

การออกแบบและพัฒนาเฟรมเวิร์คส าหรับระบบไมโครเซอร์วิสแบบกระจาย

โดย

นายภากร คูกรินทร์รัตน์

วิทยานิพนธ์นี้เป็นส่วนหนึ่งของการศึกษาตามหลักสูตร
วิทยาศาสตรมหาบัณฑิต (วิทยาการคอมพิวเตอร์)

ภาควิชาวิทยาการคอมพิวเตอร์
คณะวิทยาศาสตร์และเทคโนโลยี มหาวิทยาลัยธรรมศาสตร์

ปีการศึกษา 2588
ลิขสิทธิ์ของมหาวิทยาลัยธรรมศาสตร์

การออกแบบและพัฒนาเฟรมเวิร์คส าหรับระบบไมโครเซอร์วิสแบบกระจาย

โดย

นายภากร คูกรินทร์รัตน์

วิทยานิพนธ์นี้เป็นส่วนหนึ่งของการศึกษาตามหลักสูตร

วิทยาศาสตรมหาบัณฑิต (วิทยาการคอมพิวเตอร์)
ภาควิชาวิทยาการคอมพิวเตอร์

คณะวิทยาศาสตร์และเทคโนโลยี มหาวิทยาลัยธรรมศาสตร์
ปีการศึกษา 2588

ลิขสิทธิ์ของมหาวิทยาลัยธรรมศาสตร์

Design and Implementation of a Decentralized Microservices
Framework

BY

MR. Pakorn Kookarinrat

A THESIS SUBMITTED IN PARTIAL FULFILLMENT OF THE REQUIREMENTS
FOR THE DEGREE OF MASTER OF SCIENCE (COMPUTER SCIENCE)

DEPARTMENT OF COMPUTER SCIENCE
FACULTY OF SCIENCE AND TECHNOLOGY

THAMMASAT UNIVERSITY
ACADEMIC YEAR 2016

COPYRIGHT OF THAMMASAT UNIVERSITY

(1)

หัวข้อวิทยานิพนธ์ การออกแบบและพัฒนาเฟรมเวิร์คส าหรับพัฒนาระบบ
ไมโครเซอร์วิส

ชื่อผู้เขียน นายภากร คูกรินทร์รัตน์
ชื่อปริญญา วิทยาศาสตรมหาบัณฑิต
สาขาวิชา/คณะ/มหาวิทยาลัย สาขาวิชาวิทยาการคอมพิวเตอร์

คณะวิทยาศาสตร์และเทคโนโลยี
มหาวิทยาลัยธรรมศาสตร์

อาจารย์ที่ปรึกษาวิทยานิพนธ์ รองศาสตราจารย์ ดร. เยาวดี เต็มธนาภัทธ์
ปีการศึกษา 2558

บทคัดย่อ

ในปัจจุบันสถาปัตยกรรมซอฟต์แวร์แบบใหม่ที่ชื่อ microservices ก าลังได้รับความ
นิยม เนื่องจาก microservices สามารถแก้ไขปัญหาความซับซ้อนของโปรแกรมได้เป็นอย่างดี และ
ส่งเสริมรูปแบบการพัฒนาที่มีการเปลี่ยนแปลงบ่อย รูปแบบของสถาปัตยกรรมเป็นการแบ่งซอฟต์แวร์
ขนาดใหญ่ออกเป็น service ขนาดเล็กที่แยกจากกันอย่างเด็ดขาดหลาย service แต่ละ service จะ
ติดต่อกันผ่าน remote call ท าให้การเปลี่ยนแปลงในแต่ละ service จะไม่กระทบกับ service อ่ืน
อย่างไรก็ตาม การติดต่อกันผ่าน remote call โดยตรงจะท าให้เกิดการผูกติดกันระหว่าง service เพ่ือ
ก าจัดการผูกติดกันระหว่าง service งานวิจัยชิ้นนี้น าเสนอการใช้ message bus แบบกระจายเป็น
เครื่องมือใช้ในการสื่อสารระหว่าง service ใน microservices มีส่วนประกอบดังต่อไปนี้ public API,
messaging, load-balance และ service discovery ใน public API จะใช้ HTTP และ RESTful ใน
การติดต่อกับ service ในขณะที่ service discovery จะเป็นแบบกระจายเพื่อป้องการปัญหา single
point of failure เราได้ท าการทดสอบ message bus ด้วยการน าไปพัฒนาระบบจ าลองที่มีรูปแบบ
การท างานที่ส่วนใหญ่มักจะเกิดขึ้นกับ microservices ซึ่งระบบสามารถท างานได้อย่างถูกต้อง และ
เรายังท าการทดลองความสามารถในการขยายตัวของ message bus โดยการเพ่ิมจ านวนของ
service อย่างต่อเนื่องแล้วท าการตรวจวัดปริมาณการใช้ทรัพยากรในระบบของ message bus ซ่ึง
CPU และ memory มีการใช้งานและอัตราการเพ่ิมขึ้นของการใช้งานเพียงเล็กน้อยในขณะที่ อัตรา
การใช้งาน network มีอัตราการเพ่ิมข้ึนเป็นแบบ linear
ค าส าคัญ: microservices, message bus, สถาปัตยกรรมซอฟต์แวร์

(2)

Thesis Title Design and Implementation of a Decentralized
Microservices Framework

Author Mr. Pakorn Kookarinrat
Degree Master of Science
Major Field/Faculty/University Computer Science

Faculty of Science and Technology
Thammasat University

Thesis Advisor Associate Professor Yaowadee Temtanapat
Academic Years 2015

 ABSTRACT

A new software architecture, known as microservices, becomes rapidly
popular recently. Microservices could help developers cope well with the problems
of software complexity and demands on an adaptive development process that needs
to respond to changes quickly. In this architecture, a single monolithic large application
would be divided into small multiple isolated services. They are separately deployed
and communicated to other services via remote calls. This architectural style allows
any changes on one service not affecting the others. However, if services directly make
remote calls, it would create interdependencies and tight couplings between them.
To remove such problem, this paper proposes a decentralized message bus to use as
a communication tool between services. Our message bus provides a framework for
services to collaborate. It divides into four main components, public API, message bus,
messaging and service discovery. The API uses the HTTP and RESTful style of
communication. We use decentralized service discovery to avoid a single point of
failure of the system. The messaging uses a simple TCP connection with only a header
and body in its message. We also define three necessary communication messages for
the services, viz. request/response, notification and publish/subscribe. The proposed
framework is implemented and tested with a real-world scenario. It works correctly
without any problem. Also, to

(3)

realize how it could be scaled, we run the system continuously with incremental
services and traffics. From the observation on the resource consumption of CPU,
memory and network I/O, we found that the network consumption grows linearly while
the CPU and memory usages have little change in consumption

Keywords: microservices, message bus, software architecture

(4)

กิตติกรรมประกาศ

วิทยานิพนธ์ฉบับนี้ส าเร็จลุล่วงได้เป็นอย่างดี เนื่องจากได้รับความอนุเคราะห์จากรอง
ศาสตราจารย์ เยาวดี เต็มธนาภัทธ์ ซึ่งเป็นอาจารย์ที่ปรึกษาและควบคุมวิทยานิพนธ์ เป็นผู้จุดประกาย
หัวข้อวิทยานิพนธ์ ให้ค าปรึกษาแนะน า และแนวคิด ช่วยแก้ไขภาษาอังกฤษ ตลอดจนให้ก าลังใจแก่
ผู้วิจัยเสมอมา รวมถึงคอยช่วยสนับสนุนแนะน าผู้วิจัยในเรื่องของการลงทะเบียนเพ่ือน าเสนอ
ผลงานวิจัยในงานประชุมวิชาการนานาชาติ และขอขอบพระคุณ ดร. ประภาพร รัตนธ ารง ผู้ช่วย
ศาสตราจารย์ ดร. ทรงศักดิ์ รองวิริยะพานิช และ ผู้ช่วยศาสตราจารย์ ดร. ชลเมธ อาปณิกานนท์ ที่ช่วย
มาเป็นกรรมการการสอบ อีกท้ังยังช่วยให้ค าแนะน าในการแก้ไขวิทยานิพนธ์ให้มีความสมบูรณ์ยิ่งขึ้น
ผู้วิจัยซาบซึ้งในความกรุณา และขอขอบพระคุณทุกท่านเป็นอย่างสูงไว้ ณ โอกาสนี้ด้วย

 นายภากร คูกรินทร์รัตน์

(5)

สารบัญ

 หน้า

บทคัดย่อภาษาไทย (1)

บทคัดย่อภาษาอังกฤษ (2)

กิตติกรรมประกาศ (4)

สารบัญตาราง (8)

สารบัญภาพ (9)

บทที่ 1 บทน า 1

1.1 ปัญหา 1
1.2 วัตถุประสงค์ 3
1.3 ขอบเขต 3
1.4 ประโยชน์ที่ได้รับจากงานวิจัย 4

บทที่ 2 วรรณกรรมและงานวิจัยที่เกี่ยวข้อง 5

2.1 Microservice 5
2.1.1 Componentization via service 6
2.1.2 Organized around business capabilities 6
2.1.3 Products not projects 7
2.1.4 Smart endpoints and dumb pipes 7
2.1.5 Decentralized Governance 8
2.1.6 Decentralized data management 8

(6)

2.1.7 Infrastructure Automation 8
2.1.8 Design of failure 8
2.1.9 Evolutionary Design 9

2.2 Service discovery 9
2.2.1 Centralized service discovery 9

2.2.1.1 General purpose service registration 9
2.2.1.2 Single purpose service discovery 10

2.2.2 Decentralized service discovery 10
2.3 SWIM Protocol 11

2.3.1 SWIM Failure detector 11
2.3.2 Dissemination 12
2.3.3 พัฒนาความถูกต้องของ SWIM Failure detector 13

2.4 Message bus 13
2.5 Service-oriented architecture 14
2.6 RESTful 15
2.7 งานวิจัยที่เกี่ยวข้อง 16

2.7.1 Service discovery 16
2.7.1.1 Centralization 17
2.7.1.2 Decentralization 17

2.7.2 Load balance 17
2.7.3 Service orchestration 18
2.7.4 Communication 18
2.7.5 Auto recovery 18

บทที่ 3 วิธีการวิจัย 21

3.1 การออกแบบ 21

3.1.1 Public API 22
3.1.2 Load balancer 24
3.1.1 Messaging 24

(7)

3.1.1 Service discovery 25
3.2 ขั้นตอนการท างานของระบบ 25

3.2.1 เริ่มเพ่ิม service เข้ามาในระบบ 25
3.2.2 เกิด communication ระหว่าง service 26

3.2.2.1 Request/response 26
3.2.2.2 Publish/subscribe 28
3.2.2.3 Notification 30

3.2.3 ขั้นตอนท าการอัพเดท service ใหม่เป็น version ใหม ่ 31
3.2.3 ขั้นตอนเมื่อ service หยุดท างาน 32

บทที่ 4 ผลการวิจัยและอภิปรายผล 34

4.1 ความสามารถในการรับรองระบบในรูปแบบการใช้งานทั่วไป 34
4.2 ระดับการใช้ทรัพยากรของ message bus 37
4.3 ประสิทธิภาพของการส่งข้อมูล 40

บทที่ 5 สรุปผลการวิจัยและข้อเสนอแนะ 42

5.1 ความสามารถในการท างาน 42
5.2 ความสามารถในการขยายตัว 43
5.3 ประสิทธิภาพของการสื่อสาร 43
5.4 ข้อเสนอแนะในการท าวิจัยต่อไป 43

ประวัติผู้เขียน 47

(8)

สารบัญตาราง

ตารางที่ หน้า
 2.1 เปรียบเทียบคุณสมบัติของงานวิจัยที่เกี่ยวข้องตาม feature ในหัวข้อ 2.5 19
 3.1 รูปแบบการติดต่อสื่อสารโดยแบ่งตามลักษณะการติดต่อสื่อสาร 24
 4.1 วิธีการทดสอบความถูกต้องของการส่งข้อมูลของ message bus 37

(9)

สารบัญภาพ

ภาพที่ หน้า
 2.1 Monolith & Microservice 6
 2.2 รูปแบบการแบ่งทีมตามเทคโนโลยี 6
 2.3 รูปแบบการแบ่งทีมตามความสามารถทางธุรกิจ 7
 2.4 วิธีการท างานของ SWIM Failure detector 12
 2.5 การท างานของ piggyback message 12
 3.1 รูปแบบการท างานของ message bus 21
 3.2 ส่วนประกอบใน message bus 22
 3.3 รูปแบบการสื่อสาร Service API 22
 3.4 Namespace 23
 3.5 รูปแบบการส่งข้อมูลในระบบการติดต่อสื่อสาร 24
 3.6 รูปแบบการลงทะเบียนบน message bus 26
 3.7 ขั้นตอนลงทะเบียน service 26
 3.8 รูปแบบการส่งข้อมูลแบบ request/response ผ่านทาง public API 27
 3.9 ขัน้ตอนการท างานลอง request/response 28
 3.10 รูปแบบการ publish ข้อมูลผ่านทาง public API 28
 3.11 ขั้นตอนการ publish ข้อมูล 29
 3.12 รูปแบบการ subscribe ผ่านทาง public API 29
 3.13 ขั้นตอนการ subscribe 30
 3.14 รูปแบบการส่ง request ของ notification 30
 3.15 ขั้นตอนการ request ใน notification 31
 3.16 วิธีการอัพเกรด service ในระบบ 32
 3.17 รูปแบบการถอด service ออกจากระบบ 32
 3.18 ขั้นตอนการถอด service ออกจากระบบ 32
 3.19 ขั้นตอนการตรวจหา service ที่ล้มเหลว 33
 4.1 service ในระบบจ าลอง 34
 4.2 ตัวอย่างของ interface ของ gateway 35
 4.3 วิธีการทดลองการใช้ทรัพยากรของ message bus 38

(10)

 4.4 อัตราการใช้ CPU ของ message bus 38
 4.5 อัตราการใช้ Memory ของ message bus 39
 4.6 อัตราการใช้ Network เพ่ือเข้าร่วม cluster ของ message bus 39
 4.7 อัตราการใช้ Network I/O ของ message bus 39
 4.8 โครงสร้างการเปรียบเทียบประสิทธิภาพการส่งข้อมูล 40
 4.9 เปรียบเทียบระยะเวลาที่ใช้ในการส่งข้อมูลของ HTTP, message bus and rabbitmq 41

1

บทที่ 1
บทน า

1.1 ปัญหา

Microservices architecture style (Fowler & Lewis, 2014) เป็นรูปแบบการพัฒนาระบบ
ที่เพ่ิงเกิดข้ึนใหมเ่มื่อไม่นานมานี้ แต่ถูกกล่าวถึงอย่างแพร่หลาย สไตล์ของสถาปัตยกรรม
Microservices ใช้การแบ่งระบบใหญ่ออกเป็น service เล็ก ๆ หลาย services โดยไม่ได้ก าหนดหรือ
นิยามวิธีการแบ่งไว้ อย่างไรก็ตามแนวทางการแบ่งที่นิยม ได้แก่ การแบ่งระบบตาม context ของ
Context boundary ใน Domain driven design หรือ การแบ่งด้วยการให้แต่ละ service มี SRP
(Single responsibility principle) คือ service มีหน้าที่ที่ท างานในลักษณะเดียวกัน ท าให้แต่ละ
service สามารถถูก deploy แยกกันได้ (self-container) แต่ยังคงการสื่อสารกันได้ผ่าน lightweight
protocol ที่ก าหนด

ในปัจจุบันสถาปัตยกรรม microservices ได้รับความนิยมเพ่ิมขึ้น น่าจะมีสาเหตุจากการที่
microservices ช่วยลดความซับซ้อนการพัฒนาระบบลง และสอดรับกับรูปแบบการพัฒนาซอฟต์แวร์
แบบ Agile ในด้านความซับซ้อนการพัฒนา จากแนวคิดการแบ่ง service เป็นระบบย่อยที่เบ็ดเสร็จ
สามารถ deploy แยกจากกัน แต่ยังคงท างานร่วมกันได้ ท าให้ service ย่อยท่ีเป็นบริการขนาดเล็กมี
ความซับซ้อนของการพัฒนาลดลงตามไปด้วย ดังจะเห็นได้จากวิธีการวัดระดับความซับซ้อนของระบบ
(McCabe, 1976 and Henry & Kafura, 1982) ที่มักสัมพันธ์กบัการวัดขนาดของโปรแกรม เช่น
วิธีการวัดความซับซ้อนของระบบจากจ านวนบรรทัด จ านวนการท างาน จ านวนเส้นทางการเดินของ
โปรแกรม เป็นต้น ดังนั้นเมื่อแยกระบบเป็น service ขนาดเล็กท าหน้าที่เพียงบริการเฉพาะเรื่อง
ลักษณะเดียว ขนาดของโปรแกรมจึงเล็กลง ความซับซ้อนจึงลดลงตามไปด้วย

นอกจากนี้การที่ service ของ microservices นั้นสามารถ deploy แยกออกจากกันได้ ช่วย
ให้เกิดความยืดหยุ่น และง่ายในการเปลี่ยนแปลง service โดยไม่ส่งผลกระทบกับ service อ่ืน ๆ จึง
สอดคล้องกับรูปแบบการบริหารจัดการซอฟต์แวร์แบบ Agile ที่เป็นที่นิยมในปัจจุบัน โดยเฉพาะอย่าง
ยิ่งในกลุ่มบริษัท startup เนื่องจากแนวคิดการพัฒนาของ Agile เน้นการ release product ให้
รวดเร็ว ต่อเนื่อง เพ่ือให้ตรงตามความต้องการของผู้ใช้งาน ในการพัฒนาระบบแบบ Agile จึงใช้
วิธีการพัฒนาระบบแบบทยอยสร้าง (incremental build) คือการสร้างระบบไปทีละส่วน ซึ่งระบบไม่
จ าเป็นจะต้องเสร็จทั้งหมดจึงจะถูก deploy ให้ผู้ใช้ใช้งาน จึงได้รับข้อมูล feedback จากผู้ใช้อย่าง
รวดเร็ว ช่วยให้สามารถปรับเปลี่ยนระบบให้ตรงกับความต้องการของผู้ใช้งานได้ทันท่วงที ท าให้การ
ปรับเปลี่ยนระบบเกิดขึ้นบ่อย จึงต้องการวิธีการพัฒนาที่ตอบสนองต่อการเปลี่ยนแปลงได้อย่าง

2

ยืดหยุ่น รองรับการปรับเปลี่ยนบริการได้ง่าย และบ่อยกว่ารูปแบบการพัฒนาแบบดั้งเดิม ซึ่ง
สอดคล้องโดยตรงกับสถาปัตยกรรมของ Microservices ที่เกิดจากการประกอบกันของ service
ขนาดเล็กที่เป็นอิสระต่อกันหลาย service ท าให้การทยอยสร้างระบบเป็นไปได้ง่าย อีกท้ัง service
สามารถเปลี่ยนแปลงได้โดยที่ไม่กระทบกับบริการอ่ืน ๆ จึงง่ายต่อการเปลี่ยนแปลงแก้ไข

แม้ Microservices จะมีความเหมาะสมหลายประการในแง่การพัฒนาซอฟต์แวร์ในปัจจุบัน
แต่ Microservices ก็เป็นระบบแบบกระจาย (Distributed system) จึงมีความยุ่งยากแบบเดียวกับ
ระบบการกระจายตัวทั่วไป โดยอาจสรุปข้อด้อยซึ่งเกิดจากระบบการกระจายและเกี่ยวข้องกับการใช้
microservices ได้เป็น 4 ข้อดังนี้

1. เมื่อระบบถูกแบ่งออกเป็นหลาย service ท าให้จ านวนเครื่องในระบบเพ่ิมขึ้นจึงยากต่อการ
จัดการดูแล (Hoff, 2015) และหากท าด้วยคนจะใช้เวลานาน ตัวอย่างเช่น งาน update service งาน
ติดตั้ง (configuration) ระบบ งานก าหนดการเชื่อมต่อระหว่างระบบ ท าให้การท า automation นั้น
มีความจ าเป็นส าหรับระบบ แต่การท าระบบให้เป็น automation จะเพ่ิมความซับซ้อนของการ
ด าเนินการ ดังนั้นจึงต้องการเครื่องมือมาช่วยในการลดความซับซ้อนของการด าเนินการที่เพ่ิมขึ้น เช่น
การบริการ service discovery เพ่ือช่วยท าให้ service แต่ละ service รู้จักกันอัตโนมัติ หรือ
configuration management tools ซึ่งจะช่วยให้เราสามารถสร้าง environment ของระบบได้แบบ
อัตโนมัติ เครื่องมือที่กล่าวมาเหล่านี้จะช่วยท าให้การท าระบบ automation เป็นไปได้ง่ายขึ้น

2. Communication การเปลี่ยนแปลงระบบจาก local function call มาเป็น remote call
ท าให้ประสิทธิภาพของระบบลดลงเนื่องจาก latency ของ network (Richardson, 2015) แต่การ
พัฒนาระบบในการท า remote call ให้มีประสิทธิภาพนั้นเป็นเรื่องที่ยุ่งยากและต้องการความเข้าใจ
ในด้าน network ดังนั้นการใช้ lightweight communication infrastructure เป็นเรื่องที่จ าเป็น
เพ่ือให้ผู้พัฒนาสามารถสนใจแค่การพัฒนาระบบที่ตอบสนองกับความต้องการทางธุรกิจได้

3. การผูกติดกันของ service การเปลี่ยน local function call เป็น remote call จะท าให้
เกิดการผูกติดกันระหว่าง service (Mason, 2011) เพราะการท า remote call จะท าโดยการ fix
static IP ท าให้เกิด static connection ระหว่าง service และรูปแบบการเรียกใช้ service แต่ละ
service ที่อาจจะไม่เหมือนกันก็จะท าให้ service ผูกติดอยู่กับ service ที่เรียกใช้ ท าให้การ
เปลี่ยนแปลงระบบเป็นเรื่องยาก เนื่องจาก service แต่ละ service มีการผูกติดกันที่สูง และ
flexibility ของระบบลดลง ท าให้ระบบต้องการสิ่งที่มาจัดการกับการผูกติดกันระหว่าง service ที่เกิด
จากการใช้ remote call

4. Availability และ Scalability เป็นสิ่งที่ส าคัญกับระบบในยุคปัจจุบันโดยเฉพาะระบบทาง
Internet ที่ความลื่นไหลในการใช้งานนั้น มีผลกับผู้ใช้เป็นอย่างมาก โดยส่วนใหญ่การเพ่ิม

3

Availability และ Scalability เป็นการเพ่ิมเครื่องที่มีการท างานเหมือนกันเข้ามาช่วยกันท างานหรือ
ท างานทดแทนกัน แต่การที่ microservices แบ่งระบบใหญ่ออกเป็น service ย่อยหลาย service นั้น
ท าให้การเพ่ิม Availability และ Scalability เป็นเรื่องที่ท าได้ยาก ยกตัวอย่างเช่น จากที่เคยท า load
balance กับระบบใหญ่อยู่ระบบเดียวอาจต้องท า load balance ให้กับทุก service ท าให้ระบบ
ต้องการเครื่องมือหรือวิธีการที่ช่วยในการเพ่ิม Availability และ Scalability ของระบบที่ใช้
microservices

จากปัญหาของการสื่อสารของ microservices จะเห็นว่าลักษณะการสื่อสารระหว่าง service
ของ microservices มี 2 รูปแบบคือ point-to-point และ message bus ในกรณีของ point-to-
point เป็นการสื่อสารระหว่าง service แบบเชื่อมต่อตรง ซึ่งท าให้เกิดการผูกติดกันของ service การ
ขยายตัวจึงเป็นไปได้ยาก ในขณะที่การสื่อสารอีกรูปแบบหนึ่งคือ message bus ซึ่งส่วนมากใช้
centralized message queue เป็นตัวกลางในการสื่อสาร ท าให้ลดการผูกติดกันของ service แต่จะ
มี single point of failure อีกท้ังยังท าให้ service ต้องส่งข้อมูลบน network มากกว่าหนึ่งครั้ง
ส าหรับหนึ่งการสื่อสาร จนส่งผลให้ประสิทธิภาพลดลงจาก delay ของ network เพ่ือแก้ไขปัญหา
ดังกล่าว งานวิจัยนี้จึงน าเสนอวิธีการแก้ไขปัญหา ด้วยการออกแบบ message bus เพ่ือใช้ในการ
สื่อสารระหว่าง service ใน microservices ซึ่งลดการผูกติดกันของ service ในขณะเดียวกันก็ใช้
architecture แบบ decentralized เพ่ือก าจัด single point of failure อีกท้ังยังแก้ปัญหาการส่ง
ข้อมูลบน network มากกว่าหนึ่งครั้งในหนึ่งการสื่อสาร ที่มาจากการใช้ centralized message bus
โดยการสื่อสารระหว่าง service จะอยู่ในรูปแบบ single network communication ท าให้
ประสิทธิภาพที่ได้ไม่ต่างจากการสื่อสารแบบ point-to-point มากนัก และสุดท้ายเพ่ิม availability
และ scalability ของระบบที่เป็นเรื่องส าคัญส าหรับการพัฒนาในยุคปัจจุบัน

1.2 วัตถุประสงค์

ออกแบบและพัฒนา framework ที่ใช้ในการพัฒนาระบบแบบ microservices
architecture style ที่มีลักษณะดังต่อไปนี้

1. สนับสนุนการท า automation
2. ลักษณะการสื่อสารเป็นแบบ single network communication
3. ลดการผูกติดกันระหว่าง services
4. สนับสนุน Scalability และ Availability

4

1.3 ขอบเขต
งานวิจัยชิ้นนี้เป็นการออกแบบระบบ message bus และ decentralized service

discovery มาใช้ร่วมกันเพื่อช่วยในการพัฒนาระบบแบบ microservices เพ่ือให้การพัฒนาระบบ
เป็นไปอย่างมีประสิทธิภาพโดยมีขั้นตอน วิธีการและกรอบการทดลองดังต่อไปนี้

1. ศึกษางานที่เกี่ยวข้องและความรู้ที่ใช้ในการพัฒนาระบบ decentralized
2. ออกแบบ decentralized message bus เพ่ือเป็นเครื่องมือที่ช่วยในการพัฒนาระบบ
3. พัฒนาระบบ decentralized message bus โดยใช้ภาษา Golang ในการพัฒนา
4. ออกแบบและทดสอบระบบที่ได้จัดเตรียมไว้เข้ามาใช้ในระบบที่สร้างขึ้นซึ่งจะอยู่ในเครือข่าย

วงเดียวกัน แล้วจัดเก็บข้อมูล
5. วิเคราะห์ข้อมูลที่ได้จากการทดสอบทั้งในส่วนของประสิทธิภาพการขยายตัว ประสิทธิภาพ

ของการส่งข้อมูลระหว่าง service และความสามารถในการท างานตามรูปแบบการท างานที่
มักจะเกิดข้ึนของระบบ microservices

1.4 ประโยชน์ที่ได้รับจากงานวิจัย

1. ลดความยุ่งยากในการจัดการระบบที่เกิดจากจ านวนระบบของ microservices โดยสร้าง
ระบบ service discovery ให้แก่ผู้พัฒนา เพ่ือการสร้างระบบ automation ท าได้ง่ายขึ้น

2. ลดการผูกติดกันของระบบย่อยจากการติดต่อสื่อสารกันของ service ด้วย remote call ใน
microservices โดยใช้ message bus ท าให้ service สามารถถอดเข้า-ออกจากระบบได้
ง่ายท าให้เหมาะสมกับ agile process development

3. ลดงานของผู้พัฒนาที่ต้องท าในส่วนของการติดต่อกันระหว่าง service ช่วยท าให้ผู้พัฒนา
สามารถมุ่งเน้นเฉพาะในส่วนของการสร้าง service ได้

4. เพ่ิมประสิทธิภาพของระบบ microservices ในด้าน Scalability และ Availability

5

บทที่ 2
วรรณกรรมและงานวิจัยที่เกี่ยวข้อง

 งานวิจัยนี้เป็นการออกแบบการสร้าง microservices โดยใช้ decentralized message bus
เป็นระบบสื่อสาร โดยให้ความสนใจเกี่ยวกับ distributed system และรูปแบบการสร้างการสื่อสารที่
มีประสิทธิภาพเป็นหลัก เพ่ือให้ microservices มีความคงทนต่อความล้มเหลวและลด operational
complexity และปัญหาจากการสื่อสารของ service ในบทนี้จึงน าเสนอวรรณกรรมและงานวิจัยที่
เกี่ยวข้อง ดังต่อไปนี้

1. Microservices
2. Service discovery tools
3. SWIM Protocol
4. Message bus
5. Service-oriented architecture
6. RESTful
7. งานวิจัยที่เกี่ยวข้อง

2.1 Microservices
 Microservices เป็น architecture style แบบใหม่ที่เริ่มได้รับความสนใจเมื่อประมาณปี
2013 โดยเริ่มต้นจากบริษัท Netflix microservices เป็น architecture style ที่แบ่ง single
complex application ออกเป็นหลายๆ service โดยแต่ละ service ที่ถูกแบ่งออกมาจะแยกจากกัน
อย่างเด็ดขาด เวลาติดต่อกันจะติดต่อกันผ่านทาง remote API และเวลา deploy จะ deploy แยกกัน
microservices นิยมน ามาเปรียบเทียบกับ Monolithic application ซึ่งเป็นรูปแบบการสร้าง
application ที่ถูกใช้มาตั้งแต่แรก นั่นคือการสร้าง application ที่ท างานอยู่บน process เดียวกัน
โดย Monolithic application เป็นสาเหตุของการเกิด microservices เพราะ complexity ที่มาจาก
monolithic application มีสูงมากเพราะตัวระบบมีขนาดใหญ่ และเนื่องจากขนาดของระบบที่มี
ขนาดใหญ่จึงท าให้ใช้เวลาในการ deploy ระบบนาน และเม่ือต้องการเปลี่ยนแค่บางส่วนของระบบ
จ าเป็นต้อง deploy ใหม่ทั้งระบบ
 เนื่องจาก Microservices เป็น architecture style ที่เพ่ิงเกิดใหม่ จึงยังไม่มีรูปแบบและ
ลักษณะการสร้างที่ชัดเจน แต่สามารถสรุปตามรูปแบบการใช้งานของหลายบริษัท ที่มีการเปิดเผย
เป็นลักษณะของ microservices โดยแบ่งตาม Martin Fowler และ James Lewis (Folwer &

6

Lewis, 2014) ซึ่งเป็นผู้เชี่ยวชาญด้าน Software design และผ่านการสร้าง Software ด้วย
Microservices architecture มาหลายระบบ ได้ดังต่อไปนี้

รูปที่ 2.1 Monolith & Microservices (Folwer & Lewis, 2014)

2.1.1 Componentization via service
 การพัฒนาระบบหนึ่งในรูปแบบที่นิยมใช้ในการพัฒนาคือ componentization ซ่ึง

ถูก microservices น ามาใช้ในการพัฒนาระบบ โดยระบบจะถูกสร้างด้วยการต่อ component เข้า
ด้วยกัน และจะสื่อสารกันผ่าน interface ซึ่งใน microservices component จะอยู่ในรูปแบบ
service ที่สื่อสารกันผ่านรูปแบบการติดต่อสื่อสารกลาง ข้อดีของระบบ componentization คือ
ระบบจะมีความยืดหยุ่นสูง เนื่องจาก component สามารถถอดเข้าออกได้ง่าย ท าให้ระบบสามารถ
ปรับเปลี่ยนได้อย่างรวดเร็ว โดย microservices มีข้อดีเหมือนที่กล่าวไว้ข้างต้นด้วย

2.1.2 Organized around business capabilities
 รูปแบบการบริหารจัดการระบบ software ในปัจจุบันส่วนใหญ่ถูกแบ่งตามชั้นของ
เทคโนโลยี ดังรูปที่ 2.2 ตัวอย่างเช่น ทีม UI ทีม server และทีมฐานข้อมูล ซึ่งรูปแบบการจัดการแบบ
นี้ การเปลี่ยนแปลงเพียงเล็กน้อยจะท าให้เกิดการสื่อสารระหว่างทีม เนื่องจากการเปลี่ยนแปลงระบบ
มักต้องการความรู้ความเข้าใจในระบบ การสื่อสารระหว่างทีมมักท าให้เกิดความล่าช้าในการพัฒนา

รูปที่ 2.2 รูปแบบการแบ่งทีมตามเทคโนโลย ี(Folwer & Lewis, 2014)

7

 ในขณะที่ทีมในระบบ microservices จะถูกแบ่งตาม service ใน microservices
ดังรูปที่ 2.3 โดยแต่ละทีมจะมีนักพัฒนาครบทุกต าแหน่งที่จ าเป็นต่อการพัฒนา ท าให้การเปลี่ยนแปลง
ใน service เกิดการสื่อสารระหว่างทีมเท่านั้น ยกเว้นเกิดการเปลี่ยนแปลง service ที่กระทบกับ
service อ่ืน จึงจะท าให้เกิดการสื่อสารข้ามทีม แต่การเปลี่ยนแปลงแบบนี้เกิดขึ้นไม่บ่อย ซึ่งการสื่อสาร
ภายในทีมจะมีความรวดเร็วกว่าการสื่อสารข้ามทีม ท าให้การพัฒนาระบบเป็นไปอย่างรวดเร็ว

รูปที่ 2.3 รูปแบบการแบ่งทีมตามความสามารถทางธุรกจิ (Folwer & Lewis, 2014)

2.1.3 Products not projects
 รูปแบบการพัฒนาระบบในปัจจุบัน โดยมากเมื่อระบบถูกพัฒนาเสร็จทีมที่พัฒนา
ระบบจะส่งต่อให้แผนกอ่ืนดูแลต่อไป ท าให้ระบบมักขาดการดูแล หรือแม้กระทั่งต้องสร้างระบบใหม่
ทดแทนระบบเดิม เนื่องจากทีมท่ีดูแลไม่มีความรู้ความเข้าใจในตัวระบบเดิม แต่ใน microservices
นั้นทีมพัฒนาจะท าหน้าที่เป็นเจ้าของ service ซึ่งมีหน้าที่ดูแล service ตั้งแต่เริ่มสร้างจนถึงการหยุด
การใช้งาน ท าให้การปรับปรุงหรือเปลี่ยนแปลงแก้ไข service เป็นไปอย่างรวดเร็ว เนื่องจากนักพัฒนา
มีความรู้และความเข้าใจในตัว service

2.1.4 Smart endpoints and dumb pipes
 Service ใน microservices จะติดต่อกันผ่านทาง lightweight protocol ซึ่งปกติ

แล้วจะนิยมใช้ RESTful HTTP ติดต่อระหว่าง service โดยตรง โดยส่งข้อมูลในรูปแบบ JSON อีกวิธี
หนึ่งที่นิยมใช้เป็นช่องทางการสื่อสารของ service ใน microservices นั้นคือการใช้ lightweight
message bus ตัวอย่างเช่น RabbitMQ หรือ ZeroMQ ซึ่งมีความสามารถมากกว่าการติดต่อโดยตรง
ระหว่าง service จึงช่วยลดการผูกติดกันระหว่าง service ในระบบและระบบจะมีข้อตกลงกลางใน
การสื่อสารระหว่าง service ท าให้ service ง่ายต่อการถอดเข้าและถอดออกจากระบบ อีกท้ังเมื่อ
ข้อมูลทุกข้อมูลต้องผ่าน message bus ท าให้สามารถท่ีจะ monitor ข้อมูลในระบบได้ง่ายกว่าวิธีการ
แรก แต่จะไม่ใช้ Enterprise message bus หรือ ESB ซึ่งเป็น message bus ที่นิยมในการสร้างระบบ
SOA เพราะไม่ต้องการเพ่ิมความซับซ้อนในการใช้งานและการดูแลให้กับระบบ

8

2.1.5 Decentralized Governance
 การที่ service ใน microservices เป็น self-container ท าให้ service มีอิสระใน

การเลือกเครื่องมือในการสร้างระบบ ส่งผลให้ service ใน microservices สามารถเลือกเครื่องมือใน
การสร้างระบบที่เหมาะสมกับการพัฒนาระบบได้ ในการพัฒนาระบบนั้น เครื่องมือที่เหมาะสมกับ
ระบบส่งผลต่อประสิทธิภาพในการพัฒนาระบบอย่างมาก ตัวอย่างเช่น Node.js เหมาะกับระบบ
ประเภทที่เน้นการท างานกับ IO แต่ Golang เหมาะกับระบบประเภทที่ต้องการพลังในการค านวณ
ท าให้การพัฒนาระบบแบบ microservices สามารถพัฒนาระบบได้อย่างมีประสิทธิภาพมากกว่า
ระบบแบบ monolith ที่อยู่ในลักษณะระบบใหญ่ระบบเดียวจึงไม่สามารถที่จะเลือกเครื่องมือในการ
พัฒนาให้เหมาะกับทุก module ในระบบได้

2.1.6 Decentralized data management
 Microservices service มักจะมีฐานข้อมูลเป็นของตัวเองไม่ได้ใช้ฐานข้อมูลรวมกัน
เหมือนในระบบแบบ monolith เพราะในแต่ละ service จะมีลักษณะความหมายของข้อมูลที่ไม่
เหมือนกัน ค าบางค าชื่อเรียกอาจจะเหมือนกันแต่ความหมายอาจจะต่างกันออกไป และลักษณะข้อมูล
แต่ละแบบก็จะเหมาะสมกับฐานข้อมูลที่ต่างกันออกไป การใช้ฐานข้อมูลที่เหมาะกับลักษณะข้อมูลจะ
ท าให้ระบบสามารถดึงข้อมูลอย่างมีประสิทธิภาพมากกว่าการใช้ฐานข้อมูลที่ไม่เหมาะสมกับรูปแบบ
ข้อมูล ดังนั้นในแต่ละ service ใน microservices มักจะใช้ฐานข้อมูลแยกออกจากกัน โดยเลือก
ฐานข้อมูลที่เหมาะสมกับลักษณะของข้อมูลที่ service เก็บเพ่ือประสิทธิภาพของระบบ

2.1.7 Infrastructure Automation
 Microservices นั้นระบบจะถูกแบ่งออกเป็น service ขนาดเล็กจ านวนมากท าให้

จ านวนเครื่องที่ต้องดูแลมีจ านวนมากตามไปด้วย ท าให้การดูแลระบบใช้เวลาและทรัพยากรคน อีกทั้ง
การที่ระบบ microservices นั้นมีลักษณะเป็น distributed system ท าให้เพิ่มความยุ่งยากในการ
ดูแลระบบ ดังนั้นระบบ microservices มักจะถูกออกแบบให้เป็นระบบแบบ automation เพ่ือลด
ความยุ่งยากในการดูแลและจัดการระบบ และด้วยความต้องการ automation ระบบมักจะถูกสร้าง
ขึ้นบนระบบ cloud ที่สามารถบริหารจัดการเครื่องคอมพิวเตอร์จ าลองได้อย่างง่ายดาย ส่งผลให้การ
สร้างระบบแบบ automation ง่ายขึ้น

2.1.8 Design of failure
 การเปลี่ยนจาก single application มาเป็น multiple service ท าให้มี service ที่

ต้องดูแลเป็นจ านวนมาก โอกาสที่ service จะหยุดท างานจากสาเหตุ hardware หรือ software มี
มากขึ้น ท าให้การออกแบบระบบ microservices จ าเป็นต้องมีการน าเอาวิธีการต่างๆที่ช่วยลดโอกาส

9

การล่มของระบบลง ตัวอย่างเช่น การท า replication service การท า real time monitoring เพ่ือดู
ความผิดปกติของ service เป็นต้น

2.1.9 Evolutionary Design
 การเปลี่ยนจากระบบ Monolithic เป็น microservices มักจะเปลี่ยนแปลงทีละส่วน

โดยส่วนที่ถูกแก้ไขบ่อยจะถูกเปลี่ยนเป็น microservices ก่อน เพราะท าให้สามารถแก้ไขส่วนนั้นได้
ง่ายไม่กระทบกับทั้งระบบ

2.2 Service discovery
 Service discovery หรือ locating service เป็นส่วนประกอบที่ส าคัญของระบบ
microservices เพราะในระบบ microservices นั้น service มีโอกาสเปลี่ยนแปลงที่อยู่ตลอดเวลา
ดังนั้นระบบจึงต้องการเครื่องมือที่สามารถจัดหา IP และ port ของ service ที่เราต้องการติดต่อ นั่น
คือ service discovery ซึ่งในปัจจุบัน service discovery มีหลายตัว บางตัวถูกสร้างมาเพ่ือท า
service discovery โดยเฉพาะ ในขณะที่บางตัวไม่ได้สร้างมาเพ่ือเป็น service discovery โดยตรง แต่
ด้วยความสามารถท่ีเหมาะกับการท า service discovery จึงถูกน ามาใช้งานเป็น service discovery
โดยสามารถแบ่งออกเป็นกลุ่มตามรูปแบบ architecture ได้ดังต่อไปนี้

2.2.1 Centralized service discovery
 Service discovery รูปแบบนี้จะมีส่วนประกอบส าคัญสองส่วนคือ service

registration และ service discovery โดย service registration จะท าหน้าที่เก็บข้อมูลของ service
ทั้งหมดใน cluster ในขณะที่ service discovery ท าหน้าที่จัดหาที่อยู่ service ให้กับ service ที่ร้อง
ขอ โดยการอ่านค่าที่อยู่จาก service registration จากรูปแบบ architecture นี้ service registration
จึงเป็นจุดให้บริการเชื่อม (broker) ท าให้เกิด single point of failure ซึ่งมีโอกาสที่ระบบจะท างาน
ไม่ได้เมื่อจุดเชื่อมต่อหยุดท างาน แต่ข้อดีของการที่อ่านข้อมูลมาจากจุดเชื่อมต่อจุดเดียว จะท าให้
ข้อมูลที่อยู่ของ service นั้นถูกต้องตลอดเสมอ รูปแบบประเภทนี้จึงนิยมใช้เมื่อต้องการความถูกต้อง
ของข้อมูลสูง เครื่องมือที่เป็นรูปแบบ centralized service discovery นั้นมีอยู่สองรูปแบบดังต่อไปนี้

2.2.1.1 General purpose service registration
 General purpose service registration เป็นเครื่องมือที่ถูกสร้างมาเพ่ือใช้

ในการจัดเก็บข้อมูลทั่วไปไม่ได้เจาะจงเพ่ือท า service discovery แต่ด้วยความสามารถที่เหมาะใน
การท า service registration ด้วย จึงถูกน ามาใช้อย่างแพร่หลาย แต่ต้องพัฒนาเพ่ิมเติมเพ่ือให้
เหมาะสมกับการใช้งานเป็น service discovery โดย Zookeeper (Zookeeper, 2010) เป็นหนึ่งใน
เครื่องมือที่ได้รับความนิยม การเก็บข้อมูลของ Zookeeper มีลักษณะเป็น node hierarchy โดย

10

จุดเด่นของมัน คือความถูกต้องของข้อมูล (consistency) ข้อมูลที่ได้จาก server ใน cluster จะมีค่า
เท่ากันหมด การติดต่อกับ Zookeeper จะติดต่อผ่านทาง client ที่จัดเตรียมไว้ให้ อีกหนึ่งเครื่องมือที่
ถูกน ามาใช้เป็น service discovery ได้แก่ Etcd (CoreOS, 2016) โดยที่ Etcd เก็บค่าของข้อมูลอยู่ใน
รูปแบบ key-value โดยสามารถติดต่อ Etcd ผ่านทาง HTTP + JSON API สนับสนุน Availability
ด้วยการใช้ replication ในรูปแบบ master-salve โดยจดุเด่นของ Etcd อยู่ที่ความถูกต้องของข้อมูล
เช่นเดียวกับ Zookeeper แต่สามารถอ่านข้อมูลของ service ได้จาก server ที่ไม่ใช่ master ท าให้
ประสิทธิภาพในการอ่านข้อมูลดีกว่า Zookeeper

2.2.1.2 Single purpose service discovery
 เป็นเครื่องมือที่สร้างมาเพ่ือท า service discovery โดยเฉพาะ ดังนั้น

เครื่องมือจะถูกเตรียมทุกอย่างไว้ให้ครบเรียบร้อย โดยส่วนมากเป็นการประกอบเครื่องมือหลายตัวเข้า
ด้วยกันเพ่ือสร้าง service discovery เครื่องมือที่อยู่ในกลุ่มนี้มีดังนี้ SmartStack (Igor & Martin,
2013) และ Eureka (Netflix, 2016) SmartStack เป็น service discovery ที่สร้างด้วยบริษัท Airbnb
เป็นการผสมผสานกันระหว่าง Nerve (Airbnb, 2016), Synapse (Airbnb, 2016) และ Zookeeper
โดย Zookeeper จะท าหน้าที่เป็น service registry ของระบบและ Nerve จะท าหน้าที่เป็นส่วนให้
client ติดต่อกับ service discovery ผ่านทาง http API ในขณะที่ synapse ท าหน้าที่เป็น load
balance เพ่ือเพ่ิมประสิทธิภาพให้กับระบบ ข้อดีของ SmartStack คือ client ไม่จ าเป็นต้องใช้
library ของ service discovery แต่จะติดต่อผ่านทาง sidekick process ของ Nerve ซึ่งเป็น
process ที่ท างานอยู่บนเครื่องเดียวกับ client ท าให้ client ไม่ต้องผูกติดกับ service discovery

 Eureka ถูกสร้างด้วยบริษัท Netflix Eureka ถูกสร้างจาก Java เป็น
service discovery ที่ท างานอยู่บน AWS cloud ซึ่งมีส่วนประกอบอยู่ 2 ส่วนคือ Eureka server และ
Eureka client โดย Eureka server ท าหน้าที่เป็น service registration โดย server สามารถสร้าง
เป็น replication set ได้เพ่ือเพ่ิม Availability ให้กับระบบ Eureka client ท าหน้าที่ช่วย service
ติดต่อกับ service เป้าหมาย การท างานของ Eureka จะเน้นไปที่ availability ของระบบมากกว่า
consistency ของข้อมูล อีกท้ังยังสามารถท างานต่อได้เมื่อระบบเกิด partition และจะฟ้ืนฟูระบบ
กลับคืนมาเมื่อระบบกลับมาเป็นปกติ

2.2.2 Decentralized service discovery
 เป็น service discovery แบบกระจาย แต่ละ server สามารถท างานทดแทนกันได้

หมด ท าให้ระบบไม่มีจุดเชื่อมต่อ (centralized server) โดยเครื่องมือที่อยู่ในกลุ่มนี้คือ Serf

(HashiCorp, 2016) ท าหน้าที่จัดการบริหารสมาชิกและตรวจหาสมาชิกที่ล้มเหลว ซึ่งอาศัย SWIM
protocol ที่พัฒนามาจาก Gossip protocol ในการท า failure detection โดย Serf จะท างานใน

11

รูปแบบ sidekick process ที่ท างานอยู่บนเครื่องเดียวกันกับ service ที่ต้องการ service discovery
โดยการติดต่อกับ Serf จะติดต่อผ่านทาง library หรือทาง RPC protocol

 ในงานวิจัยชิ้นนี้ต้องการ service discovery ที่มี availability ที่สูงเพ่ือให้ระบบ
microservices มี availability ที่สูงตามเพราะการล่มของระบบอาจจะส่งผลต่อธุรกิจของบริษัท แต่
ยอมให้ข้อมูลของ service อยู่ในรูปแบบ eventually consistency คือข้อมูลที่ได้รับอาจไม่ตรงกันแค่
ช่วงเวลาระยะสั้นระยะหนึ่ง แต่สุดท้ายจะเกิดการเชื่อมต่อข้อมูลให้ตรงกัน เพราะความไม่เท่ากันของ
ข้อมูลจะเพียงท าให้ service ไม่สามารถติดต่อได้ชั่วขณะเป็นช่วงระยะเวลาสั้น ซึ่งสามารถยอมรับได้
ดังนั้น Serf จึงถูกเลือกข้ึนมาใช้ในงานวิจัยชิ้นนี้ เพราะ Serf เป็น service discovery ในรูปแบบ
decentralized ท าให้ไม่มี single point of failure ดังนั้น availability จึงสูงกว่าแบบ centralized
และ data consistency ของ Serf เป็นแบบ eventually consistency ซึ่งตรงกับที่งานวิจัยชิ้นนี้
ต้องการ โดย Serf ใช้ SWIM protocol ช่วยในการตรวจสอบหาส่วนที่ล้มเหลวของระบบซึ่งจะถูก
อธิบายในหัวข้อถัดไป

2.3 SWIM Protocol
 SWIM (Scalable Weakly-consistent infection-style Process Group Membership)
(Das & Gupta & Motivala, 2002) คือ protocol ที่ใช้ในการบริหารจัดการสมาชิกของกลุ่ม process
และท า failure detection ในแบบกระจาย ไม่มีจุดกลางที่ท าหน้าที่เป็นจุดเชื่อมต่อ SWIM protocol
นั้นถูกพัฒนาต่อมาจาก gossip protocol ซึ่งอาศัยการกระจายข่าวในแบบสังคมของมนุษย์ คือ
กระจายจากปากต่อปากไปเรื่อยๆ SWIM protocol ประกอบไปด้วยสองส่วนประกอบหลักคือ failure
detector ใช้ในการตรวจหาสมาชิกที่หยุดท างาน และ dissemination คือการกระจายข้อมูลออกไป
ยังสมาชิกในกลุ่ม การบริหารสมาชิกในกลุ่มนั้น สามารถท าโดยการให้สมาชิกท้ังหมดถือรายการข้อมูล
สมาชิกของกลุ่ม เมื่อมีการตรวจพบการหยุดท างาน จาก failure detector หรือการเพิ่มสมาชิกหรือ
การขอออกจากกลุ่ม ระบบก็จะส่งข้อมูลด้วย dissemination ไปยังทุกสมาชิก เพ่ือเปลี่ยนแปลง
รายการที่สมาชิกเก็บอยู่ ท าให้ทุกสมาชิกมีข้อมูลที่ถูกต้องตรงกันทั้งกลุ่ม โดยรายละเอียดของ
ส่วนประกอบต่างๆ จะอธิบายดังต่อไปนี้

2.3.1 SWIM Failure detector
 SWIM หาสมาชิกที่หยุดท างานด้วยการให้สมาชิกท้ังหมดส่ง ping ไปหาสมาชิกอ่ืน

Mi ทุกช่วงเวลา T’ โดยเลือกจากการสุ่ม ถ้าไม่มีการตอบกลับมาในระยะเวลาที่ก าหนดก็จะส่งค าสั่งไป
หาสมาชิกใหม่ Mk ที่มาจากการสุ่มเช่นเดียวกัน เพ่ือให้ส่ง ping ไปหาสมาชิก Mi โดยถ้าไม่ได้รับการ

12

ตอบกลับจากสมาชิก Mk เช่นกันก็จะกระจายข้อมูลว่ามีสมาชิกท่ีหยุดท างานด้วย แต่ถ้าได้รับการตอบ
กลับก็จะส่งผลลัพธ์ไปยัง Mi ว่า Mk ยังท างานอยู่ปกติ

รูปที่ 2.4 วิธกีารท างานของ SWIM Failure detector

2.3.2 Dissemination
 Dissemination เป็นการสื่อสารข้อมูลระหว่างสมาชิกในกลุ่ม มีการสื่อสารอยู่สอง
ชนิดคือ multicast และ piggyback การสื่อสารข้อมูลที่เก่ียวกับการมีสมาชิกใหม่เพ่ิมเข้ามาหรือมี
สมาชิกเก่าออกไปแล้วนั้น SWIM จะใช้ multicast เป็นตัวกระจายข้อมูลให้ทุกสมาชิกได้รับรู้เพ่ือลบ
หรือเพ่ิมสมาชิกจากรายการ แต่การกระจายแบบ multicast นั้น จะท าให้ข้อมูลวิ่งอยู่บนระบบ
เครือข่ายมากเกินไป ท าให้ SWIM พัฒนาวิธีการที่เรียกว่า Infection style dissemination ขึ้นมาเพ่ือ
ลดข้อมูลที่วิ่งอยู่บน network
 Infection style dissemination หรือ piggyback message เป็นการอาศัย ping ที่ปกติ
จะต้องส่งไปหาสมาชิกในทุกช่วงเวลา T’ อยู่แล้ว ช่วยกระจายข้อมูลให้ โดยแนบข้อมูลไปกับ ping เมื่อ
สมาชิกได้รับข้อมูลนี้ช่วงเวลาที่ต้องส่ง ping ก็จะแนบข้อมูลชุดนี้ไปกับ ping ด้วย ท าให้ได้มาซึ่งวิธีการ
infection style ท าให้ข้อมูลที่วิ่งอยู่บน network ไม่เยอะมากจนเกินไปเหมือน multicast แต่ข้อมูล
จะค่อยๆกระจายตัวออกไปเหมือนไวรัสและในที่สุดทุกสมาชิกจะได้รับข้อมูลเหมือนกันหมด

รูปที่ 2.5 การท างานของ piggyback message

13

2.3.3 พัฒนาความถูกต้องของ SWIM Failure detector
 การตรวจจับสมาชิกว่าหยุดท างาน อาจเกิดข้อผิดพลาดของการตรวจจับได้เช่น กรณี

ที่สมาชิกที่ไม่ตอบสนอง ping อาจเป็นเพราะมีปัญหาเกิดขึ้นชั่วคราวหรือข้อมูลที่ถูกส่งออกไปนั้นหาย
กลางทางจากปัญหาของเครือข่าย ซึ่งท าให้สมาชิกนั้นต้องออกจากระบบไปเพราะการตรวจจับที่
ผิดพลาด ดังนั้น SWIM ลดปัญหานี้โดย ระบุในรายการสมาชิกท่ีไม่ตอบ ping ในครั้งแรกนั้นให้ถือว่า
เป็นรายการน่าสงสัย แล้วกระจายข้อมูลนี้ออกไปยังทุกสมาชิก สมาชิกใดๆได้รับข้อมูลนี้แล้วจะบันทึก
ไว้ในรายการเช่นกัน เมื่อต้อง ping ไปยังสมาชิกที่ถูกสงสัยว่าหยุดท างานแล้วจริง และไม่ได้รับการตอบ
กลับ จึงตัดสินว่าสมาชิกนั้นได้หยุดท างานแล้ว จากนั้นจะกระจายข้อมูลให้สมาชิกอ่ืนๆได้รับรู้ แต่ถ้า
ได้รับการตอบกลับจากสมาชิกท่ีถูกสงสัยก็จะลบออกจากรายการน่าสงสัย และกระจายข้อมูลให้ทุก
สมาชิกได้รับรู้เช่นเดียวกัน วิธีการนี้จะช่วยลดปัญหาของการตรวจจับผิดพลาดได้อย่างมาก ช่วยท าให้
SWIM มีความถูกต้องที่มากข้ึน

2.4 Message bus
 ในระบบตั้งแต่ขนาดกลางมักจะประกอบไปด้วยโปรแกรมมากกว่าหนึ่งโปรแกรมท างานอยู่
ข้างใน message bus เป็นเครื่องมือหนึ่งที่ใช้ในการสื่อสารกันระหว่างโปรแกรมในระบบ (Gregor &
Boboy, 2003) โดยจะสื่อสารกันผ่านทาง message bus แทนที่จะติดต่อสื่อสารกันโดยตรง ซึ่ง
message bus นั้นเหมือนระบบ bus ใน mainboard ซึ่งจะช่วยในเรื่องของการผสานกันของ
ส่วนประกอบที่มีความต่างกันในเรื่องของเทคโนโลยีที่ใช้ในระบบและสิ่งแวดล้อมของระบบ ด้วยการ
ก าหนดรูปแบบการติดต่อกลาง ที่ทุกส่วนประกอบจะต้องใช้เมื่อต้องการจะติดต่อสื่อสารกันผ่านทาง
message bus การใช้ message bus ซึ่งมีรูปแบบกลางในการสื่อสารมีประโยชน์ดังต่อไปนี้

1. ลดการผูกติดกันของโปรแกรมในระบบ โดยโปรแกรมจะสื่อสารกันผ่านทาง message bus
แทนที่จะสื่อสารการโดยตรงที่ต้องรู้ที่อยู่และรูปแบบการติดต่อสื่อสารของแต่ละฝ่าย

2. ลดจ านวน connection ที่จะเกิดข้ึน ยกตัวอย่างเช่นในระบบที่มีโปรแกรมอยู่ทั้งหมด 10
โปรแกรม ถ้าโปรแกรมทั้ง 10 โปรแกรมต้องสามารถติดต่อสื่อสารกันได้หมดจะท าให้เกิด
100 connection ในระบบ แต่ถ้าผ่านทาง message bus โปรแกรมจะสร้าง connection
เพียงแค่ 1 connection กับ message bus เท่านั้น โดยการลดจ านวน connection นี้จะ
ช่วยลดความยุ่งยากในการรักษาระบบและช่วยท าให้ระบบสามารถแก้ไขได้ง่ายขึ้นอีกด้วย

14

3. ช่วยเพิ่มความยืดหยุ่นในการเปลี่ยนแปลงหรือแก้ไขส่วนประกอบในระบบ เพราะในการ
ติดต่อสื่อสารมีรูปแบบกลางในการติดต่อท าให้สามารถเพ่ิมและลดส่วนประกอบในระบบ
เป็นไปได้ง่ายขึ้น

2.5 Service-oriented architecture
 Service-oriented architecture (SOA) เป็น architecture style ที่ใช้แนวคิดในการสร้าง
ระบบจากการประกอบกันของหลาย service โดย service ถูกมองเป็นฟังก์ชั่นงานทางธุรกิจที่มีความ
เป็นอิสระ ไม่ข้ึนกับ service อ่ืนและอาจจะเกิดจากการประกอบกันของหลาย service โดย protocol
หลักท่ี SOA ใช้ในการติดต่อสื่อสารกันระหว่าง service คือ SOAP ซึ่งเป็น protocol ที่ใช้ XML เป็น
รูปแบบข้อมูลที่ใช้ในการสื่อสาร โดย SOA ถูกออกแบบอยู่บนองค์ประกอบต่อไปนี้

- Service loose coupling คือทุก service ต้องไม่มีการผูกติดกัน
- Service reusability คือ service ต้องสามารถถูกเรียกใช้ได้จากทุก service
- Service abstraction คือ service ต้องซ้อนรูปแบบการท างานของ service แสดง

เฉพาะรูปแบบการติดต่อเท่านั้น
- Standardized service contract คือทุก service ต้องใช้รูปแบบการสื่อสารเดียวกัน

รูปแบบการสื่อสารจะถูกตกลงล่วงหน้า
- Service statelessness คือ service ต้องเก็บข้อมูลให้น้อยที่สุด
- Service discoverability คือ service ต้องสามารถถูกค้นพบได้ง่าย โดยการติดต่อ

service มากจะต้องอาศัยเครื่อง service discovery ในการติดต่อ
- Service granularity คือการท างานของ service ต้องจบในตัว service เอง
- Service composability คือ service สามารถเกิดจากการประกอบกันของหลาย

service ได้โดยไม่สนใจความซับซ้อนของการประกอบกันของ service

 เพ่ือให้ SOA มีองค์ประกอบดังที่กล่าวไปแล้ว จึงต้องการส่วนประกอบหลายอย่างในการส่ง
ระบบ ยกตัวอย่างเช่น

- Service discovery เป็นส่วนที่ท าหน้าที่บริหารการติดต่อ service ในการลงทะเบียน
service เพ่ือท าให้ระบบสามารถค้นหา service ได้ง่าย

- Messaging ใช้ในส่งข้อมูลเพ่ือท าการสื่อสารกันระหว่าง service โดยมีรูปแบบการ
สื่อสารกลาง

15

- Service Orchestration ใช้ในการควบคุมการ business processes ของระบบ

 ใน SOA ระบบการสื่อสารเป็นหนึ่งในส่วนประกอบที่ส าคัญในระบบ ท าให้ระบบการสื่อสาร
นั้นถูกออกแบบมาเพ่ือรองรับรูปแบบการสื่อสารหลายรูปแบบ โดยระบบการสื่อสารจะถูกแบ่ง
ออกเป็นส่วนประกอบดังต่อไปนี้

- Message type pattern คือรูปแบบของข้อมูลที่ใช้ในการส่งยกตัวอย่างเช่น
command, document, request/reply

- Message channel pattern คือช่องทางท่ีใช้ในการสื่อสารยกตัวอย่างเช่น point-to-
point, publish-subscribe, message bus

- Routing pattern คือรูปแบบการในการขนส่งข้อมูลจาก service ต้นทางไปยัง service
ปลายทาง ยกตัวอย่างเช่น pipe and filter, content aggregator

- Service consumer pattern คือรูปแบบพฤติกรรมของ client ของ service
ยกตัวอย่างเช่น polling consumer, event-driven, message façade

- Message construction pattern คือรูปแบบในการสร้างข้อมูลที่ใช้ในการสื่อสารใน
ระบบ ตัวอย่างเช่น message sequence, message expiration

- Transformation pattern คือรูปแบบการเปลี่ยนแปลงรูปร่างของข้อมูล ยกตัวอย่าง
เช่น envelop wrapper, content filter

 ดังจะเห็นได้จากที่กล่าวไปแล้ว SOA เป็น architecture ที่ค่อนข้างมีรายละเอียดที่ซับซ้อน
และมีส่วนประกอบจ านวนมากท าให้อาจไม่เหมาะกับระบบบางประเภท ยกตัวอย่างเช่น ระบบที่
ต้องการการเปลี่ยนแปลงที่บ่อย หรือระบบขนาดเล็กถึงขนาดกลางที่ไม่ต้องการเครื่องมือในระดับ
SOA ซึ่งอาจเป็นการเพ่ิมภาระให้ระบบโดยไม่จ าเป็น

2.6 RESTful
 เป็น software architecture style ที่อยู่ในแบบ network-base โดยเกือบทั้งหมดใช้ HTTP
เป็น protocol หลักในการสื่อสาร ซึ่ง RESTful (Fielding, 2000) จะไม่ก าหนดวิธีการสร้างของ
ส่วนประกอบในระบบ วิธีการติดต่อและรูปแบบข้อมูลในระบบ แต่จะก าหนดขอบเขตและข้อจ ากัด
แทน โดยขอบเขตและข้อจ ากัดมีดังต่อไปนี้

- Client-server คือ client และ server จะต้องท าหน้าที่ต่างกันและไม่ผูกติดกัน
ยกตัวอย่างเช่น client จะไม่เก็บข้อมูล แต่จะปล่อยให้เป็นหน้าที่ของ server

16

- Stateless คือทุกการร้องขอของ client จะต้องไม่มีข้อมูลของ client ถูกเก็บไว้ใน
server ข้อมูลจะถูกส่งไปเท่าที่จ าเป็นส าหรับการร้องขอเท่านั้น

- Cacheable ข้อมูลที่ได้จากการร้องขอจะต้องสามารถน ามาใช้ใหม่ได้
- Layered system client จะต้องไม่สามารถระบุได้ว่าการร้องขอเป็นการติดต่อกับ

server โดยตรงหรือไม่ โดยค าร้องขอนั้นอาจจะผ่านระบบ load balance หรือระบบ
อ่ืนก่อนก็ได้

- Uniform interface รูปแบบการเข้าถึงทรัพยากรใน server จะต้องมีรูปแบบเดียวกัน
โดยมีข้อก าหนดดังต่อไปนี้
o Identification of resources รูปแบบการเข้าถึงข้อมูลในระบบจะต้องแตกต่าง

ยกตัวอย่างเช่น ระบบที่ใช้ URL ในการเข้าถึง ทรัพยากรของระบบ URL ที่ใช้ใน
การเข้าถึงทรัพยากรที่ต่างกันจะต้องมีรูปแบบ URL ที่ตา่งกัน

o Manipulation of resource through representations รูปแบบที่ใช้ในการ
จัดการกับทรัพยากรในระบบจะท าผ่าน metadata ยกตัวอย่างเช่นใน HTTP
จะใช้ HTTP method ในการระบุบรูปแบบของการจัดการทรัพยากรในระบบ

o Self-descriptive message ทุกข้อความจะต้องมีข้อมูลที่อธิบายรูปแบบของ
ข้อความเพียงพอต่อการใช้งาน

o HATEOAS ในการติดต่อสื่อสารกับ server ของ client จะใช้รูปแบบ
hypermedia

2.7 งานวิจัยท่ีเกี่ยวข้อง
 งานวิจัยที่เกี่ยวข้องกับ Microservices นั้น ยังมีจ านวนน้อย เพราะ Microservices เพ่ิงเป็น
ที่รู้จักเมื่อไม่นานมานี้ งานวิจัยที่ค้นพบมีดังนี้ Serfnode (Stubbs, 2015) , Self-managing
microservices (Toffetti & Brunner & Blochlinger & Dudouet & Edmonds, 2015) และ Iris

(Szilagyi, 2014) ทุกงานวิจัยมีเป้าหมายในการแก้ไขปัญหาของ microservices โดยสามารถสรุปตาม
feature ทั้งหมดที่ทุกงานวิจัยพัฒนาได้ดังต่อไปนี้ Service discovery, Load balance, Service
orchestration และ Auto recovery

2.7.1 Service discovery
 Service discovery เป็นปัญหาที่ทุกงานต้องการการแก้ไข เพราะเป็นปัญหาส าคัญท่ี

จะท าให้การเปลี่ยนระบบเป็น automation นั้นประสบผลส าเร็จ เมื่อสามารถเปลี่ยนระบบให้เป็น
automation ได้ปัญหาเรื่องความยุ่งยากในการจัดการของ microservices จะลดลงเป็นอย่างมาก

17

โดย service discovery tool ที่ถูกน ามาใช้งานในทุกงานวิจัยจะมีอยู่สองรูปแบบคือ แบบมีจุดเชื่อม
ต่อ (centralize) และแบบไม่มีจุดเชื่อมต่อ (decentralize)

2.7.1.1 Centralization
 Self-managing microservices เป็นงานวิจัยที่ใช้รูปแบบจุดเชื่อมต่อ (Centralized

server) โดยใช้ Etcd เป็นเครื่องมือในการเก็บข้อมูลให้อยู่ในรูปแบบ key-value สามารถเก็บไว้บน
หลาย server ได้ โดยที่ consistency ของข้อมูลยังคงอยู่ แต่ Etcd นั้นไม่ได้สร้างมาเป็นเครื่องมือท า
service discovery โดยเฉพาะ เพราะฉะนั้นจึงยังมีส่วนที่ต้องท าเพ่ิมอีก ข้อดีของ centralize service
discovery ที่เห็นได้ชัดคือเรื่อง consistency ของข้อมูล ข้อเสียคือ single point of failure

2.7.1.2 Decentralization
 งานวิจัยที่ใช้รูปแบบไม่มีจุดเชื่อมต่อนั้น มีงานวิจัย Serfnode และ Iris โดย

งานวิจัย Serfnode ใช้ Serf ซึ่งเป็นเครื่องมือ maintain membership and failure detection ทีมี่
จุดแข็งในด้าน availability ที่สูงมากโดยแลกกับ consistency ของข้อมูลที่เป็นแบบ eventually
consistency คือข้อมูลจะเกิด consistency แต่ต้องอาศัยระยะเวลา

 งานวิจัย Iris ไม่ได้เป็นงานวิจัยที่เกี่ยวข้องกับการท า service discovery
โดยตรง แต่เนื่องจากพัฒนาจาก Pastry และ Scribe ซึ่งเป็น Dynamic hash table หรือ DHT
สามารถส่งข้อมูลไปยัง node ที่ไม่รู้ที่อยู่ได้ จึงสามารถปรับใช้กับงานในเชิง service discovery ได้
ถึงแม้จะขาดคุณสมบัติบางประการ ตัวอย่างเช่น การตรวจหา service ล้มเหลว เป็นต้น

 DHT คือการส่งข้อมูลอยู่ในรูปแบบ key-value ซ่ึง key คือผลลัพธ์ของการ
hash ค่าท่ีอยู่ของ node เป้าหมาย ส่วน value คือข้อมูลที่ต้องการส่ง โดยจะมีการก าหนด keyspace
ซึ่งเป็นช่วงค่าที่เป็นไปได้ทั้งหมดของ key เพ่ือใช้ในการก าหนด node ที่ข้อมูลจะถูกส่งไป ด้วยการ
ก าหนดช่วงของ keyspace ให้กับทุก node เมื่อต้องการส่งข้อมูล DHT จะ hash ค่าท่ีอยู่ของ node
เป้าหมายด้วย consistent hashing เพ่ือให้ได้ key ที่จะใช้ในการส่งข้อมูล จากนั้นจะเลือก node ที่
ใกล้เคียงที่สุด โดยดูจากช่วง key ของ node เพ่ือนบ้านที่ถูกเก็บไว้ในทุก node ว่าช่วง key ใน node
ไหนใกล้เคียงกับ key ของข้อมูลที่จะส่งมากท่ีสุด จากนั้นจะส่งข้อมูลไปยัง node นั้น ถ้า node ที่ได้รับ
ข้อมูลมีช่วงของ key ไม่ตรงกับ key node จะหา node ที่ใกล้เคียงใหม่ และส่งข้อมูลต่อไป ท าวนซ้ า
จนกระท้ังเจอ node ที่มีช่วง key ตรงกับ key ของข้อมูล

2.7.2 Load balance
 Load balance เป็นเรื่องส าคัญของการใช้ microservices เนื่องจาก load

balance สามารถเพ่ิมทั้ง Availability และ Scalability ของระบบได้ แต่ microservices นั้น แบ่ง
ระบบออกเป็นหลาย service ท าให้การท า load balance ยากข้ึนเนื่องจากต้องท าให้ทุก service ซ่ึง

18

เป็นงานที่ใช้ทั้งคนและเวลา ดังนั้นการมีคุณสมบัติของ load balance ใน microservices จึงเป็นเรื่อง
ส าคัญ ดังจะเห็นจากทุกงานวิจัยมีการท า load balance ทั้งหมด โดยใช้วิธีการที่ใกล้เคียงกันคือการ
ตั้งกลุ่มของ service ที่เหมือนกันให้เป็นหน่วยที่เล็กที่สุดที่ service สามารถเลือกใช้ส่งข้อมูลได้
จากนั้นระบบจะท าการเลือกว่าควรเป็น service ไหนที่ได้รับข้อมูล

2.7.3 Service orchestration
 งานวิจัยเดียวที่เลือกพัฒนา service orchestration คือ Self-managing

microservices โดยให้นักพัฒนาประกาศโครงสร้างของระบบผ่านทาง Etcd จากนั้น ระบบจะสร้าง
ระบบตามโครงสร้างที่นักพัฒนาประกาศไว้ โดยระบบจะต้องท างานอยู่บนเครื่องมือ virtualization
และระบบจะสร้างข้อมูลของ node ที่เกิดขึ้นจริงในระบบเพื่อใช้การในการท า self-healing ต่อไป
การที่ service orchestration มีงานวิจัยท าแค่งานเดียวอาจเป็นเพราะความซับซ้อนของการท า
service orchestration ที่อาจท าให้ระบบมีขนาดใหญ่และยุ่งยากในการจัดการ จึงไม่สอดคล้องกับ
ลักษณะการใช้ microservices

2.7.4 Communication
 Communication มีเพียงงานวิจัย Iris ที่เลือกแก้ไขปัญหานี้ด้วยการพัฒนา

message bus โดยรูปแบบการส่งข้อมูลใน Iris นั้น มีสามรูปแบบคือ request/response,
publish/subscribe และ broadcast โดยใช้ Pasty ซึ่งเป็น peer-to-peer protocol ส าหรับกลุ่ม
การสื่อสารขนาดใหญ่ ยกตัวอย่างเช่น WAN หรือ Internet Iris ใช้วิธีการส่งต่อข้อมูลผ่าน node
ใกล้เคียงจนกระทั่งถึง node เป้าหมาย ท าให้การส่งข้อมูลไม่จ าเป็นต้องรู้จักข้อมูลของทุก node
ส่งผลให้การยึดติดกันระหว่าง node ลดลง

2.7.5 Auto recovery
 Auto recovery ช่วยให้ Availability ของระบบสูงขึ้น เนื่องจากสามารถฟ้ืนฟูตัวเอง

ได้ โดยวิธีการที่นิยมใช้คือ monitor ระบบค้นหา service ที่หยุดท างาน เมื่อเจอจะสร้าง service ใหม่
ขึ้นมาแทนที่ service ที่หยุดท างานไปแล้วให้เพ่ิมเข้ามาในระบบ เนื่องจากเป็นวิธีที่ท าง่ายแต่วิธีนี้
เหมาะสมกับระบบที่ deploy เป็น cloud computing เท่านั้น โดยมีสองงานวิจัยที่ใช้แนวทางนี้ คือ
Serfnode ซึ่งใช้รูปแบบ parent and child node ท าให้ parent สามารถตรวจได้ว่า child node
ยังท างานอยู่หรือไม่ ถ้าไม่ท างานแล้วจะสร้างขึ้นมาใหม่ โดยที่ทุก node สามารถท าหน้าที่ parent ได้
หมดจึงไม่มี single point of failure และอีกงานวิจัยหนึ่ง Self-managing microservices ซึ่งใน
งานวิจัยไม่ได้ให้รายละเอียดในการท า Auto recovery

19

ตารางที่ 2.1 เปรียบเทียบคุณสมบัติของงานวิจัยที่เกีย่วข้องตาม feature ในหัวข้อ 2.7

 Serfnode Self-managing microservice Iris Our model

Service discovery √ √ √ √

Load balance √ √ √ √

Service orchestration x √ x x

Communication x x √ √

Auto recovery √ √ x x

 ตารางที่ 2.1 เป็นตารางที่สรุปและเปรียบเทียบคุณสมบัติของงานวิจัยชิ้นนี้กับ

งานวิจัยที่ใกล้เคียง โดยการตัดสินใจเลือกคุณสมบัติของงานวิจัยชิ้นนี้ มาจากการที่ communication
ของ microservices นั้น ควรที่จะ lightweight และความซับซ้อนต่ า ท าให้คุณสมบัติอย่างเช่น
service orchestration และ auto recovery ที่มักจะเพ่ิมความซับซ้อนของระบบมากข้ึนนั้นถูกตัด
ออก ยกตัวอย่างเช่น service orchestration จะท าให้ระบบผูกติดกับรูปแบบที่มักจะถูกก าหนดขึ้น
เพ่ือให้ระบบเกิดการสร้างแบบอัตโนมัติได้ ท าให้ระบบที่มีความต้องการการเปลี่ยนแปลงบ่อยจะไม่
เหมาะ และมีการท างานที่ไม่จ าเป็นเกิดขึ้น ในขณะที่ auto recovery นั้น เป็นที่ต้องการในกรณีของ
ระบบที่ต้องการ availability ที่สูงมาก ซึ่ง load balance มีการเพิ่ม availability ในระดับหนึ่งอยู่
แล้ว ดังนั้นในระบบทั่วไปแล้วจึงมักจะไม่มีความจ าเป็นที่จะต้องพัฒนา auto recovery เพราะจะท า
ให้ระบบมี overhead ที่สูงขึ้น ดังนั้นในงานวิจัยชิ้นนี้จะเน้นไปท่ีการท า service discovery, load
balance และ communication

 จากตารางที่ 2.1 จะเห็นได้ว่างานวิจัยนี้มีลักษณะที่คล้ายกับ Iris ทั้งในด้านที่เป็น
decentralized message bus เหมือนกันและมีคุณสมบัติอ่ืนที่เหมือนกัน แต่ก็ยังมีข้อแตกต่าง
ดังต่อไปนี้ ระบบการสื่อสารของงานวิจัยนี้ ท าการแบ่งชั้นของการติดต่อสื่อสารและ service
discovery ออกจากกันท าให้การสื่อสารจะเป็นแบบ single network communication แต่ในขณะ
ที่ Iris จะรวมการสื่อสารและการท า service discovery เข้าด้วยกัน โดย protocol DHT ที่ Iris
เลือกใช้ ท าให้เกิดจ านวน network communication ในหนึ่งการสื่อสารเท่ากับ log(n) โดย n เป็น
จ านวน node ซึ่งจ านวน network communication ที่สูงจะส่งผลกระทบท าให้ประสิทธิภาพในการ
ส่งข้อมูลลดลง และข้อแตกต่างอีกข้อหนึ่งคือ protocol ที่ Iris เลือกใช้ในการท า service discovery

20

ไม่สามารถตรวจหา node ที่ล้มเหลวได้ ท าได้เพียงค้นหา node เป้าหมายเท่านั้น แต่ในขณะที่ SWIM
protocol ที่ใช้ในการท า service discovery ที่ใช้ในงานวิจัยชิ้นนี้ สามารถท าการตรวจหา node ที่
ล้มเหลวได้ จึงเหมาะกับการน ามาใช้เป็นเครื่องมือในการท า microservices มากกว่าเพราะลักษณะ
หนึ่งของ microservices คือต้องการเครื่องมือที่ใช้ในการ monitor หา service ที่ล้มเหลวได้ ซึ่ง
SWIM protocol สามารถรองรับความต้องการนี้ได้โดยที่ไม่ต้องอาศัยเครื่องภายนอกเพ่ิมเติม

21

บทที่ 3
วิธีการวิจัย

3.1 การออกแบบ
 จากปัญหาของ microservices ในเรื่องการสื่อสารระหว่าง service งานวิจัยชิ้นนี้จึงออกแบบ
message bus เพ่ือใช้เป็นเครื่องมือติดต่อสื่อสารระหว่าง service ซึ่งช่วยแก้ปัญหาการผูกติดกันของ
service เพราะ message bus เปลี่ยนการติดต่อสื่อสารของ service จาก point-to-point มาเป็น
แบบมาติดต่อผ่าน message bus ซึ่งไม่ระบุเป้าหมาย ในขณะเดียวกัน message bus ยังถูกออกแบบ
ให้มีคุณสมบัติเพิ่มเติมเพ่ือให้เหมาะกับการใช้ใน microservices architecture
 ระบบ message bus ในงานวิจัยชิ้นนี้จะเป็นระบบกระจาย คือไม่มีจุดเชื่อมต่อของระบบ
(Decentralized server) โดย message อยู่ในรูปแบบ sidekick process ที่ท างานอยู่บนเครื่อง
เดียวกันกับ service ดังรูป 3.3 คุณสมบัตินี้ท าให้ message bus ไม่มี single point of failure เหมือน
ใน centralized message bus ที่นิยมใช้ใน microservices จึงท าให้ระบบมี availability ที่สูงขึ้น

รูปที่ 3.1 รูปแบบการท างานของ message bus

 การติดต่อสื่อสารระหว่าง message bus แบ่งออกเป็น 2 ช่องทางคือ messaging และ
failure detection ดังจะเห็นได้จากรูปที่ 3.1 โดย messaging จะท าหน้าที่ส่งข้อมูลที่ service
ต้องการส่งไปยัง service เป้าหมาย ในขณะที่ failure detection เป็นช่องทางที่ใช้ส่งข้อมูลเพื่อท า
การตรวจหา service ที่ล้มเหลว ของ message bus การแยกช่องทางการส่งข้อมูลและการตรวจหา
service ที่ล้มเหลวออกจากกัน จะท าให้ง่ายต่อการจัดการ และ protocol ที่ใช้ในการติดต่อสื่อสารจะ
มีความเรียบง่ายเนื่องจาก ความชัดเจนและขนาดของหน้าที่ของ protocol ที่ลดลง นอกเหนือจากนี้
การแยก messaging ออกจาก failure detection ยังท าให้การส่ง message อยู่ในรูปแบบ point-
to-point ซึ่งมีประสิทธิภาพมากกว่าการผ่านตัวกลาง โดยส่วนประกอบที่ส าคัญของ message bus
เป็นไปดังรูปที่ 3.2 โดยมีรายละเอียดดังต่อไปนี้

22

รูปที่ 3.2 ส่วนประกอบใน message bus

3.1.1 Public API
 Public API เป็นส่วนประกอบที่สร้างและท างานเป็น interface ที่อนุญาตให้ระบบ
ภายนอกหรือ service ใช้ในการติดต่อกับระบบ message bus โดย HTTP ถูกเลือกขึ้นมาเป็น
protocol ที่ใช้ในการติดต่อสื่อสารกับ Public API สาเหตุในการเลือก HTTP เป็น protocol หลักท่ี
ใช้ในการติดต่อสื่อสาร เพราะ HTTP เป็นที่รู้จักอย่างกว้างขวางและมีอยู่ในทุกระบบและเครื่องมือที่
เป็นที่นิยม ซึ่งจะท าให้ Public API สามารถเข้าถึงได้จากทุกระบบ โดย interface ของ public API
ถูกออกแบบตาม RESTful style ซ่ึงจะใช้ URL ในการระบุทรัพยากรในระบบที่ต้องการเข้าถึง และใช้
HTTP method ในการระบุลักษณะการกระท ากับทรัพยากร รูปแบบของข้อมูลที่ใช้ในการรับส่งจะ
เป็นคนละรูปแบบกับทรัพยากรจริงที่อยู่ในระบบ รูปแบบข้อมูลที่นิยมใช้คือ JSON, XML, HTML ใน
ระบบนี้เลือกใช้ JSON (JavaScript Object Notation) เป็นรูปแบบการรับส่งข้อมูล

รูปที่ 3.3 รูปแบบการสื่อสาร Service API

 รูปแบบกลางของการรับส่งข้อมูลของ message bus เป็นไปตามรูปที่ 3.3 โดยจะ
เห็นได้ว่า URL ถูกแบ่งออกเป็น 2 ส่วนหลักดังต่อไปนี่ 1) msg_bus_addr คือที่อยู่ของ message bus

Method: HTTP method, i.e., GET, POST, PUT, DELETE

URI: http://msg_bus_addr/resources

Request body อยู่ในรูปแบบ JSON format โดยเกีย่วเนื่องกบั resource_type

23

โดยมีค่าตั้งต้นเป็น 127.0.0.1 2) resource คือทรัพยากรในระบบ message bus ที่อนุญาตให้ระบบ
ภายนอกติดต่อได้ โดยมี 3 ทรัพยากรดังต่อไปนี้ /namespace, /topic และ /message

รูปที่ 3.4 Namespace

 /namespace เป็นทรัพยากรที่เก็บข้อมูลของ namespace ทั้งหมดในระบบ โดย
namespace คือ service name ที่เก็บกลุ่มของ service ชื่อเดียวกัน ซึ่งลงทะเบียนกับ message
bus ดังรูปที่ 3.4 namespace จะช่วยในเรื่องของการท า load balance ของ service การ
ลงทะเบียน service ใน namespace จะท าผ่าน URL path /namespace โดย JSON data ที่ใช้ใน
การลงทะเบียนมีรูปแบบดังต่อไปนี้ { namespace: string, contactPoint: string_url } ซึ่ง
namespace คือชื่อของ namespace ที่ต้องการลงทะเบียน และ contactPoint คือ URL ที่
message bus ใช้ในการติดต่อกลับ service เมื่อมีข้อมูลส่งมาถึง
 /topic เป็นทรัพยากรที่เก็บข้อมูล topic และ service ซ่ึง subscribe กับ topic ใน
ระบบ การ subscribe topic กับ message bus จะท าผ่าน URL path
/{topic_name}/subscribers โดย topic_name เป็นชื่อของ topic ที่ service ต้องการ subscribe
จะไม่มีการส่งข้อมูล JSON ส าหรับการ subscribe topic
 /message เป็นทรัพยากรที่ใช้ในการส่งข้อมูลกันระหว่าง service โดยรูปแบบของ
การส่งข้อมูลมี 3 รูปแบบด้วยกันคือ request-response (/reqRes), publish-subscribe (/pubSub)
และ notification (/noti) รูปแบบข้อมูลที่ใช้ในการสื่อสารคือ JSON โดยรูปแบบการติดต่อสื่อสารของ
message bus ถูกเลือกมาจาก รูปแบบการติดต่อสื่อสารระหว่าง service ใน microservices ที่มี 2
ลักษณะส าคัญ (Richardson, 2015) ดังต่อไปนี้ 1) รูปแบบการเชื่อมต่อของ client-server เป็นแบบ
one-to-one หรือ one-to-many 2) ลักษณะการส่งข้อมูลเป็นแบบ synchronous หรือ
asynchronous โดยจากลักษณะการติดต่อสื่อสารที่กล่าวมา ท าให้เกิดรูปแบบการติดต่อสื่อสารตาม
ตารางที่ 3.1 ซึ่งเป็นรูปแบบการติดต่อสื่อสารของงานวิจัยชิ้นนี้

24

ตารางที ่3.1 รูปแบบการติดต่อสื่อสารโดยแบ่งตามลักษณะการติดต่อสื่อสาร

 Synchronous Asynchronous

One-to-one Request/response Notification
One-to-many X Publish/subscribe

 จากตารางจะเห็นได้ว่าการสื่อสารแบบ one-to-many และ synchronous ไม่มี

รูปการส่งข้อมูลเพราะผู้ส่งและผู้รับไม่รู้จักกัน จึงท าให้ผู้รับข้อมูลไม่สามารถท่ีจะส่งผลลัพธ์กลับไปยังผู้
ส่งไม่ได้ เมื่อท างานเสร็จแล้ว ท าให้รูปแบบการส่งข้อมูลที่มีลักษณะเช่นนี้เป็นไปไม่ได้ ในขณะที่รูปแบบ
การติดต่อสื่อสารที่เป็นไปได้ มีลักษณะของการไหลของข้อมูลตามรูปที่ 3.5

รูปที่ 3.5 รูปแบบการส่งข้อมูลในระบบการติดต่อสื่อสาร

3.1.2 Load balancer

 Load balancer เป็นส่วนประกอบที่ช่วยในการกระจายข้อมูลไปยัง service โดย
อาศัย namespace ซึ่งมี service ประเภทเดียวกันอยู่หลาย node หรืออีกนัยหนึ่ง service ที่เป็น
ชนิดเดียวกันจะอยู่ใน namespace เดียวกัน เพ่ือท าให้การกระจายข้อมูลเป็นไปอย่างรวดเร็วและ
สามารถตอบสนองได้กับระบบหลายรูปแบบ round-robin จึงถูกเลือกมาเป็น algorithm ที่ใช้ในการ
กระจายข้อมูล เพราะ round-robin นั้นมีลักษณะที่ง่ายและรวดเร็ว เนื่องจากมีความซับซ้อนต่ า

3.1.3 Messaging
 Messaging เป็นส่วนประกอบที่ดูแลเรื่องการส่งข้อมูลระหว่าง service โดย
protocol ที่ใช้ ในการสื่อสารคือ TCP เพราะ TCP ไม่มี overhead ในการส่งข้อมูลเมื่อเปรียบเทียบ
กับ HTTP protocol และรองรับการส่งข้อมูลในรูปแบบ asynchronous และ broadcast ได้ดีกว่า
protocol ตัวเลือกอ่ืน โดยข้อมูลจะแบ่งออกเป็นสองส่วนคือ header และ body ใน header จะเก็บ
ข้อมูลที่เป็นลักษณะของการส่งข้อมูล ยกตัวอย่างเช่น การส่งข้อมูลแบบเป็น synchronous หรือ
asynchronous เป็นต้น ในขณะที่ body เก็บข้อมูลที่ service ต้องการส่งไปยัง service เป้าหมาย ใน
กรณีการส่งข้อมูลแบบ asynchronous เมื่อ message bus ได้รับข้อมูลจาก message bus ต้นทาง

25

แล้วจะตอบกลับทันที่ว่าได้รับข้อมูลแล้วในขณะที่ synchronous จะรอข้อมูลตอบกลับจาก service
แล้วจึงส่งข้อมูลกลับไป

3.1.4 Service discovery
 Service discovery เป็นส่วนประกอบที่ท าหน้าจัดหาที่อยู่และข้อมูลของ service
โดยใช้ Serf เป็นเครื่องมือในการจัดการข้อมูลของ service ซ่ึง serf ใช้ SWIM protocol เป็น
protocol ในการจัดการสมาชิกแบบ decentralized ดังได้กล่าวไว้แล้วในบทที่ 2 โดย SWIM
protocol นั้นเร็วกว่า DHT Protocol ที่ Iris ใช้ในแง่ของจ านวน hops ที่ต้องใช้ในการส่งข้อมูล

3.2 ขั้นตอนการท างานของระบบ
 ระบบ distributed system สถานการณ์ปรกติที่เกิดขึ้นกับระบบมีดังต่อไปนี้ เริ่มจากสร้าง
ระบบจากนั้น service จ านวนหนึ่งจะถูกเพ่ิมเข้ามาในระบบ เมื่อมี service ในระบบจะเกิดการสื่อสาร
ระหว่าง service และท างานไประยะหนึ่งระบบจะถูกเปลี่ยนแปลงหรือแก้ไขเพ่ือเพ่ิมความสามารถ ท า
ให้เกิดการเปลี่ยนหรือแก้ไข service ในขณะที่ระบบ distributed system มีโอกาสที่ service จะ
หยุดท างานหรือ network มีปัญหา ซึ่งจะส่งผลกระทบท าให้ระบบอาจหยุดการท างาน จาก
สถานการณ์ที่พบได้ทั่วไปสามารถสรุปเป็นขั้นตอนการท างานได้ 4 ประเภทดังต่อไปนี้

1. ขั้นตอนการเพ่ิม service เข้ามาในระบบ
2. Communication ระหว่าง service
3. ขั้นตอนท าการอัพเดท service ใหม่เป็น version ใหม่
4. ขั้นตอนเมื่อ service หยุดท างาน
3.2.1 เริ่มเพิ่ม service เข้ามาในระบบ
 การสื่อสารผ่านระบบ message bus ของงานวิจัยนี้ service ที่ต้องการใช้ระบบ

message bus จ าเป็นต้องลงทะเบียนกับ message bus พร้อมกับระบุ namespace ที่ service
ต้องการรับข้อมูล เพ่ือจะสามารถสื่อสารกับ service อ่ืนได้ โดยวิธีการลงทะเบียนคือ service ส่ง
HTTP request มายัง message bug โดยผ่าน public API ซึ่งควบคุมรูปแบบการติดต่อสื่อสารกลาง
ระหว่าง service ดังที่ได้กล่าวแล้วในบทที่ 3.1 โดยมีรูปแบบการส่งดังรูปที่ 3.6

26

รูปที่ 3.6 รูปแบบการลงทะเบียนบน message bus

 เมื่อ service ท าการลงทะเบียนกับ message bus ผ่านทาง public API จากนั้นจะ
ส่งให้ service discovery ซึ่งท าหน้าที่บริหาร service ทั้งหมดในระบบ ที่กล่าวในบทที่ 3.1 กระจาย
ข้อมูลของ service ที่ลงทะเบียน ไปยัง message bus อ่ืนในระบบ และท าการส่งผลลัพธ์ให้กับ
service โดยดูได้จากรูปที่ 3.7

รูปที่ 3.7 ขั้นตอนลงทะเบียน service

3.2.2 เกิด communication ระหว่าง service
3.2.2.1 Request/response

Request/response เป็นรูปแบบการติดต่อสื่อสารที่มีผู้ส่งและผู้รับอย่าง
ละหนึ่งเท่านั้น โดยการส่งข้อมูลจะเป็นแบบ synchronous คือผู้ส่งจะรอให้ผู้รับข้อมูลตอบกลับมาจึง
จะสามารถไปท างานอ่ืนได้ ท าให้เกิดการปิดกั้นการท างานของผู้ส่งระหว่างรอข้อมูล ตัวอย่างของ

Method: PUT

URL: http://{message_bus_address}/namspace

Request body: {

 name: {namespace}

 contactPoint: {contact_point_path}

}

message_bus_address = URL ที่ใช้ในการติดต่อ message bus ค่าตั้งต้น คือ 127.0.0.1:21001

namespace = ชื่อของ namespace ที่ service ต้องการลงทะเบียน

contact_point_path = URL ที่ message bus จะส่งข้อมูลให้เมื่อ service ถูกเลือกจาก load
balance ให้ท าการประมวลผลข้อมูล

27

รูปแบบการส่งชนิดนี้คือ HTTP ที่เป็นรูปแบบการสื่อสารของระบบ internet โดยการท างานจะเกิดขึ้น
สองฝั่ง ทั้งผู้รับและผู้ส่ง ฝั่งผู้รับท างานเริ่มจาก service ที่ต้องการส่งข้อมูล จะส่ง HTTP request ไป
ที่ public API ของ message bus โดยมีรูปแบบการส่งดังรูปที่ 3.8

เมื่อ public API ได้รับข้อมูล จะขอรายชื่อ service ทั้งหมดใน
namespace จาก service discovery เพ่ือส่งข้อมูลต่อไปยัง load balance ที่ท าหน้าที่เลือก
service ใน namespace ที่เหมาะสมจะรับข้อมูล หลังจากได้ service เป้าหมายจาก load balance
แล้ว public API จะร้องขอไปยัง messaging module ให้ส่งข้อมูลไปยัง service เป้าหมาย เมื่อ
messaging module ได้รับค าร้องขอ จะส่งข้อมูลไปยัง service เป้าหมาย และรอการตอบกลับของ
service เป้าหมาย เมื่อได้รับการตอบกลับ จะส่งผลลัพธ์กลับไปยัง service ที่ส่งข้อมูล ผ่านทาง HTTP
response ซึ่งถือเป็นการจบการท างาน

รูปที่ 3.8 รูปแบบการส่งข้อมูลแบบ request/response ผ่านทาง public API

 ฝั่งผู้รับเมื่อ message bus ของ service เป้าหมายได้รับข้อมูลจากฝั่งผู้ส่ง
แล้ว จะส่งข้อมูลต่อไปยัง public API เพ่ือติดต่อไปยัง service เป้าหมายตาม contactPoint ที่ได้ระบุ
ไว้ในขั้นตอนการลงทะเบียน เมื่อ service ตอบกลับมา public API จะส่งผลลัพธ์กลับไปยัง messing
module เพ่ือตอบกลับฝั่งผู้ส่งข้อมูล โดยขั้นตอนการท างานของ request/response ทั้งหมดจะ
เป็นไปตามรูปที่ 3.9

Method: PUT

URL: http://{message_bus_address}/message/reqRes/{namespace}

Request body: {message}

message_bus_address = URL ที่ใช้ในการติดต่อ message bus ค่าตั้งต้น คือ 127.0.0.1:21001

namespace = ชื่อของ namespace ที่ service ต้องการลงทะเบียน

message = ข้อมูลที่ต้องการส่งไปยัง service ที่อยู่ใน namespace เป้าหมาย

28

รูปที่ 3.9 ขั้นตอนการท างานลอง request/response

 3.2.2.2 Publish/subscribe
 Publish/subscribe เป็นรูปแบบการสื่อสารที่ผู้รับสามารถมีมากกว่าหนึ่ง

รูปแบบการส่งข้อมูลเป็นแบบ Asynchronous การส่งข้อมูลผู้ส่งจะระบุหัวข้อ (topic) มากับข้อมูล
ผู้รับที่ระบุรับข้อมูลที่มีหัวข้อตรงกับข้อมูล จะได้รับข้อมูลไปประมวลผลต่อ ด้วยวิธีนี้ผูร้ับและผู้ส่งจะ
ไม่ต้องรู้จักกัน ท าให้ไม่เกิดการผูกติดกันระหว่างผู้รับและผู้ส่ง โดยการท างานจะแบ่งออกเป็นสองฝั่ง
คือ publish และ subscribe โดยการท างานมีรายละเอียดดังต่อไปนี้

3.2.2.2.1 Publish
 Publish จะเป็นการกระจายข้อมูลไปยังทุก namespace ที ่ subscribe

หัวข้อที่ publisher ส่งข้อมูล Publish เริ่มจากการส่ง HTTP request ไปที่ public API ของ
message bus ด้วยรูปแบบในรูปที่ 3.10

รูปที่ 3.10 รูปแบบการ publish ข้อมูลผ่านทาง public API

Method: PUT

URL: http://{message_bus_address}/message/pubSub/{topic_name}

Request body: {message}

message_bus_address = URL ที่ใช้ในการติดต่อ message bus ค่าตั้งต้น คือ 127.0.0.1:21001

topic_name = ชื่อของหวัข้อที ่service ต้องการ subscribe

message = ข้อมูลที่ต้องการส่ง

29

 จากนั้น public API จะขอที่อยู่ service ใน namespace ทั้งหมดท่ี
subscribe หัวข้อที่จะส่งจาก service discovery และจะส่งต่อให้กับ load balance เพ่ือท าการเลือก
service ที่เหมาะสมในที่จะรับข้อมูล เมื่อได้รับที่อยู่ service ที่จะส่งทั้งหมด จึงส่งต่อให้กับ
messaging module ส่งข้อมูลกระจายไปยังเป้าหมายทั้งหมดแบบ request and acknowledge
response นั่นคือส่งข้อมูลไปแล้วเป้าหมายตอบกลับทันทีเมื่อได้รับข้อมูล โดยไม่รอให้ประมวลผล
ข้อมูลเสร็จก่อน โดยขั้นตอนทั้งหมดเป็นไปดังรูปที่ 3.11

รูปที่ 3.11 ขั้นตอนการ publish ข้อมูล

3.2.2.2.2 Subscribe
 Subscribe จะเป็นการ subscribe namespace ของ service กับหัวข้อ

ส่งผลให้ service ที่อยู่ใน namespace เดียวกันกับ service ที่ subscribe มีโอกาสได้รับข้อมูลของ
หัวข้อเช่นกัน การ subscribe โดยเริ่มจาก service ส่ง HTTP request ไปยัง public API ขอ
message bus เพ่ือขอ subscribe หัวข้อที่ต้องการรับข้อมูล โดยมีรูปแบบการส่งดังรูปที่ 3.12 ซ่ึง
message bus จะปฏิเสธการ subscribe กรณีท่ีหัวข้อยังไม่ถูกสร้างโดย publisher

รูปที่ 3.12 รูปแบบการ subscribe ผ่านทาง public API

Method: PUT

URL: http://{message_bus_address}/topic/{topic_name}/subscriber

Request body: {}

message_bus_address = URL ที่ใช้ในการติดต่อ message bus ค่าตั้งต้น คือ 127.0.0.1:21001

topic_name = ชื่อของหวัข้อที ่service ต้องการ subscribe

30

 เมื่อ public API ได้รับ request จาก service แล้วจะส่งข้อมูลไปยัง
service discovery เพ่ือกระจายข้อมูลการ subscribe ไป message bus อ่ืนในระบบ เมื่อ message
bus อ่ืนในระบบได้รับข้อมูล จากนั้นส่งผลลัพธ์การ subscribe ไปยัง service ผ่านทาง public API
ดังรูปที่ 3.13

รูปที่ 3.13 ขั้นตอนการ subscribe

3.2.2.3 Notification
 Notification หรือ request/asynchronous response เป็นรูปแบบที่มีผู้

ส่งและผู้รับอย่างละหนึ่งเหมือน request/response ต่างกันคือผู้ส่งจะไม่รอให้ผู้รับตอบกลับมาท าให้
จะไม่มีการปิดกั้นการท างานของผู้ส่ง ซึ่งมีรายละเอียดดังต่อไปนี้

รูปที่ 3.14 รูปแบบการส่ง request ของ notification

Method: PUT

URL: http://{message_bus_address}/message/noti/{namespace}

Request body: {message}

message_bus_address = URL ที่ใช้ในการติดต่อ message bus ค่าตั้งต้น คือ 127.0.0.1:21001

topic_name = ชื่อของหวัข้อที ่service ต้องการ subscribe

message = ข้อมูลที่ต้องการส่ง

31

 Service จะส่ง HTTP request ไปยัง public API ของ message bus โดย
มีรูปแบบการส่งดังรูปที่ 3.14 เมื่อ public API ได้รับ request จะขอที่อยู่ของ service ใน
namespace ทั้งหมดจาก service discovery แล้วส่งต่อให้ load balance จัดการเลือก service
เป้าหมาย จากนั้น public API จะเรียก messaging module ให้ท าการส่งข้อมูลแบบ request and
response acknowledge ไปยัง message bus เป้าหมาย เมื่อได้รับการตอบกลับ จะส่งผลลัพธ์การ
ส่งไปยังผู้ส่งผ่านทาง public API ในขณะที่ message bus เป้าหมายจะส่งมูลไปยัง service ผ่านทาง
public API โดยใช้ contactPoint ที่ได้จากตอนลงทะเบียน service โดยขั้นตอนทั้งหมดเป็นไปดังรูป
ที่ 3.15

รูปที่ 3.15 ขั้นตอนการ request ใน notification

3.2.3 ขั้นตอนท าการอัพเดท service ใหม่เป็น version ใหม่
 การเปลี่ยนแปลง service ในงานวิจัยชิ้นนี้นั้น สามารถท าได้โดยการถอด service

เก่าออกแล้วใส่ service ใหม่เข้าไปแทนดังรูปที่ 3.16 แต่สิ่งที่ผู้ใช้ควรระวังคือ ล าดับขั้นตอนของการ
เปลี่ยน service มีผลกระทบที่แตกต่างกันออกไป โดยขั้นตอนการเปลี่ยน service สามารถท าได้สอง
รูปแบบคือ ถอด service เก่าออกแล้วใส่ service ใหม่เข้ามา และการถอด service เก่าออกก่อนจะ
ท าให้ service ที่ให้บริการอยู่ใช้งานไม่ได้ชั่วขณะ ในกรณีระบบมีการรองรับที่ดีส าหรับเหตุการณ์ที่
service อยู่ท างานชั่วคราว วิธีนี้จะเหมาะที่จะใช้ในการอัพเดท service ส่วนอีกวิธีคือการ เพ่ิม
service ใหม่เข้ามาก่อนแล้วจึงถอด service เก่า วิธีนี้จะท าให้บริการของ service ไม่หยุดชะงัก แต่
ข้อควรระวังคือ เรื่อง consistency ของข้อมูลใน service ซึ่งการใช้งาน service ที่ต่าง version เพ่ิม
กันอาจท าให้ข้อมูลในฐานข้อมูลไม่ตรงกัน ซึ่งอาจจะส่งผลเสียต่อระบบ

32

รูปที่ 3.16 วิธีการอัพเกรด service ในระบบ

 โดยการเพ่ิม service เข้ามาในระบบนั้นได้พูดถึงในบทที่ 3.2.1 แล้ว ดังนั้นในบทนี้จะ
พูดถึงส่วนที่เหลือคือการถอด service ออกจากระบบ ซึ่งจะเริ่มจาก service ส่ง HTTP request ไป
ยัง message bus ผ่านทาง public API โดยมีรูปแบบการส่งดังรูป 3.17

รูปที่ 3.17 รูปแบบการถอด service ออกจากระบบ

 เมื่อ public API ได้รับ request จะส่งข้อมูลการถอด service ออกจากระบบไปที่

service discovery เพ่ือกระจายข้อมูลไปยังทุก message bus ในระบบเพ่ือท าการถอด service ออก
จากข้อมูลของ message bus จากนั้นก็ส่งผลลัพธ์กลับไปยัง service โดยขั้นตอนเป็นไปดังรูปที่ 3.18

รูปที่ 3.18 ขั้นตอนการถอด service ออกจากระบบ

Method: DELETE

URL: http://{message_bus_address}/namspace/{namespace}

message_bus_address = URL ที่ใช้ในการติดต่อ message bus ค่าตั้งต้น คือ 127.0.0.1:21001

namespace = ชื่อของ namespace ที่ service ต้องการลงทะเบียน

33

3.2.4 ขั้นตอนเม่ือ service หยุดท างาน
 งานวิจัยชิ้นนี้ message bus ซึ่งเป็นเครื่องมือที่ใช้สื่อสารกันระหว่าง service อยู่ใน

รูปแบบ decentralized นั้นจะมี message bus หลายตัวที่หน้าที่เหมือนกันสามารถทดแทนกันได้
อาศัยอยู่เป็น sidekick process ของ service ซ่ึง message bus แต่ละตัวจะรู้จักกันได้ต้องอาศัย
service discovery ซึ่งในงานวิจัยชิ้นนี้เลือกใช้ Serf ที่ใช้ SWIM protocol เป็นเครื่องมือที่ช่วยในการ
จัดการสมาชิกในกลุ่ม cluster และตรวจหาส่วนที่หยุดท างานของสมาชิกกลุ่ม ซึ่งใน SWIM protocol
อาศัยการส่งข้อมูลขนาดเล็กเป็นช่วงเวลา ด้วย UDP ไปยังสมาชิกท่ีสุ่มขึ้นมา ถ้าไม่ได้รับการตอบกลับ
ในระยะเวลาที่ก าหนด จะกระจายข้อมูลของสมาชิกที่หยุดท างาน ด้วยวิธี piggyback message ซ่ึง
เป็นการแนบข้อมูลไปกับการส่งข้อมูลที่ใช้ในการเช็คว่าสมาชิกยังท างานอยู่ เมื่อสมาชิกได้รับข้อมูลจะ
ท าการลบข้อมูลของสมาชิกท่ีล้มเหลวออก และส่งข้อมูลต่อไปด้วย piggyback message จนในที่สุด
ทุกสมาชิกได้รับข้อมูลครบ ดังรูปที่ 3.19

รูปที่ 3.19 ขั้นตอนการตรวจหา service ที่ล้มเหลว

34

บทที่ 4
ผลการวิจัยและอภิปรายผล

 เพ่ือทดสอบความถูกต้องของงานวิจัย งานวิจัยนี้จะท าการทดสอบระบบ โดยแบ่งออกเป็น
สามด้านคือ ความสามารถในการรับรองระบบในรูปแบบการใช้งานทั่วไป ระดับการใช้ทรัพยากรของ
message bus และประสิทธิภาพของการส่งข้อมูล

4.1 ความสามารถในการรับรองระบบในรูปแบบการใช้งานทั่วไป
 การทดสอบความสามารถในการรับรองระบบ จะท าการจ าลองตัวอย่างระบบที่มีอยู่จริงใน
ปัจจุบัน เพ่ือแสดงให้เห็นว่า message bus สามารถใช้ในระบบทั่วไปได้จริง ระบบที่งานวิจัยชิ้นนี้เลือก
ขึน้มาทดสอบคือ ระบบ e-commerce เพราะเป็นระบบที่เป็นที่รู้จักกันเป็นอย่างดี สามารถเข้าใจได้
ง่าย โดยระบบจ าลองจะประกอบไปด้วย service ที่สัมพันธ์กัน ดังรูปที่ 4.1 ในแต่ละ service ท า
หน้าที่ดังต่อไปนี้

รูปที่ 4.1 service ในระบบจ าลอง

 Gateway ท าหน้าที่เป็นจุดที่ระบบภายนอกใช้ในการติดต่อกับระบบภายใน โดย gateway
จะท าหน้าที่รับค าขอจากระบบภายนอก จากนั้นจะติดต่อขอข้อมูลไปยัง service อ่ืนในระบบและ
รวบรวมข้อมูลเพื่อท าการส่งกลับไปยังระบบภายนอกที่ร้องขอข้อมูล โดย gateway ได้จัดเตรียม
interface ที่ใช้ในการดูข้อมูลของระบบซึ่งอยู่ในรูปแบบเว็บไซต์ ดังตัวอย่างในรูปที่ 4.2 โดยข้อมูลที่
gateway จัดเตรียมไว้มีดังต่อไปนี้

35

 ข้อมูลสถานะของ node ทั้งหมดในระบบ

 ข้อมูลของผู้ใช้งานทั้งหมดในระบบ

 ข้อมูลของสินค้าท้ังหมดในระบบ

 ข้อมูลของเหตุการณ์ที่เกิดขึ้นในระบบ

 ข้อมูลของระบบ search และ analysis

รูปที่ 4.2 ตัวอยา่งของ interface ของ gateway

 รูปแบบการสื่อสารที่ gateway ใช้ติดต่อกับ service ทั้งหมดคือ request/response
เนื่องจาก gateway ต้องการข้อมูลตอบกลับจาก service เป้าหมายเพื่อส่งข้อมูลผลลัพธ์กลับไปยัง
ระบบภายนอก
 Authen ท าหน้าที่จัดการข้อมูลที่เกี่ยวกับ authorization และ authentication ยกตัวอย่าง
เช่น เพ่ิมผู้ใช้งานที่มีสิทธิ์เข้าสู่ระบบ ตรวจสอบสิทธิ์ของผู้ใช้งาน โดยทั้งหมดนี้จะให้บริการผ่านทางการ
ติดต่อสื่อสารแบบ request/response
 User ท าหน้าที่บริหารจัดการข้อมูลของผู้ใช้งานทั้งหมดในระบบ โดยจะให้บริการผ่านการ
ติดต่อสื่อสารแบบ request/response user จะมีการ publish ข้อมูลที่เก่ียวข้องกับการจัดการ user
ยกตัวอย่างเช่น การสร้าง user และการลบ user เพ่ือกระจายข้อมูลให้กับระบบที่ต้องการ ดังจะเห็น
ได้จากรูปที่ 4.1 search และ analysis ท าการ subscribe ข้อมูลจาก user เพ่ือน าข้อมูลไปใช้ในระบบ
 Store ท าหน้าที่บริหารจัดการสินค้าทั้งหมดในระบบ โดยให้บริการผ่านการติดต่อสื่อสารแบบ
request/response store จะมีการกระจายข้อมูลที่เกี่ยวข้องกับการจัดการสินค้าในระบบผ่านการ
ติดต่อสื่อสารแบบ publish/subscribe ยกตัวอย่างเช่น เพ่ิมสินค้าเข้ามาใหม่ ท าการลบสินค้า โดย
service ที ่subscribe กับ store มีอยู่สอง service คือ search และ analysis

36

 Logging ท าหน้าที่จัดเก็บข้อมูลเหตุการณ์ที่เกิดขึ้นในระบบตัวอย่างเช่น ข้อผิดพลาดในระบบ
ข้อมูลของผู้ใช้ที่ท าการ login เข้าระบบ โดย logging จะได้รับข้อมูลเหล่าที่จาก service ในระบบผ่าน
ทางการติดต่อสื่อสารแบบ notification เพราะข้อมูลเหล่านี้ไม่ต้องการการตอบกลับแต่ต้องการความ
รวดเร็วในการติดต่อสื่อสาร
 Search ท าหน้าที่ให้บริการค้นหาข้อมูลแบบ full-text search ทั้งระบบโดยข้อมูลจะมาจาก
การ subscribe topic ของ service user และ store โดย search จะให้บริการค้นหาข้อมูลผ่าน
ทางการสื่อสารแบบ request/response
 Analysis ท าหน้าที่จัดเก็บข้อมูลการใช้งานของผู้ใช้ในระบบ ยกตัวอย่างเช่น จ านวน user ที่
เข้ามาในระบบ ข้อมูลของ user ในระบบและข้อมูลของสินค้าในระบบ เพ่ือแปลงเป็นข้อมูลที่เป็น
ประโยชน์ในเชิงธุรกิจ โดยข้อมูลจะได้รับมาจากการ subscribe topic ของ service user และ store
ข้อมูลที่ถูกวิเคราะห์แล้วจะถูกให้บริการผ่านทางการสื่อสารแบบ request/response
 การสร้างระบบจ าลอง งานวิจัยชิ้นนี้ได้เลือกใช้เครื่องมือดังต่อไปนี้เป็นตัวช่วยในการสร้าง
ระบบจ าลอง ระบบจ าลองถูกสร้างข้ึนจากภาษา Golang และใช้ docker เป็นเครื่องมือในการจ าลอง
คอมพิวเตอร์หลายเครื่องขึ้นมาบนเครื่องเดียว และเพ่ือให้ระบบสามารถสร้างขึ้นใหม่ได้ง่าย สะดวกต่อ
การทดลอง docker-compose จึงถูกน ามาใช้เพ่ือเป็นเครื่องมือในการท า automation system โดย
docker-compose จะสร้าง service ทั้งหมดตามที่ระบุใน docker-compose file และใช้ docker
network จ าลอง virtual network ส าหรับ service โดย containers ทั้งหมดจะถูกแจกจ่าย IP ให้
อยู่ใน CIDR 173.17.0.0:24 ฐานข้อมูลที่ service ทั้งหมดใช้คือ sqlite ระบบทั้งหมดสามารถถูกสร้าง
จากเริ่มต้นจนเสร็จสมบูรณ์ด้วยการใช้ Makefile โดย source code ทั้งหมดได้ถูกน าขึ้นไปวางบน
github โดยสามารถเข้าไปได้ที่ URL https://github.com/soulski/dmp-scenario
 การทดสอบความถูกต้องในระบบ เราได้ท าการทดสอบสองเรื่องคือ ความถูกต้องในการส่ง
ข้อมูลและความสามารถในการจัดการเมื่อเกิดความล้มเหลวในระบบ ในการตรวจสอบความถูกต้อง
ของการส่งข้อมูลนั้น เราจะท าการทดสอบการส่งข้อมูลทั้งสามรูปแบบดังตารางที่ 4.1

https://github.com/soulski/dmp-scenario

37

ตารางที ่4.1 วิธีการทดสอบความถูกตอ้งของการส่งข้อมูลของ message bus

รูปแบบการส่งข้อมูล ทดลอง ผลลัพธ์

Request/response ส่งค าสั่งไปยัง gateway คือท างาน
ในระบบ

Gateway จะส่งข้อมูลไปยังระบบ
ปลายทางได้อย่างถูกต้อง

Publish/subscribe สั่ง user ท าการสร้างข้อมูล
ผู้ใช้งานในระบบ

User ท าการ publish ข้อมูลไปยัง
subscriber ซึ่งในท่ีนี้คือ Search,
Analyze

Publish/subscribe สั่ง store ท าการสร้างข้อมูลสินค้า Store ท าการ publish ข้อมูลไป
ยัง subscriber ซึ่งในท่ีนี้คือ
Search, Analyze

Notification ท าการส่งข้อมูล login ที่ไม่มี
ถูกต้อง

Authen ท าการส่งข้อมูลแบบ
notification ไปยัง Logging

Notification ท าการส่งข้อมูลในการสร้าง user
ที่ไม่ถูกต้อง

User ท าการส่งข้อมูล user ด้วย
notification ไปยัง Logging

Notification ท าการส่งข้อมูลในการสร้าง store
ที่ไม่ถูกต้อง

Store ท าการส่งข้อมูลสินค้าด้วย
notification ไปยัง Logging

 ระบบ Gateway จะมีหน้าแสดงข้อมูลของระบบทั้งหมดอยู่ เพ่ือใช้ในการตรวจสอบข้อมูล
ผลลัพธ์ที่ได้จากการทดลองคือทุกกรณีสามารถท างานได้อย่างถูกต้อง ด้านความสามารถในการจัดการ
เมื่อเกิดความล้มเหลวในระบบนั้น จะท าการปิด docker ของ service แล้วท าการเรียกขอดูข้อมูลของ
namespace ที่ service ลงทะเบียนว่ายังมี service อยู่หรือไม่ อีกท้ังยังท าการทดลองด้วยการส่ง
ข้อมูลไปยัง namespace ที่ service ลงทะเบียนซึ่งผลลัพธ์คือ ระบบสามารถแสดงข้อมูลของ
namespace ที่ไม่มี service ได้อย่างถูกต้อง และระบบยังสามารถส่งข้อมูลไปยัง namespace ที่
service ถูกปิดได้อย่างถูกต้อง
 จากที่กล่าวมา จะเห็นได้ว่าระบบจ าลองสามารถท างานได้อย่างถูกต้อง แม่นย า มีรูปแบบการ
ส่งข้อมูลที่เพียงพอต่อความต้องการของระบบทั่วไป จึงแสดงให้เห็นว่า message bus สามารถ
น าไปใช้งานกับระบบทั่วไปได้
4.2 ระดับการใช้ทรัพยากรของ message bus
 เพ่ือทดสอบความเหมาะสมในการท างานในระบบขนาดใหญ่ เราจึงท าการออกแบบการ
ทดสอบด้วยการสร้าง docker-compose file ที่ใช้เพื่อท าการสร้าง docker ที่มี message bus

38

ท างานอยู่ รอบละ 10 containers โดย message bus จะมีการตั้งค่าให้เข้ากลุ่ม cluster โดยร้องขอ
ไปที่ message bus กลุ่มแรกที่ถูกสร้างดังรูปที่ 4.3

รูปที่ 4.3 วิธกีารทดลองการใช้ทรัพยากรของ message bus

 การทดลองจะสั่งให้สร้าง docker จาก docker-compose ทั้งหมด 4 รอบ โดยแต่ละรอบจะ
มีการวัด CPU, memory, network i/o และ network ที่ใช้เพื่อเข้าร่วม cluster ของ message
bus ที่ใช้ในการท างาน ผลลัพธ์ที่ได้ออกมาดังรูปที่ 4.3, 4.4, 4.5, 4.6

รูปที่ 4.4 อัตราการใช ้CPU ของ message bus

39

รูปที่ 4.5 อัตราการใช ้Memory ของ message bus

รูปที่ 4.6 อัตราการใช ้Network เพื่อเข้าร่วม cluster ของ message bus

รูปที่ 4.7 อัตราการใช ้Network I/O ของ message bus

40

 จากกราฟแสดงให้เห็นว่า message bus ใช้ CPU เพ่ิง 0.1% ในอัตราคงท่ี แต่ความจริงแล้ว
ยังมีการเพ่ิมของการใช้งาน CPU อยู่ แต่เป็นอัตราที่ต่ ามาก ส่วน memory กราฟออกมามีลักษณะเป็น
ขั้นบันได ซึ่งการจากเครื่องมือที่ใช้ในการวัดอัตราการใช้งานพื้นที่ memory นั้นมีหน่วยเป็น
megabyte แต่อัตราการเพ่ิมของการใช้พื้นที่ memory นั้น มีหน่วยเพียง kilobyte ท าให้อัตราการ
เพ่ิมของกราฟจะมีลักษณะเป็นช่วง จากที่กล่าวมาเห็นได้ว่าจ านวน node ใน cluster นั้นส่งผลเพียง
เล็กน้อย ต่ออัตราการใช้งานพ้ืนที่ memory และมีอัตราการเพิ่มขึ้นแบบ linear ในขณะที่ network
ที่ใช้ในการเข้าร่วม cluster และ network I/O เพ่ิมข้ึนเป็นแบบ linear ซึ่งเป็นเพราะเมื่อจ านวน
node เพ่ิมขึ้นจ านวน network ที่ต้องใช้ในการสื่อสารเพ่ือหา node ที่ล้มเหลวก็มากขึ้น แต่ขนาด
network I/O ที่ใช้ก็ยังอยู่ในอัตราท่ีไม่ได้สูงมากจนเกินไป โดยจากกราฟทั้งหมดแสดงให้เห็นว่า
message bus มีอัตราการใช้งานทรัพยากรบนเครื่องเมื่อจ านวน node เพ่ิมขึ้นเพียงเล็กน้อย ท าให้
สามารถใช้งานกับระบบที่มีขนาดเล็กถึงกลางหรือแม้กระทั้งขนาดใหญ่ได้เป็นอย่างดี

4.3 ประสิทธิภาพของการส่งข้อมูล
 เพ่ือทดสอบประสิทธิภาพการส่งข้อมูลระหว่าง service ด้วย message bus เราจึงท าการ
ทดสอบด้วยการเปรียบเทียบกับเครื่องมือที่นิยมใช้ในการสื่อสารระหว่าง service ใน microservices
2 ชนิด นั้นคือ HTTP และ message queue โดย message queue เราจะใช้ RabbitMQ ซึ่งเป็น
message queue ที่ได้รับความนิยม โดยวิธีการทดสอบนั้นจะเริ่มด้วยการสร้าง server ส าหรับรับ
ข้อมูลจากท้ัง HTTP, RabbitMQ และ message bus และตอบกลับ จากนั้นสร้าง client ที่ใช้ในการ
ส่งข้อมูลโดยจะวัดประสิทธิภาพของการส่งข้อมูลที่ฝั่ง client ทั้งหมด รูปแบบของการทดสอบเป็นดัง
รูปที่ 4.7

รูปที่ 4.8 โครงสร้างการเปรียบเทียบประสิทธิภาพการส่งข้อมูล

41

 ทุกรูปแบบการส่งข้อมูล client จะอยู่บนเครื่องคอมพิวเตอร์เดียวกันและ server จะอยู่ที่อีก
เครือ่งคอมพิวเตอร์หนึ่ง โดยคอมพิวเตอร์จะท าการเชื่อมต่อกันผ่าน router ยกเว้น RabbitMQ
เนื่องจาก message queue เป็นระบบที่มีการเชื่อมต่อ 3 ฝั่ง ดังนั้นเพื่อจ าลองให้เหมือนระบบจริง
client และ server จึงอยู่บนเครื่องเดียวกัน โดยมี RabbitMQ อยู่อีกเครื่อง โดยจะทดสอบด้วยการส่ง
ข้อมูลจาก client ไปยัง server แบบ synchronous จ านวน 1000 requests และเริ่มวัดเวลาตั้งแต่
ส่ง request แรกถึง request สุดท้าย จนได้รับผลลัพธ์กลับมา ผลลัพธ์ที่ได้เป็นไปตามรูปที่ 4.8

รูปที่ 4.9 เปรียบเทียบระยะเวลาที่ใช้ในการส่งข้อมูลของ HTTP, message bus and rabbitmq

 จากกราฟแสดงให้เห็นว่า message bus ท าได้ไม่ดีเท่า HTTP ถึงแม้จะเกิดการส่งข้อมูลแค่ 1
communication ซึ่งอาจจะเกิดจาก overhead ที่มาจากการส่งข้อมูลระหว่าง process ของ
message bus และ service แต่สามารถส่งข้อมูลได้เร็วกว่า message queue ที่มีคุณสมบัติใกล้เคียง
กัน อีกท้ังอัตราการเพ่ิมของระยะเวลาที่ใช้ในการส่งข้อมูลเมื่อจ านวน network device ที่ข้อมูลต้อง
วิ่งผ่านในที่การทดลองนี้คือ 1 และ 2 ก็เพ่ิมน้อยกว่า ซึ่งเป็นเพราะเมื่อจ านวน communication มาก
ขึ้นจ านวน network device ที่ต้องวิ่งผ่านก็ย่อมมีมากข้ึน ท าให้ประสิทธิภาพในการส่งข้อมูลยิ่งต่ าลง
ดังที่เกิดกับ message bus แบบ Iris ที่ใช้ protocol DHT ในการส่งข้อมูลท าให้จะเกิด
communication hop log(n), n คือจ านวนของ node ทั้งหมดในระบบ (Szilagyi P, 2014) ส่งผล
ให้ประสิทธิภาพในการส่งข้อมูลของ Iris นั้นจะตกลงเมื่อมีจ านวน node ที่มากขึ้น ดั้งนั้น message
bus ในงานวิจัยนี้เป็นเครื่องมือที่เหมาะสมในการใช้งานกับระบบ microservices มากกว่า message
queue ในเชิงความเร็วของการส่งข้อมูล

42

บทที่ 5
สรุปผลการวิจัยและข้อเสนอแนะ

 ในปัจจุบัน microservices ซึ่งเป็น software architecture style ก าลังได้รับความนิยม
เนื่องจาก microservices ช่วยลด complexity ของระบบ ซึ่งเป็นปัญหาส าคัญในการพัฒนา
software โดย microservices จะท าการแบ่งระบบขนาดใหญ่ออกเป็น service ขนาดเล็กหลาย
service โดยแต่ละ service จะมีลักษณะเป็น self-container ดังนั้นการ deploy ระบบของแต่ละ
service จะท าแยกกัน ท าให้ระบบที่พัฒนาด้วย microservices รองรับต่อการเปลี่ยนแปลงที่บ่อยได้
ท าให้เหมาะกับกับระบบการพัฒนาแบบ agile ที่เน้นการเปลี่ยนแปลงระบบบ่อยเพ่ือให้ตรงกับความ
ต้องการของลูกค้า
 แต่อย่างไรก็ตามเม่ือ service มีลักษณะเป็น self-container ดังนั้น function call ระหว่าง
service ถูกเปลี่ยนมาเป็น remote call service ท าให้เกิดการผูกติดกันของ service ซึ่งจะส่งผลให้
ความยืดหยุ่นของระบบลดลง โดยก็ได้มีความพยายามในการแก้ไขด้วยการใช้ message queue ซึ่งจะ
เป็นตัวกลางในการติดต่อสื่อสาร ท าให้ทุกการติดต่อจะต้องผ่าน message queue ส่งผลให้
ประสิทธิภาพในการสื่อสารลดลง
 โดยงานวิจัยชิ้นนี้จึงน าเสนอ decentralized message bus ที่มุ่งเน้นไปที่การช่วยลดการผูก
ติดกันของ service และช่วยลด operational complexity ด้วยการใช้ service discovery
message bus มี architecture แบบ decentralized ไม่มีจุดศูนย์กลางในการติดต่อ แต่ละ node
สามารถท าหน้าที่แทนกันได้ โดย message bus จะอยู่ในรูปแบบ sidekick process ซึ่งจะอาศัยอยู่
ในเครื่องเดียวกับ service รูปแบบการสื่อสารใน message bus ได้ถูกจัดเตรียมไว้ให้ 3 รูปแบบคือ
request/response, publish/subscribe และ notification อีกท้ังช่วยสนับสนุนการเพิ่ม
scalability และ availability ในระบบให้ง่ายขึ้น ด้วยการจัดท า auto load-balancer ผ่านทาง
concept namespace ท าให้ผู้ใช้งานไม่ต้องท า manual configuration โดยจะการวัดความสามารถ
ในการท างานของ message bus ด้วยการใช้ message bus สร้างระบบจองลอง e-commerce และ
ตรวจสอบความถูกต้องของระบบ อีกท้ังยังตรวจความสามารถในการขยายตัวด้วยการวัดอัตราการใช้
ทรัพยากรเมื่อจ านวน message bus ในระบบเพ่ิมข้ึน สุดท้ายวัดประสิทธิภาพของการส่งข้อมูล ด้วย
การเปรียบเทียบกับเครื่องมือสื่อสารที่เป็นที่นิยมใน microservices อย่าง HTTP และ message
queue ซึ่งสามารถสรุปผลได้ดังนี้

43

5.1 ความสามารถในการท างาน
 จากการทดลองสร้างระบบจ าลอง e-commerce ด้วย message bus ซึ่งมีระบบรูปแบบการ
ใช้งานที่หลากหลาย ทั้งระบบการค้นหา ระบบสินค้า ระบบการติดตามผู้ใช้งาน และระบบการ
ตรวจจับความผิดปรกติของระบบ พบว่า message bus สามารถท างานได้อย่างถูกต้องทั้งในการส่ง
ข้อมูล การตรวจจับความล้มเหลวของ service ในส่วนการกระจายโหลดนั้นยังมีข้อจ ากัดในส่วนของ
ข้อมูลแต่ละ load-balance ไม่มีการเชื่อมต่อกันท าให้อาจจะเกิดการส่งข้อมูลไปยัง service เดียวซ้ า
กันได้ โดยลักษณะของ service ที่เหมาะสมกับ message bus ในงานวิจัยนี้คือ stateless service
เนื่องจากการท างานแบบกระจายของ message bus และคุณสมบัติของบริการใน microservices ที่
มีลักษณะแบบ isolate จึงท าให้การท า service ที่มีลักษณะ stateful จะไม่เหมาะกับ message bus
ในงานวิจัยชิ้นนี้ ซึ่งแสดงให้เห็นว่า message bus มีความสามารถในแง่ของการน าไปใช้งานในระบบ
ทั่วไปได้อย่างมีประสิทธิภาพ

5.2 ความสามารถในการขยายตัว
 จากผลการทดลองจะเห็นได้ว่าอัตราการใช้ทรัพยากรในระบบอย่างเช่น network I/O มีอัตรา
การเพ่ิมข้ึนเป็น linear ตามจ านวน node ที่เพ่ิมขึ้น ในขณะที่ CPU และ memory ก็ใช้เพียงเล็กน้อย
และเพ่ิมข้ึนน้อยมากเม่ือจ านวน node เพ่ิมข้ึน ซึ่งแสดงให้เห็นว่า message bus สามารถที่จะ
ขยายตัวได้ดี จ านวน node ในระบบส่งผลกระทบไม่มากนักกับประสิทธิภาพของการขยายตัวของ
ระบบ

5.3 ประสิทธิภาพของการสื่อสาร
 ในส่วนของประสิทธิภาพในการส่งข้อมูล เนื่องจากเกิด communication แค่ 1 hop ในการ
สื่อสารท าให้ message bus สามารถท างานได้ดีกว่า message queue ซึ่งจะเกิด communication
มากกว่า 1 hop แต่ก็ยังท างานได้ไม่ดีเท่า point-to-point communication อย่าง HTTP แต่อย่างไร
ก็ตาม message bus ก็มีคุณสมบัติที่มากกว่า HTTP

5.4 ข้อเสนอแนะในการท าวิจัยต่อไป
 เนื่องจากงานวิจัยชิ้นนี้มุ่งเน้นไปที่ระบบการสื่อสาร และการท า service discovery ท าให้ยัง
มีบางจุดที่ยังต้องการการปรับปรุงเพื่อให้ระบบสามารถท างานได้ดีข้ึน โดยจุดที่อาจจะเพ่ิมเติมได้มี
ดังต่อไปนี้

44

- รองรับการท างานบนระบบการสื่อสารแบบเชื่อมโยงระยะไกล ตัวอย่างเช่น WAN หรือ
Internet เนื่องจาก SWIM protocol ที่งานวิจัยนี้ใช้ในการท า failure detection ยังมี
จุดอ่อนอยู่ที่การท างานบนระบบการสื่อสารแบบ WAN หรอื Internet เนื่องจาก
protocol ที่ใช้ในการ detect failure เป็น UDP ซึ่งการท างานบนระบบสื่อสารทางไกล
มีโอกาสที่ข้อมูลจะสูญหายกลางทางสูง ท าให้อาจจะต้องการ protocol แบบ TCP ซ่ึง
สามารถท างานได้ดีกับระบบการสื่อสารแบบทางไกล แต่ก็ยังต้องท าให้ระบบการท า
failure detection ยังคง lightweight ไม่ท าให้ระบบการสื่อสารเกิด network
congestion หรืออีกทางเลือกหนึ่งคือท าระบบแบบ hybrid ระหว่าง decentralized
และ centralized เมื่อต้องการท า failure detection บนระบบ WAN หรือ internet
จะใช้ระบบแบบ centralized แทน

- รองรับการ upgrade service ให้ง่ายขึ้น โดยอาจจะใช้การท า alias namespace ของ
service ซ่ึง alias คือ namespace ที่ไม่ได้ผูกติดกับ service แต่จะผูกติดกับ
namespace ด้วยกันเองเมื่อ service ต้องการส่งข้อมูลมายัง alias namespace ระบบ
จะท าการขอ service จาก namespace ที่ alias ผูกติดอยู่ด้วย โดยสามารน ามาใช้ใน
การช่วยในการ upgrade service ได้โดยตัวอย่างเช่น alias namespace user ถูกผูก
กับ namespace user_v_1 เมื่อต้องการ upgrade service ผู้ดูแลระบบจะสร้าง
namespace user_v_2 เมื่อทุกอย่างเสร็จสิ้นจะผูก alias user เข้ากับ user_v_2 ท า
ให้การเปลี่ยน namespace เป็นไปได้อย่างราบรื่นขึ้น

- รองรับการ monitor service ทัง้ระบบในระดับที่ละเอียดขึ้น อาจจะสามารถท าได้เมื่อมี
การตอบกับการ ping จะแนบข้อมูลสถานะของ service เป้าหมายกลับไปด้วย เพื่อให้
message bus เก็บไว้ เมื่อเกิดการร้องขอข้อมูลของ service ทั้งหมด message bus
จะดึงเอาข้อมูลจากกลุ่ม message bus จ านวนหนึ่งมาเลือกข้อมูลที่ใหม่ที่สุดแล้ว
ส่งกลับไปยังระบบที่ต้องการ

45

รายการอ้างอิง
หนังสือและบทความในหนังสือ

Gregor H, Boboy W. Enterprise Integration Patterns. 1st ed. Wesley; 2003.

วิทยานิพนธ์

Stubbs J, Moreira W, Dooley R. Distributed Systems of Microservices Using Docker and

Serfnode. IWSG ‘7. 2015:34-39.
Toffetti G, Brunner S, Blochlinger M, Dudouet F, Edmonds A. An architecture for self-

managing microservices. AIMC ‘15. 2015:19-24
Szilagyi P. Iris: A decentralized approach to backend messaging middlewares. Computer

Science and Information Systems, 2014;(11)2:549–567.
Henry S, Kafura K. Software structure metrics based on information flow. IEEE,

Transactions on Software Engineering, 1982:510–518
McCabe T. A Complexity Measure. IEEE, Transactions on Software Engineering, 1976

Dec;SE-2(4):308-320
Das A, Gupta I, Motivala A. SWIM: Scalable Weakly-consistent Infection-style Process

Group Membership Protocol. DSN 2002. 2002:303-312
Fielding R. Architectural Styles and the Design of Network-based Software

Architectures. Doctoral dissertation, University of California, Irvine, 2000.

สื่ออิเล็กทรอนิกส์

Fowler M, Lewis J. Microservices [Internet]. Chicago: Martin Fowler; 2014 [updated 2014

March 25; cited 2016 Jan 16]. Available from:
http://martinfowler.com/articles/microservices.html.

Richardson C. Introduction to Microservices [Internet]. San Francisco: Nginx. 2015 May
- [cited 2016 Jan 16]. Available from: https://www.nginx.com/blog/introduction-
to-microservices/

46

Mason R. ESB or not to ESN Revisited [Internet]. San Francisco: MuleSoft. 2011 June -
[cited 2016 Jan 16]. Available from: http://blogs.mulesoft.com/dev/news-
dev/esb-or-not-to-esb-revisited-part-1/

Hoff T. Microservices – Not A Free Lunch [Internet]. C2015 - [cited 2016 Jan 16].
Available from: http://highscalability.com/blog/2014/4/8/microservices-not-a-
free-lunch.html

Betts M. The No. 1 Cause of IT Failure: Complexity [Internet]. 2009 Dec - [cited 2016
Jan 16]. Available from:
http://www.computerworld.com/article/2550521/enterprise-applications/the-
no--1-cause-of-it-failure--complexity.html

Charette R. Why Software Fails [Internet]. 2005 Sep - [cited 2005 Sep 2]. Available
from: http://spectrum.ieee.org/computing/software/why-software-fails

HashiCorp. Serf [Internet]. 2016 [cited 2016 Jan 30]. Available from:
https://www.serfdom Airbnb. Nerve [Internet]. GitHub, Inc; c2016 [cited 2016
Jan 30]. Available from: https://github.com/airbnb/nerve.io/

Igor S, Martin R. SmartStack: Service Discovery in the Cloud [Internet]. Airbnb, Inc; 2013
[cited 2016 Jan 30]. Available from: http://nerds.airbnb.com/smartstack-service-
discovery-cloud/

Airbnb. Nerve [Internet]. GitHub, Inc; c2016 [cited 2016 Jan 30]. Available from:
https://github.com/airbnb/nerve

Airbnb. Synapse [Internet]. GitHub, Inc; c2016 [cited 2016 Jan 30]. Available from:
https://github.com/airbnb/synapse

Netflix. Eureka [Internet]. GitHub, Inc; c2016 [cited 2016 Jan 30]. Available from:
https://github.com/Netflix/eureka

Apache. Zookeeper [internet]. The Apache Software Foundation; c2010-2016 [cited
2016 Jan 30]. Available from: https://zookeeper.apache.org/

CoreOS. etcd [Internet]. CoreOS, Inc; 2016 [cited 2016 Jan 30]. Available from
https://coreos.com/etcd/

47

 ประวัติผู้เขียน

ชื่อ นาย ภากร คูกรินทร์รัตน์
วันเดือนปีเกิด 20 เมษายน 2527
ต าแหน่ง Senior Software Developer บริษัท Agoda

Company Pte. Ltd

ผลงานทางวิชาการ

Pakorn Kookarinrat, Yaowadee Temtanapat. (2016). Design and Implementation of
a Decentralized Message Bus for Microservices. 2016 13th International Joint
Conference on Computer Science and Software Engineering (JCSSE). 13-15
July 2016

ประสบการณ์ท างาน 2559 – ปัจจุบัน Senior Software Developer

บริษัท Agoda Company Pte. Ltd
2554 – 2559 Senior Software Developer
บริษัท ShopSpot Pte. Ltd
2550 – 2553 Software Developer
บริษัท MFEC Company

