
 

 

3D INDOOR RECONSTRUCTION USING  

DEPTH-MAP-BASED SCENE COMPLEXITY ANALYSIS 

GUIDED KINECTFUSION 

 

 

 

BY 

 

SOMKIAT KHAMPHUEA 

 

 

 

A THESIS SUBMITTED IN PARTIAL FULFILLMENT OF  

THE REQUIREMENTS FOR THE DEGREE OF MASTER OF 

ENGINEERING IN INFORMATION AND COMMUNICATION 

TECHNOLOGY FOR EMBEDDED SYSTEMS 

SIRINDHORN INTERNATIONAL INSTITUTE OF TECHNOLOGY 

THAMMASAT UNIVERSITY 

ACADEMIC YEAR 2015 



3D INDOOR RECONSTRUCTION USING  

DEPTH-MAP-BASED SCENE COMPLEXITY ANALYSIS 

GUIDED KINECTFUSION 

 

 

 

 

 

BY 

 

 SOMKIAT KHAMPHUEA 

 

 

 

 

 

 

A THESIS SUBMITTED IN PARTIAL FULFILLMENT OF  

THE REQUIREMENTS FOR THE DEGREE OF MASTER OF 

ENGINEERING IN INFORMATION AND COMMUNICATION 

TECHNOLOGY FOR EMBEDDED SYSTEMS 

SIRINDHORN INTERNATIONAL INSTITUTE OF TECHNOLOGY 

THAMMASAT UNIVERSITY 

ACADEMIC YEAR 2015 





 

ii 

 

Acknowledgements 

 

I would like to express my sincere gratitude to Assoc. Prof. Toshiaki 

Kondo, the thesis advisor, for the innumerable support. He is the kindly advisor and 

one of the smartest people I know. This successful of this thesis comes from his 

insightful guidance and patient endurance since the day we met.  

 

I am very grateful to Asst. Prof. Itthisek Nilkamhang, the thesis co-advisor, 

for his excellence comment and encouragement. He has also provided helpful 

discussions about the research. 

 

Beside my advisor, I acknowledge my gratitude to Dr.Pished Bunnun, thesis 

committee from National Electronics and Computer Technology Center (NECTEC), 

and Prof. Sato Makoto, thesis committee from Tokyo Institute of Technology (Tokyo-

Tech) for their excellence comments and suggestions and for their thorough reading of 

this thesis.  

 

I am also grateful to my family, my mother, for giving me the opportunity 

to follow my dreams. She is the strongest woman in my heart. I want to thank my friends 

ICTES batch 5th for their useful information for this thesis. 

 

Finally, this research is financially supported by Thailand Advanced 

Institute of Science and Technology (TAIST), National Science and Technology 

Development Agency (NSTDA), Tokyo Institute of Technology, and Sirindhorn 

International Institute of Technology (SIIT), Thammasat University (TU). 



 

iii 

 

Abstract 

 

3D INDOOR RECONSTRUCTION USING  

DEPTH-MAP-BASED SCENE COMPLEXITY ANALYSIS 

 GUIDED KINECTFUSION 

 

by 

 

 

SOMKIAT KHAMPHUEA 

 

 

B.Eng., Thai-Nichi Institute of Technology, 2011 

 

 

This thesis presents a novel approach for 3D reconstruction based on 

KinectFusion. The iterative closest point algorithm (ICP) employed in KinectFusion 

works well when there are sufficient 3D features in a scene to be reconstructed. 

Conversely, it is difficult to reconstruct simple scenes with limited 3D features such as 

planar structures. We propose to use visual odometry (VO), in place of ICP, when only 

insufficient 3D features are available in a scene. Regardless of whether there are 

sufficient 3D features or not, VO works well as long as the scene contains sufficient 3D 

features such as textures and corner points. The proposed method then automatically 

selects ICP or VO, depending on the complexity of the scene. The complexity of the 

scene is evaluated with the magnitudes of the discontinuities in surface normal vectors 

in depth maps. Experimental results show that the proposed method outperforms the 

methods based on either ICP or VO alone. 

 

 

 

Keywords: 3D Reconstruction, KinectFusion, surface normal, scene complexity  



 

iv 

 

Table of Contents 

 

 

Chapter    Title  Page 

 

Signature Page i 

Acknowledgements ii 

Abstract iii 

Table of Contents iv 

List of Tables vi 

List of Figures vii 

 

        1        Introduction 1

  

1.1 Simultaneous localization and mapping 1 

1.2 Dense tracking and mapping 2 

1.3 Motivation and objectives 3 

1.4 Thesis outline 4 

 

2       KinectFusion Model 6 

 

2.1 Depth map conversion 6 

2.2 Camera tracking 7  

2.3 Volumetric integration 9  

2.4 Ray casting 12  

  

3       Methodology 14 

 

3.1 Scene complexity analysis 15  

3.1.1 Surface normal analysis 15  

3.1.2 Removing small gaps 17  

3.1.3 Discontinuities detection 17  

3.2 Camera pose estimation with switching strategy 18  



 

v 

 

4       Result and Discussion 21 

 

4.1 Hardware and software specification 21 

4.2 Datasets and benchmarks 21 

4.3 Depth-map-based scene complexity analysis 24 

4.3.1 Surface normal analysis 24 

4.3.2 Switching strategy 26 

4.3.3 Reconstruction results 28 

4.3.4 Quality of reconstructed results 35 

4.4 Drift-free and non-drift-free 35 

 

5        Conclusion 37 

 

References 38 

 

Publications 41 

  



 

vi 

 

List of Tables 

 

Tables  Page 

    4.1 Confusion matrix of scene analysis function using 8 datasets 26 

    4.2 Scene analysis performance using 8 datasets 26 

    4.3 Statistic result of reconstructed-point-cloud compared  

          with ground-truth mesh using CloudCompare tool. 34 

    4.4 Statistic result of absolute trajectory error in meters per second  

          for virtual living room environment dataset. 34 

 

 

 

 

 

 

 

 

 

 

 

 

  



 

vii 

 

List of Figures 

 

Figures Page 

1.1 Parallel tracking and mapping (PTAM) for augmented reality  2 

application in small space  

1.2 Rapid translation for live tracking comparison between DTAM 3 

2.1 Overview of the KinectFusion pipeline presented by Newcombe, 2011 6 

2.2 Point-to-plane error between correspondences (Kok-Lim Low, 2002) 8 

2.3 A representation of the TSDF volume grid stored in GPU 10 

2.4 A ray casting example using marching from a camera sensor (eye)  12 

to global space (Parker et al, 1998) 

3.1 The diagram of the proposed system based on the original KinectFusion 14 

3.2 Surface normal for crease edge detection 17 

4.1 Living room as a predefined scene for POV-ray  22 

from ICL-NUIM dataset 

4.2 Synthetic screenshot of living room (Kt0 dataset) from a predefined  22 

scene as a ground truth from ICL-NUIM dataset 

4.3 RGB images of structure-dataset from TUM RGB-D dataset 23 

4.4 RGB images of no-structured-dataset from TUM RGB-D dataset 23 

4.5 Living room dataset with objects presented in the scene without  24 

median filter 

4.6 Living room dataset with no objects presented in the scene without  24 

median filter 

4.7 Comparison of surface normal vectors with and without using  25 

median filter 

4.8 Histogram of all the cost values from the scene analysis function  27 

using 8 datasets 

4.9 Plot of all the cost values from the scene analysis function  27 

using 8 datasets 

4.10 The screenshot of 198 frames from a Kinect camera  29 

in different camera poses captured by OpenNI toolkit  



 

viii 

 

4.11 3D reconstructed results using KinectFusion with three different 30 

tracking algorithms  

4.12 Point could to ground-truth mesh error (Heat map) of the living room  31 

Kt1 dataset  

4.13 Plot of the absolute trajectory error between ground-truth and  32 

estimated camera pose for the living room  

4.14 Comparison of the reconstructed quality between drift-free and  36 

non-drift-free tracking algorithm in KinectFusion presented  

by Newcomb 2011  

 

 

 

 

 

 



 

 

1 

 

Chapter 1 

Introduction 

 

Nowadays, scientific and technology researches have been developed to build human-

like system from their characteristic mechanisms. Perception and recognition in 

computer vision is difficult to perceive shapes of three-dimensional structure and 

recognize the objects as human’s vision look-alike. Vision system in living things can 

effortlessly understand shape, illumination, and color, while computer vision 

algorithms are so uncertain. 3D Reconstruction is one kind of Computer Vision task, 

which is capable of capturing shape and appearance of real objects.  

 

1.1 Simultaneous localization and mapping 

 

Most robot visions basically rely on a single camera as human eyes to perceive 2D 

image information of the scene. Human has innate ability to interpret incoming image 

information in the human brain. Unlike, there is no kind of innate ability in robot vision 

application without programing it. In recent years, the researches that performs tracking 

the position of a robot and mapping in an unknown scene become popular. One of the 

famous works is parallel tracking and mapping (PTAM)  (G. Klein and D. Murray, 

2007), which provides a method to estimate a camera pose in an unknown scene by 

adapting simultaneous localization and mapping (SLAM) algorithm using RGB images 

taken with a hand-held camera. It performs tracking and mapping tasks in separate 

processes on dual-core CPU. The features are computed from consecutive frames by 

moving a digital camera as shown in Figure 1.1. SLAM applications are designed to 

suit the available resources at operational compliance which be able to utilize visual 

features found in the scene. PTAM allows the user holding a hand-held camera and 

tracking small space for AR application. 

 



 

 

2 

 

    

 

Figure 1.1 Parallel tracking and mapping (PTAM) for augmented reality application in 

small space (a) feature points generated after camera movement, and (b) tracking a 

small workspace for augmented reality application. 

 

1.2 Dense tracking and mapping 

 

Microsoft presents a novel camera with low-cost called Kinect camera which is 

based on structure light technique to obtain depth measurements. The Kinect camera 

consist of three major devices, IR projector, RGB camera, and IR camera. The IR 

projector beams the pattern of light to the environment and the pattern will be 

interpreted as a depth map (Smisek J et al. 2011). The live dense tracking and mapping 

method (DTAM) is presented by (Newcombe et al. 2011) that shows the result of 

tracking and mapping in real-time by using depth information instead of using 2D 

feature. DTAM shows the tracking performance which is more stable than PTAM. 

Figure 1.2 shows the live tracking comparison between DTAM and PTAM. The rapid 

translation causes PTAM lost in tracking while DTAM performs without re-

localization.  

 

(a) (b) 



 

 

3 

 

 
 

Figure 1.2 Rapid translation for live tracking comparison between DTAM (a) and 

PTAM (b) on small work space for augmented reality.  

[Source: https://www.youtube.com/watch?v=Df9WhgibCQA] 

 

(Newcombe et al., 2011) presents the new system called KinectFusion for building 3D 

scenes, that achieves detailed 3D scene reconstruction by using the truncated signed 

distance function (TSDF) and the iterative closest point (ICP). Meanwhile, techniques 

that use depth information seem to be more robust than using only RGB information 

but still suffer from limitations when tracking in environments with insufficient 3D 

features. Nevertheless, it is clear that by using both RGB image and depth information, 

it is possible to get a more complete, accurate and robust result. (C.Kerl et al., 2013) 

show robustness for camera pose estimation using the registration between two 

consecutive RGB-D frames where non-linear minimization is performed. (T. Whelan, 

2013) also presents the combination of original KinectFusion among various visual 

odometry methods to provide robust tracking against planar surfaces. Visual odometry 

gives a better result in terms of camera trajectory estimation compared with ICP, but it 

is a frame-by-frame algorithm that is opposed to the drift-free concept in KinectFusion 

that uses ICP to build smooth 3D reconstruction results.  

 

1.3 Motivation and objective 

 

Over recent years, research on a dense tracking and mapping becomes popular (Wan 

Yi et al. 2012) with its fine reconstruction. KinectFusion cannot be achieved by a CPU, 

but on GPU. KinectFusion provides the algorithm resulting in detailed 3D 

(a) (b) 

https://www.youtube.com/watch?v=Df9WhgibCQA


 

 

4 

 

reconstruction which can be useful information for robotic application. 3D 

reconstruction is an important part of many applications, such as reverse engineering 

and building real-world models for virtual reality. The 3D reconstructed model can be 

used for a quality test in an industrial application by comparing it with the original 

template, such as a CAD model. More realistic 3D model for visualization can also 

entertain users with much more fun (Hwasup Lim et al., 2012). Our approach tries to 

utilize the advantage point of the two tracking methods. We first presents the modified 

KinectFusion method (S. Chumplue et al., 2014) by replacing KinectFusion ICP with 

VO (C.Kerl et al., 2013). When the original KinectFusion ICP encounters an 

environment with insufficient 3D features, VO gives a better result in terms of camera 

trajectory estimation compared with the original KinectFusion ICP, but it is a frame-

by-frame algorithm that is opposed to the drift-free concept in KinectFusion that uses 

ICP to track and build smooth 3D reconstruction results. When the scene has sufficient 

3D features for ICP, it gives a better result in terms of camera trajectory estimation 

compared to VO. Thus, we presents the integration method (S. Khamphuea et al., 2015) 

that utilizes the advantage of the two tracking methods both ICP and VO by using 

depth-map-based switching strategy. In Section 3 Result and Discussion, we 

experimentally show the result of 3D reconstruction with different types of scenes and 

show the result from our scene complexity analysis method. Also, qualitative and 

quantitative evaluations are conducted by using the ground-truth provided by (A. Handa 

et al., 2014). 

 

The objective of this study is to develop a novel technique for scene complexity 

analysis to guide KinectFusion to tracking in insufficient 3D features. The key point of 

this proposed method try to analyze the scene which can be divided into two groups: 

complex and planar. By adding alternative algorithm, KinectFusion performs tracking 

in planar scene by using switching strategy.  

 

1.4 Thesis outline 

 

The rest of this thesis is divided into 4 chapters as follows. 

 



 

 

5 

 

Chapter 2 explains background methods. The processes in KinectFusion pipeline are 

describe in detail.  

 

Chapter 3 shows the proposed method that uses an integrated approach technique 

between ICP in the original KinectFusion and Visual Odometry. A depth-map-based 

scene complexity analysis that is used to select the suitable algorithm for KinectFusion 

are described.  

 

Chapter 4 discusses the experimental results from the scene complexity analysis and 

the integrated approach. The results is conducted using provided ground-truth and 

shows that the proposed method is out perform ICP and VO alone.  

 

Chapter 5 shows the conclusion of this study based on the experimental results  



 

 

6 

 

Chapter 2  

KinectFusion Model 

 

 

KinectFusion is composed of well-known algorithms presented by (Newcombe et al., 

2011). This is achieve by novel graphic card that provides parallel processing on a GPU. 

The goal of KinectFusion is to provide a real-time dense surface mapping and tracking 

using a Kinect camera. The KinectFusion algorithm are described in 4 steps as shown 

in Figure 2.1. 

 

 

 

Figure 2.1 Overview of the KinectFusion pipeline presented by Newcombe, 2011. 

 

2.1 Depth map conversion  
 

At the beginning, the stream of raw depth maps R𝑘 at frame time k are obtained 

from a Kinect camera. A raw depth map comprises with a noisy depth measurement 

R𝑘(𝑢) ∈ ℝ at each pixel 𝑢 in image domain 𝑢 ∈ 𝒰 ∈ ℝ2. A bilateral filter is used to 

reduce the noise of a raw depth map R𝑘,  

 

 



 

 

7 

 

𝐷𝑘 =
1

𝑊𝑝
∑ 𝒩𝜎1(‖u − 𝑢

′‖2)𝒩𝜎2(‖R𝑘(𝑢) − R𝑘(𝑢
′)‖2)R𝑘(𝑢

′)

u′ ∈ 𝒰

, (2.1) 

  

where 𝒩𝜎(𝑡) = 𝑒
−𝑡2𝜎−2  and 𝑊𝑝 is a normalizing constant. Then a filtered depth map 

D𝑘 is converted to vertex map V𝑘 by using a constant camera calibration matrix K,  

 

V𝑘(𝑢) = D𝑘(𝑢)K
−1𝑢 . (2.2) 

 

The normal map is conducted by using cross product with neighboring projected 

vertices, 

 

N𝑘(𝑢(𝑥, 𝑦)) = normalize[(V𝑘(𝑥 + 1, 𝑦) − V𝑘(𝑥, 𝑦)) × (V𝑘(𝑥, 𝑦 + 1) − V𝑘(𝑥, 𝑦)) ]. (2.3) 

 

The filtered depth map will be stored at 3 pyramid levels 𝐿 = 3. The first level D𝑘
𝑙=1 is 

set to the original filtered depth map. Each higher level D𝑘
𝑙+1 is converted to the half 

resolution of the previous level by block averaging. The vertex map and normal map 

will be calculated at each three levels by repeating equation 2.2 and 2.3 with 

corresponding depth map level. The result in this step is V𝑘
𝑙∈[1…𝐿]

 and N𝑘
𝑙∈[1…𝐿]

. 

 

The 6 degree of freedom (6DoF) 𝑇𝑔,𝑘  is represented by a rigid body transformation 

matrix which is a combination of a rotation 3×3 matrix ℛ𝑘  from 𝕊𝕆(3) and a 

translation 3×1 vector 𝑡𝑘 from ℝ3. The vertex map and normal map in global coordinate 

can be calculated by, 

 

V𝑔,𝑘(𝑢) = 𝑇𝑔,𝑘V(𝑢), (2.4) 

N𝑔,𝑘(𝑢) = ℛ𝑔,𝑘N𝑘(𝑢). (2.5) 

  

2.2 Camera tracking  
 

Camera tracking is perform to track each new depth frame by estimating a new 

incremental rigid body transformation that closely aligns points of two consecutive 



 

 

8 

 

depth frames. The alignment is based on iterative closest point (ICP) algorithm. 

Basically, most of the tracking algorithms try to find good correspondence points and 

try to optimize the number of iterations by reducing the number of points. KinectFusion 

assumes that the motion between two consecutive frames is small by maintaining a high 

tracking frame-rate. This assumption allows KinectFusion to use all depth information 

by using fast projective data association (G. Blais and M. D. Levine, 1995). The point-

plane iterative closest point algorithm (Kok-Lim Low, 2002) is employed to track a live 

surface vertices 𝑉𝑘 and a predicted surface from the global model �̂�𝑘−1. This is called 

frame to model tracking. The goal of the point-plane iterative closest point algorithm is 

that it minimizes the error metric where sum of the square distance is employed. Figure 

2.2 shows a principle of the error distance between two surfaces. 

 

 

Figure 2.2 Point-to-plane error between correspondences (Kok-Lim Low, 2002). 

 

The correspondences in KinectFusion {V𝑘(𝑢), V̂𝑘−1(𝑢)|Ω(𝑢) ≠ null} can be obtained by 

using the fast projective data association algorithm where the distance threshold is 𝜀𝑑 

and the different angle threshold is 𝜀𝜃.  

 

Ω(𝑢) ≠ null iff  {  

D𝑘 is a valid depth value,               and

‖𝑇𝑔,𝑘V𝑘(𝑢) − V̂𝑘−1(𝑢)‖2
    ≤ 𝜀𝑑 ,   and

 〈ℛ𝑔,𝑘N𝑘(𝑢), N̂𝑘−1(𝑢)〉         ≤ 𝜀𝜃            

 (2.6) 



 

 

9 

 

The camera pose estimation can be obtained by optimizing the incremental 

transformation �̃� as, 

 

�̃�𝑜𝑝𝑡
𝑖𝑛𝑐 = argmin

�̃�
𝑖𝑛𝑐 ∑ ‖(�̃�

𝑖𝑛𝑐
𝑇𝑔,𝑘−1V𝑘(𝑢) − V̂𝑘−1(𝑢)) N̂𝑘−1(𝑢)‖

2𝑢 ∈𝒰
Ω(𝑢)≠null

, 
(2.7) 

𝑇𝑔,𝑘 = �̃�𝑖𝑛𝑐𝑇𝑔,𝑘−1. (2.8) 

 

Given a small motion between frames, KinectFusion follows the principle of point-

plane model presented by Kok-lim low. Thus, the solution for the optimal camera pose 

parameter can be written in 6 parameters (𝛽, 𝛾, 𝛼, 𝑡𝑥, 𝑡𝑦, 𝑡𝑧) 
⊤ ∈ ℝ6. 

 

�̃�𝑖𝑛𝑐 = [ℛ̃|�̃�] = [

1 𝛼 −𝛾 𝑡𝑥
−𝛼 1 𝛽 𝑡𝑦
𝛾 −𝛽 1 𝑡𝑧

]. (2.9) 

 

2.3 Volumetric integration  
 

Instead of using filtered depth data, KinectFusion aims to build a detailed 

reconstruction where the detail could be deleted by a bilateral filter. The raw depth data 

will be integrated by using truncated signed distance function (TSDF). TSDF is a 

volumetric method that contains a registered depth measurement from frame 1 … k. 

S𝑘(p) where p ∈ ℝ3 is the TSDF integrated up to frame k. The volumetric consists of 

a certain number of voxels in each axis stored in GPU (5123 voxel reconstruction is 

used in the proposed method). The size of a volume and the number of voxels indicate 

the quality of the model to be reconstructed. (Curless and Levoy, 1992) introduces 

signed distance function (SDF) fusion. The SDF represents surface of the object where 

it is a zero-crossing, free space as positive values, negative values where it is behind 

the surface as shown in Figure 2.3.  

 



 

 

10 

 

 
 

Figure 2.3 A representation of the TSDF volume grid stored in GPU. Each voxel 

represents the TSDF value. Zero-crossing represents the surface. The positive value 

represents the space where it is in front of the surface. The negative value represents 

wherever it is inside the surface. 

[Source: http://pointclouds.org/documentation/tutorials/using_kinfu_large_scale.php] 

 

Each voxel in the TSDF stores two values: the current signed distance function F𝒌(p) 

and its weight W𝑘(p), 

 

S𝑘(p) ⟼ [F𝑘(p),W𝑘(p)]. (2.10) 

  

A raw depth map are fused with a known camera pose 𝑇𝑔,𝑘 with a current translation 

𝑡𝑔,𝑘 by using projective truncated signed distance function at a point p in the global 

frame 𝑔. TSDF values can be calculated as Eq. (2.11). Each location of voxel can be 

found by using a nearest neighbor lookup (⌊∙⌋ symbol) matching the floating point to 

integral number. The perspective projective is calculated from the function 𝑢 = 𝜋(p) 

where 𝑢 ∈  𝒰 = (
𝑥

𝑧
,
𝑦

𝑧
) ⊤ in image domain and p ∈ ℝ3 = (𝑥, 𝑦, 𝑧)⊤.  

 

http://pointclouds.org/documentation/tutorials/using_kinfu_large_scale.php


 

 

11 

 

F𝑐𝑢𝑟(p)    =      Ψ (𝜆
−1‖𝑡𝑔,𝑘 − p‖2

− R𝑘(𝑢)), (2.11) 

𝜆    =      ‖K−1𝑢‖2, (2.12) 

𝑢    =      ⌊𝜋(KT𝑔,𝑘
−1p)⌋, (2.13) 

 

KinectFusion claims that Ψ function ensures a surface measurement (zero-crossing in 

the SDF) is represented by at least one non truncated voxel value in the volume either 

side of the surface. 𝜆 scales the measurement along the pixel ray. KinectFusion also 

assumes that truncated of uncertainty of a depth measurement can be done such that the 

true value lies within ±𝜇  of the measured value. Then no surface information is 

obtained such that a distance r from the camera where 𝑟 > (𝜆Rk(𝑢) + 𝜇) along the 

camera ray. 

 

Ψ(η) = {
min (1,

𝜂

𝜇
) sgn(η)       iff  𝜂 ≥ −𝜇

𝑛𝑢𝑙𝑙           𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 (2.14) 

 

Every frame the new SDF and its weight are accumulated using, 

 

F𝑘(p) =
W𝑘−1(p)F𝑘−1(p) +Wcurr(p)Fcurr(p)

W𝑘−1(p)Wcurr(p)
 , (2.15) 

 

W𝑘(p) = W𝑘−1(p) +Wcurr(p) (2.16) 

 

In practice, KinectFusion simply assumes that  Wcurr(p) = 1  for a simple average. 

Weighting W𝑘(p) of the TSDF proportional to the uncertainty surface measurement is, 

 

W𝑘(p) ← min (W𝑘−1(p) +Wcurr(p),W𝜂). (2.17) 

 

 

 

 

 



 

 

12 

 

 
Figure 2.4 A ray casting example using marching from a camera sensor (eye) to 

global space (Parker et al, 1998). 

 

2.4 Ray casting  
 

Before the beginning of the next pose estimation, KinectFusion needs a 

predicted surface measurement (V̂𝑘−1, N̂𝑘−1)  from a global space represented in the 

volumetric method. A predicted surface measurement can be obtained by using a 

raycast technique which a ray traverses from a camera sensor to the isosurface inside 

the TSDF volumetric as shown in Figure 2.4. KinectFusion simplifies a per pixel 

raycast algorithm presented by (S. Parker et al, 1998) by using a skipping technique 

based on the knowledge of the fact that near F(𝑝) = 0 the fused volume stores a good 

approximation to the SDF from p to the nearest surface interface. The steps for 

traversing are reduced by marching along the ray with size < 𝜇. A ray, 𝑡 = 𝑡𝑔,𝑘K
−1𝑢 , 

is generated for each desired image pixel 𝑢 and marched starting from the minimum 

depth for the pixel and stopping when a zero-crossing is found, or when exiting the 

working volume. Ft+Δt
+  and Ft

+ are the trilinearly interpolated location which the ray 

intersecting to the SDF, F𝑘(𝑝), at point p along ray 𝑡 and 𝑡 + ∆𝑡. A more accurate ray 

𝑡∗ is, 

 



 

 

13 

 

t∗ = t −
ΔtFt

+

Ft+Δt
+ − Ft

+. (2.18) 

 

The predicted normal maps are computed as, 

 

N̂k = normalize(∇Fk(p)), (2.19) 

 

∇Fk(p) = [
∂F

∂x
,
∂F

∂y
,
∂F

∂z
]
⊤

. (2.20) 

 

 

 

 

 

  



 

 

14 

 

Chapter 3 

Methodology 

 

In this chapter, we describe our proposed method to solve the problem of inability of 

ICP tracking on insufficient 3D features in KinectFusion algorithm. ICP lost on tracking 

due to depth information on the scene cannot be used as the reference to align between 

consecutive depth maps. Additional tracking method that uses RGB image is added to 

prevent KinectFusion lost on tracking when the scene consists of insufficient 3D 

features scene.  

 

Scene Analysis 

(Step edge + SNA)

RGB-D stream

Volume Integration

(Update surface measurement to global TSDF)

Surface Prediction

(Ray-cast global TSDF)

Pose Estimation (Switching Strategy)

Visual Odometry

(RGB-D, C.Kerl, 2013)

Iterative Closest Point

of predicted and measured surface

Measurement
(Surface vertex, Normal Map)

Rk

Tg,k

TSDF,Tg,k-1

Vk, Nk

Vk-1, Nk-1

Rk

RGB-Dk

Rk

Switching 
(Ck >tc)

True False

Ck

Original KinectFusion

Proposed method

Dk

 

Figure 3.1 The diagram of the proposed system based on the original KinectFusion. 



 

 

15 

 

The proposed method combines the advantages of ICP and VO based on the original 

KinectFusion (Newcombe et al., 2011), which is divided into two parts: a depth-map-

based scene analysis and a switching strategy. We aim to link the result of incremental 

3D rigid-body transformation matrix 𝑇𝒌 between two camera pose estimation methods 

using a simple scene analysis to select the most appropriate method depending on the 

complexity of the scene. The diagram of the proposed system is shown in Figure 3.1. 

 

3.1 Scene Complexity Analysis  

 

An environment that has many objects is considered as sufficient 3D features 

scene. The amount of complexity in a scene can be simply observed the number of 

objects in the scene by using method related to object detection or recognition. 

Normally, these techniques extremely difficult to recognize objects without any 

template. The proposed method presents a simplified method to compute the 

complexity of a scene by observing the pixels of discontinuities in a depth map 

responding to the boundary of objects in the scene. The KinectFusion algorithm has a 

registration technique called ICP which is based on a depth map registration. Assume 

the incoming depth map is a planar scene as shown in figure. It is difficult for ICP to 

register between insufficient 3D feature scenes. The proposed method aims to prevent 

the KinectFusion algorithm from losing in tracking when it tracks on planar structure 

by switching to VO algorithm as described in Section 2. The proposed method utilizes 

the RGB image which can be obtained from the Kinect camera. In order to prevent 

KinectFusion from losing tracking in planar scene. The planar scene has to be detected. 

The proposed method presents simply technique to calculate complexity of a depth 

map. These complexities describes 3D features of the scene. Usually, image features in 

RGB image can be obtained by SIFT, SURF, and edges detection techniques. However, 

these techniques offer only feature from texture which are difficult to find features when 

the scene has no texture. 

 

3.1.1 Surface normal analysis 

 

First of all, noise in a depth stream from the RGB-D camera is removed by 

applying a bilateral filter (C. Tomasi and R. Manduchi, 1998) as in pre-processing in 



 

 

16 

 

original KinectFusion paper. Secondly, we perform crease edge detection by using 

surface normal analysis (T. Kondo et al, 2000). We use the Sobel operators to compute 

the first derivatives 𝐺𝑥  and 𝐺𝑦  as in Eq. (3.1). The normal vector of each pixel is 

perpendicular to its tangent plane. We can calculate the normal of each pixel by using 

the cross product as in Eq. (3.2) 

 

𝐺𝑥(𝑥, 𝑦) = 𝐷(𝑥, 𝑦) ∗ [
−1 0 +1
−2 0 +2
−1 0 +1

] 

𝐺𝑦(𝑥, 𝑦) = 𝐷(𝑥, 𝑦) ∗ [
+1 +2 +1
0 0 0
−1 −2 −1

] 

(3.1) 

 

where 𝐺𝑥 and 𝐺𝑦 are the partial derivatives of a bilateral filtered depth image 𝐷(𝑥, 𝑦)  

in horizontal and vertical directions, respectively. The magnitude of 𝐺𝑥  and 𝐺𝑦  is 

calculated as in Eq. (3.2) 

 

𝑀𝑔𝑟𝑎𝑑𝑖𝑒𝑛𝑡 = √𝐺𝑥(𝑥, 𝑦)2 + 𝐺𝑦(𝑥, 𝑦)2. (3.2) 

 

Secondly, we perform crease edge detection by using surface normal analysis (SNA) 

(Kondo, 2000) on the first derivative images 𝐺𝑥  and 𝐺𝑦  from Eq. (3.1). The normal 

vector of each pixel is perpendicular of its tangent plane, and can be calculated by using 

the cross product as in Eq. (3.3) 

 

[
1
0

𝐺𝑥(𝑥, 𝑦)
] × [

0
1

𝐺𝑦(𝑥, 𝑦)
] = [

−𝐺𝑥(𝑥, 𝑦)
−𝐺𝑦(𝑥, 𝑦)

1

]. (3.3) 

 

The unit surface normal vector 𝑛(𝑥, 𝑦) is calculated as in Eq. (3.3) 

 

𝑛(𝑥, 𝑦) = [

𝑛𝑥(𝑥, 𝑦)

𝑛𝑦(𝑥, 𝑦)

𝑛𝑧(𝑥, 𝑦)

] =
1

√𝐺𝑥(𝑥, 𝑦)2 + 𝐺𝑦(𝑥, 𝑦)2 + 1
[
−𝐺𝑥(𝑥, 𝑦)

−𝐺𝑦(𝑥, 𝑦)

1

]. (3.4) 

 



 

 

17 

 

3.1.2 Removing small gaps  

 

It is difficult to distinguish the depth information of small objects from a noisy 

depth map. Thus, we remove the discontinuities due to all small gaps by applying a 

median filter to 𝑛𝑥 and 𝑛𝑦 components before we find the discontinuities of the surface 

normals in the next process. Figure 3.2 shows successfully removing small gaps 

information by using median filter. Figure 3.2(a) shows the RGB image of the planar 

scene that contains the flat wooden board. Figure 3.2(b) shows the results of scene 

analysis function without median filter. There are small gaps where the pink is 

discontinuities between the wooden board and the floor. Figure 3.2(c) shows the results 

of scene complexity analysis with median filter with 50×50 kernel size. 

 

 

 

Figure 3.2 Surface normal for crease edge detection, (a) RGB image of a flat scene, (b) 

surface normal without median filter, and (c) surface normal with median filter. 

 

3.1.3 Discontinuities detection 

 
 The kernel size of Sobel operators is extended from 3×3 to 9×9 as shown in Eq. 

(3.5). The 9×9 Sobel operators are again used to compute the first derivatives of 𝑛𝑥 and 

𝑛𝑦  components in horizontal and vertical directions as in Eq. (3.6). We find crease 

edges 𝐼𝑛  by observing discontinuities in 𝑛(𝑥, 𝑦) using its first derivatives. Note that 

crease edges include both roof and valley edges in a depth map. 

 

[
 
 
 
 
 
 
 
 
−1 0 0 0 0 0 0 0 +1
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
−2 0 0 0 0 0 0 0 +2
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
−1 0 0 0 0 0 0 0 +1]

 
 
 
 
 
 
 
 

, 

[
 
 
 
 
 
 
 
 
+1 0 0 0 +2 0 0 0 +1
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
−1 0 0 0 −2 0 0 0 −1]

 
 
 
 
 
 
 
 

, (3.5) 

(a) (b) (c) 



 

 

18 

 

 

{
 
 

 
 𝑑𝑥𝑥(𝑥, 𝑦) = 𝜕𝑛𝑥(𝑥, 𝑦)/𝜕𝑥

𝑑𝑥𝑦(𝑥, 𝑦) = 𝜕𝑛𝑥(𝑥, 𝑦)/𝜕𝑦

𝑑𝑦𝑥(𝑥, 𝑦) = 𝜕𝑛𝑦(𝑥, 𝑦)/𝜕𝑥

𝑑𝑦𝑦(𝑥, 𝑦) = 𝜕𝑛𝑦(𝑥, 𝑦)/𝜕𝑦

.  (3.6) 

 

The magnitude of a crease edge can be computed as in Eq. (3.7). When the magnitude 

of the crease edge is larger than the predetermined threshold value  𝑡𝑛, we consider that 

the pixel of interest has a crease edge as shown in Eq. (3.8). 

 

𝑆(𝑥, 𝑦) = √𝑑𝑥𝑥2 + 𝑑𝑥𝑦2 + 𝑑𝑦𝑥2 + 𝑑𝑦𝑦2  (3.7) 

 

𝐼𝑛(𝑥, 𝑦) = {
1, 𝑆(𝑥, 𝑦) > 𝑡𝑛
0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 (3.8) 

 

𝐶𝑘 =∑ 𝐼𝑛(𝑥, 𝑦)
𝑥,𝑦

 (3.9) 

 

Finally, the cost of scene analysis function 𝐶𝑘 at the frame time 𝑘 can be calculated 

from the total number of pixels corresponding to the crease edges as in Eq. (3.9). 

Judging from the value of 𝐶𝑘, we will distinguish sufficient 3D features scenes or not. 

 

3.2 Camera pose estimation with switching strategy  

 

(Newcombe et al., 2011) presents KinectFusion, which is a system for accurate 

real-time mapping of complex and arbitrary indoor scene in variable lighting condition. 

It gives high-detail 3D reconstructed model by allowing users to hold and move the 

camera freely in 6DOF. We use the KinectFusion algorithm as the key component to 

reconstruct 3D model in real-time by employing a combination of various well-known 

techniques, which are iterative closest point (ICP) and truncated signed distance 

function (TSDF). ICP method is used to minimize the sum of the squared distance 

between each source point and the tangent plane at its corresponding destination using 

depth data which were computed as the depth map and normal vector. By maintaining 



 

 

19 

 

a high tracking frame-rate, small motion from frame to frame is assumed. KinectFusion 

uses fast projective to obtain correspondence and the point-plain metric for pose 

optimization. The result of pose estimation in KinectFusion gives incremental 

transformation  �̃�𝑘   at current frame time 𝑘  

 

�̃�𝐼𝐶𝑃,𝑘 = [�̃�𝑘|�̃�𝑘] = [

1 𝛼 −𝛾 𝑡𝑥
−𝛼 1 𝛽 𝑡𝑦
𝛾 −𝛽 1 𝑡𝑧

].  (3.10) 

 

The incremental transformation �̃�𝑘 will be applied to global transformation to obtain 

the latest global transformation as described in Eq. (2.8). However, the original 

KinectFusion has limitations. ICP will match the current depth map against a ray 

casting surface from global model. Matching between the two data which contain depth 

information from planar surface causes ICP to fail in tracking.  The tracking algorithm 

of the original KinectFusion based on ICP is replaced by the visual odometry (C.Kerl 

et al., 2013) to estimate the camera motion by aligning correspondence points between 

two consecutive RGB-D images using sum-of-squared differences and minimizing the 

photometrical error between them. The advantage of this method is that it gives precise 

estimated motion on low 3D features environment. By using RGB images to estimate 

the camera pose, we can reduce the failure rate of KinectFusion when tracking on low-

feature 3D geometry. This method offers using matching technique to find the camera 

motion parameter 𝜉 by minimizing the photometric error between consecutive images. 

More information about concept and theory can be found in (C.Kerl et al., 2013) 

publication. After minimizing the photometric error, the Lie algebra parameter are 

given by 𝜉 = (𝑣1, 𝑣2, 𝑣3, 𝜔1, 𝜔2, 𝜔3) where 𝑣1, 𝑣2, 𝑣3 is the translational velocity and 

 𝜔1, 𝜔2, 𝜔3 is the rotational velocity. Thus, rotation matrix �̃�𝑘 and translation vector �̃�𝑘 

at the frame time 𝑘 can be calculated from Lie group  𝕊𝔼3 with the exponential map 

exp(𝜉). 

 

𝑒𝑥𝑝: 𝕊𝔼(3) → 𝑆𝐸(3);  𝜉 → 𝑇  (3.11) 

 



 

 

20 

 

The incremental transformation of visual odometry technique �̃�𝑉𝑂,𝑘  is shown in Eq. 

(3.12) 

 

�̃�𝑉𝑂,𝑘 = [�̃�𝑘|�̃�𝑘] = exp (𝜉). (3.12) 

 

The switching strategy combines two techniques, ICP from the original 

KinectFusion and visual odometry to compute global rigid-body transformation matrix 

𝑇𝑔,𝑘 at the frame time 𝑘. The value from the scene analysis function  𝐶𝑘 is computed in 

real-time and it will select a suitable algorithm, as in Eq. (3.13). 

 

𝑇𝑔,𝒌 = {
𝑇𝑔,𝑘−1 �̃�𝐼𝐶𝑃,𝑘, 𝑖𝑓 𝐶𝑘 > 𝑡𝑐

𝑇𝑔,𝑘−1 �̃�𝑉𝑂,𝑘, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
. (3.13) 

 

The proposed method performs tracking operation with scene analysis. Two threshold 

values are selected experimentally, as shown in the result and discussion section. The 

global camera pose of switching tracking 𝑇𝑔,𝑘 will be used in the volume integration of 

original KinectFusion algorithm as shown in Figure 3.1. 

 

  



 

 

21 

 

Chapter 4  

Results and Discussions 

 

4.1 Hardware and software specification 

 

We have conducted experiments on a standard laptop PC with Windows 8.1 64 

bits, Intel Core i7-4700MQ 2.4GHz CPU, 8GB DDR3 RAM and NVidia GeForce 

GT750m GPU card. The input data are retrieved by a single standard RGB-D Kinect 

camera with 640x480 resolution and frame-rated up to 30 Hz. The proposed method 

implementation is based on the large-scale KinFu project from the open-source called 

point-cloud library (PCL) (Radu Bogdan Rusu and Steve Cousins, 2011).  

 

4.2 Datasets and benchmarks 

 

We run experiments based on provided dataset ICL-NUIM (A. Handa et al., 

2014) and TUM RGB-D dataset (J. Sturm et al., 2012). The qualitative and quantitative 

results are evaluated from these datasets in the offline process. The ICL-NUIM dataset 

provides synthetic RGB-D datasets by using persistence of vision raytracer (POV-ray). 

POV-ray is a rendering technique that calculates the way rays of light travel from a 

simulated camera trajectory in predefined scene to obtain RGB images and depth maps. 

Figure 4.1 shows a predefined scene as a ground truth model. Figure 4.2 shows the 

synthetic RGB-D data from the predefined scene. By using the synthetic data as RGB-

D inputs, the reconstructed model in the proposed method can be compared with the 

ground truth model. The error distance between the reconstructed model and the ground 

truth model is used to evaluate the quality of the reconstructed model by using 

CloudCompare software. Furthermore, The TUM RGB-D dataset provides 8 datasets 

which are clearly categorized and divided into two groups: structure-datasets (complex 

scenes) as show in Figure 4.3 and no-structure-datasets (planar scenes) as shown in 

Figure 4.4. We use this dataset to calculate an accuracy of the scene complexity analysis 

method. 

 

 



 

 

22 

 

 

 

Figure 4.1 Living room as a predefined scene for POV-ray from ICL-NUIM dataset. 

 

.  

 

Figure 4.2 Synthetic screenshot of living room (Kt0 dataset) from a predefined scene 

as a ground truth from ICL-NUIM dataset. 



 

 

23 

 

 

 

Figure 4.3 RGB images of structure-dataset from TUM RGB-D dataset.  

 

 

 

Figure 4.4 RGB images of no-structured-dataset from TUM RGB-D dataset.  

 



 

 

24 

 

4.3 Depth-map-based scene complexity analysis 

 

4.3.1 Surface normal analysis 

 

Figures 4.5 and 4.6 demonstrate the process of scene complexity analysis on the 

TUM dataset. Figures 4.5(a) and 4.6(a) shows RGB full color images, while Figures 

4.5(b) and 4.6(b) show the depth maps corresponding to the RGB images. Figures 4.5(c) 

and 4.6(c) then show the surface normal vectors of the depth maps. The orientations of 

the surface normal vectors are represented in different colors. The boundaries between 

different colors indicate the discontinuities of surface normal vectors, which are called 

crease edges. Finally, the white pixels in Figures 4.5(d) and 4.6(d) exhibit the 

boundaries between different surfaces. We then classify the scene to complicated or 

simple, depending on the number crease edges detected. The number of edges in Figure 

4.5(d) is 13,118. By contrast, Figure 4.6(d) shows fewer edge points, 0, and is classified 

as simple. 

 

 

 

Figure 4.5 Living room dataset with objects presented in the scene, (a) and (b) are RGB-

D images, (c) surface normal image, and (d) cost of the scene analysis where  𝐶𝑘 =

13,118. 

 

 

 

Figure 4.6 Living room dataset with no object presented in the scene,  (a) and (b) are 

RGB-D images, (c) surface normal image, and (d) cost of the scene analysis where 

 𝐶𝑘 = 0. 

(a) (b) (c) (d) 

(a) (b) (c) (d) 



 

 

25 

 

 

 

In practice, a depth map tends to be noisy and this affects surface normal vectors. The 

discontinuities in surface normal vectors are caused not only by noise but also by a 

rough surface of a plane. To cope with the small fluctuations in a depth map, the median 

filter is used to smoothen normal surface vectors with appropriated threshold value 𝑡𝑛 

as described in Eq. 3.8. Through the experiment, we have selected 𝑡𝑛 = 3.0 as the 

threshold value. If surface normal vectors are computed without median filter, the 

detection of the discontinuities in surface normal vectors are too sensitive to noise. 

Figures 4.7(a) and (b) show the result of scene complexity analysis and the surface 

normal vectors without median filtering. Figures 4.7 (c) and (d) show the result of scene 

complexity analysis and the surface normal vectors with median filtering. 

 

 

 

Figure 4.7 Comparison of surface normal vectors with and without using median filter, 

(a) surface normal without median filter, (b) scene complexity analysis with 𝑡𝑛 = 3.0 

and without median filter, (c) surface normal with median filter, and (d) scene 

complexity analysis with 𝑡𝑛 = 3.0 and with median filter. 

 

We then evaluate the scene analysis function by computing a confusion matrix which 

is conducted based on the ground truth from TUM RGB-D dataset (J. Sturm et al., 

2012). The TP (true positive) is the scene successfully classified as a complex scene. 

The TN (true negative) is the scene successfully classified as a planar scene. The FP 

(false positive) is the planar scene wrongly classified as a complex scene. The FN (false 

negative) is the complex scene wrongly classified as a planar scene. Table 4.1 shows a 

confusion matrix by using 𝑡𝑐= 1000 to distinguish planar or complex scenes. Table 4.2 

shows the accuracy, sensitivity, specificity, and precision of the scene analysis function 

from the confusion matrix following Eqs. (4.1) to (4.4). 

(a) (b) (c) (d) 



 

 

26 

 

 

Accuracy =
TP + TN

TP + TN + FP + FN
 (4.1) 

Sensitivity =
TP

TP + FN
 (4.2) 

Specificity =
TN

FP + TN
 (4.3) 

Precision =
TP

TP + FP
 (4.4) 

 

The proposed method distinguishes planar scenes from complex scenes successfully. 

The proposed method focuses on the sensitivity performance because it prevents 

KinectFusion losing in tracking.  There are only three complex scenes that are wrongly 

classified as planar scenes. The errors occurred because the view point from the RGB-

D camera gives missing data or invalid pixels. The missing data causes loss of 

information of the crease edges, resulting in lower costs of 𝐶𝑘. 

 

Table 4.1. Confusion matrix of scene analysis function using 8 datasets 

 

 

Scene analysis function result (frames) 

Complex Scene 
Planar 

Scene 

Ground Truth 

(frames) 

Complex 

Scene 
3809 3 

Planar 

Scene 
0 3638 

 

Table 4.2. Scene analysis performance using 8 datasets 

 

Accuracy Sensitivity Specificity Precision 

99.96% 99.92% 100% 100% 

 

4.3.2 Switching strategy 

 

 The switching technique in the proposed method requires a threshold value 𝑡𝑐 

to distinguish planar scenes from complex scenes. Figure 4.8 shows a histogram of all 

the cost values from the scene analysis function using the 8 datasets from TUM RGB-

D datasets. Figure 4.9 shows a plot of the cost values using the scene analysis function 



 

 

27 

 

from the 8 datasets. We experimentally select a threshold value 𝑡𝑐 which is equal to 

1000. We next investigate the step switching from VO to ICP (i.e., planar to complex 

scenes). By using only a single threshold value 𝑡𝑐= 1000, ICP still loses in tracking. It 

is necessary to wait until the scene has more 3D features. Mostly, the cost values of 

planar scenes are close to zero and the cost values of complex scene are larger than 

4000. Thus, we have a wide gap of the cost values between planar and complex scenes. 

We experimentally define another threshold value 𝑡𝑐= 6000 to make ICP more stable. 

The proposed method uses double threshold values 𝑡𝑐1=1000 and 𝑡𝑐2= 6000. The 

threshold value 𝑡𝑐1 is used when we switch from VO to ICP. On the other hand, 𝑡𝑐2 is 

used when we switch from ICP to VO. 

 

 
Figure 4.8 Histogram of all the cost values from the scene analysis function using 8 

datasets 

 

 
 

Figure 4.9 Plot of all the cost values from the scene analysis function using 8 datasets 

 

 

0 2000 4000 6000 8000 10000 12000 14000 16000 18000
0

1000

2000

3000

4000

Cost Value (c
k
)

F
re

q
u
e
n
c
y

 

 

Complex and planar scenes

t
c1

 = 1000.00

t
c2

 = 6000.00

0 100 200 300 400 500 600 700 800 900 1000 1100

0

2000

4000

6000

8000

10000

12000

14000

16000

18000

Scene frame (k)

C
o
s
t 

v
a
lu

e
 (

c k)

 

 

4 planar scenes

4 complex scenes

t
c1

 = 1000.00

t
c2

 = 6000.00



 

 

28 

 

4.3.3 Reconstruction results  

 

We compare 3D reconstruction results using KinectFusion with different 

algorithms, iterative closest point (ICP) and visual odometry (VO). The input data is 

recorded by using the OpenNI toolkit in a real-world situation. We record both planar 

structures (floors) and more complicated structures (cluttered room) in an indoor 

environment to investigate the characteristics of the two algorithms. Figure 4.10(a) 

shows RGB images, while Figure 4.10(b) shows depth maps corresponding to the RGB 

images. When the camera faces a planar structure, the depth information is also planar. 

This is a difficult scene for ICP to perform 3D reconstruction. Even in this case, 

however, VO can utilize textural information available in RGB images for 3D 

reconstruction. In this way, VO can cover ICP’s weakness to the scenes with planar 

structures. Therefore, we introduce a switching strategy to our 3D reconstruction. We 

switch two algorithms, depending on the complexity of the scene to be reconstructed. 

When the scene is complicated and full of 3D features, ICP is used. When the scene is 

simple and composed of planar structures, VO is selected.   

 

Figure 4.11(a) shows the reconstruction result of VO where the flat area (floor) 

is well reconstructed. Figure 4.11(b) shows a limitation of ICP where part of the flat 

surface is missing on the reconstructed model. Figure 4.11(c) shows the proposed 

method using a switching strategy where the missing flat area in Figure 4.11(b) are 

recovered and in complex scene are finely reconstructed. When the scene contains 

sufficient 3D features, we select ICP because it can reconstruct 3D scenes without 

drifting by registering depth maps using a global model. The VO algorithm, on the other 

hand, performs 3D reconstruction frame by frame, which may induce drifting. 

Therefore, we use VO only when the scene is lack of 3D features to minimize the 

negative impact from the drift.   

 

We further investigate the properties of ICP and VO. We compare 

reconstruction errors using a heat map generated by the CloudCompare tool. The 

absolute deviations between 3D reconstruction results and the ground truth mesh 

(C2M) are represented in different colors in Figure 4.12. The heat map in Figure 4.12(a) 



 

 

29 

 

appears more blue than that in Figure 4.12(b), which means that the reconstruction 

errors by ICP are smaller than those by VO. This explains why we use ICP, instead of 

VO, when the scene has sufficient 3D features. Figure 4.13 shows three absolute 

trajectory errors by ICP, VO, and the proposed method. The Kt0 dataset contains many 

scenes which are lack of 3D features. In Figure 4.13(a), we crop to 1400 frames to make 

the graph readable. The large red area of ICP in Figure 4.13(a) indicates that ICP loses 

tracking and shows jumping errors in the estimated trajectory. The proposed method 

reduces these errors and recovers the planar scenes. The result of the proposed method 

in Figure 8(a) shows a significant reduction of the red area. Meanwhile, Figure 4.13(b) 

shows the result of the proposed method is that the same as the result from ICP because 

the scene has sufficient 3D features. 

 

 

 

Figure 4.10 The screenshot of 198 frames from a Kinect camera in different camera 

poses captured by OpenNI toolkit, (a) shows RGB images which start moving along 

planar floor and tilt to complex scene, and (b) shows its corresponding depth images. 

 

  

(a) 

(b) 



 

 

30 

 

 

 

Figure 4.11 3D reconstructed results using KinectFusion with three different tracking 

algorithms, (a) visual odometry, (b) iterative closest point, and (c) the proposed method 

using switching algorithm. 

 

  

(c) 

(a) (b) 



 

 

31 

 

 

 

 

Figure 4.12 Point could to ground-truth mesh error (Heat map) of the living room Kt1 

dataset, (a) using the iterative closest point algorithm, and (b) using the visual odometry 

algorithm. 

 

(a) 

(b) 



 

 

32 

 

 

Figure 4.13 Plot of the absolute trajectory error between ground-truth and estimated 

camera pose for the living room (a) Kt0 (cropped to 1400 frames), and (b) Kt2 dataset. 

  

(b) (a) 

Proposed 

Method 

VO 

ICP 



 

 

33 

 

4.3.4 Quality of reconstructed results  

 

Unlike the VO algorithm, the original method, ICP, used in KinectFusion has 

an advantage of being free from drift in 3-D reconstruction. The proposed method aims 

to maintain this advantage, while covering the weakness of ICP, that is, its incapability 

of reconstructing a 3-D scene of planar structures. Table 4.3 shows the benefit of 

proposed method using the two methods with a switching strategy. The reconstruction 

errors by the proposed method on the Kt0 dataset are smaller than those by VO that 

performs tracking frame by frame. This verifies the earlier statement that drift-free 

tracking is better than frame-by-frame tracking for the scenes with sufficient 3D 

features. Although ICP works well for complex scenes, however, it cannot handle the 

scene with a planar structure. ICP tends to produce large errors that affect the final 

reconstructed result. The final result on Kt0 by ICP shows significant discontinuities in 

its 3D reconstruction. The discontinuities are so great that they cannot be used for 

evaluating the reconstruction errors between the reconstructed-point-cloud and the 

ground-truth mesh, resulting in “Failed”. Meanwhile, the results of the proposed 

method on the dataset Kt1 are the same as those by ICP because the dataset Kt1 

comprises complex scenes only. The Kt2 dataset is not included in Table 4.3 because 

the scenario of Kt2 is similar to that of Kt1, and the result of the proposed method is 

identical to that by ICP. 

 

We have tested the proposed method with ICP and VO algorithms on three 

different virtual indoor scenes using TUM RGB-D dataset format. Table 4.4 shows the 

differences between the reconstructed trajectories and the ground-truth trajectory. The 

Kt0 dataset contains scenes with a planar structure (wall), which makes ICP produce 

large errors of 0.69m on average. When the scene analysis step detects a scene with 

insufficient 3D features, the proposed method switches ICP to VO to avoid losing 

tracking. Meanwhile, ICP is more accurate than VO when the scene has sufficient 3D 

features. Therefore, in Table 4.4, the proposed method achieves the best result by 

integrating the two methods, ICP and VO. The key to the successful integration of the 

two methods lies in the switching between them. We have shown that the switch can 

be triggered based on the complexity analysis of the scene to be reconstructed. 



 

 

34 

 

Table 4.3 Statistic result of reconstructed-point-cloud compared with ground-truth 

mesh using CloudCompare tool. 

 

Error (m) 
Kt0 living room Kt1 living room 

VO ICP Switching VO ICP Switching 

mean 0.072638 Failed 0.035830 0.040537 0.033115 0.033115 

median 0.053011 Failed 0.021634 0.024829 0.016384 0.016384 

min 0.000000 Failed 0.000000 0.000000 0.000000 0.000000 

max 0.440185 Failed 0.422587 0.458263 0.134960 0.134960 

stdDev 0.073741 Failed 0.044051 0.055638 0.034402 0.034402 

 

 

Table 4.4 Statistic result of absolute trajectory error in meters per second for virtual 

living room environment dataset. 

 

Tracking error (m) Kt0 Kt1 Kt2 

IC
P

 

RMSE 0.691711 0.046057 0.035362 

mean 0.651372 0.041396 0.032945 

median 0.531291 0.039902 0.034354 

min 0.355339 0.004393 0.005164 

max 1.222005 0.092015 0.058943 

stdDev 0.232765 0.020189 0.012849 

V
O

 

RMSE 0.212012 0.224268 0.193582 

mean 0.185164 0.179377 0.184550 

median 0.163825 0.144884 0.191285 

min 0.020245 0.050514 0.068120 

max 0.525074 0.589245 0.321130 

stdDev 0.103265 0.134612 0.058441 

S
w

it
ch

in
g

 

RMSE 0.109221 0.046057 0.035362 

mean 0.091360 0.041396 0.032945 

median 0.066319 0.039902 0.034354 

min 0.041394 0.004393 0.005164 

max 0.301264 0.092015 0.058943 

stdDev 0.059855 0.020189 0.012849 

 

  



 

 

35 

 

4.4 Drift-free and non-drift-free 

 

KinectFusion describes its algorithm as a free from drifting algorithm. Figure 

4.14 illustrates the advantage of drift-free tracking algorithm compared to non-drift-

free tracking algorithm. Figure 4.14(a) shows the reconstructed quality of non-drift-free 

tracking. Figure 4.14(b) shows the reconstructed quality of drift-free tracking by 

partially tracking the scene. Figure 4.14(c) and (d) show the reconstructed quality of 

full-loop and multiple-loop drift-free tracking.  By using the combination between ICP 

and ray casting technique, KinectFusion can produce a quality reconstructed result that 

free from drifting. Instead of using the RGB-D data from the previous frame, the 

KinectFusion algorithm uses a predicted surface measurement (V̂𝑘−1, N̂𝑘−1) in ICP 

method as described in Section 2.2. Thus, the error metric of ICP is computed from the 

predicted surface and the current surface which is the key of drift-free algorithm.  

 

The proposed method tries to maintain the drift-free tracking by judging the 

scene when it has sufficient 3D features, the proposed method then switches back to 

ICP. Double threshold values are utilized in order to stabilize ICP as mentioned in 

Section 4.3.2. During the camera facing the planar structure, VO (non-drift free 

algorithm) is working instead of ICP. Thus, the quality of the reconstructed result 

depends on the accuracy of VO. When the camera estimation results in large error 

value, the current surface with large error will be integrated to the global model as 

shown in Figure 4.14(a). It is the reason that the proposed method waits the scene has 

more features (𝑡𝑐= 6000) integrated to the global model before the proposed method 

generates a predicted surface and switches from VO to ICP.  

 



 

 

36 

 

 

(a) (b) (c) (d) 

Figure 4.14 Comparison of the reconstructed quality between drift-free and non-drift-

free tracking algorithm in KinectFusion presented by Newcomb 2011, (a) non-drift-

free tracking, (b) partial drift-free tracking, (c) full-loop drift-free tracking, and (d) 

multiple loop drift-free tracking. 

  



 

 

37 

 

 

Chapter 5 

Conclusions 

 

We have devised a novel approach that performs 3D indoor reconstruction by using 

two different camera pose estimation algorithms, the iterative closest point algorithm 

(ICP) and visual odometry (VO). The camera pose is estimated using ICP in the 

KinectFusion for scenes with sufficient 3D features. On the other hand, we switch ICP 

to VO when the scene is lacking in 3D features. The switch is triggered based on the 

complexity of the scene. We have shown that the complexity of a scene can be evaluated 

using the number of crease edges in a depth map. The proposed method allows the user 

to hold and move an RGB-D camera freely in 6DOF even when the scene is lack of 3D 

features that is often the case in indoor environment comprising of planar structures, 

such as, walls and floors. Thus, the proposed method can overcome the inability of ICP 

in the original KinectFusion to track a scene with insufficient 3D features. Our 

experimental results show that the proposed method outperforms the method based on 

either ICP or VO alone. For future work, the scene analysis function in the proposed 

method may be improved by using the hole-filling method (Lap-Fai et al. 2013) to 

restore missing data on the depth map.  

 

  



 

 

38 

 

References 

 

Hwasup Lim, Seong-Oh Lee, Jong-Ho Lee and Min-Hyuk Sung. (2012). Putting Real-

World Objects into Virtual World: Fast Automatic Creation of Animatable 3D 

models with a Consumer Depth Camera. International Symposium on 

Ubiquitous Virtual Reality. August 2012. 

 

Wan Yi, Wang Jin, Hu Jingwen, Song Tiangang, Bai Yang, and Ji Zheng. (2012). A 

Study in 3D-Reconstruction Using Kinect Sensor. In Wireless 

Communications, Networking and Mobile Computing (WiCOM), 8th 

International Conference, 21-23 Sept. 2012, pp.1-7. 

 

Smisek J., Jancosek M., and Pajdla, T. (2011). 3D with Kinect. In Computer Vision 

Workshops (ICCV Workshops), IEEE International Conference, 6-13 Nov. 

2011, pp.1154-1160. 

 

G. Klein and D. Murray. November (2007). Parallel tracking and mapping for small 

AR workspaces. Sixth IEEE and ACM International Symposium on Mixed 

and Augmented Reality (ISMAR’07). Nara, Japan. 

 

Richard A. Newcombe, Steven J. Lovegrove and Andrew J. Davison. (2011). DTAM: 

Dense tracking and mapping in real-time. In Computer Vision (ICCV), IEEE 

Int. Conf, November 2011, pp. 2320 –2327. 

 

Richard A. Newcombe, Shahram Izadi et. al. (2011). KinectFusion: Real-time dense 

surface mapping and tracking. 10th IEEE International Symposium on 

Mixed and Augmented Reality, ISMAR ’11, Washington, DC, USA. IEEE 

Computer Society, 2011, pp. 127–136. 

 

Henry Roth and Marsette Vona. September (2012). Moving volume KinectFusion. 

British Machine Vision Conf. (BMVC), 2012. 

 



 

 

39 

 

Kok-Lim Low. (2002). Linear Least-Squares Optimization for Point-to-Plane ICP 

Surface Registration. Chapel Hill, University of North Carolina, April 2002. 

 

G. Blais and M. D. Levine. (1995). Registering multiview range data to create 3D 

computer objects. IEEE Transactions on Pattern Analysis and Machine 

Intelligence (PAMI), 1995. 

 

S. Parker, P. Shirley, Y. Livnat, C. Hansen, and P. Sloan. (1998). Interactive ray tracing 

for isosurface rendering. In Proceedings of Visualization, 1998. 

 

R. Hulik, V. Beran, M. Spanel, P. Krsek, and P. Smrz. (2012). Fast and accurate plane 

segmentation in depth maps for indoor scenes. In Proceedings of Intelligent 

Robots and Systems (IROS), 2012, pp.1665-1670. 

 

T. Whelan, M. Kaess, M.F. Fallon, H. Johannsson, J.J. Leonard and J.B. McDonald. 

(2012). Kintinuous: Spatially Extended KinectFusion. In RSS Workshop on 

RGB-D: Advanced Reasoning with Depth Cameras. Sydney, Australia. July 

2012. 

 

T. Whelan, H. Johannsson, M. Kaess, J.J. Leonard, and J.B. McDonald. (2013). Robust 

Real-Time Visual Odometry for Dense RGB-D Mapping In IEEE Intl. Conf. 

on Robotics and Automation. Karlsruhe, Germany. May 2013. 

 

Christian Kerl, Jurgen Sturm, and Daniel Cremers. (2013). Robust Odometry 

Estimation for RGB-D Cameras, In Proc. of the IEEE Int. Conf. on Robotics 

and Automation (ICRA), 2012. 

 

T. Kondo, S.H. Ong, J.H. Chuah and K.W.C. Foong. (2000). Roof-edge detection in 

range images. Sixth International Conference on Control, Automation, 

Robotics and Vision, 2000, Paper no. 143. 



 

 

40 

 

 

C. Tomasi and R. Manduchi. (1998). Bilateral filtering for gray and color images. In 

Proc. of the Int. Conf. on Computer Vision (ICCV), 1998. 

 

A. Handa and T. Whelan and J.B. McDonald and A.J. Davison. (2014). A Benchmark 

for RGB-D Visual Odometry, 3D Reconstruction and SLAM. IEEE Intl. 

Conf. on Robotics and Automation (ICRA), 2014. 

 

S. Hinterstoisser, C. Cagniart et al. (2012). Gradient Response Maps for Real-Time 

Detection of Texture-Less Objects. IEEE Transactions on Pattern Analysis 

and Machine Intelligence, 2012. 

 

Radu Bogdan Rusu and Steve Cousins. (2011). 3D is here: Point Cloud Library (PCL). 

IEEE International Conference on Robotics and Automation (ICRA), 

2011. 

 

J. Sturm and N. Engelhard and F. Endres and W. Burgard and D. Cremers. (2012). A 

Benchmark for the Evaluation of RGB-D SLAM Systems. Proc. of the 

International Conference on Intelligent Robot Systems (IROS), 2012. 

 

Lap-Fai Yu, Sai-Kit Yeung, Yu-Wing Tai, and Stephen Lin. (2013). Shading-based 

Shape Refinement of RGB-D Images. IEEE Conference on Computer 

Vision and Pattern Recognition (CVPR 2013), 2013, pp. 1415 – 1422. 

 

 



 

41 

 

Publications 

 

 
S. Chumplue, T. Kondo, I. Nilkhamhang, P. Bunnun and M. Sato. 2014. 3D Room 

Reconstruction Using Visual Odometry. Guided KinectFusion with RGB-D 

Camera. In Proceedings of the International Conference on Information 

and Communication Technology for Embedded Systems (ICICTES2014), 

Ayutthaya, Thailand, January 2014.  

 

S. Khamphuea, T. Kondo and I. Nilkhamhang. 2015. An integrated approach of ICP 

and visual odometry for KinectFusion based on scene complexity analysis. In 

Proceedings of the 20th International Symposium on Artificial Life and 

Robotics (AROB 2015), Oita, Japan, January, 2015, pp. 367-372. 

 

S. Khamphuea, T. Kondo and I. Nilkhamhang. 3D Room Reconstruction Using Depth-

Map-Based Scene Complexity Analysis with Switching Strategy Guided 

KinectFusion, to be submitted to Songklanakarin Journal Science and 

Technology (SJST). 

 


