𝑛 + 12𝐼𝑚

𝐿2𝐴𝑚 + 24√2𝐼𝑛
= 1. (81) 

Again, let 𝑊𝑚 denote the width of the horizontal and vertical struts, and 𝑊𝑛 denote the 

width of the inclined struts. Also, let 𝑚 = 𝑊𝑚/𝐿𝑚 and 𝑛 = 𝑊𝑛/𝐿𝑛. For this unit cell, 𝜓𝑚 and 

𝜓𝑛  are equal to 1 and √2/2 , respectively. Substituting 𝐴𝑚 = 𝑊𝑚𝑇 = 𝑚𝐿𝑚𝑇 = 𝑚𝜓𝑚𝐿𝑇 , 

𝐴𝑛 = 𝑊𝑛𝑇 = 𝑛𝐿𝑛𝑇 = 𝑛𝜓𝑛𝐿𝑇 , 𝐼𝑚 = 𝑊𝑚
3𝑇 12⁄ = 𝑚3𝐿𝑚

3 𝑇/12 = 𝑚3𝜓𝑚
3 𝐿3𝑇/12 , and 𝐼𝑛 =

𝑊𝑛
3𝑇 12⁄ = 𝑛3𝐿𝑛

3𝑇/12 = 𝑛3𝜓𝑛
3𝐿3𝑇/12 in Eq. (81) yields 
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�̂� =
𝑚3 + 𝑛

𝑛3 +𝑚
= 1. (82) 

The above equation is the condition for isotropic symmetry of this unit-cell topology 

written in terms of 𝑚 and 𝑛. One of the two parameters can be set and the other one can be 

obtained from the equation. Here, 𝑚 is set to 0.05, 0.10, 0.15, 0.20, and 0.25, and Eq. (82) is 

solved for 𝑛. The solutions of Eq. (82) include real and complex numbers. The positive real 

results are shown in Table 30. It can be seen from the table that, for every 𝑚, there are two 

positive real solutions of 𝑛. Among the two real solutions of 𝑛, the smaller one increases with 

𝑚 while the larger one decreases. It is found that, for each 𝑚, the smaller 𝑛 is the same as 𝑚, 

and the larger 𝑛 represents a size that is too large for struts. Table 3 also shows the values of 

the normalized strut widths 𝑊𝑚/𝐿 and 𝑊𝑛/𝐿. Note again that, for each 𝑚, the larger 𝑊𝑛/𝐿 

cannot be used. It can be seen that, for isotropic symmetry, the section for the inclined struts is 

smaller than that for the horizontal and vertical struts. 

 

7.3.2 Diamond square  

 
The second example is the diamond-square unit cell shown in Fig. 22(b). The 

coefficients 𝑐𝑖𝑗
∗  are found from symbolic analysis to be 

𝑐11
∗ = 𝑐22

∗ =
𝐸

2𝐿3𝑇
(2𝐿2𝐴𝑚 + √2𝐿

2𝐴𝑛 + 24√2𝐼𝑛), (83) 

𝑐12
∗ = 

√2𝐸

2𝐿3𝑇
(𝐿2𝐴𝑛 − 24𝐼𝑛), (84) 

𝑐33
∗ =

𝐸

2𝐿3𝑇
(
12𝐼𝑚

2 + √2𝐿2𝐴𝑛𝐼𝑚 + 24√2𝐼𝑚𝐼𝑛 + 𝐿
2𝐴𝑛𝐼𝑛

2𝐼𝑚 + √2𝐼𝑛
), (85) 

which give 

�̂� =
24𝐼𝑚

2 + 2√2𝐿2𝐴𝑛𝐼𝑚 + 48√2𝐼𝑚𝐼𝑛 + 2𝐿
2𝐴𝑛𝐼𝑛

(48 𝐼𝑛
2 +√2𝐿2𝐴𝑚𝐼𝑛 +  48√2𝐼𝑚𝐼𝑛 + 2𝐴𝑚𝐼𝑛𝐿

2)
= 1. (86) 

For this unit cell, 𝜓𝑚 and 𝜓𝑛 are equal to 1/2 and √2/2, respectively. Similar to the 

previous problem, writing 𝐴𝑚, 𝐴𝑛, 𝐼𝑚, and 𝐼𝑛 in Eq. (86) in terms of 𝑚, 𝑛, 𝐿, and 𝑇 gives 

�̂� =
𝑚6 + 8𝑛3𝑚3 + 8𝑛𝑚3 + 16𝑛4

4(2𝑛3 +𝑚)(𝑚3 + 2𝑛3)
= 1. (87) 
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Again, 𝑚 is set to 0.05, 0.10, 0.15, 0.20, and 0.25, and Eq. (87) is solved for 𝑛. The 

solutions of Eq. (87) also include real and complex numbers. Only positive real results are 

shown in Table 30. Similar to the body-centered square unit cell, for each 𝑚, there are two 

positive real solutions of 𝑛 and only the smaller 𝑛 can be used. Among the two real solutions 

of 𝑛, the smaller one increases with 𝑚 while the larger one decreases. It can be seen from the 

values of 𝑊𝑚/𝐿 and 𝑊𝑛/𝐿 in Table 30 that, for isotropic symmetry, the section for the inclined 

struts is smaller than that for the horizontal and vertical struts. Similar to the body-centered 

square unit cell, when 𝑚 is larger, the two real solutions of 𝑛 move closer to each other. 

 

7.3.3 Body-centered cubic 

 
The third example in the body-centered cubic unit cell shown in Fig. 22(c). The 

coefficients 𝑐𝑖𝑗
∗  are found to be 

𝑐11
∗ = 𝑐22

∗ = 𝑐33
∗ =

𝐸

9𝐿4
(9𝐿2𝐴𝑚 + 4√3𝐿

2𝐴𝑛 + 128√3𝐼𝑛), (88) 

𝑐12
∗ = 𝑐13

∗ = 𝑐23
∗ =

4√3𝐸

9𝐿4
(𝐿2𝐴𝑛 − 16𝐼𝑛), (89) 

𝑐44
∗ = 𝑐55

∗ = 𝑐66
∗ =

2𝐸

9𝐿4
(2√3𝐿2𝐴𝑛 + 27𝐼𝑚 + 16√3𝐼𝑛), (90) 

which yield 

�̂� =
8√3𝐿2𝐴𝑛 + 108𝐼𝑚 + 64√3𝐼𝑛

9𝐿2𝐴𝑚 + 192√3𝐼𝑛
= 1. (91) 

Again, let 𝐷𝑚 denote the diameter of the horizontal and vertical struts, and 𝐷𝑛 denote 

the diameter of the inclined struts. Also, let 𝑚 = 𝐷𝑚/𝐿𝑚 and 𝑛 = 𝐷𝑛/𝐿𝑛. For this unit cell, 

𝜓𝑚 and 𝜓𝑛 are equal to 1 and √3/2, respectively. Substituting 𝐴𝑚 = 𝐷𝑚
2 𝜋/4 = 𝑚2𝐿𝑚

2 𝜋/4 =

 𝑚2𝜓𝑚
2 𝐿2𝜋/4, 𝐴𝑛 = 𝐷𝑛

2𝜋/4 = 𝑛2𝐿𝑛
2𝜋/4 =  𝑛2𝜓𝑛

2𝐿2𝜋/4, 𝐼𝑚 = 𝐷𝑚
4 𝜋 64⁄ = 𝑚4𝐿𝑚

4 𝜋/64 =

 𝑚4𝜓𝑚
4 𝐿4𝜋/64, and 𝐼𝑛 = 𝐷𝑛

4𝜋 64⁄ = 𝑛4𝐿𝑛
4𝜋/64 =  𝑛4𝜓𝑛

4𝐿4𝜋/64 in Eq. (91) yields 

�̂� =
9𝑚4 + 3√3𝑛4 + 8√3𝑛2

3(4𝑚2 + 3√3𝑛4)
= 1. (92) 

For this problems, 𝑚 is also set to 0.05, 0.10, 0.15, 0.20, and 0.25, and Eq. (92) is 

solved for 𝑛. The obtained positive real results in Table 30 show that, for each 𝑚, only the 

smaller 𝑛 is useful. Among the two real solutions of 𝑛, the smaller one increases noticeably 
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with 𝑚 while the larger one decreases insignificantly. From the values of 𝐷𝑚/𝐿 and 𝐷𝑛/𝐿 in 

Table 3, it is found that, for isotropic symmetry, the section for the inclined struts is smaller 

than that for the horizontal and vertical struts. 

 

 

7.3.4 Face-centered cubic 

 
The last example in the face-centered cubic unit cell shown in Fig. 22(d). The 

coefficients 𝑐𝑖𝑗
∗  are as follows: 

𝑐11
∗ = 𝑐22

∗ = 𝑐33
∗ =

𝐸

𝐿4
(𝐿2𝐴𝑚 +√2𝐿

2𝐴𝑛 + 24√2𝐼𝑛), (93) 

𝑐12
∗ = 𝑐13

∗ = 𝑐23
∗ =

√2𝐸

2𝐿4
(𝐿2𝐴𝑛 + 24𝐼𝑛), (94) 

𝑐44
∗ = 𝑐55

∗ = 𝑐66
∗ =

𝐸

2𝐿4
(√2𝐿2𝐴𝑛 + 12𝐼𝑚 + 6√2𝐼𝑛), (95) 

which give 

�̂� =
2√2𝐿2𝐴𝑛 + 24𝐼𝑚 + 12√2𝐼𝑛

24√2𝐼𝑛 + 2𝐿
2𝐴𝑚 + √2𝐿

2𝐴𝑛
= 1. (96) 

For this unit cell, 𝜓𝑚 and 𝜓𝑛 are equal to 1 and √2/2, respectively. Writing 𝐴𝑚, 𝐴𝑛, 

𝐼𝑚, and 𝐼𝑛 in Eq. (96) in terms of 𝑚, 𝑛, and 𝐿 gives 

�̂� =
24𝑚4 + 3√2𝑛4 + 16√2𝑛2

32𝑚2 + 6√2𝑛4 + 8√2𝑛2
= 1. (97) 

The positive real solutions of 𝑛 when 𝑚 is set to 0.05, 0.10, 0.15, 0.20, and 0.25 

obtained from the above equation are shown in Table 30. For this unit cell, for each 𝑚, both 

values of 𝑛 are found to be larger than 𝑚. From the obtained results, only the smaller values of 

𝑛 for 𝑚 equal to 0.05 and 0.10 can be considered as not too large. Among the two real solutions 

of 𝑛, the smaller one increases noticeably with 𝑚 while the larger one decreases insignificantly. 

From the values of 𝐷𝑚/𝐿 and 𝐷𝑛/𝐿 in Table 30, it is found that, for isotropic symmetry, the 

section for the inclined struts is larger than that for the horizontal and vertical struts. 
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Table 30 Member sizes for isotropic symmetry 

Unit cell �̂� = 1 𝑚 𝑛 (𝑊𝑚  or 𝐷𝑚)/𝐿 = 𝑚𝜓𝑚 (𝑊𝑛 or 𝐷𝑛)/𝐿 = 𝑛𝜓𝑛 

Body-centered 

square 

𝑚3 + 𝑛

𝑛3 +𝑚
= 1 

0.05 0.05000, 0.97406 0.05000 0.03536, 0.68877 

0.10 0.10000, 0.94624 0.10000 0.07071, 0.66909 

0.15 0.15000, 0.91653 0.15000 0.10607, 0.64808 

0.20 0.20000, 0.88489 0.20000 0.14142, 0.62571 

0.25 0.25000, 0.85128 0.25000 0.17678, 0.60195 

Diamond-square 
𝑚6 + 8𝑛3𝑚3 + 8𝑛𝑚3 + 16𝑛4

4(2𝑛3 +𝑚)(𝑚3 + 2𝑛3)
= 1 

0.05 0.02499, 0.98729 0.02500 0.01767, 0.69812 

0.10 0.04992, 0.97426 0.05000 0.03530, 0.68891 

0.15 0.07474, 0.96110 0.07500 0.05285, 0.67960 

0.20 0.09939, 0.94801 0.10000 0.07028, 0.67034 

0.25 0.12380, 0.93522 0.12500 0.08754, 0.66130 

Body-centered 

cubic 

9𝑚4 + 3√3𝑛4 + 8√3𝑛2

3(4𝑚2 + 3√3𝑛4)
= 1 

0.05 0.04652, 1.15376 0.05000 0.04029, 0.99919 

0.10 0.09301, 1.15095 0.10000 0.08055, 0.99675 

0.15 0.13943, 1.14625 0.15000 0.12075, 0.99268 

0.20 0.18573, 1.13967 0.20000 0.16084, 0.98698 

0.25 0.23186, 1.13118 0.25000 0.20079, 0.97963 

Face-centered 

cubic 
24𝑚4 + 3√2𝑛4 + 16√2𝑛2

32𝑚2 + 6√2𝑛4 + 8√2𝑛2
= 1 

0.05 0.08412, 1.63082 0.05000 0.05948, 1.15317 

0.10 0.16845, 1.62428 0.10000 0.11911, 1.14854 

0.15 0.25319, 1.61325 0.15000 0.17903, 1.14074 

0.20 0.33864, 1.59750 0.20000 0.23945, 1.12960 

0.25 0.42514, 1.57668 0.25000 0.30062, 1.11488 
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Chapter 8 

Conclusions 

 

This study employs the homogenization method based on equivalent strain energy to 

investigate various aspects of the effective elastic properties of frame-like periodic cellular 

solids. For frame-like periodic cellular solids, Euler beam elements can be used instead of solid 

elements in the determination of effective properties. The advantages of the Euler beam element 

in this type of analysis are that FE models using Euler beam elements are easier to create, and 

require less computational resources. More importantly, it is easier to prescribe periodic 

boundary conditions when beam elements are used. Since beam elements idealize the domain 

as connecting lines, models of unit cells that use beam elements must be carefully created. For 

example, if a strut is split among two unit cells longitudinally to create a unit cell, an Euler 

beam element with half the axial and bending rigidities must be used to represent the resulting 

strut in the unit cell. In the determination of the effective elastic properties of a periodic cellular 

solid by the homogenization method based on equivalent strain energy, periodic boundary 

conditions must be prescribed correctly as relative displacements between degrees of freedom. 

According to the periodic cellular solids investigated in this study, the effective 

Young’s moduli and shear moduli obtained from beam element models are lower than those 

obtained from solid element models. For the periodic cellular solids whose effective elastic 

properties are the same in all orthogonal axes and the material volume fractions are 

approximately 0.1–0.3, the differences of the effective Young’s moduli from beam and solid 

element models are quite low and less than 5%. The differences of the effective shear moduli 

and the differences of the effective Poisson’s ratios are diverse. The differences of all effective 

elastic constants from beam and solid element models are larger when the material volume 

fractions are higher. 

By using the classical beam theory, the exact forms of the effective elastic properties 

of frame-like periodic cellular solids can be derived by employing the homogenization method 

based on equivalent strain energy. The obtained exact forms of the effective elastic constants 

are in terms of the characteristic length and volume of the unit cell, the area and moment of 

inertia of the struts, Young’s modulus of the base material, and some dimensionless factors. In 

general, these dimensionless factors can be functions of the area and moment of inertia of the 

struts. However, for many practical unit-cell topologies, these dimensionless factors are 

constant. To utilize the proposed exact forms in the determination of the effective elastic 

constants of periodic cellular solids with a particular unit-cell topology, the dimensionless 
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factors can first be assumed to be constant. Their values are then determined from exact curve 

fitting using FE results with different sectional areas and moments of inertia of the struts. From 

all examples, it is found that the exact solutions of the effective elastic constants obtained from 

elaborate symbolic FE calculations and/or the literature can always be written in the proposed 

exact forms. When all dimensionless factors in the proposed exact forms are constant, the 

effective elastic constants obtained in this study by exact curve fitting are found to be exactly 

the same as the exact solutions from elaborate symbolic FE calculations and/or the literature. 

In this study, a simple methodology to allow some common frame-like unit cells that 

do not generally yield periodic solids with isotropic symmetry to be used to create periodic 

solids with isotropic symmetry. The methodology utilizes the fact that individual sizes of struts 

in a unit cell of a periodic solid affect the resulting effective elastic constants of the periodic 

solid. As a result, the degree of anisotropy can be adjusted simply by changing relative unit-

cell strut sizes. The unit cell under consideration is set to have two different variable strut sizes. 

By using the closed-form effective elastic constants, an equation to enforce isotropic symmetry 

is analytically constructed. This constraint equation provides the relation between the two 

variable strut sizes that is necessary for isotropic symmetry. It is evident that not all unit-cell 

topologies can be used as starting topologies in the proposed methodology. Unit cells that have 

struts align only in orthogonal directions are not valid candidates. This is simply because 

isotropic symmetry requires symmetry beyond orthogonal directions. Struts that are oblique to 

the orthogonal axes of the unit cell must be available for size adjustment. In this study, two 

different variable sizes for struts that are aligned with the unit cell’s orthogonal axes and for 

struts that are oblique to the orthogonal axes are used to enforce isotropic symmetry. In each 

example considered in this study, the section for horizontal and vertical struts is fixed and the 

section for oblique struts is determined from the constraint equation. The constraint equations 

for 2D and 3D problems are nonlinear equations whose solutions include real and complex 

numbers. All examples considered in this study give two solutions that are positive real. In most 

cases, one of the two positive real solutions represents a section size that can be used for struts 

while the other solution represents a size that is too large. In a few cases, both positive real 

solutions represent section sizes that are too big. The obtained results demonstrate that the 

proposed methodology is a simple and viable method for designing frame-like periodic solids 

with given topologies for isotropic symmetry. 
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