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ABSTRACT

In this thesis, we consider the inverse eigenvalue problems for construct-

ing real symmetric doubly arrow matrices from spectral information. Three types of

spectral information are used in this work: the minimal and maximal eigenvalues of

all leading principal submatrices, one of the eigenpairs and eigenvalues of all leading

principal submatrices, and the two eigenpairs. The necessary and sufficient conditions

for the existence of a solution of the problems are derived. Moreover, the special cases

for some problems are also discussed, that is, the nonnegative case and the uniqueness

case. Examples to illustrate our results are also presented.
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CHAPTER 1

INTRODUCTION

An inverse eigenvalue problem involves the reconstruction of a matrix from

prescribed spectral information. The spectral information concerned may consist of

complete or only partial information on eigenvalues or eigenvectors. The objective of

an inverse eigenvalue problem is to construct a matrix that maintains a certain specific

structure as well as the given spectral properties. Inverse eigenvalue problems arise in

many applications, for example, inverse Sturm-Liouville problem, vibration analysis,

control theory, and particle physics (see [1] – [8]).

Chu and Golub [6] classified inverse eigenvalue problems into seven types

as follows.

1. Multivariate Inverse Eigenvalue Problems

2. Least Squares Inverse Eigenvalue Problems

3. Parameterized Inverse Eigenvalue Problems

4. Structured Inverse Eigenvalue Problems

5. Partially Described Inverse Eigenvalue Problems

6. Additive Inverse Eigenvalue Problems

7. Multiplicative Inverse Eigenvalue Problems

We are interested in structured inverse eigenvalue problems in this work. The objective

for this type is to construct a matrix of a certain form, see [9] – [16].

Peng et al. [12] introduced two inverse eigenvalue problems for construct-

ing a real symmetric bordered diagonal matrix (also called a real symmetric arrow ma-

trix) from the minimal and maximal eigenvalues of all its leading principal submatrices,

and from one of the eigenpairs and eigenvalues of all its leading principal submatrices.

Later in 2007, Pickmann et al. [13] made a correction in one of the problems stated in

[12]. In 2006, Wang et al. [14] introduced an inverse eigenvalue problem for construct-
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ing a real symmetric five-diagonal matrix from its three eigenpairs.

In this thesis, we are interested in constructing real symmetric doubly arrow

matrices from certain spectral information. To achieve our objective, we considered the

following problems.

Problem 1. Given the real numbers λ
( j)
1 and λ

( j)
j for all j = 1,2, . . . ,n, find a real

symmetric doubly arrow matrix such that λ
( j)
1 and λ

( j)
j are the minimal and maximal

eigenvalue of the j× j leading principal submatrix of such a matrix for j = 1,2, . . . ,n,

respectively.

Problem 2. Given the real numbers λ ( j) for all j = 1, 2, . . ., n and the real vector

x= [x1,x2 . . . ,xn]
T , find a real symmetric doubly arrow matrix such that λ ( j) is an eigen-

value of the j× j leading principal submatrix of such a matrix for j = 1,2, . . . ,n− 1,

and (λ (n),x) is an eigenpair.

Problem 3. Given two real numbers λ , µ and two nonzero real vectors x= [x1,x2, . . . ,xn]
T ,

y = [y1,y2 . . . ,yn]
T , find a real symmetric doubly arrow matrix such that (λ ,x) and

(µ,y) are the two eigenpairs.

In addition, two special cases for Problem 1 and Problem 2 are also discussed, these are

the nonnegative case and the uniqueness case.

For all three problems, we consider an inverse eigenvalue problem for con-

structing a real symmetric doubly arrow matrix of the form:

A =



a1 0 · · · 0 b1 0 · · · 0 0

0 a2 · · · 0 b2 0 · · · 0 0
...

...
. . .

...
...

...
. . .

...
...

0 0 · · · as−1 bs−1 0 · · · 0 0

b1 b2 · · · bs−1 as 0 · · · 0 bs

0 0 · · · 0 0 as+1 · · · 0 bs+1
...

...
. . .

...
...

...
. . .

...
...

0 0 · · · 0 0 0 · · · an−1 bn−1

0 0 · · · 0 bs bs+1 · · · bn−1 an



, (1.1)
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where a j,b j ∈ R, and 1≤ s≤ n.

Furthermore, we are interested in constructing other real symmetric doubly

arrow matrices in Problem 3. There are of the form

B =



a1 · · · 0 b1 0 · · · 0
... . . . ...

...
... . . . ...

0 · · · as−1 bs−1 0 · · · 0

b1 · · · bs−1 as bs · · · bn−1

0 · · · 0 bs as+1 · · · 0
... . . . ...

...
... . . . ...

0 · · · 0 bn−1 0 · · · an


, (1.2)

where a j,b j ∈ R, 1≤ s≤ n, and

C =



a1 b1 · · · bs−1 0 · · · 0

b1 a2 · · · 0 0 · · · 0
...

... . . . ...
... . . . ...

bs−1 0 · · · as bs · · · bn−1

0 0 · · · bs as+1 · · · 0
...

... . . . ...
... . . . ...

0 0 · · · bn−1 0 · · · an


, (1.3)

where a j,b j ∈R, and 1≤ s≤ n. The doubly arrow matrices B and C were described by

Pickmann et al. in [15] and Liu et al. in [16], respectively.

In Chapter 2, we give some properties for solving our problems. The nec-

essary and sufficient conditions for the existence of a solutions and some examples of

Problem 1, Problem 2, and Problem 3 are illustrated in Chapter 3, Chapter 4, and Chap-

ter 5, respectively. Finally, Chapter 6 gives the conclusions and possible extensions of

the work.



CHAPTER 2

PRELIMINARIES

Let A be a matrix of the form (1.1). The j× j leading principal submatrix

A j of matrix A = An is obtained by deleting the last p rows and p columns of matrix A,

where p = n− j. Notice that if j = 1,2, . . . ,s−1, then the leading principal submatrix

A j is a diagonal matrix.

Lemma 2.1. Let A be a matrix of the form (1.1). Then the sequence of characteristic

polynomials {Pj(λ )}n
j=1 satisfies the recurrence relation:

Pj(λ ) =
j

∏
i=1

(λ −ai) ; j = 1,2, . . . ,s−1, (2.1)

Pj(λ ) = (λ −a j)Pj−1(λ )−
j−1

∑
k=1

b2
k

j−1

∏
i=1
i6=k

(λ −ai) ; j = s, (2.2)

Pj(λ ) = (λ −a j)Pj−1(λ ) ; j = s+1,s+2, . . . ,n−1, (2.3)

Pj(λ ) = (λ −a j)Pj−1(λ )−
j−1

∑
k=s

b2
kPk−1(λ )

j−1

∏
i=k+1

(λ −ai) ; j = n, (2.4)

where P0(λ ) = 1.

Proof. This is easy to verify by expanding the determinants det(λ I j −A j) for j =

1,2, . . . ,n, where I j is the identity matrix of identical dimensions.

Lemma 2.2. Let P(λ ) be a monic polynomial of degree n with all real zeros. If λ1 and

λn are, respectively, the minimal and maximal zeros of P(λ ), then

1. If β < λ1, we have (−1)nP(β )> 0.

2. If β > λn, we have P(β )> 0.

Proof. Let P(λ )= (λ−λ1)(λ−λ2) · · ·(λ−λn). If β < λ1 and n is even, then P(β )> 0.

If β < λ1 and n is odd, then P(β )< 0, and hence (−1)nP(β )> 0. If β > λn, then clearly

P(β )> 0.
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The following lemma explains the establishing relations between the eigen-

values of a symmetric matrix and the eigenvalues of its principal submatrices, that is,

the Cauchy interlacing property.

Lemma 2.3. Let Kn be a real symmetric matrix of order n with eigenvalues β
(n)
1 ≤

β
(n)
2 ≤ . . .≤ β

(n)
n . Let Kn−1 be the principal submatrix of Kn with eigenvalue β

(n−1)
1 ≤

β
(n−1)
2 ≤ . . .≤ β

(n−1)
n−1 . Then

β
(n)
1 ≤ β

(n−1)
1 ≤ β

(n)
2 ≤ ·· · ≤ β

(n)
n−1 ≤ β

(n−1)
n−1 ≤ β

(n)
n .

Proof. See [17].

Observe that, by Lemma 2.3, if λ
( j)
1 and λ

( j)
j are the minimal and the max-

imal eigenvalues of the leading principal submatrix A j of matrix A for j = 1,2, . . . ,n,

respectively, then

λ
(n)
1 ≤ λ

(n−1)
1 ≤ ·· · ≤ λ

(3)
1 ≤ λ

(2)
1 ≤ λ

(1)
1 ≤ λ

(2)
2 ≤ λ

(3)
3 ≤ ·· · ≤ λ

(n−1)
n−1 ≤ λ

(n)
n . (2.5)



CHAPTER 3

SOLUTION TO PROBLEM 1

The main result of Problem 1 is the construction of a doubly arrow matrix

A of the form (1.1) with 1 ≤ s ≤ n. If a matrix A has the form (1.1), then we have

the general form of the characteristic polynomials Pj(λ ) for j = 1,2, . . . ,n as in Lemma

2.1. All results are constructive in the sense that they generate algorithmic procedures to

compute the elements of the leading principal submatrix A j for j = 1,2, . . . ,n of matrix

A = An. The following theorem gives a sufficient condition for solving Problem 1.

Theorem 3.1. Let the real numbers λ
( j)
1 and λ

( j)
j for j = 1,2, . . . ,n be given. Then

there exists an n×n matrix A of the form (1.1) such that λ
( j)
1 and λ

( j)
j are the minimal

and maximal eigenvalues of the j× j leading principal submatrix A j of matrix A for

j = 1,2, . . . ,n, respectively, if the following conditions are satisfied:

λ
(n)
1 < λ

(n−1)
1 = · · ·= λ

(s)
1 < λ

(s−1)
1 = · · ·= λ

(1)
1 < λ

(2)
2 < · · ·< λ

(n)
n , (3.1)

there exist real solutions as and bk, k = 1,2, . . . ,s−1 for the system of equations

(
λ
(s)
j −as

)
Ps−1

(
λ
(s)
j

)
−

s−1

∑
k=1

b2
k

s−1

∏
i=1
i6=k

(
λ
(s)
j −λ

(i)
i

)
= 0 , j = 1,s, (3.2)

and there exist real solutions an and bk, k = s,s+1, . . . ,n−1 for the system of equations

(
λ
(n)
j −an

)
Pn−1

(
λ
(n)
j

)
−

n−1

∑
k=s

b2
kPk−1

(
λ
(n)
j

) n−1

∏
i=k+1

(
λ
(n)
j −λ

(i)
i

)
= 0 , j = 1,n. (3.3)

Proof. Assume that the real numbers λ
( j)
1 and λ

( j)
j for all j = 1,2, . . . ,n satisfy condi-

tion (3.1). Since the leading principal submatrix As−1 is a diagonal matrix, a j = λ
( j)
j for

j = 1,2, . . . ,s−1. Therefore, λ
( j)
1 and λ

( j)
j are the minimal and maximal eigenvalues of

the leading principal submatrix A j = diag
{

λ
(1)
1 ,λ

(2)
2 , . . . ,λ

( j)
j

}
for j = 1,2, . . . ,s− 1,

respectively.
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To show the existence of a matrix A j for j = s,s+ 1, . . . ,n where λ
( j)
1 and

λ
( j)
j are the minimal and maximal eigenvalues, respectively, is equivalent to showing

that the system of equations

Pj

(
λ
( j)
1

)
= 0

Pj

(
λ
( j)
j

)
= 0

 (3.4)

has real solutions a j, j = s,s+1, . . . ,n and b j−1, j = 1,2, . . . ,n.

For j = s, if condition (3.2) holds, the system of equations (3.4) has real

solutions as and bk, k = 1,2, . . . ,s−1.

For j = s+1,s+2, . . . ,n−1, the system of equations (3.4) has the form:(
λ
( j)
1 −a j

)
Pj−1

(
λ
( j)
1

)
= 0(

λ
( j)
j −a j

)
Pj−1

(
λ
( j)
j

)
= 0

 . (3.5)

From condition (3.1) and Lemma 2.2(2), the system of equations (3.5) has the real

solution

a j = λ
( j)
j

for all j = s+1,s+2, . . . ,n−1.

For j = n, if condition (3.3) holds, then the system of equations (3.4) has

real solutions an and bk for k = s,s+1, . . . ,n−1. Then, there exists the matrix An = A.

The resulting matrix An = A is now a real symmetric doubly arrow matrix

with λ
( j)
1 and λ

( j)
j for j = 1,2, . . . ,n satisfying condition (3.1). Hence, from the Cauchy

interlacing property (Lemma 2.3) and relation (2.5) λ
( j)
1 and λ

( j)
j are the minimal and

maximal eigenvalues of the j× j leading principal submatrix A j of matrix A for j =

1,2, . . . ,n, respectively.

The following corollary is for the nonnegative case of Problem 1. That is,

we give the sufficient condition for the existence of a matrix A of the form (1.1) with

a j ≥ 0 and b j−1 ≥ 0 for all j = 1,2, . . . ,n.
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Corollary 3.2. Let the real numbers λ
( j)
1 and λ

( j)
j for j = 1,2, . . . ,n be given. Then

there exists an n×n nonnegative matrix A of the form (1.1) such that λ
( j)
1 and λ

( j)
j are

the minimal and maximal eigenvalues of the j× j leading principal submatrix A j of

matrix A for j = 1,2, . . . ,n, respectively, if the following conditions are satisfied:

λ
(n)
1 < λ

(n−1)
1 = · · ·= λ

(s)
1 < λ

(s−1)
1 = · · ·= λ

(1)
1 < λ

(2)
2 < · · ·< λ

(n)
n , (3.6)

λ
(1)
1 ≥ 0, (3.7)

there exist nonnegative real solutions as and bk, k = 1,2, . . . ,s− 1 for the system of

equations (
λ
(s)
j −as

)
Ps−1

(
λ
(s)
j

)
−

s−1

∑
k=1

b2
k

s−1

∏
i=1
i6=k

(
λ
(s)
j −λ

(i)
i

)
= 0 , j = 1,s, (3.8)

and there exist nonnegative real solutions an and bk, k = s,s+1, . . . ,n−1 for the system

of equations

(
λ
(n)
j −an

)
Pn−1

(
λ
(n)
j

)
−

n−1

∑
k=s

b2
kPk−1

(
λ
(n)
j

) n−1

∏
i=k+1

(
λ
(n)
j −λ

(i)
i

)
= 0 , j = 1,n. (3.9)

Proof. Suppose that the real numbers λ
( j)
1 and λ

( j)
j for all j = 1,2, . . . ,n, satisfy condi-

tions (3.6) and (3.7). From conditions (3.6), (3.7), we have

a j = λ
( j)
j ≥ 0

for j = 1,2, . . . ,s−1.

For j = s, if the condition (3.8) holds and the system of equations (3.4)

in Theorem 3.1 has nonnegative real solutions as and bk, k = 1,2, . . . ,s− 1, then there

exists the nonnegative matrix As.

For j = s+1,s+2, . . . ,n−1, the system of equations (3.4) has the form:(
λ
( j)
1 −a j

)
Pj−1

(
λ
( j)
1

)
= 0(

λ
( j)
j −a j

)
Pj−1

(
λ
( j)
j

)
= 0

 (3.10)
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From conditions (3.6) and (3.7), and Lemma 2.2(2), the system of equations (3.10) has

the nonnegative real solution

a j = λ
( j)
j ≥ 0

for all j = s+1,s+2, . . . ,n−1.

For j = n, if condition (3.9) holds and the system of equations (3.4) in

Therem 3.1 has nonnegative real solutions an and bk for k = s,s+ 1, . . . ,n− 1, then

there exists the nonnegative matrix An = A.

Now matrix An = A is a real symmetric doubly arrow matrix with λ
(n)
1 and

λ
(n)
n for j = 1,2, . . . ,n satifying condition (3.6). Hence, from the Cauchy interlacing

property (Lemma 2.3) and relation (2.5) λ
( j)
1 and λ

( j)
j are the minimal and maximal

eigenvalues of the j× j leading principal submatrix A j of matrix A for j = 1,2, . . . ,n,

respectively.

In order to obtain the unique solution to Problem 1, we consider a real

symmetric doubly arrow matrix A of the form

A =



a1 0 · · · 0 b 0 · · · 0 0

0 a2 · · · 0 b 0 · · · 0 0
...

... . . . ...
...

... . . . ...
...

0 0 · · · as−1 b 0 · · · 0 0

b b · · · b as 0 · · · 0 c

0 0 · · · 0 0 as+1 · · · 0 c
...

... . . . ...
...

... . . . ...
...

0 0 · · · 0 0 0 · · · an−1 c

0 0 · · · 0 c c · · · c an



, (3.11)

where a j ∈ R and b,c > 0

In this case, the recurrence relation of characteristic polynomials in Lemma

2.1 becomes:
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Pj(λ ) =
j

∏
i=1

(λ −ai) ; j = 1,2, . . . ,s−1, (3.12)

Pj(λ ) = (λ −a j)Pj−1(λ )−b2
j−1

∑
k=1

j−1

∏
i=1
i6=k

(λ −ai) ; j = s, (3.13)

Pj(λ ) = (λ −a j)Pj−1(λ ) ; j = s+1,s+2, . . . ,n−1, (3.14)

Pj(λ ) = (λ −a j)Pj−1(λ )− c2
j−1

∑
k=s

Pk−1(λ )
j−1

∏
i=k+1

(λ −ai) ; j = n, (3.15)

where P0(λ ) = 1.

The following corollary gives a sufficient condition for the existence of a

unique solution to Problem 1.

Corollary 3.3. Let the real numbers λ
( j)
1 and λ

( j)
j for j = 1,2, . . . ,n be given. Then

there exists the unique n×n matrix A of the form (3.11) such that λ
( j)
1 and λ

( j)
j are the

minimal and maximal eigenvalues of the j× j leading principal submatrix A j of matrix

A for j = 1,2, . . . ,n, respectively, if the following conditions are satisfied:

λ
(n)
1 < λ

(n−1)
1 = · · ·= λ

(s)
1 < λ

(s−1)
1 = · · ·= λ

(1)
1 < λ

(2)
2 < · · ·< λ

(n)
n . (3.16)

Proof. Suppose that the real numbers λ
( j)
1 and λ

( j)
j for all j = 1,2, . . . ,n satisfy condi-

tion (3.16). It is obvious from (3.16) that for j = 1,2, . . . ,s− 1 there exists the unique

matrix A j = diag
{

λ
(1)
1 ,λ

(2)
2 , . . . ,λ

( j)
j

}
with the minimal and maximal eigenvalues λ

( j)
1

and λ
( j)
j , respectively.

As in the proof of Theorem 3.1, it is enough to show that the system of

equations

Pj

(
λ
( j)
1

)
= 0

Pj

(
λ
( j)
j

)
= 0

 (3.17)

has real solution b, c, and a j, j = s,s+1, . . . ,n.

For j = s, the system (3.17) has the form:
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asPs−1

(
λ
(s)
1

)
+b2

s−1

∑
k=1

s−1

∏
i=1
i6=k

(
λ
(s)
1 −ai

)
= λ

(s)
1 Ps−1

(
λ
(s)
1

)

asPs−1

(
λ
(s)
s

)
+b2

s−1

∑
k=1

s−1

∏
i=1
i6=k

(
λ
(s)
s −ai

)
= λ

(s)
s Ps−1

(
λ
(s)
s

)

. (3.18)

So, the coefficient matrix for the system (3.18) is
Ps−1

(
λ
(s)
1

) s−1

∑
k=1

s−1

∏
i=1
i6=k

(
λ
(s)
1 −ai

)

Ps−1

(
λ
(s)
s

) s−1

∑
k=1

s−1

∏
i=1
i6=k

(
λ
(s)
s −ai

)
 .

Let ds be the determinant of this coefficient matrix. Then,

ds = Ps−1

(
λ
(s)
1

) s−1

∑
k=1

s−1

∏
i=1
i6=k

(
λ
(s)
s −ai

)
−Ps−1

(
λ
(s)
s

) s−1

∑
k=1

s−1

∏
i=1
i6=k

(
λ
(s)
1 −ai

)
.

We will show that ds 6= 0 by showing that (−1)s−1ds > 0. From Lemma 2.2, we have

(−1)s−1Ps−1

(
λ
(s)
1

)
> 0 and Ps−1

(
λ
(s)
s

)
> 0. Since a j = λ

( j)
j for j = 1,2, . . . ,s−1 and

condition (3.16),
(

λ
(s)
s −ai

)
> 0 and

(
λ
(s)
1 −ai

)
< 0. Therefore,

(−1)s−1Ps−1

(
λ
(s)
1

) s−1

∑
k=1

s−1

∏
i=1
i6=k

(
λ
(s)
s −ai

)
> 0.

Since there are s−2 factors in each product
s−1

∏
i=1
i6=k

(
λ
(s)
1 −ai

)
,

−(−1)s−1Ps−1

(
λ
(s)
s

) s−1

∑
k=1

s−1

∏
i=1
i6=k

(
λ
(s)
1 −ai

)
= (−1)s(−1)s−2Ps−1

(
λ
(s)
s

) s−1

∑
k=1

s−1

∏
i=1
i6=k

(
ai−λ

(s)
1

)

= (−1)2(s−1)Ps−1

(
λ
(s)
s

) s−1

∑
k=1

s−1

∏
i=1
i6=k

(
ai−λ

(s)
1

)
> 0.

Thus, (−1)s−1ds > 0 and hence ds 6= 0. Consequently, the system (3.18) has a unique

solution. By using the Cramer’s rule, we obtain
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as =

λ
(s)
1 Ps−1

(
λ
(s)
1

) s−1

∑
k=1

s−1

∏
i=1
i6=k

(
λ
(s)
s −ai

)
−λ

(s)
s Ps−1

(
λ
(s)
s

) s−1

∑
k=1

s−1

∏
i=1
i6=k

(
λ
(s)
1 −ai

)
ds

,

and

b2 =

(
λ
(s)
s −λ

(s)
1

)
Ps−1

(
λ
(s)
1

)
Ps−1

(
λ
(s)
s

)
ds

.

Since (−1)s−1
(

λ
(s)
s −λ

(s)
1

)
Ps−1

(
λ
(s)
1

)
Ps−1

(
λ
(s)
s

)
> 0 by Lemma 2.2,

b2 =
(−1)s−1

(
λ
(s)
s −λ

(s)
1

)
Ps−1

(
λ
(s)
1

)
Ps−1

(
λ
(s)
s

)
(−1)s−1ds

> 0.

Then b is a real number which can be made positive. Hence, there exists the unique

matrix As.

For j = s+1,s+2, . . . ,n−1, as in the proof of Theorem 3.1, we obtain

a j = λ
( j)
j .

For j = n, the system (3.16) has the form:

anPn−1

(
λ
(n)
1

)
+ c2

n−1

∑
k=s

Pk−1(λ
(n)
1 )

n−1

∏
i=k+1

(
λ
(n)
1 −ai

)
= λ

(n)
1 Pn−1

(
λ
(n)
1

)
anPn−1

(
λ
(n)
n

)
+ c2

n−1

∑
k=s

Pk−1(λ
(n)
n )

n−1

∏
i=k+1

(
λ
(n)
n −ai

)
= λ

(n)
n Pn−1

(
λ
(n)
n

)
 . (3.19)

Thus, the coefficient matrix for the system (3.19) is
Pn−1

(
λ
(n)
1

) n−1

∑
k=s

Pk−1(λ
(n)
1 )

n−1

∏
i=k+1

(
λ
(n)
1 −ai

)
Pn−1

(
λ
(n)
n

) n−1

∑
k=s

Pk−1(λ
(n)
n )

n−1

∏
i=k+1

(
λ
(n)
n −ai

)
 .

Let dn be the determinant of this coefficient matrix. Then,

dn = Pn−1

(
λ
(n)
1

) n−1

∑
k=s

Pk−1(λ
(n)
n )

n−1

∏
i=k+1

(
λ
(n)
n −ai

)
−Pn−1

(
λ
(n)
n

) n−1

∑
k=s

Pk−1(λ
(n)
1 )

n−1

∏
i=k+1

(
λ
(n)
1 −ai

)
.



13

To show dn 6= 0, we exhibit (−1)n−1dn > 0. We now consider the first factor of (−1)n−1dn.

From Lemma 2.2, we have (−1)n−1Pn−1

(
λ
(n)
1

)
> 0, and Pk−1

(
λ
(n)
n

)
> 0 for all k =

s,s+1, . . . ,n−1. Since a j = λ
( j)
j for j = s+1, . . . ,n−1,

(
λ
(n)
n −ai

)
> 0. Therefore,

(−1)n−1Pn−1

(
λ
(n)
1

)n−1

∑
k=s

Pk−1(λ
(n)
n )

n−1

∏
i=k+1

(
λ
(n)
n −ai

)
> 0.

Next, we consider the second term of (−1)n−1dn. From Lemma 2.2(2), we have

Pn−1

(
λ
(n)
n

)
> 0.

It only remains to show that

−(−1)n−1
n−1

∑
k=s

Pk−1(λ
(n)
1 )

n−1

∏
i=k+1

(
λ
(n)
1 −ai

)
> 0.

Since

−(−1)n−1
n−1

∑
k=s

Pk−1(λ
(n)
1 )

n−1

∏
i=k+1

(
λ
(n)
1 −ai

)
= (−1)nPs−1(λ

(n)
1 )

n−1

∏
i=s+1

(
λ
(n)
1 −ai

)
+(−1)nPs(λ

(n)
1 )

n−1

∏
i=s+2

(
λ
(n)
1 −ai

)
+ . . .

+(−1)nPn−s−1(λ
(n)
1 )

n−1

∏
i=n−s+1

(
λ
(n)
1 −ai

)
+ . . .

+Pn−2

(
λ
(n)
1

)
, (3.20)

we examine each term of the right hand side of the equation (3.20) as follows.

For the first term,
(

λ
(n)
1 − ai

)
< 0 for i = s+ 1,s+ 2, . . . ,n− 1 and there

are n− s−1 factors in the product
n−1

∏
i=s+1

(
λ
(n)
1 −ai

)
thus,

n−1

∏
i=s+1

(
λ
(n)
1 −ai

)
= (−1)n−s−1

n−1

∏
i=s+1

(
ai−λ

(n)
1

)
.

Therefore,

(−1)nPs−1(λ
(n)
1 )

n−1

∏
i=s+1

(
λ
(n)
1 −ai

)
= (−1)nPs−1(λ

(n)
1 )(−1)n−s−1

n−1

∏
i=s+1

(
ai−λ

(n)
1

)
= (−1)2(n−s)(−1)s−1Ps−1(λ

(n)
1 )

n−1

∏
i=s+1

(
ai−λ

(n)
1

)
.
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From Lemma 2.2(1), we have (−1)s−1Ps−1(λ
(n)
1 )> 0. Thus,

(−1)nPs−1(λ
(n)
1 )

n−1

∏
i=s+1

(
λ
(n)
1 −ai

)
> 0.

For the second term,
(

λ
(n)
1 −ai

)
< 0 for i = s+2,s+3, . . . ,n−1 and there

are n− s−2 factors in the product
n−1

∏
i=s+2

(
λ
(n)
1 −ai

)
,

n−1

∏
i=s+2

(
λ
(n)
1 −ai

)
= (−1)n−s−2

n−1

∏
i=s+2

(
ai−λ

(n)
1

)
.

Thus,

(−1)nPs(λ
(n)
1 )

n−1

∏
i=s+2

(
λ
(n)
1 −ai

)
= (−1)nPs(λ

(n)
1 )(−1)n−s−2

n−1

∏
i=s+2

(
ai−λ

(n)
1

)
= (−1)2(n−s−1)(−1)sPs(λ

(n)
1 )

n−1

∏
i=s+2

(
ai−λ

(n)
1

)
.

From Lemma 2.2(1), we have (−1)sPs(λ
(n)
1 )> 0. Thus,

(−1)nPs(λ
(n)
1 )

n−1

∏
i=s+2

(
λ
(n)
1 −ai

)
> 0.

By using the similar process, we can show that all terms on the right hand

of equation (3.18) are positive. Consequently,

−(−1)n−1
n−1

∑
k=s

Pk−1(λ
(n)
1 )

n−1

∏
i=k+1

(
λ
(n)
1 −ai

)
> 0.

Therefore, (−1)n−1dn > 0 and hence dn 6= 0. Then, by the Cramer’s rule, we obtain the

unique solution of the system (3.19) as follows:

an =

λ
(n)
1 Pn−1

(
λ
(n)
1

) n−1

∑
k=s

Pk−1(λ
(n)
n )

n−1

∏
i=k+1

(
λ
(n)
n −ai

)
−λ

(n)
n Pn−1

(
λ
(n)
n

) n−1

∑
k=s

Pk−1(λ
(n)
1 )

n−1

∏
i=k+1

(
λ
(n)
1 −ai

)
dn

,

and

c2 =

(
λ
(n)
n −λ

(n)
1

)
Pn−1

(
λ
(n)
1

)
Pn−1

(
λ
(n)
n

)
dn

.
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Since (−1)n−1
(

λ
(n)
n −λ

(n)
1

)
Pn−1

(
λ
(n)
1

)
Pn−1

(
λ
(n)
n

)
> 0 by Lemma 2.2,

c2 =
(−1)n−1

(
λ
(n)
n −λ

(n)
1

)
Pn−1

(
λ
(n)
1

)
Pn−1

(
λ
(n)
n

)
(−1)n−1dn

> 0.

Then, c is a real number which can be made positive. Hence, there exists the unique

matrix An = A

The resulting matrix An = A is now a real symmetric doubly arrow matrix

with λ
( j)
1 and λ

( j)
j for j = 1,2, . . . ,n satifying condition (3.16). Consequently, from

the Cauchy interlacing property (Lemma 2.3) and relation (2.5) λ
( j)
1 and λ

( j)
j are the

minimal and maximal eigenvalues of the j× j leading principal submatrix A j of matrix

A for j = 1,2, . . . ,n, respectively.

Some examples for Problem 1 are shown below.

Example 3.1 Given the real numbers

λ
(6)
1 =−6 λ

(5)
1 =−3 λ

(4)
1 =−3 λ

(3)
1 =−3 λ

(2)
1 =−1 λ

(1)
1 =−1

λ
(2)
2 = 3 λ

(3)
3 = 6 λ

(4)
4 = 7 λ

(5)
5 = 9 λ

(6)
6 = 10

that satisfy conditions (3.1), (3.2), and (3.3) of Theorem 3.1 with s= 3, we can construct

a real symmetric doubly arrow matrix A of the form (1.1) with the required properties

as follows:

A =



−1.0000 0.0000 1.2472 0.0000 0.0000 0.0000

0.0000 3.0000 4.0000 0.0000 0.0000 0.0000

1.2472 4.0000 0.4444 0.0000 0.0000 4.6626

0.0000 0.0000 0.0000 7.0000 0.0000 3.0000

0.0000 0.0000 0.0000 0.0000 9.0000 2.0000

0.0000 0.0000 4.6626 3.0000 2.0000 −0.0497


.
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Example 3.2 Given the real numbers

λ
(6)
1 =−7 λ

(5)
1 =−4 λ

(4)
1 =−4 λ

(3)
1 = 2 λ

(2)
1 = 2 λ

(1)
1 = 2

λ
(2)
2 = 5 λ

(3)
3 = 7 λ

(4)
4 = 9 λ

(5)
5 = 10 λ

(6)
6 = 13

that satisfy conditions (3.6), (3.7), (3.8), and (3.9) of Corollary 3.2 with s = 4, we can

construct a nonnegative real symmetric doubly arrow matrix A of the form (1.1) with

the required properties as follows:

A =



2.0000 0.0000 0.0000 3.0000 0.0000 0.0000

0.0000 5.0000 0.0000 5.0000 0.0000 0.0000

0.0000 0.0000 7.0000 1.4170 0.0000 0.0000

3.0000 5.0000 1.4170 0.4603 0.0000 7.1828

0.0000 0.0000 0.0000 0.0000 10.0000 2.0000

0.0000 0.0000 0.0000 7.1828 2.0000 5.4219


.

Example 3.3 Given the real numbers

λ
(6)
1 =−9 λ

(5)
1 =−8 λ

(4)
1 =−8 λ

(3)
1 =−8 λ

(2)
1 =−6 λ

(1)
1 =−6

λ
(2)
2 =−4 λ

(3)
3 =−2 λ

(4)
4 =−1 λ

(5)
5 = 6 λ

(6)
6 = 8

that satisfy condition (3.16) of Corollary 3.3 with s = 3, we can construct a unique real

symmetric doubly arrow matrix A of the form (3.11) with the required properties as

follows:

A =



−6.0000 0.0000 2.0000 0.0000 0.0000 0.0000

0.0000 −4.0000 2.0000 0.0000 0.0000 0.0000

2.0000 2.0000 −5.0000 0.0000 0.0000 3.4609

0.0000 0.0000 0.0000 −1.0000 0.0000 3.4609

0.0000 0.0000 0.0000 0.0000 6.0000 3.4609

0.0000 0.0000 3.4609 3.4609 3.4609 −0.2874


.



CHAPTER 4

SOLUTION TO PROBLEM 2

In this chapter, we solve Problem 2 and give the sufficient conditions for the

existence of a unique doubly arrow matrix A of the form (1.1) from one of the eigenpairs

and eigenvalues of all leading principal submatrices of matrix A. The nonnegative case

for this inverse eigenvalue problem is also discussed.

Assume that λ ( j) is an eigenvalue of the j× j leading principal submatrix

A j of matrix A, j = 1,2, . . . ,n, and (λ (n),x) is an eigenpair of matrix A = An. That is,

Pj

(
λ
( j)
)
= 0, j = 1,2, . . . ,n−1, (4.1)

Ax = λ
(n)x. (4.2)

We can rewrite the relations (4.1) and (4.2) as (4.3) and (4.4), respectively.

j

∏
i=1

(
λ
( j)−ai

)
= 0 , j = 1, . . . ,s−1,(

λ ( j)−a j

)
Pj−1

(
λ ( j)

)
−

j−1

∑
k=1

b2
k

j−1

∏
i=1
i6=k

(
λ
( j)−ai

)
= 0 , j = s,

(
λ ( j)−a j

)
Pj−1

(
λ ( j)

)
= 0 , j = s+1, . . . ,n−1,


(4.3)

a jx j +b jxs = λ (n)x j, j = 1, . . . ,s−1,
s−1

∑
k=1

bkxk +asxs +bsxn = λ (n)xs, j = s,

a jx j +b jxn = λ (n)x j, j = s+1, . . . ,n−1,
n−1

∑
k=s

bkxk +anxn = λ (n)xn, j = n.


(4.4)

Observe that the solvability of the system of equations (4.3) and (4.4) is equivalent to

that of Problem 2.

The following theorem gives the sufficient conditions for Problem 2 to have

a unique solution.
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Theorem 4.1. Problem 2 has a unique solution if the following conditions are satisfied:

(i) xi 6= 0, i = s,n,

(ii) Pj−1

(
λ ( j)

)
6= 0, j = s,s+1, . . . ,n−1.

Proof. By the above observation, Problem 2 has a unique solution if and only if the sys-

tem of equations (4.3) and (4.4) has a unique solution. That is, the system of equations

satisfies conditions (i) and (ii).

All elements of doubly arrow matrix A can be calculated as follows.

For j = 1,2, . . . ,s−1, from the first equation of (4.3) we have

a j = λ
( j).

Substituting a j into the first equation of (4.4), we obtain

λ
( j)x j +b jxs = λ

(n)x j.

Since xs 6= 0 by condition (i), we get

b j =
(

λ
(n)−λ

( j)
)x j

xs
.

For j = s, we rewrite the second equation of (4.3) as

λ
(s)Ps−1(λ

(s))−asPs−1(λ
(s))−

s−1

∑
k=1

b2
k

s−1

∏
i=1
i6=k

(λ (s)−ai) = 0.

Since Ps−1(λ
(s)) 6= 0 by condition (ii), we obtain

as =

λ (s)Ps−1

(
λ (s)

)
−

s−1

∑
k=1

b2
k

s−1

∏
i=1
i6=k

(
λ
(s)−ai

)
Ps−1(λ (s))

.

Next, from the second equation of (4.4) and xn 6= 0 by condition (i) we have

bs =

λ (n)xs−asxs−
s−1

∑
k=1

bkxk

xn
.
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For j = s+1,s+2, . . . ,n−1, from the third equation of (4.3) and condition

(ii) it follows that

a j = λ
( j).

Substituting a j into the third equation of (4.4), we obtain

λ
( j)x j +b jxn = λ

(n)x j

and by condition (i) we get

b j =
(

λ
(n)−λ

( j)
)x j

xn
.

For j = n, from the last equation of (4.4) and condition (i) we have

an = λ
(n)−

n−1

∑
k=s

bkxk

xn
.

The following corollary is related to a nonnegative solution to Problem 2.

Corollary 4.2. Problem 2 has a unique nonnegative solution if the following conditions

are satisfied:

(i) λ (n) ≥ λ ( j) ≥ 0, j = 1,2, . . . ,s−1,s+1, . . . ,n−1,

(ii) xi > 0, i = 1,2, . . . ,n,

(iii) Pj−1

(
λ ( j)

)
> 0, j = s,s+1, . . . ,n−1,

(iv) λ (s) ≥

s−1

∑
k=1

b2
k

s−1

∏
i=1
i6=k

(
λ
(s)−ai

)
Ps−1

(
λ
(s)
) ,

(v) λ (n) ≥ as +

s−1

∑
k=1

bkxk

xs
,
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(vi) λ (n) ≥

n−1

∑
k=s

bkxk

xn
.

Proof. From the proof of Theorem 4.1, conditions (ii) and (iii) guarantee that there

exists a unique doubly arrow matrix A of the form (1.1). It remains to show that all

elements of matrix A are nonnegative.

For j = 1,2, . . . ,s− 1, from λ ( j) ≥ 0 by condition (i) and x j,xs > 0 by

condition (ii) we obtain

a j = λ
( j) ≥ 0

and

b j =
(

λ
(n)−λ

( j)
)x j

xs
≥ 0.

For j = s, Ps−1

(
λ (s)

)
> 0 by condition (iii) and rewriting condition (iv) as

λ
(s)Ps−1

(
λ
(s)
)
−

s−1

∑
k=1

b2
k

s−1

∏
i=1
i6=k

(
λ
(s)−ai

)
≥ 0,

we have

as =

λ (s)Ps−1

(
λ (s)

)
−

s−1

∑
k=1

b2
k

s−1

∏
i=1
i6=k

(
λ
(s)−ai

)
Ps−1(λ (s))

≥ 0.

Since xs,xn > 0 by condition (ii) and we can express condition (v) as

λ
(n)−as−

s−1

∑
k=1

bkxk

xs
≥ 0,

we get

bs =

λ (n)xs−asxs−
s−1

∑
k=1

bkxk

xn
≥ 0.

For j = s+1,s+2, . . . ,n−1, from condition (i) we obtain

a j = λ
( j) ≥ 0.
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By conditions (i) and (ii) we have

b j =
(

λ
(n)−λ

( j)
)x j

xn
≥ 0.

For j = n, from conditions (ii) and (vi) we obtain

an = λ
(n)−

n−1

∑
k=s

bkxk

xn
≥ 0.

Now, we give some examples to illustrate our results.

Example 4.1 Given the real numbers

λ (1) =−4 λ (2) =−1 λ (3) =−2 λ (4) = 3 λ (5) = 2 λ (6) = 1

and the real vector x = [−2,3,−1,2,−3,1]T that satisfy conditions (i) and (ii) of Theo-

rem 4.1 with s = 3, we can construct a unique real symmetric doubly arrow matrix A of

the form (1.1) with the required properties, as follows:

A =



−4 0 10 0 0 0

0 −1 −6 0 0 0

10 −6 −16 0 0 21

0 0 0 3 0 −4

0 0 0 0 2 3

0 0 21 −4 3 39


.

Example 4.2 Given the real numbers

λ (1) = 7 λ (2) = 3 λ (3) =−1 λ (4) = 3 λ (5) = 5 λ (6) = 9

and the real vector x = [5,3,5,1,2,5]T that satisfy conditions (i) – (vi) of Corollary 4.2

with s = 3, we can construct a unique nonnegative real symmetric doubly arrow matrix

A of the form (1.1) with the required properties, as follows:
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A =



7.0000 0.0000 2.0000 0.0000 0.0000 0.0000

0.0000 3.0000 3.6000 0.0000 0.0000 0.0000

2.0000 3.6000 2.7400 0.0000 0.0000 2.1000

0.0000 0.0000 0.0000 3.0000 0.0000 1.2000

0.0000 0.0000 0.0000 0.0000 5.0000 1.6000

0.0000 0.0000 2.1000 1.2000 1.6000 6.0200


.



CHAPTER 5

SOLUTION TO PROBLEM 3

In this chapter, we solve Problem 3 and give the necessary and sufficient

conditions for the existence of unique real symmetric doubly arrow matrices from the

two eigenpairs. In our work, we are interested in constructing three different forms of

a real symmetric doubly arrow matrix. Those are the matrices A, B, and C of the form

(1.1), (1.2), and (1.3), respectively.

5.1. Constructing Doubly Arrow Matrix A

In this subsection, we construct a doubly arrow matrix A of the form (1.1).

Assume that (λ ,x) and (µ,y) are eigenpairs of matrix A. That is, Ax= λx and Ay= µy.

We can rewrite these as

a1x1 +b1xs = λx1,

a1y1 +b1ys = µy1,

 (5.1.1)

a2x2 +b2xs = λx2

a2y2 +b2ys = µy2,

 (5.1.2)

...

as−1xs−1 +bs−1xs = λxs−1,

as−1ys−1 +bs−1ys = µys−1,

 (5.1.s – 1)

b1x1 +b2x2 + · · ·+bs−1xs−1 +asxs +bsxn = λxs,

b1y1 +b2y2 + · · ·+bs−1ys−1 +asys +bsyn = µys,

 (5.1.s)

as+1xs+1 +bs+1xn = λxs+1,

as+1ys+1 +bs+1yn = µys+1,

 (5.1.s + 1)

...

an−1xn−1 +bn−1xn = λxn−1,

an−1yn−1 +bn−1yn = µyn−1,

 (5.1.n – 1)
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bsxs +bs+1xs+1 + · · ·+bn−1xn−1 +anxn = λxn,

bsys +bs+1ys+1 + · · ·+bn−1yn−1 +anyn = µyn.

 (5.1.n)

To solve this system, we denote all variables as follows:

α = [a1,b1,a2,b2, · · · ,as,bs, · · · ,an−1,bn−1,an]
T ,

e2 =

0

1

 ,

Zi =

xi

yi

 ; i = 1,2, . . . ,n,

Ci =

λxi

µyi

=

c(1)i

c(2)i

 ; i = 1,2, . . . ,n,

γ =
[
c(1)1 ,c(2)1 ,c(1)2 ,c(2)2 , · · · ,c(1)s ,c(2)s , · · · ,c(1)n ,c(2)n

]T
,

Bi,s =

xi xs

yi ys

 ; i = 1,2, . . . ,s−1,

Bs,n =

xs xn

ys yn

 ,

Bi,n =

xi xn

yi yn

 ; i = s+1,s+2, . . . ,n−1,

Di,s = det(Bi,s); i = 1,2, . . . ,s−1,

Ds,n = det(Bs,n),

Di,n = det(Bi,n); i = s+1,s+2, . . . ,n−1,

D(a)
i,s =

∣∣∣∣∣∣c
(1)
i xs

c(2)i ys

∣∣∣∣∣∣ , D(b)
i,s =

∣∣∣∣∣∣xi c(1)i

yi c(2)i

∣∣∣∣∣∣ ; i = 1,2, . . . ,s−1,
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D(a)
s,n =

∣∣∣∣∣∣c
(1)
s −b1x1− . . .−bs−1xs−1 xn

c(2)s −b1y1− . . .−bs−1ys−1 yn

∣∣∣∣∣∣ , D(b)
s,n =

∣∣∣∣∣∣xs c(1)s −b1x1− . . .−bs−1xs−1

ys c(2)s −b1y1− . . .−bs−1ys−1

∣∣∣∣∣∣ ,

D(a)
i,n =

∣∣∣∣∣∣c
(1)
i xn

c(2)i yn

∣∣∣∣∣∣ , D(b)
i,n =

∣∣∣∣∣∣xi c(1)i

yi c(2)i

∣∣∣∣∣∣ ; i = s+1,s+2, . . . ,n−1,

and

H =



B1,s

B2,s

. . .

Bs−1,s

Z1eT
2 Z2eT

2 . . . Zs−1eT
2 Bs,n

Bs+1,n

. . .

Bn−1,n

ZseT
2 Zs+1eT

2 . . . Zn−1eT
2 Bn,n


2n×2n−1

,

where Bn,n =Zn. We now simply rewrite the linear system of equations (5.1.1) – (5.1.n)

as

Hα = γ. (5.A)

Observe that the solvability of the system (5.A) is equivalent to that of Problem 3.

The following theorem gives the necessary and sufficient conditions for

Problem 3 to have a unique solution matrix A.

Theorem 5.1. Problem 3 has a unique solution if and only if the following conditions

are satisfied:

(i) Di,s 6= 0; i = 1,2, . . . ,s−1,

(ii) Ds,n 6= 0,

(iii) Di,n 6= 0; i = s+1,s+2, . . . ,n−1,
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(iv) Rank(Zn) = Rank(Zn|Cn−bsZs−bs+1Zs+1− . . .−bn−1Zn−1) = 1.

Proof. Since the solvability of linear system (5.A) is equivalent to that of Problem 3,

Problem 3 has a unique solution if and only if linear system (5.A) has a unique solution.

Therefore, linear system (5.A) has a unique solution if and only if the conditions (i) –

(iv) are satisfied.

We can find all elements of doubly arrow matrix A from the linear system of

equations (5.1.1) – (5.1.n) and all conditions (i) – (iv) in Thorem 5.1 as follows. Solving

the equations (5.1.1) – (5.1.s – 1) and using condition (i), we have

ai =
D(a)

i,s

Di,s
, bi =

D(b)
i,s

Di,s
.

Substituting b1,b2, . . . ,bs−1 into equation (5.1.s) and using condition (ii), we obtain

as =
D(a)

s,n

Ds,n
, bs =

D(b)
s,n

Ds,n
.

Similarly, we can also find ai and bi for i= s+1,s+2, . . . ,n−1 by solving the equations

(5.1.s + 1) – (5.1.n – 1) under condition (iii). That is,

ai =
D(a)

i,n

Di,n
, bi =

D(b)
i,n

Di,n
.

Substituting bs,bs+1, . . . ,bn−1 into equation (5.1.n), if xn and yn are not both 0, then we

get the last entry an under condition (iv) as follows:

if xn 6= 0, then an = λ −bs
xs

xn
−bs+1

xs+1

xn
− . . .−bn−1

xn−1

xn
and

if yn 6= 0, xn = 0, then an = µ−bs
ys

yn
−bs+1

ys+1

yn
− . . .−bn−1

yn−1

yn
.

5.2.Constructing Doubly Arrow Matrix B

Now, we construct a doubly arrow matrix B of the form (1.2). Assume that

(λ ,x) and (µ,y) are eigenpairs of matrix B. That is, Bx = λx and By = µy. We can
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rewrite these as

a1x1 +b1xs = λx1,

a1y1 +b1ys = µy1,

 (5.2.1)

a2x2 +b2xs = λx2,

a2y2 +b2ys = µy2,

 (5.2.2)

...

as−1xs−1 +bs−1xs = λxs−1,

as−1ys−1 +bs−1ys = µys−1,

 (5.2.s – 1)

b1x1 + · · ·+bs−1xs−1 +asxs +bsxs+1 +bs+1xs+2 + · · ·+bn−1xn = λxs,

b1y1 + · · ·+bs−1ys−1 +asys +bsys+1 +bs+1ys+2 + · · ·+bn−1yn = µys,

 (5.2.s)

bsxs +as+1xs+1 = λxs+1,

bsys +as+1ys+1 = µys+1,

 (5.2.s + 1)

...
bn−1xs +anxn = λxn,

bn−1ys +anyn = µyn.

 (5.2.n)

To solve the system, we denote

α = [a1,b1,a2,b2, · · · ,as,bs, · · · ,an−1,bn−1,an]
T ,

e1 =

1

0

 ,

e2 =

0

1

 ,

Zi =

xi

yi

 ; i = 1,2, . . . ,n,

Ci =

λxi

µyi

=

c(1)i

c(2)i

 ; i = 1,2, . . . ,n,
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γ =
[
c(1)1 ,c(2)1 ,c(1)2 ,c(2)2 , · · · ,c(1)s ,c(2)s , · · · ,c(1)n ,c(2)n

]T
,

Bi,s =

xi xs

yi ys

 ; i = 1,2, . . . ,s−1,

Bs,i =

xs xi

ys yi

 ; i = s+1,s+2, . . . ,n,

Di,s = det(Bi,s); i = 1,2, . . . ,s−1,

Ds,i = det(Bs,i); i = s+1,s+2, . . . ,n,

D(a)
i,s =

∣∣∣∣∣∣c
(1)
i xs

c(2)i ys

∣∣∣∣∣∣ , D(b)
i,s =

∣∣∣∣∣∣xi c(1)i

yi c(2)i

∣∣∣∣∣∣ ; i = 1,2, . . . ,s−1,

D(a)
s,i =

∣∣∣∣∣∣xs c(1)i

ys c(2)i

∣∣∣∣∣∣ , D(b)
s,i =

∣∣∣∣∣∣c
(1)
i xi

c(2)i yi

∣∣∣∣∣∣ ; i = s+1,s+2, . . . ,n−1,

and

L =



B1,s

B2,s

. . .

Bs−1,s

Z1eT
2 Z2eT

2 . . . Zs−1eT
2 Bs,s Zs+1eT

1 . . . Zn−1eT
1 ZneT

1

Bs,s+1

. . .

Bs,n−1

Bs,n


2n×2n−1

,

where Bs,s = Zs. We can rewrite the linear system of equations (5.2.1) – (5.2.n) as

Lα = γ. (5.B)

Observe that the solvability of the system (5.B) is equivalent to that of Problem 3.
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The following corollary gives the necessary and sufficient conditions for

Problem 3 to have a unique real symmetric doubly arrow matrix B of the form (1.2).

Corollary 5.2. Problem 3 has a unique solution if and only if the following conditions

are satisfied:

(i) Di,s 6= 0; i = 1,2, . . . ,s−1,

(ii) Ds,i 6= 0; i = s+1,s+2, . . . ,n,

(iii) Rank(Zs) = Rank(Zs|Cs−b1Z1−b2Z2− . . .−bs−1Zs−1−bsZs+1−bs+1Zs+2−

. . .−bn−1Zn) = 1.

Proof. From the above observation, Problem 3 has a unique solution if and only if linear

system (5.B) has a unique solution. That is, linear system (5.B) satisfies conditions (i)

– (iii)

All elements of doubly arrow matrix B can be found from the linear system

of equations (5.2.1) – (5.2.n) and all conditions (i) – (iii), in a similar fashion to that

used in finding doubly arrow matrix A. We obtain

ai =
D(a)

i,s

Di,s
, bi =

D(b)
i,s

Di,s
; i = 1,2, . . . ,s−1,

ai =
D(a)

s,i

Ds,i
, bi−1 =

D(b)
s,i

Ds,i
; i = s+1,s+2, . . . ,n,

and if xs and ys are not both 0, then we obtain the last entry as as follows:

if xs 6= 0, then as = λ −b1
x1

xs
−b2

x2

xs
− . . .−bs−1

xs−1

xs
−bs

xs+1

xs
− . . .−bn−1

xn

xs
and

if ys 6= 0, xs = 0, then as = µ−b1
y1

ys
−b2

y2

ys
− . . .−bs−1

ys−1

ys
−bs

ys+1

ys
− . . .−bn−1

yn

ys
.

5.3. Constructing Doubly Arrow Matrix C

In this part, we construct a doubly arrow matrix C of the form (1.3). Assume

that (λ ,x) and (µ,y) are eigenpairs of matrix C. That is, Cx = λx and Cy = µy. We
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can rewrite these as

a1x1 +b1x2 +b2x3 + . . .+bs−1xs = λx1,

a1y1 +b1y2 +b2y3 + . . .+bs−1ys = µy1,

 (5.3.1)

b1x1 +a2x2 = λx2,

b1y1 +a2x2 = λy2,

 (5.3.2)

...

bs−2x1 +as−1xs−1 = λxs−1,

bs−2y1 +as−1ys−1 = µys−1,

 (5.3.s – 1)

bs−1x1 +asxs +bsxs+1 + . . .+bn−1xn = λxs,

bs−1y1 +asys +bsxs+1 + . . .+bn−1yn = µys,

 (5.3.s)

bsxs +as+1xs+1 = λxs+1,

bsys +as+1ys+1 = µys+1,

 (5.3.s + 1)

...

bn−1xs +anxn = λxn,

bn−1ys +anyn = µyn.

 (5.3.n)

To solve the system, we denote

α = [a1,b1,a2,b2, · · · ,as,bs, · · · ,an−1,bn−1,an]
T ,

e1 =

1

0

 ,

Zi =

xi

yi

 ; i = 1,2, . . . ,n,

Ci =

λxi

µyi

=

c(1)i

c(2)i

 ; i = 1,2, . . . ,n,

γ =
[
c(1)1 ,c(2)1 ,c(1)2 ,c(2)2 , · · · ,c(1)s ,c(2)s , · · · ,c(1)n ,c(2)n

]T
,
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B1,i =

x1 xi

y1 yi

 ; i = 2,3, . . . ,s,

Bs,i =

xs xi

ys yi

 ; i = s+1,s+2, . . . ,n,

D1,i = det(B1,i); i = 2,3, . . . ,s,

Ds,i = det(Bs,i); i = s+1,s+2, . . . ,n,

D(a)
1,i =

∣∣∣∣∣∣x1 c(1)i

y1 c(2)i

∣∣∣∣∣∣ , D(b)
1,i =

∣∣∣∣∣∣c
(1)
i xi

c(2)i yi

∣∣∣∣∣∣ ; i = 2,3, . . . ,s−1,

D(a)
1,s =

∣∣∣∣∣∣x1 c(1)s −bsxs+1− . . .−bn−1xn

y1 c(2)s −bsys+1− . . .−bn−1yn

∣∣∣∣∣∣ , D(b)
1,s =

∣∣∣∣∣∣c
(1)
s −bsxs+1− . . .−bn−1xn xs

c(2)s −bsxs+1− . . .−bn−1xn ys

∣∣∣∣∣∣ ,

D(a)
s,i =

∣∣∣∣∣∣xs c(1)i

ys c(2)i

∣∣∣∣∣∣ , D(b)
s,i =

∣∣∣∣∣∣c
(1)
i xi

c(2)i yi

∣∣∣∣∣∣ ; i = s+1,s+2, . . . ,n,

and

M =



B1,1 Z2eT
1 . . . Zs−1eT

1

B1,2

. . .

B1,s−1

B1,s Zs+1eT
1 . . . Zn−1eT

1 ZneT
1

Bs,s+1

. . .

Bs,n−1

Bs,n


2n×2n−1

,

where B1,1 =Z1. We now simply rewrite the linear system of equations (5.3.1) – (5.3.n)

as

Mα = γ. (5.C)
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Observe that the solvability of the system (5.C) is equivalent to that of Problem 3.

The following corollary gives the necessary and sufficient conditions for

problem 3 to have a unique real symmetric doubly arrow matrix C of the form (1.3).

Corollary 5.3. Problem 3 has a unique solution if and only if the following conditions

are satisfied:

(i) D1,i 6= 0; i = 2,3, . . . ,s,

(ii) Ds,i 6= 0; i = s+1,s+2, . . . ,n,

(iii) Rank(Z1) = Rank(Z1|C1−b1Z2−b2Z3− . . .−bs−1Zs) = 1.

Proof. Since the solvability of linear system (5.C) is equivalent to that of Problem 3,

Problem 3 has a unique solution if and only if linear system (5.C) has a unique solution.

Therefore, linear system (5.C) has a unique solution if and only if the conditions (i) –

(iii) are satisfied.

All elements of doubly arrow matrix C can be found from the system of

equations (5.3.1) – (5.3.n) and all conditions (i) – (iii), in a similar manner to that used

in finding doubly arrow matrix A. We obtain

ai =
D(a)

1,i

D1,i
, bi−1 =

D(b)
1,i

D1,i
; i = 2,3, . . . ,s−1,

ai =
D(a)

s,i

Ds,i
, bi−1 =

D(b)
s,i

Ds,i
; i = s+1,s+2, . . . ,n,

as =
D(a)

1,s

D1,s
, bs−1 =

D(b)
1,s

D1,s
.

If x1 and y1 are not both 0, then we obtain the last entry a1 as follows:

if x1 6= 0, then a1 = λ −b1
x2

x1
−b2

x3

x1
− . . .−bs−1

xs

x1
and

if y1 6= 0, x1 = 0, then a1 = µ−b1
y2

y1
−b2

y3

y1
− . . .−bs−1

ys

y1
.
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Next, we give some examples to illustrate our results.

Example 5.1. Given the two real numbers λ = 1, µ =−7 and two nonzero real vectors

x = [−1,−4,1,−2,−2]T , y = [1,−4,−3,6,0]T , using Theorem 5.1 with s = 3 we can

construct a real symmetric doubly arrow matrix A of the form (1.1) as follows:

A =



5 0 4 0 0

0 −1 −8 0 0

4 −8 5 0 16

0 0 0 −7 8

0 0 16 8 1


.

Example 5.2. Given the two real numbers λ =−1, µ = 3 and two nonzero real vectors

x = [1,−3,−2,2,−1]T , y = [3,1,0,−1,−2]T , by using Corollary 5.2 with s = 3 we can

construct a real symmetric doubly arrow matrix B of the form (1.2) as follows:

B =



3 0 2 0 0

0 3 −6 0 0

2 −6 14 4 −2

0 0 4 3 0

0 0 −2 0 3


.

Example 5.3. Given the two real numbers λ = 1, µ =−2 and two nonzero real vectors

x = [0,1,2,3,−2]T , y = [−1,1,−3,1,−1]T , using Corollary 5.3 with s = 4 we can

construct a real symmetric doubly arrow matrix C of the form (1.3) as follows:

C =



33 3 −9 5 0

3 1 0 0 0

−9 0 1 0 0

5 0 0 −3 −6

0 0 0 −6 −8


.



CHAPTER 6

CONCLUSIONS AND FUTURE WORK

This thesis focused on three inverse eigenvalue problems for constructing a

real symmetric doubly arrow matrix of the form:

a1 0 · · · 0 b1 0 · · · 0 0

0 a2 · · · 0 b2 0 · · · 0 0
...

...
. . .

...
...

...
. . .

...
...

0 0 · · · as−1 bs−1 0 · · · 0 0

b1 b2 · · · bs−1 as 0 · · · 0 bs

0 0 · · · 0 0 as+1 · · · 0 bs+1
...

...
. . .

...
...

...
. . .

...
...

0 0 · · · 0 0 0 · · · an−1 bn−1

0 0 · · · 0 bs bs+1 · · · bn−1 an


from three types of spectral information.

The first inverse eigenvalue problem was to construct the doubly arrow ma-

trix from the minimal and maximal eigenvalues of all leading principal submatrices. We

solved this problem by giving the sufficient condition for the existence of such a matrix.

In addition, the sufficient conditions for the existence of the nonnegative doubly arrow

matrix and the unique doubly arrow matrix were also given.

The second inverse eigenvalue problem was to construct the doubly arrow

matrix from one of the eigenpairs and eigenvalues of all leading principal submatrices.

The sufficient condition for the existence of such a unique matrix was given. We also

gave the sufficient condition for the existence of the nonnegative doubly arrow matrix.

The third inverse eigenvalue problem was to construct the doubly arrow

matrices from the two eigenpairs. For this problem, we gave the necessary and sufficient

conditions for the existence of such a unique matrix. In particular, we were interested in

constructing other real symmetric doubly arrow matrices that were introduced by other
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researchers. These are

a1 · · · 0 b1 0 · · · 0
... . . . ...

...
... . . . ...

0 · · · as−1 bs−1 0 · · · 0

b1 · · · bs−1 as bs · · · bn−1

0 · · · 0 bs as+1 · · · 0
... . . . ...

...
... . . . ...

0 · · · 0 bn−1 0 · · · an


and 

a1 b1 · · · bs−1 0 · · · 0

b1 a2 · · · 0 0 · · · 0
...

... . . . ...
... . . . ...

bs−1 0 · · · as bs · · · bn−1

0 0 · · · bs as+1 · · · 0
...

... . . . ...
... . . . ...

0 0 · · · bn−1 0 · · · an


.

The necessary and sufficient conditions for the existence of such unique matrices have

also been given.

For all inverse eigenvalue problems, we presented examples to illustrate our

results.

Future Work: The following are possible extensions of this thesis.

1. We are interested in finding an explicit formula of eigenvectors for the

real symmetric doubly arrow matrices.

2. As described in this thesis, the spectral information concerned may

consist of complete or only partial information on eigenvalues or eigenvectors. We will

investigate other spectral information that can be used to construct our matrix.
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3. We may consider inverse eigenvalue problems for constructing other

matrices that have a certain form.
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