

OPTIMAL DESIGN OF SUPPLY CHAIN NETWORK: A CASE STUDY IN TOOTHBRUSH INDUSTRY

BY

TAI PHAM

A THESIS SUBMITTED IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF MASTER OF ENGINEERING (LOGISTICS AND SUPPLY CHAIN SYSTEMS ENGINEERING) SIRINDHORN INTERNATIONAL INSTITUTE OF TECHNOLOGY THAMMASAT UNIVERSITY ACADEMIC YEAR 2015

OPTIMAL DESIGN OF SUPPLY CHAIN NETWORK: A CASE STUDY IN TOOTHBRUSH INDUSTRY

BY

TAI PHAM

A THESIS SUBMITTED IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF MASTER OF ENGINEERING (LOGISTICS AND SUPPLY CHAIN SYSTEMS ENGINEERING) SIRINDHORN INTERNATIONAL INSTITUTE OF TECHNOLOGY THAMMASAT UNIVERSITY ACADEMIC YEAR 2015

OPTIMAL DESIGN OF SUPPLY CHAIN NETWORK: A CASE STUDY IN TOOTHBRUSH INDUSTRY

A Thesis Presented

By TAI PHAM

Submitted to

Sirindhorn International Institute of Technology

Thammasat University

In partial fulfillment of the requirements for the degree of MASTER OF ENGINEERING (LOGISTICS AND SUPPLY CHAIN SYSTEMS ENGINEERING)

Approved as to style and content by

Advisor and Chairperson of Thesis Committee

sol Yuntu

(Assoc. Prof. Pisal Yenradee, Ph.D.)

Committee Member and Chairperson of Examination Committee

N.G.

(Assoc. Prof. Navee Chiadamrong, Ph.D.)

Committee Member

(Asst. Prof. Teeradej Wuttipornpun, Ph.D.)

DECEMBER 2015

i

Abstract

OPTIMAL DESIGN OF SUPPLY CHAIN NETWORK: A CASE STUDY IN TOOTHBRUSH INDUSTRY

by

TAI PHAM

Bachelor of Engineering (Industrial Engineering), Ho Chi Minh City University of Technology, 2012

Supply chain management has long been a compass for every successful business. Its long-term decision plays an important role in shaping the supply chain structure, or design of supply chain network, which significantly affects supply chain performance for prolong period. Since each industry has a unique set of characteristics which evidently drive the design of supply chain network, a number of various models have been formulated to meet the needs of such business contexts. Even though many models have been proposed for manufacturing industry context, most of them are based on the facility location model. The model tends to lead the supply chain network design model to be complicated. Therefore, the purpose of this research is to propose an alternative approach to formulate manufacturing network design problem. Features, such as multi-echelon, multi-commodity, product's structure, and manufacturing process, are taken into consideration as characteristics of the studied environment. Moreover, uncertainty factors are also integrated to the model by employing possibilistic theory. Eventually in addition to the methodology, a case study in a consumer product firm is used to demonstrate applicability of the suggested method. Two models, deterministic and fuzzy, has been explored in the study and both of them has demonstrated the validity of the proposed formulation method. Moreover, it is shown that the fuzzy model outperforms its deterministic counterpart in term of cost effectiveness.

Keywords: strategic supply chain planning, supply chain network design, network flow, production network, fuzzy programming, optimization, mixed-integer linear programming (MILP), uncertainty

Acknowledgements

First and foremost, I would like to express my deep gratitude to my advisor, Assoc. Prof. Pisal Yenradee, for his dedicated support of my study. This research would have not been completed without him. His patience, motivation, enthusiasm, and immense knowledge helped me overcome many obstacles and finish my thesis timely. Besides my advisor, I would like to thank the rest of my thesis committee: Assoc. Prof. Navee Chiadamrong and Asst. Prof. Teeradej Wuttipornpun, for their constructive comments and overwhelming encouragement, but also for the challenged questions leading to significant refinement of my work. Moreover, I also appreciate financial support via EFS scholarship program provided by Sirindhorn International Institute of Technology (SIIT), Thammasat University. Last but not least, I would like to thank my parents for supporting me spiritually throughout the course of writing this thesis.

Table of Contents

Chapter	Title	Page
	Signature Page	i
	Abstract	ii
	Acknowledgements	iii
	Table of Contents	iv
	List of Tables	vi
	List of Figures	vii
1	Introduction	1
2	Literature Review	4
3	Methodology	10
	3.1 Problem formulation	10
	3.1.1 Conceptual Design	10
	3.1.1.1 Processes and Products	10
	3.1.1.2 Network Structure	11
	3.1.2 Mathematical model development	12
	3.1.2.1 Sets	12
	3.1.2.2 Parameters	13
	3.1.2.3 Decision variables	14
	3.1.2.4 Objective function	15
	3.1.2.5 Constraints	15
	3.1.3 Model Tranformation	17
	3.2 Case Study	18
	3.2.1 Studied context	18
	3.2.2 Description of input data	19

iv

	3.2.2.1 Locations	19
	3.2.2.2 Products and processes	20
	3.2.2.3 Supply sources	23
	3.2.2.4 Demand origins	24
	3.2.2.5 Transportation cost	26
	3.2.3 Experimental design	26
4	Result and Discussion	27
	4.1 Deterministic Scenario	27
	4.2 Non-deterministic Scenario	29
	4.3 Solution Comparison	31
5	Conclusions and Recommendations	35
	5.1 Conclusion	35
	5.2 Recommendations for further studies	35
Referenc	es	36
Appendic	ces	31
А	ppendix A Input Data	40
А	ppendix B OPL Model	62

List of Tables

Tables	Page
2.1 Summary of Supply Chain Network Problem	8
3.1 Locations' yearly fuzzy cost – $\widetilde{OP_l}$	19
3.2 Detailed recipe of SKU C – $R(k, l)$	20
3.3 Processes' Capacity (in mil. of UOM) – Cap_{io}	22
3.4 Process 1's annualized fuzzy fixed cost (\$) – $\widetilde{SE_{io}}$	22
3.5 Process 1's unit production cost of handle C (\$/piece) – $\widetilde{P_{iko}}$	23
3.6 Unit shortage cost of each SKU ($\frac{SKU}{-USC_k}$	23
3.7 Supplier data	24
3.8 Customer Demand (in thousands of units) – $\widetilde{D_{ik}}$	25
4.1 Total cost summary	27
4.2 Decision summary	28
4.3 Demand allocation	29
4.4 Objective values in each state	30
4.5 ε – Constraint Summary	31
4.6 Fuzzy Solution's Decision Summary	32
4.7 Fuzzy Solution's Demand Allocation	33

List of Figures

Figures	Page
3.1 BOM tree	11
3.2 Process network	11
3.3 Network representation	12
3.4 BOM structure of SKU C	20
3.5 Toothbrush manufacturing process network	21
4.1 Plants' portfolio and configuration	28
4.2 Fuzzy Solution's Product Portfolio and Configuration	32

Chapter 1 Introduction

Under tough pressure of competition on global playground and high expectation from customer nowadays, businesses are pushed to pay more investment and focus on managing their supply chains effectively. A supply chain is a network of facilities and streams of commodities that flow among them. Those facilities are composed of suppliers, manufacturing plants, warehouses, distribution centers, and retail premises, while commodities comprise raw materials, work-in-process, and finished goods. Supply chain management (SCM) defined by Simchi-Levi (2007) as "a set of approaches utilized to efficiently integrate suppliers, manufacturers, warehouses, and stores, so that merchandise is produced and distributed at the right quantities, to the right locations, and the right time, in order to minimize systemwide costs while satisfying service level requirements". By this definition, it is indicated that SCM involves activities at many levels ranging from strategic through tactical to operational within a business. Chopra and Meindl (2007) described that strategic level aims at determining the optimal structure or design of supply chain network. The addressed decisions are about number, location, and size of warehouses and/or plants as well as the connections among them. Both Watson, Lewis, Cacioppi, and Jayaraman (2012) and Simchi-Levi (2007) demonstrated that such decisions at this level have a high impact on supply chain performance since they are expensive and difficult to be changed. It is discussed that roughly 80% of supply chain expenses are trapped in its facilities which is equivalent to that of the cost kept in a product design. As a result, strategic network planning – or supply chain network design (SCND) – has drawn much attention from management and has required extensive research.

In different industrial contexts, Vila, Martel, and Beauregard (2006) argued that nature of SCND problem has changed significantly. In retail or distribution context, the main concerns are the movement of products and locations of facilities because flows from origin to destination are identical. On the other hand, the stream is no longer uniform in the context of manufacturing because most of the products are not simply collected and transported. Instead, there are series of transformation activities which are performed among production facilities to convert materials into a particular product. Each product has its own recipe of materials and set of desired production stages. The recipe of materials involves in supply side sourcing decisions, while the set of desired production stages associates with capital decisions and configuration of the network. Therefore, it is necessary to address impacts from not only movement of goods and locations but production processes and product architectures in manufacturing-relatednetwork design problem.

Melo, Nickel, and Saldanha da Gama (2009) accomplished a thorough review on development of optimization models which support supply chain management. They revealed many studies that are related to manufacturing context. Most of those research works had been developed and formulated based on classical facility location models which are centered on facility decision. However, this approach makes the models more complicated. This has provided a motivation to elaborate a novel approach which will generate a more simplified model. In addition to the approach, another obstacle which is very common to every strategic decision is that the future is always unpredictable. Therefore, taking uncertainty into account is inevitable.

The purpose of the thesis is to introduce a new method to formulate the supply chain network design problem in manufacturing industry. The problem encompasses two decisions which are related to network structure and configuration. The first decision is to determine number of locations, transportation links, supply sourcing, and demand allocation, while the second one aims at identifying production process network within each selected location. In addition, features, such as multi-echelon, multi-commodity, product's structure, and manufacturing process, are considered to capture characteristics of manufacturing business. Besides, uncertainty is also accounted for. Although probability theory has become popular in SCND by the mean called stochastic programming, the drawback is that this method depends heavily on past collected data to describe the future situation which might not actually be realized accordingly. As a result, instead of using probability theory, possiblistic theory is proposed to be used as a mean to dictate the future. An advantage of this theory is that it does not require extensive efforts to collect data. Instead, experts' experience and management references are the inputs. However, since these inputs sometimes may not yield a good result, it is reasonable to perform post hoc analysis to improve the result intuitively by alternative methods. Finally, a case study of a toothbrush producer has been employed to demonstrate the applicability of this method on modelling network design problem in manufacturing industries.

The remaining of the thesis is organized as follows. Related literature is reviewed in Chapter 2. Conceptual design, problem formulation, and experimental design are presented in Chapter 3. The implementation of the experiment and its results are discussed in Chapter 4. Finally, the conclusion from the research has been drawn in Chapter 5.

Chapter 2 Literature Review

Supply chain network is defined as a set of facilities such as suppliers, plants, distribution centers, and customers. All of them are linked by transportation routes carrying raw material, semi-finished goods, and finished products. With increasing competition and market uncertainty on global basis, supply chain management (SCM) is getting more and more attention from many companies around the world as a key competitive capability. Based on the length of time horizon, SCM decision levels has been divided into strategic, tactical, and operational levels. Strategic decisions have a long term effect on supply chain performance, since they involve determining number, location and capacities of various types of facilities, or the flow of material in the system. Such decisions require a large sum of capital investment, which is difficult to recover once it is allocated. Also, those facilities tend to stay in operation for extended periods of time from now which makes them vulnerable to be affected by external factors. Any change which occurs during their life-time may turn a selected site from a good choice to an undesirable one. Consequently, strategic supply chain planning has become the most important part of SCM. It is the reason that this topic gains much attention from academic researchers. The intention of this chapter is to review studies in supply chain network design, especially in manufacturing area. At first, the relationship between strategic SCM problem and facility location problem (FLP) has been outlined. Secondly, basic extensions of FLP which were conducted to handle the strategic SCM problem are examined. After that, special extensions for manufacturing sector have been discussed. Finally, conclusion is drawn from the review to provide supports for the proposed research.

Currently, terms such as *network design*, and *supply chain network design* (SCND) are often used, in most cases, as strategic SCM. As SCND is concerned with optimal number, location, and size of warehouses and/or plants, it is apparent to recognize the connection between network design and FLP in which locations are considered to be selected from a limited set of potential candidates in order to satisfy customers. If it is the case that setup cost is not different among all sites, the problem

is defined as p-median problem with the objective of minimizing total travel distance or cost of meeting customers' requirements. Otherwise, it may be considered as uncapacited facility location problem (UFLP). On the other hand, when capacity is known in advance, UFLP is renamed as capacitated facility location problem (CFLP). All above models have shared common characteristics that are single period, deterministic parameters, single product, mono type of facility, and location-allocation decisions. The FLP has provided a solid foundation for developing SCND models. However, the FLP models contain only a fundamental decision, location-allocation, and features which do not reflect complicated relationship involving different kinds of decision and advanced characteristics. Therefore, many extensions should be included to cope with complicated circumstances.

In practical networks as defined above, there exist many types of facility which play various roles in the network such as supplier, plant, and warehouse. Each facility has been grouped into sets, called layers or echelons, according to its specific function. Those facilities are connected together in order to transport goods from origins to destinations. Multi-echelon facilities appeared in Arntzen, Brown, Harrison, and Trafton (1995), Karabakal, Günal, and Ritchie (2000), Tsiakis, Shah, and Pantelides (2001), Vidal and Goetschalckx (2001), Jang, Jang, Chang, and Park (2002), Wouda, van Beek, van der Vorst, and Tacke (2002), Yan, Yu, and Cheng (2003), Kouvelis and Rosenblatt (2005), Wilhelm et al. (2005), Cordeau, Pasin, and Solomon (2006), Melo, Nickel, and Saldanha da Gama (2006), Ommeren, Bumb, and Sleptchenko (2006), Vila et al. (2006), and A. S. Zadeh, Sahraeian, and Homayouni (2014). In addition, there are many studies considering multi-products in their supply chains. Since strategic planning spans for long time horizon, there are motivations to introduce multi-periods or stochastic components to represent either predictable changes over time or uncertainty associated with parameters, respectively. Fleischmann, Ferber, and Henrich (2006), Melo et al. (2006), Ulstein, Christiansen, Grønhaug, Magnussen, and Solomon (2006), Vila et al. (2006), and A. S. Zadeh et al. (2014) focused on uncertainty elements, while multi-time-segments was taken into account by Arntzen et al. (1995), Tsiakis et al. (2001) and Ommeren et al. (2006).

Furthermore, a supply chain does not simply send the same product from one end, suppliers, to the other end, customers. The raw materials have to undergo transforming processes to become finished goods before being delivered to customers. It is necessary to include product's Bill of Materials (BOM) to represent the impacts of product's ingredients and production processes to supply chain on overall product cost, ingredient sourcing constraints, finished-goods manufacturing, overall throughput capacity, and key capital decisions. Arntzen *et al.* (1995), Tsiakis *et al.* (2001), Vidal and Goetschalckx (2001), Jang *et al.* (2002), Wouda *et al.* (2002), Yan *et al.* (2003), Kouvelis and Rosenblatt (2005), Wilhelm *et al.* (2005), Cordeau *et al.* (2006), Fleischmann *et al.* (2006), Vila *et al.* (2006), and A. S. Zadeh *et al.* (2014) took this issue into consideration.

The most important extension is the inclusion of typical supply chain decisions, which are capacity, production, and procurement. In traditional location problem, capacity is usually assumed either unlimited or fixed amount. However, this assumption is not held in contemporary supply chain settings because capacity is influenced by several constraints such as budget, technology and so on. Therefore, many studies have included this decision. Melo et al. (2006) and Vila et al. (2006) concurrently considered capacity reduction and expansion over planning horizon. Melo et al. (2006), Ommeren et al. (2006), Ulstein et al. (2006), and Vila et al. (2006) addressed setting up modules which are pre-defined sizing. Combining capacity with choice of equipment and/or technology has been handled by Arntzen et al. (1995), Mazzola and Neebe (1999), Karabakal et al. (2000), Verter and Dasci (2002), Ulstein et al. (2006), and Vila et al. (2006). The participation of multi-commodities feature in FLP has led to the need of determining which product should be produced in which plant with which quantity. It is the incentive to include production decision to deal with that requirement. Incorporating BOM into facility location has created a strong stimulus to combine procurement into the models. Such decision deals with selecting supplier for the best price and purchasing sufficient amount of required goods. Jang et al. (2002), Yan et al. (2003), Wilhelm et al. (2005), Cordeau et al. (2006), and A. S. Zadeh et al. (2014) developed models with raw material procurement, while Melo et al. (2006), and Vila et al. (2006) cared for acquiring finished products.

In the past decade, FLP has been extended exhaustively to adapt to new situations faced by SCND. However, even though FLP models have been modified heavily to integrate new features and decision variables, the modelling perspective,

which can be called location-oriented approach, are kept unchanged. It is the approach that a supply chain system is represented by a web of nodes connected by arcs. Each node stands for a facility whose location may be either known or determined. Each arc linking two nodes acts as a flow of material between two facilities. One property of FLP models is that the inflow and outflow at any node must be balanced. This property is still held as long as the inflows and outflows at a node are homogenous. However, with the introduction of BOM into FLP models, this balance has been lost, since inflows and outflows at a location are not homogenous anymore. The incoming streams correspond to required ingredients for manufacturing a product or a sub component which may be used in other stages, while outgoing ones may represent either semiproducts or finished goods. Another aspect of product structure is that it is related to production processes which are used to convert raw materials to finished products. These processes are strongly associated with choices of technology which make up of capacity of a facility. Some researchers, such as Wouda et al. (2002), Yan et al. (2003), and Cordeau et al. (2006) adapted the assumption that manufacturing operations are inseparable. Therefore, whenever a potential site was selected, it is implied that the whole production process are set up as well. Some other authors, Jang et al. (2002), Kouvelis and Rosenblatt (2005), Fleischmann et al. (2006), and A. S. Zadeh et al. (2014), gave a context in which a manufacturing processes could be divided into smaller processes. Each of those has been assigned to a set of locations. Several papers stated that production processes should be independent from location. In other words, choice of location and choice of production process can be carried out concurrently. Arntzen et al. (1995), Wilhelm et al. (2005), and Vila et al. (2006) explained this idea in their studies.

		F	eature	es		De	Decisions		
	Multi-echelon	multi-product	multi-period	uncertainty components	BOM	Capacity	procurement	Manufacturing Process	
Arntzen et al. (1995)	х	Х	Х		Х				
Cordeau et al. (2006)	х	Х			х		х	x	
Fleischmann et al. (2006)		х		х	Х			x	
Jang et al. (2002)		Х			х		х	x	
Karabakal et al. (2000)	Х	X				х			
Kouvelis and Rosenblatt (2005)	Х				Х			x	
Mazzola and Neebe (1999)		х				x			
Melo et al. (2006)	X	X		Х		х	х		
Ommeren et al. (2006)	X		Х			x			
Tsiakis et al. (2001)	Х	Х	Х		х				
Ulstein et al. (2006)		X		Х	2	х			
Verter and Dasci (2002)		Х				X			
Vidal and Goetschalckx (2001)	Х	Х	1		х				
Vila et al. (2006)	X	х	0	х	х	х	х		
Wilhelm et al. (2005)	х	Х		//	Х		Х		
Wouda et al. (2002)	Х	х			Х			Х	
Yan <i>et al.</i> (2003)	х	Х			Х		Х	Х	
A. S. Zadeh et al. (2014)	Х	Х		Х	Х		х	х	

Table 2.1 Summary of Supply Chain Network Problem

In conclusion, strategic supply chain management has received much attention from research community. There are a number of studies dedicated to extend FLP to address supply chain network issues, especially in manufacturing network problems as summarized in Table 2.1. Several features such as multi-products, multi-periods, stochastic components, bill-of-materials, and production and procurement decisions are successfully integrated. However, all of problems are approached by modelling perspective originated from FLP. This approach largely focuses on network structure with location as fundamental entity. It tends to generate more parameters and decision variable types when a supply chain in production environment is modelled to represent relationship of manufacturing processes with network topology. Therefore, it is necessary to come up with a new approach which is suitable for delivering a more straightforward model for such a network. Besides, it is decisive to consider not only deterministic circumstances but uncertainty conditions as well. Although stochastic component have been introduced to SCND, probability theory has dominated most of the studies. However, such method is based on collection of past data which are obviously difficult to obtain in case of design problem. Moreover, Lai and Hwang (1992) argued that "probability might not give us the right meaning to solve some practical decision-making problems" and that computational efficiency may be affected negatively when probability theory is applied to optimization problem. As a result, possibilistic theory, developed by L. A. Zadeh (1999), is proposed to be used as a mean to dictate future situation instead. Based on the stream of literature, the goal of this thesis is to propose a new method of modelling the supply chain network design problem in which all features and decisions except multi-period in table 2.1 are thoroughly considered.

Chapter 3 Methodology

3.1 Problem formulation

The purpose of this research is to propose a new approach for modelling production supply chain problem which involves multi-echelons, multi-commodities, product's architectures, manufacturing processes. With process-oriented perspective, new conceptual models for production processes, products and network structure are introduced. They are a foundation for mathematical model to be formulated. Moreover, due to these abstract models, some parameters and types of variables, included in other studies, are easily neglected.

3.1.1 Conceptual Design

3.1.1.1 Processes and Products

In developing a general supply chain model for manufacturing sector, it is necessary to come up with a conceptual model of manufacturing process. Martel (2005) pointed out that in such model, products and production stages are considered at an aggregate level in which, only essential elements are captured. Products are grouped into families. Each of which shares some mutual characteristics such as design, raw material, production technique, and so on (Shapiro, 2006; Simchi-Levi, 2007). Similarly, raw material and semi-products are grouped using the same technique. Production stages are regarded as collections of several operations. There are two types of conceptual model which are activity network (Wouda et al., 2002) and bill of materials (BOM) (Arntzen et al., 1995). The former is, as shown in Martel (2005), widely used in process manufacturing industries such as petro-chemicals, food, pulp and paper, pharmaceutical, etc. Each activity may have multiple recipes, which specify outputs and inputs according to potential technologies. In assembly systems such as electronic and automobile businesses, the latter type, however, is more appropriate.

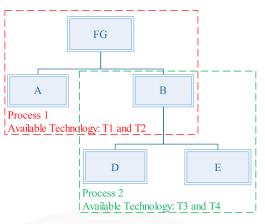


Figure 3.1 BOM tree

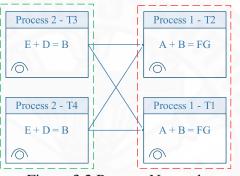


Figure 3.2 Process Network

For the purpose of supporting the proposed approach, a hybrid conceptual model, as shown in Figure 3.1 and 3.2, has been elaborated. It is a combination of process network and BOM representation. BOM is represented as an arborescence: root vertex denotes finished product; leaf vertices denotes raw material, while immediate vertices denotes semi-products. All edges that connect some vertices to a vertex stand for a production process. In addition to BOM, Network process has been deployed as a directed graph enumerating all possible combination of all manufacturing processes in term of technologies.

3.1.1.2 Network Structure

The structure of supply chain is usually modelled by a diagraph which contains two basic elements: Nodes often correspond to facilities which may be either predetermined, such as suppliers and customers, or potential sites for selection, such as factories and distribution centers; Arcs play as transportation routes linking nodes together. In this study, an alternative network structure has been designed. The different point is that each intermediate vertex, subjected to selection, is replaced by network process diagram which is discussed in section 3.1.1. An example of this structure has been demonstrated in Figure 3.3.

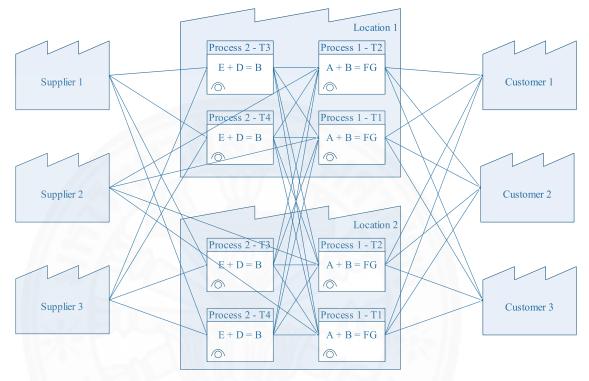


Figure 3.3 Network representation

3.1.2 Mathematical model development

Based on previous abstract model of supply chain and possibilistic programming presented by Lai and Hwang (1992), this section describes the developing of SCND problem in term of mathematical formulation. Sets, parameters, and decision variables are defined. Then, objective function, and constraints are formulated.

3.1.2.1 Sets

Consider a directed graph G(V,A) with V is set of vertices and A is set of arcs. There are 3 subsets in V: set of suppliers – S; set of customers – C; set of intermediate nodes – $V \setminus (S \cup C)$, each of them represents a production process with a technology in a candidate site. Associated with each $i \in S$, there is a set S'(i) which contains components supplied by supplier i. Furthermore, with the definition of in-between vertices, there are two additional sets, O(i) and Ouput(i), $\forall i \in V \setminus (S \cup C)$, corresponding to levels of capacity and output products. Also, there is a set of components which are allowed to carry, K'[(i, j)], $\forall i, j \in V$, $\forall (i, j) \in A$. Let L is a set of subsets of intermediate nodes. Each subset indicates a potential location under consideration. Let K and F are respectively set of raw materials and of intermediate products and set of finished products. Finally, since the uncertainty is also integrated in the model formulation in term of fuzziness, there is a set which represents the states of possibilistic distribution. As that distribution is assumed to be triangular with three occasions which are Optimistic, Most likely, and Pessimistic, set E is considered comprising such occasions.

3.1.2.2 Parameters

Parameters are divided into three categories which are Demand side, Supply side, and Internal business. Each category reflects a dimension from which supply chain operation is affected. Demand side provides annual required amount of products at customer points; Supply side provides a portfolio of raw material suppliers with their price quotations. Internal business describes information originated from entity who runs supply chain. It is included transportation, facility, and process data. Transportation cost demonstrates expense to move a unit of commodity between two points in the network. Facility cost represents annual investment required to acquire, to build and maintain infrastructure for any potential site. Process data contains information about operational aspects consisting of installation cost, process capacity, production cost, products' recipe, and operational policies. The first three terms are designed in order to exhibit economies of scale characteristic of the manufacturing process in each potential location. Production cost for a product will be lower if a higher capacity are installed. However, it requires larger amount of money to run that process annually. All notations of described parameters are shown below:

 $\widetilde{D_{ik}}$ is fuzzy demand of product k of customer node $i \quad \forall i \in C, \forall k \in F$ Sup_{ik} is the supply capacity of component k of supplier node i $\forall i \in S, \forall k \in S'(i)$

 B_{ik} is the cost of component k at supply node $i \quad \forall i \in S, \forall k \in K$ T_{ij} is the transportation cost between node i and node j $\forall i, j \in V, \forall (i, j) \in A$

 \widetilde{OP}_l is the fuzzy annualized cost of opening location $l \ \forall l \in L$

 \widetilde{SE}_{io} is the fuzzy annualized setup cost of using each process inside a node *i* with capacity $o \quad \forall i \in V \setminus (S \cup C), \forall o \in O(i)$

 Cap_{io} is the processing capacity o of node i $\forall i \in V \setminus (S \cup C), \forall o \in O(i)$

 $\widetilde{P_{iko}}$ is the fuzzy cost of producing a component k at a node i using a level of capacity $o \quad \forall i \in V \setminus (S \cup C), \ \forall k \in K \cup F, \forall o \in O(i)$

R(k,l) is amount of component k which is used to manufacture part $l \ \forall k, l \in K \cup F$

 \widetilde{TC} is total cost including opening, setup, transportation, purchase, and production costs.

3.1.2.3 Decision variables

Decision variables are formed by defined supply chain conceptual model. There are three types of variable consisting of facility, process, and flow. The facility specifies which potential site is selected to establish premise. The process indicates configuration of each plant and the flow specifies amount of commodity streaming among network nodes from supplier side through manufacturing network to customer side. In addition to flow determination, the flow also furnishes information shaping sourcing and production programs such as selection of suppliers, product portfolio, production level, etc.

$$Y_{l} = \begin{cases} 1 & \text{open facility at location } l, \forall l \in L \\ 0 & \text{otherwise} \end{cases}$$

 $Z_{io} = \begin{cases} 1 & \text{node } i \text{ is included in the network with capacity option } o \\ 0 & \text{otherwise} \end{cases}$

$$\forall i \in V \setminus (S \cup C), \forall o \in O(i)$$

 X_{ijko} denotes flow of product/component k from node *i* to node *j* with capacity $_{o}, \forall i, j \in V, (i, j) \in A, k \in K' [(i, j)], o \in O(i)$

3.1.2.4 Objective function

There are many objectives which had been introduced to SCND problems. Their advantages and disadvantages was also discussed in many studies. Since the purpose of this research is to demonstrate a different modelling perspective, the cost function, including opening, setup, transportation, purchasing, and production costs, is chosen as the objective in this model aiming to find the least cost network design. It is, however, noteworthy that the objective function could be changed to cope with various references of decision maker without any difficulties.

$$\begin{split} \widetilde{TC} &= \sum_{\forall l \in L} Y_l \times \widetilde{OP}_l + \sum_{\forall i \in V \setminus \{S \cup C\}} \sum_{o \in O(i)} Z_{io} \times \widetilde{SE}_{io} \\ &+ \sum_{\forall i \in V} \sum_{\forall j \in V} \sum_{\forall k \in K' [(i,j)]} \sum_{\forall o \in O(i)} X_{ijko} \times T_{ij} + \sum_{\forall i \in S} \sum_{\forall j \in V} \sum_{\forall k \in K' [(i,j)]} \sum_{\forall o \in O(i)} X_{ijko} \times B_{ik} \\ &+ \sum_{\forall i \in V \setminus \{S \cup C\}} \sum_{\forall j \in V} \sum_{\forall k \in K' [(i,j)]} \sum_{\forall o \in O(i)} X_{ijko} \times \widetilde{P_{iko}} \end{split}$$
(1)

3.1.2.5 Constraints

It is mandatory for supply chain design to satisfy requirements imposed by both inside and outside factors. The former are derived from internal operation conditions and management disciplines, while the latter are obtained from environment in which the supply chain is working. There are eight sets of constraints described as follows:

Supply constraint: Amount of raw material supplied by a supplier cannot surpass its capacity

$$\sum_{j \in V \setminus C} \sum_{\forall o \in O(i)} X_{ijko} \leq Sup_{ik}, \quad \forall i \in S, \forall (i, j) \in A, \forall k \in K' [(i, j)]$$
(2)

Demand constraint: Customer demand must be satisfied. More than one plant are allowed to provide a product at a customer location.

$$\sum_{\forall i \in V \setminus (S \cup C) \forall o \in O(i)} X_{ijko} \ge \widetilde{D_{jk}}, \quad \forall j \in C, \forall k \in F$$
(3)

Balance constraint: Inflow of commodities and outflow products are equalized through their relationship in BOM.

$$\sum_{\forall i \in V} \sum_{\forall o \in O(i)} R(k,l)^{-1} \times X_{ihko} = \sum_{\forall j \in V} \sum_{\forall o \in O(i)} X_{hjlo},$$

$$\forall h \in V \setminus (S \cup C), \forall k \in K' [(i,h)], \forall l \in K' [(h,j)]$$
(4)

Node constraint: Capacity limitation restricts the production of any processes within available capacity

$$\sum_{\forall j \in V \setminus \{S \cup C\} \forall k \in K'[(i,j)]} X_{ijko} \le Z_{io} \times Cap_{io}, \quad \forall i \in V, \forall o \in O(i)$$
(5)

Location constraint: Configuration of a candidate site can be proceeded as soon as it is selected.

$$Z_{io} \le M \times Y_l , \quad \forall i \text{ associated with } l, \ \forall l \in L, \forall o \in O(i)$$
(6)

Capacity selection: Only one option of capacity is allowed for any process in the network.

$$\sum_{\forall o \in O(i)} Z_{io} \le 1 , \quad \forall i \in V \setminus (S \cup C)$$
(7)

Non-negativity, binary, and integer conditions:

$$Y_l \in \{0,1\}, \quad \forall l \in L \tag{8}$$

$$Z_{io} \in \{0,1\}, \forall i \in V \setminus (S \cup C), \quad \forall o \in O(i)$$

$$\tag{9}$$

 X_{ii}^{ko} are non-negative integer,

$$\forall i, j \in V, \forall k \in K'[(i, j)], \forall o \in O(i)$$
(10)

According to above sections, the complete possibilistic programming model for the manufacturing SCND can be expressed as:

Mininize (1)
s. t. (I)
$$(2)-(10)$$

3.1.3 Model Tranformation

Model I is the standard form of a possibilistic linear programming model which includes fuzzy parameters. To solve this model, it is essential to transform the model into a solvable form, or a crisp mathematical model in brief. As can be recognized from (I), there are two types of imprecise parameters. The first one is the fuzzy parameters in the objective function. The second one is the technological coefficient in (3). Transformation of these types will be discussed, respectively.

Since the fuzzy parameters are assumed to follow a possibility triangular distribution, equation (1) will be decomposed into three functions which represent the cost of the supply chain design in each state of possibility triangular distribution: optimistic, most likely, and pessimistic situations in particular.

$$TC(e) = \sum_{\forall l \in L} Y_l \times OP_{le} + \sum_{\forall i \in V \setminus (S \cup C)} \sum_{o \in O(i)} Z_{io} \times SE_{ioe} + \sum_{\forall i \in V \forall j \in V \forall k \in K'} \sum_{[(i,j)]} \sum_{\forall o \in O(i)} X_{ijko} \times T_{ij} + \sum_{\forall i \in S \forall j \in V } \sum_{\forall k \in K'} \sum_{[(i,j)]} \sum_{\forall o \in O(i)} X_{ijko} \times B_{ik} + \sum_{\forall i \in V \setminus (S \cup C) \forall j \in V \forall k \in K'} \sum_{[(i,j)]} \sum_{\forall o \in O(i)} X_{ijko} \times P_{ikoe}$$

$$\forall e \in E$$

$$(11)$$

Before transforming the imprecise component in (3), it is necessary to provide additional definitions as follows:

 USC_k is the cost of being unable to satisfy the demand of product k $\forall k \in F$

Shortage_{*ike*} denotes unsatisfied demand of product *k* at a customer node *i* in situation $e, \forall i \in C, k \in F, e \in E$

$$Shortage_{ike} \ge 0, \quad \forall j \in C, \forall k \in F, \forall e \in E$$

$$(12)$$

Based on the additional definitions, a modification has been made for (3) by subtracting the *Shortage*_{*ike*} term from the right hand side. Besides, the objective function (11) will include another cost term denoting the total shortage cost of all products in each possibilistic situation.

$$\sum_{\forall i \in V \setminus (S \cup C) \forall o \in O(i)} X_{ijko} \geq D_{jke} - Shortage_{jke} \quad \forall j \in C, \forall k \in F, \forall e \in E$$
(13)

$$TC(e) = \sum_{\forall l \in L} Y_l \times OP_{le} + \sum_{\forall i \in V \setminus (S \cup C)} \sum_{o \in O(i)} Z_{io} \times SE_{ioe} + \sum_{\forall i \in V \forall j \in V} \sum_{\forall k \in K'[(i,j)]} \sum_{\forall o \in O(i)} X_{ijko} \times T_{ij} + \sum_{\forall i \in S \forall j \in V} \sum_{\forall k \in K'[(i,j)]} \sum_{\forall o \in O(i)} X_{ijko} \times B_{ik} + \sum_{\forall i \in V \setminus (S \cup C) \forall j \in V \forall k \in K'[(i,j)]} \sum_{\forall o \in O(i)} X_{ijko} \times P_{ikoe}$$
(14)

$$+ \sum_{\forall j \in C} \sum_{\forall k \in F} Shortage_{jke} \times USC_{k}$$

$$\forall e \in F$$

As a result of transforming process, model I has become an equivalent multi-objective linear programming (MOLP) model as follows:

Mininize (14)
s. t. (II)
$$(2),(4)-(10),(12),(13)$$

3.2 Case Study

3.2.1 Studied context

Toothbrush has long been used as a medical device to keep teeth clean from plague. The first toothbrush appeared thousands of years ago. Since then, its design and constituent material has been changed dramatically. Contemporary toothbrush consists of two main parts that are handle and bristle cluster. The first part is made of resin, while the second one is usually made of nylon. It is known that toothbrushes were first mass-produced in the late of 1700s. Manufacturing processes consist of three basic phases that are injection molding, bristle filling, and packing. Handle is made by injection molding process which melts plastic pellets into liquid, injects into a metal mold, and cools it down to form the handle with small holes at the tip. The bristles, which are usually made of nylon, are bought

by bundle and cut into a specified length. They are positioned on the head of a handle by stapling using metal staples that are cut from a roll of metal wire. After that, the bristles will be trimmed to produce a specified profile. Finished toothbrushes are put into blister pack, made of PVC or PET, and sealed with a backer card, a color printed paper sheet, by using a high frequency welding machine. Blister packs are arranged into carton box which will be shipped to distributors. This case study involves a toothbrush manufacturer who would like to establish worldwide supply chain to provide their products to customers. Its network includes customers, suppliers and candidate sites which are considered to build manufacturing plant. The goal is to determine the least cost design.

3.2.2 Description of input data

In this section, collected data are organized into parameters according to the conceptual model. Moreover, all data are altered or scaled in order to maintain confidentiality of the business.

3.2.2.1 Locations

There are four potential locations for setting up production plants. They are Viet Nam, China, India, Brazil locations. The fixed cost of opening a location, including investment of land and fixed administration cost of setting up the plant during its life cycle, are annualized. Since this cost is considered as imprecise in the future, the estimation should be carried out for all states of future situation corresponding to the possibility triangular distribution. The values are shown in Table 3.1.

		5 5 5	i			
	Annual fixed cost of opening a location (\$)					
Location	Optimistic	Most Likely	Pessimistic			
Viet Nam	1,080,000	1,200,000	1,440,000			
China	1,134,000	1,260,000	1,512,000			
India	1,260,000	1,400,000	1,680,000			
Brazil	1,170,000	1,300,000	1,560,000			

Table 3.1 Locations' yearly fuzzy cost – \widetilde{OP}_{l}

3.2.2.2 Products and processes

Based on Watson *et al.* (2012), Shapiro (2006), and Simchi-Levi (2007) criteria, products are grouped into three families that are SKU I, C and K. Similarly, material and semi-products are group into the same categories. Raw materials are composed of seven categories that are resin, colorant, metal wire, filament, PVC, backer card, and shipper or carton box. Among them, resin has three sub categories that are PP, TPE, and BR; metal wire includes brass and aluminum wire. Similarly, semi-products are classified as handles and finished toothbrushes. An instance of a BOM and its recipes is shown in Figure 3.4 and Table 3.2.

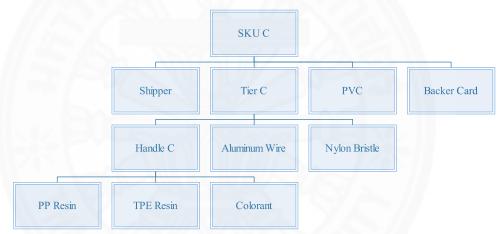


Figure 3.4 BOM structure of SKU C

Table 3.2 Detailed recipe of SKU C – $R(k,l)$						
Master Item	Sub Item	Recipe	UOM			
SKU C	Tier C	100	Piece(s)			
SKU C	Shipper	1	Piece(s)			
SKU C	PVC	556	Gram(s)			
SKU C	Backer Card	100	Piece(s)			
Tier C	Filament	1	Gram(s)			
Tier C	Aluminum Wire	1	Gram(s)			
Tier C	Handle C	1	Piece(s)			
Handle C	PP	8	Gram(s)			
Handle C	TPE	3	Gram(s)			
Handle C	Colorant	1	Gram(s)			

According to BOMs, production processes are classified into

two kinds which are common for all families and dedicated for a group

of families in each stage of manufacturing. In injection molding stage, 2-phase process are dedicated for SKU C and I, while 3-phase one are reserved for SKU K. In bristle filling stage, anchor-wire process, known as the one that use metal staples to fix bristles in the head of a handle, are used for SKU C and I. Another advanced process, which does not require any metal pieces but heat to retain bristles, is called anchor-free. It is used solely for SKU K. For packing process, it is a common one for all families. Moreover, for each kind of process, there are two types of technology that are eligible for them. Semi-auto partially requires labors in some steps. Automatic, on the contrary, requires no human during production. Process network which represents processes and relevant technologies is shown in Figure 3.5. In addition, associated capacities are displayed in Table 3.3.

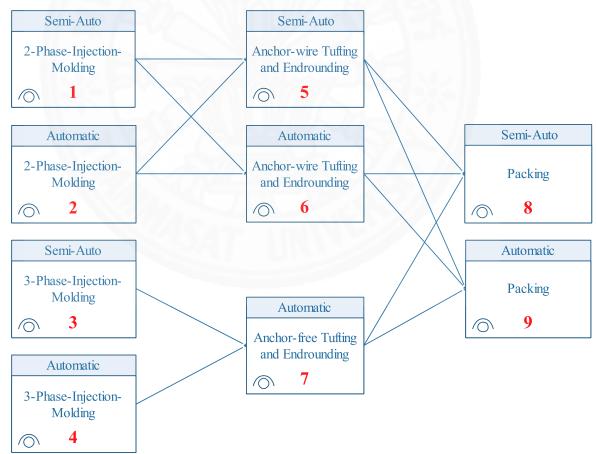


Figure 3.5 Toothbrush manufacturing process network

Location	Process No.	Capa	acity L	UOM	
Location	Process No.	1	2	3	UOM
	1	95	59	43.5	
	2	50	28	16	handle
	3	51	40	33.5	nandie
Viet	4	52	41	35.2	
Nam	5	42	34	24	
Inaili	6	40	31	20	toothbrush
	7	39	32	26.8	
	8	1.21	0.91	0.7	SKU
1	9	0.86	0.67	0.59	SKU

Table 3.3 Processes' Capacity (in mil. of UOM) – Cap_{io}

Besides the capacities, each production process also requires an annualized setup cost, composed of investment of building and production equipment. Moreover, it incurs a production cost, consisting of labor and overhead cost, once operation is commenced. As the costs are apparently uncertain in the future, it is reasonable for management to consider these costs as fuzzy parameters. Therefore, the determination of these expenses has been based on possibility situations. The annualized installation expense and production unit cost of each process are expressed in Tables 3.4 and 3.5:

		Capacity Levels			
Situation	Locations	1	2	3	
1	Viet Nam	908,086	518,906	288,281	
	China	923,147	527,513	293,063	
Optimistic	India	909,149	519,514	288,619	
	Brazil	1,235,756	673,200	391,500	
	Viet Nam	1,008,984	576,563	320,313	
Most Likely	China	1,025,719	586,125	325,625	
Most Likely	India	1,010,166	577,238	320,688	
	Brazil	1,373,063	748,000	435,000	
	Viet Nam	1,210,781	691,875	384,375	
Pessimistic	China	1,230,863	703,350	390,750	
ressimistic	India	1,212,199	692,685	384,825	
	Brazil	1,647,675	897,600	522,000	

Table 3.4 Process 1's annualized fuzzy fixed cost (\$) – $\widetilde{SE_{io}}$

Situations	Locations	Capacity Levels			
Situations	Locations	1	2	3	
	Viet Nam	0.0126	0.0139	0.0151	
Ontimistio	China	0.0284	0.0312	0.0340	
Optimistic	India	0.0120	0.0132	0.0144	
	Brazil	0.0432	0.0475	0.0518	
	Viet Nam	0.0140	0.0154	0.0168	
Most Likely	China	0.0315	0.0347	0.0378	
WOSt Likely	India	0.0133	0.0146	0.0160	
	Brazil	0.0480	0.0528	0.0576	
	Viet Nam	0.0168	0.0185	0.0202	
Dessimistic	China	0.0378	0.0416	0.0454	
Pessimistic	India	0.0160	0.0176	0.0192	
	Brazil	0.0576	0.0634	0.0691	

Table 3.5 Process 1's unit production cost of handle C (\$/piece) – $\widetilde{P_{iko}}$

Since the considered business is operated in an uncertain environment, it is obvious to observe a situation in which supply capacity is surpassed by demand quantity. In such case, the losses due to unsatisfied demand is merely inevitable for the firm. Therefore, it is mandatory to estimate the shortage cost of not enough supply. Unit shortage cost of each SKU is estimated as in table 3.6.

Table 3.6 Unit shortage cost of each SKU (SKU) – USC_k

Product	Shortage Rate
SKU C	258.31
SKU I	129.16
SKU K	194.44

3.2.2.3 Supply sources

Once raw materials are aggregated, it can be done similarly for supply sources. They can be grouped by categories of material and geographical location. Consequently, there are 28 suppliers providing material for the candidate production facilities. Each of them has limitation of supply and different prices, as shown in Table 3.7.

Supplier location	Material	Capacity*	Price** (\$)	UOM	
India	PP	850,000	1.50	Kg(s)	
Saudi Arabia	PP	970,000	1.52	Kg(s)	
China	TPE	750,000	3.69	Kg(s)	
China	TPE	610,000	3.68	Kg(s)	
VN	Colorant	258,600	6.93	Kg(s)	
China	Colorant	230,100	6.36	Kg(s)	
China	Aluminum Wire	62,500	6.06	Kg(s)	
China	Aluminum Wire	75,300	6.07	Kg(s)	
UK	Brass Wire	24,200	14.48	Kg(s)	
Germany	Brass Wire	25,500	14.47	Kg(s)	
China	Filament	480,000	9.12	Kg(s)	
China	Filament	570,000	9.28	Kg(s)	
Vietnam	PVC	510,000	1.83	Kg(s)	
Taiwan	PVC	660,000	1.84	Kg(s)	
VN	Shipper	3,250	243.60	KPcs	
China	Shipper	4,730	244.70	KPcs	
VN	Backer Card	258,000	12.23	KPcs	
China	Backer Card	276,000	11.59	KPcs	
US	BR	700,000	3.78	Kg(s)	
$(*Sup_{ik}, **B_{ik})$					

Table 3.7 Supplier data

 $(*Sup_{ik}, **B_{ik})$

3.2.2.4 Demand origins

With defined families of products, it is inevitable to consolidate demand. Collected data reveals that demand could be organized by families and countries. Moreover, it is also implied that demand might be unpredictable in the coming years. Therefore, it is desirable to be designed as a fuzzy input. Aggregated fuzzy demand is displayed in Table 3.8.

Region	Country	Optimistic			Most Likely			Pessimistic		
		SKU C	SKU I	SKU K	SKU C	SKU I	SKU K	SKU C	SKU I	SKU K
South Pacific	Australia	32.36	0	38.19	35.95	0	42.44	43.14	0	50.93
Euro-Asia	Russia	30.96	0	22.92	34.40	0	25.46	41.28	0	30.56
	Turkey	16.85	0	0	18.72	0	0	22.46	0	0
East Europe	Poland	10.65	0	0	11.84	0	0	14.20	0	0
	Romania	17.93	0	0	19.92	0	0	23.90	0	0
Asia	Thailand	173.76	36.83	19.10	193.07	40.93	21.22	231.68	49.11	25.46
	Philippines	65.90	74.76	17.57	73.22	83.07	19.52	87.86	99.68	23.43
	Vietnam	17.57	0	15.28	19.53	0	16.98	23.43	0	20.37
	China	191.14	88.40	61.11	212.38	98.22	67.90	254.85	117.86	81.48
	India	199.83	73.45	35.14	222.03	81.61	39.04	266.43	97.93	46.85
	Malaysia	42.92	56.50	21.39	47.69	62.78	23.77	57.23	75.33	28.52
	Taiwan	22.61	7.13	24.44	25.12	7.92	27.16	30.14	9.50	32.59
	Hong Kong	0.69	45.79	27.50	0.76	50.87	30.56	0.92	61.05	36.67
North America	US	75.03	77.43	64.17	83.37	86.04	71.30	100.04	103.24	85.55
	Canada	62.53	53.43	55.00	69.47	59.36	61.11	83.37	71.24	73.33
Latin American	Mexico	4.23	0	5.96	4.70	0	6.62	5.64	0	7.94
	Colombia	10.06	0	14.51	11.18	0	16.13	13.41	0	19.35
	Brazil	0	269.58	44.31	0	299.53	49.23	0	359.43	59.07
Africa and Middle East	GSS	31.19	6.91	8.40	34.66	7.68	9.34	41.59	9.22	11.20
	East Africa	5.22	7.97	11.61	5.80	8.85	12.90	6.96	10.62	15.48

Table 3.8 Customer Demand (in thousands of units) – $\widetilde{D_{ik}}$

3.2.2.5 Transportation cost

A transportation cost is incurred when moving a unit of commodity between any two nodes in the network. It is determined by relative distance as well as physical characteristics of commodity. Although multiple commodities are allowed on a single route in this case study, it is found that these commodities are somewhat homogeneous in term of physical appearances. Therefore, transportation cost, described in this section, is distance-based only and linearly related to amount of commodity which are shipped from one node to another. However, it is noteworthy that in other cases, transportation cost parameter could be extended to be dependent on both kind of items and distance without any loss of generality. Detailed transportation cost and other input data could be found in Appendix A.

3.2.3 Experimental Design

An experiment plan has been designed corresponding to developed models. At first, a base case solution, representing deterministic scenario, is determined by solving model I with Most Likely parameters. Secondly, model II, under fuzzy scenario, is solved with each objective function in (14) respectively to obtain solutions. These solutions are then converted to crisp values which are treated as selection criteria. After choosing the most favorable solution, it will be evaluated and an improvement may be carried out if there is any objective dominated in any situation. Finally, fuzzy scenario's solution is compared with deterministic scenario's to highlight the impact of uncertainty on the network.

Chapter 4

Result and Discussion

The mathematical models, which have been developed, are coded by Optimization Programming Language (OPL). The OPL models, exhibited in Appendix B, are solved by MIP solver in IBM ILOG CPLEX 12.6 system. According to the experimental design discussed in previous chapter, most likely parameters are referred as values for deterministic scenario and are applied to model I to obtain a base case solution. For the non-deterministic scenario, model II will be solved with each objective function to find the best network design for each possible situation known as optimistic, most likely, or pessimistic situations. Once the results have been determined, the objective value of other occasions are calculated. Afterward, a fuzzy (compromised) solution is chosen and subjected to evaluation of suitability. Finally, that solution is thoroughly compared with a base case one in detail to highlight the differences between them.

4.1 Deterministic Scenario

After running OPL model with base case data, it comes up with an optimal solution which costs \$43,526,220, shown in Table 4.1. Over half of that are contributed by location, process, and production. The rest amount of expense comes from procurement and transportation.

Category	Value (\$)		
Annualized fixed cost of Opening a location	3,860,000		
Procurement Cost	16,851,524		
Production Cost	9,894,375		
Annualized fixed cost of Using a capacity level	10,006,743		
Transportation Cost	2,913,579		
Shortage Cost	-		
Total Cost	43,526,220		

Table 4.1 Total cost summary

Three locations are selected in Asia according to Table 4.2. It is due to low production cost which can compensate transportation cost incurring from shipping to remote locations on the other side of the world. China location is configured as a dedicated plants with only tufting and packing processes because injection molding can be concentrated in Vietnam and India plants. Likewise, anchor-free process was

established in only one location, China plant, as high capacity level of this process can handle occurred demand. On the other hand, anchor-wire tufting and pack are separated in all selected sites due to the fact that no single or combination of any capacity in any sites can be exploited to satisfy the demand.

	Solution Summary											
Candidate Site	Vietnam China			l		India		Brazil				
Used?		X X				х						
Capacity Level Process	High	Medium	Low	High	Medium	Low	High	Medium	Low	High	Medium	Low
2-Phase-Injection-Molding (Semi-Auto)	х							х				
2-Phase-Injection-Molding (Automatic)												
3-Phase-Injection-Molding (Semi-Auto)												
3-Phase-Injection-Molding (Automatic)								х				
Tufting and Endrounding (Anchor-wire Semi-Auto)		х			х			х				
Tufting and Endrounding (Anchor-wire Automatic)					х			х				
Tufting and Endrounding (Anchor-free)				х								
Packing (Semi-Auto)			х			х			х			
Packing (Automatic)			1						х			

Table 4.2 Decision summary

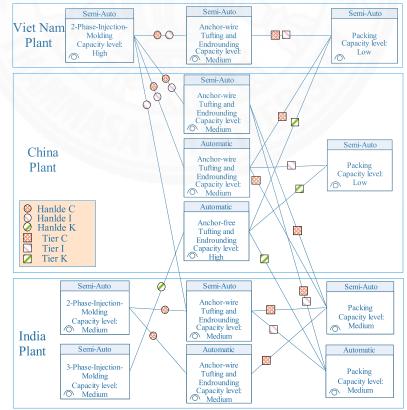


Figure 4.1 Plants' portfolio and configuration

Consequently, Vietnam and India will focus on anchor-wire products. China will be in charge of manufacturing anchor-free products. Production portfolio and configuration of each site is illustrated in Figure 4.1. In addition, customers are assigned to each location as shown in Table 4.3.

		V	ietna	m	(China	ı	India		
Region	Country	SKU C	SKU I	SKU K	SKU C	SKU I	SKU K	SKU C	SKU I	SKU K
South Pacific	Australia	Х		х						
Euro-Asia	Russia						Х	х		
Euro-Asia	Turkey						t.	Х		
East Europa	Poland							Х		
East Europe	Romania							х		
112-15	Thailand	х	Х	х	0	-		Х		
$1 \sim 1 \sim n$	Philippines	х	х	х	~					
	Vietnam	х	/	х						
Asia	China		_		20	х	Х	х		
Asia	India		3			~		X	х	Х
	Malaysia	х	х	X						
	Taiwan	х	1	Х	1	х				
	Hong Kong	х		Х		Х	. /			
North America	US					х	х	х		Х
North America	Canada					Х	X	Х		
	Mexico					11	X	Х		
Latin American	Colombia							х		х
	Brazil								х	Х
Africa and Middle East	GSS							Х	х	Х
Amea and whould East	East Africa							Х	х	Х

Table 4.3 Demand allocation

4.2 Non-deterministic Scenario

Model II is solved sequentially with each objective function in equation (14) as described. The value of the objective function and its counter parts are revealed in Table 4.4. Since each solution could be treated as a membership function of a fuzzy set, they can be assessed by their crisp or defuzzified values. A number of defuzzifying methods has been introduced in fuzzy logic literature. Of all them, the centroid method is the

most popular one. Therefore, it will be used to convert the fuzzy sets in this study. The detail of this method can be found in Ross (2010).

		Situations		
Situation to be optimized	Optimistic	Most Likely	Pessimistic	Crisp Value
Pessimistic	48,043,527	50,799,666	65,392,421	54,745,205
Most Likely	41,150,108	43,526,220	150,264,845	78,313,725
Optimistic	36,897,516	90,034,157	196,315,838	107,749,171

Table 4.4 Objective values in each state

The result highlights some characteristics of the problem. As the demand may contingently occurs somewhere between low (Optimistic) and high (Pessimistic) levels, it has significant effect on capacity of the network when the focus is shifted from one situation to another. Specifically, it would require larger capacity to be installed in order to match high demand if the model is optimized for the Pessimistic level. As a result, it would add more expense to the total cost. However, such additional cost has countered the severe loss incurred by unsatisfied demand as a result of insufficient capacity.

Pessimistic-optimized solution, in table 4.4, has a larger capacity than other two solutions because it relies on the demand in Pessimistic situation to determine the capacity for its network. Therefore, the total cost in Optimistic and Most Likely situations are worse than those in other solutions. Although Most Likely-optimized and Optimistic-optimized solutions require smaller capacity based on lower demand in Most Likely and Optimistic situations respectively, a large amount of sale is lost when the demand is relatively high during Pessimistic situation. This is the reason why their total costs in Pessimistic situation is greatly higher than that of Pessimistic-optimized solution.

In addition, it can be observed that the Pessimistic-optimized solution is the most preferable among the three based on its crisp value. The Pessimistic total cost is the smallest, even though Optimistic and Most Likely situations are worse than other solutions. Trying to improve this solution seems to be intuitively plausible. Consequently, Pessimistic-optimized solution is further investigated for improvement. There are many methods which may help to improve the current solution. In this study, a simple method, called ε – Constraint method which was described in detail by Coello (1999), will be exploited. The concept of this method is that in a multi-objective mathematical model, it will minimize one objective regarded as the primary or the most

preferable one while treating other objectives as constraints bounded by an \mathcal{E} amounts. The solving process are carried out by changing the primary objective until there is no improvement of any other objective.

In this research, the ε -Constraint will be applied in the same way. Initially, Optimistic objective in equation (14) is selected to be the preferred objective in model II. Since no improvement has been found, Most Likely objective is put in place. However, there is still no enhancement. Therefore, an alternative setting has been setup with a degree of relaxation in Pessimistic objective. By allowing Pessimistic objective to be 5% larger, two similar replications are carried out as the first setting. The replication in which the optimistic objective is firstly selected as preferred one still yields no betterment. The summary of the remaining replication, in which most likely function has been chosen in the first place, is illustrated in Table 4.5.

Table 4.5 ε – Constraint Summary

			State		
Iteration	Situation to be optimized	Optimistic	Most Likely	Pessimistic	Crisp Value
1	Most Likely	47,608,348	50,341,063	68,659,639	55,536,350
2	Optimistic		No Impi	rovement	

It is apparent to recognize that though the solution in table 4.5 has lower total cost under Optimistic and Most Likely situations compared with the Pessimistic-optimized solution in table 4.4, the crisp value, however, is not better than Pessimistic-optimized solution. As a result, Pessimistic-optimized solution is the most suitable solution in this case.

4.3 Solution Comparison

Based on Table 4.2 and 4.6, while network structure (number of locations) in both deterministic and non-deterministic cases remains unchanged, the configuration (specification of processes) has been changed noticeably. Viet Nam plant has been expanded by three more processes, one injection molding, one tufting, and one packing. India plant has replaced a packing process by a tufting one in supporting for producing anchor-free product. Now, the two plants have become equivalent in terms of installed amount of capacity. China plant capacity has been shrunk although its configuration is kept untouched.

					Solı	ition S	Sumn	nary				
Candidate Site	Vietnam China India				Brazil							
Used?		Х			Х			х				
Capacity Level Process	High	Medium	Low	High	Medium	Low	High	Medium	Low	High	Medium	Low
2-Phase-Injection-Molding (Semi-Auto)	х						х					
2-Phase-Injection-Molding (Automatic)												
3-Phase-Injection-Molding (Semi-Auto)			х						х			
3-Phase-Injection-Molding (Automatic)												
Tufting and Endrounding (Anchor-wire Semi-Auto)		х				х		х				
Tufting and Endrounding (Anchor-wire Automatic)		х			х			х				
Tufting and Endrounding (Anchor-free)						х			х			
Packing (Semi-Auto)		х				х		х				
Packing (Automatic)			х									

Table 4.6 Fuzzy Solution's Decision Summary

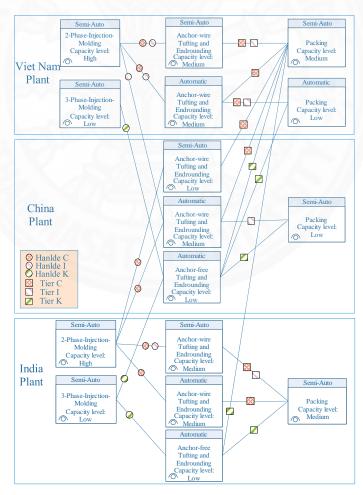


Figure 4.2 Fuzzy Solution's Product Portfolio and Configuration

As the configuration of the network has been alternated, the product portfolio and internal relationship among facilities are varied as well. As can be observed in Figure 4.2, China is still a partial plant equipped with only tufting and packing processes. India has been assigned to manufacture anchor-free toothbrush which is previously handled by China alone. Viet Nam, jointly with India, has produced and supplied anchor-free handle for China. However, the main products manufactured in Viet Nam still are anchor-wire toothbrushes.

		V	ietna	m		China	ı		India	
Region	Country	SKU C	SKUI	SKU K	SKU C	SKU I	SKU K	SKU C	SKU I	SKU K
South Pacific	Australia	х		х						
Euro-Asia	Russia						Х	Х		
Euro-Asia	Turkey		/					Х		
East Europa	Poland		/					Х		
East Europe	Romania							Х		
	Thailand	X	X	X						
	Philippines	Х	X	X						
	Vietnam	Х		X			<			
Asia	China	x		X		Х				
Asia	India		Х					Х		х
	Malaysia	Х	X	X			1			
	Taiwan	х	x	X		\mathcal{V}/\mathcal{V}				
	Hong Kong	Х	Х	Х						
North America	US					X		Х		х
Norui America	Canada			X		х	х	х		х
	Mexico			Х				Х		
Latin American	Colombia	х		Х						
	Brazil		Х			Х			х	Х
Africa and Middle East	GSS							Х	Х	х
Amca and whoule East	East Africa		Х					Х		Х

Table 4.7 Fuzzy Solution's Demand Allocation

Besides of impacts on product assignment and internal relationship among plants, the network configuration has affected demand allocation significantly. Table 4.7 has shown that China now played a smaller role in delivering products because of shrunk capacity. Viet Nam, for the time being, has covered almost all the shipments in Asia Region as its plant has been extended remarkably. Other regions has received products from India.

Generally, it can be seen that uncertainty has a substantial effect on the design of supply chain network. The design in deterministic or base case scenario tends to be smaller and less expensive than the one achieved in non-deterministic case. However, it is critical to note that if the demand varies considerably between Most Likely and Pessimistic demand levels or beyond, base case solution may result in an enormous amount of opportunity cost compared with the non-deterministic solution. For example, if demand is realized at Pessimistic situation, deterministic design may cost as high as 150,264,845, while non-deterministic design cost as much as 65,392,421. As a result, it is imperative to take uncertainty into consideration in order to neutralize the risk of financial loss.

Chapter 5 Conclusions and Recommendations

5.1 Conclusion

Throughout this study, a new modelling approach for production supply chain has been introduced. Two conceptual models, from which a mathematical model is developed, are completely constructed. Since the uncertainties are always an important issue for every supply chain design problem, they are also integrated into the model by means of possiblitic theory. As a result, the model, previously developed as a singleobjective linear programming model, has been modified to be a multi-objective one. In addition to methodology, the developed models have also been validated by a case study derived from a toothbrush business. A base case solution, obtained by applying the Most Likely parameters, is compared with a solution, determined in fuzzy scenario. It is shown that the solution in fuzzy environment not only provides more flexibility to the network but lowers financial risk during the course of operation as well.

5.2 Recommendations for further studies

Though the model is a multi-objective one, it is not a result from the nature of the problem but of uncertainties integration. Therefore, it is plausible to explore how to extend the model with more objective functions than only the cost function which has been considered here. For instance, the new supply chain design not only cost less but also enhance sustainability as well. Moreover, since the model has just been validated by a case study of a medium size, it is valuable to test the model with larger supply chain in order to measure its performance. In case there is any large-scale problem which is unable to be handled by exact method, a heuristic approach may be preferable.

Besides, uncertainty has been integrated successfully into the model under possibilistic theory. It is observed that the model with a total cost function is not wellbehave enough to come up with a compromised solution. Therefore, it is reasonable and necessary to examine the model's behavior with an alternative objective function. Due to its popularity in possibilistic programming literature, a profit function may be worth to be considered as a substitute candidate in this case.

References

- Arntzen, B. C., Brown, G. G., Harrison, T. P., & Trafton, L. L. (1995). Global Supply Chain Management at Digital Equipment Corporation. *Interfaces*, 25(1), 69-93. doi: 10.1287/inte.25.1.69
- Chopra, S., & Meindl, P. (2007). Supply chain management. Strategy, planning & operation: Springer.
- Coello, C. (1999). A Comprehensive Survey of Evolutionary-Based Multiobjective Optimization Techniques. *Knowledge and Information Systems*, 1(3), 269-308. doi: 10.1007/BF03325101
- Cordeau, J.-F., Pasin, F., & Solomon, M. (2006). An integrated model for logistics network design. *Annals of Operations Research*, 144(1), 59-82. doi: 10.1007/s10479-006-0001-3
- Fleischmann, B., Ferber, S., & Henrich, P. (2006). Strategic Planning of BMW's Global Production Network. *Interfaces*, 36(3), 194-208. doi: 10.2307/20141389
- Jang, Y.-J., Jang, S.-Y., Chang, B.-M., & Park, J. (2002). A combined model of network design and production/distribution planning for a supply network. *Computers & Industrial Engineering*, 43(1–2), 263-281. doi: <u>http://dx.doi.org/10.1016/S0360-8352(02)00074-8</u>
- Karabakal, N., Günal, A., & Ritchie, W. (2000). Supply-Chain Analysis at Volkswagen of America. *Interfaces*, 30(4), 46-55. doi: 10.1287/inte.30.4.46.11648
- Kouvelis, P., & Rosenblatt, M. (2005). A Mathematical Programming Model for Global Supply Chain Management: Conceptual Approach and Managerial Insights. In J. Geunes, P. Pardalos & H. E. Romeijn (Eds.), Supply Chain Management: Models, Applications, and Research Directions (Vol. 62, pp. 245-277): Springer US.
- Lai, Y.-J., & Hwang, C.-L. (1992). A new approach to some possibilistic linear programming problems. *Fuzzy Sets and Systems*, 49(2), 121-133. doi: <u>http://dx.doi.org/10.1016/0165-0114(92)90318-X</u>
- Martel, A. (2005). The Design of Production-Distribution Networks: A Mathematical Programming Approach. In J. Geunes & P. Pardalos (Eds.), *Supply Chain Optimization* (Vol. 98, pp. 265-305): Springer US.
- Mazzola, J. B., & Neebe, A. W. (1999). Lagrangian-relaxation-based solution procedures for a multiproduct capacitated facility location problem with choice of facility type. *European Journal of Operational Research*, 115(2), 285-299. doi: <u>http://dx.doi.org/10.1016/S0377-2217(98)00303-8</u>
- Melo, M. T., Nickel, S., & Saldanha da Gama, F. (2006). Dynamic multi-commodity capacitated facility location: a mathematical modeling framework for strategic supply chain planning. *Computers & Operations Research*, 33(1), 181-208. doi: <u>http://dx.doi.org/10.1016/j.cor.2004.07.005</u>
- Melo, M. T., Nickel, S., & Saldanha da Gama, F. (2009). Facility location and supply chain management A review. *European Journal of Operational Research*, *196*(2), 401-412. doi: <u>http://dx.doi.org/10.1016/j.ejor.2008.05.007</u>

- Ommeren, J. C. W. v., Bumb, A. F., & Sleptchenko, A. V. (2006). Locating repair shops in a stochastic environment. *Computers & Operations Research*, 33(6), 1575-1594.
- Ross, T. J. (2010). Properties of Membership Functions, Fuzzification, and Defuzzification *Fuzzy Logic with Engineering Applications* (pp. 89-116): John Wiley & Sons, Ltd.
- Shapiro, J. F. (2006). *Modeling the Supply Chain*: Cengage Learning.
- Simchi-Levi, D. (2007). *Designing & Managing the Supply Chain* (3rd Edition ed.): McGraw-Hill.
- Tsiakis, P., Shah, N., & Pantelides, C. C. (2001). Design of multi-echelon supply chain networks under demand uncertainty. *Industrial & Engineering Chemistry Research*, 40(16), 3585-3604.
- Ulstein, N. L., Christiansen, M., Grønhaug, R., Magnussen, N., & Solomon, M. M. (2006). Elkem Uses Optimization in Redesigning Its Supply Chain. *Interfaces*, *36*(4), 314-325. doi: 10.1287/inte.1060.0221
- Verter, V., & Dasci, A. (2002). The plant location and flexible technology acquisition problem. *European Journal of Operational Research*, *136*(2), 366-382. doi: http://dx.doi.org/10.1016/S0377-2217(01)00023-6
- Vidal, C. J., & Goetschalckx, M. (2001). A global supply chain model with transfer pricing and transportation cost allocation. *European Journal of Operational Research*, 129(1), 134-158. doi: <u>http://dx.doi.org/10.1016/S0377-</u> 2217(99)00431-2
- Vila, D., Martel, A., & Beauregard, R. (2006). Designing logistics networks in divergent process industries: A methodology and its application to the lumber industry. *International Journal of Production Economics*, 102(2), 358-378. doi: <u>http://dx.doi.org/10.1016/j.ijpe.2005.03.011</u>
- Watson, M., Lewis, S., Cacioppi, P., & Jayaraman, J. (2012). *Supply Chain Network Design: Applying Optimization and Analytics to the Global Supply Chain:* Pearson, Pearson FT Press.
- Wilhelm, W., Liang, D., Rao, B., Warrier, D., Zhu, X., & Bulusu, S. (2005). Design of international assembly systems and their supply chains under NAFTA. *Transportation Research Part E: Logistics and Transportation Review*, 41(6), 467-493. doi: <u>http://dx.doi.org/10.1016/j.tre.2005.06.002</u>
- Wouda, F. H. E., van Beek, P., van der Vorst, J. G. A. J., & Tacke, H. (2002). An application of mixed-integer linear programming models on the redesign of the supply network of Nutricia Dairy & Drinks Group in Hungary. OR Spectrum, 24(4), 449-465. doi: 10.1007/s002910200112
- Yan, H., Yu, Z., & Cheng, T. C. E. (2003). A strategic model for supply chain design with logical constraints: formulation and solution. *Computers & Operations Research*, 30(14), 2135-2155. doi: <u>http://dx.doi.org/10.1016/S0305-</u> 0548(02)00127-2
- Zadeh, A. S., Sahraeian, R., & Homayouni, S. M. (2014). A dynamic multicommodity inventory and facility location problem in steel supply chain network design. *International Journal of Advanced Manufacturing Technology*, 70(5-8), 1267-1282.

Zadeh, L. A. (1999). Fuzzy sets as a basis for a theory of possibility. *Fuzzy Sets and Systems, 100, Supplement 1*, 9-34. doi: <u>http://dx.doi.org/10.1016/S0165-0114(99)80004-9</u>

Appendices

Appendix A

Input Data

No.	Location	Material	Capacity	Price	UOM
Supplier 1 (PP)	India	PP	850,000	1.50	Kg(s)
Supplier 2 (PP)	Saudi Arabia	PP	970,000	1.52	Kg(s)
Supplier 3 (TPE)	China	TPE	750,000	3.69	Kg(s)
Supplier 4 (TPE)	China	TPE	610,000	3.68	Kg(s)
Supplier 5 (Colorant)	VN	Colorant	258,600	6.93	Kg(s)
Supplier 6 (Colorant)	China	Colorant	230,100	6.36	Kg(s)
Supplier 7 (Colorant)	India	Colorant	227,900	6.62	Kg(s)
Supplier 8 (Aluminum Wire)	China	Aluminum Wire	62,500	6.06	Kg(s)
Supplier 9 (Aluminum Wire)	China	Aluminum Wire	75,300	6.07	Kg(s)
Supplier 10 (Brass Wire)	UK	Brass Wire	24,200	14.48	Kg(s)
Supplier 11 (Brass Wire)	Gemany	Brass Wire	25,500	14.47	Kg(s)
Supplier 12 (Filament)	China	Filament	480,000	9.12	Kg(s)
Supplier 13 (Filament)	China	Filament	570,000	9.28	Kg(s)
Supplier 14 (Filament)	China	Filament	390,000	9.07	Kg(s)
Supplier 15 (PVC)	Vietnam	PVC	510,000	1.83	Kg(s)
Supplier 16 (PVC)	Taiwan	PVC	660,000	1.84	Kg(s)
Supplier 17 (PVC)	China	PVC	1,220,000	1.84	Kg(s)
Supplier 18 (PVC)	Brazil	PVC	550,000	1.84	Kg(s)
Supplier 19 (PVC)	India	PVC	1,148,000	1.83	Kg(s)
Supplier 20 (Shipper)	VN	Shipper	3,250	243.60	KPcs
Supplier 21 (Shipper)	China	Shipper	4,730	244.70	KPcs
Supplier 22 (Shipper)	India	Shipper	3,560	240.24	KPcs
Supplier 23 (Shipper)	Brazil	Shipper	3,150	238.04	KPcs
Supplier 24 (Backer Card)	VN	Backer Card	258,000	12.23	KPcs
Supplier 25 (Backer Card)	China	Backer Card	276,000	11.59	KPcs
Supplier 26 (Backer Card)	India	Backer Card	263,000	10.73	KPcs
Supplier 27 (Backer Card)	Brazil	Backer Card	234,000	12.18	KPcs
Supplier 28 (BR)	US	BR	700,000	3.78	KPcs

Table A1 Supplier Data

No	Master Item	Sub Item	Conversion	UOM
	SKU C	Tier C	100	Piece(s)
	SKU C	Shipper C	1	Piece(s)
	SKU C	PVC C	556	Gram(s)
	SKU C	Backer Card C	100	Piece(s)
1	Tier C	Filament C	1	Gram(s)
1	Tier C	Aluminum Wire C	1	Gram(s)
	Tier C	Handle C	1	Piece(s)
	Handle C	PP C	8	Gram(s)
	Handle C	TPE C	3	Gram(s)
	Handle C	Colorant C	1	Gram(s)
	SKU I	Tier I	50	Piece(s)
	SKU I	Shipper I	1	Piece(s)
	SKU I	PVC I	278	Gram(s)
	SKU I	Backer Card I	50	Piece(s)
2	Tier I	Handle I	1	Piece(s)
2	Tier I	Brass Wire I	1	Gram(s)
110	Tier I	Filament I	1	Gram(s)
1.0	Handle I	TPE I	5	Gram(s)
	Handle I	BR I	14	Gram(s)
	Handle I	Colorant I	1	Gram(s)
	SKU K	Tier K	75	Piece(s)
	SKU K	Shipper K	1	Piece(s)
1	SKU K	PVC K	417	Gram(s)
	SKU K	Backer Card K	75	Piece(s)
3	Tier K	Handle K	1	Piece(s)
	Tier K	Filament K	1	Gram(s)
	Handle K	PP K	11	Gram(s)
	Handle K	TPE K	8	Gram(s)
	Handle K	Colorant K	1	Gram(s)

Table A2 Product data

		Cap	acity Le	evel
Location	Process No.	1	2	3
	1	95.00	59.00	43.50
	2	50.00	28.00	16.00
	3	51.00	39.50	33.50
	4	52.40	40.80	35.20
Viet Nam	5	42.00	34.00	24.00
	6	40.00	31.00	20.00
	7	39.00	32.40	26.80
	8	1.21	0.91	0.70
	9	0.86	0.67	0.59
11	1	90.00	62.00	43.50
1	2	50.00	28.00	16.00
	3	54.00	41.90	35.60
	4	52.40	40.80	35.20
China	5	42.00	34.00	24.00
6-17-	6	40.00	31.00	20.00
1 PC	7	42.00	34.00	28.00
	8	1.09	0.88	0.72
	9	0.86	0.67	0.59
	1	95.00	62.00	43.50
60	2	50.00	28.00	16.00
	3	48.00	36.50	30.50
	4	52.40	40.80	35.20
India	5	42.00	34.00	24.00
$\langle c/ \rangle$	6	40.00	31.00	20.00
	7	40.50	31.00	27.60
	8	1.12	0.92	0.75
	9	0.86	0.67	0.59
	1	85.00	61.00	41.50
	2	50.00	28.00	16.00
	3	41.00	36.50	29.60
	4	52.40	40.80	35.20
Brazil	5	42.00	34.00	24.00
	6	40.00	31.00	20.00
	7	41.50	32.90	29.10
	8	0.92	0.71	0.60
	9	1.16	0.97	0.79

Table A3 Process capacity (mil. of units)

						Situatior	<u></u> ו			
		(Optimisti	с		lost Like		Р	essimist	ic
Location	Process No.	1	2	3	1	2	3	1	2	3
	1	1.21	0.69	0.38	1.01	0.58	0.32	0.91	0.52	0.29
	2	1.72	0.98	0.55	1.44	0.82	0.46	1.29	0.74	0.41
	3	2.05	1.29	0.91	1.71	1.07	0.76	1.53	0.96	0.68
	4	2.86	1.64	1.18	2.39	1.36	0.99	2.15	1.23	0.89
Viet Nam	5	1.39	0.80	0.62	1.16	0.66	0.52	1.04	0.60	0.46
	6	1.95	1.11	0.79	1.62	0.93	0.66	1.46	0.84	0.59
	7	2.22	1.72	1.24	1.85	1.43	1.03	1.66	1.29	0.93
	8	0.84	0.44	0.37	0.70	0.37	0.31	0.63	0.33	0.28
	9	1.17	0.62	0.51	0.98	0.51	0.43	0.88	0.46	0.39
	1	1.23	0.70	0.39	1.03	0.59	0.33	0.92	0.53	0.29
	2	1.72	0.98	0.55	1.44	0.82	0.46	1.29	0.74	0.41
	3	2.08	1.31	0.92	1.73	1.09	0.77	1.56	0.98	0.69
	4	2.91	1.66	1.20	2.43	1.39	1.00	2.18	1.25	0.90
China	5	1.42	0.81	0.63	1.18	0.67	0.52	1.06	0.61	0.47
	6	1.98	1.13	0.81	1.65	0.94	0.67	1.49	0.85	0.60
	7	2.20	1.63	1.18	1.83	1.36	0.98	1.65	1.22	0.88
	8	0.86	0.45	0.38	0.72	0.38	0.31	0.64	0.34	0.28
	9	1.20	0.63	0.53	1.00	0.53	0.44	0.90	0.47	0.40
	1	1.21	0.69	0.38	1.01	0.58	0.32	0.91	0.52	0.29
	2	1.70	0.97	0.54	1.41	0.81	0.45	1.27	0.73	0.40
	3	2.05	1.29	0.91	1.71	1.07	0.76	1.54	0.97	0.68
	4	2.87	1.64	1.18	2.39	1.37	0.99	2.15	1.23	0.89
India	5	1.39	0.80	0.62	1.16	0.66	0.52	1.05	0.60	0.46
	6	1.95	1.12	0.79	1.63	0.93	0.66	1.46	0.84	0.59
	7	2.17	1.61	1.16	1.81	1.34	0.97	1.62	1.20	0.87
	8	0.83	0.44	0.36	0.69	0.36	0.30	0.62	0.33	0.27
	9	1.16	0.61	0.51	0.97	0.51	0.42	0.87	0.46	0.38
	1	1.65	0.90	0.52	1.37	0.75	0.44	1.24	0.67	0.39
	2	1.72	0.97	0.55	1.43	0.81	0.46	1.29	0.73	0.41
	3	2.97	2.00	1.65	2.48	1.66	1.37	2.23	1.50	1.24
	4	2.99	2.04	1.59	2.49	1.70	1.32	2.24	1.53	1.19
Brazil	5	1.71	0.97	0.87	1.42	0.81	0.72	1.28	0.73	0.65
	6	1.99	1.13	0.81	1.66	0.95	0.67	1.49	0.85	0.60
	7	2.18	1.78	1.30	1.82	1.48	1.09	1.64	1.34	0.98
	8	1.05	0.62	0.53	0.87	0.51	0.44	0.79	0.46	0.40
	9	1.25	0.68	0.57	1.05	0.57	0.47	0.94	0.51	0.43

Table A4 Process investment cost (mil. \$)

		(Optimistiti	c	Ν	/lost Likel	v	I	Pessimisti	e
Location	Process No.	1	2	3	1	2	3	1	2	3
	1	0.0126	0.0139	0.0151	0.0140	0.0154	0.0168	0.0168	0.0185	0.0202
	2	0.0117	0.0129	0.0140	0.0130	0.0143	0.0156	0.0156	0.0172	0.0187
	3	0.0144	0.0158	0.0173	0.0160	0.0176	0.0192	0.0192	0.0211	0.0230
	4	0.0137	0.0150	0.0164	0.0152	0.0167	0.0182	0.0182	0.0200	0.0218
Viet Nam	5	0.0308	0.0338	0.0369	0.0342	0.0376	0.0410	0.0410	0.0451	0.0492
	6	0.0267	0.0294	0.0320	0.0297	0.0327	0.0356	0.0356	0.0392	0.0427
	7	0.0350	0.0385	0.0420	0.0389	0.0428	0.0467	0.0467	0.0514	0.0560
	8	0.0187	0.0206	0.0225	0.0208	0.0229	0.0250	0.0250	0.0275	0.0300
	9	0.0174	0.0191	0.0209	0.0193	0.0212	0.0232	0.0232	0.0254	0.0278
	1	0.0284	0.0312	0.0340	0.0315	0.0347	0.0378	0.0378	0.0416	0.0454
	2	0.0099	0.0109	0.0119	0.0110	0.0121	0.0132	0.0132	0.0145	0.0158
	3	0.0268	0.0294	0.0321	0.0298	0.0327	0.0357	0.0358	0.0392	0.0428
	4	0.0133	0.0147	0.0160	0.0148	0.0163	0.0178	0.0178	0.0196	0.0214
China	5	0.0313	0.0345	0.0376	0.0348	0.0383	0.0418	0.0418	0.0460	0.0502
	6	0.0239	0.0263	0.0286	0.0265	0.0292	0.0318	0.0318	0.0350	0.0382
	7	0.0348	0.0383	0.0418	0.0387	0.0426	0.0464	0.0464	0.0511	0.0557
	8	0.0306	0.0337	0.0367	0.0340	0.0374	0.0408	0.0408	0.0449	0.0490
	9	0.0247	0.0271	0.0296	0.0274	0.0301	0.0329	0.0329	0.0361	0.0395
	1	0.0120	0.0131	0.0144	0.0133	0.0146	0.0160	0.0160	0.0175	0.0192
	2	0.0090	0.0099	0.0108	0.0100	0.0110	0.0120	0.0120	0.0132	0.0144
	3	0.0140	0.0154	0.0168	0.0156	0.0171	0.0187	0.0187	0.0205	0.0224
	4	0.0125	0.0138	0.0150	0.0139	0.0153	0.0167	0.0167	0.0184	0.0200
India	5	0.0302	0.0333	0.0363	0.0336	0.0370	0.0403	0.0403	0.0444	0.0484
	6	0.0248	0.0274	0.0298	0.0276	0.0304	0.0331	0.0331	0.0365	0.0397
	7	0.0344	0.0378	0.0412	0.0382	0.0420	0.0458	0.0458	0.0504	0.0550
	8	0.0173	0.0190	0.0207	0.0192	0.0211	0.0230	0.0230	0.0253	0.0276
	9	0.0163	0.0179	0.0195	0.0181	0.0199	0.0217	0.0217	0.0239	0.0260
	1	0.0432	0.0475	0.0518	0.0480	0.0528	0.0576	0.0576	0.0634	0.0691
	2	0.0351	0.0386	0.0421	0.0390	0.0429	0.0468	0.0468	0.0515	0.0562
	3	0.0446	0.0491	0.0535	0.0495	0.0545	0.0594	0.0594	0.0654	0.0713
	4	0.0360	0.0396	0.0432	0.0400	0.0440	0.0480	0.0480	0.0528	0.0576
Brazil	5	0.0342	0.0376	0.0410	0.0380	0.0418	0.0456	0.0456	0.0502	0.0547
	6	0.0257	0.0283	0.0308	0.0285	0.0314	0.0342	0.0342	0.0377	0.0410
	7	0.0352	0.0387	0.0422	0.0391	0.0430	0.0469	0.0469	0.0516	0.0563
	8	0.0320	0.0353	0.0384	0.0356	0.0392	0.0427	0.0427	0.0470	0.0512
	9	0.0266	0.0293	0.0320	0.0296	0.0326	0.0355	0.0355	0.0391	0.0426

Table A5 Process production cost (\$/unit)

Set	Descriptions	Node No
	Supplier 1 (PP)	1
	Supplier 2 (PP)	2
	Supplier 3 (TPE)	3
	Supplier 4 (TPE)	4
	Supplier 5 (Colorant)	5
	Supplier 6 (Colorant)	6
	Supplier 7 (Colorant)	7
	Supplier 8 (Aluminum Wire)	8
	Supplier 9 (Aluminum Wire)	9
	Supplier 10 (Brass Wire)	10
	Supplier 11 (Brass Wire)	11
	Supplier 12 (Filament)	12
	Supplier 13 (Filament)	13
G 1'	Supplier 14 (Filament)	14
Suppliers	Supplier 15 (PVC)	15
	Supplier 16 (PVC)	16
	Supplier 17 (PVC)	17
	Supplier 18 (PVC)	18
	Supplier 19 (PVC)	19
	Supplier 20 (Shipper)	20
	Supplier 21 (Shipper)	21
	Supplier 22 (Shipper)	22
	Supplier 23 (Shipper)	23
	Supplier 24 (Backer Card)	24
	Supplier 25 (Backer Card)	25
	Supplier 26 (Backer Card)	26
	Supplier 27 (Backer Card)	27
	Supplier 28 (BR)	84
	2-Phase-Injection-Molding (Semi-Auto)	28
	2-Phase-Injection-Molding (Automatic)	29
	3-Phase-Injection-Molding (Semi-Auto)	30
	3-Phase-Injection-Molding (Automatic)	31
Vietnam	Tufting and Endrounding (Anchor-wire Semi-Auto)	32
Location	Tufting and Endrounding (Anchor-wire Automatic)	33
	Tufting and Endrounding (Anchor-free)	34
	Packing (Semi-Auto)	35
	Packing (Automatic)	36
	2-Phase-Injection-Molding (Semi-Auto)	37
	2-Phase-Injection-Molding (Automatic)	38
	3-Phase-Injection-Molding (Semi-Auto)	39
China Location	3-Phase-Injection-Molding (Automatic)	40
	Tufting and Endrounding (Anchor-wire Semi-Auto)	41
	Tufting and Endrounding (Anchor-wire Semi-Auto)	42

Table A6 Node representations

	Tufting and Endrounding (Anchor-free)	43
	Packing (Semi-Auto)	44
	Packing (Automatic)	45
	2-Phase-Injection-Molding (Semi-Auto)	46
	2-Phase-Injection-Molding (Automatic)	47
	3-Phase-Injection-Molding (Semi-Auto)	48
	3-Phase-Injection-Molding (Automatic)	49
India Location	Tufting and Endrounding (Anchor-wire Semi-Auto)	50
	Tufting and Endrounding (Anchor-wire Automatic)	
	Tufting and Endrounding (Anchor-free)	52
	Packing (Semi-Auto)	53
	Packing (Automatic)	54
	2-Phase-Injection-Molding (Semi-Auto)	55
	2-Phase-Injection-Molding (Automatic)	56
	3-Phase-Injection-Molding (Semi-Auto)	57
	3-Phase-Injection-Molding (Automatic)	58
Brazil Location	Tufting and Endrounding (Anchor-wire Semi-Auto)	59
	Tufting and Endrounding (Anchor-wire Automatic)	60
	Tufting and Endrounding (Anchor-free)	61
	Packing (Semi-Auto)	62
	Packing (Automatic)	63
	Australia	64
	Russia	65
	Turkey	66
	Poland	67
	Romania	68
	Thailand	69
	Philippines	70
	Vietnam	71
	China	72
	India	73
Customers	Malaysia	74
	Taiwan	75
	Hong Kong	76
	US	77
	Canada	78
	Mexico	79
	Colombia	80
	Brazil	81
	GSS	82
	East Africa	83

From Node	To Node	Commodity	Transportation Cost
1	28	{"PP"}	0.00012
2	28	{"PP"}	0.00023
3	28	{"TPE"}	0.00009
4	28	{"TPE"}	0.00009
84	28	{"BR"}	0.00051
5	28	{"Colorant"}	0.00001
6	28	{"Colorant"}	0.00009
7	28	{"Colorant"}	0.00012
1	29	{"PP"}	0.00012
2	29	{"PP"}	0.00023
3	29	{"TPE"}	0.00009
4	29	{"TPE"}	0.00009
84	29	{"BR"}	0.00051
5	29	{"Colorant"}	0.00001
6	29	{"Colorant"}	0.00009
7	29	{"Colorant"}	0.00012
1	30	{"PP"}	0.00012
2	30	{"PP"}	0.00023
3	30	{"TPE"}	0.00009
4	30	{"TPE"}	0.00009
84	30	{"BR"}	0.00051
5	30	{"Colorant"}	0.00001
6	30	{"Colorant"}	0.00009
7	30	{"Colorant"}	0.00012
1	31	{"PP"}	0.00012
2	31	{"PP"}	0.00023
3	31	{"TPE"}	0.00009
4	31	{"TPE"}	0.00009
84	31	{"BR"}	0.00051
5	31	{"Colorant"}	0.00001
6	31	{"Colorant"}	0.00009
7	31	{"Colorant"}	0.00012
1	37	{"PP"}	0.00011
2	37	{"PP"}	0.00020
3	37	{"TPE"}	0.00001
4	37	{"TPE"}	0.00001
84	37	{"BR"}	0.00043
5	37	{"Colorant"}	0.00009
6	37	{"Colorant"}	0.00001
7	37	{"Colorant"}	0.00011
1	38	{"PP"}	0.00011
2	38	{"PP"}	0.00020
3	38	{"TPE"}	0.00001

Table A7 Network arcs

4	38	{"TPE"}	0.00001
84	38	{"BR"}	0.00043
5	38	{"Colorant"}	0.00009
6	38	{"Colorant"}	0.00001
7	38	{"Colorant"}	0.00011
1	39	{"PP"}	0.00011
2	39	{"PP"}	0.00020
3	39	{"TPE"}	0.00001
4	39	{"TPE"}	0.00001
84	39	{"BR"}	0.00043
5	39	{"Colorant"}	0.00009
6	39	{"Colorant"}	0.00001
7	39	{"Colorant"}	0.00011
1	40	{"PP"}	0.00011
2	40	{"PP"}	0.00020
3	40	{"TPE"}	0.00001
4	40	{"TPE"}	0.00001
84	40	{"BR"}	0.00043
5	40	{"Colorant"}	0.00043
6	40	{"Colorant"}	0.00003
7	40	{"Colorant"}	0.00011
1	40	{ "PP" }	0.00011
2	40	{ "PP" }	0.00012
3	46		0.00012
4	46	{"TPE"} {"TPE"}	0.00011
84		. ,	
5	46	{"BR"}	0.00050
6	46	{"Colorant"}	0.00012
7	46	{"Colorant"}	0.00011
	46	{"Colorant"}	0.00001
1	47	{"PP"}	0.00001
2	47	{"PP"}	0.00012
3	47	{"TPE"}	0.00011
4	47	{"TPE"}	0.00011
	47	{"BR"}	0.00050
5	47	{"Colorant"}	0.00012
6	47	{"Colorant"}	0.00011
7	47	{"Colorant"}	0.00001
1	48	{"PP"}	0.00001
2	48	{"PP"}	0.00012
3	48	{"TPE"}	0.00011
4	48	{"TPE"}	0.00011
84	48	{"BR"}	0.00050
5	48	{"Colorant"}	0.00012
6	48	{"Colorant"}	0.00011
7	48	{"Colorant"}	0.00001
1	49	{"PP"}	0.00001

2	49	{"PP"}	0.00012
3	49	{"TPE"}	0.00011
4	49	{"TPE"}	0.00011
84	49	{"BR"}	0.00050
5	49	{"Colorant"}	0.00012
6	49	{"Colorant"}	0.00012
7	49	{"Colorant"}	0.00001
1	55	{"PP"}	0.00054
2	55	{"PP"}	0.00040
3	55	{"TPE"}	0.00040
4	55	{"TPE"}	0.00061
84	55	{"BR"}	0.00027
5	55	{"Colorant"}	0.00066
6	55	{"Colorant"}	0.00061
7	55	{"Colorant"}	0.00054
1	56	{"PP"}	0.00054
2	56	{"PP"}	0.00040
3	56	{"TPE"}	0.00061
4	56	{"TPE"}	0.00061
84	56	{"BR"}	0.00027
5	56	{ "Colorant" }	0.00027
6	56	{ "Colorant" }	0.00061
7	56	{ "Colorant" }	0.00054
		,	
1 2	57 57	{"PP"}	0.00054
3		{"PP"}	0.00040
4	57	{"TPE"}	0.00061
	57	{"TPE"}	0.00061
84	57	{"BR"}	0.00027
5	57	{"Colorant"}	0.00066
6	57	{"Colorant"}	0.00061
7	57	{"Colorant"}	0.00054
1	58	{"PP"}	0.00054
2 3	58	{"PP"}	0.00040
	58	{"TPE"}	0.00061
4	58	{"TPE"}	0.00061
84	58	{"BR"}	0.00027
5	58	{"Colorant"}	0.00066
6	58	{"Colorant"}	0.00061
7	58	{"Colorant"}	0.00054
8	32	{"Aluminum Wire"}	0.00009
9	32	{"Aluminum Wire"}	0.00009
10	32	{"Brass Wire"}	0.00035
11	32	{"Brass Wire"}	0.00033
12	32	{"Filament"}	0.00009
13	32	{"Filament"}	0.00009
14	32	{"Filament"}	0.00009

8	33	{"Aluminum Wire"}	0.00009
9	33	{"Aluminum Wire"}	0.00009
10	33	{"Brass Wire"}	0.00035
10	33	{"Brass Wire"}	0.00033
12	33	{"Filament"}	0.00009
13	33	{"Filament"}	0.00009
13	33	{"Filament"}	0.00009
8	34	{"Aluminum Wire"}	0.00009
9	34	{"Aluminum Wire"}	0.00009
10	34	{"Brass Wire"}	0.00035
10	34	{"Brass Wire"}	0.00033
11	34	{"Filament"}	0.00009
13	34	{"Filament"}	0.00009
13	34	{"Filament"}	0.00009
8	41	{"Aluminum Wire"}	0.00001
9	41	{"Aluminum Wire"}	0.00001
10	41	{"Brass Wire"}	0.00027
10	41	{"Brass Wire"}	0.00027
11	41	{"Filament"}	0.000023
12	41	{"Filament"}	0.00001
13	41	{"Filament"}	0.00001
8	41 42	{"Aluminum Wire"}	0.00001
9	42	{"Aluminum Wire"}	0.00001
10	42		
10	42	{"Brass Wire"}	0.00027
11	42	{"Brass Wire"}	0.00025
12	42	{"Filament"} {"Filament"}	0.00001
13	42	{"Filament"}	0.00001
8	43 43	{"Aluminum Wire"} {"Aluminum Wire"}	0.00001
10	43	{"Brass Wire"}	0.00027
10	43	{"Brass Wire"}	0.00027
11	43		
12	43	{"Filament"} {"Filament"}	0.00001
13	43	{"Filament"}	0.00001
8	50		0.00011
9	50	{"Aluminum Wire"}	
		{"Aluminum Wire"} {"Brass Wire"}	0.00011
10	50	{"Brass Wire"}	
	50		0.00024
12 13	50 50	{"Filament"}	0.00011
		{"Filament"} {"Filament"}	
14 8	50	{ "Aluminum Wire"}	0.00011
	51		0.00011
9	51	{"Aluminum Wire"}	0.00011
10	51	{"Brass Wire"}	0.00027
11	51	{"Brass Wire"}	0.00024

12	51	{"Filament"}	0.00011
13	51	{"Filament"}	0.00011
14	51	{"Filament"}	0.00011
8	52	{"Aluminum Wire"}	0.00011
9	52	{"Aluminum Wire"}	0.00011
10	52	{"Brass Wire"}	0.00027
10	52	{"Brass Wire"}	0.00027
11	52	{"Filament"}	0.00024
13	52	{"Filament"}	0.00011
13	52	{"Filament"}	0.00011
8	59	{"Aluminum Wire"}	0.00061
9	59	{"Aluminum Wire"}	0.00061
10	59	{"Brass Wire"}	0.00031
10	59	{"Brass Wire"}	0.00031
11	59	{"Filament"}	0.00061
12	59	{"Filament"}	0.00061
13	59	{"Filament"}	0.00061
	-		
8	60	{"Aluminum Wire"}	0.00061
9	60	{"Aluminum Wire"}	0.00061
10	60	{"Brass Wire"}	0.00031
11	60	{"Brass Wire"}	0.00033
12	60	{"Filament"}	0.00061
13	60	{"Filament"}	0.00061
14	60	{"Filament"}	0.00061
8	61	{"Aluminum Wire"}	0.00061
9	61	{"Aluminum Wire"}	0.00061
10	61	{"Brass Wire"}	0.00031
11	61	{"Brass Wire"}	0.00033
12	61	{"Filament"}	0.00061
13	61	{"Filament"}	0.00061
14	61	{"Filament"}	0.00061
15	35	{"PVC"}	0.00001
16	35	{"PVC"}	0.00006
17	35	{"PVC"}	0.00009
18	35	{"PVC"}	0.00066
19	35	{"PVC"}	0.00012
20	35	{"Shipper"}	0.00735
21	35	{"Shipper"}	0.09045
22	35	{"Shipper"}	0.11737
23	35	{"Shipper"}	0.65786
24	35	{"Backer Card"}	0.00735
25	35	{"Backer Card"}	0.09045
26	35	{"Backer Card"}	0.11737
27	35	{"Backer Card"}	0.65786
15	36	{"PVC"}	0.00001
16	36	{"PVC"}	0.00006

17	36	{"PVC"}	0.00009
18	36	{"PVC"}	0.00066
19	36	{"PVC"}	0.00012
20	36	{"Shipper"}	0.00735
20	36	{"Shipper"}	0.09045
22	36	{"Shipper"}	0.11737
23	36	{"Shipper"}	0.65786
23	36	{"Backer Card"}	0.00735
25	36	{"Backer Card"}	0.09045
25	36	{"Backer Card"}	0.11737
20	36	{"Backer Card"}	0.65786
15	44	{"PVC"}	0.00009
15	44	{"PVC"}	0.00003
10	44	{"PVC"}	0.00003
18	44	{"PVC"}	0.00061
19	44	{"PVC"}	0.00011
20	44	{"Shipper"}	0.09045
21	44	{"Shipper"}	0.01103
22	44	{"Shipper"}	0.10978
23	44	{"Shipper"}	0.61194
24	44	{"Backer Card"}	0.09045
25	44	{"Backer Card"}	0.01103
26	44	{"Backer Card"}	0.10978
27	44	{"Backer Card"}	0.61194
15	45	{"PVC"}	0.00009
16	45	{"PVC"}	0.00005
17	45	{"PVC"}	0.00001
18	45	{"PVC"}	0.00061
19	45	{"PVC"}	0.00011
20	45	{"Shipper"}	0.09045
21	45	{"Shipper"}	0.01103
22	45	{"Shipper"}	0.10978
23	45	{"Shipper"}	0.61194
24	45	{"Backer Card"}	0.09045
25	45	{"Backer Card"}	0.01103
26	45	{"Backer Card"}	0.10978
27	45	{"Backer Card"}	0.61194
15	53	{"PVC"}	0.00012
16	53	{"PVC"}	0.00015
17	53	{"PVC"}	0.00011
18	53	{"PVC"}	0.00054
19	53	{"PVC"}	0.00001
20	53	{"Shipper"}	0.11737
20	53	{"Shipper"}	0.10978
21	53	{"Shipper"}	0.00809
22	53	{"Shipper"}	0.54360
23	55		0.54500

24	53	{"Backer Card"}	0.11737
25	53	{"Backer Card"}	0.10978
26	53	{"Backer Card"}	0.00809
20	53	{"Backer Card"}	0.54360
15	54	{"PVC"}	0.00012
16	54	{"PVC"}	0.00012
10	54	{"PVC"}	0.00013
17	54	{"PVC"}	0.00054
10	54	{"PVC"}	0.00001
20	54	{"Shipper"}	0.11737
20	54	{"Shipper"}	0.10978
21	54		0.00809
		{"Shipper"}	
23	54	{"Shipper"}	0.54360
24	54	{"Backer Card"}	0.11737
25	54	{"Backer Card"}	0.10978
26	54	{"Backer Card"}	0.00809
27	54	{"Backer Card"}	0.54360
15	62	{"PVC"}	0.00066
16	62	{"PVC"}	0.00065
17	62	{"PVC"}	0.00061
18	62	{"PVC"}	0.00001
19	62	{"PVC"}	0.00054
20	62	{"Shipper"}	0.65786
21	62	{"Shipper"}	0.61194
22	62	{"Shipper"}	0.54360
23	62	{"Shipper"}	0.00992
24	62	{"Backer Card"}	0.65786
25	62	{"Backer Card"}	0.61194
26	62	{"Backer Card"}	0.54360
27	62	{"Backer Card"}	0.00992
15	63	{"PVC"}	0.00066
16	63	{"PVC"}	0.00065
17	63	{"PVC"}	0.00061
18	63	{"PVC"}	0.00001
19	63	{"PVC"}	0.00054
20	63	{"Shipper"}	0.65786
21	63	{"Shipper"}	0.61194
22	63	{"Shipper"}	0.54360
23	63	{"Shipper"}	0.00992
24	63	{"Backer Card"}	0.65786
25	63	{"Backer Card"}	0.61194
26	63	{"Backer Card"}	0.54360
20	63	{"Backer Card"}	0.00992
35	64	{"SKU C","SKU I","SKU K"}	0.19033
35	65	{"SKU C", "SKU I", "SKU K"}	0.19438
35	66	{"SKU C", "SKU I", "SKU K"}	0.27863
55	00	$\left[\left\{ \text{ SKUC}, \text{ SKUT}, \text{ SKUK} \right\} \right]$	0.27003

35	67	{"SKU C","SKU I","SKU K"}	0.32093
35	68	{"SKU C", "SKU I", "SKU K"}	0.30820
35	69	{"SKU C", "SKU I", "SKU K"}	0.02973
35	70	{"SKU C", "SKU I", "SKU K"}	0.05927
35	70	{"SKU C", "SKU I", "SKU K"}	0.00735
35	72	{"SKU C", "SKU I", "SKU K"}	0.09045
35	73	{"SKU C", "SKU I", "SKU K"}	0.11737
35	73	{"SKU C", "SKU I", "SKU K"}	0.04764
35	75	{"SKU C", "SKU I", "SKU K"}	0.06816
35	76	{"SKU C", "SKU I", "SKU K"}	0.04064
35	70	{"SKU C", "SKU I", "SKU K"}	0.50764
35	78	{"SKU C", "SKU I", "SKU K"}	0.42577
35	78	{"SKU C", "SKU I", "SKU K" }	0.56044
35	80	{"SKU C", "SKU I", "SKU K"}	0.57087
35		{ "SKU C", "SKU I", "SKU K" }	
	81		0.65786
35	82	{"SKU C", "SKU I", "SKU K"}	0.20782
35	83	{"SKU C", "SKU I", "SKU K"}	0.29041
36	64	{"SKU C", "SKU I", "SKU K"}	0.19033
36	65	{"SKU C", "SKU I", "SKU K"}	0.19438
36	66	{"SKU C","SKU I","SKU K"}	0.27863
36	67	{"SKU C","SKU I","SKU K"}	0.32093
36	68	{"SKU C","SKU I","SKU K"}	0.30820
36	69	{"SKU C","SKU I","SKU K"}	0.02973
36	70	{"SKU C","SKU I","SKU K"}	0.05927
36	71	{"SKU C","SKU I","SKU K"}	0.00735
36	72	{"SKU C","SKU I","SKU K"}	0.09045
36	73	{"SKU C","SKU I","SKU K"}	0.11737
36	74	{"SKU C","SKU I","SKU K"}	0.04764
36	75	{"SKU C","SKU I","SKU K"}	0.06816
36	76	{"SKU C","SKU I","SKU K"}	0.04064
36	77	{"SKU C","SKU I","SKU K"}	0.50764
36	78	{"SKU C","SKU I","SKU K"}	0.42577
36	79	{"SKU C","SKU I","SKU K"}	0.56044
36	80	{"SKU C","SKU I","SKU K"}	0.57087
36	81	{"SKU C","SKU I","SKU K"}	0.65786
36	82	{"SKU C","SKU I","SKU K"}	0.20782
36	83	{"SKU C","SKU I","SKU K"}	0.29041
44	64	{"SKU C","SKU I","SKU K"}	0.27499
44	65	{"SKU C","SKU I","SKU K"}	0.10502
44	66	{"SKU C","SKU I","SKU K"}	0.21890
44	67	{"SKU C","SKU I","SKU K"}	0.24430
44	68	{"SKU C","SKU I","SKU K"}	0.23827
44	69	{"SKU C","SKU I","SKU K"}	0.08262
44	70	{"SKU C","SKU I","SKU K"}	0.11848
44	71	{"SKU C","SKU I","SKU K"}	0.09045
44	72	{"SKU C","SKU I","SKU K"}	0.01103

44	73	{"SKU C","SKU I","SKU K"}	0.10978
44	74	{"SKU C", "SKU I", "SKU K"}	0.12976
44	75	{"SKU C","SKU I","SKU K"}	0.05145
44	76	{"SKU C", "SKU I", "SKU K"}	0.01838
44	70	{"SKU C","SKU I","SKU K"}	0.42852
44	78	{"SKU C", "SKU I", "SKU K"}	0.34532
44	78	{"SKU C", "SKU I", "SKU K"}	0.49279
44	80	{"SKU C", "SKU I", "SKU K"}	0.57087
44	81	{"SKU C", "SKU I", "SKU K"}	0.61194
44	82	{"SKU C", "SKU I", "SKU K"}	0.17569
44	83	{"SKU C", "SKU I", "SKU K"}	0.29044
44	64	{"SKU C", "SKU I", "SKU K"}	0.27499
43	65	{ "SKU C", "SKU I", "SKU K" }	0.10502
43			
	66	{"SKU C","SKU I","SKU K"}	0.21890
45	67	{"SKU C", "SKU I", "SKU K"}	0.24430
45	68	{"SKU C", "SKU I", "SKU K"}	0.23827
45	69	{"SKU C","SKU I","SKU K"}	0.08262
45	70	{"SKU C","SKU I","SKU K"}	0.11848
45	71	{"SKU C", "SKU I", "SKU K"}	0.09045
45	72	{"SKU C","SKU I","SKU K"}	0.01103
45	73	{"SKU C","SKU I","SKU K"}	0.10978
45	74	{"SKU C","SKU I","SKU K"}	0.12976
45	75	{"SKU C","SKU I","SKU K"}	0.05145
45	76	{"SKU C","SKU I","SKU K"}	0.01838
45	77	{"SKU C","SKU I","SKU K"}	0.42852
45	78	{"SKU C","SKU I","SKU K"}	0.34532
45	79	{"SKU C","SKU I","SKU K"}	0.49279
45	80	{"SKU C","SKU I","SKU K"}	0.57087
45	81	{"SKU C","SKU I","SKU K"}	0.61194
45	82	{"SKU C","SKU I","SKU K"}	0.17569
45	83	{"SKU C","SKU I","SKU K"}	0.29044
53	64	{"SKU C","SKU I","SKU K"}	0.28747
53	65	{"SKU C","SKU I","SKU K"}	0.18343
53	66	{"SKU C","SKU I","SKU K"}	0.17039
53	67	{"SKU C","SKU I","SKU K"}	0.22684
53	68	{"SKU C","SKU I","SKU K"}	0.20679
53	69	{"SKU C","SKU I","SKU K"}	0.08767
53	70	{"SKU C","SKU I","SKU K"}	0.17565
53	71	{"SKU C","SKU I","SKU K"}	0.11737
53	72	{"SKU C","SKU I","SKU K"}	0.10978
53	73	{"SKU C","SKU I","SKU K"}	0.00809
53	74	{"SKU C","SKU I","SKU K"}	0.11347
53	75	{"SKU C","SKU I","SKU K"}	0.16100
53	76	{"SKU C","SKU I","SKU K"}	0.13420
53	77	{"SKU C","SKU I","SKU K"}	0.49950
53	78	{"SKU C","SKU I","SKU K"}	0.42196

53	79	{"SKU C","SKU I","SKU K"}	0.57245
53	80	{"SKU C","SKU I","SKU K"}	0.58763
53	81	{"SKU C", "SKU I", "SKU K"}	0.54360
53	82	{"SKU C", "SKU I", "SKU K"}	0.09101
53	83	{"SKU C", "SKU I", "SKU K"}	0.18455
54	64	{"SKU C", "SKU I", "SKU K"}	0.28747
54	65	{"SKU C", "SKU I", "SKU K"}	0.18343
54	66	{"SKU C", "SKU I", "SKU K"}	0.17039
54	67	{"SKU C","SKU I","SKU K"}	0.22684
54	68	{"SKU C", "SKU I", "SKU K"}	0.20679
54	69	{"SKU C", "SKU I", "SKU K"}	0.08767
54	70	{"SKU C", "SKU I", "SKU K"}	0.17565
54	70	{"SKU C", "SKU I", "SKU K"}	0.11737
54	71 72	{"SKU C", "SKU I", "SKU K"}	0.10978
54	73	{"SKU C", "SKU I", "SKU K"}	0.00809
54	74	{"SKU C", "SKU I", "SKU K"}	0.11347
54	74	{"SKU C", "SKU I", "SKU K"}	0.16100
54	75	{ "SKU C", "SKU I", "SKU K" }	0.13420
54	70	{ "SKU C", "SKU I", "SKU K" }	0.49950
54	78	{ "SKU C", "SKU I", "SKU K" }	0.49930
54	78		0.57245
54		{"SKU C", "SKU I", "SKU K"}	
	80	{"SKU C", "SKU I", "SKU K"}	0.58763
54	81 82	{"SKU C", "SKU I", "SKU K"}	0.54360
54		{"SKU C", "SKU I", "SKU K"}	0.09101
54	83	{"SKU C","SKU I","SKU K"}	0.18455
62	64	{"SKU C", "SKU I", "SKU K"}	0.57316
62	65	{"SKU C", "SKU I", "SKU K"}	0.53169
62	66	{"SKU C", "SKU I", "SKU K"}	0.39577
62	67	{"SKU C", "SKU I", "SKU K"}	0.36810
62	68	{"SKU C", "SKU I", "SKU K"}	0.37378
62	69	{"SKU C", "SKU I", "SKU K"}	0.62925
62	70	{"SKU C", "SKU I", "SKU K"}	0.71512
62	71	{"SKU C", "SKU I", "SKU K"}	0.65786
62	72	{"SKU C", "SKU I", "SKU K"}	0.61194
62	73	{"SKU C","SKU I","SKU K"}	0.54360
62	74	{"SKU C","SKU I","SKU K"}	0.62345
62	75	{"SKU C", "SKU I", "SKU K"}	0.68539
62	76	{"SKU C", "SKU I", "SKU K"}	0.67333
62	77	{"SKU C","SKU I","SKU K"}	0.26920
62	78	{"SKU C", "SKU I", "SKU K"}	0.34232
62	79	{"SKU C","SKU I","SKU K"}	0.23471
62	80	{"SKU C","SKU I","SKU K"}	0.11899
62	81	{"SKU C","SKU I","SKU K"}	0.00992
62	82	{"SKU C","SKU I","SKU K"}	0.45569
62	83	{"SKU C","SKU I","SKU K"}	0.36750
63	64	{"SKU C","SKU I","SKU K"}	0.57316

63	65	{ "SKU C", "SKU I", "SKU K" }	0.53169
63	66	{"SKU C","SKU I","SKU K"}	0.39577
63	67	{"SKU C","SKU I","SKU K"}	0.36810
63	68	{"SKU C","SKU I","SKU K"}	0.37378
63	69	{"SKU C","SKU I","SKU K"}	0.62925
63	70	{"SKU C","SKU I","SKU K"}	0.71512
63	71	{"SKU C","SKU I","SKU K"}	0.65786
63	72	{"SKU C","SKU I","SKU K"}	0.61194
63	73	{"SKU C","SKU I","SKU K"}	0.54360
63	74	{"SKU C","SKU I","SKU K"}	0.62345
63	75	{"SKU C","SKU I","SKU K"}	0.68539
63	76	{"SKU C","SKU I","SKU K"}	0.67333
63	77	{"SKU C","SKU I","SKU K"}	0.26920
63	78	{"SKU C","SKU I","SKU K"}	0.34232
63	79	{"SKU C","SKU I","SKU K"}	0.23471
63	80	{"SKU C","SKU I","SKU K"}	0.11899
63	81	{"SKU C","SKU I","SKU K"}	0.00992
63	82	{"SKU C","SKU I","SKU K"}	0.45569
63	83	{"SKU C","SKU I","SKU K"}	0.36750
28	32	{"Handle C","Handle I"}	0.00000
28	33	{"Handle C","Handle I"}	0.00000
28	41	{"Handle C", "Handle I"}	0.00090
28	42	{"Handle C","Handle I"}	0.00090
28	50	{"Handle C","Handle I"}	0.00117
28	51	{"Handle C", "Handle I"}	0.00117
28	59	{"Handle C","Handle I"}	0.00658
28	60	{"Handle C","Handle I"}	0.00658
29	32	{"Handle C","Handle I"}	0.00000
29	33	{"Handle C","Handle I"}	0.00000
29	41	{"Handle C","Handle I"}	0.00090
29	42	{"Handle C","Handle I"}	0.00090
29	50	{"Handle C","Handle I"}	0.00117
29	51	{"Handle C","Handle I"}	0.00117
29	59	{"Handle C", "Handle I"}	0.00658
29	60	{"Handle C","Handle I"}	0.00658
30	34	{"Handle K"}	0.00000
30	43	{"Handle K"}	0.00090
30	52	{"Handle K"}	0.00117
30	61	{"Handle K"}	0.00658
31	34	{"Handle K"}	0.00000
31	43	{"Handle K"}	0.00090
31	52	{"Handle K"}	0.00117
31	61	{"Handle K"}	0.00658
32	35	{"Tier C", "Tier I"}	0.00000
32	36	{"Tier C","Tier I"}	0.00000
32	44	{"Tier C", "Tier I"}	0.00090

32	45	{"Tier C","Tier I"}	0.00090
32	53	{"Tier C", "Tier I"}	0.00117
32	54	{"Tier C", "Tier I"}	0.00117
32	62	{"Tier C", "Tier I"}	0.00658
32	63	{"Tier C", "Tier I"}	0.00658
33	35	{"Tier C", "Tier I"}	0.00000
33	35	{ "Tier C", "Tier I" }	0.00000
33	44	{ "Tier C", "Tier I" }	0.00090
33	45 53	{"Tier C", "Tier I"}	0.00090
<u>33</u> 33	54	{"Tier C", "Tier I"}	0.00117
	1	{"Tier C", "Tier I"}	0.00117
33	62	{"Tier C", "Tier I"}	0.00658
33	63	{"Tier C", "Tier I"}	0.00658
34	35	{"Tier K"}	0.00000
34	36	{"Tier K"}	0.00000
34	44	{"Tier K"}	0.00090
34	45	{"Tier K"}	0.00090
34	53	{"Tier K"}	0.00117
34	54	{"Tier K"}	0.00117
34	62	{"Tier K"}	0.00658
34	63	{"Tier K"}	0.00658
37	32	{"Handle C", "Handle I"}	0.00090
37	33	{"Handle C","Handle I"}	0.00090
37	41	{"Handle C","Handle I"}	0.00000
37	42	{"Handle C","Handle I"}	0.00000
37	50	{"Handle C","Handle I"}	0.00110
37	51	{"Handle C","Handle I"}	0.00110
37	59	{"Handle C","Handle I"}	0.00612
37	60	{"Handle C","Handle I"}	0.00612
38	32	{"Handle C","Handle I"}	0.00090
38	33	{"Handle C","Handle I"}	0.00090
38	41	{"Handle C", "Handle I"}	0.00000
38	42	{"Handle C", "Handle I"}	0.00000
38	50	{"Handle C", "Handle I"}	0.00110
38	51	{"Handle C","Handle I"}	0.00110
38	59	{"Handle C","Handle I"}	0.00612
38	60	{"Handle C","Handle I"}	0.00612
39	34	{"Handle K"}	0.00090
39	43	{"Handle K"}	0.00000
39	52	{"Handle K"}	0.00110
39	61	{"Handle K"}	0.00612
40	34	{"Handle K"}	0.00090
40	43	{"Handle K"}	0.00090
40	43 52	,	
		{"Handle K"}	0.00110
40	61	{"Handle K"}	0.00612
41	35	{"Tier C","Tier I"}	0.00090

41	36	{"Tier C","Tier I"}	0.00090
41	44	{"Tier C", "Tier I"}	0.00000
41	45	{"Tier C", "Tier I"}	0.00000
41	53	{"Tier C", "Tier I"}	0.00110
41	54	{"Tier C", "Tier I"}	0.00110
41	62	{"Tier C", "Tier I"}	0.00612
41	63	{"Tier C", "Tier I"}	0.00612
42	35	{"Tier C", "Tier I"}	0.00090
42	36	{"Tier C", "Tier I"}	0.00090
42	44	{"Tier C", "Tier I"}	0.00000
42	45	{"Tier C", "Tier I"}	0.00000
42	53	{"Tier C", "Tier I"}	0.00110
42	54	{"Tier C", "Tier I"}	0.00110
42	62	{"Tier C", "Tier I"}	0.00612
42	63	{"Tier C", "Tier I"}	0.00612
43	35	{"Tier K"}	0.00090
43	36	{"Tier K"}	0.00090
43	44	{"Tier K"}	0.00000
43	45	{"Tier K"}	0.00000
43	53	{"Tier K"}	0.00110
43	54	{"Tier K"}	0.00110
43	62	{"Tier K"}	0.00612
43	63	{"Tier K"}	0.00612
46	32	{"Handle C","Handle I"}	0.00112
40	32	{"Handle C", "Handle I"}	0.00117
40	41	{"Handle C", "Handle I"}	0.00117
40	41 42	{"Handle C", "Handle I"}	0.00110
40	50	{"Handle C", "Handle I"}	0.00000
46	51	{"Handle C", "Handle I"}	0.00000
46	59	{"Handle C", "Handle I"}	0.00544
46	60	{"Handle C", "Handle I"}	0.00544
47	32	{"Handle C", "Handle I"}	0.00117
47	33	{"Handle C", "Handle I"}	0.00117
47	41	{"Handle C", "Handle I"}	0.00117
47	42	{"Handle C", "Handle I" }	0.00110
47	50	{"Handle C", "Handle I"}	0.00000
47	50	{"Handle C", "Handle I"}	0.00000
47	59	{"Handle C", "Handle I"}	0.00544
47	60	{"Handle C", "Handle I"}	0.00544
48	34	{"Handle K"}	0.00117
48	43	{"Handle K"}	0.00117
48	52	{"Handle K"}	0.00000
48	61	{"Handle K"}	0.00544
49	34	{"Handle K"}	0.00117
49	43	{"Handle K"}	0.00117
49	52	{"Handle K"}	0.00000
77	52		0.00000

49	61	{"Handle K"}	0.00544
50	35	{"Tier C", "Tier I"}	0.00117
50	36	{"Tier C", "Tier I"}	0.00117
50	44	{"Tier C", "Tier I"}	0.00110
50	45	{"Tier C", "Tier I"}	0.00110
50	53	{"Tier C", "Tier I"}	0.00000
50	54	{"Tier C", "Tier I"}	0.00000
50	62	{"Tier C", "Tier I"}	0.00544
50	63	{"Tier C", "Tier I"}	0.00544
51	35	{"Tier C", "Tier I"}	0.00117
51	36	{"Tier C", "Tier I"}	0.00117
51	44	{ "Tier C", "Tier I" }	0.00117
51	44		0.00110
51	43 53	{"Tier C", "Tier I"}	
		{"Tier C", "Tier I"}	0.00000
51	54	{"Tier C", "Tier I"}	0.00000
51	62	{"Tier C", "Tier I"}	0.00544
51	63	{"Tier C", "Tier I"}	0.00544
52	35	{"Tier K"}	0.00117
52	36	{"Tier K"}	0.00117
52	44	{"Tier K"}	0.00110
52	45	{"Tier K"}	0.00110
52	53	{"Tier K"}	0.00000
52	54	{"Tier K"}	0.00000
52	62	{"Tier K"}	0.00544
52	63	{"Tier K"}	0.00544
55	32	{"Handle C","Handle I"}	0.00658
55	33	{"Handle C","Handle I"}	0.00658
55	41	{"Handle C","Handle I"}	0.00612
55	42	{"Handle C","Handle I"}	0.00612
55	50	{"Handle C","Handle I"}	0.00544
55	51	{"Handle C","Handle I"}	0.00544
55	59	{"Handle C","Handle I"}	0.00000
55	60	{"Handle C","Handle I"}	0.00000
56	32	{"Handle C", "Handle I"}	0.00658
56	33	{"Handle C","Handle I"}	0.00658
56	41	{"Handle C","Handle I"}	0.00612
56	42	{"Handle C","Handle I"}	0.00612
56	50	{"Handle C","Handle I"}	0.00544
56	51	{"Handle C","Handle I"}	0.00544
56	59	{"Handle C","Handle I"}	0.00000
56	60	{"Handle C","Handle I"}	0.00000
57	34	{"Handle K"}	0.00658
57	43	{"Handle K"}	0.00612
57	52	{"Handle K"}	0.00544
57	61	{"Handle K"}	0.00000
58	34	{"Handle K"}	0.00658
	54		0.00050

58	43	{"Handle K"}	0.00612
58	52	{"Handle K"}	0.00544
58	61	{"Handle K"}	0.00000
59	35	{"Tier C","Tier I"}	0.00658
59	36	{"Tier C","Tier I"}	0.00658
59	44	{"Tier C", "Tier I"}	0.00612
59	45	{"Tier C","Tier I"}	0.00612
59	53	{"Tier C","Tier I"}	0.00544
59	54	{"Tier C", "Tier I"}	0.00544
59	62	{"Tier C","Tier I"}	0.00000
59	63	{"Tier C","Tier I"}	0.00000
60	35	{"Tier C", "Tier I"}	0.00658
60	36	{"Tier C","Tier I"}	0.00658
60	44	{"Tier C", "Tier I"}	0.00612
60	45	{"Tier C","Tier I"}	0.00612
60	53	{"Tier C","Tier I"}	0.00544
60	54	{"Tier C", "Tier I"}	0.00544
60	62	{"Tier C","Tier I"}	0.00000
60	63	{"Tier C","Tier I"}	0.00000
61	35	{"Tier K"}	0.00658
61	36	{"Tier K"}	0.00658
61	44	{"Tier K"}	0.00612
61	45	{"Tier K"}	0.00612
61	53	{"Tier K"}	0.00544
61	54	{"Tier K"}	0.00544
61	62	{"Tier K"}	0.00000
61	63	{"Tier K"}	0.00000

Appendix B

OPL Model

```
* OPL 12.6.0.0 Model
 * Author: Administrator
 * Creation Date: Aug 25, 2015 at 10:43:40 AM
         {int} V =...; //set of nodes in the network
{int} S =...; //set of nodes representing suppliers
{int} C =...; //set of nodes representing customers
{int} 0 =...; //set of capacity options
{string} States ={"pessimistic","most likely","optimistic"};
//BOM Structure
tuple BOM {
      string Master_Item;
      string Sub_Item;
      float Conversion;
}
{BOM} BOM_Data=...;
//Material
tuple Material{
      string Item_Name;
      string Category;
}
{Material} Material_Data=...;
{string} K =...; //set of components (or commodites)
{string} K_Dummy=...; //set of dummy components
{string} F =...; //set of finished goods
tuple Process{
      int Node;
      {string} Output; // Components or Product produced by the Process
}
{Process} P =...; //information about requirement of each process;
tuple Edge{
      int fromnode; //Origin Node
                  //Destination Node
      int tonode;
      {string} commodity; //Required Components
      float transport_cost; //Transportation cost
};
{Edge} Edges=...; //Arc connecting nodes over the network
```

```
tuple Location{
      {int}Associated Nodes;
};
{Location} L=...;
float Ultilization_Target=...;
float Production_Limit_Ratio=...;
float Unit_Sourcing_Cost[S][K]=...;//Sourcing cost of component k using
supplier s
float Unit_Production_Cost [States][0][V diff (S union C)][K union
F]=...;//Production cost of component k using a capacity level at a
location
float Unit_Shortage_Cost[F]=...; //Cost for each unsatisfied demand
int Demand[States][C][F]=...; //Demand at each customer location
int Open[States][L]=...; // Cost of Opening a location
int Setup[States][ V diff (S union C)][0]=...; // Cost of installing a kind
of capacity in a location
int Cap[V diff (S union C)][0]=...; // Capacity for each option in a
location
int Sup[S][K]=...; // Supply capacity of suppliers
//Decision Variables
dvar boolean Y[L]; //Location Decision
dvar boolean Z[V diff (S union C)][0]; //Option Decision
dvar int+ X[Edges][K_Dummy union F][0]; //Flow Quantity
dvar int+ Shortage[States][C][F]; //Shortage Demand
dvar float+ alpha;
//Cost Expression
//Opening Cost term in most likely situation
dexpr float Opening Cost M = sum (event in States:event=="most likely",l in
L)Y[1]*Open[event][1];
//Opening Cost term in optimistic situation
dexpr float Opening_Cost_0 = sum (event in States:event=="optimistic",1 in
L)Y[1]*Open[event][1];
//Opening Cost term in pessimistic situation
```

```
63
```

dexpr float Opening Cost P = sum (event in States:event=="pessimistic",1 in L)Y[1]*Open[event][1]; //Setup Cost term in most likely situation dexpr float Setup Cost M = sum (event in States:event=="most likely",i in V diff (S union C), o in 0)Z[i][o]*Setup[event][i][o]; //Setup Cost term in optimistic situation dexpr float Setup_Cost_0 = sum (event in States:event=="optimistic",i in V diff (S union C), o in 0)Z[i][o]*Setup[event][i][o]; //Setup Cost term in pessimistic situation dexpr float Setup_Cost_P = sum (event in States:event=="pessimistic",i in V diff (S union C), o in 0)Z[i][o]*Setup[event][i][o]; dexpr float Transportation_Cost = sum (e in Edges,k in K_Dummy union F,o in 0)X[e][k][o]*e.transport_cost; dexpr float Procurement Cost = sum (s in S, e in Edges: e.fromnode==s,k dummy in K Dummy,m in Material Data:m.Item Name==k dummy, k in e.commodity:k==m.Category, o in O)X[e][k_dummy][o]*Unit_Sourcing_Cost[e.fromnode][k]; //Production Cost term in most likely situation dexpr float Production_Cost_M = sum (event in States:event=="most likely",i in V diff (S union C), e in Edges: e.fromnode==i, k in e.commodity,o in 0)X[e][k][o]*Unit Production Cost[event][o][e.fromnode][k]; //Production Cost term in optimistic situation dexpr float Production_Cost_0 = sum (event in States:event=="optimistic",i in V diff (S union C), e in Edges: e.fromnode==i, k in e.commodity,o in O)X[e][k][o]*Unit Production Cost[event][o][e.fromnode][k]; //Production Cost term in pessimistic situation dexpr float Production Cost P = sum (event in States:event=="pessimistic",i in V diff (S union C), e in Edges: e.fromnode==i, k in e.commodity,o in 0)X[e][k][o]*Unit Production Cost[event][o][e.fromnode][k]; //Shortage Cost term in pessimistic situation dexpr float Shortage_Cost_P=sum(event in States:event=="pessimistic",i in C,k in F)Shortage[event][i][k]*Unit_Shortage_Cost[k]; //Shortage Cost term in most likely situation dexpr float Shortage_Cost_M=sum(event in States:event=="most likely",i in C,k in F)Shortage[event][i][k]*Unit Shortage Cost[k]; //Opening Cost term in optimistic situation dexpr float Shortage Cost O=sum(event in States:event=="optimistic",i in C,k in F)Shortage[event][i][k]*Unit_Shortage_Cost[k]; //Total Cost in pessimistic situation dexpr float z p = Opening Cost P+Setup Cost P+Transportation Cost+Procurement Cost+Production _Cost_P+Shortage_Cost_P; //Total Cost in most likely situation

64

```
dexpr float z_m =
Opening_Cost_M+Setup_Cost_M+Transportation_Cost+Procurement_Cost+Production
_Cost_M+Shortage_Cost_M;
```

```
//Total Cost in optimistic situation
dexpr float z_o =
Opening_Cost_0+Setup_Cost_0+Transportation_Cost+Procurement_Cost+Production
_Cost_0+Shortage_Cost_0;
```

```
//Objective Function
//minimize
Opening_Cost+Setup_Cost+Transportation_Cost+Procurement_Cost+Production_Cos
t+Shortage_Cost_P;
```

```
// Epsilon Approach
//minimize z o; // Iteration 1
//minimize z m; // Iteration 2
//Replication 1
minimize z_0; // Iteration 1 - relax pessimistic by 5%
//Replication 2
//minimize z_m; // Iteration 1 - relax pessimistic by 5%
//minimize z_o; // Iteration 2 - relax pessimistic by 5%
//*******
            *****
11
//Constraints
subject to{
```

//z_o<= 48043527;

```
//Iternation 1 - relax pessimistic by 5%
//z_p<= 65392421*1.05;
//z_o<= 48043527;</pre>
```

```
//Iternation 2 - relax pessimistic by 5%
z_p<= 65392421*1.05;
z_m<= 50799666;</pre>
```

```
//Supply
      ctSupply:
      forall (i in S, k in K)
        sum (e in Edges: e.fromnode==i, k1 in K Dummy, m in
Material_Data:m.Item_Name==k1, c in e.commodity:c==m.Category&&c==k,o in
0:o==1)X[e][k1][o]<=Sup[i][k];</pre>
      forall (i in S, k in K)
        sum (e in Edges: e.fromnode==i, k1 in K_Dummy, m in
Material_Data:m.Item_Name==k1, c in e.commodity:c==m.Category&&c==k,o in
0:o!=1)X[e][k1][o]<=0;</pre>
      //Demand
      ctDemand:
      forall (event in States, i in C, k in F)
        sum (e in Edges: e.tonode==i, c in e.commodity:c==k, o in
O)X[e][k][o]>=Demand[event][i][k]-Shortage[event][i][k];
      forall (event in States, i in C, k in F)
        Shortage[event][i][k]<=Demand[event][i][k];</pre>
      //Balance
      ctBalance:
      forall (h in V diff (S union C))
        forall (p in P: p.Node==h, comp in p.Output,b in BOM_Data:
b.Master Item==comp)
           sum (e1 in Edges:e1.tonode==h, c1 in K Dummy: c1==b.Sub Item, m
in Material_Data:m.Item_Name==c1, c in e1.commodity:c==m.Category, o in
0)X[e1][c1][o]/b.Conversion==
           sum (e2 in Edges:e2.fromnode==h,c2 in e2.commodity:c2==comp,o in
0)X[e2][c2][o];
      //Node constraint
      ctUpper_Capacity_Limit:
      forall (h in V diff (S union C), o in 0)
        sum (e in Edges:e.fromnode==h,c in
e.commodity)X[e][c][o]<=Z[h][o]*Cap[h][o];</pre>
      //Location Constraint
      ctLocation:
      forall (1 in L, 11 in l.Associated_Nodes, i in V diff(S union
C):i==11, o in 0)Z[i][o]<=Y[1];</pre>
      //Capacity Selection
      ctCapacity:
      forall (i in V diff (S union C))
        sum (o in 0)Z[i][o]<=1;</pre>
```

}