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Abstract 

 

STOCHASTIC PROGRAMMING MODEL FOR SUPPLY CHAIN DESIGN WITH 

SHORT RESPONSE TIME AND HEURISTIC 

by 

 

THANATORN SINPHATSIRIKUL 

 

[Engineering Management: Bachelor, Sirindhorn International Institute of Technology, 

2013]   
 

This research studies the impact of demand uncertainty to the supply chain 

design by using a stochastic programming approach. Each potential location has two 

modes of supply: long response time used before the demand is realized and short 

response lead time mode (with higher cost) used after the demand is realized. The 

capacity of each model will be optimally determined from the model. This means that 

each location allow the manufacturer to install machines to produce in a large quantity 

at low cost (due to economy of scale) and keep in the internal warehouse or to install 

flexible rapid response machines to produce with short lead time at high cost after the 

demand shortage is expected. Moreover, the model allows different production cost 

functions which the unit cost could be different when production quantity is different 

using piecewise function. A stochastic programming model is developed to handle the 

situation explained. We have conducted 4 experiments to test the model in different 

perspective; (1) Sampling test – to test the effect of the sample size to the result, (2) 

Parameter variation – to test how each variable affect the results, (3) Cost function 

testing – to reveal the property of different cost function and (4) Pair-T test to prove 

how short LT response facility could improve certain situation and mitigate the effect 

of demand uncertainty. Furthermore, for heuristic part, we applied linear relaxation 

and decomposition method on two binary variables to separate the model into two 
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phases; (1) Location decision and (2) Segmentation decision. For the result, heuristic 

model affords to contribute the optimal result for about 26 out of 32 instances or 

81.25% of the total number of computable instances deriving from every cost function. 

The average overall total profit gap is 0.32%. The average computational time 

reduction is 71.65%. Moreover, our heuristics model is able to solve big size problems 

which the optimal model failed to do within acceptable time.  

 

Keywords: Facility and location, Stochastic programming, Piecewise function, Short 

lead time response, Heuristic  
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Chapter 1 

Introduction 

  

Every company relies on one of the most important factor which is the demand 

of product to create income and survive in the world of business. In reality, demand 

happens to be uncertain along the whole supply chain for most of the time. As demand 

is very sensitive, every company needs to thoughtfully plan for serving topmost 

demand in order to acquire the highest revenue, minimized the cost and maximizes the 

profit. In the other hand, overlooking demand may cause unacceptable shortage or 

overflow overage of products which conceives excessive cost and eventually leads to 

loss of profit. Uncertainty of demand has crucial impact not only for the single 

company, but for the whole stream of supply chain. Some researchers have statistically 

proven that divergence between demand and supply is very vital. Hendricks et al. 

(2005) informed that a company may lose up to 30% of its typical income due to the 

mismatch of its supply against customer’s demand. In an example case from Nagali et 

al. (2008), Hewlett-Packard, 425 billion dollars is save aggregately by developing 

treatment for handling the uncertainty. Hau L. lee, (1997) b informed that bullwhip 

effect is also one of the major problems obviously affected by the demand uncertainty. 

Bullwhip effect is the distortion of demand upstream and creates the massive deviation 

of order along the supply chain stream.  

According to the problem, short lead time response (also known as quick 

response and accurate response) of production is highlighted as one of the methods for 

handling the uncertainty of demand. Fisher & Raman (1994) were two of the 

researchers who pioneer the short response to mitigate the effect of uncertainty. They 

prove that short response helps reducing relative cost and comparatively increasing 

profits by 60%. Short response increases rate of production, so the company can 

rapidly serve the received order within short period of time. On the other hand, it 

technically costs more on many directions to afford the specialized technology for 

flexible production. Moreover, theoretically, to ensure the effectiveness of quick 
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response production, they also need to improve the cohesiveness of data transferring 

along the supply chain for legitimate demand information. 

Hence, we introduce our research on for the according problem in two parts. 

For the first part, we diagnoses and control the uncertainty of demand by developing 

stochastic programming model. The model is two echelons supply chain with single-

commodity, multi-facilities and multi-retailers. In addition, we have implanted short 

lead time response facilities in order to handle the demand fluctuation more 

effectively. Moreover, the model also focuses on different production cost function 

which different in price when purchase in different amount by developing the 

piecewise function to handle various cost curve segmentation. Furthermore, for the 

second part, we proposes two phases heuristic model of stochastic programming model 

for supply chain design with short response time by re-engineering the original model 

with linear relaxation and decomposition concept. 

 

1.1 Problem Statement 

This research mainly focuses on 4 problems; facility and location problem, 

production with demand uncertainty, piecewise cost function and heuristic. First, for 

the facility location problem, the main purpose is to allocate the location of facility 

while minimizing the total cost of opening facility and transportation cost. Second, 

demand uncertainty is the major problem of our research. We try to analyze how short 

response lead time facility can help lessen the effect uncertainty. Demand is randomly 

assume in each considering scenarios.  Third, for the cost of production, we encounter 

with 3 kinds of piecewise production cost function which are s-shaped, convex and 

concave cost function.  We try to study the decisive nature of each cost function as 

they all have distinct characteristics. Fourth, we develop heuristic model to proof that 

there is better process of solving the problem as we refine our model and its usage. We 

test the justification based on the gap of objective result and time efficiency. 
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1.2 Objectives of Research 

 To find the model and heuristics that help the manufacturer and supply 

chain member on operational decisions for facility location problem with 

short lead time response facility featuring various cost function. 

 To show the benefit of short response lead time facility. 

 To test the efficiency of heuristic for various cost function and problem 

size. 

 

1.3 Overview of Research 

This thesis report is organized as follows. Chapter 2 informs review of 

literatures. Chapter 3 describes problem description and mathematical model. Chapter 

4 presents numerical experiment and results. And lastly, Chapter 5 is the conclusion of 

our thesis. 
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Chapter 2 

Literature Review 

  

We have reviewed some literatures on 3 main bases: (1) Facility location 

models with supply chain context (2) Stochastic programming (with demand 

uncertainty) and (3) Piecewise function and (4) Heuristics. These 4 contents are the 

main contribution of our research.   

 

2.1 Facility and Location 

Thanh et al. (2007) proposed a mixed integer linear programming of multi-

level, multi-period, multi-commodity of production and distribution with deterministic 

demand. The decisions are to decide whether to close, open or enlarge the existing 

network facility. They also applied the model to handle the increasing of demand.  

Melo et al. (2004) presented dynamic multi-commodity capacitated facility 

location problem which figure the relocation, reduction and expansion of initial 

facilities that originally operated over the planning horizon. Moreover, the paper also 

concern about fluctuation of seasonal demand.  

Jouzdani et al. (2012), fuzzy linear programming is developed which focuses 

on dynamic dairy facility location and supply chain planning of dairy products. 

Triangular Fuzzy concept is utilized to model the uncertainty of the problem. In 

addition, non-linear mixed integer programming is implemented on traffic congestion.  

Amin et al. (2012) considered mixed integer linear programming for closed-

loop supply chain network. The model also regarded on environmental factors by 

implementing e-constraint and weighted sums methods. For considering the 

uncertainty of some parameters, they developed scenario-based analysis on stochastic 

programming with probability function. As the results from sensitivity analysis, they 

informed that stochastic model obviously costs more comparing with deterministic 

model at the same disposal fraction value.  
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2.2 Stochastic Programming 

Kaki et al. (2014) proposed stochastic problem applying newsvendor concept 

with distribution function, cumulative function and expected value. They focused on 

the affected of interdependent supply and demand uncertainty. They implemented 

scenarios based on copula functions which valid to handle linear and nonlinear 

dependences. Also, capacity reservation contract was used to compromise the 

uncertainty of demand and supply.  

Xu and Zhang (2013) introduced mixed-integer bi-level programming model 

and employs the iterative-optimization method. The bi-level programming divided into 

2 parts: (1) the upper model is the logistics network design (LND). (2) The lower 

model is the order quantity determination (OQD). For stochastic demand, they utilized 

probability distributions to handle the uncertainty. 

Chouinard et al. (2007) presented two-stage stochastic model for supply loops 

design. Linear regression and normal distribution are utilized to represent the 

uncertainty of demand. Furthermore, they extent heuristics on sample average 

approximation (SAA) featuring the Monte Carlo sampling methods. They used SAA to 

fix the network configuration across the fixed number of scenarios for approximating 

the expected value acquired from previous model optimization. Monte Carlo method 

was used to generate the scenarios regardless the optimization procedure. 

Goh et al. (2007) proposed multi-stage stochastic convex programming 

applying probability for demand uncertainty. The uncertainty data is represented by set 

of distinction realizations. Moreover, they also used Moreua-Yoshida regularization 

and designed algorithm for interpreting of multi-stage global supply chain network 

problem.  

 

2.3 Piecewise Function and Cost Function 

Da Lu (2010) proposed non-linear mixed integer programming on facility 

location problem with economies of scale and congestion and also proposes the 

Lagrangian solution approach. In addition, this paper interpret capacitated facility 
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location problem  applying various type of cost functions which i.e. convex cost 

function, concave cost function and s-shaped cost function.  

Diabat and Theodorou (2014) presented mixed integer non-linear programming 

for single-warehouse multi-retailer inventory problem. They utilized piecewise 

function to convert non-linear to linear term by transforming non-convex problem into 

discrete convex problem. They also compare the result with other proposed 

Lagrangian relaxation results regardless any extraordinary algorithms.  

Chan et al. (2002) introduced linear programming based algorithm for effective 

zero inventory ordering policies for single warehourse, multi-retalier problem with 

inventory and transportation strategies on satisfying demand variation. Piecewise 

linear function is utilized for expressing quantity discount function, incentive of 

volume based pricing and conceptual economies of scale. 

 

2.4 Heuristics: Stochastic Programming, Mixed Integer Programming, Facility 

Location and Supply Chain. 

First, Ramezanian and Saidi-Mebrabad (2012) proposed hybrid model of 

simulated annealing and mixed integer programming based heuristics for multi-phase 

stochastic scheduling and lot-sizing problem. They applied probability distribution 

(density function) and chance-constrained programming (CCP) to transform the 

stochastic problem into deterministic.  Moreover, two MIP-based heuristics are 

mentioned to solve the problem. The first heuristic is developed based on the original 

model and the second heuristic is based on permutation/non-permutation heuristic 

technique.  

Melo and Wolsey (2012) presented mixed integer programming and heuristics 

for two-level production and transportation problems. They developed a hybrid 

heuristic with variable fixing to restrict the qualified formulation. They prove that the 

heuristic provide optimal results with remarkable less computational time.  

Absi et al. (2012) presented heuristic for multi-item capacitated lot-sizing 

problem. The model is decomposed and adapt dynamic programming algorithm to 

specify the sub-problems. They utilized non-myopic heuristic base with probing 
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strategy to acquire the feasible solution. They applied Lagrangian relaxation to acquire 

commendable lower bound and upper bound.  

Miranda and Garrido (2006) proposed a facility location and inventory control 

model with stochastic capacity constraints. For the stochastic demand, they used mean 

and variance to represent the fluctuation of demand. They suggested that in order to 

numerically analyze stochastic results, it needs a deterministic benchmark. However, 

to analyze the deterministic approach when it is stochastic in practical, it particularly 

assumes a probability of 0.5 according to symmetric distribution (ex. Normal 

distribution).  

Coelho et al. (2014) proposed heuristics for dynamic and stochastic inventory 

routing. They used forecasting to manipulate the stochastic data in planning process. 

They separate the solution policy into two bases; reactive and proactive. For reactive, 

they anticipate the real information to optimally deciding the next decision. For 

proactive, they attempted to forecast the information before making decisions. They 

prove that, with the stochastic solution, it practically gives out better solution than 

using static setting.  

Guastaroba and Speranza (2014) presented heuristic for binary integer linear 

programming of single source capacitated facility location problem. They also applied 

Kernel search heuristics framework to the problem. They used the decision variables to 

restrict the problem into sequence sub-problems as the subset of decision variables are 

constructed from linear relaxation entity. By developing the heuristic, they could 

remarkably contributed optimal solution from 165 out of 170 instances with overall 

average gap of 0.64%.   

Smith and Penuel (2008) introduced two-phase facility location problem with 

second-phase activation costs. They offered scenario-based stochastic facility problem 

when the facility is located in the first period, then the second period becomes the sub-

problem activating the located facility among the chosen site from the first period. 

They developed mixed integer programming with binary variables of facility location 

allocation. They applied relaxation method on the first phase model and lower 

bounding restriction on second phase model.   
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Lastly, Boujelben et al. (2014) proposed heuristics for mixed integer 

programming formulation of automotive industry distribution network design problem.  

They utilized linear relaxations to develop various heuristics of mixed integer 

programming formulation. They offered clustering-based location-routing approach to 

group the close customer into clusters for delivery. They also developed two-phase 

heuristic method based on two essential binary variables; (1) location decisions and (2) 

assignment decisions. This two phase heuristic part of this research paper is authentic 

enough to be studied for our heuristics approach application to our model. They 

introduced Lagrangian relaxation and sub-gradient method for heuristic to solve the 

non-linear terms which considered being a NP-hard problem.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



9 
 

Chapter 3 

Problem Description and Mathematical Model 

 

 The detailed problem description is simplified in section 3.1 to expose the 

situation of the problem, entity and limitations of the supply chain. Also the base case 

mapping is illustrated to further clarify the situation. In section 3.2, we informed the 

mixed integer programming model, parameter a notation, variable notation and model 

description.     

 

3.1 Problem Description 

For this research, we have created a scenario of two echelons supply chain with 

3 representative sites of facility serving product A to 20 dispersed customers. Each 

location has potential to construct 2 types of facility (1 for each type) which are short 

lead time response facility and long lead time response facility. In fact, the short lead 

time response facility produce the same exact product as the long lead time, but it has 

much shorter lead time and able to response more effectively during critical time. 

Moreover, as it has more sophisticated technology and machines to perform the 

according specialty, it also cost more to build one. Both type of facility has its own 

production cost function represented in term of piecewise function with 3 segments. In 

accordance to the piecewise function, the 2nd and the 3rd segment can be opened only 

if their previous segment is opened.  Next, we divide the production schedule into 2 

periods. For the first period, only long lead time response facility is opened for 

advanced production before receiving the real demand data, which will not take part 

on the fluctuation of future demand. This is scheduled as the stand by product. Then, 

for the second period, Short lead time response facility will chase the fluctuation of the 

demand of every simulated scenario in order to make the most neutralized decisions 

for overall production, minimizing overage and shortage amount to avoid 

supplemental cost from mismatched production. Ultimately, as the facilities are 

determined, the customer’s demand will be served based on the decision made 

previously allocating which customer will be serving by which facility. 
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3.2 Mathematical Model 

:

( : , : )

Indexes

i demand node

j facility node JL Long JS short

k segment k of production cost

s scenario of second stage









  

:

( )

(

ij

jk

jk

Parameters

c transportation cost from j to i

l production cost slope per unit using line segment k at location j

ac marginal fixed cost to construct faciliy of size k at location j

additional cost in expand capacity from size k







1 )

( )

is

jk

jk

to size k

fc fixed cost to construct faciliy at location j

p probability of scenarios

Sh Shortage cost per unit

Ov Overage holding cost per unit

D Demand of product at location i under scenario s

L Length of segment k of produc













( 1 )

tion cost at location j or

Additional capacity if size k is selected over size k at location j

UP Unit selling price





:

:

1 (

x

j

ij

jk

k

Decision Variables

First stage

x quantity shipped from j to i using long lead time facility

quantity produced at location j using long lead time under segment k of production cost

w if quantity produced is at upperbound k fu







 )

( ), 0

1 , 0

x

j

y

jk jk

j

k jk

ll capacity of segment k of production cost

L or L otherwise

OPEN if a facility is open at location j otherwise

  



:

y

ijs

jks

Second stage

y quantity shipped from j to i using short lead time facility under scenario s

quantity produced at location j using short lead time under segment k of production cost





is

is

SQ shortage quantity at location i under scenario s

OQ overage quantity at location i under scenario s




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Two Stages Stochastic Programming Model 

 

:

:

:

:

,

,

i

JL

i j i

JL
x

j jjk
i j j j

ij

ij ij jk jk jk

i i
i i

ij
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jk k

i i i

K
x
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1
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i
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i k

j

1st stage stochastic

Minimize

Subject to

Up x OQ

c x l w ac OPEN fc

Sh OQ Ov

x
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ct 1

ct 2 L

SQ OQ D i

x j J

x Oc PEt 3






 
 
 
 

 
 
 
 
 
 
 

 

   

   

  





 

 


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







,

,

,

,

, , { , ,...

:

, }:

: ,

j1 j1 j1

jk jk j

j

x
j1

x
k jk

x
j

k 1

jK K 1K j

N M j JL

Lct 4 L

ct 5 L

ct 6 L

w L j J

L w L w j J k 2 3 K 1

0 L w j J











 

   

      
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2 :

JS

ijs is
s si j i

JS
y
jks

s i j
s ij ijs is isjk

ij k i

nd stage stochastic

Minimize Up p y p OQ

p c y l ShS OQ OQ v
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 
 
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 
 
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

 

 
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


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The objective function of the model is to maximize the profit from sales of 

product from short lead time response and long lead time response (excluding the 

overage amount) and deduct by various cost of long lead time response and short lead 

time response i.e. transportation cost (long lead time), production cost (long lead time), 

capacity additional cost, facility fixed cost, and with the probability distribution for 

transportation cost (short lead time), production cost (short lead time), shortage cost 

and overage cost. Constraint (1) represents the demand satisfaction. Constraint (2) 

determines total production and delivery from all of the long lead time response 

facility. Constraint (3) determines total production and delivery from all of the short 

lead time response facility. Constraint (4) locates the long lead time response facility. 

Constraint (5) locates the short lead time response facility. Constraint (6, 7, and 8) 

represents the piecewise function of long lead time response facility’s production 

capacity. Constraint (9, 10, and 11) represents the piecewise function of short lead 

time response facility’s production capacity. Constraint (12) determines the non-

negativity variables. Lastly, Constraint (13) determines the binary variable. 
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Chapter 4 

Numerical Experiment and Results 

 

In this chapter, we interpret the numerical experiment and the results in detail. 

We delicately analyze the result base on our insight understanding. This part is divided 

into two parts; PART 1 and PART 2. For PART 1, we developed some experiments to 

test the contribution of the model on the situation. We mainly focus on the limitation, 

adaptation and feature of the model. For PART 2, we developed heuristic with our 

model to extend the limitation and improve our model toward certain ways. 

 

Part 1 

 

4.1 Numerical Experiment 

Table 1 reveals all of the input data that implemented in the model for solving 

the model which is utilized in all of the experiment of PART 1. We utilize IBM ILOG 

CPLEX 12.1 for programming and solving. 

 

Table 1: 

Input data of the base case 

min max mean SD

Long 5M 1M

Short 7M 1M
38,000

Type

Facility 

fixed 

cost

Capacity 

additional 

cost

Selling 

price per 

unit

Transportaion cost

per unit (Random)

Demand 

Distribution

45 140 70 10

 

min max Mean SD Site A Site B Site C

6,000 0 45 140 70 10 98 102 95

Average transportation cost 

(sites to customers)

Demand 

Distribution

Transportaion 

cost per unit 

(Random)

Overage

Cost per 

unit

Shortage

Cost per 

unit
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Figure 1 and Table 2 shows the result of base case scenario. It shows all the 

significance decisions and distribution mapping of the whole situation. Site A opens a 

long response lead time facility with 2 segments production capacity. Site B is not 

chosen to open any facility. Site C opens both long and short response lead time 

facility with full capacity of 3 segments. For more detail, this decision is made based 

on the average distance between representative sites and customers. Site C (95) has the 

least average distances to customers so opening full capacity at C will save the most 

transportation cost, following by site A (98). Thus, site B (102) with the most average 

distance is ignored as it costs more transportation cost. 

 

   Table 2:

   Results of the base case 

1 2 3 1 2 3 1 2 3

Long 850

Short 489.07

Individual Total

Average 

Shortage 

amount

Production amount Average 

overage 

amount

Total Profit

1339.07 50.94 3.72 10,604,193

Location  


A
Type

B C

Segmentation

 

 

For the experiment part, this research introduces 4 separated experiments: (1) 

Sampling test, (2) Parameter variation, (3) Cost function testing and (4) Pair-T test. 

For these experiments, data variation is mainly applied to conduct those experiments. 

This part visualizes how each of input data influentially affects certain situation. 

Moreover, some experiments are developed by constructing some statistical analysis to 

obtain concrete and reliable results. 
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Figure 1: Base case scenario’s result 
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 Sampling test 

Theoretically, larger samples increases the chances of exposing specific mean 

difference because they are more reliably reflecting the population mean. This 

experiment is conducted to test how the size of sampling consequently contributed the 

results. We test to see that the sample size is bigger, the deviation would be smaller. 

Distribution of customer’s demand in each scenario considered to be the sample size of 

the problem. Every scenario is created based on the same distribution (mean and 

standard deviation).  

 

 Parameter variation 

In this experiment, we vary various parameters of the model to acquire 

quantitative and qualitative difference of the results. For the quantitative difference, 

the comparison can obviously be shown by the numerical differences of major 

quantitative decisions i.e. total profit, amount of production, shortage amount and 

overage amount. Then, for the qualitative difference, we try to test how the physical 

decisions are changed according to the variation of parameter i.e. location of facilities 

and segmentation of facilities. 

 

 Cost function testing 

In this part, we develop a test to analyze the changes of the quantitative and 

qualitative results when different distribution of production cost function is 

implemented.  We simulate 4 different characteristics of cumulative cost function i.e. 

(1) Convex cost function (2) Concave cost function (3) S-shaped cost function and (4) 

Stable cost function. Each cost curve is divided into 3 segments which each segment is 

refined according to the type of certain function. 

 

 Pair-T test 

For the last experiment, this experiment evaluates a significant contribution of 

this research which is the short LT response facility. We construct Pair-T test to prove 

how short LT response facility could improve certain situation and mitigate the effect 
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of demand uncertainty, we compare the total profit among 3 cases which are (1) Only 

short LT response facility (2) Only long LT response facility and (3) Long and short 

LT response facility. 

 

4.2 Results and analysis 

This part is devoted to reveal the result of according experiments. We analyze 

the results in term of both quantitative and qualitative resolution. As we mentioned, 

quantitative analysis is focusing on profit and production and qualitative is targeting 

on facility location and segmentation allocation.  

 

4.2.1 Sampling test 

The experiment uses data of the base case. Each number of scenarios is 

retrieved from average of 5 replications. 

From Table 3 and Figure 2, we focus on the change of standard deviation. We 

can obviously illustrate that as the size of the sample increase, standard deviation 

decline. The standard deviation is descending from 25,106.82 to 3,573.61 as the 

number of sample ascending from 100 to 400 respectively. Moreover, Figure 2 

obviously shows that as the number of scenarios increases, the fluctuation rate of profit 

graph is decreased. For average profit, there is no relationship or trend among the 

scenarios, they are all rely on the random distribution of demand which is unnecessary 

to be concerned in this part. Hence, it is statistically consistent with the sampling 

theory, so we can support that bigger sample size could produce more refined and 

precise results. In the other hand, for bigger sample size, it reasonably requires much 

longer computational time. 
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     Table 3: 

     Sampling test illustrating the change in deviation 

Cost Avg cost SD
100(1) 10,895,847.15 1.37 mins

100(2) 10,922,218.58 1.35 mins

100(3) 10,861,803.73 1.31 mins

100(4) 10,914,954.62 1.44 mins

100(5) 10,878,254.85 1.41 mins

200(1) 10,857,082.45 7.08 mins

200(2) 10,903,527.42 5.36 mins

200(3) 10,870,304.00 6.02 mins

200(4) 10,864,631.82 7.13 mins

200(5) 10,900,269.31 8.33 mins

300(1) 10,889,839.32 19.39 mins

300(2) 10,870,616.34 15.42 mins

300(3) 10,878,082.69 18.56 mins

300(4) 10,891,274.46 24.82 mins

300(5) 10,886,641.38 27.24 mins

400(1) 10,886,558.30 52.23 mins

400(2) 10,884,037.59 50.00 mins

400(3) 10,887,485.63 55.14 mins

400(4) 10,879,247.36 57.55 mins

400(5) 10,880,754.38 53.22 mins

10,894,615.79

10,879,163.00

10,883,290.84

10,883,616.65

100 25,106.82

21,308.97

8,740.92

3,573.61

200

300

400

timeNumber of S
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Figure 2: Sample size testing results 
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4.2.2 Parameter variation 

For some of the parameter, the results are reasonably deviate according to 

general relationship of the parameter which are direct and inverse relationship. Hence, 

we decide to capture some parameter of this experiment that highlight the significance 

modification of the result. We also develop a simple sensitivity analysis to find the 

degree of effect on the total profit by variation of the parameters.  

 

4.2.2.1 Unit Selling Price 

 From Table 4, for the first unit price, 30,000 baht, there are two long response 

LT facilities on location A and C, the production is 399 units short for satisfying 

demand and the profit is comparatively small at 1,454,690 baht.  Hence, as the unit 

price decrease from 38,000 (base case) to 30,000 baht, it decides to opened just two 

long LT response facility to produce 1,000 units. In addition, it chooses to be short in 

production because in order to invest in opening one more facility, it may eventually 

turn the situation from gaining small amount of profit into loss. In particular, selling 

399 units would not overcome the cost that they have to take to produce them. 

For the second unit price, 46,000 baht, the profit is relatively increases as the 

selling price increases. According to table 4, as the unit price is higher, the long 

response facility in location A decide to add more capacity by opening the 3
rd

 segment 

to sell more product for logical profit. The additional sale technically overcomes the 

cost of adding production capacity for all of the facility. Hence, the according unit 

price increases the production (comparing with the base case) from 1,339.07 to 

1,394.19 and earns profit of 21,358,848 baht. 
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 Table 4: 

 Results of unit price variation 

1 2 3 1 2 3 1 2 3

Long 1000

Short 0

Long 850

Short 489.07

Long 965

Short 429.19

Unit Price

30,000

38,000*

46,000 21,358,848

Total 

Profit
Individual Total

1,454,690

10,604,193

1394.19 4.045 11.95

Type

Location  


A B C

Segmentation

1000 399 12.71

Averaage 

Shortage 

amount

Production amount Average 

Overage

amount

1339.07 50.94 3.72

 *Base case 

 

4.2.2.2  Facility fixed cost 

According to Table 5, first, for [3M, 5M] facility fixed cost, we can obviously 

see the inverse relationship between facility fixed cost and total profit, as the fixed cost 

decreases from [5M, 7M], the profit increase from 10,604,192 to 13,808,329 baht. 

More importantly, this variation has highlighted the significance part of the decision, 

as the facility cost decreases, more facilities with smaller capacity are opened 

comparing with the base case. More importantly, all of the short response facilities are 

open even that they are more expensive. This case has proven that even the short LT 

facility has more fixed cost but it could overcome the cost to effectively handle the 

demand uncertainty.  

 Second, for [6M, 8M] facility fixed cost, as the fixed cost raises for 1 million 

baht for both type of facility, total profit drop from 10,604,192 to 7,893,976 baht. In 

this case, all of the decisions are the same as the base case, just the difference between 

the facility costs that cause the decline in profit.     
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Table 5: 

Results of facility fixed cost variation 

1 2 3 1 2 3 1 2 3

Long 3M 1050

Short 5M 327.97

Long 5M* 850

Short 7M* 489.07

Long 6M 850

Short 8M 489.07

Facility 

fixed 

cost

1339.07 50.94 3.72 7,893,976

13,808,329

1339.07 50.94 3.72 10,604,192

18.32

Production amount Average 

Shortage 

amount

Average 

Overage 

amount

Total Profit

Individual Total

1377.97 26.645

Type

Location  


A B C

Segmentation

 *Base case 

 

4.2.2.3  Capacity additional cost 

From Table 6, first, for 500K capacity additional cost, one significant thing that 

has changed from the base case is that the long LT response facility of the 500K cost 

has opened the 3
rd

 segment as the cost of expansion is halved.  According from the 

total production amount, as the 3
rd

 segment is opened, the production from 500K cost 

is slightly higher than the 1M cost with 50 units. As a matter of fact, opening the 3
rd

 

segment reinforces 150 units more production capacity, but in this case, only about 50 

units from potential of 150 units are produced which is surprisingly unexpected. 

Hence, the model made this decision because selling those 50 more units has 

overcome the cost of additional segment even that the leftover capacity is considerably 

abandoned. Ultimately, the profit of 500K facility cost is 13,304,165 baht. 

Second, for 2.5M capacity additional cost, as the cost raises for 1 million baht, 

short LT response facility which has higher fixed cost are ignored to compensate the 

raise in capacity additional cost. From the base case to certain case, the short LT 

response facility in location C is closed and decides to open one more long LT 

response facility at location B to persuade the level of production. In addition, only at 

location A could afford to open three segments, the other two locations decided to 

open just 2 segments and result in 1,200 units in production which is about 100 units 
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short. Therefore, as the capacity additional cost enhanced from 1M to 2M, the total 

profit reduces from 10,604,193 to 6,329,765 baht 

 

 Table 6: 

 Results of capacity additional cost variation 

1 2 3 1 2 3 1 2 3

Long 500K 957

Short 500K 434.77

Long 1M* 850

Short 1M* 489.07

Long 2.5M 1050

Short 2.5M 0
1050 354.45 18.16 3,906,800

Average 

Overage 

amount

Total Profit

1339.07 50.94 3.72 10,604,193

1391.77 5.335 10.815 13,304,165

Capacity 

 

addition

al cost

Location  

Production amount Average 

Shortage 

amount

A B C

Segmentation
Individual Total

Type

 *Base case   

 

4.2.2.4  Demand distribution 

From Table 7, first thing that is needed to be explain is that, it is practical that 

as the demand decline from mean of 70 units to 60 units, the total profit is reasonably 

decline as well. The less of incoming demand, the less of sales occurred.  

Second, by focusing on each mean of demand, for the mean of 70 units, we can 

obviously see that as the standard deviation (S.D.) raise from 5 to 10 then to 15, total 

profit is decreased from 11,945,595 to 10,908,190 then to 10,613,078 baht 

respectively. As well as for the mean of 60 units, as the S.D. raise from 5 to 10 then to 

15, total profits are decreased from 9,868,849 to 9,146,386 then to 8,254,120 

respectively. Hence, we can say that the less standard deviation of demand, the more 

profit could be performed. 

 Third, as we have proposed that short LT response facility helps handling the 

uncertainty of demand. The more standard deviation represents more degree of 

demand fluctuation or the level of uncertainty. In this part, for the mean of 70 units, as 

the S.D. reduce from 10 (base case) to 5, the short LT response facility is eliminated 

due to the cutback in level of uncertainty. In the other hand, for the mean of 60 units, 



24 
 

as the S.D. enhance to 15, the short LT response facility is opened at maximum 

potential with 3 segments. Moreover, it pulls the production from the long LT response 

facility to itself to minimize the error from the fluctuation more effectively. 

 

Table 7: 

Results of demand variation 

1 2 3 1 2 3 1 2 3

Long 1350

Short 0

Long 850

Short 496.38

Long 850

Short 488.14

Long 1000

Short 0

Long 1000

Short 0

Long 700

Short 470.5

Total

1350 64.14 23.49 11,945,595

1346.4 46.7 0

8,254,120

10,908,190

Demand 

Distribution

Mean SD

5

10

1338.1 52.26 3.9 10,613,078

70

70

70 15

Type

Location Production 

amount Avg. 

Shortage 

amount

Avg. 

Overage 

amount

Total Profit
A B C

Segmentation Individu

al

60 15 1170.5 23.73 6.09

9,868,849

60 10 1000 207.8 17.33 9,146,386

60 5 1000 191.3 0.92

 *Base case 

4.2.2.5  Sensitivity Analysis 

This sensitivity analysis reveals the change of output when 1% of the input 

parameter is changed. The sign of sensitivity value indicates the type relationship 

between the parameter and output. If the sensitivity value is negative, that parameter 

has direct relationship with the total profit. However, if the sensitivity value is 

positive, that parameter has inverse relationship with the total profit. According to 

Table 8, we can summarize that unit price has direct relationship to the total profit. 

Moreover, unit price is the most sensitive parameter comparing among the others. If 

the unit selling price increases for 1%, the total profit will increase for 409.84%. On 

the other hand, if the unit selling price decreases for 1%, the total profit will increase 

for 481.74%.    
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              Table 8: 

Sensitivity analysis 

Variable

Parameter 

Change 

(direction)

Parameter 

change (%)

Output 

Change (%)
Sensitivity

Decrease -0.21 -86.28 409.84

Increase 0.21 101.42 481.74

Decrease -0.33 30.22 -90.65

Increase 0.17 -25.56 -153.35

Decrease -50.00 25.46 -0.51

Increase 150.00 -63.16 -0.42

Decrease -50.00 9.51 -0.19

Increase 50.00 -2.71 -0.05

Unit selling price

Fixed cost

Capacity additional cost

Demand (SD)

 

 

4.2.3 Cost function testing 

The costs are representing in a form of a cumulative function. The slope 

indicates the cost in each segment. If the slope of the line is steep, the cost is more 

expensive, and vice versa. More importantly, the first segment has the capacity of 200 

unit and 150 units each for the next 2 segments, so, each facility has the maximum 

possible capacity at 500 units. All of the 4 functions have weight average cost of 

14,000 baht. 

From Table 9, first, for the s-shaped cost function (Figure 3), two segments for 

location A and three segments for location C of long LT response facility are opened. 

For short LT response, only facility from location C is opened with three segments. So 

in this case, location C is literally the critical location for minimizing the transportation 

cost in this framework as both long and short response facility are both opened at the 

same location. Besides, there are 850 units for long LT response facility and 496.16 

units for short LT response which results in 1,346.15 units in total. Consequently, this 

cost function produces 10,903,814 baht for the profit. 

Second, convex cost function (Figure 4) achieves 15,552,714 baht profit which 

is comparatively higher than the s-shaped cost function. The first point to be focused is 

the nature of the function which the first 350 units from the first and second segment 

hold the cheap production cost and formidably increase for the last segment. Under 
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those circumstances, from table 9, we obviously observe that the third segment is 

avoided in every opened facility. The results were decided not to operate in the 

expensive cost segment and wisely chose to open one more facility at location B 

instead of keep up the level of production to serve demand. Ultimately, this function 

particularly makes more remarkable profit because as only first two segments are 

determined on each facility, the average cost has decently drop and overcome the cost 

of opening additional long LT response facility at location B. 

Third, concave cost function (Figure 5) announces the profit of 9,827,047 baht 

which is somewhat less than the s-shaped function. We observe that the facilities are 

opened at location A and C; both of them are all opened for all of the 3 segments for 

500 units maximum. According to the property of the cost function, the cost for first 

segment is very high comparing with the upcoming segments. The function itself 

undertakes the economies of scale role, as the higher quantity to be produced, the 

lower the average cost it is. In practical, economies of scale is the advantage for the 

supply chain member which they can acquire less average cost per unit as the inverse 

relationship between quantity and cost occur. Nevertheless, this situation arises 

differently, as total of 1,000 units are produced in long response facility, but it is still 

about 386.4 units short according to the demand. We accept that in this case, if any 

facility is opening, they all have to be fully capacitated to ensure the reasonable 

average cost. In the other hand, if one more facility is fully opening to satisfy the left 

over demand, it will create lots of overage unit and their penalty. Moreover, if one 

more facility is opening for one or two segments, the cost of production would no 

longer be suitable, leads to less margin and could not overcome the cost of opening the 

additional facility. 

Lastly, the stable cost function (Figure 6), the result is apparently close to S-

shaped cost function in many ways, the location and segmentation is the same, 

production and shortage are slightly different and has 743,394 baht less profit, so we 

could announce that s-shaped function is the most similar to linear average cost 

function which are casually implement in practical. 
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4.2.3.1  S-Shaped cost function 

 

 

 

 

 

 

 

 

 

 

4.2.3.2  Convex cost function 
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Figure 3: S-shaped cost function 
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4.2.3.3  Concave cost function 

 

 

 

 

 

 

 

 

 

 

 

 

4.2.3.4  Stable cost function 
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Table 9: 

Results of 4 different cost function 

1 2 3 1 2 3 1 2 3

Long 850

Short 496.16

Long 1050

Short 329.15

Long 1000

Short 0

Long 850

Short 495.09
Stable 19.735 0 10,160,4201345.09

15,552,714

Concave 386.42 1.86 9,827,047

1379.15

1000

Convex 11.575 3.29

10,903,814

Cost fn. Type

Location  

Avg. 

Shortage 

amount

Avg. 

Overage 

amount

1346.16

Total

Production amount

Individual

Total Profit
A B C

Segmentation

S-shaped 41.275 0

 

 

4.2.1 Pair-T test 

The purpose of this test is to do the hypothesis testing between short response 

lead time and long response lead time in order to proof that which kind of facility 

perform more efficiently under certain situation. This test is created based on 200 

observations (scenarios), 95% confidence interval and 0.1 degree of freedom. 

From Table 10 and 11 and 12, firstly, we can literally prove that combining 

short LT response and long LT response facilities perform better than each single one 

of them itself. With short and long LT response, profit maximize to 10,911,015 which 

is 553,089 higher than with long LT response only and 3,993,218 higher than short LT 

response only. Moreover, we have developed the pair-t test to statistically test the 

difference between the mean of each comparison. As the results, short and long 

together has more profit mean than either short LT response only or long LT response 

only, as the p-value for both of them is less than 0.05 and reject the null hypothesis 

that their mean are not the same. 
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Table 10: 

Pair-t test comparing the profit among 3 cases 

1. Short only 2.Long only 3. Short + Long 3-1 3-2

1 6,979,683 9,948,947 10,977,188 3,997,505 1,028,241

2 6,980,396 9,948,947 10,977,807 3,997,411 1,028,860

3 6,825,646 9,156,947 10,823,164 3,997,518 1,666,217

4 6,978,874 10,388,947 10,976,390 3,997,516 587,443
.
.
.

198 6,981,452 10,828,947 10,978,862 3,997,410 149,915

199 6,979,782 10,080,947 10,977,427 3,997,645 896,480

200 6,980,673 10,960,947 10,978,693 3,998,020 17,746

1. Short only 2.Long only 3. Short + Long 3-1 3-2

Average 6,917,798 10,357,927 10,911,016 3,993,218 553,089

SD 226,300 538,740 243,130

Total Profit

Total Profit

 

4.2.1.1  Short / Short and Long           

 

H
0 
: µ

1
 = µ

3
 

H
A 

: µ
1
 ≠ µ

3 

 

      Table 11: 

      Pair-T test: paired two sample for means (Short / Long and Short) 

  Variable 3 (Short + Long) Variable 1 (Short only) 

Mean 10,911,015.74 6,917,799.00 

Variance 59,112,171,183.37 51,211,728,788.14 

Observations 200.00 200.00 

Pearson Correlation 0.99 

 Hypothesized Mean Difference 0.00 

 df 199.00 

 t Stat 1,311.12 

 P(T<=t) one-tail 0.00 
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t Critical one-tail 1.65 

 P(T<=t) two-tail 0.00 

 t Critical two-tail 1.97   

 

4.2.1.2  Long / Short and Long 

 

H
0 
: µ

1
 = µ

3
 

H
A 

: µ
1
 ≠ µ

3
 

 

     Table 12: 

      Pair-T test: paired two sample for means (Long / Long and Short)  

 
Variable 3 (Short + Long) Variable 2 (Long only) 

Mean 10,911,015.74 10,357,927.00 

Variance 59,112,171,183.37 290,240,401,608.04 

Observations 200.00 200.00 

Pearson Correlation 0.53 

 Hypothesized Mean Difference 0.00 

 df 199.00 

 t Stat 17.09 

 P(T<=t) one-tail 0.00 

 t Critical one-tail 1.65 

 P(T<=t) two-tail 0.00 

 t Critical two-tail 1.97   

 

4.2.1.3  Short / Long 

 

H
0 
: µ

1
 = µ

2
 

H
A 

: µ
1
 ≠ µ

2
 

 

Secondly, according to table 13, as p-value is less than 0.05, so the null 

hypothesis is rejected. We compare the profit between individual long and short LT 

response only, the long LT response give out more profit than another. As we 

proposed earlier, the advantage of short LT response facility of this model does help to 
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manipulate the demand uncertainty. But in this case, minimization of loss demand 

does not overcome the cost of affording specialized facilities. So, ultimately, it costs 

more and results in less profit.  

 

      Table 13: 

      Pair-T test: paired two sample for means (Short / Long) 

  Variable 1 (Short only) Variable 2 (Long only) 

Mean 10,357,927.00 6,917,799.00 

Variance 290,240,401,608.04 51,211,728,788.14 

Observations 200.00 200.00 

Pearson Correlation 0.51 

 Hypothesized Mean Difference 0.00 

 df 199.00 

 t Stat 104.27 

 P(T<=t) one-tail 0.00 

 t Critical one-tail 1.29 

 P(T<=t) two-tail 0.00 

 t Critical two-tail 1.65   
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PART 2 

HEURISTIC 

 

4.3 Heuristic approach 

Our proposed model has proven that it can solve the according supply chain 

situation, but the problem size is considerably small and not convincing to be used in 

real life situation. In practical, manager has to deal with bigger problem size with more 

number of sites and customers. As the problem is considered as NP-hard, more number 

of location and customer cause substantial increase in computational time. Hence, we 

decide to further develop heuristic model to overcome the computational time 

problem. 

The heuristic model is grabbed from the main model with supplemental 

refinement i.e. the upper bound (UB) and lower bound (LB) value which will be 

highlighted and interpreted further in the different cost function. We develop the linear 

relaxation and decomposition method by manipulating two binary variable; OPENj and 

wj and separating them into two phases.  

 

4.3.1 1
st
 phase: Location decision 

This part focuses on the location allocation (OPENj) for both long and short LT 

response facility and the preliminary amount of production to ensure that the according 

number of opening facility is adequate to serve the demand. We use the weight 

average cost from each cost function as the cost for certain preliminary production. 

 

4.3.1.1  Production upper bound (UB) and lower bound (LB) setting 

From previous experiment, we have discovered the decisive nature of each 

distinct cost functions. Each cost function has different natural property which 

influentially affects the decision on determining the size of the facility capacity 

(segmentation) and leads to the number of opening facility under the according 

demand circumstances. Hence, we have to set the upper bound and lower bound to 
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manipulate preliminary production decision for the first phase base on each type of 

cost function. 

 

4.3.1.1.1 S-shaped cost function bounding 

 

 

 

 

 

 

 

 

 

 

 

- LB: 0 , UB: none 

S-shaped cost function is considerably familiar with average cost, so no upper 

bound and lower bound needed be set. 

 

 

 

 

 

 

 

 

Cost:               15,000                   8,000          18,666.67 

Figure 7: S-shaped cost function bounding 
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4.3.1.1.2 Convex cost function bounding 

 

 

 

 

 

 

 

 

 

 

 

- LB: 0 , UB: 350 

For convex cost function, upper bound is set at 350 to restrict the production 

from the expensive cost of the 3
rd

 segment. This function has been proof that it is 

worth to open more small facility instead of opening the 3
rd

 segment.  

 

 

 

 

 

 

 

 

Figure 8: Convex cost function bounding 

Cost:               4,000                   8,000          33,333.33 
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4.3.1.1.3 Concave cost function bounding 

 

 

 

 

 

 

 

 

 

 

 

 

 

- LB: 200 , UB: 500 

For concave cost function, as the 1
st
 segment offering high cost, so the lower 

bound is set at 200 to ensure that the facility is opening beyond the 1
st
 segment in order 

to alleviate the overall average cost of production from the lower production cost of 

2
nd

 and 3
rd

 segment.  

 

4.3.2 2nd
 phase: Segmentation decision 

After deciding the location, the decision (OPENj) will be substituted as input 

data in the 2
nd

 phase model or original model (available in PART 1) for further 

segmentation decisions (wj) and product assignment allocation. 

 

 

 

Cost:    26,000                     8,000             4,000 

Figure 9: Concave cost function bounding 
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4.4 Heuristics model: Two phases heuristic model 

 

:

( : , : )

Indexes

i demand node

j facility node JL Long JS short

k segment k of production cost

s scenario of second stage









 

:

( )

cos

(

ij

jk

jk

Parameters

c transportation cost from j to i

l production cost slope per unit using line segment k at location j

l weight average t per unit

ac marginal fixed cost to construct faciliy of size k at location j

additional cost









1 )

( )

jk

j

is

in expand capacity from size k to size k

fc fixed cost to construct faciliy at location j

p probability of scenarios

Sh Shortage cost per unit

Ov Overage holding cost per unit

D Demand of product at location i under scenario s

L













( 1 )

k Length of segment k of production cost at location j or

Additional capacity if size k is selected over size k at location j

UB upper bound of production

LB lower bound of production

UP Unit selling price

MC Maximun capacity













 

:

:

/

1

x x

j

i

jk

jk

j

Decision Variables

First stage

x quantity shipped from j to i using long lead time facility

quantity produced at location j using long lead time under segment k of production cost

w if quantity produced is at upperbound

 





 ( )

( ), 0

1 , 0

jk jk

x y

jk jk

j

k full capacity of segment k of production cost

L or L otherwise

OPEN if a facility is open at location j otherwise

  


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:

/

ijs

is

y y

js jks

Second stage

y quantity shipped from j to i using short lead time facility under scenario s

quantity produced at location j using short lead time under segment k of production cost

SQ shortage quantity at location i und

 







is

er scenario s

OQ overage quantity at location i under scenario s
 

 

1
st
 phase heuristic model (Location decision) 
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Model interpretation (1
st
 phase) 

The objective function of the model is to maximize the profit from sales of 

product from short LT response and long LT response (excluding the overage amount) 

and deduct by various cost of long LT response and short LT response i.e. 

transportation cost (long LT), production cost (long LT), capacity additional cost, 

facility fixed cost, and with the probability distribution for transportation cost (short 

LT), production cost (short LT), shortage cost and overage cost. Constraint (1) 

represents the demand satisfaction. Constraint (2) determines total production and 

delivery from all of the long LT response facility. Constraint (3) determines total 

production and delivery from all of the short LT response facility. Constraint (4) 

bounds the production of each single long LT facility to be within the lower bound and 

upper bound. Constraint (5) bounds the production of each single short LT facility to 

be within the lower bound and upper bound. Constraint (6), Constraint (7) limits the 

maximum production of each facility (long and short) at 500 units. Constraint (8) 

determines the non-negativity variables. Lastly, Constraint (9) determines the binary 

variable. 

 

4.5 Heuristic: Numerical experiment 

As mentioned earlier, we develop the heuristic by breaking down the model 

into two phases. The first phase decides the location to open short LT response 

facilities or long LT response facilities among the determined location candidates. 

Next, second phase utilizes the acquired location decision from the first phase as 

additional input data to allocate the production schedule and segmentation for 

according decided facilities.  

The experiments interpret the strength of heuristic comparing to the original 

model in terms of time efficiency and profit efficiency. We separate the analysis into 

three parts according to three types of cost function i.e. s-shaped (Figure 2), concave 

(Figure 3) and convex (Figure 4). Each cost function has different property which 

leads to give out distinctive decisions. In addition, each cost function employs 

identical input data set as shown in table 14 for the solving model. We generate three 
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problem sizes for more complexity which each instance is differentiated by the mean 

and standard deviation of demand. Table 15 shows the input data utilized for the whole 

experiments which the data are all identical for every experiment. 

 

 Table 14: 
 Input data for each instance 

Long 

res.

Short 

res.
Total Min Max Mean SD

1A 5 5 10 20 400 6000 38000 60 190 115 12

2A 5 5 10 20 400 6000 38000 60 190 115 23

3A 5 5 10 20 400 6000 38000 60 190 120 35

2A 8 8 16 20 400 6000 38000 60 190 180 19

2B 8 8 16 20 400 6000 38000 60 190 180 38

2C 8 8 16 20 400 6000 38000 60 190 190 50

3A 10 10 20 30 400 6000 38000 60 190 150 16

3B 10 10 20 30 400 6000 38000 60 190 150 32

3C 10 10 20 30 400 6000 38000 60 190 160 48

4A 15 15 30 50 400 6000 38000 60 190 135 14

4B 15 15 30 50 400 6000 38000 60 190 135 27

4C 15 15 30 50 400 6000 38000 60 190 145 40

Shortage 

cost

Overage 

 cost

Unit 

Price

Transportation 

cost (Random 

range)

Demand 

(distribution)

4 

(very 

large)

Exp. no. Int.

Number of sites No. of 

custo-

mers

1 

(small)

2 

(medium)

3 

(large)

Abbreviation: Exp. = experiment, no. = number, Int. = Instance, res. = response 

 

       Table 15: 

       Common input data for testing heuristic 

min max

Long 5M 1M

Short 7M 1M
38,000

Overage

cost per 

unit

Type

Facility 

fixed 

cost

Capacity 

additional 

cost

Selling 

price per 

unit

Shortage

cost per 

unit

Transportaion cost

per unit (Random)

6,000 400 70 220
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4.6 Heuristic: Results and Analysis 

In this part, we examine the results of the four experiment sizes (small, 

medium, large and very large) from three types of the cost function which shown in 

detail in Table 16, 17, and 18. We focus on two attentions from the results table; total 

profit gap percentage and computational time reduction. 

 

4.6.1 S-Shaped cost function 

According to the result of testing s-shaped cost function in Table 16, first, for 

experiment set 1, the heuristics has given the same profit as the optimal result for 

instance 1A, 1B and 1C. The computational time for both optimal model and heuristic 

model are less than 1 minute, so the time gap is not significantly needed to be 

concerned.  

For experiment 2, the heuristic has given the same profit as the optimal result 

for instance 2A and 2B. For instance 2C, the heuristic has acceptable gap of 0.75% 

comparing to optimal. The average computational time reduction is 79.82%.  

For experiment 3, the heuristic has given the same profit as the optimal result 

for instance 3A, 3B and 3C. The average computational time reduction is 84.05%.  

For experiment 4, the heuristic has given the same profit as the optimal result 

for instance 4A. For instance 4B and 4C, the optimal model failed solve the problem as 

the memory ran out, but heuristics were able to solve the problem in within decent 

time. So, we can say that the average computational time reduction is 86.67% 
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 Table 16: 

 Optimal and heuristics results comparison for S-shaped cost function 

Experi-

ment no.
Int. Heu. Test #

Avg. 

overage

Avg. 

shortage

Total 

Long 

res. (X) 

Total 

Short 

res. (Y)

Total Profit % gap
Time 

(mins)

% 

Time 

red.

Avg. 

% gap 

(time)

Optimal 6.96 183.2 1500 499.62 17,419,948.48 1

Heuristic 6.96 183.2 1500 499.62 17,419,948.48 1

Optimal 36.76 224.48 1500 499.56 16,094,086.83 1

Heuristic 36.76 224.48 1500 499.56 16,094,086.83 1

Optimal 27.62 222.06 1000 984.12 14,199,460.30 1

Heuristic 27.62 222.06 1000 984.12 14,199,460.30 1

Optimal 7.36 106.48 3000 494.16 32,243,657.39 10

Heuristic 7.36 106.48 3000 494.16 32,243,657.39 1

Optimal 40.74 155.62 2000 1468.1 26,253,633.06 5

Heuristic 40.74 155.62 2000 1468.1 26,253,633.06 2

Optimal 44.24 290.72 2500 993.6 31,909,880.02 19

Heuristic 40.74 155.62 2000 1468.1 31,670,695.03 2

Optimal 28.58 45.06 4000 483.86 41,073,734.70 20

Heuristic 28.58 45.06 4000 483.86 41,073,734.70 3

Optimal 62.62 85.9 3500 969.72 37,286,488.04 40

Heuristic 62.62 85.9 3500 969.72 37,286,488.04 1

Optimal 61.72 69.02 3350 1414.8 37,352,887.36 402

Heuristic 61.72 69.02 3350 1414.8 37,352,887.36 122

Optimal 0.6 78.26 5250 1385.2 54,401,655.19 75

Heuristic 0.6 78.26 5250 1385.2 54,401,655.19 10

Optimal - - - - - out.

Heuristic 31.1 71.48 4500 1446.3 51,078,739.12 30

Optimal - - - - - out.

Heuristic 72.78 99.48 4000 1932.7 46,972,276.41 100

0.00

79.82

90.00

60.00

89.47

86.67

--

-

69.65

84.0597.50

2

(medium)

4

(very 

large)

3

(large)

4A 0.00

4B -

4C -

3C 0.00

1

(small)

1A 0.00

1B 0.00

1C 0.00

2A 0.00

2B 0.00

2C 0.75

0.00

0.00

3A 0.00 85.00

3B 0.00

0.00

Abbreviation: Exp. = experiment, Int. = Instance, Out. = out of memory,  

res. = response, red. = reduction Avg. = average 

 

4.6.2 Convex cost function 

According to the result of testing convex cost function in table 17, first, for 

experiment set 1, the heuristics produce the same profit as the optimal result for 

instance 1A, 1B and 1C. The computational time for both optimal model and heuristic 

model are less than 1 minute, so the time gap is not significantly needed to be 

concerned.  

For experiment 2, the heuristic has given the same profit as the optimal result 

for instance 2A and 2B. For instance 2C, the heuristic has acceptable gap of 1.6% 
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comparing to optimal. The computational time for both optimal model and heuristic 

model are still very short, so it is not needed to be concerned.   

For experiment 3, the heuristic has given the same optimal result for instance 

3A and 3B. For instance 3C, the heuristic has acceptable gap of 0.72% comparing to 

optimal. The average computational time reduction is 50%.  

For experiment 4, the heuristic has given the same optimal result for instance 

4A and 4B and 4C. The average computational time reduction is 60.88%. 

 

Table 17: 

Optimal and heuristics results comparison for convex cost function 

Exp. no. Int. Model
Avg. 

overage

Avg. 

shortage

Total 

Long 

res. (X) 

Total 

Short 

res. (Y)

Total Profit % gap
Time 

(mins)

% 

Time 

red.

Avg. 

% 

gap 

(time)

Optimal 31.58 111 1750 346.44 28,062,274.30 1

Heuristic 31.58 111 1750 346.44 28,062,274.30 1

Optimal 26.16 124.22 1400 689.22 26,082,233.90 1

Heuristic 26.16 124.22 1400 689.22 26,082,233.90 1

Optimal 76.26 169.86 1400 684.96 23,733,558.04 1

Heuristic 76.26 169.86 1400 684.96 23,733,558.04 1

Optimal 1.08 103.2 2800 691.16 48,376,372.96 1

Heuristic 1.08 103.2 2800 691.16 48,376,372.96 1

Optimal 98.86 194.96 2450 1036.9 41,911,401.98 1.2

Heuristic 98.86 194.96 2450 1036.9 41,911,401.98 1

Optimal 90.1 67.06 2800 963.12 45,413,231.46 2

Heuristic 39.24 286.14 2450 1043.2 44,687,937.32 1

Optimal 0 12.36 3500 987.98 60,703,142.90 1

Heuristic 0 12.36 3500 987.98 60,703,142.90 1

Optimal 63.44 57.08 3500 999.36 58,234,539.58 4

Heuristic 63.44 57.08 3500 999.36 58,234,539.58 1

Optimal 80.6 52.6 3500 1300.1 59,283,081.86 28

Heuristic 78.76 304.94 3500 1045.9 58,858,582.20 7

Optimal 0 29.62 4200 1712.4 78,471,732.64 32

Heuristic 0 29.62 4200 1712.4 78,471,732.64 10

Optimal 13.76 92.86 4200 1707.5 77,709,179.88 12

Heuristic 13.76 92.86 4200 1707.5 77,709,179.88 5

Optimal 97.26 140.72 4200 1716.4 74,265,134.50 18

Heuristic 97.26 140.72 4200 1716.4 74,265,134.50 8

50.00

0.00

0.00

0.00

0.00

16.67

0.00

22.22
2

(medium)

1

(small)

4

(very 

large)

2A 0.00

2B 0.00

1.60

0.00

1B 0.00

1C

0.00

2C

1A

3

(large)

3A 0.00 0.00

50.003B 0.00 75.00

3C 0.72 75.00

68.75

60.884B 0.00 58.33

4C 0.00 55.56

4A

0.00

 
Abbreviation: Exp. = experiment, Int. = Instance, out. = out of memory,  

res. = response, Avg. = average 
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4.6.3  Concave cost function 

According to the result of testing concave cost function in table 18, first, 

experiment set 1, the heuristics has given the same profit as the optimal result for 

instance 1A and 1B and 1C. Next, the computational time of this size is about 1 minute 

for both heuristic and optimal.  

For experiment 2, the heuristic has given the optimal result for instance 2A and 

2B. For instance 2C, the heuristic has acceptable gap of 4.63% comparing to optimal. 

The average computational time reduction is 81.87%. 

For experiment 3, the heuristic has given the same optimal result for the 

instance 3A and 3B. For instance 3C, the heuristic has acceptable gap of 3.4% 

comparing to optimal. The average computational time reduction is 86.09%.  

For experiment 4, For instance 4A and 4C, the optimal model failed solve the 

problem as the memory ran out, but heuristics were able to solve the problem in within 

decent time. For instance 4B, the heuristic has acceptable gap of 0.35% comparing to 

optimal. The average computational time reduction is 93.25%. 
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Table 18: 

Optimal and heuristics results comparison for concave cost function 

Exp. no. Int. Model
Avg. 

overage

Avg. 

shortage

Total 

Long 

res. (X) 

Total 

Short 

res. (Y)

Total Profit % gap
Time 

(mins)

% 

Time 

red.

Avg. 

% 

gap 

(time)

Optimal 6.96 183.2 1500 499.62 17,414,395.14 1

Heuristic 6.96 183.2 1500 499.62 17,414,395.14 1

Optimal 36.76 224.48 1500 499.56 16,087,653.48 1.3

Heuristic 36.76 224.48 1500 499.56 16,087,653.48 1

Optimal 28.18 221.5 1000 985.24 13,979,880.94 1

Heuristic 28.18 221.5 1000 985.24 13,979,880.94 1

Optimal 7.56 106.34 3000 494.5 32,160,993.24 8

Heuristic 7.56 106.34 3000 494.5 32,160,993.24 1

Optimal 43 154.46 2000 1471.6 25,804,116.42 18

Heuristic 43 154.46 2000 1471.6 25,804,116.42 2

Optimal 45 358.74 2500 1000 28,602,829.36 13

Heuristic 120.88 25.32 3000 909.3 27,278,505.44 4

Optimal 29.38 44.66 4000 485.06 40,842,721.22 36

Heuristic 29.38 44.66 4000 485.06 40,842,721.22 3

Optimal 63.46 85.42 3500 971.04 36,850,580.54 124

Heuristic 63.46 85.42 3500 971.04 36,850,580.54 1

Optimal 75.58 124.28 3000 1450 36,135,770.46 442

Heuristic 75.58 124.28 3000 1450 34,907,631.24 144

Optimal - - - - - out.

Heuristic - - - - - out.

Optimal 94.62 105.8 5000 975.46 50,468,029.68 489

Heuristic 31.52 71.3 4500 1446.9 50,288,876.34 33

Optimal - - - - - out.

Heuristic 75.62 97.62 4000 1937.9 46,015,757.52 118

3

(large)

3A 0.00 -91.67

0.00

0.00

-86.093B 0.00 -99.19

3C 3.40 -67.42

93.254B 0.35 93.25

4C - -

-

4

(very 

large)

2A 0.00

2B 0.00

2C 4.63

4A -

0.00

2

(medium)

1

(small)

1A

1B

1C

-7.69

-81.87

0.00

-87.50

-88.89

-69.23

-23.08

0.00

Abbreviation: Exp. = experiment, Int. = Instance, Out. = out of memory,  

res. = response, Avg. = average 

 

4.6.4 Overall 

In summary, from table 19, heuristic model affords to contribute the optimal 

result for about 26 out of 32 instances or 81.25% of the total number of computable 

instances from all cost function. More importantly, there are 4 instances from 

experiment 4 which the optimal model failed to Figure out the calculation as the 

memory ran out, but our heuristics were able to solve the problem within applicable 

time. From table 16, for average total profit gap comparison, the results are 0%, 

0.78%, 0.46% and 0.04% for experiment 1 (small), 2 (medium), 3 (large) and 4 (very 

large) respectively. Thus, heuristic contributed 0.32% of average total profit gap. Table 
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18 also shows the maximum percentage gap of each experiment size from each cost 

function. 

 

   Table 19: 

   Total profit comparison 

S-Shaped Convex Concave S-Shaped Convex Concave

1 (small) 0.00 0.00 0.00 0.00 0.00 0.00 0.00

2 (medium) 0.25 0.53 1.54 0.78 0.75 1.60 4.63

3 (large) 0.00 0.24 1.13 0.46 0.00 0.72 3.40

4 (very large) 0.00 0.00 0.18 0.04 0.00 0.00 0.35

Average 0.32

Maximum total profit gap
Average

Experiment 

no. (size)

Average total profit gap (%)

 

                 

 According to table 20, for experiment 1, the computational time reduction for 

experiment is not mentioned as the computational time of every instance is just about 1 

minute for both heuristic and optimal model. For experiment 2, 3 and 4, the average 

computational time reductions are 61.31%, 73.38% and 80.27%. The average among 4 

experiments is 71.65%. Moreover, the computational time reduction based on 3 cost 

functions; s-shaped, convex and concave are 81.94%, 44.37% and 83.98% 

respectively. 

 

             Table 20: 

             Computational time comparison 

S-Shaped Convex Concave

1 (small) - - - -

2 (medium) 79.82 22.22 81.87 61.31

3 (large) 84.05 50.00 86.09 73.38

4 (very large) 86.67 60.88 93.25 80.27

Average 81.94 - 44.37 - 83.98 71.65

Experiment 

no. (size)

Computational time reduction (%)
 Average
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Chapter 5 

Conclusion 

 

This paper proposed a stochastic programming for two stages supply chain 

with single-commodity, multi-facilities, multi-retailers, short response facility and 

piecewise cost function. We have developed 4 experiments to highlight the 

contributions of the model. 

 First, for the sampling test, it literally shows that the standard deviation 

particularly lessens as the sample size amplified. So, we have proved that bigger 

sample size could produce more particular and precise results to mitigate the effect of 

uncertainty.  

Second, for the parameter variation test, each parameter has there sensitiveness 

depend on their role in the model. Some parameter has significance effect on not just 

quantitative results but also qualitative results. One of the highlights in this part is the 

effect of standard deviation of the demand, we have proof that with lower S.D. results 

in higher demand fluctuation rate, the company can perform better and less 

contribution of short LT response facility is engaged. In the other hand, with higher 

standard deviation results in less degree of demand fluctuation, it is more difficult to 

control and relatively execute less profit and short LT response facility are more 

enforced in the system to handle the uncertainty.  

Third, for the cost function testing, difference of cost function carries different 

nature which extremely impact on the facility segmentation and production capacity. 

S-shaped cost function and stable cost function seem to be familiar in term of profit 

and allocation. Next, the convex cost function is suitable with more number of site but 

smaller capacity facilities as the cost function itself incorporate the higher cost in the 

3
rd

 segment. Then, for the concave cost function, this function tends to be the most 

difficult function to compromise. With the higher cost in the first segment, all of the 

segments are needed to be utilized in order to acquire the suitable average cost for 

production in any opening facility.  
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Fourth, we can conclude that by applying long and short LT response together 

strategy is significantly better than using whether long LT response or short LT 

response only. Moreover, for the short LT facility, it has to be wisely and well-planned 

utilized as it requires extraordinary facility which is more potentially affordable. 

For heuristic part, we develop the linear relaxation and decomposition method 

of two binary variables and separate the model into two phases; (1) Location decision 

and (2) Segmentation decision. We applied the model relying on three types of cost 

function; s-shaped, convex and concave. As each cost function has different decisive 

nature, we set the upper bound and lower bound to manipulate the production in the 

first phase. For the numerical experiment, each cost function is developed by 4 sizes of 

problem with 3 instances each. For the result, heuristic model affords to contribute the 

optimal result for about 26 out of 32 instances or 82.75% of the total number of 

computable instances from all cost function. Moreover, our heuristics model is able to 

solve big size problems which the optimal model failed to do within acceptable time. 

The average overall total profit gap (including optimal) is 0.32%. The average 

computational time reduction is 71.65%. In conclusion, our heuristic is mathematically 

proven to be effective as it mostly contributes the optimal result with significance 

computational time reduction. 
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Appendix A 

Cplex Source Code 

 

 MAIN MODEL 

 

********************************************* 

 * OPL 6.3 Model 

 * Author: Administrator 

*********************************************/ 

{int} I = ...; //demand 

{int} J = ...; //facility 

{int} JL = ...; //Long response facility 

{int} JS = ...; //Short response facility 

int numk = ...; 

range K = 1..numk; //segment 

{int} K_1 = ...; //segment (k-1) 

{int} S = ...; //scenario 

 

float c[I][J] = ...; 

float l[J][K] = ...; 

float ac[J][K] = ...; 

float fc[J] = ...; 

float p = ...;  // 1 / dp  

float dp = ...; //number scenario 

float Sh = ...; 

float Ov = ...; 

float UP = ...; 

float D[I][S] = ...; 

float L[J][K] = ...; 

float RE[S]; 

 

//First stage 

dvar float+ x[I][J]; 

dvar float+ Sx[J][K]; 

dvar boolean w[J][K]; 
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dvar boolean OPEN[J]; 

 

//Second stage 

dvar float+ y[I][J][S];   

dvar float+ Sy[J][K][S];  

dvar float+ SQ[I][S]; 

dvar float+ OQ[I][S]; 

dvar float+ sumx;   //total long lead time production 

dvar float+ sumy;   //total short lead time production 

dvar float+ avgsq;  //Average shortage among scenarios 

dvar float+ avgoq;  //Average overage among scenarios  

 

 

maximize  

UP * ( sum(i in I, j in JL) x[i][j] + sum(s in S) p * sum(i in I, j 

in JS) y[i][j][s] - sum(s in S) p * sum(i in I) OQ[i][s] ) - ( sum(i 

in I, j in J) c[i][j] * x[i][j] + sum(j in JL, k in K) l[j][k] * 

Sx[j][k] + sum(j in J, k in K) w[j][k] * ac[j][k] + sum(j in J) 

OPEN[j] * fc[j] + sum(s in S) p * ( sum(i in I, j in J) c[i][j] * 

y[i][j][s] + sum(j in JS, k in K) l[j][k] * Sy[j][k][s] + sum(i in I) 

SQ[i][s] * Sh + sum(i in I) OQ[i][s] * Ov ));  

 

subject to { 

 

ct1:  forall (i in I, s in S) 

        sum(j in JL) x[i][j] + sum(j in JS) y[i][j][s] + SQ[i][s] - 

OQ[i][s] == D[i][s]; 

    

ct2: forall (j in JL) 

        sum(i in I) x[i][j] == sum(k in K) Sx[j][k]; 

         

ct3: forall (j in JS, s in S) 

        sum(i in I) y[i][j][s] == sum(k in K) Sy[j][k][s]; 

 

ct4: forall (j in JL) 

  sum(i in I) x[i][j] <= OPEN[j] * 1000000; 
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ct5: forall (j in JS, s in S) 

  sum(i in I) y[i][j][s] <= OPEN[j] * 1000000; 

   

//piecewise long 

ct6: forall (j in JL) 

        L[j][1] * w[j][1] <= Sx[j][1]; 

 

ct7: forall (j in JL) 

        Sx[j][1] <= L[j][1]; 

                 

ct8: forall (j in JL, k in K_1) 

        L[j][k] * w[j][k] <= Sx[j][k]; 

 

ct9: forall (j in JL, k in K_1) 

        Sx[j][k] <= L[j][k] * w[j][k-1] ; 

                 

ct10: forall (j in JL) 

        0 <= Sx[j][numk];  

         

ct11: forall (j in JL) 

        Sx[j][numk] <= L[j][numk] * w[j][numk-1]; 

         

//piecewise short         

ct12: forall (j in JS, s in S) 

        L[j][1] * w[j][1] <= Sy[j][1][s]; 

   

ct13: forall (j in JS, s in S) 

        Sy[j][1][s] <= L[j][1]; 

                 

ct14: forall (j in JS, k in K_1, s in S) 

        L[j][k] * w[j][k] <= Sy[j][k][s]; 

 

ct15: forall (j in JS, k in K_1, s in S) 

        Sy[j][k][s] <= L[j][k] * w[j][k-1]; 
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ct16: forall (j in JS, s in S) 

        0 <= Sy[j][numk][s];   

 

ct17: forall (j in JS, s in S) 

        Sy[j][numk][s] <= L[j][numk] * w[j][numk-1];  

 

 

 ct18-21: give the production, overage and shortage amount 

 

//stat  

ct18:  sumx == sum(i in I, j in J) x[i][j];         

ct19:  sumy == sum(i in I, j in J, s in S) y[i][j][s]/dp; 

ct20:  avgsq == (sum(i in I, s in S) SQ[i][s])/dp; 

ct21:  avgoq == (sum(i in I, s in S) OQ[i][s])/dp; 

 

 

 Post-script for calculating and reveal each single scenarios 

detail (uses for Pair-T test) 

 

execute{ 

  var s, i, j, k; 

  var File_Name = "Output.txt"; 

  var File = new IloOplOutputFile(File_Name); 

 

  for(s in S){ 

   RE[s] = 0; 

   for(i in I){ 

    for (j in JL){ 

    RE[s] = RE[s]+ UP * x[i][j];  

    } 

   } 

   for(i in I){ 

    for (j in JS){ 

    RE[s] = RE[s] + UP * y[i][j][s];  

    } 

   } 
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   for(i in I){ 

    RE[s] = RE[s] - UP * OQ[i][s];  

   } 

   for(i in I){ 

    for (j in J){ 

    RE[s] = RE[s] - c[i][j] * x[i][j];  

    } 

   } 

   for(j in JL){ 

    for (k in K){ 

     RE[s] = RE[s] - l[j][k] * Sx[j][k]; 

          }    

   } 

   for(j in J){ 

    for(k in K){ 

     RE[s] = RE[s] - w[j][k] * ac[j][k]; 

    } 

   } 

    for(j in J){ 

     RE[s] = RE[s] - OPEN[j] * fc[j]; 

    } 

   for(i in I){ 

    for(j in J){ 

     RE[s] = RE[s] - c[i][j] * y[i][j][s]; 

    } 

   } 

   for(j in JS){ 

    for (k in K){ 

    RE[s] = RE[s] - l[j][k] * Sy[j][k][s]; 

    } 

   } 

   for(i in I){ 

    RE[s] = RE[s] - SQ[i][s] * Sh; 

   } 

   for(i in I){ 

    RE[s] = RE[s] - OQ[i][s] * Ov; 
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   } 

  writeln("Scenario",s," ",RE[s]); 

  File.writeln(s,"|",RE[s]); 

  } 

  File.close(); 

  } 

 

 

 HEURISTIC(1st phase) FOR S-SHAPED FUNCTION 

 

/********************************************* 

 * OPL 6.3 Model 

 * Author: Administrator 

 * Creation Date: 6 ก.ย. 2014 at 15:46:12 

 *********************************************/ 

{int} I = ...; //demand 

{int} J = ...; //facility 

{int} JL = ...; //Long response facility 

{int} JS = ...; //Short response facility 

{int} S = ...; //scenario 

 

float c[I][J] = ...; 

float fc[J] = ...; 

float p = ...;  // 1 / dp  

float dp = ...; //number scenario 

float Sh = ...; 

float Ov = ...; 

float UP = ...; 

float D[I][S] = ...; 

float l = ...; 

//float RE[S]; 

 

//First stage 

dvar float+ x[I][J]; 

dvar float+ Sx[J]; 

dvar boolean OPEN[J]; 
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//Second stage 

dvar float+ y[I][J][S]; 

dvar float+ Sy[J][S]; 

dvar float+ SQ[I][S]; 

dvar float+ OQ[I][S]; 

 

dvar float+ sumx;   //total long lead time production 

dvar float+ sumy;   //total short lead time production 

dvar float+ avgsq;  //Average shortage among scenarios 

dvar float+ avgoq;  //Average overage among scenarios 

 

 

maximize  

UP * ( sum(i in I, j in JL) x[i][j] + sum(s in S) p * sum(i in I, j 

in JS) y[i][j][s] - sum(s in S) p * sum(i in I) OQ[i][s] ) - ( sum(i 

in I, j in J) c[i][j] * x[i][j] + l * sum(j in JL) Sx[j] + sum(j in 

J) OPEN[j] * fc[j] + sum(s in S) p * ( sum(i in I, j in J) c[i][j] * 

y[i][j][s] + l * sum(j in JS) Sy[j][s] + sum(i in I) SQ[i][s] * Sh + 

sum(i in I) OQ[i][s] * Ov ));  

 

subject to { 

 

ct1:  forall (i in I, s in S) 

        sum(j in JL) x[i][j] + sum(j in JS) y[i][j][s] + SQ[i][s] - 

OQ[i][s] == D[i][s]; 

    

ct2: forall (j in JL) 

        sum(i in I) x[i][j] == Sx[j]; 

         

ct3: forall (j in JS, s in S) 

        sum(i in I) y[i][j][s] == Sy[j][s]; 

 

ct4: forall (j in JL) 

  sum(i in I) x[i][j] <= OPEN[j] * 1000000; 
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ct5: forall (j in JS, s in S) 

  sum(i in I) y[i][j][s] <= OPEN[j] * 1000000; 

   

ct6: forall (j in JS, s in S) 

        Sy[j][s] <= 500; 

 

ct7: forall (j in JL) 

        Sx[j] <= 500; 

 

//stat 

ct8:  sumx == sum(i in I, j in J) x[i][j];         

ct9:  sumy == sum(i in I, j in J, s in S) y[i][j][s]/dp; 

ct10:  avgsq == (sum(i in I, s in S) SQ[i][s])/dp; 

ct11:  avgoq == (sum(i in I, s in S) OQ[i][s])/dp; 

 

 

 

 HEURISTIC(1st phase) FOR CONCAVE FUNCTION 

 

/********************************************* 

 * OPL 6.3 Model 

 * Author: Administrator 

*********************************************/ 

{int} I = ...; //demand 

{int} J = ...; //facility 

{int} JL = ...; //Long response facility 

{int} JS = ...; //Short response facility 

{int} S = ...; //scenario 

 

float c[I][J] = ...; 

float fc[J] = ...; 

float p = ...;  // 1 / dp  

float dp = ...; //number scenario 

float Sh = ...; 

float Ov = ...; 

float UP = ...; 
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float D[I][S] = ...; 

float l = ...; 

//float RE[S]; 

int LB = ...; 

 

//First stage 

dvar float+ x[I][J]; 

dvar float+ Sx[J]; 

dvar boolean OPEN[J]; 

 

//Second stage 

dvar float+ y[I][J][S]; 

dvar float+ Sy[J][S]; 

dvar float+ SQ[I][S]; 

dvar float+ OQ[I][S]; 

 

dvar float+ sumx;   //total long lead time production 

dvar float+ sumy;   //total short lead time production 

dvar float+ avgsq;  //Average shortage among scenarios 

dvar float+ avgoq;  //Average overage among scenarios 

 

 

maximize  

  UP * ( sum(i in I, j in JL) x[i][j] + sum(s in S) p * 

sum(i in I, j in JS) y[i][j][s] - sum(s in S) p * sum(i in I) 

OQ[i][s] )  

  - ( sum(i in I, j in J) c[i][j] * x[i][j] + l * sum(j in 

JL) Sx[j] + sum(j in J) OPEN[j] * fc[j]  

  + sum(s in S) p * ( sum(i in I, j in J) c[i][j] * 

y[i][j][s] + l * sum(j in JS) Sy[j][s] +  

  sum(i in I) SQ[i][s] * Sh + sum(i in I) OQ[i][s] * Ov ));  

 

subject to { 

 

ct1:  forall (i in I, s in S) 
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        sum(j in JL) x[i][j] + sum(j in JS) y[i][j][s] + SQ[i][s] - 

OQ[i][s] == D[i][s]; 

    

ct2: forall (j in JL) 

        sum(i in I) x[i][j] == Sx[j]; 

         

ct3: forall (j in JS, s in S) 

        sum(i in I) y[i][j][s] == Sy[j][s]; 

 

ct4: forall (j in JL) 

  OPEN[j] * LB <= sum(i in I) x[i][j]; 

   

ct5: forall (j in JL) 

  sum(i in I) x[i][j] <= OPEN[j] * 100000; 

   

ct6: forall (j in JS, s in S) 

  OPEN[j] * LB <= sum(i in I) y[i][j][s]; 

   

ct7: forall (j in JS, s in S) 

  sum(i in I) y[i][j][s] <= OPEN[j] * 100000; 

   

ct8: forall (j in JS, s in S) 

        Sy[j][s] <= 500; 

 

ct9: forall (j in JL) 

        Sx[j] <= 500; 

 

//stat 

ct10:  sumx == sum(i in I, j in J) x[i][j];         

ct11:  sumy == sum(i in I, j in J, s in S) y[i][j][s]/dp; 

ct12:  avgsq == (sum(i in I, s in S) SQ[i][s])/dp; 

ct13:  avgoq == (sum(i in I, s in S) OQ[i][s])/dp; 
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 HEURISTIC(1st phase) FOR CONVEX FUNCTION 

 

/********************************************* 

 * OPL 6.3 Model 

 * Author: Administrator 

*********************************************/ 

{int} I = ...; //demand 

{int} J = ...; //facility 

{int} JL = ...; //Long response facility 

{int} JS = ...; //Short response facility 

{int} S = ...; //scenario 

 

float c[I][J] = ...; 

float fc[J] = ...; 

float p = ...;  // 1 / dp  

float dp = ...; //number scenario 

float Sh = ...; 

float Ov = ...; 

float UP = ...; 

float D[I][S] = ...; 

float l = ...; 

float UB = ...; 

//float RE[S]; 

 

//First stage 

dvar float+ x[I][J]; 

dvar float+ Sx[J]; 

dvar boolean OPEN[J]; 

 

//Second stage 

dvar float+ y[I][J][S]; 

dvar float+ Sy[J][S]; 

dvar float+ SQ[I][S]; 

dvar float+ OQ[I][S]; 

 

dvar float+ sumx;   //total long lead time production 
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dvar float+ sumy;   //total short lead time production 

dvar float+ avgsq;  //Average shortage among scenarios 

dvar float+ avgoq;  //Average overage among scenarios 

 

 

 

maximize  

  UP * ( sum(i in I, j in JL) x[i][j] + sum(s in S) p * 

sum(i in I, j in JS) y[i][j][s] - sum(s in S) p * sum(i in I) 

OQ[i][s] )  

  - ( sum(i in I, j in J) c[i][j] * x[i][j] + l * sum(j in 

JL) Sx[j] + sum(j in J) OPEN[j] * fc[j]  

  + sum(s in S) p * ( sum(i in I, j in J) c[i][j] * 

y[i][j][s] + l * sum(j in JS) Sy[j][s] +  

  sum(i in I) SQ[i][s] * Sh + sum(i in I) OQ[i][s] * Ov ));  

 

subject to { 

 

ct1:  forall (i in I, s in S) 

        sum(j in JL) x[i][j] + sum(j in JS) y[i][j][s] + SQ[i][s] - 

OQ[i][s] == D[i][s]; 

    

ct2: forall (j in JL) 

        sum(i in I) x[i][j] == Sx[j]; 

         

ct3: forall (j in JS, s in S) 

        sum(i in I) y[i][j][s] == Sy[j][s]; 

 

ct4: forall (j in JL) 

  sum(i in I) x[i][j] <= OPEN[j] * UB; 

 

ct5: forall (j in JS, s in S) 

  sum(i in I) y[i][j][s] <= OPEN[j] * UB; 

   

ct6: forall (j in JS, s in S) 

        Sy[j][s] <= 500; 
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ct7: forall (j in JL) 

        Sx[j] <= 500; 

//stat 

ct8:  sumx == sum(i in I, j in J) x[i][j];         

ct9:  sumy == sum(i in I, j in J, s in S) y[i][j][s]/dp; 

ct10:  avgsq == (sum(i in I, s in S) SQ[i][s])/dp; 

ct11:  avgoq == (sum(i in I, s in S) OQ[i][s])/dp; 

} 

 

 

 EXAMPLE OF DATA CODE 

 

/********************************************* 

 * OPL 6.3 Data 

 * Author: Administrator 

 * Creation Date: 6 ก.ย. 2014 at 15:46:12 

 *********************************************/ 

SheetConnection sheet("Full1.1.xlsx"); 

I from SheetRead(sheet,"'Sheet1'!A50:A79"); 

J = {1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20}; 

JL = {1,2,3,4,5,6,7,8,9,10}; 

JS = {11,12,13,14,15,16,17,18,19,20};  

numk = 3; 

K_1 = {2}; 

p = 0.02; 

dp = 50; 

S from SheetRead(sheet,"'Sheet1'!B49:AY49"); 

c from SheetRead(sheet,"'Sheet1'!B5:U34"); 

fc from SheetRead(sheet,"'Sheet1'!BE5:BE24"); 

Sh from SheetRead(sheet,"'Sheet1'!Z42");  

Ov from SheetRead(sheet,"'Sheet1'!Z43");  

UP from SheetRead(sheet,"'Sheet1'!Z44");  

D from SheetRead(sheet,"'Sheet1'!B50:AY79");  

ac from SheetRead(sheet,"'Sheet1'!AZ5:BB24"); 

l from SheetRead(sheet,"'Sheet1'!AN5:AP24"); 
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L from SheetRead(sheet,"'Sheet1'!AT5:AV24"); 

 

 

 EXAMPLE OF DATA CODE FOR 2nd phase HEURISTICS 

 

/********************************************* 

 * OPL 6.3 Data 

 * Author: Administrator 

 *********************************************/ 

SheetConnection sheet("Full1.1.xlsx"); 

I from SheetRead(sheet,"'Sheet1'!A50:A79"); 

J = {1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20}; 

JL = {1,2,3,4,5,6,7,8,9,10}; 

JS = {11,12,13,14,15,16,17,18,19,20};  

numk = 3; 

K_1 = {2}; 

p = 0.02; 

dp = 50; 

//AY,CW,GS,KO 

S from SheetRead(sheet,"'Sheet1'!B49:AY49"); 

c from SheetRead(sheet,"'Sheet1'!B5:U34"); 

fc from SheetRead(sheet,"'Sheet1'!BE5:BE24"); 

Sh from SheetRead(sheet,"'Sheet1'!Z42");  

Ov from SheetRead(sheet,"'Sheet1'!Z43");  

UP from SheetRead(sheet,"'Sheet1'!Z44");  

D from SheetRead(sheet,"'Sheet1'!B50:AY79");  

ac from SheetRead(sheet,"'Sheet1'!AZ5:BB24"); 

l from SheetRead(sheet,"'Sheet1'!AN5:AP24"); 

L from SheetRead(sheet,"'Sheet1'!AT5:AV24"); 

OPEN = [1 0 1 0 1 0 1 1 1 1 1 0 0 0 0 0 0 0 1 1]; 
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Appendix B: 

 

 EXAMPLE OF INPUT DATA FILE (HEURISTIC CASE: CONVACE / 

Instance 3C) 

 

cij 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

1 87 137 121 143 63 161 168 87 87 137 121 143 63 161 168 87

2 108 88 102 70 123 151 117 88 108 88 102 70 123 151 117 88

3 126 90 132 155 121 84 91 155 126 90 132 155 121 84 91 155

4 157 165 118 85 114 158 81 88 157 165 118 85 114 158 81 88

5 165 104 107 158 152 86 115 168 165 104 107 158 152 86 115 168

6 150 64 77 130 150 150 91 145 150 64 77 130 150 150 91 145

7 85 144 101 136 121 94 86 155 85 144 101 136 121 94 86 155

8 111 130 151 118 160 112 72 158 111 130 151 118 160 112 72 158

9 137 118 134 117 137 91 94 161 137 118 134 117 137 91 94 161

10 96 144 126 136 102 143 87 94 96 144 126 136 102 143 87 94

11 65 93 114 140 103 120 116 142 65 93 114 140 103 120 116 142

12 88 150 102 127 112 70 94 168 88 150 102 127 112 70 94 168

13 129 149 112 168 65 158 72 70 129 149 112 168 65 158 72 70

14 141 127 125 157 149 155 88 67 141 127 125 157 149 155 88 67

15 75 147 67 84 116 76 85 60 75 147 67 84 116 76 85 60

16 90 113 127 92 114 120 142 92 90 113 127 92 114 120 142 92

17 143 76 155 72 155 121 156 82 143 76 155 72 155 121 156 82

18 148 166 158 117 88 62 166 95 148 166 158 117 88 62 166 95

19 142 131 63 129 98 164 103 79 142 131 63 129 98 164 103 79

20 72 93 166 147 169 91 70 85 72 93 166 147 169 91 70 85  

 

ljk(slope) k1 k2 k3 Ljk(slope) k1 k2 k3

1 26000 8000 4000 1 200 150 150

2 26000 8000 4000 2 200 150 150

3 26000 8000 4000 3 200 150 150

4 26000 8000 4000 4 200 150 150

5 26000 8000 4000 5 200 150 150

6 26000 8000 4000 6 200 150 150

7 26000 8000 4000 7 200 150 150

8 26000 8000 4000 8 200 150 150

9 26000 8000 4000 9 200 150 150

10 26000 8000 4000 10 200 150 150

11 26000 8000 4000 11 200 150 150

12 26000 8000 4000 12 200 150 150

13 26000 8000 4000 13 200 150 150

14 26000 8000 4000 14 200 150 150

15 26000 8000 4000 15 200 150 150

16 26000 8000 4000 16 200 150 150  

 

(Sh) Shortage cost 400

(Ov) Overage value 6000

(Up) Unit privce 38000  
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acjk k1 k2 k3 fc

1 1,000,000 1,000,000 0 1 5,000,000

2 1,000,000 1,000,000 0 2 5,000,000

3 1,000,000 1,000,000 0 3 5,000,000

4 1,000,000 1,000,000 0 4 5,000,000

5 1,000,000 1,000,000 0 5 5,000,000

6 1,000,000 1,000,000 0 6 5,000,000

7 1,000,000 1,000,000 0 7 5,000,000

8 1,000,000 1,000,000 0 8 5,000,000

9 1,000,000 1,000,000 0 9 7,000,000

10 1,000,000 1,000,000 0 10 7,000,000

11 1,000,000 1,000,000 0 11 7,000,000

12 1,000,000 1,000,000 0 12 7,000,000

13 1,000,000 1,000,000 0 13 7,000,000

14 1,000,000 1,000,000 0 14 7,000,000

15 1,000,000 1,000,000 0 15 7,000,000

16 1,000,000 1,000,000 0 16 7,000,000  

 

Dis 1 2 3 4 5 6 7 8 9 10

1 139 141 189 171 194 173 181 167 178 150

2 176 179 172 199 166 173 204 171 171 175

3 183 162 181 149 172 164 197 217 199 197

4 205 221 153 203 189 146 151 180 166 163

5 158 180 195 223 176 175 156 187 150 189

6 181 189 196 193 175 200 188 196 191 193

7 176 155 159 152 193 148 185 195 192 149

8 171 215 194 190 172 187 193 165 180 172

9 152 166 171 177 191 187 205 190 175 172

10 178 176 153 173 201 157 183 209 163 168

11 170 191 165 131 191 169 222 180 190 183

12 178 162 173 194 200 179 147 177 211 162

13 124 172 204 163 187 194 165 212 183 155

14 171 239 193 198 192 183 208 176 183 203

15 193 207 214 203 191 217 192 179 187 174

16 182 189 173 188 163 175 187 176 200 196

17 186 174 169 167 163 181 190 190 160 173

18 151 188 190 178 155 196 185 164 179 167

19 204 189 180 171 185 159 188 150 177 182

20 168 218 192 170 183 152 195 182 172 182  
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11 12 13 14 15 16 17 18 19 20

201 195 194 177 144 165 152 165 181 202

155 196 178 178 165 177 182 204 171 178

177 176 203 162 175 176 181 163 174 171

180 184 147 201 206 184 175 140 173 178

156 204 168 206 188 160 143 174 177 169

164 193 162 168 184 193 207 175 180 206

182 162 157 167 175 196 178 203 195 202

212 210 170 218 204 158 185 216 170 192

141 174 161 200 203 217 190 170 162 160

200 187 181 154 156 167 182 157 151 181

190 241 162 173 171 172 204 154 186 167

182 196 132 151 183 179 191 174 191 190

216 208 179 185 184 198 199 203 172 191

183 176 174 193 183 175 193 151 193 217

199 225 170 168 203 168 187 185 169 215

179 208 202 212 185 200 178 198 181 205

182 192 159 192 174 157 202 187 174 171

211 184 183 132 198 212 179 163 195 217

184 164 185 199 187 166 181 164 176 165

204 170 173 166 175 192 160 162 172 199  

 

21 22 23 24 25 26 27 28 29 30

227 192 156 180 177 181 199 169 167 163

195 138 187 183 200 225 115 168 180 191

199 219 149 172 176 180 137 152 192 170

214 149 176 178 218 217 193 175 174 170

204 160 203 148 196 170 175 158 170 136

148 145 165 177 183 202 160 167 201 182

166 178 156 178 158 221 219 176 169 159

203 171 172 147 189 177 155 214 177 181

197 155 180 197 167 176 188 206 169 173

181 198 168 205 223 180 148 193 168 197

191 153 176 157 159 186 196 203 169 177

165 191 205 194 177 198 163 173 182 185

177 188 183 210 152 158 151 151 180 162

190 167 207 174 199 181 182 207 186 167

201 200 173 210 159 208 164 160 160 181

168 142 174 161 176 181 188 174 146 149

196 179 177 182 161 165 200 169 196 176

166 182 174 210 168 194 196 192 177 156

188 160 192 155 170 208 170 203 167 200

173 200 166 187 182 191 173 165 198 194  
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31 32 33 34 35 36 37 38 39 40

179 164 186 206 156 198 170 156 223 207

203 137 195 182 168 186 169 152 184 230

148 187 196 179 168 173 180 156 210 167

183 166 164 161 159 141 164 182 225 213

183 143 149 160 185 178 168 181 145 176

192 206 153 207 197 197 193 157 179 158

187 146 180 196 170 191 198 158 194 236

130 173 157 154 142 177 206 172 166 209

154 158 177 190 201 185 200 176 193 185

143 155 161 210 220 167 194 193 198 193

133 215 177 183 216 176 189 195 146 176

177 179 178 184 188 171 180 175 174 173

159 179 175 192 196 174 211 164 208 167

198 159 159 181 172 173 176 168 153 190

197 197 192 167 182 182 220 185 163 151

180 179 194 180 179 162 174 162 180 176

166 164 200 180 193 196 175 174 187 159

195 172 205 156 173 143 169 154 158 158

126 181 168 199 208 161 175 175 167 179

196 174 155 175 200 170 176 154 200 191  

41 42 43 44 45 46 47 48 49 50

179 185 178 209 167 206 195 178 172 183

176 200 180 184 163 175 195 168 209 189

192 182 205 204 162 191 164 170 181 165

193 175 180 196 186 175 174 150 170 211

193 221 161 191 186 154 188 220 165 177

188 191 133 200 178 187 187 170 154 198

179 201 152 185 206 178 184 158 203 180

218 196 158 173 179 195 124 197 181 170

206 191 168 202 195 163 192 194 169 154

158 166 177 191 171 197 152 159 197 174

149 193 160 167 168 186 185 221 155 198

179 162 159 177 194 181 165 153 175 185

145 191 171 179 195 193 179 166 167 197

175 180 172 161 186 146 172 177 164 186

165 198 180 163 180 193 183 196 170 182

172 148 221 151 185 202 179 167 176 187

173 171 183 194 166 174 156 166 176 168

168 205 182 211 187 192 172 195 153 196

169 177 165 135 165 195 182 145 181 195

183 187 182 180 184 205 197 166 173 195  
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 EXAMPLE OF OUTPUT DATA FILE (HEURISTIC CASE: CONVACE/ 

LARGE SIZE) 

                                 Wij                 OPENij 

J  (size 

20)

K  

(size 3)
W

J  (size 

20)

K  

(size 3)
W

J  (size 

20)
OPEN

1 1 1 11 1 0 1 1

1 2 1 11 2 0 2 0

1 3 0 11 3 0 3 1

2 1 0 12 1 0 4 0

2 2 0 12 2 0 5 1

2 3 0 12 3 0 6 1

3 1 1 13 1 0 7 1

3 2 1 13 2 0 8 1

3 3 0 13 3 0 9 1

4 1 0 14 1 0 10 1

4 2 0 14 2 0 11 0

4 3 0 14 3 0 12 0

5 1 1 15 1 0 13 0

5 2 1 15 2 0 14 0

5 3 0 15 3 0 15 0

6 1 1 16 1 0 16 0

6 2 1 16 2 0 17 0

6 3 0 16 3 0 18 0

7 1 1 17 1 0 19 1

7 2 1 17 2 0 20 0

7 3 0 17 3 0

8 1 1 18 1 0

8 2 1 18 2 0

8 3 0 18 3 0

9 1 1 19 1 1

9 2 1 19 2 1

9 3 0 19 3 0

10 1 1 20 1 0

10 2 1 20 2 0

10 3 0 20 3 0  

 For each J of Wij 

- 1,1,0 = open all 3 segments 

- 1,0,0 = open first 2 segments 

- 0,0,0 = open 1 segment or close (we can know which facility is opened from 

OPENj 

For OPEN j 

1 = Open 

0 = close 
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Sx 

J  (size 

20)

K  

(size 

3)

Sx
J  (size 

20)

K  

(size 

3)

Sx

1 1 200 11 1 0

1 2 150 11 2 0

1 3 150 11 3 0

2 1 0 12 1 0

2 2 0 12 2 0

2 3 0 12 3 0

3 1 200 13 1 0

3 2 150 13 2 0

3 3 150 13 3 0

4 1 0 14 1 0

4 2 0 14 2 0

4 3 0 14 3 0

5 1 200 15 1 0

5 2 150 15 2 0

5 3 150 15 3 0

6 1 200 16 1 0

6 2 150 16 2 0

6 3 150 16 3 0

7 1 200 17 1 0

7 2 150 17 2 0

7 3 150 17 3 0

8 1 200 18 1 0

8 2 150 18 2 0

8 3 150 18 3 0

9 1 200 19 1 0

9 2 150 19 2 0

9 3 150 19 3 0

10 1 200 20 1 0

10 2 150 20 2 0

10 3 150 20 3 0  
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Sy 

 

J  

(size 

20)

K  

(size 

3)

S  

(size 

50)

Sy

J  

(size 

20)

K  

(size 

3)

S  

(size 

50)

Sy

J  

(size 

20)

K  

(size 

3)

S  

(size 

50)

Sy

19 1 1 200 19 1 31 200 19 2 11 150

19 1 2 200 19 1 32 200 19 2 12 150

19 1 3 200 19 1 33 200 19 2 13 150

19 1 4 200 19 1 34 200 19 2 14 150

19 1 5 200 19 1 35 200 19 2 15 150

19 1 6 200 19 1 36 200 19 2 16 150

19 1 7 200 19 1 37 200 19 2 17 150

19 1 8 200 19 1 38 200 19 2 18 150

19 1 9 200 19 1 39 200 19 2 19 150

19 1 10 200 19 1 40 200 19 2 20 150

19 1 11 200 19 1 41 200 19 2 21 150

19 1 12 200 19 1 42 200 19 2 22 150

19 1 13 200 19 1 43 200 19 2 23 150

19 1 14 200 19 1 44 200 19 2 24 150

19 1 15 200 19 1 45 200 19 2 25 150

19 1 16 200 19 1 46 200 19 2 26 150

19 1 17 200 19 1 47 200 19 2 27 150

19 1 18 200 19 1 48 200 19 2 28 150

19 1 19 200 19 1 49 200 19 2 29 150

19 1 20 200 19 1 50 200 19 2 30 150

19 1 21 200 19 2 1 150 19 2 31 150

19 1 22 200 19 2 2 150 19 2 32 150

19 1 23 200 19 2 3 150 19 2 33 150

19 1 24 200 19 2 4 150 19 2 34 150

19 1 25 200 19 2 5 150 19 2 35 150

19 1 26 200 19 2 6 150 19 2 36 150

19 1 27 200 19 2 7 150 19 2 37 150

19 1 28 200 19 2 8 150 19 2 38 150

19 1 29 200 19 2 9 150 19 2 39 150

19 1 30 200 19 2 10 150 19 2 40 150  
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J  

(size 

20)

K  

(size 

3)

S  

(size 

50)

Sy

J  

(size 

20)

K  

(size 

3)

S  

(size 

50)

Sy

19 2 41 150 19 3 21 122

19 2 42 150 19 3 22 150

19 2 43 150 19 3 23 150

19 2 44 150 19 3 24 150

19 2 45 150 19 3 25 149

19 2 46 150 19 3 26 61

19 2 47 150 19 3 27 150

19 2 48 150 19 3 28 119

19 2 49 150 19 3 29 150

19 2 50 150 19 3 30 150

19 3 1 150 19 3 31 128

19 3 2 150 19 3 32 150

19 3 3 150 19 3 33 150

19 3 4 118 19 3 34 102

19 3 5 136 19 3 35 150

19 3 6 121 19 3 36 150

19 3 7 150 19 3 37 150

19 3 8 150 19 3 38 150

19 3 9 92 19 3 39 150

19 3 10 96 19 3 40 150

19 3 11 150 19 3 41 150

19 3 12 150 19 3 42 114

19 3 13 150 19 3 43 114

19 3 14 150 19 3 44 150

19 3 15 132 19 3 45 55

19 3 16 150 19 3 46 122

19 3 17 150 19 3 47 89

19 3 18 150 19 3 48 150

19 3 19 150 19 3 49 150

19 3 20 150 19 3 50 83  

 

avgog: 29.38 (average overage amount) 

avgsq: 44.66 (average shortage amount) 

sumx: 4000 (total long lead time production) 

sumy: 485.06 (total short lead time production) 


