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ABSTRACT

Many mathematical models were constructed to describe the physical phe-

nomena in nature. However, solving for the numerical result of these models generally

has high computational complexity, which may be impossible to simulate in suitable

time. In this thesis, we apply a model order reduction methods called Proper Orthogonal

Decomposition (POD), Discrete Empirical Interpolation Method (DEIM), and Gappy

Proper Orthogonal Decomposition (GPOD) on Allen-Cahn equation, which has been

widely used in material science and fluid dynamics. These methods can be used to ef-

ficiently decrease the dimension of the original system and hence they can reduce the

computational cost in the simulation. The numerical tests demonstrate that the resulting

reduced systems can accurately give approximate solutions to the original system with

various parameter values.

Keywords: Model order reduction, Allen-Cahn equation, Proper Orthogonal Decom-
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CHAPTER 1

INTRODUCTION

In the mathematical and computational field, model order reduction (MOR) is a tech-

nique for constructing efficient lower dimensional models for reducing the computa-

tional cost of large scale dynamical systems from partial differential equations (PDEs)

in numerical simulation. Many modern mathematical models are useful for describ-

ing physical phenomena in real life. However, the process for solving the numerical

solution of these mathematical models often has high computational complexity. To

overcome this problem, A reduced order model can be used to approximate the original

system while preserving the main properties and containing the important features of

the original model.

1.1 Motivation and Objective

This thesis considers nonlinear partial differential equation called Allen-Cahn equation.

This equation is used in mathematical physics, to describe the process of phase sepa-

ration. The Allen-Cahn equation has been widely used in many applications, such as

image analysis [10, 24], crystal growth [59], and motion by mean curvature flow [26].

In particular, it has become a basic model equation for the diffuse interface approach

developed to study phase transitions and interfacial dynamics in material science [21].

The focus of this thesis is to study and develop efficient reduced systems for Allen-

Cahn equation, which can decrease computational complexity of full discretized system

in numerical simulation. The advantage of a reduced model often lies in the decrease

of simulation time and the provision accurate results when compared to the high di-

mensional system. There are many MOR techniques such as Balance Truncation [42],
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Krylov subspace MOR methods [27], Projection based MOR [4], and the Moment-

matching method [23]. The Allen-Cahn equation is the nonlinear PDEs system. The

computational cost depends on the dimension of a system. Here we use MOR tech-

niques called Proper Orthogonal Decomposition (POD), Discrete Empirical Interpola-

tion Method (DEIM), and Gappy POD (GPOD) to construct the reduced model. POD

approach generally gives high accurate reduced models with much smaller dimensions

by generating a set of optimal basis that represents a given data set with minimum er-

ror. DEIM approach can efficiently reduce dimensions of nonlinear term in the reduced

model. We apply GPOD approach for reducing order nonlinear term. This method can

provide the approximation that minimizes error in the Euclidean norm. POD and DEIM

have been used to construct the reduced models in many applications, such as photo-

voltaic modules [46], the shallow water equation model [56], Navier-Stokes equations

[62] and Drift-Diffusion Equations [32]. GPOD has been applied as a data repair ap-

proach in many applications, such as [12, 43, 39]. The following are the objectives of

this thesis.

• Construct the reduced model of the Allen-Cahn equation by using POD-DEIM.

• Test parameter variation of the reduced models for the Allen-Cahn equation.

• Use new method called POD-GPOD for constructing reduced model and compare

with reduced model by using POD-DEIM.

1.2 Literature review

1.2.1 Allen-Cahn equation

The Allen-Cahn equation was first introduced by Cahn and Allen to describe the motion

of anti-phase boundaries in metallic alloys [3]. Feng and Prohl [26] used the equation,

as a simple model for phase separation of metallic components within a binary alloy

at a fixed temperature. Beně, Chalupecký and Mikula [10] proposed an algorithm of

pattern recovery (image segmentation), based on the solution of this equation. Yang

[63] proposed a Semi-Implicit method of this equation. A nonlocal version of this

equation which may model a variety of physical and biological phenomena, was derived
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by Bates, Brown and Han [9]. Cabrě [13] established the uniqueness of a saddle-shaped

solution to this equation. Several works have investigated numerical analysis of Allen-

Cahn equation [64, 22, 10, 24, 59].

1.2.2 Model Order Reduction (MOR)

Model order reduction (MOR) was developed in the area of systems and control the-

ory to reduce their complexity, while preserving their input-output behavior. There are

several works on MOR such as [37, 53, 5, 6, 14, 19, 61]. Numerical solutions of large

scale dynamical systems can be computationally expensive, because both space and

time discretizations are required to meet the desired accuracy. However, in many cases

much of the solution information lies within a subspace whose dimension is signifi-

cantly lower than the original full dimension used in the discretization. The purpose of

reduced order modeling (ROM) is to construct a low dimensional model that preserves

the necessary information from the full discretized system, while saving computational

time and memory storage .

Noor et al.[45] presented a reduced-basis technique and a computational

algorithm within the context for analyzing nonlinear structure. Peterson [49] demon-

strated that the reduced basis method can efficiently approximate the solution of in-

compressible viscous flow. Ravindran [36] demonstrated a reduced-order modeling ap-

proach for simulation and control of incompressible flows. Gunzburger, Peterson, and

Shadid [31] focused on reduced order modeling of time-dependent PDEs with multi-

ple parameters on the proper orthogonal decomposition (POD) approach to the reduced

order model. Carlberg and Ferhat [16] used a compact POD to compute a reduced

basis for an optimization-oriented reduced order model and applied this to compute

a reduced basis for model reduction of static systems [17]. There are several MOR

techniques used to model reduction, such as Balance Truncation [42], Krylov subspace

MOR methods [27], projection based MOR [4] and Moment-matching methods [23].

In this work, we focus on POD combined with the Discrete Empirical Interpolation

Method (DEIM) and Gappy POD for constructing efficiently reduced order system.



4

1.2.3 Proper Orthogonal Decomposition (POD) and Discrete Empirical Interpo-

lation Method (DEIM)

POD is a popular method for model reduction, first proposed by Lumley [41], which

is also known as Karhunen-Loève decomposition [40] or principal component analysis

[34]. It provides a technique for analyzing multidimensional data. This method con-

structs an orthonormal basis for representing the given data in a certain least squares

optimal sense. The basic properties of the POD method as it is applied to data compres-

sion and model reduction of finite dimensional linear systems have been studied [51].

Prajna [50] purposed sufficient conditions for preserving stability in POD model reduc-

tion. POD has been widely applied in many applications such as data analysis, data

compression and model reduction in various fields of engineering and science. Appli-

cations of POD include image processing [52], data compression, signal analysis [1],

turbulence modeling [33], control of fluids [28], electrical power grids [47], and mod-

eling and control of chemical reaction systems [54, 55].

Discrete Empirical Interpolation Method (DEIM) is a technique for approx-

imating nonlinear terms of a dynamical system to reduce computational complexity.

The DEIM approach was introduced by Chaturantabut and Sorensen [19], and approxi-

mates a nonlinear function by combining projection with interpolation. This approach is

a discrete variant of the empirical interpolation method (EIM) introduced by Barrault et

al. [8], which was originally described for an empirically derived infinite-dimensional

function space. The DEIM approximation was extended to localization (LDEIM) [48].

There are other nonlinear techniques for approximating nonlinear terms, such as the

Gauss-Newton with approximated tensors (GNAT) method [15], the best points interpo-

lation method [44] and Missing Point Estimation [7]. There are many works combining

a reduced model by POD with DEIM such as the photovoltaic module [46], the shal-

low water equations model [56], the Navier-Stokes equations [62] and Drift-Diffusion

Equations [32].
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1.2.4 Gappy Proper Orthogonal Decomposition (GPOD)

Gappy POD (GPOD) is a data repair approach, which was first purposed by Everson and

Sirovich [25]. Thanh, Damodaran, and Willcox [12] presented this in context of fluid

dynamic application. Bos et al., [11] presented this in context of solving the numerical

simulation of nonlinear system. Willcox [60] extented GPOD to handle unsteady flow

reconstruction problem. Lee and Mavris [39] developed this method for various prob-

lem in aerospace engineering. Murray and Ukeiley [43] applied GPOD in context of

particle image velocimetry (PIV) data for subsonic cavity flow.

1.3 Overview of Thesis

In this thesis, we focus on the Allen-Cahn equation, which has been widely used in

material science and fluid dynamics. The main goal of this thesis is to construct the

reduced system of this equation.

In Chapter 2, we introduce three model reduction methods i.e. POD, DEIM,

and GPOD for constructing a reduced model. This chapter reviews the process for each

of these model reduction methods.

In Chapter 3, we apply the reduced model approaches in Chapter 2 for the

Allen-Cahn equation. This chapter uses three model reduction methods to reduce order

of the full order discretized Allen-Cahn system, which is obtained by the finite differ-

ence method.

In Chapter 4, we present numerical examples for model reduction of the

Allen-Cahn equation, and test parameter variation. This chapter consists of numeri-

cal examples for homogeneous boundary conditions, and numerical examples for non-

homogeneous boundary conditions with different initial conditions.

In Chapter 5, we conclude all of work on this thesis and future work.



CHAPTER 2

METHODS

In this chapter, we discuss the model order reduction (MOR) techniques used in this

thesis. There are several excellent works on MOR such as [37, 53, 5, 6, 14, 19, 61].

MOR techniques used in this thesis are Proper Orthogonal Decomposition (POD), the

Discrete Empirical Interpolation Method (DEIM) ,and Gappy Proper Orthogonal De-

composition (GPOD). These methods are used to construct the reduced models in many

applications, such as the photovoltaic module [46], the shallow water equations model

[56], the Navier-Stokes equations [62], the particle image velocimetry (PIV) data for

subsonic cavity flow [43]. and the Drift-Diffusion Equations [32].

The model reduction process use a basic concept of singular value decom-

position (SVD). Note that every matrix A ∈ Cm×n has a singular value decomposition,

as given in the following theorem.

Theorem[29] Let A ∈ Cm×n. Then there exist unitary matrices V ∈ Cm×m, W ∈

Cn×n, and a diagonal matrix Σ ∈ Cm×n with nonnegative diagonal entries σ1 ≥ σ2 ≥

· · ·σmin{m,n} ≥ 0, such that

A = VΣW∗.

where W∗ is conjugate transpose of W.

If the rank of A is r, then r is the number of nonzero singular values [58]. Moreover, the

nonzero singular values of A are the square roots of the nonzero eigenvalues of A∗A

or AA∗ when the matrices have the same nonzero eigenvalues.
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In particular,

A∗A = (VΣW∗)∗(VΣW∗) = WΣ2W
∗

is eigendecomposition of A∗A and

AA∗ = (VΣW∗)(VΣW∗)∗ = VΣ2V
∗

is eigendecomposition of AA∗. This means that the columns of W are the eigenvectors

of A∗A, and the eigenvalues of A∗A are the squares of the singular values of A. The

columns of V are the eigenvectors of AA∗, and the eigenvalues of AA∗ are the squares

of the singular values of A.

2.1 Proper Orthogonal Decomposition (POD)

Proper Orthogonal Decomposition (POD) is a model reduction technique for construct-

ing a low dimensional model of a dynamic system. Its main idea is similar to the sin-

gular value decomposition (SVD). This method can be used to find a low-dimensional

basis efficiently. The POD basis is used in the projection for reducing the dimension of

the original full-order system.

Consider the following simplified nonlinear dynamical system in matrix

form, which can arise from the discretization of PDEs.

Ay(tj+1) = By(tj) + F(y(tj)). (2.1)

Therefore

y(tj+1) = A−1By(tj) +A−1F(y(tj)), (2.2)

where A and B are finite difference matrices, which are constructed from discretization

by the finite difference method (see Chapter 3), y is state variable, t is independent

variable, and F is a nonlinear vector-valued function.

In general, to obtain an accurate numerical solution, the dimension n of the

discretized system has to be large. This can result in a high computational cost.
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2.1.1 POD Basis

In this subsection, we construct the POD basis Vk = [v1, ...,vk] with k ≪ n from the

solution of full-order system (2.2) called snapshots in section 2.1. This was used to

construct the reduced system by POD introduced in the next subsection.

Suppose Vr = [v1, ...,vr] is an orthonormal basis for Y =span{y1,y2, ...,yns}.

Then, each snapshot yj for j = 1, ..., ns can be written as

yj = VrV
T
ryj

where r =dim(Y), and ns is the number of snapshots of (2.2).

We will construct an orthonormal basis of dimension k by using the singular

value decomposition. Suppose {yi}ki=1 be the best approximate in the form

ỹj = VkV
T
kyj

to the snapshot yj for all j = 1, ..., ns. Then it can be shown [18] that Vk = [v1, ...,vk]

consists of the first k columns of the left singular vectors corresponding to the k largest

singular values, and Vk is called POD basis of dimension k.

Definition[18] A POD basis of dimension k < r is a set of orthogonal basis Vk =

[v1, ...,vk] which is the solution of

min
∑ns

j=1

∥∥yj −VkV
T
kyj

∥∥2
2
.

We can construct the POD basis Vk from the following algorithm [61],

derived from the solution of the full system for constructing snapshots matrix S =

[y(t1), ...,y(tns)].
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Algorithm 1 Proper Orthogonal Decomposition (POD)
INPUT : S = [y(t1), ...,y(tns)] ∈ Rn×ns

OUTPUT : Vk = [v1, ...,vk] ∈ Rn×k

1. Perform the singular value decomposition (SVD) of S = VΣWT to produce orthog-

onal matrices V = [v1, ...,vr] ∈ Rn×r and W = [w1, ...,wr] ∈ Rns×r and diagonal

matrix Σ =diag(σ1, ..., σr) ∈ Rr×r, where r is the rank of S.

2. Set a threshold to select the k largest modes from the diagonal matrix Σ.

3. Select the columns in matrix V which correspond to modes selected in 2 to generate

the POD basis {v1, ...,vk} ∈ Rn×k and construct projection matrix Vk.

2.1.2 Reduced Order Model (ROM)

To use the POD basis Vk with k ≪ n for constructing the reduced system by POD, we

approximate the full order solution by y ≈ Vkỹ, so we have

Vkỹ(tj+1) = A−1(BVkỹ(tj)) +A−1(F(Vkỹ(tj))). (2.3)

Next, by applying the projection along the subspace generated by columns of Vk which

form an orthonormal basis
(
VT

kVk = I ∈ Rk×k
)
, we have

ỹ(tj+1) = (VT
kA

−1BVk)ỹ(tj) +VT
kA

−1(F(Vkỹ(tj))) (2.4)

with VT
kA

−1BVk = C and where C ∈ Rk×k can be precomputed and used in each

iteration.

Finally, we obtain the reduced system by POD (POD reduced system)

ỹ(tj+1) = C︸︷︷︸
precomputed:k×k

ỹ(tj)︸ ︷︷ ︸
k×1

+ VT
kA

−1︸ ︷︷ ︸
precomputed:k×n

F(Vkỹ(tj))︸ ︷︷ ︸
n×1

. (2.5)

Since computing the nonlinear term of (2.5) still depends on the large di-

mension n, which can result in high computational complexity. In the next section, we

use DEIM to approximate this nonlinear term.
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2.2 Discrete Empirical Interpolation Method (DEIM)

The Discrete Empirical Interpolation Method (DEIM) is a technique for constructing a

reduced order approximation in nonlinear terms of a dynamical system. The main con-

cept of DEIM is based on a greedy algorithm. This method uses the nonlinear function

of the full system to generate the snapshots used in the POD algorithm. This basis of

nonlinear snapshots is used to find the interpolation indices in the DEIM algorithm for

approximating the nonlinear term.

2.2.1 DEIM: Algorithm for selecting Interpolation Indices

The goal of this subsection is to reduce the computational cost of the nonlinear term

of the reduced system (2.5) constructed by POD. We started by collecting snapshots

from a nonlinear function of the full-order system for constructing the snapshot matrix

F = {F(y(t1)), ...,F(y(tns))}. Next, we use POD algorithm to find the POD basis

{u1, ...,um} with m ≪ n, called DEIM basis. Finally, we used this basis to find the

interpolation indices [ϱ1, ..., ϱm] by the following DEIM algorithm [19].

Algorithm 2 Discrete Empirical Interpolation Method (DEIM)
INPUT : {ui}mi=1 ⊂ Rn linearly independent

OUTPUT : ϱ⃗ = [ϱ1, ..., ϱm] ∈ Rm

1. ϱ1 =argmaxj=1,...,n{|uj1 |}

2. U = |u1|,P = [eϱ1 ], ϱ⃗ = [ϱ1]

3. for i = 2 to m do

4. Solve (PTU)c = PTui for c

5. r = ui −Uc

6. ϱi =argmaxj=1,...,n{|rji|}

7. U←
[
U ui

]
,P←

[
P eϱi

]
, ϱ⃗←

 ϱ⃗

ϱi


8. end for

The input to the DEIM algorithm is the linearly independent basis vector

{ui}mi=1. The output is the vector ϱ⃗ that contains the indices for unity components in
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matrix P with P = [eϱ1 , ..., eϱm ] ∈ Rn×m, where eϱi = [0 ... 0 1 0 ... 0]T ∈ Rn is the

ϱith column of the identity matrix I ∈ Rn×n for i = 1, ...,m.

We start with lines 1-2 of the algorithm. In line 1, the index ϱ1 are deter-

mined by the largest absolute value of element in u1. In line 2, we define U = u1 ∈

Rn×1 and P = eϱ1 ∈ Rn×1. The selected index is stored in ϱ1 ∈ R.

In line 3, we start the iterative process for i = 2, ...,m and solve
(
PTU

)
c = PTui

to find the constant c in line 4. In line 5, we consider the residual r = ui − Uc and

determine the next index by finding the largest component in |r|. In line 6, the index

ϱi are determined by the largest absolute value of element in r. In line 7, this index

is included in the matrix P by updating it with a new vector eϱi . From the iterative

process, we obtain U,P and ϱ⃗. Note that the matrix PTU is a nonsingular matrix as

proved in [18].

2.2.2 Nonlinear Approximation

We approximate the nonlinear term of (2.5) by the matrix U = [u1, ...,um] ∈ Rn×m

with m≪ n and P = [eϱ1 , ..., eϱm ] ∈ Rn×m, where eϱi = [0 ... 0 1 0 ... 0]T ∈ Rn is the

ϱith column of the identity matrix I ∈ Rn×n for i = 1, ...,m in the previous subsection.

This is used for constructing the reduced system by POD-DEIM. Consider nonlinear

term from POD,

N(y(tj)) = VT
kA

−1F (Vkỹ(tj)) . (2.6)

Suppose that F(Vkỹ(tj)) = f(tj) and define the approximation

f(tj) ≈ Uc(tj) (2.7)

where c(tj) can be determined by selecting m rows from the system (2.7), i.e. c(tj) can

be computed by solving the system

PT f(tj) = (PTU)c(tj), (2.8)

where multiplying by PT is equivalent to selecting m rows in this system (2.8).
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Since PTU is nonsingular [18], the approximation of (2.7) is

f(tj) ≈ Uc(tj) = U(PTU)−1PT f(tj). (2.9)

From f(tj) = F(Vkỹ(tj)), (2.9) can be written as

F(Vkỹ(tj)) = U(PTU)−1PTF(Vkỹ(tj)). (2.10)

Since F has to be evaluated for the original dimension before being interpolated by

the matrix P, we use the fact that F is a componentwise function, which implies

PTF(Vkỹ(tj)) = F(PTVkỹ(tj)) and

F(Vkỹ(tj)) ≈ U(PTU)−1F(PTVkỹ(tj)). (2.11)

Therefore (2.6) can now be written as

N(y(tj)) = VT
kA

−1U(PTU)−1F(PTVkỹ(tj)). (2.12)

From the POD reduced system (2.5), we obtain

ỹ(tj+1) = C︸︷︷︸
precomputed:k×k

ỹ(tj)︸ ︷︷ ︸
k×1

+VT
kA

−1U(PTU)−1︸ ︷︷ ︸
k×m

F(PTVkỹ(tj))︸ ︷︷ ︸
m×1

, (2.13)

where VT
kA

−1U(PTU)−1 = D and D ∈ Rk×m can be precomputed and used in each

iteration. We obtain the reduced system by the POD-DEIM approach (POD-DEIM

reduced system):

ỹ(tj+1) = C︸︷︷︸
precomputed:k×k

ỹ(tj)︸ ︷︷ ︸
k×1

+ D︸︷︷︸
precomputed:k×m

F(PTVkỹ(tj))︸ ︷︷ ︸
m×1

. (2.14)

The dimension n of the nonlinear term in (2.5) decreases to m with m ≪ n in (2.14),

which can reduce computational cost in the simulation.

2.3 Gappy POD (GPOD)

This section considers a similar approach to DEIM called Gappy POD for reducing the

computational cost of nonlinear term in a POD reduced system. This method uses a

dimension of the nonlinear basis less than the number of the indices used for selecting
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row in the approximation.

Suppose that q is the number of selected rows and m is the dimension of

the nonlinear basis. We obtain a rectangular matrix (skinny matrix) PTU ∈ Rq×m,

m < q for using in the nonlinear approximation. Consider the nonlinear function

F(Vkỹ(tj)) ≈ Uc(tj); c(tj) ∈ Rm and solve PTF(Vkỹ(tj)) ≈ (PTU)c(tj) for c(tj)

such that minc(tj)

∥∥PTF(Vkỹ(tj))− (PTU)c(tj)
∥∥2

2
, then

c(tj) = [(PTU)T (PTU)]−1(PTU)TPTF(Vkỹ(tj))

= (PTU)+PTF(Vkỹ(tj),

where PTU = [(PTU)T (PTU)]−1(PTU)T is the pseudoinverse of PTU.

Since F is a componentwise function

c(tj) = (PTU)+F(PTVkỹ(tj), (2.15)

and we obtain the reduced system by the POD-GPOD approach (POD-GPOD reduced

system):

ỹ(tj+1) = C︸︷︷︸
precomputed:k×k

ỹ(tj)︸ ︷︷ ︸
k×1

+ E︸︷︷︸
precomputed:k×q

F(PTVkỹ(tj))︸ ︷︷ ︸
q×1

, (2.16)

where E = VT
kA

−1U(PTU)+ and E ∈ Rk×q, which can be precomputed and used in

each iteration for m, q ≪ n.

In the next Chapter, we use these methods to construct reduced system for

Allen-cahn equation.



CHAPTER 3

MODEL PROBLEM: ALLEN-CAHN EQUATION

In this chapter, we present the model problem of the Allen-Cahn equation and construct

the corresponding discretized system by the finite difference method. Next, we use

POD, DEIM, and GPOD to construct reduced models.

3.1 Model Problem: Finite Difference Discretized System

This section consists of two subsections: the model problem of the Allen-Cahn equa-

tion, and its finite difference discretization.

3.1.1 Model Problem

Consider the Allen-Cahn equation of the form

∂u

∂t
= ϵ

∂2u

∂x2
+ F (u), x ∈ Ω, t ≥ 0 (3.1)

with F (u) = u− u3, and Ω = [a, b] , for some real number a, b with a < b where

the initial condition : u(x, 0) = f(x), and

the boundary conditions : u(a, t) = g1(t), u(b, t) = g2(t), t > 0.

Here, we have variables t for time and x for position, reaction term F (u) is nonlinear,

and with boundary conditions dependent on the problem for a domain Ω. In this context,

u(x, t) denotes the phase function of two kinds of liquid at each position in space, and

time and ϵ is a small positive parameter value, which is related to the width of the
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interface of two kinds of liquid or the interaction length, which describe the thickness

of phase boundary in the laboratory scale [3]. The term ϵ∂
2u

∂x2 represents the diffusion of

the liquid, and the term F (u) is the kinetic potential of the liquid. For u(x1, t1) = 1, it

means that at the time t1, the position x1 is filled only one kind of liquid; for u(x2, t2) =

−1, it means that at the time t2, the position x2 is filled only the other kind of liquid. For

t = 0, we will provide the initial data of u(x, 0). This equation has three constant steady

states, u = −1, u = 0, and u = 1. The middle state is unstable, but the states u = 1,

and u = −1 are attracting, and solutions tend to exhibit at areas close to these values

separated by interfaces that may coalesce or vanish on a long time scale, a phenomenon

known as metastability [57]. Thus it is called a bistable reaction-diffusion equation or

a reaction-diffusion equation with bistable nonlinearity.

3.1.2 Discretization

In this subsection, we present the discretization of the Allen-Cahn equation (3.1) using

the Crank-Nicolson finite difference method for the linear term and the forward Euler

method for the nonlinear term. The resulting discretized system is given by

u(xi, tj+1)− u(xi, tj)

∆t
=

ϵ

2

(
u(xi+1, tj)− 2u(xi, tj) + u(xi−1, tj)

(∆x)2

)
+

ϵ

2

(
u(xi+1, tj+1)− 2u(xi, tj+1) + u(xi−1, tj+1)

(∆x)2

)
+ u(xi, tj)− u3(xi, tj), (3.2)

where ∆x and ∆t are the step-sizes of space and time discretizations, respectively. The

notations i and j are the indices of the discretization in space and time. Equation (3.2)

can be written as

[
− ϵ

2(∆x)2
u(xi+1, tj+1) +

(
1

∆t
+

ϵ

(∆x)2

)
u(xi, tj+1)−

ϵ

2(∆x)2
u(xi−1, tj+1)

]
=[

ϵ

2(∆x)2
u(xi+1, tj) +

(
1

∆t
− ϵ

(∆x)2

)
u(xi, tj) +

ϵ

2(∆x)2
u(xi−1, tj)

]
+ u(xi, tj)

− u3(xi, tj). (3.3)
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In matrix notation, (3.3) is given by

Au(tj+1) = Bu(tj) + F(u(tj)), (3.4)

where A and B are a finite difference matrices.

The matrices A, B, F(u(tj)), and u(tj) a defined as follows:

A =



(
1
∆t

+ ϵ
(∆x)2

)
− ϵ

2(∆x)2
0 · · · 0

− ϵ
2(∆x)2

(
1
∆t

+ ϵ
(∆x)2

) . . . . . . ...

0
. . . . . . . . . 0

... . . . . . .
(

1
∆t

+ ϵ
(∆x)2

)
− ϵ

2(∆x)2

0 · · · 0 − ϵ
2(∆x)2

(
1
∆t

+ ϵ
(∆x)2

)


,

B =



(
1
∆t
− ϵ

(∆x)2

)
ϵ

2(∆x)2
0 · · · 0

ϵ
2(∆x)2

(
1
∆t
− ϵ

(∆x)2

) . . . . . . ...

0
. . . . . . . . . 0

... . . . . . .
(

1
∆t
− ϵ

(∆x)2

)
ϵ

2(∆x)2

0 · · · 0 ϵ
2(∆x)2

(
1
∆t
− ϵ

(∆x)2

)


,

F(u(tj)) =



u(x1, tj)− u3(x1, tj)

u(x2, tj)− u3(x2, tj)
...

u(xn−1, tj)− u3(xn−1, tj)

u(xn, tj)− u3(xn, tj)


,

u(tj+1) =



u(x1, tj+1)

u(x2, tj+1)
...

u(xn−1, tj+1)

u(xn, tj+1)


, u(tj) =



u(x1, tj)

u(x2, tj)
...

u(xn−1, tj)

u(xn, tj)


.

We can also write (3.4) in the form

u(tj+1) = A−1B︸ ︷︷ ︸
precomputed:n×n

u(tj)︸ ︷︷ ︸
n×1

+A−1︸︷︷︸
n×n

F(u(tj))︸ ︷︷ ︸
n×1

.
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In general, when the solution of the full discretized system is required to be

highly accurate, solving the system may require high computational complexity, or has

large discretized dimension.

3.2 Reduced system

This section presents three methods for efficiently reducing original model: Proper Or-

thogonal Decomposition (POD), the Discrete Empirical Interpolation Method (DEIM),

and Gappy POD (GPOD).

3.2.1 POD reduced system

In this subsection, we will reduce the dimension of the system for the Allen-Cahn equa-

tion using POD, described in Chapter 2.

For constructing the POD reduced system, we start by collecting ns snap-

shots u(t) from the solution of the full system of (3.4) to generate the snapshot matrix.

S = [u(t1), ...,u(tns)] .

Next, we will construct the POD basis Vk from the Algorithm 1 in Section 2.1.

We can use POD basis Vk for constructing the reduced system for the full

system, by the following two steps.

Step 1 We consider the representation u ≈ Vkũ, where Vk ∈ Rn×k, and ũ ∈ Rk

(k ≪ n)

Vkũ(tj+1) = A−1(BVkũ(tj)) +A−1(F(Vkũ(tj))). (3.5)

Step 2 We apply the projection along the subspace generated by the columns of Vk,

which forms an orthonormal basis (VT
kVk = I ∈ Rk×k). We have

ũ(tj+1) = (VT
kA

−1BVk)ũ(tj) +VT
kA

−1(F(Vkũ(tj))). (3.6)

Finally, we obtain the POD reduced system
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ũ(tj+1) = C︸︷︷︸
precomputed:k×k

ũ(tj)︸ ︷︷ ︸
k×1

+ VT
kA

−1︸ ︷︷ ︸
precomputed:k×n

F(Vkũ(tj))︸ ︷︷ ︸
n×1

. (3.7)

with VT
kA

−1BVk = C where C ∈ Rk×k can be precomputed and reused in each

iteration.

3.2.2 POD-DEIM reduced system

Since the nonlinear term of (3.7) in the previous subsection still has a large computa-

tional cost which depends on the dimension n, we will use DEIM to approximate this

nonlinear term by collecting snapshots from the nonlinear function of the full-order

system to construct the nonlinear snapshot matrix F = {F (u(t1)), ..., F (u(tns))}. This

matrix is used to find the projection basis [u1, ...,um] with m ≪ n by the POD al-

gorithm. Then this basis is used to find the interpolation indices [ϱ1, ..., ϱm] from the

DEIM algorithm.

We obtain U = [u1, ...,um] ∈ Rn×m and P = [eϱ1 , ..., eϱm ] ∈ Rn×m where

eϱi = [0 ... 0 1 0 ... 0]T ∈ Rn is the ϱith column of the identity matrix I ∈ Rn×n for

i = 1, ...,m. We define the nonlinear term from (3.7) by

N(ũ(tj)) = VT
kA

−1︸ ︷︷ ︸
k×n

F(Vkũ(tj))︸ ︷︷ ︸
n×1

. (3.8)

From subsection 2.2.2, by replacing ỹ by ũ in (3.8), we have the following DEIM ap-

proximation for N(ũ(tj)):

N(ũ(tj)) ≈ VT
kA

−1U(PTU)−1︸ ︷︷ ︸
k×m

F(PTVkũ(tj))︸ ︷︷ ︸
m×1

, (3.9)

From (3.7) and (3.9), we obtain the POD-DEIM reduced system:

ũ(tj+1) = C︸︷︷︸
precomputed:k×k

ũ(tj)︸ ︷︷ ︸
k×1

+ M︸︷︷︸
precomputed:k×m

F(PTVkũ(tj))︸ ︷︷ ︸
m×1

. (3.10)

where M = VT
kA

−1U(PTU)−1 and M ∈ Rk×m can be precomputed and used in each

iteration.
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3.2.3 POD-GPOD reduced system

Gappy POD (GPOD) can be use to reduce the computational cost in solving the Allen-

Cahn equation as shown in (2.16). From Section 2.3, by replacing ỹ by ũ in (3.7),

we use a dimension of the nonlinear basis, which is less than the number of selected

indices. We then obtain the POD-GPOD reduced system

ũ(tj+1) = C︸︷︷︸
precomputed:k×k

ũ(tj)︸ ︷︷ ︸
k×1

+ N︸︷︷︸
precomputed:k×q

F(PTVkũ(tj))︸ ︷︷ ︸
q×1

, (3.11)

where N = VT
kA

−1U(PTU)+ and N ∈ Rk×q and PTU = [(PTU)T (PTU)]−1(PTU)T

which can be precomputed and used in each iteration and q ≪ n and q > m.

Table 3.1: Computational complexity for the Allen-Cahn model.

System Complexity (one iteration step)

The full discretized system O(n3)

The POD reduced system O(k3 + nk2)

The POD-DEIM reduced system O(k3 +mk2)

The POD-GPOD reduced system O(k3 + qk2)

From Table 3.1, computational cost of the FD full system is O(n3) with

dimension n is large. The cost of the POD reduced system isO(k3+nk2) with k ≪ n.

We reduced nonlinear term of the POD reduced system by DEIM, and GPOD. We ob-

tain that the complexity of the POD-DEIM reduced system isO(k3+mk2) with m≪ n.

The complexity of the POD-GPOD reduced system is O(k3 + qk2) with q ≪ n, and

q > m.

Next Chapter presents the numerical results to demonstrate that the result-

ing reduced systems can accurately give approximate solutions to the original system.



CHAPTER 4

NUMERICAL RESULTS

This Chapter applies the model reduction techniques: POD, POD-DEIM, and POD-

GPOD approaches discuss in the previous chapters on Allen-Cahn equation. It mainly

considers two type of numerical tests. In Section 4.1, we test these model reduction

with the same parameter value for three different initial conditions. In Section 4.2, we

test these model reduction approaches with various parameter values for two different

initial conditions. In these tests, we use the MATLAB program for solving the numeri-

cal solutions.

4.1 Numerical examples with same parameter value

This section consists of three examples of model reduction for the Allen-Cahn equation.

Example 1 is the initial boundary value problem of this equation, with homogeneous

boundary conditions. Examples 2, and 3 are the initial boundary value problem with

non-homogeneous boundary conditions.

4.1.1 Example 1 (Homogeneous boundary conditions)

Consider the initial boundary value problem [20]

∂u

∂t
= ϵ

∂2u

∂x2
+ u− u3, x ∈ Ω, t ≥ 0,

with Ω =
[
2π
n
, 2π

]
, n ∈ Z+, n > 1,



21

the initial condition : u(x, 0) = 0.25 sin(x), and

the homogeneous boundary conditions : u(0, t) = 0, u(2π, t) = 0, t > 0.

In our numerical tests: the number of internal points is n = 600 in
[
2π, 2π

n

]
, the number

of time steps is nt = 700 on [0, 5] and ϵ = 0.01. We used a space step-size ∆x = 2π
n−1

,

time step-size ∆t = 5
nt−1

and the basis sets used in POD, DEIM, and GPOD approxi-

mations were constructed from ns = 700 snapshots.

Numerical Result of Finite Difference full-order System

First, we solved the numerical solution of the full discretized system. We

obtained the evolution of phase function of Allen-Cahn equation from time t = 0 to

t = 5 as shown in Figure 4.1.

Figure 4.1: Solution of the full discretized system for Example 1 with ϵ = 0.01.

Numerical Results of POD, POD-DEIM, and POD-GPOD Reduced Systems

Next, we solved the numerical solution of the reduced system and used di-

mensions of POD basis k = 30 and DEIM basis m = 50. We obtained the approximate

evolution of phase function of Allen-Cahn equation from POD, and POD-DEIM ap-

proaches for time t = 0 to t = 5 as shown in Figures 4.2 and 4.3, respectively. Finally,

GPOD is used for reducing the complexity of the nonlinear term from the POD reduced
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system using a dimension of nonlinear basis m that is less than the number of selected

rows q. The dimension of POD basis, nonlinear basis, and the number of selected rows

in this numerical test are k = 30,m = 50, and q = 80, respectively. We obtained the

evolution of the phase function of Allen-Cahn equation by using POD-GPOD method

for time t = 0 to t = 5 as shown in Figure 4.4.

Figure 4.2: Solution of the POD reduced system for Example 1 with ϵ = 0.01

Figure 4.3: Solution of the POD-DEIM

reduced system for Example 1 with ϵ =

0.01

Figure 4.4: Solution of the POD-GPOD

reduced system for Example 1 with ϵ =

0.01
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Figure 4.5: Plot of the singular values of

the snapshot matrix S for Example 1 from

SVD using POD basis.

Figure 4.6: Plot of the singular values of

the nonlinear snapshot matrix F for Exam-

ple 1 from SVD using DEIM basis.

Runtime and error

The error approximations from the reduced systems constructed by POD,

POD-DEIM, and POD-GPOD approaches are defined as

e =
∥u− ũ∥2
∥u∥2

(4.1)

where u and ũ are snapshot matrices from solving the full discretized system and re-

duced system, respectively. For the POD, POD-DEIM, and POD-GPOD reduced sys-

tems, we computed the runtime and error using the MATLAB program, as shown in

Table 4.1, Table 4.2, and Table 4.3, respectively.

Table 4.1: Runtime and error of the POD reduced systems for Example 1.

POD basis (k) Error Runtime

10 2.4601× 10−6 3.546203 s

20 3.7046× 10−7 3.655103 s

30 1.7271× 10−7 3.824681 s

40 1.0819× 10−7 3.916436 s

50 3.3184× 10−8 3.944950 s

60 3.7444× 10−8 4.047922 s

70 3.3093× 10−8 4.050324 s
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Table 4.2: Runtime and error of the POD-DEIM reduced systems using POD basis with di-

mention k = 30 for Example 1.

DEIM basis (m) Error Runtime

10 3.2007× 10−3 0.017012 s

20 3.4134× 10−4 0.017546 s

30 1.1348× 10−4 0.019273 s

40 1.4441× 10−5 0.023158 s

50 2.4285× 10−6 0.024547 s

60 2.7139× 10−6 0.026493 s

70 7.6205× 10−7 0.026964 s

For the POD-GPOD reduced system, we computed the runtime and error

from (4.1), as shown in Table 4.3. Error of the POD-GPOD reduced systems with the

dimension of POD basis k = 30, for Example 1, where m is the dimension of nonlinear

basis, and q is the number of selected rows.

Table 4.3: Runtime and error of the POD-GPOD reduced systems for Example 1.

m q Error Runtime

10 40 3.1224× 10−3 0.028104 s

20 50 4.8364× 10−4 0.028222 s

30 60 3.9332× 10−5 0.029131 s

40 70 3.7254× 10−6 0.029560 s

50 80 9.5442× 10−7 0.031125 s

60 90 6.7214× 10−7 0.033241 s

70 100 6.5710× 10−7 0.034160 s
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Figure 4.7: Error plot of the approxima-

tion from reduced system with dimension

of POD basis k for Example 1.

Figure 4.8: Error plot of the approxima-

tion the POD-DEIM, and POD-GPOD re-

duced systems with dimension of DEIM or

nonlinear basis m for Example 1.

From Figures 4.5 and 4.6, the decreasing of singular values of the snap-

shot matrices S,F and then beginning to stabilize implies that solution information

lies within a subspace whose dimension is significantly lower than the full dimension

used in the discretization. That is, we can reduce the dimensions of the full discretized

system. It can be observed that the decrease of the error in Figure 4.7 corresponds to

the increase of dimension of POD basis in Table 4.1. At a fixed POD dimension of

k = 30, the decrease of the error corresponds to the increase of dimension of DEIM

basis in Table 4.2. At a fixed POD dimension of k = 30, the decrease of the error

corresponds to the increase of dimension of nonlinear basis, and the number of selected

rows in Table 4.3. In Figure 4.8, the error for the POD-GPOD reduced system is de-

creased more than the error from the POD-DEIM reduced system. The runtime of the

full discretized system with ϵ = 0.01 is 8.789236 seconds. The average runtime of the

reduced systems by POD approach was almost 2.3 times less than the full discretized

system (Table 4.1). The average runtime using POD-DEIM approach was almost 414

times less than the runtime of the full discretized system (Table 4.2). The average run-

time using POD-GPOD approach was almost 334 times less than the runtime of the full

discretized system (Table 4.3). Tables 4.4 summarizes the average error and the scaled

runtime of the reduced systems when compared with the full-order system (the runtime

of full-order system is normalized to be one).
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Table 4.4: The ratio of the runtime of these systems to the runtime of the full discretized system,

and error of these systems for Example 1 with k = 30, m = 40, and q = 70.

System Error Ratio of runtime

The full discretized system - 1

The POD reduced system O(10−7) 1/2.3

The POD-DEIM reduced system O(10−5) 1/382

The POD-GPOD reduced system O(10−6) 1/303

4.1.2 Example 2 (Non-homogeneous boundary conditions)

Consider the initial boundary value problem [57]

∂u

∂t
= ϵ

∂2u

∂x2
+ u− u3, x ∈ Ω, t ≥ 0,

for Ω = [−1, 1], with

the initial condition : u(x, 0) = 0.53x+ 0.47 sin(1.5πx), and

the non homogeneous boundary conditions : u(−1, t) = −1, u(1, t) = 1, t > 0.

In our numerical tests: the number of internal points is n = 600 in [−1, 1], the number

of time steps is nt = 700 on [0, 60] and ϵ = 0.01. We used a space step-size ∆x = 2
n−1

,

time step-size ∆t = 60
nt−1

and the basis sets used in POD, DEIM, and GPOD approxi-

mations were constructed from ns = 700 snapshots.

Numerical Result of Finite Difference full-order System

First, we solved the numerical solution of the full discretized system. We

obtained the evolution of phase function of Allen-Cahn equation from time t = 0 to

t = 60 as shown in Figure 4.9.
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Figure 4.9: Solution of the full discretized system for Example 2 with ϵ = 0.01.

Numerical Results of POD, POD-DEIM, and POD-GPOD Reduced Systems

Next, we solved the numerical solution of reduced system and used dimen-

sions of POD basis k = 50 and DEIM basis m = 60. We obtained the approximate

evolution of phase function of Allen-Cahn equation from POD, and POD-DEIM ap-

proaches for time t = 0 to t = 60 as shown in Figure 4.10 and 4.11, respectively.

Finally, GPOD is used for reducing the complexity of the nonlinear term from the POD

reduced system by using a dimension of nonlinear basis m that is less than the number

of selected rows q. The dimension of POD basis, nonlinear basis, and the number of

selected rows in this numerical test are k = 50,m = 50, and q = 80, respectively. We

obtained the evolution of the phase function of Allen-Cahn equation by using POD-

GPOD method for time t = 0 to t = 60 as shown in Figure 4.12.

Figure 4.10: Solution of the POD reduced system with ϵ = 0.01 for Example 2.
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Figure 4.11: Solution of the POD-DEIM

reduced system for Example 2 with ϵ =

0.01.

Figure 4.12: Solution of the POD-GPOD

reduced system for Example 2 with ϵ =

0.01.

Figure 4.13: Plot of the singular values

of the snapshot matrix S from SVD using

POD basis for Example 2.

Figure 4.14: Plot of the singular values of

the nonlinear snapshot matrix F from SVD

using DEIM basis for Example 2.

For the POD, POD-DEIM, and POD-GPOD reduced systems of Example

2, we computed the runtime and error from (4.1), as shown in Table 4.5, Table 4.6, and

Table 4.7 respectively.
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Table 4.5: Runtime and error of the POD reduced systems for Example 2.

POD basis (k) Error Runtime

10 6.2880× 10−5 3.414315 s

20 1.1173× 10−5 3.472555 s

30 6.4042× 10−6 3.462643 s

40 2.0096× 10−6 3.487229 s

50 3.0130× 10−8 3.573060 s

60 5.3100× 10−9 3.596739 s

70 4.1197× 10−9 3.542982 s

Table 4.6: Runtime and error of the POD-DEIM reduced systems using POD basis with di-

mension k = 50 for Example 2.

DEIM basis (m) Error Runtime

10 8.7695× 10−3 0.014838 s

20 7.8254× 10−4 0.015784 s

30 1.1173× 10−4 0.016634 s

40 4.2691× 10−5 0.017479 s

50 3.2536× 10−6 0.025762 s

60 1.0416× 10−7 0.027731 s

70 1.1034× 10−7 0.027573 s

For the POD-GPOD reduced system, we computed the runtime and error

from (4.1), as shown in Table 4.7. Error of the POD-GPOD reduced systems with use

POD basis of dimension k = 50, for Example 2, where m is the dimension of nonlinear

basis, and q is the number of selected rows.
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Table 4.7: Runtime and error of the POD-GPOD reduced systems for Example 2.

m q Error Runtime

10 40 6.8678× 10−3 0.038945 s

20 50 5.3332× 10−4 0.039222 s

30 60 4.6130× 10−5 0.039542 s

40 70 5.1778× 10−6 0.040523 s

50 80 1.8131× 10−6 0.041596 s

60 90 2.9794× 10−8 0.043719 s

70 100 2.9774× 10−8 0.044837 s

Figure 4.15: Error plot of the approxima-

tion from POD reduced system with differ-

ent dimensions of POD basis k for Exam-

ple 2.

Figure 4.16: Error plot of the approxima-

tion the POD-DEIM, and POD-GPOD re-

duced systems with dimension of DEIM or

nonlinear basis m for Example 2.

From Figures 4.13 and 4.14, the decreasing of singular values of the snap-

shot matrices S,F and then beginning to stabilize implies that solution information lies

within a subspace whose dimension is significantly lower than the full dimension used

in the discretization. That is, we can reduce the dimensions of the full discretized sys-

tem. It can be observed that the decrease of the error in Figure 4.15 corresponds to

the increase of dimension of POD basis in Table 4.5. At a fixed POD dimension of

k = 50, the decrease of the error corresponds to the increase of dimension of DEIM

basis in Table 4.6. At a fixed POD dimension of k = 50, the decrease of the error

corresponds to the increase of dimension of nonlinear basis, and the number of selected
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rows in Table 4.7. In Figure 4.16, the error for the POD-GPOD reduced system is de-

creased more than the error from the POD-DEIM reduced system. The runtime of the

full discretized system with ϵ = 0.01 is 11.361802 seconds. The average runtime of the

reduced systems by POD approach was almost 3.14 times less than the runtime of the

full discretized system (Table 4.5). The average runtime using POD-DEIM approach

was almost 550 times less than the runtime of the full discretized system (Table 4.6).

The average runtime using POD-GPOD approach was almost 283 times less than the

runtime of the full discretized system (Table 4.7). Tables 4.8 summarizes the average

error and the scaled computational time of the reduced systems when compared to the

full-order system (the runtime of full-order system is normalized to be one).

Table 4.8: The ratio of the runtime of these systems to the runtime of the full discretized system,

and error of these systems for Example 2 with k = 50, m = 40, and q = 70.

System Error Ratio of runtime

The full discretized system - 1

The POD reduced system O(10−8) 1/3.2

The POD-DEIM reduced system O(10−5) 1/668

The POD-GPOD reduced system O(10−6) 1/284

4.1.3 Example 3 (Non-homogenious boundary conditions) with Square Block Ini-

tial Data

In this subsection, we used a square block initial condition to test model reduction

approaches. The initial condition is defined by a piecewise constant function with value

a on wave crest and value b on wave trough. We used the following inputs: internal

points (n = 100) in [−1, 1], time steps (nt = 600) on [0, 12] and ϵ = 0.01. We used a

space step-size ∆x = 2
n−1

, time step-size ∆t = 12
nt−1

and the basis sets used in POD,

DEIM, and GPOD approximations were constructed from ns = 600 snapshots.



32

Numerical Result of Finite Difference full-order System

First, we selected wave crest a = 1 and wave trough b = −1. We solved

the numerical solution of the full discretized system. When the time increases, the

evolution of the Allen-Cahn equation still keeps the phase separation after long time

calculation in Figure 4.17.

Figure 4.17: Solution of the full discretized system for Example 3 with ϵ = 0.01

Numerical Results of POD, POD-DEIM, and POD-GPOD Reduced Systems

Next, we solved the numerical solution of the reduced system and used di-

mensions of POD basis k = 50 and DEIM basis m = 60. We obtained the approximate

evolution of phase function of Allen-Cahn equation from POD, and POD-DEIM ap-

proaches for time t = 0 to t = 12 as shown in Figures 4.18 and 4.19, respectively.

Finally, GPOD is used for reducing the complexity of the nonlinear term from the POD

reduced system using a dimension of nonlinear basis m that is less than the number

of selected rows q. The dimension of POD basis, nonlinear basis, and the number of

selected rows in this numerical test are k = 50,m = 60, and q = 90, respectively. We

obtained the evolution of the phase function of Allen-Cahn equation by using POD-

GPOD method for time t = 0 to t = 12 as shown in Figure 4.20.
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Figure 4.18: Solution of the POD reduced system with ϵ = 0.01 for Example 3.

Figure 4.19: Solution of the POD-DEIM

reduced system for Example 3 with ϵ =

0.01.

Figure 4.20: Solution of the POD-GPOD

reduced system for Example 3 with ϵ =

0.01.

Figure 4.21: Plot of the singular values

of the snapshot matrix S from SVD using

POD basis for Example 3.

Figure 4.22: Plot of the singular values of

the nonlinear snapshot matrix F from SVD

using DEIM basis for Example 3.
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For the POD, POD-DEIM, and POD-GPOD reduced systems of Example

3, we computed the runtime and error from (4.1), as shown in Table 4.9, Table 4.10,

and Table 4.11 respectively.

Table 4.9: Runtime and error of the POD reduced systems for Example 3.

POD basis (k) Error Runtime

10 1.0178× 10−3 0.106746 s

20 1.2202× 10−7 0.107846 s

30 4.9045× 10−11 0.110317 s

40 7.2924× 10−14 0.113508 s

50 7.3258× 10−14 0.115325 s

60 7.3410× 10−14 0.124748 s

70 7.3256× 10−14 0.161217 s

Table 4.10: Runtime and error of the POD-DEIM reduced systems with POD basis with di-

mension k = 50 for Example 3.

DEIM basis (m) Error Runtime

10 4.3498× 10−3 0.012784 s

20 7.4722× 10−4 0.015815 s

30 4.3474× 10−6 0.019955 s

40 7.8929× 10−10 0.021829 s

50 1.7124× 10−10 0.023489 s

60 2.4349× 10−11 0.023178 s

70 2.0649× 10−11 0.024868 s
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For the POD-GPOD reduced system, we computed the runtime and error

from (4.1), as shown in Table 4.11. Error of the POD-GPOD reduced systems with

POD basis of dimension k = 50 for Square Block Initial Data of Example 3, where m

is the dimension of nonlinear basis, and q is the number of selected rows.

Table 4.11: Runtime and error of the POD-GPOD reduced systems for Example 3.

m q Error Runtime

10 40 2.5195× 10−3 0.028002 s

20 50 1.9981× 10−4 0.028197 s

30 60 1.0603× 10−7 0.030217 s

40 70 1.7405× 10−11 0.030498 s

50 80 1.2332× 10−11 0.031554 s

60 90 3.8857× 10−12 0.032192 s

70 100 1.2603× 10−13 0.033486 s

Figure 4.23: Error plot of the approxima-

tion from POD reduced system with differ-

ent dimensions of POD basis k for Exam-

ple 3.

Figure 4.24: Error plot of the approxima-

tion the POD-DEIM, and POD-GPOD re-

duced systems with dimension of DEIM or

nonlinear basis m for Example 3.
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From Figures 4.21 and 4.22, the decreasing of singular values of the snap-

shot matrices S,F and then beginning to stabilize implies that solution information lies

within a subspace whose dimension is significantly lower than the full dimension used

in the discretization. That is, we can reduce the dimensions of the full discretized sys-

tem. It can be observed that the decrease of the error in Figure 4.23 corresponds to the

increase of dimension of POD basis in Table 4.9. At a fixed POD dimension of k = 50,

the decrease of the error corresponds to the increase of dimension of DEIM basis in Ta-

ble 4.10. At a fixed POD dimension of k = 50, the decrease of the error corresponds to

the increase of dimension of nonlinear basis, and the number of selected rows in Table

4.11. In Figure 4.24, the error for the POD-GPOD reduced system is decreased more

than the error from the POD-DEIM reduced system. The runtime of the full discretized

system with ϵ = 0.01 is 0.510052 seconds. The average runtime of the reduced systems

by POD approach was almost 4.2 times less than the runtime of the full discretized

system (Table 4.9). The average runtime using POD-DEIM approach was almost 33.3

times less than the runtime of the full discretized system (Table 4.10). The average

runtime using POD-GPOD approach was almost 19 times less than the runtime of the

full discretized system (Table 4.11).

In numerical Example 3, we concluded that the initial condition in example

2 can be changed to discontinuous initial condition, and reduced computational cost

with the same boundary conditions.

Table 4.12: The ratio of the runtime of these systems to the runtime of the full discretized

system, and error of these systems for Example 3 with k = 50, m = 60, and q = 90.

System Error Ratio of runtime

The full discretized system - 1

The POD reduced system O(10−14) 1/4.4

The POD-DEIM reduced system O(10−11) 1/22

The POD-GPOD reduced system O(10−12) 1/16
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From Tables 4.4, 4.8, and 4.12, the ratio of the runtime of the full discretized

system is scaled to be 1. The POD reduced system is more accurate than the POD-

DEIM, and POD-GPOD reduced systems. However, the POD reduced system may not

efficiently decrease the computational time. When DEIM and GPOD are used, respec-

tively, to obtain the POD-DEIM and POD-GPOD reduced systems, the computational

time can substantially decrease further. The POD-GPOD reduced system is relatively

more accurate than the POD-DEIM reduced system. However, the POD-DEIM reduced

system uses less computational time than the POD-GPOD reduced system.

4.2 Numerical examples with various parameter values

This section consists of parameter variation for two different initial conditions as used

for Example 1 and Example 2 in Section 4.1. Example 1 is the initial boundary value

problem of this equation, with homogeneous boundary conditions. Example 2 is the

initial boundary value problem with non-homogeneous boundary conditions.

4.2.1 Parameter Variation of Example 1 (Homogeneous boundary conditions)

In this subsection, we consider the reduced systems using various parameters. We used

snapshots from the full systems with ϵ = 0.01, 0.99, as shown in Figure 4.25 and 4.26,

respectively, to construct snapshot matrices S1, S2, F1, and F2. These snapshot matrices

were used to construct basis sets for constructing reduced models of full systems with

different parameter values ϵ, i.e. ϵ = 0.2, 0.5, 0.8 as shown in Figures 4.27, 4.28, 4.29,

respectively. Notice from Figures 4.25-4.29 that are the behaviors of the solutions are

clearly different as the parameter changes.
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Figure 4.25: Solution of the full dis-

cretized system for Example 1 with ϵ =

0.01.

Figure 4.26: Solution of the full dis-

cretized system for Example 1 with ϵ =

0.99.

Test parameter variation

Figure 4.27: Solution of the full dis-

cretized system for Example 1 with ϵ =

0.2.

Figure 4.28: Solution of the full dis-

cretized system for Example 1 with ϵ =

0.5.

Figure 4.29: Solution of the full discretized system for Example 1 with ϵ = 0.8.
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Figure 4.30: Plot of the singular values

of the snapshot matrix [S1,S2] from SVD

using POD basis for Example 1.

Figure 4.31: Plot of the singular values

of the nonlinear snapshot matrix [F1,F2]

from SVD using DEIM basis for Example

1.

In Table 4.13, Table 4.14, and Table 4.15, we present average runtimes and average

errors from the parameter variation using ϵ = 0.2, 0.5, and 0.8, for POD, POD-DEIM,

and POD-GPOD approaches, respectively. We computed the runtime and error from

(4.1).

Table 4.13: Average runtime and average error of the POD reduced systems with various

parameter values for Example 1.

POD basis (k) Average error Average runtime

10 2.9347× 10−3 3.455903 s

20 2.1171× 10−4 3.597402 s

30 2.1341× 10−5 3.777328 s

40 3.8210× 10−7 3.987502 s

50 5.0148× 10−8 4.044850 s

60 4.9060× 10−8 4.052223 s

70 3.7179× 10−9 4.055364 s
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Table 4.14: Average runtime and average error of the POD-DEIM reduced systems with vari-

ous parameter values and POD basis with dimension k = 50 for Example 1.

DEIM basis (m) Average error Average runtime

10 2.4654× 10−3 0.016540 s

20 2.8762× 10−4 0.017132 s

30 2.3596× 10−4 0.019433 s

40 2.3799× 10−5 0.021238 s

50 5.6333× 10−6 0.023897 s

60 1.8494× 10−7 0.025333 s

70 4.0323× 10−8 0.027674 s

Table 4.15 shows the average error of the POD-GPOD reduced systems

with POD basis of dimension k = 50 for Example 1, where m is the dimension of

nonlinear basis, and q is the number of selected rows.

Table 4.15: Average runtime and average error of the POD-GPOD reduced systems with vari-

ous parameter values for Example 1.

m q Average error Average runtime

10 40 7.6060× 10−4 0.033527 s

20 50 1.6507× 10−4 0.034459 s

30 60 4.7335× 10−5 0.034520 s

40 70 3.3937× 10−6 0.034978 s

50 80 2.7384× 10−7 0.035124 s

60 90 1.3214× 10−7 0.035971 s

70 100 1.2307× 10−8 0.036525 s
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Figure 4.32: Average error plot of the

approximation from POD reduced system

with different dimensions of POD basis k

for Example 1.

Figure 4.33: Average error plot of the

approximation the POD-DEIM, and POD-

GPOD reduced systems with dimension of

DEIM or nonlinear basis m for Example 1.

Similar to the previous examples, From Figures 4.30 and 4.31, the decreas-

ing of singular values of the snapshot matrices S,F and then beginning to stabilize

implies that solution information lies within a subspace whose dimension is signifi-

cantly lower than the full dimension used in the discretization. That is, we can reduce

the dimensions of the full discretized system. From Table 4.13, Table 4.14, and Table

4.15, we conclude that POD, POD-DEIM, and POD-GPOD can be used to reduce com-

putational cost in the simulation at various parameter values. It can be observed that the

decrease of the average error in Figure 4.32 corresponds to the increase of dimension

of POD basis in Table 4.13. At a fixed POD dimension of k = 50, the decrease of the

average error corresponds to the increase of dimension of DEIM basis in Table 4.14. At

a fixed POD dimension of k = 50, the decrease of the average error corresponds to the

increase of dimension of nonlinear basis, and the number of selected rows in Table 4.15.

In Figure 4.33, the average error for the POD-GPOD reduced system is decreased more

than the average error from the POD-DEIM reduced system. The average runtime of the

full discretized systems with various parameter values ϵ = 0.2, 0.5 and 0.8 is 8.645238

seconds. The average runtime of the reduced systems by POD approach was almost

2.32 times less than the average runtime of the full discretized system with various

parameter values (Table 4.13). The average runtime using POD-DEIM approach was

almost 410 times less than the average runtime of the full discretized system with var-
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ious parameter values (Table 4.14). The average runtime using POD-GPOD approach

was almost 253 times less than the average runtime of the full discretized system with

various parameter values (Table 4.15). Table 4.16 summarizes the accuracy and the

scaled computational time of the reduced systems when compared with the full-order

system (the runtime of full-order system is normalized to be one).

Table 4.16: The ratio of the average runtime of these systems to the runtime of the full dis-

cretized system, and average error of these systems for Example 1 with various parameter values

using k = 50, m = 40, and q = 70.

System Average error Ratio of average runtime

The full discretized system - 1

The POD reduced system O(10−8) 1/2.1

The POD-DEIM reduced system O(10−5) 1/411

The POD-GPOD reduced system O(10−6) 1/254

4.2.2 Parameter Variation of Example 2 (Non-homogeneous boundary condi-

tions)

In this subsection, we consider the reduced systems using various parameter values. We

used snapshots from the full systems with ϵ = 0.011, 0.009, as shown in Figure 4.34

and Figure 4.35, respectively, to construct snapshot matrices S1, S2, F1, and F2. These

snapshot matrices were used to construct basis sets for constructing reduced models of

full systems with different parameter values ϵ, i.e. ϵ = 0.0095, 0.01, 0.0105, as shown

in Figures 4.36, 4.37, 4.38, respectively. Notice from Figures 4.34-4.38 that are the

behaviors of the solutions are clearly different as the parameter changes.
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Figure 4.34: Solution of the full dis-

cretized system for Example 2 with ϵ =

0.009.

Figure 4.35: Solution of the full dis-

cretized system for Example 2 with ϵ =

0.011.

Test parameter variation

Figure 4.36: Solution of the full dis-

cretized system for Example 2 with ϵ =

0.0095.

Figure 4.37: Solution of the full dis-

cretized system for Example 2 with ϵ =

0.01.

Figure 4.38: Solution of the full discretized system for Example 2 with ϵ = 0.0105.
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Figure 4.39: Plot of the singular values

of the snapshot matrix [S1,S2] from SVD

using POD basis for Example 2.

Figure 4.40: Plot of the singular values

of the nonlinear snapshot matrix [F1,F2]

from SVD using DEIM basis for Example

2.

In Table 4.17, Table 4.18, and Table 4.19, we present average runtimes and average

errors from the parameter variation using ϵ = 0.0105, 0.01, and 0.0095, for POD, POD-

DEIM, and POD-GPOD approaches, respectively. We computed the runtime and error

from (4.1).

Table 4.17: Average runtime and average error of the POD reduced systems with various

parameter values for Example 2.

POD basis (k) Average error Average runtime

10 6.9201× 10−5 3.332072 s

20 1.3413× 10−6 3.543711 s

30 1.2395× 10−7 3.633455 s

40 4.2427× 10−8 3.633789 s

50 4.7703× 10−9 3.699877 s

60 3.0531× 10−9 3.700031 s

70 3.0827× 10−10 3.834290 s
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Table 4.18: Average runtime and average error of the POD-DEIM reduced systems with vari-

ous parameter values and POD basis with dimension k = 50 for Example 2.

DEIM basis (m) Average error Average runtime

10 2.8847× 10−3 0.016453 s

20 1.7506× 10−3 0.015786 s

30 3.5277× 10−4 0.016378 s

40 4.8921× 10−5 0.017002 s

50 2.8691× 10−6 0.021445 s

60 1.9001× 10−7 0.022776 s

70 4.7991× 10−8 0.024003 s

Table 4.19 shows the average error of the POD-GPOD reduced systems

with POD basis of dimension k = 50 for Example 2, where m is the dimension of

nonlinear basis ,and q is the number of selected rows.

Table 4.19: Average runtime and average error of the POD-GPOD reduced systems with vari-

ous parameter values for Example 2.

m q Average error Average runtime

10 40 1.8960× 10−3 0.038985 s

20 50 5.4464× 10−4 0.039494 s

30 60 7.5895× 10−5 0.040552 s

40 70 1.1070× 10−6 0.041449 s

50 80 2.4638× 10−7 0.042578 s

60 90 1.3442× 10−8 0.043955 s

70 100 3.8939× 10−9 0.045869 s
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Figure 4.41: Average error plot of the

approximation from POD reduced system

with different dimensions of POD basis k

for Example 2.

Figure 4.42: Average error plot of the

approximation the POD-DEIM, and POD-

GPOD reduced systems with dimension of

DEIM or nonlinear basis m for Example 2.

Similar to the previous examples, From Figures 4.39 and 4.40, the decreas-

ing of singular values of the snapshot matrices S,F and then beginning to stabilize

implies that solution information lies within a subspace whose dimension is signifi-

cantly lower than the full dimension used in the discretization. Then we can decrease

dimensions of the full discretized system. From Table 4.17, Table 4.18, and Table 4.19,

we conclude that POD, POD-DEIM, and POD-GPOD can be used to reduce compu-

tational cost in the simulation at various parameter values. It can be observed that the

decrease of the average error in Figure 4.41 corresponds to the increase of dimension

of POD basis in Table 4.17. At a fixed POD dimension of k = 50, the decrease of the

average error corresponds to the increase of dimension of DEIM basis in Table 4.18. At

a fixed POD dimension of k = 50, the decrease of the average error corresponds to the

increase of dimension of nonlinear basis, and the number of selected rows in Table 4.19.

In Figure 4.42, the average error for the POD-GPOD reduced system is decreased more

than the average error from the POD-DEIM reduced system. The average runtime of the

full discretized systems with various parameter values ϵ = 0.0095, 0.01 and 0.0105 is

11.226242 seconds. The average runtime of the reduced systems by POD approach was

almost 3.11 times less than the average runtime of the full discretized system with var-

ious parameter values (Table 4.17). The average runtime using POD-DEIM approach

was almost 622.2 times less than the average runtime of the full discretized system with
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various parameter values (Table 4.18).

Table 4.20: The ratio of the average runtime of these systems to the runtime of the full dis-

cretized system, and average error of these systems for Example 2 with various parameter values

using k = 50, m = 60, and q = 90.

System Average error Ratio of average runtime

The full discretized system - 1

The POD reduced system O(10−9) 1/3.0

The POD-DEIM reduced system O(10−7) 1/534

The POD-GPOD reduced system O(10−8) 1/261

From Tables 4.16, and 4.20, the ratio of the average runtime of the full

discretized system is normalized to be 1. The POD reduced system is more accurate

than the POD-DEIM, and POD-GPOD reduced systems. However, the POD reduced

system may not efficiently decrease the computational time. The DEIM and GPOD

can be incorporated to drastically reduced the computation time further. The POD-

GPOD reduced system is relatively more accurate than the POD-DEIM reduced system.

However, the POD-DEIM reduced system uses less computational time than the POD-

GPOD reduced system.



CHAPTER 5

CONCLUSION AND FUTURE WORK

In this thesis, we construct reduced order models for the Allen-Cahn equation by POD,

POD-DEIM and POD-GPOD approaches. We conclude that three methods can be used

to reduce computational cost in the simulation. They can accurately give approximate

solutions to the original system with various parameter values. Since the number of

unknowns in the original system can be substantially reduced by these methods, then

this can reduce the memory space used in the simulation. The POD reduced system is

more accurate than the POD-DEIM reduced system. However, the POD-DEIM reduced

system can be used to reduced the computational complexity in the nonlinear terms,

and therefore the runtime for solving is less than the POD reduced system. We extend

the POD-DEIM reduced system to the POD-GPOD reduced system by increasing the

selected rows. In most cases, the POD-GPOD reduced system can further reduce the

approximation error when compare with the POD-DEIM reduced system.

Future Work
The following are possible extensions of this work.

• Extend this work to construct a reduced model of Allen-Cahn equation in two,

and three spatial dimensions by these three methods.

• Extend this work to many applications of the Allen-Cahn equation, such as image

analysis, crystal growth, and the motion by mean curvature flow in the context of

reduced model.

• Extend this work to construct a reduced model of a more complicated Cahn-

Hilliard (C-H) equation by these three methods.



APPENDIX A

CONVERGENCE OF THE θ METHOD

To solve the discretized system in the previous subsection, we considered convergence

using the θ method, as follows.

The forward Euler, backward Euler and Crank-Nicolson methods are spe-

cial cases of the θ method. In this subsection, we consider a convergence proof of the

θ method to confirm the convergence for numerical results of the discretized system in

the previous subsection. In particular, we will show that the solution of the following

discretized system will converge to the exact solution in (3.1) by using the proof from

[20], as follows.

uj+1 = uj +∆t[θf(uj, tj) + (1− θ)f(uj+1, tj+1)] (A.1)

where j = 0, 1, . . . and θ ∈ [0, 1]. Note that the forward Euler method (θ = 1) and

backward Euler method (θ = 0), both converge to order 1. When θ = 1/2 we use the

Crank-Nicolson method, which converges to order 2.

We divide the proof into two steps.
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Step 1 We substitute the exact solution u(t)

u(tj+1)− u(tj)−∆t[θf(u(tj), tj) + (1− θ)f(u(tj+1), tj+1)]

= u(tj+1)− u(tj)−∆t[θu′(tj) + (1− θ)u′(tj+1)]

Next, using the Taylor expansion, we have

u(tj+1)− u(tj)−∆t[θf(u(tj), tj) + (1− θ)f(u(tj+1), tj+1)]

= [u(tj) + (∆t)u′(tj) +
1

2
(∆t)2u′′(tj) +

1

6
(∆t)3u′′′(tj)]

− u(tj)−∆t{θu′(tj) + (1− θ)[u′(tj) + (∆t)u′′(tj) +
1

2
(∆t)2u′′′(tj)]}+O((∆t)4)

=

(
θ − 1

2

)
(∆t)2u′′(tj) +

(
1

2
θ − 1

3

)
(∆t)3u′′′(tj) +O((△t)4). (A.2)

Step 2 From (A.1), we have

uj+1 − uj −∆t[θf(uj, tj) + (1− θ)f(uj+1, tj+1)] = 0, (A.3)

Consider (A.3)-(A.2) and let ei = ui − u(ti), we obtain that for (∆t) > 0 is small

sufficiently

ej+1,∆t − ej,∆t − θ(∆t)[f(u(tj) + ej,∆t, tj)− f(u(tj), tj)]

− (1− θ)(∆t)[u(u(tj+1) + ej+1,∆t, tj+1)− f(u(tj+1), tj+1)]

=

(
θ − 1

2

)
(∆t)2u′′(tj) +

(
1

2
θ − 1

3

)
(∆t)3u′′′(tj) +O((∆t)4). (A.4)

Therefore,

ej+1,∆t (A.5)

= ej,∆t + θ(∆t)[f(u(tj) + ej,∆t, tj)− f(u(tj), tj)]

+ (1− θ)(∆t)[u(u(tj+1) + ej+1,∆t, tj+1)− f(u(tj+1), tj+1)]

=

(
θ − 1

2

)
(∆t)2u′′(tj) +

(
1

2
θ − 1

3

)
(∆t)3u′′′(tj) +O((∆t)4)−

1
12
(∆t)3u′′′(tj) +O((∆t)4), θ = 1

2

+(θ − 1
2
)(∆t)2u′′(tj) +O((∆t)3), θ ̸= 1

2

Using the triangle inequality and by the Lipschitz continuity of f , there exist constants
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c and λ such that

∥ej+1,∆t∥ (A.6)

≤ ∥ej,∆t∥+ θ(∆t)λ ∥ej,∆t∥+ (1− θ)(∆t)λ ∥ej+1,∆t∥+

c(∆t)3 θ = 1
2

c(∆t)2 θ ̸= 1
2

.

Case 1 For θ = 1
2
, the theta method reduces to the trapezoidal rule. It is possible to

show that the Crank-Nicolson method has second order convergence, we have studied

proof of convergence from Iserles [35].

∥ej+1,∆t∥ ≤ ∥ej,∆t∥+
1

2
(∆t)λ ∥ej,∆t∥+

1

2
(∆t)λ ∥ej+1,∆t∥+ c(∆t)3

∥ej+1,∆t∥ −
1

2
(∆t)λ ∥ej+1,∆t∥ ≤ ∥ej,∆t∥+

1

2
(∆t)λ ∥ej,∆t∥+ c(△t)3

(
1− 1

2
(∆t)λ

)
∥ej+1,∆t∥ ≤

(
1 +

1

2
(∆t)λ

)
∥ej,∆t∥+ c(∆t)3

∥ej+1,∆t∥ ≤
[
1 + 1

2
(∆t)λ

1− 1
2
(∆t)λ

]
∥ej,∆t∥+

[
c

1− 1
2
(∆t)λ

]
(∆t)3. (A.7)

We claim that

∥ej,∆t∥ ≤
c

λ

[(
1 + 1

2
(∆t)λ

1− 1
2
(∆t)λ

)j

− 1

]
(∆t)2 (A.8)

by using math induction

Basic step For j = 0 we will prove that ∥e0,∆t∥ = 0 since at t0 the numerical solution

correspond to the initial condition and error is 0.

∥e0,∆t∥ ≤
c

λ

[(
1 + 1

2
(∆t)λ

1− 1
2
(∆t)λ

)0

− 1

]
(∆t)2 = 0

Induction step We will prove that if (A.8) is true for j = k with k ∈ Z+ ∪ {0} then

(A.8) is true for j = k + 1.

Assume that (A.8) is true for j = k with k ∈ Z+ ∪ {0}, prove that (A.8) is true for

j = k + 1.

∥ek+1,∆t∥ ≤
[
1 + 1

2
(∆t)λ

1− 1
2
(∆t)λ

]
∥ek,∆t∥+

[
c

1− 1
2
(∆t)λ

]
(∆t)3. (A.9)



52

From assumption, we have

∥ek,∆t∥ ≤
c

λ

[(
1 + 1

2
(∆t)λ

1− 1
2
(∆t)λ

)k

− 1

]
(∆t)2

Substitution ∥ek,∆t∥ into (A.9), we obtain

∥ek+1,∆t∥ ≤
c

λ

[(
1 + 1

2
(∆t)λ

1− 1
2
(∆t)λ

)k+1

−
(
1 + 1

2
(∆t)λ

1− 1
2
(∆t)λ

)]
(∆t)2 +

[
c

1− 1
2
(∆t)λ

]
(∆t)3.

Therefore,

∥ek+1,∆t∥ ≤
c

λ

[(
1 + 1

2
(∆t)λ

1− 1
2
(∆t)λ

)k+1

− 1

]
(∆t)2. (A.10)

By math induction, we conclude that (A.8) for all j = 0, 1, ... is true.

Note that

1 + 1
2
(∆t)λ

1− 1
2
(∆t)λ

= 1 +
(∆t)λ

1− 1
2
(∆t)λ

≤ exp

(
(∆t)λ

1− 1
2
(∆t)λ

)
By a Taylor expansion of the exponential function, we have

∥ej,∆t∥ ≤
c

λ

[(
1 + 1

2
(∆t)λ

1− 1
2
(∆t)λ

)j

− 1

]
(∆t)2

≤ c

λ

(
1 + 1

2
(∆t)λ

1− 1
2
(∆t)λ

)j

(∆t)2

≤ c(∆t)2

λ
exp

(
n(∆t)λ

1− 1
2
(∆t)λ

)
.

This bound is true for all j = 0, 1, ... such that j(△t) ≤ t∗. Therefore

∥ej,∆t∥ ≤
c(∆t)2

λ
exp

(
t∗λ

1− 1
2
(∆t)λ

)
(A.11)

and we obtain lim(∆t)→0 ∥ej,∆t∥ = 0 and 0 ≤ j(∆t) ≤ t∗.

We conclude that the θ method is convergent order 2 for θ = 1
2

which mean that Crank-

Nicolson method has second order convergence.

Case 2 For θ ̸= 1
2
, we have

∥ej+1,∆t∥ ≤ ∥ej,∆t∥+ θ(∆t)λ ∥ej,∆t∥+ (1− θ)(∆t)λ ∥ej+1,∆t∥+ c(∆t)2
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∥ej+1,∆t∥ − (1− θ)(∆t)λ ∥ej+1,∆t∥ ≤ ∥ej,∆t∥+ θ(∆t)λ ∥ej,∆t∥+ c(∆t)2

(1− (1− θ)(∆t)λ) ∥ej+1,∆t∥ ≤ (1 + θ(∆t)λ) ∥ej,∆t∥+ c(∆t)2

∥ej+1,∆t∥ ≤
[

1 + θ(∆t)λ

1− (1− θ)(∆t)λ

]
∥ej,∆t∥+

[
c

1− (1− θ)(∆t)λ

]
(∆t)2. (A.12)

We claim that

∥ej,∆t∥ ≤
c

λ

[(
1 + θ(∆t)λ

1− (1− θ)(∆t)λ

)j

− 1

]
(∆t) (A.13)

by using math induction

Basic step For j = 0 we will prove that ∥e0,∆t∥ = 0 since at t0 the numerical solution

correspond to the initial condition and error is 0.

∥e0,∆t∥ ≤
c

λ

[(
1 + θ(∆t)λ

1− (1− θ)(∆t)λ

)0

− 1

]
(∆t) = 0

Induction step We will prove that if (A.13) is true for j = k with k ∈ Z+ ∪ {0} then

(A.13) is true for j = k + 1.

Assume that (A.13) is true for j = k with k ∈ Z+ ∪ {0}, prove that (A.13) is true for

j = k + 1.

∥ek+1,∆t∥ ≤
[

1 + θ(∆t)λ

1− (1− θ)(∆t)λ

]
∥ek,∆t∥+

[
c

1− (1− θ)(∆t)λ

]
(∆t)2. (A.14)

From assumption, we have

∥ek,∆t∥ ≤
c

λ

[(
1 + θ(∆t)λ

1− (1− θ)(∆t)λ

)k

− 1

]
(∆t)

Substitution ∥ek,∆t∥ into (A.14), we obtain

∥ek+1,∆t∥ ≤
c

λ

[(
1 + θ(∆t)λ

1− (1− θ)(∆t)λ

)k+1

−
(

1 + θ(∆t)λ

1− (1− θ)(∆t)λ

)]
(∆t)2

+

[
c

1− (1− θ)(∆t)λ

]
(∆t)3.

Therefore,

∥ek+1,∆t∥ ≤
c

λ

[(
1 + θ(∆t)λ

1− (1− θ)(∆t)λ

)k+1

− 1

]
(∆t). (A.15)
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By math induction, we conclude that (A.13) for all j = 0, 1, ... is true.

Note that

1 + θ(∆t)λ

1− (1− θ)(∆t)λ
= 1 +

(∆t)λ

1− (1− θ)(∆t)λ

≤ exp

(
(∆t)λ

1− (1− θ)(∆t)λ

)
By a Taylor expansion of the exponential function, we have

∥ej,∆t∥ ≤
c

λ

[(
1 + θ(∆t)λ

1− (1− θ)(∆t)λ

)j

− 1

]
(∆t)

≤ c

λ

(
1 + θ(∆t)λ

1− (1− θ)(∆t)λ

)j

(∆t)

≤ c(∆t)2

λ
exp

(
n(∆t)λ

1− (1− θ)(∆t)λ

)
.

This bound is true for all j = 0, 1, ... such that j(∆t) ≤ t∗. Therefore

∥ej,∆t∥ ≤
c(∆t)2

λ
exp

(
t∗λ

1− (1− θ)(∆t)λ

)
(A.16)

and we obtain lim(∆t)→0 ∥ej,∆t∥ = 0 and 0 ≤ j(∆t) ≤ t∗.

We conclude that the θ method is convergent order 1 for θ ̸= 1
2
.

Q.E.D.



APPENDIX B

ADDITIONAL NUMERICAL STUDY FOR THE POD-GPOD

REDUCED SYSTEM.

We present numerical error (4.1) from using POD-GPOD approach with different di-

mension of m, and q. Table B.1, B.2, and B.3 are used to describe more of the error

from Section 4.1. Table B.4, and B.5 are used to describe more of the error from Section

4.2. These will be shown in the following Tables.



56

Table B.1: Error of the POD-GPOD reduced system for Example 1 from Section 4.1.

Error

q m = 10 m = 20 m = 30 m = 40

10 3.2007× 10−3 - - -

20 2.7355× 10−3 3.1434× 10−4 - -

30 3.1952× 10−3 4.2512× 10−4 1.1348× 10−4 -

40 3.1224× 10−3 4.9270× 10−4 6.8405× 10−5 1.4441× 10−5

50 3.2370× 10−3 4.8364× 10−4 3.2637× 10−5 5.6958× 10−6

60 3.0286× 10−3 4.8772× 10−4 3.9352× 10−5 5.4505× 10−6

70 2.8869× 10−3 4.9516× 10−4 3.4253× 10−5 3.7254× 10−6

80 2.8860× 10−3 4.3732× 10−4 2.9064× 10−5 2.8278× 10−6

90 2.8932× 10−3 4.1485× 10−4 2.9058× 10−5 2.5623× 10−6

100 2.7776× 10−3 3.7542× 10−4 1.6710× 10−5 1.3426× 10−6

Error

q m = 50 m = 60 m = 70

10 - - -

20 - - -

30 - - -

40 - - -

50 2.4285× 10−6 - -

60 2.6269× 10−6 2.7139× 10−6 -

70 8.4438× 10−7 7.7370× 10−7 7.6205× 10−7

80 9.5442× 10−7 7.5597× 10−7 7.2166× 10−7

90 7.7595× 10−7 6.7214× 10−7 6.7197× 10−7

100 7.5511× 10−7 6.5284× 10−7 6.5710× 10−7
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Table B.2: Error of the POD-GPOD reduced system for Example 2 from Section 4.1.

Error

q m = 10 m = 20 m = 30 m = 40

10 8.7695× 10−3 - - -

20 7.8165× 10−3 7.8254× 10−4 - -

30 6.9890× 10−3 6.1443× 10−4 1.1173× 10−4 -

40 6.8678× 10−3 6.1032× 10−4 1.0765× 10−4 4.2691× 10−5

50 6.0353× 10−3 5.3332× 10−4 3.2425× 10−5 1.3775× 10−5

60 5.3560× 10−3 5.6321× 10−4 4.6130× 10−5 9.6770× 10−6

70 5.0024× 10−3 5.9600× 10−4 7.2155× 10−6 5.1778× 10−6

80 1.1876× 10−3 2.3362× 10−4 3.0358× 10−6 4.9910× 10−6

90 4.7997× 10−3 1.2514× 10−4 2.8365× 10−6 2.1076× 10−6

100 9.4457× 10−4 1.4875× 10−4 2.8209× 10−6 1.1117× 10−6

Error

q m = 50 m = 60 m = 70

10 - - -

20 - - -

30 - - -

40 - - -

50 3.2536× 10−6 - -

60 2.0292× 10−6 1.0416× 10−6 -

70 1.1564× 10−6 3.2632× 10−7 1.1034× 10−7

80 1.8131× 10−6 1.4639× 10−7 6.3690× 10−8

90 9.5989× 10−7 2.9794× 10−8 2.9781× 10−8

100 1.9445× 10−7 2.0511× 10−8 2.9774× 10−8
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Table B.3: Error of the POD-GPOD reduced system for Example 3 from Section 4.1.

Error

q m = 10 m = 20 m = 30 m = 40

10 4.3498× 10−3 - - -

20 1.2829× 10−2 7.4722× 10−4 - -

30 1.0246× 10−2 7.5332× 10−4 4.3474× 10−6 -

40 2.5195× 10−3 7.0818× 10−4 2.5416× 10−7 7.8929×10−10

50 2.4891× 10−3 1.9981× 10−4 3.2579× 10−7 2.6499×10−10

60 2.4247× 10−3 1.8897× 10−4 1.0603× 10−7 1.3038×10−10

70 2.4752× 10−3 7.4719× 10−4 1.0130× 10−7 1.7405×10−11

80 2.5075× 10−3 4.2085× 10−4 5.7263× 10−7 1.9551×10−11

90 2.4228× 10−3 6.5241× 10−5 2.5399× 10−7 1.8703×10−11

100 2.3278× 10−3 1.6994× 10−5 3.2568× 10−8 9.7813×10−12

Error

q m = 50 m = 60 m = 70

10 - - -

20 - - -

30 - - -

40 - - -

50 1.7124×10−10 - -

60 1.1160×10−10 2.4349×10−11 -

70 3.5554×10−11 2.3471×10−11 2.0649×10−11

80 1.2332×10−11 6.8642×10−12 1.2500×10−12

90 3.6989×10−11 3.8857×10−12 1.6321×10−12

100 2.7301×10−13 2.1938×10−13 1.2603×10−13
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Table B.4: Average error of the POD-GPOD reduced system for Example 1 from Section 4.2.

Error

q m = 10 m = 20 m = 30 m = 40

10 2.4654× 10−3 - - -

20 8.0732× 10−4 2.8762× 10−4 - -

30 9.3199× 10−4 3.1133× 10−4 2.3596× 10−4 -

40 7.6060× 10−4 2.1971× 10−4 6.3986× 10−5 2.3799× 10−5

50 7.6459× 10−4 1.6507× 10−4 6.1776× 10−5 6.7683× 10−6

60 7.4493× 10−4 1.6831× 10−4 4.7335× 10−5 5.8129× 10−6

70 7.6857× 10−4 1.3604× 10−4 4.1197× 10−5 3.3937× 10−6

80 7.4903× 10−4 2.1732× 10−4 3.6629× 10−5 6.7683× 10−6

90 6.2336× 10−4 2.0104× 10−5 5.4091× 10−6 5.8129× 10−6

100 3.1668× 10−4 1.4326× 10−5 3.6654× 10−6 3.3937× 10−6

Error

q m = 50 m = 60 m = 70

10 - - -

20 - - -

30 - - -

40 - - -

50 5.6333× 10−6 - -

60 1.0182× 10−6 1.8494× 10−7 -

70 7.0711× 10−7 1.5138× 10−7 4.0323× 10−8

80 2.7384× 10−7 1.5138× 10−7 3.7547× 10−8

90 2.0654× 10−7 1.3214× 10−7 2.5873× 10−8

100 1.5713× 10−7 3.9785× 10−8 1.2307× 10−8
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Table B.5: Average error of the POD-GPOD reduced system for Example 2 from Section 4.2

Error

q m = 10 m = 20 m = 30 m = 40

10 2.8847× 10−3 - - -

20 2.4403× 10−3 1.7506× 10−3 - -

30 2.5654× 10−3 7.6900× 10−4 3.5277× 10−4 -

40 1.8960× 10−3 6.0528× 10−4 3.4150× 10−4 4.8921× 10−5

50 1.9530× 10−3 5.4464× 10−4 3.3678× 10−4 2.1105× 10−6

60 1.8004× 10−3 2.8692× 10−4 7.5895× 10−5 1.6493× 10−6

70 1.8405× 10−3 2.5473× 10−4 6.7276× 10−6 1.1070× 10−6

80 1.8521× 10−3 2.4367× 10−4 5.8944× 10−6 1.3531× 10−7

90 1.9057× 10−3 5.4483× 10−5 3.4793× 10−6 1.2507× 10−7

100 1.7054× 10−3 3.9752× 10−5 5.6457× 10−6 1.1221× 10−7

Error

q m = 50 m = 60 m = 70

10 - - -

20 - - -

30 - - -

40 - - -

50 2.8691× 10−6 - -

60 2.9083× 10−7 1.9001× 10−7 -

70 1.7283× 10−7 1.5467× 10−8 4.7991× 10−8

80 2.4638× 10−7 1.4790× 10−8 1.0473× 10−8

90 1.0346× 10−7 1.3442× 10−8 5.9645× 10−9

100 3.3975× 10−8 1.0395× 10−9 3.8939× 10−9
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[56] Răzvan Ştefănescu and Ionel Michael Navon. Pod/deim nonlinear model order

reduction of an adi implicit shallow water equations model. Journal of Computa-

tional Physics, 237:95–114, 2013.



67

[57] Lloyd N Trefethen. Spectral methods in MATLAB, volume 10. Siam, 2000.

[58] Lloyd N. Trefethen and David Bau, III, editors. Numerical Linear Algebra. 1997.

[59] Andrew A Wheeler, William J. Boettinger, and Geoffrey B. McFadden. Phase-

field model for isothermal phase transitions in binary alloys. Phys. Rev. A,

45:7424–7439, May 1992.

[60] Karen Willcox. Unsteady flow sensing and estimation via the gappy proper or-

thogonal decomposition. Computers & fluids, 35(2):208–226, 2006.

[61] Karen Willcox and Jaime Peraire. Balanced model reduction via the proper or-

thogonal decomposition. AIAA journal, 40(11):2323–2330, 2002.

[62] Dunhui Xiao, Fangxin Fang, Andrew G Buchan, Christopher C Pain,

Ionel Michael Navon, Juan Du, and G Hu. Non-linear model reduction for the

navier–stokes equations using residual deim method. Journal of Computational

Physics, 263:1–18, 2014.

[63] Xiaofeng Yang. Error analysis of stabilized semi-implicit method of allen-cahn

equation. Discrete Contin. Dyn. Syst. Ser. B, 11(4):1057–1070, 2009.

[64] Jian Zhang and Qiang Du. Numerical studies of discrete approximations to the

allen-cahn equation in the sharp interface limit. SIAM Journal on Scientific Com-

puting, 31(4):3042–3063, 2009.

[65] Jingzhi Zhu, Long-Qing Chen, Jie Shen, and Veena Tikare. Coarsening kinetics

from a variable-mobility cahn-hilliard equation: Application of a semi-implicit

fourier spectral method. Physical Review E, 60(4):3564, 1999.



68

BIOGRAPHY

Name

Date of birth

Educational Attainment

Publication

Mr. Chutipong Dechanubeksa

26 February 1991

Thammasat University, 2009-2012

Bachelor of Science (Mathematics)

1. Chutipong Dechanubeksa, Saifon Chaturantabut. Model order reduction applied to

Allen-Cahn equation. Proceedings of The 20th Annual Meeting in Mathematics 2015

(AMM2015) pp.334–340, 2015.

2. Chutipong Dechanubeksa, Saifon Chaturantabut. Model reduction for Allen-Cahn

equation. Proceedings of Annual Pure and Applied Mathematics 2015 (APAM2015)

pp.39–47, 2015.


