

HEURISTICS FOR TWO-DIMENSIONAL

RECTANGULAR GUILLOTINE CUTTING

BY

KIMSENG TIENG

A THESIS SUBMITTED IN PARTIAL FULFILLMENT OF

THE REQUIREMENTS FOR THE DEGREE OF MASTER OF

ENGINEERING (LOGISTICS AND SUPPLY CHAIN SYSTEMS

ENGINEERING)

SIRINDHORN INTERNATIONAL INSTITUTE OF TECHNOLOGY

THAMMASAT UNIVERSITY

ACADEMIC YEAR 2015

HEURISTICS FOR TWO-DIMENSIONAL

RECTANGULAR GUILLOTINE CUTTING

BY

 KIMSENG TIENG

A THESIS SUBMITTED IN PARTIAL FULFILLMENT OF

THE REQUIREMENTS FOR THE DEGREE OF MASTER OF

ENGINEERING (LOGISTICS AND SUPPLY CHAIN SYSTEMS

ENGINEERING)

SIRINDHORN INTERNATIONAL INSTITUTE OF TECHNOLOGY

THAMMASAT UNIVERSITY

ACADEMIC YEAR 2015

ii

Abstract

HEURISTICS FOR TWO-DIMENSIONAL RECTANGULAR GUILLOTINE

CUTTING

by

KIMSENG TIENG

Bachelor of Science, Major Physics,

Royal University of Phnom Penh, 2013

Two-Dimensional Rectangular Guillotine Cutting (2DRGC) is an

important problem in the industrial. Paper, sheet, plate, glass, wood, or plastic is needed

to cut from stock in big rectangular area. Then a set of small sheet, plate, glass, wood,

or plastic in rectangular size is given. Guillotine is a cutting process, where the sheets

are needed to cut straightly. In this thesis, eight different methods are implemented to

find a good layout. They are 2D horizontal construction, 2D vertical construction, 2D

horizontal improvement, 2D vertical improvement, Sheet Width Panel Height

Horizontal Cut, Sheet Width Panel Width Vertical Cut, Minimum Sheet Width

Ordering Panel Height Horizontal Cut, and Minimum Sheet Height Ordering Panel

Width Vertical Cut. Given result of each method is used to compare with 2D simple

heuristic cutting and column generation method. The objective of this thesis is to find

the best layout within a short computational time, and demand of customer is fulfilled.

The result indicates that a good layout has been found in a short computational time

within some proposed heuristics.

Keywords: Heuristics, 2D guillotine cutting stock, Column generation,

iii

Acknowledgements

This thesis will not accomplish if I did not get support and help from my

advisor and committees, Sirindhorn International Institute of Technology (SIIT),

faculty members, and colleagues, and especially my family and relatives.

First of all, I would like to reveal my deeply thankfulness to my advisor,

Dr. Chawalit Jeenanunta, for his invaluable guidances, motivation, and immense

knowledge throughout my limited time frame research at SIIT, Thailand. He is my best

advisor ever. Besides my advisor, I would like to express my sincere gratitude to my

internal and external committee Dr. Aussadavut Dumrongsiri and Dr. Ruengsak

Kawtummachai for every useful comments and suggestions through the entire process

of my research. Those guidances are extremely vital to push my research moving

forward; otherwise, I cannot graduate in time.

Secondly, I am highly indebted to SIIT, Thammasat University for their

constant supervision and continuous support by providing me an Excellent Foreign

Scholarship (EFS) scholarship. It is a golden opportunity to pursue my master degree.

In addition, many thanks and appreciation also go to all faculty members, staffs and my

colleagues in Logistics and Supply Chain System Engineering program (LSCSE) for

their helpfulness.

Last but not least, I would like to express my special gratitude and

thankfulness to both my parents and my siblings, as well as my relatives. They always

support, love, encourage, and stay by my side in all kind of situation.

iv

Table of Contents

Chapter Title Page

 Signature Page.. i

 Abstract ... ii

 Acknowledgements .. iii

 Table of Contents ... iv

 List of Tables .. vii

 List of Figures .. ix

1. Introduction ... 1

1.1. Background ... 1

1.2. Problem Description .. 3

1.3. Thesis Objective .. 3

1.4. Significant of the Thesis .. 4

1.5. Overview of Thesis ... 4

2. Literature Review .. 5

2.1. Linear Programming ... 5

2.2. Mix Integer Programming ... 5

2.3. Dynamic Programming ... 6

2.4. Meta-Heuristics ... 6

2.5. Heuristics ... 9

3. Proposed Algorithms... 12

3.1. Column Generation (CG) .. 12

3.2. 2D Simple Heuristic Cutting (2DSHC) 14

3.3. 2D Horizontal Construction (2DHC) 16

3.4. 2D Vertical Construction (2DVC) .. 18

3.5. 2D horizontal improvement (2DHI) 20

3.6. 2D Vertical Improvement (2DVI) .. 23

v

3.7. Sheet Width Panel Height Horizontal Cut (SW_PH_HC) 26

3.8. Sheet Width Panel Width Vertical Cut (SW_PW_VC) 29

3.9. Minimum Sheet Width Ordering Panel Height Horizontal

Cut (MinSW_OPH_HC) .. 33

3.10. Minimum Sheet Height Ordering Panel Width Vertical

Cut (MinSH_OPW_VC) .. 36

4. Testing Instances ... 38

5. Experimental Result and Discussion... 39

5.1. Comparison to column generation .. 39

5.2. Comparison to 2D Simple Heuristic Cutting 41

5.3. Comparison of computational time .. 44

5.4. Comparison of 2DHI, 2DVI, MinSW_OPH_HC,

MinSH_OPW_VC ... 44

6. Conclusions and Recommendations ... 46

6.1. Conclusion ... 46

6.2. Recommendation for Further Study .. 48

References 49

Appendices ... 52

7.1. Appendix A: Java Source Code .. 53

7.1.1. 2D Simple Heuristic Cutting ... 53

7.1.2. 2D Horizontal Construction .. 66

7.1.3. 2D Vertical Construction .. 71

7.1.4. 2D Horizontal Improvement ... 76

7.1.5. 2D Vertical Improvement .. 90

7.1.6. Sheet Width Panel Height Horizontal Cut 104

7.1.7. Sheet Width Panel Width Vertical Cut 110

vi

7.1.8. Minimum Sheet Width Ordering Panel Height Horizontal

Cut ... 116

7.1.9. Minimum Sheet Height Ordering Panel Width Vertical

Cut ... 132

7.2. Appendix B: Input Twenty Testing Instances 147

7.3. Appendix C: Output Twenty Testing Instances 154

7.3.1. 2D Simple Heuristic Cutting ... 154

7.3.2. 2D Horizontal Construction .. 154

7.3.3. 2D Vertical Construction .. 159

7.3.4. 2D Horizontal Improvement ... 164

7.3.5. 2D Vertical Improvement .. 164

7.3.6. Sheet Width Panel Height Horizontal Cut 164

7.3.7. Sheet Width Panel Width Vertical Cut 170

7.3.8. Minimum Sheet Width Ordering Panel Height Horizontal

Cut ... 176

7.3.9. Minimum Sheet Height Ordering Panel Width Vertical

Cut ... 176

vii

List of Tables

Tables Page

Table 4.1 The input for small, medium, and large size instances 38

Table 5.1 The output of CG, 2DSHC, 2DHC, 2DVC, 2DHI, and 2DVI including

waste, time, and gap 42

Table 5.2 The output of CG, 2DSHC, 2DHC_SW_PH, 2DVC_SW_PW,

MinSW_OPH_HC, and MinSH_OPW_VC including waste, time, and gap 43

Table 5.3 Waste comparison of 2DHI, 2DVI, MinSW_OPH_HC, and

MinSW_OPW_VC 45

Table 7.1 Instance 1 147

Table 7.2 Instance 2 147

Table 7.3 Instance 3 147

Table 7.4 Instance 4 147

Table 7.5 Instance 5 147

Table 7.6 Instance 6 147

Table 7.7 Instance 7 148

Table 7.8 Instance 8 148

Table 7.9 Instance 9 148

Table 7.10 Instance 10 148

Table 7.11 Instance 11 149

Table 7.12 Instance 12 149

Table 7.13 Instance 13 149

Table 7.14 Instance 14 150

Table 7.15 Instance 15 150

Table 7.16 Instance 16 150

Table 7.17 Instance 17 151

Table 7.18 Instance 18 151

Table 7.19 Instance 19 152

Table 7.20 Instance 20 153

Table 7.21 The output for the first instance using 2DSHC 154

Table 7.22 The output for the first instance using 2DHC 154

viii

Table 7.23 The output for the first instance using 2DVC 159

Table 7.24 The output for the first instance using 2DHI 164

Table 7.25 The output for the first instance using 2DVI 164

Table 7.26 The output of the first instance using SW_PH_HC 164

Table 7.27 The output of the first instance using SW_PW_VC 170

Table 7.28 The output of the first instance using MinSW_OPH_HC 176

Table 7.29 The output of the first instance using MinSH_OPW_VC 176

ix

List of Figures

Figures Page

Figure 1.1 Different types of guillotine cutting methods 3

Figure 3.1 Solution of 2DSHC 16

Figure 3.2 Solution of 2DHC 18

Figure 3.3 Solution of 2DVC 20

Figure 3.4 Solution of 2DHI 23

Figure 3.5 Solution of 2DVI 25

Figure 3.6 Solution of SW_PH_HC 29

Figure 3.7 Solution of (SW_PW_VC) 33

Figure 3.8 Solution of (MinSW_OPH_HC) 36

Figure 3.9 Solution of (MinSH_OPW_VC) 37

1

 Chapter 1

1. Introduction

1.1. Background

Two-Dimensional Rectangular Guillotine Cutting (2DRGC) is an

important problem in the cutting industrial. Paper, sheet, plate, glass, wood, or plastic

is needed to cut from a stock in big rectangular area such that a set of small sheet, plate,

glass, wood, or plastic in rectangular size is given. In this thesis, eight different methods

are implemented to find a good layout. Many scholars proposed different methods in

this field namely: linear programming, dynamic programming, integer linear

programming, integer programming, column generation, heuristics, and meta-heuristic

method. Among these methods, heuristics become a popular method. Heuristics cannot

give an optimal layout as the exact algorithm, but it can provide a good layout in a short

computational time no matter what size of problem is.

Three different styles of cutting, 2D 2stage 1group, 2D 2stage 2group, and

t-shape 3group, are mentioned in Figure 1.1. Guillotine is a cutting process where each

sheet is needed to cut straightly. Group is the number of categories after sheet cutting.

Cutting each group can produce many strips. Strip can store only one level of panel

inside it. Panel is a result of strip cutting. Total number of times, raw materials are

rotated, called stage.

Figure 1.1(A), displays 2D 2stage 1group cutting. A horizontal cutting is

applied for the first stage to produce the strips. Then each strip is rotated to cut to

produce panel in the second stage. Another step of cutting is needed to separate waste

and panel, but it is not counted as stage. Figure 1.1(B) displays 2D 2stage 2group

cutting. Two sub-groups are given as a result of sheet cutting. Then each sub-groups is

applied 2D 2stage 1group. Figure 1.1(C) displays t-shape 3group cutting. A vertical cut

is applied to the sheet to produce two sub-groups, and one of the sub-groups is needed

to cut to produce another two sub-groups. In total, three sub-groups are produced. Then

each sub-groups is cut, using 2D 2stage 1group cutting.

2

A.

B.

5*5 5*5 5*5 5*5

2*11 2*11 2*11

8*9 8*9

5*9 5*9 5*9

2*11 2*11 2*11

5*5 5*5 5*5

3

C.

Figure 1.1 Different types of guillotine cutting methods

1.2. Problem Description

A small instance is selected to use in this thesis. Given a set of panel

1 2
{ , ,..., }

j
P p p p coordinate with panel width set  1 2, ,..., jw w w w , panel height set

 1 2, ,..., jh h h h , and demand of each panel type set  1 2, ,..., jd d d d where 1,2,3,...,j n .

The demand each panel type is needed to cut from a set of sheet 1 2{ , ,..., }iS s s s

coordinate with sheet width set  1 2, ,..., iW W W W , and sheet height set  1 2, ,..., iH H H H

, where 1,2,...,i m . In this case, the capacity of each sheets type in stock is unlimited.

Rotation of the sheet is prohibited. Demand for each panel type must be fulfilled. Only

guillotine cut is used. The over cut panels are regarded as waste.

1.3. Thesis Objective

5*9 5*9 5*9

2*11 2*11 2*11 5*5 5*5 5*5

12*3

4

The objective of this thesis is to find the best layout by making sure that the

demand of customer is fulfilled. A good layout have been found in a short

computational time within some heuristic methods.

1.4. Significant of the Thesis

This research is based on an Electronics Board Cutting Public Company

Limited, where the electronic boards are ordered by the customers in different sizes and

amounts. Replying to this order quantities, the company has to cut the rectangular sheet

in big size into the panels in small rectangular size from the raw material, existed in

stock. Every single year this company spent millions of dollars on the waste. The price

per unit of the produced products is expansive. Then the profit for each unit of products

in the company is also low. This problem is caused by the implementation of a simple

way of cutting. They place only one size of panels into one size of sheet. This method

cannot provide a minimum wastes for each cutting pattern.

Applying a heuristic cutting method is the best choice for this company

since the good patterns of cutting can be given in a short computational time for large

size of instances. It can combine different panel type into each size of sheet to cut. Thus,

it is very essential to improve cutting pattern such that raw material utilization is

maximized, and a competitive price for each unit of products can be sold by the

company to the customers.

1.5. Overview of Thesis

The structure of this thesis is organized by doing the literature review in

section 2. All proposed methods are mentioned in section 3. These methods are tested

with twenty different sizes of instances in section 4. Then section 5 mentions the

experimental result and discussion of each method. The conclusion from the experiment

is drawn in section 6. Finally the appendices including code for each heuristic method,

input data for all instances, and the output structure for each method is given in the

appendices part.

5

Chapter 2

2. Literature Review

Cutting stock is a widely problem in the operation research for both one-

dimensional cutting and two-dimensional cutting. It has been extensively treated in

different literatures by different researchers. They uses different methods to find the

best patterns to cut the sheet, cloth, steel, paper, glass, furniture, textiles, and metallurgy

with different criteria. Those methods are mentioned as in the following.

2.1. Linear Programming

Gilmore and Gomory (1965) proposed linear programming (LP) model,

using knapsack problem to deal with 1D and 2D cutting stock problem. In their paper,

a wide class of cutting stock problems have been restricted.

Lodi and Monaci (2003) has proposed an integer linear programming

models for 2D 2stage knapsack problems. The performance of their paper is analyzed

in term of the quality in accordance with the classical column generation approach.

They use standard branch-and-bound algorithm, and implemented it in CPLEX 6.5.3.

The objective of their research is to maximize the total number of panels used and the

total profit of cut panels.

H. H. Yanasse and Morabito (2008) have proposed a note on integer linear

programming models to generate pattern in 2-group and 3-group constrained and

unconstrained 2D guillotine cutting stock. This model is extended from linear models

for 1group guillotine cut. They select a randomly generated and an actual instances to

measure the performance of the model. Implemented this model in GAMS modelling

and CPLEX solver, they find that this model is not efficient for large size problem.

2.2. Mix Integer Programming

Andrade, Birgin, and Morabito (2013) have proposed a mix integer

programming to deal with non-exact 2D 2stage guillotine cutting problems with usable

6

leftover. If the plate remainder of the cutting pattern or trim loss is large enough, it can

be reused for the next cutting. It is characterized as a residual bin-packing problem since

the possibility of producing new residual panels did not regarded as waste. As long as

the trim loss size is large enough to cut to produce the panels, it can be considered as

sheet. An objective of their paper is to minimize the cost among all possible solution.

It only choose the patterns that the value of generated usable leftover is maximized.

2.3. Dynamic Programming

Yaodong Cui and Liu (2007) have proposed rectangular T-shape

homogenous block patterns for 2D cutting problem by using a dynamic programming

recursion to generate optimal blocks. Two segments of sheets are a result of a vertical

cut. Each segment consists of sections that have the same length and direction. Each

section stores a row of homogenous blocks. A homogenous block consists of

homogenous strips of the same panel type. The computational result indicates that the

algorithm is efficient in improving material utilization, and the computational time.

Yaodong Cui (2012c) has proposed a new dynamic programming

procedure for three-staged cutting patterns to solve 2D cutting stock problem. He

presents unconstrained three-staged patterns algorithm. The objective of his study is to

maximize the pattern value. This method can provide an efficient solution in short

computational time.

2.4. Meta-Heuristics

There are different kinds of method in the meta-heuristics namely:

Simulated Annealing (SA), Ant System (AS), Bee Algorithms (BA), Particle Swarm

Optimization (PSO), Genetic Algorithms (GAs), Tabu Search (TS), and Harmony

Search Algorithm (HSA).

SA is a random stochastic optimization method proposed by Kirkpatrick

and Vecchi (1983). It was given by T(t) = T0αt where t was the counter of iterations,

T0 was the initial temperature, and α varied from 0 and 1, and T(t) was the temperature

7

at iteration t. This problem appropriated for a continuous problem in the energy of

physical system.

AS was a stochastic search method. It is used to solve both discrete and

continuous optimization problem. It was proposed by Drigo, Maniezzo, and Colorni

(1996) to optimize by using a colony of cooperating agents. This method mimicked the

behavior of real ants to solve NP-hard combinatorial optimization problem. AS used

exploration and exploitation to search and improve the solution. Even this method

generated only a limited number of different solution when they applied greedy

algorithms. It was typically better than a completely random generated solution. The

final solution of AS was also depend on the initial solution.

BA was population-based combinatorial search algorithm developed by

Pham et al. (2006). This method mimicked the food foraging behaviors of swarms of

honey bees to look for the best solution. It could be applied to solve discrete and

continuous problem. First, the initialization of the algorithm was needed. Then it

searched for the solution iteration by iteration. The given solution was evaluated by

comparing the fitness function. Each iteration composed of five main steps. They were

recruitment, local search, neighborhood shrinking, site abandonment, and global

search. This process was terminated when the number of iteration was met or the

solution was acceptable.

PSO was a random stochastic continuous nonlinear optimization function

proposed by Kennedy and Eberhart (1995). Two main components in PSO were; firstly,

connecting to artificial life in general. Secondly, connecting to fish schooling, bird

flocking, and swarm theory in specifically. This method had a simple concept. It could

be implemented with a few line of code without affected to the computational time and

the memory requirement. From this paper, every individual in the school could get the

benefits from the discoveries, then they shared the information among their school to

improve those benefits.

GAs was a stochastic combinatorial natural search optimization method

proposed by Holland (1975). This method revealed about the genetic operator. It

adapted the environment such that it could be used to search and evaluate the solution

based on the fitness function in an effective and efficient way. Three operators, used to

develop new members of the population, were reproduction, crossover, and mutation.

8

GAs could search many peaks, and it could reduce the possibility of local minimum

trapping.

TS was a stochastic discrete combinatorial optimization methods proposed

by Glover (1977). It was used to explore the feasible solution by using the sequence of

move from one solution to another.

HSA is one of a recent stochastic meta-heuristics search method. It mimics

the musical process. This method is applicable in discrete and continuous variables. It

is a population based searching method. It has been proposed by Zong Woo Geem,

Kim, and Loganathan (2001). No papers, applied HSA to solve 2D rectangular

guillotine cutting problem, is found. Hence, the main objective of this research paper is

to apply a HSA to deal with a static optimization in the 2DRGC.

Ayachi.I, Kammarti.R, Ksouri.M, and Borne.P (2010) have applied HSA

to deal with a container storage problem to determine the best containers arrangement

such that it can meet customers delivery dates and reduce the number of container

movement. In this paper, they consider the influences of the number of containers,

stopping criteria value, and the harmony memory size as the fitness function. The result

indicates that the value of the fitness function of the last iteration is lower than the first

iteration. The higher the value of the stopping criteria is the better of the quality of the

fitness function. The higher of the HMS is the better of the value of the fitness function.

Comparing this method with GAs, they find that HSA can give a better value of fitness

function in all size of the containers.

Zong Woo Geem (2008) has summarized all the problems, using HSA.

They are vehicle routing Zong W Geem, Lee, and Park (2005), and Pichpibul and

Kawtummachai (2013), discrete structural optimization Lee, Geem, Lee, and Bae

(2005), water distribution network Zong Woo Geem (2006), multiple dam scheduling,

dome truss design, grillage structure design, grillage structure design, mix

proportioning of steel and concrete, satellite heat pipe design, petroleum structure

mooring, fluid transport minimal spanning tree, parameter calibration of flood routing

model, parameter calibration of rainfall-runoff model, energy-saving pump operation,

pipeline of oil well heat waste, soil slope stability, large-scale irrigation network design,

and web-based optimization.

9

Worasucheep (2011) have proposed an improved HS, called harmony

search with adaptive pitch adjustment (HSAPA) for continuous optimization problem.

This paper has found that the higher of HMCR can provide a better performance in

general, and the performance of HSAPA is shown not to be sensitive to its new

parameters.

2.5. Heuristics

Yaodong Cui (2012a) has proposed a CAM system 1D cutting stock

problem. M types of panels are cut from stock bars of multiple sizes. The solution,

given by this algorithms, is a set of cutting patterns with specified frequency. This paper

generates cutting plan such that the bar cost is minimized for the primary objective.

Pattern reduction and shorter stocks reduction are considered in the secondary

objective. The result indicates that the algorithms can provide a better solution,

compared to other pattern reduction algorithms.

Cerqueira and Yanasse (2009) proposed a pattern reduction procedure in

1D cutting stock problem by grouping items in accordance with their demands. They

used a heuristic method. Cutting solution consisted of determining a group of patterns

and their frequencies. Production cost relied on the changing of the pattern since it

required a set up cost. The objective of this paper was to reduce the amount of different

pattern in a given solution by grouping the panels in accordance with the customer

demand for each panel type.

Yaodong Cui (2012b) has proposed a fast heuristics for constrained

homogenous T-shape cutting patterns. He uses a heuristic method based on a dynamic

programming and branch-and-bound to generate the constrained of homogenous T-

shape pattern. For the first phase, plate is required to cut into homogenous strips, and

each strip is divided into pieces in the second phase. The objective is to maximize the

pattern value. From the computational result, he finds that the solution close to optimal,

and computational time is very fast. A good initial solution can improve time efficiency

lots.

Y. Cui (2004) has proposed an optimal T-shape cutting pattern for

rectangular blanks. He presents an algorithm to generate guillotine cutting patterns for

rectangular blanks. He tries to tradeoff between the material utilization and the

10

complexity of the cutting process. He allows to place only one size of panel to appear

in each strip. The algorithm uses a knapsack algorithm and an implicit enumeration

method to determine an optimal combination. An efficient material usage with simple

cutting pattern is given in a short computational time for the presented algorithm.

Yaodong Cui and Huang (2012) have proposed a heuristics for Constrained

T-shape cutting patterns of rectangular pieces. The tradeoff between the complexity of

cutting and plate cost is taken into consideration. The objective of this paper is to

maximize the frequency of each panel type and the pattern value. Many patterns are

produced, but only maximum pattern value is selected to be a solution. The result

indicates that the algorithm can provide a better material utilization solution in a fast

computational time, compared to those of the optimal 2stage patterns.

HORACIO H. Yanasse, Zinober, and HARRIS (1991) have proposed a 2D

cutting stock with multiple stock sizes. They use a heuristic algorithm to build the

pattern. An objective of this paper is to find the best mix of boards with a minimum

waste. Guillotine cut is considered to meet with an exact demand of each customer.

Suliman (2006) has proposed a sequential heuristic procedure for the 2D

cutting stock problem. He presents a 3stage sequential heuristic procedure for the 2D

rectangular guillotine cutting stock problem. A width cutting pattern is determined in

the first stage to produces the minimum width trim loss. Determination of table length

and the associated layout of the panel length mention in the second stage. Finally, a

number of iterations is used to end the cutting process. An overall objective of this

paper is to minimize the trim loss.

Alvarez-Valdes, Parajon, and Tamarit (2002) have proposed a

computational study of LP-based heuristic algorithms for 2D guillotine cutting stock

problems. They follow Gilmore and Gomory (1965) column generation scheme. For

each iteration, a new cutting layout is given from the sub model. Besides a dynamic

programming in the sub model, three heuristic procedures are developed to increase the

complexity. Those procedures are based on GRASP and Tabu Search techniques. The

computational result, given by a randomly generated test, shows that the solution is

effective and efficient in term of both total waste and computational time.

Horacio Hideki Yanasse and Limeira (2006) have proposed a hybrid

heuristics to reduce the number of different patterns in cutting stock problem. They

11

generate patterns with a limited waste. The demands are needed to fulfill when the

patterns are cut. Pattern reduction techniques are applied by starting with the generated

solution. The objective of this paper was to tradeoff between the total waste and the

number of patterns. The result indicates that the proposed scheme gave an alternative

solution to the pattern reduction problem.

Yaodong Cui, Yang, Zhao, Tang, and Yin (2013) have proposed a

sequential grouping heuristics to solve 2D cutting stock with pattern reduction. They

consider both input minimization as a primary objective and pattern reduction as the

secondary objective. A sequential heuristic procedure is generated for each next pattern,

using a dynamic programming recursion. This process is repeated until all the demand

of each panel type is fulfilled. The experimental result indicates that a sequential

grouping heuristics is powerful in pattern reduction, input minimization, and reduction

of the computational time.

Yaodong Cui and Zhao (2013) has proposed a heuristics for the rectangular

2D single stock size cutting stock problem with 2stage patterns. A heuristic algorithm

is presented to solve 2D 2stage single stock size cutting. The rotation of the panel is

allowed. A column generation method is used to solve the residual problems repeatedly

until customer demand for each panel type is satisfied. The computational result

indicates that the algorithm can solve most instances to optimality. It is more efficient

in reducing the number of plates, comparing to a published algorithm and a commercial

stock cutting software package.

12

Chapter 3

3. Proposed Algorithms

In this section, various techniques are presented namely: column generation

(CG), 2D simple heuristic cutting (2DSHC), 2D horizontal construction (2DHC), 2D

vertical construction (2DVC), 2D horizontal improvement (2DHI), 2D vertical

improvement (2DVI), Sheet Width Panel Height Horizontal Cut (SW_PH_HC), Sheet

Width Panel Width Vertical Cut (SW_PW_VC), Minimum Sheet Width Ordering

Panel Height Horizontal Cut (MinSW_OPH_HC), and Minimum Sheet Height

Ordering Panel Width Vertical Cut (MinSH_OPW_VC).

3.1. Column Generation (CG)

Column generation technique is used to solve a combinatorial problem with

many decisions. This technique bases on Danzig-Wolfe decomposition. Let

' (1,...,o)iS i  is the family of all feasible cutting pattern of sheet i . The decision variable

(')p ix p S denotes the number of times when the cutting pattern p is used in the

solution. pA defines the waste from cutting pattern p . In constraints (2), the coefficients

j

pC represents the number of panel (1,...,)j j n in the cutting pattern p , and jd

represents the requirement of panel j .

' '
1 ' '

' '
1 ' '

'

(1)

subject to

; 1,..., (2)

 ; 1,..., , ' ' (3)

i i
i i

i i
i i

i

o

s s
i s S

o
j

js s
i s S

i is

Minimize A x

C x d j n

x i o s S

 

 



 

  

 

 

The above model is called master problem (MP). The objective function

(1) is to minimize waste of used sheets. Constraints (2) ensures that the number of panel

j must equal to the requirement, and constraints (3) is the integrality constraints.

In fact, we cannot generate all feasible patterns for a large size instances. A

restricted master problem (RMP) consists of a subset of patterns of master problem.

13

To obtain the optimal solution, we generated a sub-problem for each sheet i . We use

dual solution from the current solution in RMP. The sub-problem, deal with two-

dimensional two-stage knapsack problems with guillotine cuts (2DKP), is proposed by

Lodi and Monaci (2003). Therefore, solving this problem can give a pattern with the

most negative reduced cost to prove optimality. We show the model, which involves

integer variables jkx denoting the number of panels of type (1,...,)j j n in shelf

(1,...,)jk k  and (1,...,)kq k n denoting whether a shelf k is used (where n is the number

of panels and
'

j s

s j

d


).

Let *

j be a dual solution from the current optimal solution in RMP

associated with panel j . The mathematical model for each sheet type is shown below:

1

1

*

1 1 1

1 1

1

1 1

() (4)

subject to:

 ; 1,..., (5)

() ; 1,..., (6)

 (7)

() ; 1,..., ; [1,] (8)

0

j j

j

j j

j

k
k

k

j

n

j jk k
j k k

jjk k
k k

n

j jk k
j

n

k
k

js j jj j
s k

jk

Maximize x q

x q ub j n

w x W w q k n

l q L

x ub k j n k

x

 



 












  





   

  





 




  

  



     



  

 







; integer ; 1,..., ; [1,] (9)

{0,1} ; 1,..., (10)

j jjk

k

d x j n k

q k n

   

 

 The objective function (4) is to maximize the sum of the cost of panel in

pattern. Inequalities (5), (6), and (7) represent the cardinality constraints, the width

constraints, and the height constraint, respectively. Inequalities (8) is to strengthen the

bound on the jkx variables (given by inequalities (9)). If the feasible pattern with

maximum profit, greater than zero, is found, the column corresponding to this pattern

is added to the current RMP. When no more feasible pattern with maximum profit,

14

greater than zero, is found, that mean, the current optimal solution of RMP is an optimal

solution of MP.

3.2. 2D Simple Heuristic Cutting (2DSHC)

2DSHC has been applied by most cutting companies. In this stage, each

sheet with minimum waste in a simple heuristics for 2D cutting method contain only

one panel type. The process of 2DSHC is implemented as follows:

Step 1: Given a set of sheets 1 2{ , ,..., }iS s s s and a set of panels 1 2{ , ,..., }jP p p p .

Step 2: For each jp P , select is S that has a minimum waste to cut, where jp is

put in sheet
is

Step 3: For each jp P , number of the sheet need to cut equal to the ceiling of the

ratio between the demands and the number of panels used within the sheet

Step 4: Remove jp P that has been cut.

Step 5: If  0P  , terminate cutting process; otherwise, go to step 2.

For instance, given a set of panel
1 2 3 4

{ , , , }P p p p p , coordinate with

{2,8,5,4}w  , {11,9,5,4}h  , and {14,10,20,26}d  . These panel is cut from a sheet set

1 2{ , }S s s coordinate with {14,22}W  and {30,17}H  . Each panel type selects only the

sheet that can give a minimum waste. The number of sheet, needed to cut for each panel

types in each pattern as illustrated in Figure 3.1, are 1, 4, 2, and 2 respectively. The total

waste after fulfill all the demands is 1652 2in

15

2*11 2*11 2*11 2*11 2*11 2*11 2*11

8 9 10 11 12 13 14

2*11 2*11 2*11 2*11 2*11 2*11 2*11

1 2 3 4 5 6 7

8*9

3

8*9

2

8*9

1

5*5 5*5 5*5 5*5

9 10 11 12

5*5 5*5 5*5 5*5

5 6 7 8

5*5 5*5 5*5 5*5

1 2 3 4

16

Figure 3.1 Solution of 2DSHC

 = panel size (a×b) put into the sheet in of Nth

 = the waste of the sheet

3.3. 2D Horizontal Construction (2DHC)

In this section, the panels are arranged and cut horizontally. Multiple types

of panels are allowed to put in each size of sheet. The process of this method is

implemented as in the following.

Step 1: Given a set of sheets 1 2{ , ,..., }iS s s s and a set of panels 1 2{ , ,..., }jP p p p . Then

sort these two sets in descending order based on height.

Step 2: 'P is the set of panel where ' 'jp P , such that the number of ' jp with the

same width and height is equal to the demand jd of that jp with the same width and

height. Thus,
1

'
n

j

j

P d




4*4 4*4 4*4 4*4 4*4

16 17 18 19 20

4*4 4*4 4*4 4*4 4*4

11 12 13 14 15

4*4 4*4 4*4 4*4 4*4

6 7 8 9 10

4*4 4*4 4*4 4*4 4*4

1 2 3 4 5

a*b

N(th)

17

Step 3: Each ' 'jp P is selected to put into the space next to the previous panel on

the same strip
is S in horizontal line until no more panels types can be inserted in that

strip, then move to next strip to cut horizontally. If there are not any strips available,

move to the new sheet.

Step 4: Remove ' 'jp P that has been used.

Step 5: If  ' 0P  , terminate the cutting process; otherwise, go to step 3

From the same instance mentioned in section 3.2, each panel 'P is picked

to cut in the sheet in the chronological order; hence, the number of sheet, needs to cut

for each patterns as illustrated in Figure 3.2, are 1, 3, 1, and 1 respectively. The total

waste after fulfill all the demands is 576 2in

5*5 5*5

4*4

15 16 17

2*11 2*11 2*11 2*11 2*11 2*11 2*11

8 9 10 11 12 13 14

2*11 2*11 2*11 2*11 2*11 2*11 2*11

1 2 3 4 5 6 7

8*9

5*5

5 6

8*9

5*5

3 4

8*9

5*5

1 2

18

Figure 3.2 Solution of 2DHC

3.4. 2D Vertical Construction (2DVC)

In this section, the panels are arranged and cut vertically. Multiple types of

panels are allowed to put in each size of sheet. The process of this method is

implemented as in the following.

Step 1: Given a set of sheets 1 2{ , ,..., }iS s s s and a set of panels 1 2{ , ,..., }jP p p p . Then

sort the panel set based on width and sheet set based height in descending order.

Step 2: 'P is the set of panel where ' 'jp P , such that the number of ' jp with the

same width and height is equal to the demand jd of that jp with the same width and

height. Thus,
1

'
n

j

j

P d




Step 3: Each ' 'jp P is selected to put into the space next to the previous panel on

the same strip is S in horizontal line until no more panels types can be inserted in that

5*5 5*5

4*4

12 13 14

5*5 5*5

4*4

9 10 11

5*5 5*5

4*4

6 7 8

5*5 5*5

4*4

3 4 5

8*9

5*5

1 2

4*4 4*4 4*4

19 20 21

4*4 4*4 4*4

16 17 18

4*4 4*4 4*4

13 14 15

4*4 4*4 4*4

10 11 12

4*4 4*4 4*4

7 8 9

4*4 4*4 4*4

4 5 6

4*4 4*4 4*4

1 2 3

19

strip, then move to next strip to cut horizontally. If there are not any strips available,

move to the new sheet.

Step 4: Remove ' 'jp P that has been used.

Step 5: If  ' 0P  , terminate the cutting process; otherwise, go to step 3

From the same instance mentioned in section 3.2, each panel 'P is picked

to cut in the sheet in the chronological order; hence, the number of sheet, needs to cut

for each patterns as illustrated in Figure 3.3, are 3, 1, 1, and 1 respectively. The total

waste after fulfill all the demands is 576 2in

5*5

9

8*9 5*5

8

3

5*5

7

8*9

5*5

6

2

5*5

5

8*9

5*5

1 4

4*4

4*4 12

5

4*4

4*4 11

4

4*4 2*11

5*5 10

3

4*4

9

5*5 14

2 4*4

8

2*11

4*4

8*9 7

4*4

1 6 13

20

Figure 3.3 Solution of 2DVC

3.5. 2D horizontal improvement (2DHI)

In this section, the panels are arranged and cut horizontally. Multiple types

of panels are allowed to put in each size of sheet. Each type of panels, locates in the

first panel set, is selected to put into each type of sheets first until no more panel in that

size can fill up. Then the leftover area is tried to insert the other panel types. The process

of this technique is mentioned as in the following.

Step 1: Given a set of sheets 1 2{ , ,..., }iS s s s and a set of panels 1 2{ , ,..., }jP p p p . Then

sort the panel set in descending order based on height. 'P is also the set of panel where

' 'jp P , such that the number of ' jp with the same width and height is equal to the

demand d j with the same width and height. Thus,
1

'
n

j

j

P d


 .

4*4 4*4

7 14

4*4 4*4

6 13

2*11

4*4 4*4 2*11

5 12

4*4 4*4

4 11 18

20

4*4 4*4 4*4

3 10 17

2*11

4*4 4*4 4*4

2 9 16

4*4 4*4 4*4

1 8 15 19

2*11 2*11 2*11 2*11

2 4 6 8

2*11 2*11 2*11 2*11 2*11

1 3 5 7 9

21

Step 2: For each ' 'jp P , put ' jp in each sheet
is as much as possible in horizontal

line. Once the horizontal strip is filled up, move to the next strip vertically until there

is no more space to put ' jp

Step 3: For each
is S used in step 2, select the next ' 'jp P to put into the leftover

area. Put ' jp in sheet
is as much as possible in horizontal line. Once the horizontal strip

is filled up, move to the next strip vertically until there is no space to put ' jp . Repeat

this step for the next ' jp

Step 4: Select is S are used in step 3 that can give a minimum waste to cut.

Step 5: Number of the sheet need to cut is equal to the ceiling of the smallest ratio

between the demands and the number of each panels types used in the pattern

Step 6: Remove ' 'jp P that has been used.

Step 7: If  ' 0P  , terminate the cutting process; otherwise, go to step 3

From the same instance mentioned in section 3.2, each panel 'P is picked

to cut into the sheet in the chronological order; hence, the number of sheet, needs to cut

for each patterns as illustrated in Figure 3.4, are 2, 3, 2, and 1 respectively. The total

waste after fulfill all the demands is 1048 2in

5*5 5*5 5*5 5*5

12 13 14 15

2*11 2*11 2*11 2*11 2*11 2*11 2*11 2*11 2*11 2*11 2*11

1 2 3 4 5 6 7 8 9 10 11

22

5*5 5*5 5*5 5*5

4 5 6 7

8*9 8*9

5*5

1 2 3

4*4 4*4 4*4 4*4 4*4

9 10 11 12 13

4*4 4*4 4*4 4*4 4*4

4 5 6 7 8

8*9 8*9

4*4

1 2 3

23

Figure 3.4 Solution of 2DHI

3.6. 2D Vertical Improvement (2DVI)

In this section, the panels are arranged and cut vertically. Multiple types of

panels are allowed to put in each size of sheet. Each type of panels located in the first

panel set is selected to put into each type of sheets first until no more panel in that size

can fill in. Then the leftover area is tried to insert the other panel types. The process of

this technique is mentioned as in the following.

Step 1: Given a set of sheets 1 2{ , ,..., }iS s s s and a set of panels 1 2{ , ,..., }jP p p p . Then

sort the panel set in descending order based on width. 'P is also the set of panel where

' 'jp P , such that the number of ' jp with the same width and height is equal to the

demand d j with the same width and height. Thus,
1

'
n

j

j

P d


 .

Step 2: For each ' 'jp P , put ' jp in each sheet is as much as possible in vertical

line. Once the vertical strip is filled up, move to the next strip horizontally until there

is no more space to put ' jp

4*4 4*4 4*4 4*4 4*4

16 17 18 19 20

4*4 4*4 4*4 4*4 4*4

11 12 13 14 15

4*4 4*4 4*4 4*4 4*4

6 7 8 9 10

4*4 4*4 4*4 4*4 4*4

1 2 3 4 5

24

Step 3: For each
is S used in step 2, select the next ' 'jp P to put into the leftover

area. Put ' jp in sheet
is as much as possible in vertical line. Once the vertical strip is

filled up, move to the next strip horizontally until there is no space to put ' jp . Repeat

this step for the next ' jp

Step 4: Select
is S are used in step 3 that can give a minimum waste to cut.

Step 5: Number of the sheet need to cut is equal to the ceiling of the smallest ratio

between the demands and the number of each panels types used in the pattern

Step 6: Remove ' 'jp P that has been used.

Step 7: If  ' 0P  , terminate the cutting process; otherwise, go to step 3

From the same instance mentioned in section 3.2, each panel 'P is picked

to cut in the sheet in the chronological order; hence, the number of sheet, needs to cut

for each patterns as illustrated in Figure 3.5, are 4, 2, and 1 respectively. The total waste

after fulfill all the demands is 904 2in .

5*5

9

8*9 5*5

8

3

5*5

7

8*9

5*5

6

2

5*5

5

8*9

5*5

1 4

25

Figure 3.5 Solution of 2DVI

4*4 4*4 4*4 4*4 4*4

4 8 12 16 20

4*4 4*4 4*4 4*4 4*4

3 7 11 15 19

2*11

4*4 4*4 4*4 4*4 4*4

2 6 10 14 18

4*4 4*4 4*4 4*4 4*4

1 5 9 13 17 21

2*11 2*11 2*11 2*11 2*11 2*11 2*11

2 4 6 8 10 12 14

2*11 2*11 2*11 2*11 2*11 2*11 2*11

1 3 5 7 9 11 13

26

3.7. Sheet Width Panel Height Horizontal Cut (SW_PH_HC)

In this section, the panels are arranged to cut horizontally. Multiple types

of panels are allowed to put into each size of the sheet. The process of this method is

implemented as in the following.

Step 1: Given a set of sheets
1 2{ , ,..., }iS s s s and a set of panels 1 2{ , ,..., }jP p p p . Sort

the sheet based on width, and sort the panel based on height in descending order.

Step 2: 'P is the set of panel where ' 'jp P , such that the number of ' jp with the

same width and height is equal to the demand jd of that jp with the same width and

height. Thus,
1

'
n

j

j

P d




Step 3: Each ' 'jp P , selected ' jp to put into the space at the bottom left of the sheet

is S . Then, next panel ' 'jp P is selected to put into the space next to the previous

panel on the same strip is S in horizontal line until no more panels types can be

inserted in that strip, then move to next horizontal strip. If there are not any strips

available, it moves to the new sheet.

Step 4: Remove ' 'jp P that has been put.

Step 5: If  ' 0P  , end the cutting process; otherwise, go to step 3

From the same instance mentioned in section 3.2, total number of sheet

ought to cut for each pattern as illustrated in Figure 3.6 is 1, 1, 2, 1, 1, and 1 respectively.

The total waste after satisfy all the demands is 674 2in .

27

5*5 5*5 5*5 5*5

12 13 14 15

2*11 2*11 2*11 2*11 2*11 2*11 2*11 2*11 2*11 2*11 2*11

1 2 3 4 5 6 7 8 9 10 11

5*5 5*5 5*5 5*5

6 7 8 9

2*11 2*11 2*11

8*9 8*9

1 2 3 4 5

28

5*5 5*5 5*5 5*5

4 5 6 7

8*9 8*9

5*5

1 2 3

5*5

4*4 4*4 4*4 4*4

4 5 6 7 8

8*9 8*9

5*5

1 2 3

29

Figure 3.6 Solution of SW_PH_HC

3.8. Sheet Width Panel Width Vertical Cut (SW_PW_VC)

4*4 4*4 4*4 4*4 4*4

9 10 11 12 13

4*4 4*4 4*4 4*4 4*4

4 5 6 7 8

8*9 8*9

4*4

1 2 3

4*4

11

4*4 4*4 4*4 4*4 4*4

6 7 8 9 10

4*4 4*4 4*4 4*4 4*4

1 2 3 4 5

30

In this section, the panels are arranged to cut vertically. Multiple types of

panels are allowed to put in each size of sheet. The process of this method is

implemented as in the following.

Step 1: Given a set of sheets
1 2{ , ,..., }iS s s s and a set of panels 1 2{ , ,..., }jP p p p . Then

sort the panels and the sheets based on the width in descending order.

Step 2: 'P is the set of panel where ' 'jp P , such that the number of ' jp with the

same width and height is equal to the demand jd of that jp with the same width and

height. Thus,
1

'
n

j

j

P d




Step 3: Each ' 'jp P , selected ' jp to put into the space at the bottom left of the sheet

is S . Then, next panels is selected to put into the space next to the previous panel on

the same strip is S in vertical line until no more panels types can be inserted in that

vertical strip, then move to next strip to cut vertically. If there are not any strips

available, move to the new sheet.

Step 4: Remove ' 'jp P that has been put.

Step 5: If  ' 0P  , end the cutting process; otherwise, go to step 3

From the same instance mentioned in section 3.2, the number of sheet, cut

for each patterns as illustrated in Figure 3.7, are 4, 1, 1, 1, and 1 respectively. The total

waste after fulfill all the demands is 1048 2in

31

5*5

5*5 5*5

7

2 4

5*5

6

8*9 8*9

5*5

1 3 5

4*4 4*4

3 6 4*4

10

4*4 4*4

2 5 4*4

9

2*11

4*4

8*9 8*9 8

4*4

1 4 7 11

32

4*4 4*4 4*4 4*4

4 8 12 16

4*4 4*4 4*4 4*4

3 7 11 15

2*11

4*4 4*4 4*4 4*4 4*4

2 6 10 14 18

4*4 4*4 4*4 4*4 4*4

1 5 9 13 17 19

2*11 2*11 2*11 2*11 2*11 2*11 2*11 2*11 2*11 2*11 2*11

1 2 3 4 5 6 7 8 9 10 11

33

Figure 3.7 Solution of (SW_PW_VC)

3.9. Minimum Sheet Width Ordering Panel Height Horizontal Cut

(MinSW_OPH_HC)

In this section, the panels are arranged to cut horizontally. Multiple types

of panels are allowed to put into each size of sheet. The process of this method is

mentioned as in the following.

Step 1: Given a set of sheets 1 2{ , ,..., }iS s s s and a set of panels 1 2{ , ,..., }jP p p p . Then

sort the panel set in descending order based on height. 'P is also the set of panel where

' 'jp P , such that the number of ' jp with the same width and height is equal to the

demand d j with the same width and height. Thus,
1

'
n

j

j

P d


 .

Step 2: Select ' 'jp P , put ' jp in each sheet is S at the bottom left corner in

horizontal line for the first strip. Then calculate the leftover width after putting the first

panel. Take the leftover width divide with each type of panel width. The panels that can

give the minimum division remainder is selected to put close to the first panel. This

process is repeated until no more panels can be filled up in the first strip. Once the

2*11

1

34

horizontal strip is filled up, move to the next strip vertically and repeat the same process

until there is no more space to place any panels ' 'jp P .

Step 3: Select
is S are used in step 2 that can give a minimum waste to cut.

Step 4: Number of the sheet ought to cut is equal to the ceiling of the smallest ratio

between the demands and the number of each panel type used in the pattern

Step 5: Remove ' 'jp P that has been put.

Step 6: If  ' 0P  , end the cutting process; otherwise, go to step 2

From the same instance mentioned in section 3.2, total number of sheet,

needs to cut for each pattern as illustrated in Figure 3.8, are 2, 4, 1, and 1 respectively.

The total waste after fulfill all the demands is 1278 2in

5*5 5*5

4*4 4*4 4*4

2*11 2*11 2*11 2*11 2*11 2*11 2*11 2*11 2*11 2*11 2*11

35

8*9

5*5

8*9

5*5

8*9

5*5

5*5 5*5

4*4

5*5 5*5

4*4

5*5 5*5

4*4

5*5 5*5

4*4

5*5 5*5

4*4

5*5 5*5

4*4

4*4 4*4 4*4 4*4 4*4

4*4 4*4 4*4 4*4 4*4

4*4 4*4 4*4 4*4 4*4

4*4 4*4 4*4 4*4 4*4

36

Figure 3.8 Solution of (MinSW_OPH_HC)

3.10. Minimum Sheet Height Ordering Panel Width Vertical Cut

(MinSH_OPW_VC)

In this section, the panels are arranged and cut vertically. Multiple types of

panels are allowed to put in each size of sheet. The process of this method is mentioned

as in the following.

Step 1: Given a set of sheets 1 2{ , ,..., }iS s s s and a set of panels 1 2{ , ,..., }jP p p p . Then

sort the panel set in descending order based on width. 'P is also the set of panel where

' 'jp P , such that the number of ' jp with the same width and height is equal to the

demand d j with the same width and height. Thus,
1

'
n

j

j

P d


 .

Step 2: Select ' 'jp P , put ' jp in each sheet is S at the bottom left corner in vertical

line for the first strip. Then calculate the leftover height after putting the first panel ' jp

. Take the leftover height divide with each type of panel height. The panels, that can

give the minimum division remainder, is selected to put above the first panel. This

process is repeated until no more panels can be filled up in the first strip. Once the

vertical strip is filled up, move to the next strip horizontally and repeat the same process

until there is no more space to place other panels ' 'jp P .

Step 3: Select is S are used in step 3 that can give a minimum waste to cut.

Step 4: Number of the sheet ought to cut is equal to the ceiling of the smallest ratio

between the demands and the number of each panel type put in the pattern

Step 5: Remove ' 'jp P that has been put.

Step 6: If  ' 0P  , end the cutting process; otherwise, go to step 3

From the same instance mention in section 3.2, the number of sheet, needs

to cut for each pattern as illustrated in Figure 3.9, are 4, 2, and 1 respectively. The total

waste after fulfill all the demands is 812 2in .

37

Figure 3.9 Solution of (MinSH_OPW_VC)

4*4 4*4 4*4

3 6 10

4*4 4*4 4*4

2 5 9

4*4

8

8*9 8*9

5*5

1 4 7

5*5

2*11 10

5*5

9

4

5*5

5*5

8

3

5*5

5*5

7

2

5*5

6

8*9

5*5

1 5

2*11 2*11 2*11 2*11 2*11 2*11 2*11

2 4 6 8 10 12 14

2*11 2*11 2*11 2*11 2*11 2*11 2*11

1 3 5 7 9 11 13

38

 Chapter 4

4. Testing Instances

Table 4.1 illustrated a list of twenty different size of instances. These

instances are tested with ten techniques mentioned in section 3. Total instances are

grouped into three categories in accordance with the total number of sheet types and

panel types. If total different type of sheets and panels is less than 6, it is regarded as

small size instances. If it is from 7 to 20, it is regarded as medium size instances. It is a

large size instance when it is bigger than 20. CG is used as a benchmark to compare

with other 9 heuristic techniques. In addition, 2DSHC is used to compare with other 8

heuristic methods as well since it is a simple cutting patterns that applied by electronic

board cutting industrial. Both total waste and the computational time of each instance

are compared between each technique.

Table 4.1 The input for small, medium, and large size instances

Size No #Sheet type #Panel type #Demand

S
m

al
l

S
iz

e

1 2 2 219

2 2 2 301

3 2 2 575

4 2 3 537

5 3 3 552

6 4 2 300

7 5 1 209

M
ed

iu
m

 S
iz

e

8 5 6 1,492

9 5 8 2,240

10 6 2 1,329

11 6 3 219

12 8 7 596

13 9 3 2,192

14 9 9 3,068

15 11 4 4,299

16 11 5 748

L
ar

g
e

S
iz

e 17 15 12 4,429

18 16 6 1,121

19 17 27 10,611

20 26 15 3,790

39

 Chapter 5

5. Experimental Result and Discussion

In order to evaluate the performance of these techniques, we run it on

Intel® Core™ i5-4200U CPU @ 1.60GHz 2.30GHz, installed memory (RAM) 4.00GB

machine running under the Windows environment. CG technique is coded in IBM

ILOG CPLEX Optimization Studio (64bit) 12.6, and the rest of the techniques are

implemented on JAVA 7. All type of technique is used to compare with the CG

technique based on the gap given by:

(%) 100
wasteof each technique waste of CG

Gap
waste of CG


 

5.1. Comparison to column generation

For 2DSHC, 3 instances provide same amount of total waste, 17 instances

provide higher total amount of waste for 2DSHC as illustrated in Table 5.1. This

method is not really good at all to find pattern to cut since it allows only one panel type

to put in each size of sheet. However, the patterns created is simple and easy to cut.

2DHC cannot provide any better solutions at all. It is even worse for

medium and large size of instances as illustrated in Table 5.1. This method cannot find

a good pattern. When a sheet set and a panel set are sorted in order from the highest to

the shortest based on height, only the first sheet is selected to cut since each sheet has

unlimited capacity in stock. For instance 15, the gap of waste goes up to 24,344.5%.

This gap might be reduced, if other sheet type is selected.

2DVC also cannot provide any better solutions at all. It is even worse for

medium and large size of instances as illustrated in Table 5.1. This method cannot find

a good pattern. When a sheet set and a panel set are sorted in order from the highest to

the shortest based on height and width respectively, only the first sheet is selected to

cut since each sheet has unlimited capacity in stock. For instance 15, the gap of waste

goes up to 23,302.8%. This gap might be reduced, if other sheet type is selected.

40

2DHI come from a combination between 2DSHC and 2DHC. 5 instances

provide same amount of waste, 11 instances provide a higher waste, and 4 instances

provide lower wastes as illustrated in Table 5.1. This technique is better than 2DHC

because it can explore additional sheets with a minimum waste to cut, and more than

one panel type is allowed to put into each types of sheet if the space is large enough.

2DVI come from a combination between 2DSHC and 2DVC. 5 instances

provide same amount of waste, 11 instances provide higher waste, and 4 instances

provide lower wastes as illustrated in Table 5.1. This technique is better than 2DHC

because it can explore additional sheets with a minimum waste to cut, and more than

one panel type is allowed to put into each types of sheet if the space is large enough.

SW_PH_HC cannot provide good solution. 2 instances provide same

amount of waste, and other 18 instances provide bad pattern with high amount of waste

as illustrated in Table 5.2. When a sheet set is sorted based on width, and a panel set is

sorted based on height from the highest one to the shortest one, only the first sheet is

selected to cut since each sheet has unlimited capacity in stock.

SW_PW_VC cannot provide good solution. 2 instances provide same

amount of waste, and other 18 instances provide bad pattern with high amount of waste

as illustrated in Table 5.2. When a sheet set and a panel set are sorted based on width

from the highest one to the shortest one, only the first sheet is selected to cut since each

sheet has unlimited capacity in stock.

MinSW_OPH_HC provides same amount of waste for 3 instances. 15

instances provide higher waste, and 2 instances get lower wastes or can find a better

pattern as illustrated in Table 5.2. Actually, after a panel set is sorted in descending

order in accordance with height, only the panel type provided a minimum sheet width

is selected to put from iteration to iteration to cut horizontally. This reason can make

the given pattern good, but data contain in each tested instances maybe not appropriate

to use this technique.

MinSH_OPW_VC provides same amount of waste for 5 instances. 11

instances provide higher waste, and 4 instances get lower wastes or can find a better

pattern as illustrated in Table 5.2. After a panel set is sorted in descending order in

accordance with width, only the panel type provided a minimum sheet height is selected

to put from iteration to iteration to cut horizontally. This reason can make the given

41

pattern good. Even some instances provide higher amount of waste, the gap is not much

different.

From this comparison in Table 5.1 and Table 5.2, four out of nine

techniques can provide better solution in some instances. They are 2DHI, 2DVI,

MinSW_OPH_HC, and MinSH_OPW_VC. These four technique are compared with

each other in Table 5.3.

5.2. Comparison to 2D Simple Heuristic Cutting

2DHC can provide a better pattern for 1 instance, same pattern for 1

instance, and other 18 instances cannot provide a better solution as illustrated in Table

5.1.

2DVC can provide a better pattern for 1 instance, and other 19 instances

cannot provide a better solution as illustrated in Table 5.1.

For 2DHI, 7 instances can provide the same amount of waste, 12 instances

can provide a better pattern, and only 1 instance that provide a bad pattern as illustrated

in Table 5.1.

For 2DVI, 9 instances can provide the same amount of waste, 11 instances

can provide a better pattern as illustrated in Table 5.1.

For SW_PH_HC, 6 instances provide a better pattern, 14 instances provide

a worse patterns as illustrated in Table 5.2.

SW_PW_VC, 4 instances provide a better pattern, 16 instances provide a

worse patterns as illustrated in Table 5.2.

For MinSW_OPH_HC, 3 instances provide the same amount of waste, 7

instances provide higher amount of waste, and 10 instances provide lower amount of

wastes as illustrated in Table 5.2.

For MinSH_OPW_VC, 6 instances provide the same amount of waste, and

the other 14 instances provide lower amount of waste as illustrated in .

From a comparison to 2D simple heuristic cutting we found that all

proposed technique is not bad. There are at least a few instances that can provide better

solution. Most of instances canTable 5.2 find a good pattern in 2DHI, 2DVI,

MinSW_OPH_HC, and MinSH_OPW_VC technique.

42

T
a

b
le

 5
.1

 T
h

e
o
u

tp
u

t
o

f
C

G
,
2

D
S
H

C
,

2
D

H
C

,
2

D
V

C
,

2
D

H
I,

 a
n

d
 2

D
V

I
in

cl
u
d

in
g

 w
a

st
e,

 t
im

e,
 a

n
d

 g
a

p

2
D

V
I

G
ap

(%
)

0

0

0

4
.3

0

7
.6

0
.4

1
0

3

2
.2

-0
.9

3
1

.7

4
.1

-1
4

.4

3
1

.3

7
8

.9

0

-1
.2

5
.4

1
3

-1
0

.4

T
im

e

(S
ec

)

1
.3

1
.3

1
.3

1
.3

1
.4

1
.3

1
.3

1
.5

1
.5

1
.4

1
.3

1
.3

1
.5

1
.6

1
.6

1
.4

1
.8

1
.4

2
.9

1
.7

W
as

te

(S
q

 I
n

)

5
8

,2
2
8

.9
0

1
1

5
,3

6
4

.4
0

9
8

,3
7
0

.8
0

3
6

,6
2
4

.9
0

2
9

,1
0
8

.2
0

3
4

,2
2
4

.0
0

7
0

,3
7
6

.6
0

5
5

8
,7

1
1

.6
0

9
5

,6
9
2

.2
0

1
9

2
,8

0
8

.5
0

9
,9

7
6

.9
0

4
3

,7
8
5

.0
0

9
8

,7
7
9

.6
0

1
,2

6
4

,9
6
1

.8

0

1
5

,5
5
6

.5
0

2
8

,9
0
8

.0
0

6
7

,5
5
0

.3
0

3
3

,4
7
5

.9
0

5
1

0
,6

2
4

.0
0

1
3

4
,1

7
4

.4
0

2
D

H
I

G
ap

(%
)

0

0

0

4
9

.4

0

7
.6

0
.4

0
.1

2
.2

-0
.9

-1
.3

4
.1

1
2

2

3
1

2
6

0

3

2
5

.1

-1
7

.9

-5
.2

T
im

e

(S
ec

)

1
.4

1
.4

1
.3

1
.3

1
.4

1
.2

1
.2

1
.5

1
.5

1
.3

1
.4

1
.5

1
.5

1
.6

1
.6

1
.4

1
.6

1
.5

2
.2

1
.7

W
as

te

(S
q

 I
n

)

5
8

,2
2
8

.9
0

1
1

5
,3

6
4

.4
0

9
8

,3
7
0

.8
0

5
2

,4
9
1

.9
0

2
9

,1
0
8

.2
0

3
4

,2
2
4

.0
0

7
0

,3
7
6

.6
0

2
7

4
,9

0
4

.4
0

9
5

,6
9
2

.2
0

1
9

2
,8

0
8

.5
0

7
,4

8
0

.9
0

4
3

,7
8
5

.0
0

2
5

6
,3

6
6

.6
0

1
,2

6
2

,0
8
1

.8

0

1
0

,9
5
4

.0
0

2
8

,9
0
8

.0
0

7
0

,3
9
0

.6
0

3
9

,7
5
1

.6
0

3
7

1
,0

6
4

.5
0

1
4

1
,8

9
4

.2
0

2
D

V
C

G
ap

(%
)

1
.9

2
5

.1

1
5

7
.1

7
1

.3

3
4

0
.4

0

7
.9

6
4

9
.3

6
6

1
.3

8
5

.8

4
4

3
.8

2
9

.7

1
7

9
.6

5
2

.9

2
3

,3
0
2

.8

0

2
9

1
.4

3
,3

3
7

.6
0

4
0

6
.9

1
1

5
.1

7
1

3
.7

T
im

e

(S
ec

)

1
.4

1
.6

1
.6

1
.6

1
.6

1
.5

1
.4

1
.9

2
.2

1
.8

1
.4

1
.6

2

2
.3

2
.7

1
.7

2
.9

1
.8

3
.8

2
.6

W
as

te

(S
q

 I
n

)

5
9

,3
6
2

.9
0

1
4

4
,3

5
6

.4
0

2
5

2
,9

1
8

.8
0

6
0

,1
8
3

.9
0

1
2

8
,1

8
0

.2
0

3
1

,8
0
0

.0
0

7
5

,6
2
6

.6
0

2
,0

5
8

,1
2
3

.6

0

7
1

3
,1

4
5

.0
0

3
6

1
,5

2
8

.5
0

4
1

,2
0
0

.9
0

5
4

,5
6
1

.0
0

3
2

2
,4

8
3

.6
0

1
,4

7
3

,1
8
5

.8

0

2
,0

3
4

,8
4
6

.5

0

1
1

3
,1

5
5

.0
0

2
,3

5
0

,0
4
7

.3

0

1
6

1
,0

5
0

.4
0

9
7

1
,6

8
5

.6
0

1
,2

1
8

,5
2
3

.2

0

2
D

H
C

G
ap

(%
)

1
.9

0

1
5

7
.1

7
1

.3

3
4

0
.4

0

7
.9

4
5

8
.5

6
6

1
.3

8
5

.8

4
4

3
.8

2
9

.7

1
7

9
.6

5
2

.9

2
4

,3
4
4

.5

0

2
9

1
.4

3
,3

3
3

.4
0

4
0

6
.9

1
0

8
.9

1
4

4

T
im

e

(S
ec

)

1
.4

1
.4

1
.8

1
.6

1
.5

1
.4

1
.5

2
.1

1
.8

1
.6

1
.4

1
.6

2

2
.1

2
.4

1
.6

2
.2

1
.7

3
.3

2
.2

W
as

te

(S
q

 I
n

)

5
9

,3
6
2

.9
0

1
1

5
,3

6
4

.4
0

2
5

2
,9

1
8

.8
0

6
0

,1
8
3

.9
0

1
2

8
,1

8
0

.2
0

3
1

,8
0
0

.0
0

7
5

,6
2
6

.6
0

1
,5

3
4

,0
5
9

.6

0

7
1

3
,1

4
5

.0
0

3
6

1
,5

2
8

.5
0

4
1

,2
0
0

.9
0

5
4

,5
6
1

.0
0

3
2

2
,4

8
3

.6
0

1
,4

7
3

,1
8
5

.8

0

2
,1

2
5

,4
2
2

.5

0

1
1

3
,1

5
5

.0
0

2
,3

4
7

,1
9
1

.3

0

1
6

1
,0

5
0

.4
0

9
4

3
,6

0
5

.6
0

3
6

5
,4

6
9

.2
0

2
D

S
H

C

G
ap

(%
)

0

0

8
8

.5

1
6

9

0

7
.6

0
.4

1
0

3

2
.2

8
0

.8

3
1

.7

4
.1

1
6

9

3
1

.9

1
1

1

7
9

.8

1
4

6

1
3

.4

2
5

.5

2
6

.5

T
im

e

(S
ec

)

1
.3

1
.3

1
.4

1
.3

1
.4

1
.3

1
.3

1
.4

1
.7

1
.5

1
.3

1
.4

1
.5

1
.6

1
.6

1
.5

1
.7

1
.6

2
.1

1
.9

W
as

te

(S
q

 I
n

)

5
8

,2
2
8

.9
0

1
1

5
,3

6
4

.4
0

1
8

5
,4

4
5

.8
0

9
4

,4
5
5

.9
0

2
9

,1
0
8

.2
0

3
4

,2
2
4

.0
0

7
0

,3
7
6

.6
0

5
5

8
,7

1
1

.6
0

9
5

,6
9
2

.2
0

3
5

1
,8

0
8

.5
0

9
,9

7
6

.9
0

4
3

,7
8
5

.0
0

3
1

0
,3

9
9

.6
0

1
,2

7
0

,3
3
7

.8

0

1
8

,3
0
0

.5
0

5
1

,9
6
2

.5
0

1
6

7
,9

0
9

.3
0

3
6

,0
1
9

.9
0

5
6

7
,0

3
6

.0
0

1
8

9
,4

5
0

.2
0

C
G

 T
im

e

(S
ec

)

1
.2

1
.8

3
.2

4
.5

9
.2

3
.4

1

6
6

.8

6
8

2
8

.4

5
.5

3
5

8
8

.8

2
0

5
.5

5
4

5
.4

6
7

.9

4
7

2
.3

8
5

.8

1
,4

6
7

.0
0

8
6

9
.4

W
as

te

(S
q

 I
n

)

5
8

,2
2
8

.9
0

1
1

5
,3

6
4

.0

0

9
8

,3
7
0

.8
0

3
5

,1
2
4

.9
0

2
9

,1
0
8

.2
0

3
1

,8
0
0

.0
0

7
0

,1
0
1

.6
0

2
7

4
,6

8
3

.0

0

9
3

,6
7
7

.4
0

1
9

4
,5

6
1

.0

0

7
,5

7
6

.9
0

4
2

,0
5
1

.0
0

1
1

5
,3

4
0

.0

0

9
6

3
,2

3
4

.0

0

8
,6

9
4

.9
0

2
8

,9
0
8

.0
0

6
8

,3
6
3

.4
0

3
1

,7
6
8

.9
0

4
5

1
,7

7
8

.8

0

1
4

9
,7

5
4

.0

0

N
u

m
b

er
 o

f

D
em

an
d

(p
an

el
)

2
1

9

3
0

1

5
7

5

5
3

7

5
5

2

3
0

0

2
0

9

1
,4

9
2

2
,2

4
0

1
,3

2
9

2
1

9

5
9

6

2
,1

9
2

3
,0

6
8

4
,2

9
9

7
4

8

4
,4

2
9

1
,1

2
1

1
0

,6
1
1

3
,7

9
0

P
an

el

(t
y

p
e)

2

2

2

3

3

2

1

6

8

2

3

7

3

9

4

5

1
2

6

2
7

1
5

S
h

ee
t

(t
y

p
e)

2

2

2

2

3

4

5

5

5

6

6

8

9

9

1
1

1
1

1
5

1
6

1
7

2
6

N
o

0

1

2

3

4

5

6

7

8

9

1
0

1
1

1
2

1
3

1
4

1
5

1
6

1
7

1
8

1
9

2
0

S
iz

e

U
n

it

Small Medium Large

43

T
a

b
le

 5
.2

 T
h

e
o
u

tp
u

t
o

f
C

G
,
2

D
S
H

C
,

2
D

H
C

_
S
W

_
P

H
,

2
D

V
C

_
S
W

_
P

W
,

M
in

S
W

_
O

P
H

_
H

C
,
a
n

d
 M

in
S

H
_

O
P

W
_

V
C

 i
n

cl
u
d

in
g

 w
a

st
e,

 t
im

e,
 a

n
d

 g
a

p

M
in

S
H

_
O

P
W

_
V

C
 G
ap

(%
)

0

0

0

4
.3

0

7
.6

0
.4

4
0

.5

2
.2

-0
.9

-1
.3

1
.6

-1
4

3
1

.3

2
6

0

-1

5
.4

1
3

.2

2
.3

T
im

e

 (
S

ec
)

1
.0

6
9

1
.0

4

1
.0

5
9

1
.1

2

1
.0

6
2

1
.0

4
8

1
.1

1
6

1
.1

2
3

1
.1

3
2

1
.0

9
6

1
.0

7
9

1
.0

9
9

1
.1

2
6

1
.1

5
4

1
.1

5
7

1
.2

0
1

1
.2

7
7

1
.1

9

1
.3

3
6

1
.2

6
3

W
as

te

(S
q

 I
n

)

5
8

2
2

8
.9

0
5

1
1

5
3

6
4

.4

9
8

3
7

0
.7

5

3
6

6
2

4
.8

8
7
5

2
9

1
0

8
.1

7

3
4

2
2

4

7
0

3
7

6
.6

3
8

5
9

8
6

.5
9

9
5

6
9

2
.2

1
9

2
8

0
8

.5

7
4

8
0

.9

4
2

7
0

5

9
8

7
7

9
.5

8
2
5

1
2

6
4

9
6

1
.7

5

1
0

9
5

4

2
8

9
0

8

6
7

6
6

6
.7

8
7
5

3
3

4
7

5
.9

2
5

5
1

1
2

9
8

.4
0
3

1
5

3
1

7
8

.1
6

M
in

S
W

_
O

P
H

_
H

C

G
ap

(%
)

9
7

.4

0

0

4
9

.4

0

2
8

7

0
.4

7
1

.5

4
4

.8

-0
.9

-1
.3

1
.6

3
.6

3
1

1
8

4

1
7

3

1
.8

1
8

9

1
0

2

1
8

.9

T
im

e

 (
S

ec
)

2
.1

7
7

1
.0

7
6

1
.1

2
7

1
.1

3
7

1
.1

6
4

1
.1

8
4

1
.0

9
6

1
.3

4
5

1
.5

5
6

1
.1

3
7

1
.1

0
1

1
.1

7
3

1
.1

6
1

1
.2

1
3

1
.3

7
6

1
.1

7
6

1
.3

9
6

1
.1

9
1

1
.9

5
6

1
.3

7
6

W
as

te

(S
q

 I
n

)

1
1

4
9

4
9

.9
0
5

1
1

5
3

6
4

.4

9
8

3
7

0
.7

5

5
2

4
9

1
.8

8
7
5

2
9

1
0

8
.1

7

1
2

3
1

1
2

7
0

3
7

6
.6

4
7

1
1

7
3

.0
9

1
3

5
6

8
5

.8

1
9

2
8

0
8

.5

7
4

8
0

.9

4
2

7
0

5

1
1

9
4

9
1

.5
8
3

1
2

6
2

0
8

1
.7

5

2
4

6
8

4
.5

7
8

8
2

1
.5

6
9

5
8

1
.7

8
7
5

9
1

7
8

0
.9

2
5

9
1

4
1

3
6

.6
0
3

1
7

8
0

3
9

.6
6

S
W

_
P

W
_

V
C

 G
ap

(%
)

1
.9

2
5

.1

0

7
1

.3

3
4

0

0

7
.2

1
4

1

6
6

1

1
2

1

4
4

4

2
9

.7

1
8

0

5
2

.9

9
7

1

2
8

1

6
6

.1

4
0

7

1
1

5

1
4

4

T
im

e

 (
S

ec
)

1
.1

8

1
.2

1
.3

1
.2

6

1
.2

9

1
.1

8

1
.1

9

1
.4

4

1
.4

6

1
.3

3

1
.1

9

1
.5

5

1
.4

7

1
.6

4

1
.4

7

1
.2

9

1
.6

3

1
.4

2
.3

3

1
.6

W
as

te

(S
q

 I
n

)

5
9

3
6

2
.9

0
5

1
4

4
3

5
6

.4

9
8

3
7

0
.7

5

6
0

1
8

3
.8

8
8

1
2

8
1

8
0

.1
7

3
1

8
0

0

7
5

1
3

6
.6

6
6

0
5

0
9

.0
9

7
1

3
1

4
5

4
3

0
0

6
8

4
1

2
0

0
.9

5
4

5
6

1

3
2

2
4

8
3

.5
8

1
4

7
3

1
8

5
.8

9
3

1
0

2
.5

1
1

0
0

6
9

.5

1
1

3
5

3
3

.2
9

1
6

1
0

5
0

.4
3

9
7

1
6

8
5

.6

3
6

5
4

6
9

.1
6

S
W

_
P

H
_

H
C

 G
ap

(%
)

1
.9

2
5

.1

0

7
1

.3

3
4

0

0

7
.2

2
3

.4

6
6

1

1
2

1

4
4

4

2
9

.7

1
8

0

5
2

.9

5
1

.1

2
8

1

6
6

.1

4
0

7

1
0

9

1
4

4

T
im

e

 (
S

ec
)

1
.2

7

1
.2

1

1
.4

3

1
.2

5

1
.2

2

1
.1

7

1
.1

4

1
.6

4

1
.5

3

1
.5

3

1
.1

6

1
.3

4

1
.6

6

1
.5

9

1
.5

5

1
.3

1
.6

5

1
.3

8

2
.1

3

1
.6

7

W
as

te

(S
q

 I
n

)

5
9

3
6

2
.9

0
5

1
4

4
3

5
6

.4

9
8

3
7

0
.7

5

6
0

1
8

3
.8

8
8

1
2

8
1

8
0

.1
7

3
1

8
0

0

7
5

1
3

6
.6

3
3

8
8

2
4

.0
9

7
1

3
1

4
5

4
3

0
0

6
8

4
1

2
0

0
.9

5
4

5
6

1

3
2

2
4

8
3

.5
8

1
4

7
3

1
8

5
.8

1
3

1
3

4
.5

1
1

0
0

6
9

.5

1
1

3
5

3
3

.2
9

1
6

1
0

5
0

.4
3

9
4

3
6

0
5

.6

3
6

5
4

6
9

.1
6

2
D

S
H

C

G
ap

(%
)

0

0

8
8

.5

1
6

9

0

7
.6

0
.4

1
0

3

2
.2

8
0

.8

3
1

.7

4
.1

1
6

9

3
1

.9

1
1

1

7
9

.8

1
4

6

1
3

.4

2
5

.5

2
6

.5

T
im

e

 (
S

ec
)

1
.3

1
.3

1
.4

1
.3

1
.4

1
.3

1
.3

1
.4

1
.7

1
.5

1
.3

1
.4

1
.5

1
.6

1
.6

1
.5

1
.7

1
.6

2
.1

1
.9

W
as

te

(S
q

 I
n

)

5
8

,2
2
8

.9
0

1
1

5
,3

6
4

.4
0

1
8

5
,4

4
5

.8
0

9
4

,4
5
5

.9
0

2
9

,1
0
8

.2
0

3
4

,2
2
4

.0
0

7
0

,3
7
6

.6
0

5
5

8
,7

1
1

.6
0

9
5

,6
9
2

.2
0

3
5

1
,8

0
8

.5
0

9
,9

7
6

.9
0

4
3

,7
8
5

.0
0

3
1

0
,3

9
9

.6
0

1
,2

7
0

,3
3
7

.8
0

1
8

,3
0
0

.5
0

5
1

,9
6
2

.5
0

1
6

7
,9

0
9

.3
0

3
6

,0
1
9

.9
0

5
6

7
,0

3
6

.0
0

1
8

9
,4

5
0

.2
0

C
G

T
im

e

(S
ec

)

1
.2

1
.8

3
.2

4
.5

9
.2

3
.4

1

6
6

.8

6
8

2
8

.4

5
.5

3
5

8
8

.8

2
0

5
.5

5
4

5
.4

6
7

.9

4
7

2
.3

8
5

.8

1
,4

6
7

.0
0

8
6

9
.4

W
as

te

(S
q

 I
n

)

5
8

,2
2
8

.9
0

1
1

5
,3

6
4

.0
0

9
8

,3
7
0

.8
0

3
5

,1
2
4

.9
0

2
9

,1
0
8

.2
0

3
1

,8
0
0

.0
0

7
0

,1
0
1

.6
0

2
7

4
,6

8
3

.0
0

9
3

,6
7
7

.4
0

1
9

4
,5

6
1

.0
0

7
,5

7
6

.9
0

4
2

,0
5
1

.0
0

1
1

5
,3

4
0

.0
0

9
6

3
,2

3
4

.0
0

8
,6

9
4

.9
0

2
8

,9
0
8

.0
0

6
8

,3
6
3

.4
0

3
1

,7
6
8

.9
0

4
5

1
,7

7
8

.8
0

1
4

9
,7

5
4

.0
0

N
u

m
b

er
 o

f

D
em

an
d

(p
an

el
)

2
1

9

3
0

1

5
7

5

5
3

7

5
5

2

3
0

0

2
0

9

1
,4

9
2

2
,2

4
0

1
,3

2
9

2
1

9

5
9

6

2
,1

9
2

3
,0

6
8

4
,2

9
9

7
4

8

4
,4

2
9

1
,1

2
1

1
0

,6
1
1

3
,7

9
0

P
an

el

(t
y

p
e)

2

2

2

3

3

2

1

6

8

2

3

7

3

9

4

5

1
2

6

2
7

1
5

 S
h

ee
t

(t
y

p
e)

2

2

2

2

3

4

5

5

5

6

6

8

9

9

1
1

1
1

1
5

1
6

1
7

2
6

N
o

0

1

2

3

4

5

6

7

8

9

1
0

1
1

1
2

1
3

1
4

1
5

1
6

1
7

1
8

1
9

2
0

S
iz

e

U
n

it

Small Medium Large

44

5.3. Comparison of computational time

In CG technique, when the size of the problems are larger and larger,

the computational time increases exponentially. The pattern can be provided in a

sort computational time even for large size instances for 2DSHC and all proposed

heuristic techniques.

5.4. Comparison of 2DHI, 2DVI, MinSW_OPH_HC, MinSH_OPW_VC

Four techniques namely: 2DHI, 2DVI, MinSW_OPH_HC, and

MinSH_OPW_VC are compared with each other in term of waste as illustrated in Table

5.3. Each of these four techniques provides a good pattern for a few instances. It is

better than column generation, and many instances is better than 2D simple heuristic

cutting. Among these four techniques, MinSW_OPH_HC can provide only 2 instances

which is better than the column generation while the other three techniques can provide

up to 4 instances for each technique.

It would be great to combine 2DHI with 2DVI or MinSW_OPW_VC

because the total number of instances provide a better pattern will go up to 6 instances.

Even some instances cannot provide better pattern, but those patterns do not provide a

large area of waste at all. To the best of our knowledge, 2DHI, 2DVI,

MinSW_OPH_HC, and MinSH_OPW_VC are not overlapped each other. It depends

on the size of each panel type and sheet type in each instance.

45

T

a
b

le
 5

.3
 W

a
st

e
co

m
p
a

ri
so

n
 o

f
2
D

H
I,

 2
D

V
I,

 M
in

S
W

_
O

P
H

_
H

C
,
a
n

d
 M

in
S

W
_

O
P

W
_

V
C

M
in

S
H

_
O

P
W

_
V

C

G
ap

(%
)

0

0

0

4
.2

7

0

7
.6

2

0
.3

9

4
0

.5
2

2
.1

5

-0
.9

-1
.2

7

1
.5

6

-1
4

.4

3
1

.3
2

2
5

.9
8

0

-1
.0

2

5
.3

7

1
3

.1
7

2
.2

9

W
as

te

(S
q

 I
n

)

5
8

2
2

8
.9

0
5

1
1

5
3

6
4

.4

9
8

3
7

0
.7

5

3
6

6
2

4
.8

8
7
5

2
9

1
0

8
.1

7

3
4

2
2

4

7
0

3
7

6
.6

3
8

5
9

8
6

.5
9

9
5

6
9

2
.2

1
9

2
8

0
8

.5

7
4

8
0

.9

4
2

7
0

5

9
8

7
7

9
.5

8
2
5

1
2

6
4

9
6

1
.7

5

1
0

9
5

4

2
8

9
0

8

6
7

6
6

6
.7

8
7
5

3
3

4
7

5
.9

2
5

5
1

1
2

9
8

.4
0
3

1
5

3
1

7
8

.1
6

M
in

S
W

_
O

P
H

_
H

C

G
ap

(%
)

9
7

.4
1

0

0

4
9

.4
4

0

2
8

7
.1

0
.3

9

7
1

.5
3

4
4

.8
4

-0
.9

-1
.2

7

1
.5

6

3
.6

3
1

.0
3

1
8

3
.9

1
7

2
.7

1
.7

8

1
8

8
.9

1
0

2
.3

1
8

.8
9

W
as

te

(S
q

 I
n

)

1
1

4
9

4
9

.9
0
5

1
1

5
3

6
4

.4

9
8

3
7

0
.7

5

5
2

4
9

1
.8

8
7
5

2
9

1
0

8
.1

7

1
2

3
1

1
2

7
0

3
7

6
.6

4
7

1
1

7
3

.0
9

1
3

5
6

8
5

.8

1
9

2
8

0
8

.5

7
4

8
0

.9

4
2

7
0

5

1
1

9
4

9
1

.5
8
3

1
2

6
2

0
8

1
.7

5

2
4

6
8

4
.5

7
8

8
2

1
.5

6
9

5
8

1
.7

8
7
5

9
1

7
8

0
.9

2
5

9
1

4
1

3
6

.6
0
3

1
7

8
0

3
9

.6
6

2
D

V
I

G
ap

(%
)

0

0

0

4
.2

7

0

7
.6

2

0
.3

9

1
0

3
.4

2
.1

5

-0
.9

3
1

.6
8

4
.1

2

-1
4

.4

3
1

.3
2

7
8

.9
2

0

-1
.1

9

5
.3

7

1
3

.0
3

-1
0

.4

W
as

te

(S
q

 I
n

)

5
8

,2
2
8

.9
1

1
1

5
,3

6
4

.4
0

9
8

,3
7
0

.7
5

3
6

,6
2
4

.8
9

2
9

,1
0
8

.1
7

3
4

,2
2
4

.0
0

7
0

,3
7
6

.6
0

5
5

8
,7

1
1

.5
9

9
5

,6
9
2

.2
0

1
9

2
,8

0
8

.5
0

9
,9

7
6

.9
0

4
3

,7
8
5

.0
0

9
8

,7
7
9

.5
8

1
,2

6
4

,9
6
1

.7
5

1
5

,5
5
6

.5
0

2
8

,9
0
8

.0
0

6
7

,5
5
0

.2
9

3
3

,4
7
5

.9
3

5
1

0
,6

2
4

.0
0

1
3

4
,1

7
4

.4
2

2
D

H
I

G
ap

(%
)

0

0

0

4
9

.4
4

0

7
.6

2

0
.3

9

0
.0

8

2
.1

5

-0
.9

-1
.2

7

4
.1

2

1
2

2
.3

3
1

.0
3

2
5

.9
8

0

2
.9

7

2
5

.1
3

-1
7

.8
7

-5
.2

5

W
as

te

(S
q

 I
n

)

5
8

,2
2
8

.9
1

1
1

5
,3

6
4

.4
0

9
8

,3
7
0

.7
5

5
2

,4
9
1

.8
9

2
9

,1
0
8

.1
7

3
4

,2
2
4

.0
0

7
0

,3
7
6

.6
0

2
7

4
,9

0
4

.3
8

9
5

,6
9
2

.2
0

1
9

2
,8

0
8

.5
0

7
,4

8
0

.9
0

4
3

,7
8
5

.0
0

2
5

6
,3

6
6

.5
8

1
,2

6
2

,0
8
1

.7
5

1
0

,9
5
4

.0
0

2
8

,9
0
8

.0
0

7
0

,3
9
0

.6
4

3
9

,7
5
1

.6
1

3
7

1
,0

6
4

.5
4

1
4

1
,8

9
4

.2
2

C
G

W
as

te

(S
q

 I
n

)

5
8

,2
2
8

.9
0

1
1

5
,3

6
4

.0
0

9
8

,3
7
0

.8
0

3
5

,1
2
4

.9
0

2
9

,1
0
8

.2
0

3
1

,8
0
0

.0
0

7
0

,1
0
1

.6
0

2
7

4
,6

8
3

.0
0

9
3

,6
7
7

.4
0

1
9

4
,5

6
1

.0
0

7
,5

7
6

.9
0

4
2

,0
5
1

.0
0

1
1

5
,3

4
0

.0
0

9
6

3
,2

3
4

.0
0

8
,6

9
4

.9
0

2
8

,9
0
8

.0
0

6
8

,3
6
3

.3
8

3
1

,7
6
8

.9
0

4
5

1
,7

7
8

.8
0

1
4

9
,7

5
4

.0
1

D
em

an
d

(p
an

el
)

2
1

9

3
0

1

5
7

5

5
3

7

5
5

2

3
0

0

2
0

9

1
,4

9
2

2
,2

4
0

1
,3

2
9

2
1

9

5
9

6

2
,1

9
2

3
,0

6
8

4
,2

9
9

7
4

8

4
,4

2
9

1
,1

2
1

1
0

,6
1
1

3
,7

9
0

P
an

el

(t
y

p
e)

2

2

2

3

3

2

1

6

8

2

3

7

3

9

4

5

1
2

6

2
7

1
5

N
u

m
b

er
 o

f

S
h

ee
t

(t
y

p
e)

2

2

2

2

3

4

5

5

5

6

6

8

9

9

1
1

1
1

1
5

1
6

1
7

2
6

N
o

0

1

2

3

4

5

6

7

8

9

1
0

1
1

1
2

1
3

1
4

1
5

1
6

1
7

1
8

1
9

2
0

S
iz

e

U
n

it

Small Medium Large

46

Chapter 6

6. Conclusions and Recommendations

6.1. Conclusion

In this thesis, a set of rectangular panels in small size is required to cut from

a set of rectangular sheet in big size. Paper, metal bars, sheets, hardboards, leather, and

cloth are needed to cut. Only Two-Dimensional Rectangular Guillotine Cutting are

taken into account. Eight different techniques namely: 2DHC, 2DVC, 2DHI, 2DVI,

SW_PH_HC, SW_PW_VC, MinSW_OPH_HC, and MinSH_OPW_VC techniques are

proposed:

Firstly, 2D horizontal construction technique. A sheet set and a panel set

are sorted based on height from the highest to the shortest one. Then each panel is

picked to put into the sheet horizontally. Longitude is applied to each created pattern.

Secondly, 2D vertical construction technique. A sheet set is sorted in

descending order based on height, and a panel set is sorted in descending order based

on width. Then each panel is selected to put into each sheet vertically. Latitude cut is

applied to each created pattern.

Thirdly, 2D horizontal improvement. It come from a combination of 2D

simple heuristic cutting and 2D horizontal construction. A panel set is sorted based on

height from the highest to the shortest one. Each panel is picked to put horizontally into

each sheet type until no more space to fill in. A pattern with a minimum waste to

selected to cut horizontally. This process is needed to do repeatedly until all the demand

is fulfilled.

Fourthly, 2D vertical improvement. It come from a combination of 2D

simple heuristic cutting and 2D vertical construction. A panel set is sorted based on

width from the highest to the shortest one. Each panel is picked to put vertically into

each sheet type until no more space to fill in. A pattern with a minimum waste to

selected to cut vertically. This process is needed to do repeatedly until all the demand

is fulfilled.

47

Fifthly, Sheet Width Panel Height Horizontal Cut technique. A sheet set is

sorted based on width, and a panel set is sorted based on height from the highest to the

shortest one. Then each panel is selected to put into the sheet horizontally. Longitude

cut is applied to each created patterns.

Sixthly, Sheet Width Panel Width Vertical Cut technique. A sheet set is

sorted based on width, and a panel set is also sorted based on width from the highest to

the shortest one. Then each panel is selected to put into the sheet vertically. Latitude

cut is applied to each created patterns.

Seventhly, Minimum Sheet Width Ordering Panel Height Horizontal Cut

technique. A panel set is sorted in accordance with height. The first panels is selected

to put in a longitude way into each sheet type in a sheet set to cut horizontally. Leftover

width of each sheet is calculated to divide with each panel width. The panel that given

the smallest remainder is picked to put after the first selected panel. This process needed

to do repeatedly. Only the pattern that provide a minimum total waste is kept to cut.

Eighthly, Minimum Sheet Height Ordering Panel Width Vertical cut. A

panel set is sorted in accordance with width. Then the first panels is selected to put in a

latitude way into each sheet type in a sheet set to cut vertically. Leftover height of each

sheet is calculated to divide with each panel width. The panel that given the smallest

remainder is selected to put on the first selected panel vertically. This process needs to

do repeatedly. Only the pattern that provide a minimum total waste is kept to cut.

The output of these eight proposed techniques are evaluated by comparing

with Column Generation, which is used as a benchmark, and 2D Simple Heuristic

Cutting, a simple cutting method, in term of both total waste and computational time.

Twenty different size of instances are tested with these 10 techniques. The

result indicates that all proposed techniques can provide a better patterns in some

instances compared to 2D simple heuristic cutting. Only 4 out of 8 proposed techniques

can provide some good pattern comparing to column generation. They are 2D

horizontal improvement, 2D vertical improvement, Minimum Sheet Width Ordering

Panel Height Horizontal Cut method, and the Minimum Sheet Height Ordering Panel

Width Vertical cut. These 4 techniques are not overlapped each other. It totally depends

on the size of sheet in a sheet set and the size of panel in the panel set. It would be great

48

if we combine these four techniques together. Only the best pattern from each technique

of each instance is selected to cut.

All proposed techniques can provide the pattern of cutting in a very short

computational time. The computational time increases exponentially for column

generation technique when the size of the instance is bigger and bigger.

6.2. Recommendation for Further Study

For further study, 2D 3stage can be taken into consideration. In additional,

this problem should be applied by using meta-heuristic technique as well. Some

scholars suggested meta-heuristics as in the following. They are Harmony Search

Algorithm (HSA) proposed by Zong Woo Geem et al. (2001), Genetic Algorithms

(GAs) proposed by Holland (1975), Simulated Annealing (SA) proposed by

Kirkpatrick and Vecchi (1983), Particle Swarm Optimization (PSO) proposed by

Kennedy and Eberhart (1995), Bee Algorithms (BA) proposed by Pham et al. (2006),

Ant System (AS) proposed by Drigo et al. (1996), or Tabu Search (TS) proposed by

Glover (1977) to help exploring further good pattern.

49

References

Alvarez-Valdes, R., Parajon, A., & Tamarit, J. M. (2002). A computational study of

LP-based heuristic algorithms for two-dimensional guillotine cutting stock

problems. OR Spectrum, 24(2), 179-192. doi: 10.1007/s00291-002-0093-3

Andrade, R., Birgin, E. G., & Morabito, R. (2013). Two-stage two-dimensional

guillotine cutting problems with usable leftovers. Department of Computer

Science, Institute of Mathematics and Statistics, University of Sao Paulo, Brazil.

Ayachi.I, Kammarti.R, Ksouri.M, & Borne.P. (2010). Harmony Search Algorithm for

the Container Storage Problem. 8th International Conference of Modeling and

Simulation.

Cerqueira, G. R. L., & Yanasse, H. H. (2009). A pattern reduction procedure in a one-

dimensional cutting stock problem by grouping items according to their

demands. Journal of Computational Interdisciplinary Sciences, 1(2), 159-164.

Cui, Y. (2004). Generating optimal T-shape cutting patterns for rectangular blanks.

Proceedings of the Institution of Mechanical Engineers, Part B: Journal of

Engineering Manufacture, 218(8), 857-866.

Cui, Y. (2012a). A CAM system for one-dimensional stock cutting. Advances in

Engineering Software, 47(1), 7-16. doi: 10.1016/j.advengsoft.2011.12.004

Cui, Y. (2012b). Fast heuristic for constrained homogenous T-shape cutting patterns.

Applied Mathematical Modelling, 36(8), 3696-3711. doi:

10.1016/j.apm.2011.11.005

Cui, Y. (2012c). A new dynamic programming procedure for three-staged cutting

patterns. Journal of Global Optimization, 55(2), 349-357. doi: 10.1007/s10898-

012-9930-3

Cui, Y., & Huang, B. (2012). Heuristic for constrained T-shape cutting patterns of

rectangular pieces. Computers & Operations Research, 39(12), 3031-3039. doi:

10.1016/j.cor.2012.03.001

Cui, Y., & Liu, Z. (2007). T-shape homogenous block patterns for the two-dimensional

cutting problem. Journal of Global Optimization, 41(2), 267-281. doi:

10.1007/s10898-007-9252-z

50

Cui, Y., Yang, L., Zhao, Z., Tang, T., & Yin, M. (2013). Sequential grouping heuristic

for the two-dimensional cutting stock problem with pattern reduction.

International Journal of Production Economics, 144(2), 432-439. doi:

10.1016/j.ijpe.2013.03.011

Cui, Y., & Zhao, Z. (2013). Heuristic for the rectangular two-dimensional single stock

size cutting stock problem with two-staged patterns. European Journal of

Operational Research, 231(2), 288-298. doi: 10.1016/j.ejor.2013.05.042

Drigo, M., Maniezzo, V., & Colorni, A. (1996). The ant system: optimization by a

colony of cooperation agents. IEEE Transactions of Systems, Man, and

Cybernetics(Part B), 29-41.

Geem, Z. W. (2006). Improved harmony search from ensemble of music players. Paper

presented at the Knowledge-Based Intelligent Information and Engineering

Systems.

Geem, Z. W. (2008). Harmony Search Applications in Industry. In B. Prasad (Ed.), Soft

Computing Applications in Industry (Vol. 226, pp. 117-134): Springer Berlin

Heidelberg.

Geem, Z. W., Kim, J. H., & Loganathan, G. (2001). A new heuristic optimization

algorithm: harmony search. Simulation, 76(2), 60-68.

Geem, Z. W., Lee, K. S., & Park, Y. (2005). Application of harmony search to vehicle

routing. American Journal of Applied Sciences, 2(12), 1552.

Gilmore, P. C., & Gomory, R. E. (1965). Multistage cutting stock problems of two and

more dimensions. Operation Research, 13, 94-120.

Glover, F. (1977). Heuristics for integer programming using surrogate constraints.

Decision Sciences, 8(1), 156-166.

Holland, J. (1975). Adaptation in natural and artificial systems. University of Michigan

Press. Ann Arbor, 1(975), 1.

Kennedy, J., & Eberhart, R. (1995, Nov/Dec 1995). Particle swarm optimization. Paper

presented at the Neural Networks, 1995. Proceedings., IEEE International

Conference on.

Kirkpatrick, S., & Vecchi, M. (1983). Optimization by simmulated annealing. science,

220(4598), 671-680.

51

Lee, K. S., Geem, Z. W., Lee, S.-h., & Bae, K.-w. (2005). The harmony search heuristic

algorithm for discrete structural optimization. Engineering Optimization, 37(7),

663-684.

Lodi, A., & Monaci, M. (2003). Integer linear programming models for 2-staged two-

dimensional Knapsack problems. Mathematical Programming, 94(2-3), 257-

278. doi: 10.1007/s10107-002-0319-9

Pham, D., Ghanbarzadeh, A., Koc, E., Otri, S., Rahim, S., & Zaidi, M. (2006). The bees

algorithm-a novel tool for complex optimisation problems. Paper presented at

the Proceedings of the 2nd virtual international conference on intelligent

production machines and systems (IPROMS 2006).

Pichpibul, T., & Kawtummachai, R. (2013). Modified Harmony Search Algorithm for

the Capacitated Vehicle Routing Problem. Paper presented at the Proceedings

of the International Multi Conference of Engineers and Computer Scientists.

Suliman, S. M. A. (2006). A sequential heuristic procedure for the two-dimensional

cutting-stock problem. International Journal of Production Economics, 99(1-

2), 177-185. doi: DOI 10.1016/j.ijpe.2004.12.017

Worasucheep, C. (2011). A harmony search with adaptive pitch adjustment for

continuous optimization. International Journal of Hybrid Information

Technology, 4(4).

Yanasse, H. H., & Limeira, M. S. (2006). A hybrid heuristic to reduce the number of

different patterns in cutting stock problems. Computers & Operations Research,

33(9), 2744-2756. doi: 10.1016/j.cor.2005.02.026

Yanasse, H. H., & Morabito, R. (2008). A note on linear models for two-group and

three-group two-dimensional guillotine cutting problems. International Journal

of Production Research, 46(21), 6189-6206. doi: Doi

10.1080/00207540601011543

Yanasse, H. H., Zinober, A. S. I., & HARRIS, R. G. (1991). Two-dimensional Cutting

Stock with Multiple Stock Sizes. J. Opl Res. Soc., 42(8), 673-683.

52

7. Appendices

53

7.1. Appendix A: Java Source Code

7.1.1. 2D Simple Heuristic Cutting

package Simple_Heuristic_II;

import java.io.File;

import java.io.FileInputStream;

import java.io.FileNotFoundException;

import java.io.FileOutputStream;

import java.io.IOException;

import java.util.ArrayList;

import java.util.Collections;

import java.util.Iterator;

import org.apache.poi.ss.usermodel.Cell;

import org.apache.poi.ss.usermodel.Row;

import org.apache.poi.xssf.usermodel.XSSFSheet;

import org.apache.poi.xssf.usermodel.XSSFWorkbook;

public class KCE_Simple_Heuristic_Cutting{

public static void main(String[] args) {

long startTime = System.currentTimeMillis();

ArrayList<Double> sWidth = new ArrayList<Double>();

ArrayList<Double> sHeight = new ArrayList<Double>();

ArrayList<Double> nSheet = new ArrayList<Double>();

ArrayList<Double> pWidth = new ArrayList<Double>();

ArrayList<Double> pHeight = new ArrayList<Double>();

ArrayList<Double> nPanel = new ArrayList<Double>();

ArrayList<Double> sLeftOverArea = new ArrayList<Double>();

String excelFile = "D:\\Input and output of heuristics based on height_KCE.xlsx";

System.out.println("ArrayList in row and column set: ");

ReadExcel(sWidth, sHeight, nSheet, pWidth, pHeight, nPanel, excelFile);

ArrayList<Double> sheetWidth = new ArrayList<Double>();

ArrayList<Double> sheetHeight = new ArrayList<Double>();

ArrayList<Double> panelWidth = new ArrayList<Double>();

ArrayList<Double> panelHeight = new ArrayList<Double>();

ArrayList<Double> overCutPanel = new ArrayList<Double>();

ArrayList<Double> overUnderCutPanel = new ArrayList<Double>();

ArrayList<Double> wasteForEachOverCutPanelForEachSheet = new

ArrayList<Double>();

ArrayList<Double> totalWastePerSheetArray = new ArrayList<Double>();

//define sheet set

System.out.println("\n" + "Sheet set: ");

54

for (int i=0; i<nSheet.size(); i++) {

for (int a=0; a<nSheet.get(i); a++) {

sheetWidth.add(sWidth.get(i));

sheetHeight.add(sHeight.get(i));

sLeftOverArea.add(sWidth.get(i) * sHeight.get(i));

System.out.print("[" +sHeight.get(i)+" x "+sWidth.get(i)+"]" + ", ");

}System.out.println();

}

//define panel set

System.out.println("\n" + "Panel set:");

for (int i=0; i<nPanel.size(); i++) {

for (int a=0; a<nPanel.get(i); a++) {

panelWidth.add(pWidth.get(i));

panelHeight.add(pHeight.get(i));

System.out.print("["+pHeight.get(i)+" x "+pWidth.get(i)+ "]" + ", ");

}System.out.println();

}

// To check and remove the big panel that we cannot put into the sheet, if we don't

have it, it might cause to error.

double maxSHeight = 0;

double maxSWidth = 0;

for (int j = 0; j < nPanel.size(); j++) {

for (int i = 0; i < nSheet.size(); i++) {

if (sHeight.get(i) > maxSHeight) {

maxSHeight = sHeight.get(i);

}

if (sWidth.get(i) > maxSWidth) {

maxSWidth = sWidth.get(i);

}

}

if (((pHeight.get(j) > maxSHeight)) || (pWidth.get(j) > maxSWidth)) {

pWidth.remove(j);

pHeight.remove(j);

nPanel.remove(j);

j--;

}

}

//To check and remove the small sheet that we cannot use to cut other panel, if we

don't have it, it might cause to error

double minPHeight = 999999999;

double minPWidth = 999999999;

for (int i = 0; i < nSheet.size(); i++) {

for (int j = 0; j < nPanel.size(); j++) {

if (minPHeight > pHeight.get(j)) {

minPHeight = pHeight.get(j);

}

if (minPWidth > pWidth.get(j)) {

55

minPWidth = pWidth.get(j);

}

}

if ((sHeight.get(i) < minPHeight) || (sWidth.get(i) < minPWidth)) {

sWidth.remove(i);

sHeight.remove(i);

nSheet.remove(i);

i--;

}

}

//here is the process of cutting

try {

FileInputStream file = new FileInputStream(new File(excelFile));

XSSFWorkbook workbook = new XSSFWorkbook(file);

XSSFSheet sheet = workbook.getSheet("Output");

Row row; // Declare row variable as Excel row.

Cell cell; // Declare cell variable as Excel cell.

System.out.println("\n" + "Here is the step of cutting: ");

ArrayList<Integer> chosenPanelIndex = new ArrayList<Integer>();

ArrayList<Integer> chosenPanelAmount = new ArrayList<Integer>();

ArrayList<Integer> usedPanelIndex = new ArrayList<Integer>();//the index of

the panel that have been cut in each type of sheet

ArrayList<Integer> usedPanelAmount = new ArrayList<Integer>();//number of

panel in each type that used to cut

ArrayList<Double> leftOverDemand = new ArrayList<Double>();//number of

demand after update with the panel number cut

ArrayList<Double> xOrdinateArray = new ArrayList<Double>();//Use to add the

x ordinate one by one then when the panel is cut then clone it to xOrdinateSelected

when the sheet is full

ArrayList<Double> yOrdinateArray = new ArrayList<Double>();

ArrayList<Double> xOrdinateSelected = new ArrayList<Double>();//use to write

the coordinate in excel

ArrayList<Double> yOrdinateSelected = new ArrayList<Double>();

ArrayList<Double> pHeightArray = new ArrayList<Double>();//Use to add the

panel cut in order one by one then clone it to pHeightSelected when the sheet cut is

full

ArrayList<Double> pWidthArray = new ArrayList<Double>();

ArrayList<Double> pHeightSelected = new ArrayList<Double>();//use to write

the panel cut in excel in accordance with the coordinate

ArrayList<Double> pWidthSelected = new ArrayList<Double>();

ArrayList<Double> panelHeightAtBeginningLevel = new ArrayList<Double>();

ArrayList<Double> panelHeightAtBeginningLevelClone = new

ArrayList<Double>();

56

double leftoverHeight;

double leftoverWidth;

boolean existingLevel = false;// New or existing level check

double currentLeftOverArea=0;

double smallestLeftOverArea=0;// Variable to store the smallest left over area of

sheet.

int smallestLeftOverSheet=0; // Store index of the smallest left over area sheet.

int numberPanelPerSheet=0;

int panelAmountWithMinimumWaste=0;

double sheetNumberNeeded;

long endTime = 0;

double xOrdinate = 0;

double yOrdinate = 0;

double w = 0;

int startRow = 2, numberingCell = 0, sHeightCell = 1, sWidthCell = 2,

pHeightCell = 3, pWidthCell = 4, demandCell = 5, wastePerSheetCell = 6,

numberPanelPerSheetCell = 7, numberSheetNeededToCut = 8, leftOverPanelCell = 9,

computeTimeCell = 10, xCell = 11, yCell = 12, overCutPanelCell = 13,

totalWastePerSheetCell = 14, wasteForCuttingCell = 15;

int r=0;

int printNo = 0;

int i=0, j=0, k=0, level = 0;

int count = 0;

double totalWastePerSheet = 0;

//this loop for pick sheet one by one from all sheet

for (j = 0; j < nPanel.size(); j++) {

smallestLeftOverArea = sWidth.get(0)*sHeight.get(0);

row = sheet.createRow(startRow + r);

for (i = 0; i < sHeight.size(); i++) {

numberPanelPerSheet = 0;

leftoverHeight = sHeight.get(i);

level = 0;

System.out.print("\n" + "Sheet: " + (i+1) + " Size: " + sWidth.get(i) + " x " +

sHeight.get(i));

currentLeftOverArea = sWidth.get(i) * sHeight.get(i);

//this loop use to define each level in a specific sheet

for (double h=leftoverHeight; h>=pHeight.get(pHeight.size()-1);

h=leftoverHeight) {

leftoverWidth = sWidth.get(i);

existingLevel = false;

ArrayList<Double>newPWidth = new ArrayList<Double>();

ArrayList<Double>newPHeight = new ArrayList<Double>();

ArrayList<Double>newNPanel = new ArrayList<Double>();

if (sHeight.get(i) == leftoverHeight) {//use to start the coordinate of y

yOrdinate = 0;

}

57

panelHeightAtBeginningLevel.add(pHeight.get(0));// Just want to add the

first panel before other panel add in

for (int l = 0; l < pHeight.size(); l++) {// use to continue to the next level by

increase y

if (sHeight.get(i)!= leftoverHeight) {

if (pHeight.get(l) <= leftoverHeight) {

yOrdinate = yOrdinate + panelHeightAtBeginningLevelClone.get(1);

break;

}

if (pHeight.get(l) > leftoverHeight){

continue;

}

}

}

level += 1;

System.out.println();

System.out.print("\tLevel: " + level + " |");

//to check the panel in case that it satisfies only one criteria like sample 34

if (existingLevel == false && ((leftoverHeight>=pHeight.get(j) &&

leftoverWidth>=pWidth.get(j)))){

existingLevel = true;

} else {

newPWidth = (ArrayList)pWidth.clone();

newPHeight =(ArrayList)pHeight.clone();

newNPanel = (ArrayList)nPanel.clone();

newPWidth.remove(pWidth.size()-1);

newPHeight.remove(pHeight.size()-1);

newNPanel.remove(nPanel.size()-1);

}

newPWidth.clear();

newPHeight.clear();

newNPanel.clear();

panelHeightAtBeginningLevelClone.clear();

//Start cutting for the first panel that put into the sheet

if (leftoverHeight >= pHeight.get(j)) {

for (w = leftoverWidth; w >= pWidth.get(j); w = leftoverWidth) { //

To do: make this loop take demand into consideration.

if (existingLevel == true && leftoverWidth>=pWidth.get(j)) {

System.out.print(" " + pWidth.get(j) + " x " + pHeight.get(j) + " |");

if (sWidth.get(i) == leftoverWidth) {

pHeightArray.add(pHeight.get(j));

pWidthArray.add(pWidth.get(j));

panelHeightAtBeginningLevel.add(pHeight.get(j));

xOrdinate = 0;

xOrdinateArray.add(xOrdinate);

58

yOrdinateArray.add(yOrdinate);

} else {

pHeightArray.add(pHeight.get(j));

pWidthArray.add(pWidth.get(j));

xOrdinate = xOrdinate + pWidthArray.get(pWidthArray.size()-2);

xOrdinateArray.add(xOrdinate);

yOrdinateArray.add(yOrdinate);

}

leftoverWidth = leftoverWidth - pWidth.get(j);

currentLeftOverArea = currentLeftOverArea-

(pWidth.get(j)*pHeight.get(j));

numberPanelPerSheet += 1;

if(usedPanelIndex.indexOf(j) == -1) {

usedPanelIndex.add(j);

usedPanelAmount.add(1);

} else {

usedPanelAmount.set(usedPanelIndex.indexOf(j),

usedPanelAmount.get(usedPanelIndex.indexOf(j))+1);//use to increase the amount of

the same panel size that put into the sheet

}

}

}

}

//Start cutting for the next panel that put into the sheet when we put other

types of panel in the same level or the next level

ArrayList<Double> nextPanelCut = new ArrayList<Double>();

panelHeightAtBeginningLevelClone =

(ArrayList)panelHeightAtBeginningLevel.clone();

panelHeightAtBeginningLevel.clear();

leftoverHeight = leftoverHeight - pHeight.get(j);

}

System.out.println();

System.out.print("Total Waste for each sheet: " + currentLeftOverArea);

System.out.print("\nPanel fit: " + numberPanelPerSheet);

System.out.println();

if (smallestLeftOverArea > currentLeftOverArea) {

smallestLeftOverArea = currentLeftOverArea;

smallestLeftOverSheet = i;

panelAmountWithMinimumWaste = numberPanelPerSheet;

pHeightSelected = (ArrayList)pHeightArray.clone();

pWidthSelected = (ArrayList)pWidthArray.clone();

xOrdinateSelected = (ArrayList)xOrdinateArray.clone();

yOrdinateSelected = (ArrayList)yOrdinateArray.clone();

chosenPanelIndex = (ArrayList)usedPanelIndex.clone();

59

chosenPanelAmount = (ArrayList)usedPanelAmount.clone();

 }

for(int ind =0; ind < chosenPanelIndex.size(); ind++) {

System.out.println("Used Index " + chosenPanelIndex.get(ind));

System.out.println("Used Amount " + chosenPanelAmount.get(ind));

}

// clear it first before selecting the next panel to cut; otherwise, it adds on the

existing data

pHeightArray.clear();

pWidthArray.clear();

xOrdinateArray.clear();

yOrdinateArray.clear();

usedPanelIndex.clear();

usedPanelAmount.clear();

}

System.out.println();

System.out.println(panelAmountWithMinimumWaste + " panels cut from panel

set by putting in sheet number " + (smallestLeftOverSheet+1) + " (" +

sWidth.get(smallestLeftOverSheet) + " x " + sHeight.get(smallestLeftOverSheet) + ")

with the minimum waste " + smallestLeftOverArea);

double minimumSheet =

10000000;//Math.ceil(nPanel.get(chosenPanelIndex.get(0)) /

chosenPanelAmount.get(0))

double result;

// This loop use to select the pattern that can give the minimum waste to cut.

for(int d=0; d < chosenPanelIndex.size(); d++) {

result = Math.ceil(nPanel.get(chosenPanelIndex.get(d)) /

chosenPanelAmount.get(d));

if (minimumSheet > result) {

minimumSheet = result;

}

System.out.println("To fulfill demand of " +

nPanel.get(chosenPanelIndex.get(d)) + " we need to use " + result + " sheets");

}

System.out.println("\nTherefore: To satisfy the demand we need: " +

minimumSheet + " sheets.");

//To find the over cut panel

double totalWasteOfOverCutPanel = 0;

for (int l = 0; l < chosenPanelIndex.size(); l++) {

overUnderCutPanel.add((minimumSheet * chosenPanelAmount.get(l)) -

nPanel.get(chosenPanelIndex.get(l)));

if (overUnderCutPanel.get(l)<= 0) {

overCutPanel.add(0.0);

} else {

60

overCutPanel.add(overUnderCutPanel.get(l));

}

wasteForEachOverCutPanelForEachSheet.add(overCutPanel.get(l)*

pHeight.get(l) * pWidth.get(l));

totalWasteOfOverCutPanel = totalWasteOfOverCutPanel +

wasteForEachOverCutPanelForEachSheet.get(l);//To find the waste of the over cut

panel

System.out.println("Over cut Panel = " + overCutPanel);

}

totalWastePerSheet = (smallestLeftOverArea * minimumSheet) +

totalWasteOfOverCutPanel;//Total waste per sheet included the over cut panel

totalWastePerSheetArray.add(totalWastePerSheet);

int index;

double amount;

double demand;

//Writing the panel of the pattern that we have selected to cut

for(int ind = 0; ind < chosenPanelIndex.size(); ind++) {

System.out.println("Chosen Index " + chosenPanelIndex.get(ind));

System.out.println("Used Amount " + chosenPanelAmount.get(ind));

row = sheet.createRow(startRow + r);

index = chosenPanelIndex.get(ind);

amount = chosenPanelAmount.get(ind);

demand = nPanel.get(chosenPanelIndex.get(ind));

leftOverDemand.add(demand - (amount * minimumSheet));

count = 0;

//Write only that first stage of cutting like No

if (ind == 0) {//ind = chosenPanelIndex

cell = row.createCell(numberingCell);

cell.setCellValue(printNo+1);

cell = row.createCell(sHeightCell);

cell.setCellValue(sHeight.get(smallestLeftOverSheet));

cell = row.createCell(sWidthCell);

cell.setCellValue(sWidth.get(smallestLeftOverSheet));

if (leftOverDemand.get(ind)> 0) {

cell = row.createCell(leftOverPanelCell);

cell.setCellValue(leftOverDemand.get(ind));

}

}

if (ind < chosenPanelIndex.size()-1) { //do not let it increase the row when it is

the last panel that we put coz we have to put other data on the last row

cell = row.createCell(demandCell);

cell.setCellValue(nPanel.get(chosenPanelIndex.get(ind)));

61

cell = row.createCell(overCutPanelCell);

cell.setCellValue(overCutPanel.get(ind));

cell = row.createCell(numberPanelPerSheetCell);

cell.setCellValue(chosenPanelAmount.get(ind));

if (leftOverDemand.get(ind)> 0) {

cell = row.createCell(leftOverPanelCell);

cell.setCellValue(leftOverDemand.get(ind));

}

// to spread the panel of cutting such that i can put the coordinate

for (int l = 0; l < chosenPanelAmount.get(ind); l++) {

cell = row.createCell(pHeightCell);

cell.setCellValue(pHeightSelected.get(l));

cell = row.createCell(pWidthCell);

cell.setCellValue(pWidthSelected.get(l));

cell = row.createCell(xCell);

cell.setCellValue(xOrdinateSelected.get(l));

cell = row.createCell(yCell);

cell.setCellValue(yOrdinateSelected.get(l));

count = count + 1;

r++;

row = sheet.createRow(startRow + r);

}

//Remove that panel use such that it can print of other panel

for (int b = (count-1) ; b >= 0; b--) {

pHeightSelected.remove(b);

pWidthSelected.remove(b);

xOrdinateSelected.remove(b);

yOrdinateSelected.remove(b);

}

} else if ((chosenPanelIndex.size()-1) == ind) {

cell = row.createCell(demandCell);

cell.setCellValue(nPanel.get(chosenPanelIndex.get(ind)));

cell = row.createCell(overCutPanelCell);

cell.setCellValue(overCutPanel.get(ind));

cell = row.createCell(numberPanelPerSheetCell);

cell.setCellValue(chosenPanelAmount.get(ind));

if (leftOverDemand.get(ind)> 0) {

cell = row.createCell(leftOverPanelCell);

62

cell.setCellValue(leftOverDemand.get(ind));

}

for (int l = 0; l < chosenPanelAmount.get(ind); l++) {

cell = row.createCell(pHeightCell);

cell.setCellValue(pHeightSelected.get(l));

cell = row.createCell(pWidthCell);

cell.setCellValue(pWidthSelected.get(l));

cell = row.createCell(xCell);

cell.setCellValue(xOrdinateSelected.get(l));

cell = row.createCell(yCell);

cell.setCellValue(yOrdinateSelected.get(l));

count = count + 1;

r++;

row = sheet.createRow(startRow + r);

}

for (int b = (count-1) ; b >= 0; b--) {

pHeightSelected.remove(b);

pWidthSelected.remove(b);

xOrdinateSelected.remove(b);

yOrdinateSelected.remove(b);

}

r--;

}

}

wasteForEachOverCutPanelForEachSheet.clear();

overUnderCutPanel.clear();

overCutPanel.clear();

r = r + 2;

printNo++;

cell = row.createCell(wastePerSheetCell);

cell.setCellValue(smallestLeftOverArea);

cell = row.createCell(numberSheetNeededToCut);

cell.setCellValue(minimumSheet);

cell = row.createCell(totalWastePerSheetCell);

cell.setCellValue(totalWastePerSheet);

endTime = System.currentTimeMillis();

System.out.println("Time taken for this process are: " + (endTime - startTime) +

" milli seconds");

cell = row.createCell(computeTimeCell);

cell.setCellValue(endTime - startTime);

for(int d = chosenPanelIndex.size()-1; d >= 0; d--) {

index = chosenPanelIndex.indexOf(Collections.max(chosenPanelIndex));

amount = chosenPanelAmount.get(index);

demand = nPanel.get(chosenPanelIndex.get(index));

int newIndex = chosenPanelIndex.get(index);

63

if (leftOverDemand.get(index) > 0) {

nPanel.set(newIndex, leftOverDemand.get(index));

chosenPanelIndex.remove(index);

chosenPanelAmount.remove(index);

leftOverDemand.remove(index);

} else {

nPanel.remove(newIndex);

pHeight.remove(newIndex);

pWidth.remove(newIndex);

chosenPanelIndex.remove(index);

chosenPanelAmount.remove(index);

leftOverDemand.remove(index);

}

}

leftOverDemand.clear();

System.out.println("---");

j--;

double wasteForCutting = 0;

for (int l = 0; l < totalWastePerSheetArray.size(); l++) {

wasteForCutting = wasteForCutting + totalWastePerSheetArray.get(l);

}

cell = row.createCell(wasteForCuttingCell);

cell.setCellValue(wasteForCutting);

}

chosenPanelIndex.clear();

chosenPanelAmount.clear();

file.close();

FileOutputStream outFile =new FileOutputStream(new File(excelFile));

workbook.write(outFile);

outFile.close();

} catch (FileNotFoundException e) {

e.printStackTrace();

} catch (IOException e) {

e.printStackTrace();

}

}

public static void ReadExcel(ArrayList<Double> sWidth,

ArrayList<Double> sHeight, ArrayList<Double> nSheet,

ArrayList<Double> pWidth, ArrayList<Double> pHeight,

ArrayList<Double> nPanel, String excelFile) {

try {

FileInputStream file = new FileInputStream(new File(excelFile));

XSSFWorkbook workbook = new XSSFWorkbook(file);

XSSFSheet sheet = workbook.getSheet("Input");

// cRow = currentRow, pRow = processingRow

int cRow = 0 , pRow = 0;

64

int cColumn = 1;

int dataInRow = 0;

//Iterate through each rows from first sheet

Iterator<Row> rowIterator = sheet.iterator();

while(rowIterator.hasNext()) {

Row row = rowIterator.next();

cRow++;

cColumn = 1;

dataInRow = 0;

//For each row, iterate through each columns

Iterator<Cell> cellIterator = row.cellIterator();

while(cellIterator.hasNext()) {

Cell cell = cellIterator.next();

switch(cell.getCellType()) {

case Cell.CELL_TYPE_BOOLEAN:

System.out.print(cell.getBooleanCellValue() + "\t\t");

dataInRow ++;

break;

case Cell.CELL_TYPE_NUMERIC:

System.out.print(cell.getNumericCellValue() + "\t\t");

if(cRow>pRow) {

pRow = cRow;

}

else
{

switch(cColumn) {

case 1:

pHeight.add(cell.getNumericCellValue());

break;

case 2:

pWidth.add(cell.getNumericCellValue());

break;

case 3:

nPanel.add(cell.getNumericCellValue());

break;

case 4:

sHeight.add(cell.getNumericCellValue());

break;

case 5:

sWidth.add(cell.getNumericCellValue());

break;

case 6:

nSheet.add(cell.getNumericCellValue());

}

cColumn++;

}

dataInRow++;

65

break;

case Cell.CELL_TYPE_STRING:

System.out.print(cell.getStringCellValue() + "\t\t");

dataInRow++;

break;

}

}

if(dataInRow > 0) {

System.out.println("");

}

}

file.close();

} catch (FileNotFoundException e) {

e.printStackTrace();

} catch (IOException e) {

e.printStackTrace();

}

}

}

66

7.1.2. 2D Horizontal Construction

package SHeightBased_PHeightBased_2D_2Stage_Horizontal_Cutting_P1;

import java.io.File;

import java.io.FileInputStream;

import java.io.FileNotFoundException;

import java.io.FileOutputStream;

import java.io.IOException;

import java.util.ArrayList;

import java.util.Iterator;

import org.apache.poi.ss.usermodel.Cell;

import org.apache.poi.ss.usermodel.Row;

import org.apache.poi.xssf.usermodel.XSSFSheet;

import org.apache.poi.xssf.usermodel.XSSFWorkbook;

public class SHeightBased_PHeightBased_2D_2Stage_Horizontal_Cutting_P1{

public static void main(String[] args) {

long startTime = System.currentTimeMillis();

ArrayList<Double> sWidth = new ArrayList<Double>();

ArrayList<Double> sHeight = new ArrayList<Double>();

ArrayList<Double> nSheet = new ArrayList<Double>();

ArrayList<Double> pWidth = new ArrayList<Double>();

ArrayList<Double> pHeight = new ArrayList<Double>();

ArrayList<Double> nPanel = new ArrayList<Double>();

ArrayList<Double> sLeftOverArea = new ArrayList<Double>();

String excelFile = "D:\\Input and output of heuristics For construction 1 and

2.xlsx";

System.out.println("ArrayList in row and column set: ");

try {

FileInputStream file = new FileInputStream(new File(excelFile));

XSSFWorkbook workbook = new XSSFWorkbook(file);

XSSFSheet sheet = workbook.getSheet("Input");

int cRow = 0 , pRow = 0;

int cColumn = 1;

int dataInRow = 0;

Iterator<Row> rowIterator = sheet.iterator();

while(rowIterator.hasNext()) {

Row row = rowIterator.next();

cRow++;

cColumn = 1;

dataInRow = 0;

Iterator<Cell> cellIterator = row.cellIterator();

while(cellIterator.hasNext()) {

Cell cell = cellIterator.next();

switch(cell.getCellType()) {

67

case Cell.CELL_TYPE_BOOLEAN:

System.out.print(cell.getBooleanCellValue() + "\t\t");

dataInRow ++;

break;

case Cell.CELL_TYPE_NUMERIC:

System.out.print(cell.getNumericCellValue() + "\t\t");

if(cRow>pRow) {

pRow = cRow;

}else{

switch(cColumn) {

case 1:

pHeight.add(cell.getNumericCellValue());

break;

case 2:

pWidth.add(cell.getNumericCellValue());

break;

case 3:

nPanel.add(cell.getNumericCellValue());

break;

case 4:

sHeight.add(cell.getNumericCellValue());

break;

case 5:

sWidth.add(cell.getNumericCellValue());

break;

case 6:

nSheet.add(cell.getNumericCellValue());

}

cColumn++;

}

dataInRow++;

break;

case Cell.CELL_TYPE_STRING:

System.out.print(cell.getStringCellValue() + "\t\t");

dataInRow++;

break;

}

}

if(dataInRow > 0) {

System.out.println("");

}

}

file.close();

} catch (FileNotFoundException e) {

e.printStackTrace();

} catch (IOException e) {

e.printStackTrace();

68

}

ArrayList<Double> sheetWidth = new ArrayList<Double>();

ArrayList<Double> sheetHeight = new ArrayList<Double>();

ArrayList<Double> panelWidth = new ArrayList<Double>();

ArrayList<Double> panelHeight = new ArrayList<Double>();

ArrayList<Double> totalWastePerSheet = new ArrayList<Double>();

//define sheet set

System.out.println("\n" + "Sheet set: ");

for (int i=0; i<nSheet.size(); i++) {

for (int a=0; a<nSheet.get(i); a++) {

sheetWidth.add(sWidth.get(i));

sheetHeight.add(sHeight.get(i));

sLeftOverArea.add(sWidth.get(i) * sHeight.get(i));

System.out.print("[" + sHeight.get(i) + " x " + sWidth.get(i) + "]" + ", ");

}System.out.println();

}

//define panel set

System.out.println("\n" + "Panel set:");

for (int i=0; i<nPanel.size(); i++) {

for (int a=0; a<nPanel.get(i); a++) {

panelWidth.add(pWidth.get(i));

panelHeight.add(pHeight.get(i));

System.out.print("[" + pHeight.get(i) + " x " + pWidth.get(i)+ "]" + ", ");

}System.out.println();

}

//here is the process of cutting

try {

FileInputStream file = new FileInputStream(new File(excelFile));

XSSFWorkbook workbook = new XSSFWorkbook(file);

XSSFSheet sheet = workbook.getSheet("Output");

Row row; // Declare row variable as Excel row.

Cell cell; // Declare cell variable as Excel cell.

System.out.println("\n" + "Here is the step of cutting: ");

double leftoverHeight;

double leftoverWidth;

double wasteBeforeCut = 0;

int startRow = 2, sHeightCell = 0, sWidthCell = 1, pHeightCell = 2, pWidthCell =

3, levelCell = 4, sLeftOverAreaCell = 5, computeTimeCell = 6, totalWasteCell = 7;

int r=0;

long computeTime = 0;

boolean existingLevel = false; // Level check if new calculate new

[leftoverHeight] and [leftoverWidth].

int i=0, j=0, level;

//this loop for pick sheet one by one from all sheet

for (i = 0; i < sheetHeight.size(); i++) {

leftoverHeight = sheetHeight.get(i);

leftoverWidth = sheetWidth.get(i);//

69

level = 0;

row = sheet.createRow(startRow + r);

cell = row.createCell(sHeightCell);

cell.setCellValue(sheetHeight.get(i));

cell = row.createCell(sWidthCell);

cell.setCellValue(sheetWidth.get(i));

//To define the value of the waste

if (i > 0) {

sheet.getRow(startRow + (r-

1)).createCell(sLeftOverAreaCell).setCellValue(sLeftOverArea.get(i-1));

}

//this loop use to define each level in a specific sheet

for (double h=leftoverHeight; h>=panelHeight.get(panelHeight.size()-1);

h=leftoverHeight) {

leftoverWidth = sheetWidth.get(i);

existingLevel = false;

// this loop use to pick the panel to put inside each level in a specific sheet

for (j = 0; j < panelHeight.size(); j++) {

if (existingLevel == false && (leftoverHeight>=panelHeight.get(j) &&

leftoverWidth>=panelWidth.get(j))) {

leftoverHeight = leftoverHeight - panelHeight.get(j);

existingLevel = true;

level += 1;

}

if (existingLevel == true && leftoverWidth >= panelWidth.get(j)) {

System.out.println("put panel: " + panelHeight.get(j) + " x " +

panelWidth.get(j) + " into sheet: " + (i+1) + " level: " + level);

sLeftOverArea.set(i, sLeftOverArea.get(i) - (panelHeight.get(j) *

panelWidth.get(j)));

try {

row = sheet.getRow(startRow + r);

if (row == null) {

row = sheet.createRow(startRow + r);

}

}

catch (Exception e) {

row = sheet.createRow(startRow + r);

}

row.createCell(pHeightCell).setCellValue(panelHeight.get(j));

row.createCell(pWidthCell).setCellValue(panelWidth.get(j));

row.createCell(levelCell).setCellValue(level);

r = r + 1; // move to new row.

leftoverWidth = leftoverWidth - panelWidth.get(j);

panelHeight.remove(j);

panelWidth.remove(j);

j = j - 1;

}

70

}

if(panelHeight.isEmpty()){

sheet.getRow(startRow + (r-

1)).createCell(sLeftOverAreaCell).setCellValue(sLeftOverArea.get(i));

sheet.getRow(startRow + (r-

1)).createCell(computeTimeCell).setCellValue(computeTime);

totalWastePerSheet.add(sLeftOverArea.get(i));

for (int k = 0; k < totalWastePerSheet.size(); k++) {

wasteBeforeCut = wasteBeforeCut + totalWastePerSheet.get(k);

}

sheet.getRow(startRow + (r-

1)).createCell(totalWasteCell).setCellValue(wasteBeforeCut);

file.close();

FileOutputStream outFile =new FileOutputStream(new File(excelFile));

workbook.write(outFile);

outFile.close();

return;

}

}

totalWastePerSheet.add(sLeftOverArea.get(i));

sheetHeight.remove(0);

sheetWidth.remove(0);

long endTime = System.currentTimeMillis();

computeTime = endTime - startTime;

System.out.println("Time taken for this process are: " + (computeTime) + "

milli seconds");

cell = row.createCell(computeTimeCell);

cell.setCellValue(computeTime);

}

sheet.getRow(startRow + (r-

1)).createCell(sLeftOverAreaCell).setCellValue(sLeftOverArea.get(9));

file.close();

FileOutputStream outFile =new FileOutputStream(new File(excelFile));

workbook.write(outFile);

outFile.close();

for(int l=0; l < sLeftOverArea.size(); l++) {

System.out.println("Sheet: " + (l+1) + " Left over area: " +

sLeftOverArea.get(l));

}

} catch (FileNotFoundException e) {

e.printStackTrace();

} catch (IOException e) {

e.printStackTrace();

}

}

}

71

7.1.3. 2D Vertical Construction

package SHeightBased_PWidthBased_2D_2Stage_Vertical_Cutting_P1;

import java.io.File;

import java.io.FileInputStream;

import java.io.FileNotFoundException;

import java.io.FileOutputStream;

import java.io.IOException;

import java.util.ArrayList;

import java.util.Iterator;

import org.apache.poi.ss.usermodel.Cell;

import org.apache.poi.ss.usermodel.Row;

import org.apache.poi.xssf.usermodel.XSSFSheet;

import org.apache.poi.xssf.usermodel.XSSFWorkbook;

public class SHeightBased_PWidthBased_2D_2Stage_Vertical_Cutting_P1{

public static void main(String[] args) {

long startTime = System.currentTimeMillis();

ArrayList<Double> sWidth = new ArrayList<Double>();

ArrayList<Double> sHeight = new ArrayList<Double>();

ArrayList<Double> nSheet = new ArrayList<Double>();

ArrayList<Double> pWidth = new ArrayList<Double>();

ArrayList<Double> pHeight = new ArrayList<Double>();

ArrayList<Double> nPanel = new ArrayList<Double>();

ArrayList<Double> sLeftOverArea = new ArrayList<Double>();

String excelFile = "D:\\Input and output of heuristics For construction 1 and

2.xlsx";

System.out.println("ArrayList in row and column set: ");

try {

FileInputStream file = new FileInputStream(new File(excelFile));

XSSFWorkbook workbook = new XSSFWorkbook(file);

XSSFSheet sheet = workbook.getSheet("Input2");

int cRow = 0 , pRow = 0;

int cColumn = 1;

int dataInRow = 0;

//Iterate through each rows from first sheet

Iterator<Row> rowIterator = sheet.iterator();

while(rowIterator.hasNext()) {

Row row = rowIterator.next();

cRow++;

cColumn = 1;

dataInRow = 0;

//For each row, iterate through each columns

Iterator<Cell> cellIterator = row.cellIterator();

while(cellIterator.hasNext()) {

Cell cell = cellIterator.next();

72

switch(cell.getCellType()) {

case Cell.CELL_TYPE_BOOLEAN:

System.out.print(cell.getBooleanCellValue() + "\t\t");

dataInRow ++;

break;

case Cell.CELL_TYPE_NUMERIC:

System.out.print(cell.getNumericCellValue() + "\t\t");

if(cRow>pRow) {

pRow = cRow;

}else{

switch(cColumn) {

case 1:

pHeight.add(cell.getNumericCellValue());

break;

case 2:

pWidth.add(cell.getNumericCellValue());

break;

case 3:

nPanel.add(cell.getNumericCellValue());

break;

case 4:

sHeight.add(cell.getNumericCellValue());

break;

case 5:

sWidth.add(cell.getNumericCellValue());

break;

case 6:

nSheet.add(cell.getNumericCellValue());

}

cColumn++;

}

dataInRow++;

break;

case Cell.CELL_TYPE_STRING:

System.out.print(cell.getStringCellValue() + "\t\t");

dataInRow++;

break;

}

}

if(dataInRow > 0) {

System.out.println("");

}

}

file.close();

} catch (FileNotFoundException e) {

e.printStackTrace();

} catch (IOException e) {

73

e.printStackTrace();

}

ArrayList<Double> sheetWidth = new ArrayList<Double>();

ArrayList<Double> sheetHeight = new ArrayList<Double>();

ArrayList<Double> panelWidth = new ArrayList<Double>();

ArrayList<Double> panelHeight = new ArrayList<Double>();

ArrayList<Double> totalWastePerSheet = new ArrayList<Double>();

//define sheet set

System.out.println("\n" + "Sheet set: ");

for (int i=0; i<nSheet.size(); i++) {

for (int a=0; a<nSheet.get(i); a++) {

sheetWidth.add(sWidth.get(i));

sheetHeight.add(sHeight.get(i));

sLeftOverArea.add(sWidth.get(i) * sHeight.get(i));

System.out.print("[" + sHeight.get(i) + " x " + sWidth.get(i) + "]" + ", ");

}System.out.println();

}

//define panel set

System.out.println("\n" + "Panel set:");

for (int i=0; i<nPanel.size(); i++) {

for (int a=0; a<nPanel.get(i); a++) {

panelWidth.add(pWidth.get(i));

panelHeight.add(pHeight.get(i));

System.out.print("[" + pHeight.get(i) + " x " + pWidth.get(i)+ "]" + ", ");

}System.out.println();

}

//here is the process of cutting

try {

// Open excel file.

FileInputStream file = new FileInputStream(new File(excelFile));

XSSFWorkbook workbook = new XSSFWorkbook(file);

XSSFSheet sheet = workbook.getSheet("Output2");

Row row; // Declare row variable as Excel row.

Cell cell; // Declare cell variable as Excel cell.

System.out.println("\n" + "Here is the step of cutting: ");

double leftoverHeight;

double leftoverWidth;

double wasteBeforeCut = 0;

int startRow = 2, sHeightCell = 0, sWidthCell = 1, pHeightCell = 2, pWidthCell

= 3, levelCell = 4, sLeftOverAreaCell = 5, computeTimeCell = 6, totalWasteCell = 7;

int r=0;

long computeTime = 0;

boolean existingLevel = false;

int i=0, j=0, level;

//this loop for pick sheet one by one from all sheet

for (i = 0; i < sheetWidth.size(); i++) {

leftoverHeight = sheetHeight.get(i);

74

leftoverWidth = sheetWidth.get(i);

level = 0;

row = sheet.createRow(startRow + r);

cell = row.createCell(sHeightCell);

cell.setCellValue(sheetHeight.get(i));

cell = row.createCell(sWidthCell);

cell.setCellValue(sheetWidth.get(i));

//To define the value of the waste

if (i > 0) {

sheet.getRow(startRow + (r-

1)).createCell(sLeftOverAreaCell).setCellValue(sLeftOverArea.get(i-1));

}

//this loop use to define each level in a specific sheet

for (double h=leftoverWidth; h>=panelWidth.get(panelWidth.size()-1);

h=leftoverWidth) {

leftoverHeight = sheetHeight.get(i);

existingLevel = false;

// this loop use to pick the panel to put inside each level in a specific sheet

for (j = 0; j < panelWidth.size(); j++) {

if (existingLevel == false && (leftoverHeight>=panelHeight.get(j) &&

leftoverWidth>=panelWidth.get(j))) {

leftoverWidth = leftoverWidth - panelWidth.get(j);

existingLevel = true;

level += 1;

}

if (existingLevel == true && leftoverHeight>=panelHeight.get(j)) {

System.out.println("put panel: " + panelHeight.get(j) + " x " +

panelWidth.get(j) + " into sheet: " + (i+1) + " level: " + level);

sLeftOverArea.set(i, sLeftOverArea.get(i) - (panelHeight.get(j) *

panelWidth.get(j)));

try {

row = sheet.getRow(startRow + r);

if (row == null) {

row = sheet.createRow(startRow + r);

}

}

catch (Exception e) {

row = sheet.createRow(startRow + r);

}

row.createCell(pHeightCell).setCellValue(panelHeight.get(j));

row.createCell(pWidthCell).setCellValue(panelWidth.get(j));

row.createCell(levelCell).setCellValue(level);

r++; // move to new row.

leftoverHeight = leftoverHeight - panelHeight.get(j);

panelHeight.remove(j);

panelWidth.remove(j);

j = j - 1;

75

}

}

if(panelHeight.isEmpty()){

sheet.getRow(startRow + (r-

1)).createCell(sLeftOverAreaCell).setCellValue(sLeftOverArea.get(i));

sheet.getRow(startRow + (r-

1)).createCell(computeTimeCell).setCellValue(computeTime);

totalWastePerSheet.add(sLeftOverArea.get(i));

for (int k = 0; k < totalWastePerSheet.size(); k++) {

wasteBeforeCut = wasteBeforeCut + totalWastePerSheet.get(k);

}

sheet.getRow(startRow + (r-

1)).createCell(totalWasteCell).setCellValue(wasteBeforeCut);

file.close();

FileOutputStream outFile =new FileOutputStream(new File(excelFile));

workbook.write(outFile);

outFile.close();

return;

}

}

totalWastePerSheet.add(sLeftOverArea.get(i));

sheetHeight.remove(0);

sheetWidth.remove(0);

long endTime = System.currentTimeMillis();

computeTime = endTime - startTime;

System.out.println("Time taken for this process are: " + (computeTime) + "

milli seconds");

cell = row.createCell(computeTimeCell);

cell.setCellValue(computeTime);

}

sheet.getRow(startRow + (r-

1)).createCell(sLeftOverAreaCell).setCellValue(sLeftOverArea.get(9));

file.close();

FileOutputStream outFile =new FileOutputStream(new File(excelFile));

workbook.write(outFile);

outFile.close();

for(int l=0; l < sLeftOverArea.size(); l++) {

System.out.println("Sheet: " + (l+1) + " Left over area: " +

sLeftOverArea.get(l));

}

} catch (FileNotFoundException e) {

e.printStackTrace();

} catch (IOException e) {

e.printStackTrace();

}

}

}

76

7.1.4. 2D Horizontal Improvement

package Simple_Heuristic_II;

import java.io.File;

import java.io.FileInputStream;

import java.io.FileNotFoundException;

import java.io.FileOutputStream;

import java.io.IOException;

import java.util.ArrayList;

import java.util.Collections;

import java.util.Iterator;

import org.apache.poi.ss.usermodel.Cell;

import org.apache.poi.ss.usermodel.Row;

import org.apache.poi.xssf.usermodel.XSSFSheet;

import org.apache.poi.xssf.usermodel.XSSFWorkbook;

public class Improve1_Simple_Heuristic_P_HeightBased_Cut_Horizontal{

public static void main(String[] args) {

long startTime = System.currentTimeMillis();

ArrayList<Double> sWidth = new ArrayList<Double>();

ArrayList<Double> sHeight = new ArrayList<Double>();

ArrayList<Double> nSheet = new ArrayList<Double>();

ArrayList<Double> pWidth = new ArrayList<Double>();

ArrayList<Double> pHeight = new ArrayList<Double>();

ArrayList<Double> nPanel = new ArrayList<Double>();

ArrayList<Double> sLeftOverArea = new ArrayList<Double>();

String excelFile = "D:\\Input and output of heuristics based on

height_ExactNumber.xlsx";

System.out.println("ArrayList in row and column set: ");

ReadExcel(sWidth, sHeight, nSheet, pWidth, pHeight, nPanel, excelFile);

ArrayList<Double> sheetWidth = new ArrayList<Double>();

ArrayList<Double> sheetHeight = new ArrayList<Double>();

ArrayList<Double> panelWidth = new ArrayList<Double>();

ArrayList<Double> panelHeight = new ArrayList<Double>();

ArrayList<Double> overCutPanel = new ArrayList<Double>();

ArrayList<Double> overUnderCutPanel = new ArrayList<Double>();

ArrayList<Double> wasteForEachOverCutPanelForEachSheet = new

ArrayList<Double>();

77

ArrayList<Double> totalWastePerSheetArray = new ArrayList<Double>();

//define sheet set

System.out.println("\n" + "Sheet set: ");

for (int i=0; i<nSheet.size(); i++) {

for (int a=0; a<nSheet.get(i); a++) {

sheetWidth.add(sWidth.get(i));

sheetHeight.add(sHeight.get(i));

sLeftOverArea.add(sWidth.get(i) * sHeight.get(i));

System.out.print("[" + sHeight.get(i) + " x " + sWidth.get(i) + "]" + ", ");

}System.out.println();

}

//define panel set

System.out.println("\n" + "Panel set:");

for (int i=0; i<nPanel.size(); i++) {

for (int a=0; a<nPanel.get(i); a++) {

panelWidth.add(pWidth.get(i));

panelHeight.add(pHeight.get(i));

System.out.print("[" + pHeight.get(i) + " x " + pWidth.get(i)+ "]" + ", ");

}System.out.println();

}

// To check and remove the big panel that we cannot put into the sheet, if we don't

have it, it might cause to error.

double maxSHeight = 0;

double maxSWidth = 0;

for (int j = 0; j < nPanel.size(); j++) {

for (int i = 0; i < nSheet.size(); i++) {

if (sHeight.get(i) > maxSHeight) {

maxSHeight = sHeight.get(i);

}

if (sWidth.get(i) > maxSWidth) {

maxSWidth = sWidth.get(i);

}

}

if (((pHeight.get(j) > maxSHeight)) || (pWidth.get(j) > maxSWidth)) {

pWidth.remove(j);

pHeight.remove(j);

nPanel.remove(j);

j--;

}

}

//To check and remove the small sheet that we cannot use to cut other panel, if we

don't have it, it might cause to error

double minPHeight = 999999999;

double minPWidth = 999999999;

for (int i = 0; i < nSheet.size(); i++) {

for (int j = 0; j < nPanel.size(); j++) {

78

if (minPHeight > pHeight.get(j)) {

minPHeight = pHeight.get(j);

}

if (minPWidth > pWidth.get(j)) {

minPWidth = pWidth.get(j);

}

}

if ((sHeight.get(i) < minPHeight) || (sWidth.get(i) < minPWidth)) {

sWidth.remove(i);

sHeight.remove(i);

nSheet.remove(i);

i--;

}

}

//here is the process of cutting

try {

FileInputStream file = new FileInputStream(new File(excelFile));

XSSFWorkbook workbook = new XSSFWorkbook(file);

XSSFSheet sheet = workbook.getSheet("Output");

Row row;

Cell cell;

System.out.println("\n" + "Here is the step of cutting: ");

ArrayList<Integer> chosenPanelIndex = new ArrayList<Integer>();

ArrayList<Integer> chosenPanelAmount = new ArrayList<Integer>();

ArrayList<Integer> usedPanelIndex = new ArrayList<Integer>();

ArrayList<Integer> usedPanelAmount = new ArrayList<Integer>();

ArrayList<Double> leftOverDemand = new ArrayList<Double>();

ArrayList<Double> xOrdinateArray = new ArrayList<Double>();

ArrayList<Double> yOrdinateArray = new ArrayList<Double>();

ArrayList<Double> xOrdinateSelected = new ArrayList<Double>();

ArrayList<Double> yOrdinateSelected = new ArrayList<Double>();

ArrayList<Double> pHeightArray = new ArrayList<Double>();

ArrayList<Double> pWidthArray = new ArrayList<Double>();

ArrayList<Double> pHeightSelected = new ArrayList<Double>();

ArrayList<Double> pWidthSelected = new ArrayList<Double>();

ArrayList<Double> panelHeightAtBeginningLevel = new ArrayList<Double>();

ArrayList<Double> panelHeightAtBeginningLevelClone = new

ArrayList<Double>();

double leftoverHeight;

79

double leftoverWidth;

boolean existingLevel = false;

double currentLeftOverArea=0;

double smallestLeftOverArea=0;

int smallestLeftOverSheet=0;

int numberPanelPerSheet=0;

int panelAmountWithMinimumWaste=0;

double sheetNumberNeeded;

long endTime = 0;

double xOrdinate = 0;

double yOrdinate = 0;

double w = 0;

int startRow = 2, numberingCell = 0, sHeightCell = 1, sWidthCell = 2,

pHeightCell = 3, pWidthCell = 4, demandCell = 5, wastePerSheetCell = 6,

numberPanelPerSheetCell = 7, numberSheetNeededToCut = 8, leftOverPanelCell = 9,

computeTimeCell = 10, xCell = 11, yCell = 12, overCutPanelCell = 13,

totalWastePerSheetCell = 14, wasteForCuttingCell = 15;

int r=0;

int printNo = 0;

int i=0, j=0, k=0, level = 0;

int count = 0;

double totalWastePerSheet = 0;

//this loop for pick sheet one by one from all sheet

for (j = 0; j < nPanel.size(); j++) {

smallestLeftOverArea = sWidth.get(0)*sHeight.get(0);

row = sheet.createRow(startRow + r);

for (i = 0; i < sHeight.size(); i++) {

numberPanelPerSheet = 0;

leftoverHeight = sHeight.get(i);

level = 0;

System.out.print("\n" + "Sheet: " + (i+1) + " Size: " + sWidth.get(i) + " x " +

sHeight.get(i));

currentLeftOverArea = sWidth.get(i) * sHeight.get(i);

//this loop use to define each level in a specific sheet

for (double h=leftoverHeight; h>=pHeight.get(pHeight.size()-1);

h=leftoverHeight) {

leftoverWidth = sWidth.get(i);

existingLevel = false;

ArrayList<Double>newPWidth = new ArrayList<Double>();

ArrayList<Double>newPHeight = new ArrayList<Double>();

ArrayList<Double>newNPanel = new ArrayList<Double>();

if (sHeight.get(i) == leftoverHeight) {

yOrdinate = 0;

}

panelHeightAtBeginningLevel.add(pHeight.get(0));

for (int l = 0; l < pHeight.size(); l++) {

if (sHeight.get(i)!= leftoverHeight) {

80

if (pHeight.get(l) <= leftoverHeight && pWidth.get(l) <= leftoverWidth){

yOrdinate = yOrdinate + panelHeightAtBeginningLevelClone.get(1);

break;

}

if (pHeight.get(l) > leftoverHeight){

continue;

}

}

}

level += 1;

System.out.println();

System.out.print("\tLevel: " + level + " |");

//to check the panel in case that it satisfies only one criteria like sample 34

if (existingLevel == false && ((leftoverHeight>=pHeight.get(j) &&

leftoverWidth>=pWidth.get(j)))){

existingLevel = true;

} else {

newPWidth = (ArrayList)pWidth.clone();

newPHeight =(ArrayList)pHeight.clone();

newNPanel = (ArrayList)nPanel.clone();

newPWidth.remove(pWidth.size()-1);

newPHeight.remove(pHeight.size()-1);

newNPanel.remove(nPanel.size()-1);

}

newPWidth.clear();

newPHeight.clear();

newNPanel.clear();

panelHeightAtBeginningLevelClone.clear();

//Start cutting for the first panel that put into the sheet

if (leftoverHeight >= pHeight.get(j)) {

for (w = leftoverWidth; w >= pWidth.get(j); w = leftoverWidth) {

if (existingLevel == true && leftoverWidth>=pWidth.get(j)) {

System.out.print(" " + pWidth.get(j) + " x " + pHeight.get(j) + " |");

if (sWidth.get(i) == leftoverWidth) {

pHeightArray.add(pHeight.get(j));

pWidthArray.add(pWidth.get(j));

panelHeightAtBeginningLevel.add(pHeight.get(j));

xOrdinate = 0;

xOrdinateArray.add(xOrdinate);

yOrdinateArray.add(yOrdinate);

} else {

pHeightArray.add(pHeight.get(j));

pWidthArray.add(pWidth.get(j));

xOrdinate = xOrdinate + pWidthArray.get(pWidthArray.size()-2);

81

xOrdinateArray.add(xOrdinate);

yOrdinateArray.add(yOrdinate);

}

leftoverWidth = leftoverWidth - pWidth.get(j);

currentLeftOverArea = currentLeftOverArea-

(pWidth.get(j)*pHeight.get(j));

numberPanelPerSheet += 1;

if(usedPanelIndex.indexOf(j) == -1) {

usedPanelIndex.add(j);

usedPanelAmount.add(1);

} else {

usedPanelAmount.set(usedPanelIndex.indexOf(j),

usedPanelAmount.get(usedPanelIndex.indexOf(j))+1);

}

}

}

}

//Start cutting for the next panel that put into the sheet when we put other

types of panel in the same level or the next level

ArrayList<Double> nextPanelCut = new ArrayList<Double>();

for (k = j+1; k < pWidth.size(); k++) {

if(pHeight.get(k) <= leftoverHeight && pWidth.get(k) <= leftoverWidth) {

nextPanelCut.add((double) k);

//to pick the new coordinate in the new level

if (sWidth.get(i) == leftoverWidth) {

pHeightArray.add(pHeight.get(k));

panelHeightAtBeginningLevel.add(pHeight.get(k));

pWidthArray.add(pWidth.get(k));

xOrdinate = 0;

xOrdinateArray.add(xOrdinate);

yOrdinateArray.add(yOrdinate);

} else {

pHeightArray.add(pHeight.get(k));

pWidthArray.add(pWidth.get(k));

xOrdinate = xOrdinate + pWidthArray.get(pWidthArray.size()-2);

xOrdinateArray.add(xOrdinate);

yOrdinateArray.add(yOrdinate);

}

leftoverWidth -= pWidth.get(k);

currentLeftOverArea -= (pWidth.get(k)*pHeight.get(k));

System.out.print(" " + pWidth.get(k) + " x " + pHeight.get(k) + " |");

numberPanelPerSheet += 1;

if(usedPanelIndex.indexOf(k) == -1) {

usedPanelIndex.add(k);

usedPanelAmount.add(1);

82

} else {

usedPanelAmount.set(usedPanelIndex.indexOf(k),

usedPanelAmount.get(usedPanelIndex.indexOf(k))+1);

}

k--;

}

}

panelHeightAtBeginningLevelClone =

(ArrayList)panelHeightAtBeginningLevel.clone();

panelHeightAtBeginningLevel.clear();

if (leftoverHeight >= pHeight.get(j)) {

leftoverHeight = leftoverHeight - pHeight.get(j);

} else {

if (nextPanelCut.size()!= 0) {

double a = nextPanelCut.get(0);

leftoverHeight = leftoverHeight - pHeight.get((int) a);

}

if (nextPanelCut.isEmpty()) {

leftoverHeight = 0;

continue;

}

}

}

System.out.println();

System.out.print("Total Waste for each sheet: " + currentLeftOverArea);

System.out.print("\nPanel fit: " + numberPanelPerSheet);

System.out.println();

if (smallestLeftOverArea > currentLeftOverArea) {

smallestLeftOverArea = currentLeftOverArea;

smallestLeftOverSheet = i;

panelAmountWithMinimumWaste = numberPanelPerSheet;

pHeightSelected = (ArrayList)pHeightArray.clone();

pWidthSelected = (ArrayList)pWidthArray.clone();

xOrdinateSelected = (ArrayList)xOrdinateArray.clone();

yOrdinateSelected = (ArrayList)yOrdinateArray.clone();

chosenPanelIndex = (ArrayList)usedPanelIndex.clone();

}

for(int ind =0; ind < chosenPanelIndex.size(); ind++) {

System.out.println("Used Index " + chosenPanelIndex.get(ind));

System.out.println("Used Amount " + chosenPanelAmount.get(ind));

}

// clear it first before selecting the next panel to cut; otherwise, it adds on the

existing data

pHeightArray.clear();

pWidthArray.clear();

83

xOrdinateArray.clear();

yOrdinateArray.clear();

usedPanelIndex.clear();

usedPanelAmount.clear();

}

System.out.println();

System.out.println(panelAmountWithMinimumWaste + " panels is cut from

panel set by putting in sheet number " + (smallestLeftOverSheet+1) + " (" +

sWidth.get(smallestLeftOverSheet) + " x " + sHeight.get(smallestLeftOverSheet) + ")

with the minimum waste " + smallestLeftOverArea);

double minimumSheet = 10000000;

double result;

// This loop use to select the pattern that can give the minimum waste to cut.

for(int d=0; d < chosenPanelIndex.size(); d++) {

result = Math.ceil(nPanel.get(chosenPanelIndex.get(d)) /

chosenPanelAmount.get(d));

if (minimumSheet > result) {

minimumSheet = result;

}

System.out.println("To fulfill demand of " +

nPanel.get(chosenPanelIndex.get(d)) + " we need to use " + result + " sheets");

}

System.out.println("\nTherefore: To satisfy the demand we need: " +

minimumSheet + " sheets.");

//To find the over cut panel

double totalWasteOfOverCutPanel = 0;

for (int l = 0; l < chosenPanelIndex.size(); l++) {

overUnderCutPanel.add((minimumSheet * chosenPanelAmount.get(l)) -

nPanel.get(chosenPanelIndex.get(l)));

if (overUnderCutPanel.get(l)<= 0) {

overCutPanel.add(0.0);

} else {

overCutPanel.add(overUnderCutPanel.get(l));

}

wasteForEachOverCutPanelForEachSheet.add(overCutPanel.get(l)*

pHeight.get(l) * pWidth.get(l));

totalWasteOfOverCutPanel = totalWasteOfOverCutPanel +

wasteForEachOverCutPanelForEachSheet.get(l);

System.out.println("Over cut Panel = " + overCutPanel);

}

totalWastePerSheet = (smallestLeftOverArea * minimumSheet) +

totalWasteOfOverCutPanel;

totalWastePerSheetArray.add(totalWastePerSheet);

int index;

84

double amount;

double demand;

//Writing the panel of the pattern that we have selected to cut

for(int ind = 0; ind < chosenPanelIndex.size(); ind++) {

System.out.println("Chosen Index " + chosenPanelIndex.get(ind));

System.out.println("Used Amount " + chosenPanelAmount.get(ind));

row = sheet.createRow(startRow + r);

index = chosenPanelIndex.get(ind);

amount = chosenPanelAmount.get(ind);

demand = nPanel.get(chosenPanelIndex.get(ind));

leftOverDemand.add(demand - (amount * minimumSheet));

count = 0;

//Write only that first stage of cutting like No

if (ind == 0) {

cell = row.createCell(numberingCell);

cell.setCellValue(printNo+1);

cell = row.createCell(sHeightCell);

cell.setCellValue(sHeight.get(smallestLeftOverSheet));

cell = row.createCell(sWidthCell);

cell.setCellValue(sWidth.get(smallestLeftOverSheet));

if (leftOverDemand.get(ind)> 0) {

cell = row.createCell(leftOverPanelCell);

cell.setCellValue(leftOverDemand.get(ind));

}

}

if (ind < chosenPanelIndex.size()-1) {

cell = row.createCell(demandCell);

cell.setCellValue(nPanel.get(chosenPanelIndex.get(ind)));

cell = row.createCell(overCutPanelCell);

cell.setCellValue(overCutPanel.get(ind));

cell = row.createCell(numberPanelPerSheetCell);

cell.setCellValue(chosenPanelAmount.get(ind));

if (leftOverDemand.get(ind)> 0) {

cell = row.createCell(leftOverPanelCell);

cell.setCellValue(leftOverDemand.get(ind));

}

// to spread the panel of cutting such that i can put the coordinate

for (int l = 0; l < chosenPanelAmount.get(ind); l++) {

cell = row.createCell(pHeightCell);

cell.setCellValue(pHeightSelected.get(l));

85

cell = row.createCell(pWidthCell);

cell.setCellValue(pWidthSelected.get(l));

cell = row.createCell(xCell);

cell.setCellValue(xOrdinateSelected.get(l));

cell = row.createCell(yCell);

cell.setCellValue(yOrdinateSelected.get(l));

count = count + 1;

r++;

row = sheet.createRow(startRow + r);

}

//Remove that panel use such that it can print of other panel

for (int b = (count-1) ; b >= 0; b--) {

pHeightSelected.remove(b);

pWidthSelected.remove(b);

xOrdinateSelected.remove(b);

yOrdinateSelected.remove(b);

}

} else if ((chosenPanelIndex.size()-1) == ind) {

cell = row.createCell(demandCell);

cell.setCellValue(nPanel.get(chosenPanelIndex.get(ind)));

cell = row.createCell(overCutPanelCell);

cell.setCellValue(overCutPanel.get(ind));

cell = row.createCell(numberPanelPerSheetCell);

cell.setCellValue(chosenPanelAmount.get(ind));

if (leftOverDemand.get(ind)> 0) {

cell = row.createCell(leftOverPanelCell);

cell.setCellValue(leftOverDemand.get(ind));

}

for (int l = 0; l < chosenPanelAmount.get(ind); l++) {

cell = row.createCell(pHeightCell);

cell.setCellValue(pHeightSelected.get(l));

cell = row.createCell(pWidthCell);

cell.setCellValue(pWidthSelected.get(l));

cell = row.createCell(xCell);

cell.setCellValue(xOrdinateSelected.get(l));

cell = row.createCell(yCell);

cell.setCellValue(yOrdinateSelected.get(l));

86

count = count + 1;

r++;

row = sheet.createRow(startRow + r);

}

for (int b = (count-1) ; b >= 0; b--) {

pHeightSelected.remove(b);

pWidthSelected.remove(b);

xOrdinateSelected.remove(b);

yOrdinateSelected.remove(b);

}

r--;

}

}

wasteForEachOverCutPanelForEachSheet.clear();

overUnderCutPanel.clear();

overCutPanel.clear();

r = r + 2;

printNo++;

cell = row.createCell(wastePerSheetCell);

cell.setCellValue(smallestLeftOverArea);

cell = row.createCell(numberSheetNeededToCut);

cell.setCellValue(minimumSheet);

cell = row.createCell(totalWastePerSheetCell);

cell.setCellValue(totalWastePerSheet);

endTime = System.currentTimeMillis();

System.out.println("Time taken for this process are: " + (endTime - startTime) +

" milli seconds");

cell = row.createCell(computeTimeCell);

cell.setCellValue(endTime - startTime);

for(int d = chosenPanelIndex.size()-1; d >= 0; d--) {

index = chosenPanelIndex.indexOf(Collections.max(chosenPanelIndex));

amount = chosenPanelAmount.get(index);

demand = nPanel.get(chosenPanelIndex.get(index));

int newIndex = chosenPanelIndex.get(index);

if (leftOverDemand.get(index) > 0) {

nPanel.set(newIndex, leftOverDemand.get(index));

chosenPanelIndex.remove(index);

chosenPanelAmount.remove(index);

leftOverDemand.remove(index);

} else {

nPanel.remove(newIndex);

87

pHeight.remove(newIndex);

pWidth.remove(newIndex);

chosenPanelIndex.remove(index);

chosenPanelAmount.remove(index);

leftOverDemand.remove(index);

}

}

leftOverDemand.clear();

System.out.println("---");

j--;

double wasteForCutting = 0;

for (int l = 0; l < totalWastePerSheetArray.size(); l++) {

wasteForCutting = wasteForCutting + totalWastePerSheetArray.get(l);

}

cell = row.createCell(wasteForCuttingCell);

cell.setCellValue(wasteForCutting);

}

chosenPanelIndex.clear();

chosenPanelAmount.clear();

file.close();

FileOutputStream outFile =new FileOutputStream(new File(excelFile));

workbook.write(outFile);

outFile.close();

} catch (FileNotFoundException e) {

e.printStackTrace();

} catch (IOException e) {

e.printStackTrace();

}

}

public static void ReadExcel(ArrayList<Double> sWidth,

ArrayList<Double> sHeight, ArrayList<Double> nSheet,

ArrayList<Double> pWidth, ArrayList<Double> pHeight,

ArrayList<Double> nPanel, String excelFile) {

try {

FileInputStream file = new FileInputStream(new File(excelFile));

XSSFWorkbook workbook = new XSSFWorkbook(file);

XSSFSheet sheet = workbook.getSheet("Input");// or .getsheetAt(2);

// cRow = currentRow, pRow = processingRow

int cRow = 0 , pRow = 0;

int cColumn = 1;

int dataInRow = 0;

//Iterate through each rows from first sheet

Iterator<Row> rowIterator = sheet.iterator();

while(rowIterator.hasNext()) {

Row row = rowIterator.next();

cRow++;

88

cColumn = 1;

dataInRow = 0;

//For each row, iterate through each columns

Iterator<Cell> cellIterator = row.cellIterator();

while(cellIterator.hasNext()) {

Cell cell = cellIterator.next();

switch(cell.getCellType()) {

case Cell.CELL_TYPE_BOOLEAN:

System.out.print(cell.getBooleanCellValue() + "\t\t");

dataInRow ++;

break;

case Cell.CELL_TYPE_NUMERIC:

System.out.print(cell.getNumericCellValue() + "\t\t");

if(cRow>pRow) {

pRow = cRow;

}

else
{

switch(cColumn) {

case 1:

pHeight.add(cell.getNumericCellValue());

break;

case 2:

pWidth.add(cell.getNumericCellValue());

break;

case 3:

nPanel.add(cell.getNumericCellValue());

break;

case 4:

sHeight.add(cell.getNumericCellValue());

break;

case 5:

sWidth.add(cell.getNumericCellValue());

break;

case 6:

nSheet.add(cell.getNumericCellValue());

}

cColumn++;

}

dataInRow++;

break;

case Cell.CELL_TYPE_STRING:

System.out.print(cell.getStringCellValue() + "\t\t");

dataInRow++;

break;

}

89

}

if(dataInRow > 0) {

System.out.println("");

}

}

file.close();

} catch (FileNotFoundException e) {

e.printStackTrace();

} catch (IOException e) {

e.printStackTrace();

}

}

}

90

7.1.5. 2D Vertical Improvement

package Simple_Heuristic_II;

import java.io.File;

import java.io.FileInputStream;

import java.io.FileNotFoundException;

import java.io.FileOutputStream;

import java.io.IOException;

import java.util.ArrayList;

import java.util.Collections;

import java.util.Iterator;

import org.apache.poi.ss.usermodel.Cell;

import org.apache.poi.ss.usermodel.Row;

import org.apache.poi.xssf.usermodel.XSSFSheet;

import org.apache.poi.xssf.usermodel.XSSFWorkbook;

public class Improve2_Simple_Heuristic_P_WidthBased_Cut_Vertical{

public static void main(String[] args) {

long startTime = System.currentTimeMillis();

ArrayList<Double> sWidth = new ArrayList<Double>();

ArrayList<Double> sHeight = new ArrayList<Double>();

ArrayList<Double> nSheet = new ArrayList<Double>();

ArrayList<Double> pWidth = new ArrayList<Double>();

ArrayList<Double> pHeight = new ArrayList<Double>();

ArrayList<Double> nPanel = new ArrayList<Double>();

ArrayList<Double> sLeftOverArea = new ArrayList<Double>();

String excelFile = "D:\\Input and output of heuristics based on

height_ExactNumber.xlsx";

System.out.println("ArrayList in row and column set: ");

ReadExcel(sWidth, sHeight, nSheet, pWidth, pHeight, nPanel, excelFile);

ArrayList<Double> sheetWidth = new ArrayList<Double>();

ArrayList<Double> sheetHeight = new ArrayList<Double>();

ArrayList<Double> panelWidth = new ArrayList<Double>();

ArrayList<Double> panelHeight = new ArrayList<Double>();

ArrayList<Double> overCutPanel = new ArrayList<Double>();

ArrayList<Double> overUnderCutPanel = new ArrayList<Double>();

ArrayList<Double> wasteForEachOverCutPanelForEachSheet = new

ArrayList<Double>();

ArrayList<Double> totalWastePerSheetArray = new ArrayList<Double>();

91

//define sheet set

System.out.println("\n" + "Sheet set: ");

for (int i=0; i<nSheet.size(); i++) {

for (int a=0; a<nSheet.get(i); a++) {

sheetWidth.add(sWidth.get(i));

sheetHeight.add(sHeight.get(i));

sLeftOverArea.add(sWidth.get(i) * sHeight.get(i));

System.out.print("[" + sHeight.get(i) + " x " + sWidth.get(i) + "]" + ", ");

}System.out.println();

}

//define panel set

System.out.println("\n" + "Panel set:");

for (int i=0; i<nPanel.size(); i++) {

for (int a=0; a<nPanel.get(i); a++) {

panelWidth.add(pWidth.get(i));

panelHeight.add(pHeight.get(i));

System.out.print("[" + pHeight.get(i) + " x " + pWidth.get(i)+ "]" + ", ");

}System.out.println();

}

// To check and remove the big panel that we cannot put into the sheet, if we don't

have it, it might cause to error.

double maxSHeight = 0;

double maxSWidth = 0;

for (int j = 0; j < nPanel.size(); j++) {

for (int i = 0; i < nSheet.size(); i++) {

if (sHeight.get(i) > maxSHeight) {

maxSHeight = sHeight.get(i);

}

if (sWidth.get(i) > maxSWidth) {

maxSWidth = sWidth.get(i);

}

}

if (((pHeight.get(j) > maxSHeight)) || (pWidth.get(j) > maxSWidth)) {

pWidth.remove(j);

pHeight.remove(j);

nPanel.remove(j);

j--;

}

}

//To check and remove the small sheet that we cannot use to cut other panel, if we

don't have it, it might cause to error

double minPHeight = 999999999;

double minPWidth = 999999999;

for (int i = 0; i < nSheet.size(); i++) {

for (int j = 0; j < nPanel.size(); j++) {

if (minPHeight > pHeight.get(j)) {

minPHeight = pHeight.get(j);

92

}

if (minPWidth > pWidth.get(j)) {

minPWidth = pWidth.get(j);

}

}

if ((sHeight.get(i) < minPHeight) || (sWidth.get(i) < minPWidth)) {

sWidth.remove(i);

sHeight.remove(i);

nSheet.remove(i);

i--;

}

}

//here is the process of cutting

try {

FileInputStream file = new FileInputStream(new File(excelFile));

XSSFWorkbook workbook = new XSSFWorkbook(file);

XSSFSheet sheet = workbook.getSheet("Output2");

Row row; // Declare row variable as Excel row.

Cell cell; // Declare cell variable as Excel cell.

System.out.println("\n" + "Here is the step of cutting: ");

ArrayList<Integer> chosenPanelIndex = new ArrayList<Integer>();

ArrayList<Integer> chosenPanelAmount = new ArrayList<Integer>();

ArrayList<Integer> usedPanelIndex = new ArrayList<Integer>();

ArrayList<Integer> usedPanelAmount = new ArrayList<Integer>();

ArrayList<Double> leftOverDemand = new ArrayList<Double>();

ArrayList<Double> xOrdinateArray = new ArrayList<Double>();

ArrayList<Double> yOrdinateArray = new ArrayList<Double>();

ArrayList<Double> xOrdinateSelected = new ArrayList<Double>();

ArrayList<Double> yOrdinateSelected = new ArrayList<Double>();

ArrayList<Double> pHeightArray = new ArrayList<Double>();

ArrayList<Double> pWidthArray = new ArrayList<Double>();

ArrayList<Double> pHeightSelected = new ArrayList<Double>();

ArrayList<Double> pWidthSelected = new ArrayList<Double>();

ArrayList<Double> panelHeightAtBeginningLevel = new ArrayList<Double>();

ArrayList<Double> panelHeightAtBeginningLevelClone = new

ArrayList<Double>();

double leftoverHeight;

double leftoverWidth;

boolean existingLevel = false;

93

double currentLeftOverArea=0;

double smallestLeftOverArea=0;

int smallestLeftOverSheet=0;

int numberPanelPerSheet=0;

int panelAmountWithMinimumWaste=0;

double sheetNumberNeeded;

long endTime = 0;

double xOrdinate = 0;

double yOrdinate = 0;

double w = 0;

int startRow = 2, numberingCell = 0, sHeightCell = 1, sWidthCell = 2,

pHeightCell = 3, pWidthCell = 4, demandCell = 5, wastePerSheetCell = 6,

numberPanelPerSheetCell = 7, numberSheetNeededToCut = 8, leftOverPanelCell = 9,

computeTimeCell = 10, xCell = 11, yCell = 12, overCutPanelCell = 13,

totalWastePerSheetCell = 14, wasteForCuttingCell = 15;

int r=0;

int printNo = 0;

int i=0, j=0, k=0, level = 0;

int count = 0;

double totalWastePerSheet = 0;

//this loop for pick sheet one by one from all sheet

for (j = 0; j < nPanel.size(); j++) {

smallestLeftOverArea = sWidth.get(0)*sHeight.get(0);

row = sheet.createRow(startRow + r);

for (i = 0; i < sHeight.size(); i++) {

numberPanelPerSheet = 0;

leftoverWidth = sWidth.get(i);

level = 0;

System.out.print("\n" + "Sheet: " + (i+1) + " Size: " + sWidth.get(i) + " x " +

sHeight.get(i));

currentLeftOverArea = sWidth.get(i) * sHeight.get(i);

 //this loop use to define each level in a specific sheet

for (double h=leftoverWidth; h>=pWidth.get(pWidth.size()-1);

h=leftoverWidth) {

leftoverHeight = sHeight.get(i);

existingLevel = false;

ArrayList<Double>newPWidth = new ArrayList<Double>();

ArrayList<Double>newPHeight = new ArrayList<Double>();

ArrayList<Double>newNPanel = new ArrayList<Double>();

if (sWidth.get(i) == leftoverWidth) {

xOrdinate = 0;

}

panelHeightAtBeginningLevel.add(pWidth.get(0));

for (int l = 0; l < pWidth.size(); l++) {

if (sWidth.get(i)!= leftoverWidth) {

94

if (pWidth.get(l) <= leftoverWidth && pHeight.get(l) <= leftoverHeight) {

xOrdinate = xOrdinate + panelHeightAtBeginningLevelClone.get(1);

break;

}

if (pWidth.get(l) > leftoverWidth){

continue;

}

}

}

level += 1;

System.out.println();

System.out.print("\tLevel: " + level + " |");

if (existingLevel == false && ((leftoverHeight>=pHeight.get(j) &&

leftoverWidth>=pWidth.get(j)))){

existingLevel = true;

} else {

newPWidth = (ArrayList)pWidth.clone();

newPHeight =(ArrayList)pHeight.clone();

newNPanel = (ArrayList)nPanel.clone();

newPWidth.remove(pWidth.size()-1);

newPHeight.remove(pHeight.size()-1);

newNPanel.remove(nPanel.size()-1);

 }

newPWidth.clear();

newPHeight.clear();

newNPanel.clear();

panelHeightAtBeginningLevelClone.clear();

if (leftoverWidth >= pWidth.get(j)) {

for (w = leftoverHeight; w >= pHeight.get(j); w = leftoverHeight) {

if (existingLevel == true && leftoverHeight >= pHeight.get(j)) {

System.out.print(" " + pWidth.get(j) + " x " + pHeight.get(j) + " |");

if (sHeight.get(i) == leftoverHeight) {

pHeightArray.add(pHeight.get(j));

pWidthArray.add(pWidth.get(j));

panelHeightAtBeginningLevel.add(pWidth.get(j));

yOrdinate = 0;

xOrdinateArray.add(xOrdinate);

yOrdinateArray.add(yOrdinate);

} else {

pHeightArray.add(pHeight.get(j));

pWidthArray.add(pWidth.get(j));

yOrdinate = yOrdinate + pHeightArray.get(pHeightArray.size()-2);

xOrdinateArray.add(xOrdinate);

yOrdinateArray.add(yOrdinate);

95

}

leftoverHeight = leftoverHeight - pHeight.get(j);

currentLeftOverArea = currentLeftOverArea-

(pWidth.get(j)*pHeight.get(j));

numberPanelPerSheet += 1;

if(usedPanelIndex.indexOf(j) == -1) {

usedPanelIndex.add(j);

usedPanelAmount.add(1);

} else {

usedPanelAmount.set(usedPanelIndex.indexOf(j),

usedPanelAmount.get(usedPanelIndex.indexOf(j))+1);

//use to increase the amount of the same panel size that put into the sheet

}

}

}

}

ArrayList<Double> nextPanelCut = new ArrayList<Double>();

for (k = j+1; k < pHeight.size(); k++) {

if(pHeight.get(k) <= leftoverHeight && pWidth.get(k) <= leftoverWidth) {

nextPanelCut.add((double) k);

if (sHeight.get(i) == leftoverHeight) {

pHeightArray.add(pHeight.get(k));

panelHeightAtBeginningLevel.add(pWidth.get(k));

pWidthArray.add(pWidth.get(k));

yOrdinate = 0;

xOrdinateArray.add(xOrdinate);

yOrdinateArray.add(yOrdinate);

} else {

pHeightArray.add(pHeight.get(k));

pWidthArray.add(pWidth.get(k));

yOrdinate = yOrdinate + pHeightArray.get(pHeightArray.size()-2);

xOrdinateArray.add(xOrdinate);

yOrdinateArray.add(yOrdinate);

}

leftoverHeight -= pHeight.get(k)

currentLeftOverArea -= (pWidth.get(k) * pHeight.get(k));

System.out.print(" " + pWidth.get(k) + " x " + pHeight.get(k) + " |");

numberPanelPerSheet += 1;

if(usedPanelIndex.indexOf(k) == -1) {

usedPanelIndex.add(k);

usedPanelAmount.add(1);

} else {

96

usedPanelAmount.set(usedPanelIndex.indexOf(k),

usedPanelAmount.get(usedPanelIndex.indexOf(k))+1);

}

k--;

}

}

panelHeightAtBeginningLevelClone =

(ArrayList)panelHeightAtBeginningLevel.clone();

panelHeightAtBeginningLevel.clear();

if (leftoverWidth >= pWidth.get(j)) {

leftoverWidth = leftoverWidth - pWidth.get(j);

} else {

if (nextPanelCut.size()!= 0) {

double a = nextPanelCut.get(0);

leftoverWidth = leftoverWidth - pWidth.get((int) a);

}

if (nextPanelCut.isEmpty()) {

leftoverWidth = 0;

continue;

}

}

}

System.out.println();

System.out.print("Total Waste for each sheet: " + currentLeftOverArea);

System.out.print("\nPanel fit: " + numberPanelPerSheet);

System.out.println();

if (smallestLeftOverArea > currentLeftOverArea) {

smallestLeftOverArea = currentLeftOverArea;

 smallestLeftOverSheet = i;

panelAmountWithMinimumWaste = numberPanelPerSheet;

pHeightSelected = (ArrayList)pHeightArray.clone();

pWidthSelected = (ArrayList)pWidthArray.clone();

xOrdinateSelected = (ArrayList)xOrdinateArray.clone();

yOrdinateSelected = (ArrayList)yOrdinateArray.clone();

chosenPanelIndex = (ArrayList)usedPanelIndex.clone();

chosenPanelAmount = (ArrayList)usedPanelAmount.clone();

}

for (int ind =0; ind < chosenPanelIndex.size(); ind++) {

System.out.println("Used Index " + chosenPanelIndex.get(ind));

 System.out.println("Used Amount " + chosenPanelAmount.get(ind));

}

pHeightArray.clear();

pWidthArray.clear();

97

xOrdinateArray.clear();

yOrdinateArray.clear();

usedPanelIndex.clear();

usedPanelAmount.clear();

}

System.out.println();

System.out.println(panelAmountWithMinimumWaste + " panels is cut from

panel set by putting in sheet number " + (smallestLeftOverSheet+1) + " (" +

sWidth.get(smallestLeftOverSheet) + " x " + sHeight.get(smallestLeftOverSheet) + ")

with the minimum waste " + smallestLeftOverArea);

double minimumSheet = 10000000;

double result;

for(int d=0; d < chosenPanelIndex.size(); d++) {

result = Math.ceil(nPanel.get(chosenPanelIndex.get(d)) /

chosenPanelAmount.get(d));

if (minimumSheet > result) {

minimumSheet = result;

}

System.out.println("To fulfill demand of " +

nPanel.get(chosenPanelIndex.get(d)) + " we need to use " + result + " sheets");

}

System.out.println("\nTherefore: To satisfy the demand we need: " +

minimumSheet + " sheets.");

//To find the over cut panel

double totalWasteOfOverCutPanel = 0;

for (int l = 0; l < chosenPanelIndex.size(); l++) {

overUnderCutPanel.add((minimumSheet * chosenPanelAmount.get(l)) -

nPanel.get(chosenPanelIndex.get(l)));

if (overUnderCutPanel.get(l)<= 0) {

overCutPanel.add(0.0);

} else {

 overCutPanel.add(overUnderCutPanel.get(l));

}

wasteForEachOverCutPanelForEachSheet.add(overCutPanel.get(l)*

pHeight.get(l) * pWidth.get(l));

totalWasteOfOverCutPanel = totalWasteOfOverCutPanel +

wasteForEachOverCutPanelForEachSheet.get(l);

System.out.println("Over cut Panel = " + overCutPanel);

}

totalWastePerSheet = (smallestLeftOverArea * minimumSheet) +

totalWasteOfOverCutPanel;

totalWastePerSheetArray.add(totalWastePerSheet);

int index;

double amount;

double demand;

for(int ind = 0; ind < chosenPanelIndex.size(); ind++) {

98

System.out.println("Chosen Index " + chosenPanelIndex.get(ind));

System.out.println("Used Amount " + chosenPanelAmount.get(ind));

row = sheet.createRow(startRow + r);

index = chosenPanelIndex.get(ind);

amount = chosenPanelAmount.get(ind);

demand = nPanel.get(chosenPanelIndex.get(ind));

leftOverDemand.add(demand - (amount * minimumSheet));

count = 0;

if (ind == 0) {

 cell = row.createCell(numberingCell);

cell.setCellValue(printNo+1);

cell = row.createCell(sHeightCell);

cell.setCellValue(sHeight.get(smallestLeftOverSheet));

cell = row.createCell(sWidthCell);

cell.setCellValue(sWidth.get(smallestLeftOverSheet));

if (leftOverDemand.get(ind)> 0) {

cell = row.createCell(leftOverPanelCell);

cell.setCellValue(leftOverDemand.get(ind));

}

}

if (ind < chosenPanelIndex.size()-1) {

cell = row.createCell(demandCell);

cell.setCellValue(nPanel.get(chosenPanelIndex.get(ind)));

cell = row.createCell(overCutPanelCell);

cell.setCellValue(overCutPanel.get(ind));

cell = row.createCell(numberPanelPerSheetCell);

cell.setCellValue(chosenPanelAmount.get(ind));

 if (leftOverDemand.get(ind)> 0) {

cell = row.createCell(leftOverPanelCell);

cell.setCellValue(leftOverDemand.get(ind));

}

// to spread the panel of cutting such that i can put the coordinate

for (int l = 0; l < chosenPanelAmount.get(ind); l++) {

cell = row.createCell(pHeightCell);

cell.setCellValue(pHeightSelected.get(l));

cell = row.createCell(pWidthCell);

cell.setCellValue(pWidthSelected.get(l));

cell = row.createCell(xCell);

99

cell.setCellValue(xOrdinateSelected.get(l));

cell = row.createCell(yCell);

cell.setCellValue(yOrdinateSelected.get(l));

count = count + 1;

r++;

row = sheet.createRow(startRow + r);

}

//Remove that panel use such that it can print of other panel

for (int b = (count-1) ; b >= 0; b--) {

pHeightSelected.remove(b);

pWidthSelected.remove(b);

xOrdinateSelected.remove(b);

yOrdinateSelected.remove(b);

}

} else if ((chosenPanelIndex.size()-1) == ind) {

cell = row.createCell(demandCell);

cell.setCellValue(nPanel.get(chosenPanelIndex.get(ind)));

cell = row.createCell(overCutPanelCell);

cell.setCellValue(overCutPanel.get(ind));

cell = row.createCell(numberPanelPerSheetCell);

cell.setCellValue(chosenPanelAmount.get(ind));

if (leftOverDemand.get(ind)> 0) {

cell = row.createCell(leftOverPanelCell);

cell.setCellValue(leftOverDemand.get(ind));

}

for (int l = 0; l < chosenPanelAmount.get(ind); l++) {

cell = row.createCell(pHeightCell);

cell.setCellValue(pHeightSelected.get(l));

cell = row.createCell(pWidthCell);

cell.setCellValue(pWidthSelected.get(l));

cell = row.createCell(xCell);

cell.setCellValue(xOrdinateSelected.get(l));

cell = row.createCell(yCell);

cell.setCellValue(yOrdinateSelected.get(l));

count = count + 1;

r++;

row = sheet.createRow(startRow + r);

100

}

for (int b = (count-1) ; b >= 0; b--) {

pHeightSelected.remove(b);

pWidthSelected.remove(b);

xOrdinateSelected.remove(b);

yOrdinateSelected.remove(b);

}

r--;

}

}

wasteForEachOverCutPanelForEachSheet.clear();

overUnderCutPanel.clear();

overCutPanel.clear();

r = r + 2;

printNo++;

cell = row.createCell(wastePerSheetCell);

cell.setCellValue(smallestLeftOverArea);

cell = row.createCell(numberSheetNeededToCut);

cell.setCellValue(minimumSheet);

cell = row.createCell(totalWastePerSheetCell);

cell.setCellValue(totalWastePerSheet);

endTime = System.currentTimeMillis();

System.out.println("Time taken for this process are: " + (endTime - startTime) +

" milli seconds");

cell = row.createCell(computeTimeCell);

cell.setCellValue(endTime - startTime);

for(int d = chosenPanelIndex.size()-1; d >= 0; d--) {

index = chosenPanelIndex.indexOf(Collections.max(chosenPanelIndex));

amount = chosenPanelAmount.get(index);

demand = nPanel.get(chosenPanelIndex.get(index));

int newIndex = chosenPanelIndex.get(index);

if (leftOverDemand.get(index) > 0) {

nPanel.set(newIndex, leftOverDemand.get(index));

chosenPanelIndex.remove(index);

chosenPanelAmount.remove(index);

leftOverDemand.remove(index);

} else {

nPanel.remove(newIndex);

pHeight.remove(newIndex);

pWidth.remove(newIndex);

101

chosenPanelIndex.remove(index);

chosenPanelAmount.remove(index);

leftOverDemand.remove(index);

}

}

leftOverDemand.clear();

System.out.println("--");

j--;

double wasteForCutting = 0;

for (int l = 0; l < totalWastePerSheetArray.size(); l++) {

wasteForCutting = wasteForCutting + totalWastePerSheetArray.get(l);

}

cell = row.createCell(wasteForCuttingCell);

cell.setCellValue(wasteForCutting);

}

chosenPanelIndex.clear();

chosenPanelAmount.clear();

file.close();

FileOutputStream outFile =new FileOutputStream(new File(excelFile));

workbook.write(outFile);

outFile.close();

} catch (FileNotFoundException e) {

e.printStackTrace();

} catch (IOException e) {

e.printStackTrace();

}

}

public static void ReadExcel(ArrayList<Double> sWidth,

ArrayList<Double> sHeight, ArrayList<Double> nSheet,

ArrayList<Double> pWidth, ArrayList<Double> pHeight,

ArrayList<Double> nPanel, String excelFile) {

try {

FileInputStream file = new FileInputStream(new File(excelFile));

XSSFWorkbook workbook = new XSSFWorkbook(file);

XSSFSheet sheet = workbook.getSheet("Input2");

// cRow = currentRow, pRow = processingRow

int cRow = 0 , pRow = 0;

int cColumn = 1;

int dataInRow = 0;

//Iterate through each rows from first sheet

Iterator<Row> rowIterator = sheet.iterator();

while(rowIterator.hasNext()) {

Row row = rowIterator.next();

cRow++;

cColumn = 1;

102

dataInRow = 0;

//For each row, iterate through each columns

Iterator<Cell> cellIterator = row.cellIterator();

while(cellIterator.hasNext()) {

Cell cell = cellIterator.next();

switch(cell.getCellType()) {

case Cell.CELL_TYPE_BOOLEAN:

System.out.print(cell.getBooleanCellValue() + "\t\t");

dataInRow ++;

break;

case Cell.CELL_TYPE_NUMERIC:

System.out.print(cell.getNumericCellValue() + "\t\t");

if(cRow>pRow) {

pRow = cRow;

}

else
{

switch(cColumn) {

case 1:

pHeight.add(cell.getNumericCellValue());

break;

case 2:

pWidth.add(cell.getNumericCellValue());

break;

case 3:

nPanel.add(cell.getNumericCellValue());

break;

case 4:

sHeight.add(cell.getNumericCellValue());

break;

case 5:

sWidth.add(cell.getNumericCellValue());

break;

case 6:

nSheet.add(cell.getNumericCellValue());

}

cColumn++;

}

dataInRow++;

break;

case Cell.CELL_TYPE_STRING:

System.out.print(cell.getStringCellValue() + "\t\t");

dataInRow++;

break;

}

}

if(dataInRow > 0) {

103

System.out.println("");

}

}

file.close();

} catch (FileNotFoundException e) {

e.printStackTrace();

} catch (IOException e) {

e.printStackTrace();

}

}

}

104

7.1.6. Sheet Width Panel Height Horizontal Cut

package SWidthBased_PHeightBased_2D_2Stage_Horizontal_Cutting_P3;

import java.io.File;

import java.io.FileInputStream;

import java.io.FileNotFoundException;

import java.io.FileOutputStream;

import java.io.IOException;

import java.util.ArrayList;

import java.util.Iterator;

import org.apache.poi.ss.usermodel.Cell;

import org.apache.poi.ss.usermodel.Row;

import org.apache.poi.xssf.usermodel.XSSFSheet;

import org.apache.poi.xssf.usermodel.XSSFWorkbook;

public class SWidthBased_PHeightBased_2D_2Stage_Horizontal_Cutting_P3{

public static void main(String[] args) {

long startTime = System.currentTimeMillis();

ArrayList<Double> sWidth = new ArrayList<Double>();

ArrayList<Double> sHeight = new ArrayList<Double>(); // Unique sheet height.

ArrayList<Double> nSheet = new ArrayList<Double>(); // Amount of sheet of

each size.

ArrayList<Double> pWidth = new ArrayList<Double>();

ArrayList<Double> pHeight = new ArrayList<Double>();

ArrayList<Double> nPanel = new ArrayList<Double>();

ArrayList<Double> sLeftOverArea = new ArrayList<Double>();

String excelFile = "C:\\Users\\Tiengkimseng\\Google

Drive\\Kimseng\\Thesis\\CODE_2D_2S_AND_2D_3S_CUTTING_8MODELS\\Heu

ristic_for_2D_2Stage_Con1_Con2_P1_P3\\SWidth_PHeight_P3\\CuttingData -

Sample 39.xlsx";

//String excelFile = "D:\\Input and output of heuristics For construction 1 and

2.xlsx";

System.out.println("ArrayList in row and column set: ");

try {

FileInputStream file = new FileInputStream(new File(excelFile));

XSSFWorkbook workbook = new XSSFWorkbook(file);

XSSFSheet sheet = workbook.getSheet("Input");// or .getsheetAt(2);

// cRow = currentRow, pRow = processingRow

int cRow = 0 , pRow = 0; // cRow can give any value but pRow cannot

int cColumn = 1; // here we also can change it

int dataInRow = 0;

105

//Iterate through each rows from first sheet

Iterator<Row> rowIterator = sheet.iterator();

while(rowIterator.hasNext()) {

Row row = rowIterator.next();

cRow++;

cColumn = 1;

dataInRow = 0;

//For each row, iterate through each columns

Iterator<Cell> cellIterator = row.cellIterator();

while(cellIterator.hasNext()) {

Cell cell = cellIterator.next();

switch(cell.getCellType()) {

case Cell.CELL_TYPE_BOOLEAN:

System.out.print(cell.getBooleanCellValue() + "\t\t");

dataInRow ++;

break;

case Cell.CELL_TYPE_NUMERIC:

System.out.print(cell.getNumericCellValue() + "\t\t");

if(cRow>pRow) {

pRow = cRow;

}

Else
{

switch(cColumn) {

case 1:

pHeight.add(cell.getNumericCellValue());

break;

case 2:

pWidth.add(cell.getNumericCellValue());

break;

case 3:

nPanel.add(cell.getNumericCellValue());

break;

case 4:

sHeight.add(cell.getNumericCellValue());

break;

case 5:

sWidth.add(cell.getNumericCellValue());

break;

case 6:

nSheet.add(cell.getNumericCellValue());

}

cColumn++;

}

dataInRow++;

break;

106

case Cell.CELL_TYPE_STRING:

System.out.print(cell.getStringCellValue() + "\t\t");

dataInRow++;

break;

}

}

if(dataInRow > 0) {

System.out.println("");

}

}

file.close();

} catch (FileNotFoundException e) {

e.printStackTrace();

} catch (IOException e) {

e.printStackTrace();

}

ArrayList<Double> sheetWidth = new ArrayList<Double>();

ArrayList<Double> sheetHeight = new ArrayList<Double>();

ArrayList<Double> panelWidth = new ArrayList<Double>();

ArrayList<Double> panelHeight = new ArrayList<Double>();

ArrayList<Double> totalWastePerSheet = new ArrayList<Double>();

//define sheet set

System.out.println("\n" + "Sheet set: ");

for (int i=0; i<nSheet.size(); i++) {

for (int a=0; a<nSheet.get(i); a++) {

sheetWidth.add(sWidth.get(i));

sheetHeight.add(sHeight.get(i));

sLeftOverArea.add(sWidth.get(i) * sHeight.get(i));

//System.out.print("[" + sHeight.get(i) + " x " + sWidth.get(i) + "]" + ", ");

}System.out.println();

}

//define panel set

System.out.println("\n" + "Panel set:");

for (int i=0; i<nPanel.size(); i++) {

for (int a=0; a<nPanel.get(i); a++) {

panelWidth.add(pWidth.get(i));

panelHeight.add(pHeight.get(i));

//System.out.print("[" + pHeight.get(i) + " x " + pWidth.get(i)+ "]" + ", ");

}System.out.println();

}

//here is the process of cutting

try {

// Open excel file.

FileInputStream file = new FileInputStream(new File(excelFile));

107

XSSFWorkbook workbook = new XSSFWorkbook(file);

XSSFSheet sheet = workbook.getSheet("Output");// or .getsheetAt(2);

Row row; // Declare row variable as Excel row.

Cell cell; // Declare cell variable as Excel cell.

System.out.println("\n" + "Here is the step of cutting: ");

double leftoverHeight;

double leftoverWidth;

double wasteBeforeCut = 0;

// Now everything is still working as expected. So no other code editing is

necessary.

int startRow = 2, sHeightCell = 0, sWidthCell = 1, pHeightCell = 2, pWidthCell

= 3, levelCell = 4, sLeftOverAreaCell = 5, computeTimeCell = 6, totalWasteCell = 7;

int r=0;

long computeTime = 0;

boolean existingLevel = false; // Level check if new calculate new

[leftoverHeight] and [leftoverWidth].

int i=0, j=0, level;

//.size equal to .length but one use in arraylist and another one use in array

this loop for pick sheet one by one from all sheet

for (i = 0; i < sheetHeight.size(); i++) {

leftoverHeight = sheetHeight.get(i);

leftoverWidth = sheetWidth.get(i);//.get(i) use in arraylist

level = 0;

row = sheet.createRow(startRow + r);

cell = row.createCell(sHeightCell);

cell.setCellValue(sheetHeight.get(i));

cell = row.createCell(sWidthCell);

cell.setCellValue(sheetWidth.get(i));

//To define the value of the waste

if (i > 0) {

sheet.getRow(startRow + (r-

1)).createCell(sLeftOverAreaCell).setCellValue(sLeftOverArea.get(i-1));

}

//this loop use to define each level in a specific sheet

for (double h=leftoverHeight; h>=panelHeight.get(panelHeight.size()-1);

h=leftoverHeight) {

leftoverWidth = sheetWidth.get(i);

existingLevel = false;

// this loop use to pick the panel to put inside each level in a specific sheet

for (j = 0; j < panelHeight.size(); j++) {

if (existingLevel == false && (leftoverHeight>=panelHeight.get(j) &&

leftoverWidth>=panelWidth.get(j))) {

108

leftoverHeight = leftoverHeight - panelHeight.get(j);

existingLevel = true;

level += 1;

}

if (existingLevel == true && leftoverWidth >= panelWidth.get(j)) {

System.out.println("put panel: " + panelHeight.get(j) + " x " +

panelWidth.get(j) + " into sheet: " + (i+1) + " level: " + level);

sLeftOverArea.set(i, sLeftOverArea.get(i) - (panelHeight.get(j) *

panelWidth.get(j)));

try {

row = sheet.getRow(startRow + r);

if (row == null) {

row = sheet.createRow(startRow + r);

}

}

catch (Exception e) {

row = sheet.createRow(startRow + r);

}

row.createCell(pHeightCell).setCellValue(panelHeight.get(j));

row.createCell(pWidthCell).setCellValue(panelWidth.get(j));

row.createCell(levelCell).setCellValue(level);

r = r + 1; // move to new row.

leftoverWidth = leftoverWidth - panelWidth.get(j);

panelHeight.remove(j);

panelWidth.remove(j);

j = j - 1;

}

}

if(panelHeight.isEmpty()){

sheet.getRow(startRow + (r-

1)).createCell(sLeftOverAreaCell).setCellValue(sLeftOverArea.get(i));

sheet.getRow(startRow + (r-

1)).createCell(computeTimeCell).setCellValue(computeTime);

totalWastePerSheet.add(sLeftOverArea.get(i));

for (int k = 0; k < totalWastePerSheet.size(); k++) {

wasteBeforeCut = wasteBeforeCut + totalWastePerSheet.get(k);

}

sheet.getRow(startRow + (r-

1)).createCell(totalWasteCell).setCellValue(wasteBeforeCut);

file.close();

FileOutputStream outFile =new FileOutputStream(new File(excelFile));

workbook.write(outFile);

outFile.close();

return;

}

}

109

totalWastePerSheet.add(sLeftOverArea.get(i));

sheetHeight.remove(0);

sheetWidth.remove(0);

long endTime = System.currentTimeMillis();

computeTime = endTime - startTime;

System.out.println("Time taken for this process are: " + (computeTime) + "

milli seconds");

cell = row.createCell(computeTimeCell);

cell.setCellValue(computeTime);

}

sheet.getRow(startRow + (r-

1)).createCell(sLeftOverAreaCell).setCellValue(sLeftOverArea.get(9));

file.close();

FileOutputStream outFile =new FileOutputStream(new File(excelFile));

workbook.write(outFile);

outFile.close();

for(int l=0; l < sLeftOverArea.size(); l++) {

System.out.println("Sheet: " + (l+1) + " Left over area: " +

sLeftOverArea.get(l));

}

} catch (FileNotFoundException e) {

e.printStackTrace();

} catch (IOException e) {

e.printStackTrace();

}

}

}

110

7.1.7. Sheet Width Panel Width Vertical Cut

package SWidthBased_PWidthBased_2D_2Stage_Vertical_Cutting_P3;

import java.io.File;

import java.io.FileInputStream;

import java.io.FileNotFoundException;

import java.io.FileOutputStream;

import java.io.IOException;

import java.util.ArrayList;

import java.util.Iterator;

import org.apache.poi.ss.usermodel.Cell;

import org.apache.poi.ss.usermodel.Row;

import org.apache.poi.xssf.usermodel.XSSFSheet;

import org.apache.poi.xssf.usermodel.XSSFWorkbook;

public class SWidthBased_PWidthBased_2D_2Stage_Vertical_Cutting_P3{

public static void main(String[] args) {

long startTime = System.currentTimeMillis();

ArrayList<Double> sWidth = new ArrayList<Double>();

ArrayList<Double> sHeight = new ArrayList<Double>(); // Unique sheet height.

ArrayList<Double> nSheet = new ArrayList<Double>(); // Amount of sheet of

each size.

ArrayList<Double> pWidth = new ArrayList<Double>();

ArrayList<Double> pHeight = new ArrayList<Double>();

ArrayList<Double> nPanel = new ArrayList<Double>();

ArrayList<Double> sLeftOverArea = new ArrayList<Double>();

String excelFile = "C:\\Users\\Tiengkimseng\\Google

Drive\\Kimseng\\Thesis\\CODE_2D_2S_AND_2D_3S_CUTTING_8MODELS\\Heu

ristic_for_2D_2Stage_Con1_Con2_P1_P3\\SWidth_PWidth_P3\\CuttingData -

Sample 39.xlsx";

//String excelFile = "D:\\Input and output of heuristics For construction 1 and

2.xlsx";

System.out.println("ArrayList in row and column set: ");

try {

FileInputStream file = new FileInputStream(new File(excelFile));

XSSFWorkbook workbook = new XSSFWorkbook(file);

//XSSFSheet sheet = workbook.getSheet("Input4");// or .getsheetAt(2);

XSSFSheet sheet = workbook.getSheet("Input");// or .getsheetAt(2);

// cRow = currentRow, pRow = processingRow

int cRow = 0 , pRow = 0; // cRow can give any values but pRow cannot

(what is its function?)

int cColumn = 1; // here we also can change it

111

int dataInRow = 0;

//Iterate through each rows from first sheet

Iterator<Row> rowIterator = sheet.iterator();

while(rowIterator.hasNext()) {

Row row = rowIterator.next();

cRow++;

cColumn = 1;

dataInRow = 0;

//For each row, iterate through each columns

Iterator<Cell> cellIterator = row.cellIterator();

while(cellIterator.hasNext()) {

Cell cell = cellIterator.next();

switch(cell.getCellType()) {

case Cell.CELL_TYPE_BOOLEAN:

System.out.print(cell.getBooleanCellValue() + "\t\t");

dataInRow ++;

break;

case Cell.CELL_TYPE_NUMERIC:

System.out.print(cell.getNumericCellValue() + "\t\t");

if(cRow>pRow) {

pRow = cRow;

}

Else
{

switch(cColumn) {

case 1:

pHeight.add(cell.getNumericCellValue());

break;

case 2:

pWidth.add(cell.getNumericCellValue());

break;

case 3:

nPanel.add(cell.getNumericCellValue());

break;

case 4:

sHeight.add(cell.getNumericCellValue());

break;

case 5:

sWidth.add(cell.getNumericCellValue());

break;

case 6:

nSheet.add(cell.getNumericCellValue());

}

cColumn++;

}

112

dataInRow++;

break;

case Cell.CELL_TYPE_STRING:

System.out.print(cell.getStringCellValue() + "\t\t");

dataInRow++;

break;

}

}

if(dataInRow > 0) {

System.out.println("");

}

}

file.close();

} catch (FileNotFoundException e) {

e.printStackTrace();

} catch (IOException e) {

e.printStackTrace();

}

ArrayList<Double> sheetWidth = new ArrayList<Double>();

ArrayList<Double> sheetHeight = new ArrayList<Double>();

ArrayList<Double> panelWidth = new ArrayList<Double>();

ArrayList<Double> panelHeight = new ArrayList<Double>();

ArrayList<Double> totalWastePerSheet = new ArrayList<Double>();

//define sheet set

System.out.println("\n" + "Sheet set: ");

for (int i=0; i<nSheet.size(); i++) {

for (int a=0; a<nSheet.get(i); a++) {

sheetWidth.add(sWidth.get(i));

sheetHeight.add(sHeight.get(i));

sLeftOverArea.add(sWidth.get(i) * sHeight.get(i));

//System.out.print("[" + sHeight.get(i) + " x " + sWidth.get(i) + "]" + ", ");//It is

correct

}System.out.println();

}

//define panel set

System.out.println("\n" + "Panel set:");

for (int i=0; i<nPanel.size(); i++) {

for (int a=0; a<nPanel.get(i); a++) {

panelWidth.add(pWidth.get(i));

panelHeight.add(pHeight.get(i));

//System.out.print("[" + pHeight.get(i) + " x " + pWidth.get(i)+ "]" + ", ");//It is

correct

}System.out.println();

}

113

//here is the process of cutting

try {

// Open excel file.

FileInputStream file = new FileInputStream(new File(excelFile));

XSSFWorkbook workbook = new XSSFWorkbook(file);

XSSFSheet sheet = workbook.getSheet("Output");// or .getsheetAt(2);

Row row; // Declare row variable as Excel row.

Cell cell; // Declare cell variable as Excel cell.

System.out.println("\n" + "Here is the step of cutting: ");

double leftoverHeight;

double leftoverWidth;

double wasteBeforeCut = 0;

// Now everything is still working as expected. So no other code editing is

necessary.

int startRow = 2, sHeightCell = 0, sWidthCell = 1, pHeightCell = 2, pWidthCell

= 3, levelCell = 4, sLeftOverAreaCell = 5, computeTimeCell = 6, totalWasteCell = 7;

int r=0;

long computeTime = 0;

boolean existingLevel = false; // Level check if new calculate new

[leftoverHeight] and [leftoverWidth].

int i=0, j=0, level;

for (i = 0; i < sheetWidth.size(); i++) {

leftoverHeight = sheetHeight.get(i);

leftoverWidth = sheetWidth.get(i);//.get(i) use in arraylist

level = 0;

row = sheet.createRow(startRow + r);

cell = row.createCell(sHeightCell);

cell.setCellValue(sheetHeight.get(i));

cell = row.createCell(sWidthCell);

cell.setCellValue(sheetWidth.get(i));

//To define the value of the waste

if (i > 0) {

sheet.getRow(startRow + (r-

1)).createCell(sLeftOverAreaCell).setCellValue(sLeftOverArea.get(i-1));

}

//this loop use to define each level in a specific sheet

for (double h=leftoverWidth; h>=panelWidth.get(panelWidth.size()-1);

h=leftoverWidth) {

leftoverHeight = sheetHeight.get(i);

114

existingLevel = false;

// this loop use to pick the panel to put inside each level in a specific sheet

for (j = 0; j < panelWidth.size(); j++) {

if (existingLevel == false && (leftoverHeight>=panelHeight.get(j) &&

leftoverWidth>=panelWidth.get(j))) {

leftoverWidth = leftoverWidth - panelWidth.get(j);

existingLevel = true;

level += 1;

}

if (existingLevel == true && leftoverHeight>=panelHeight.get(j)) {

System.out.println("put panel: " + panelHeight.get(j) + " x " +

panelWidth.get(j) + " into sheet: " + (i+1) + " level: " + level);

sLeftOverArea.set(i, sLeftOverArea.get(i) - (panelHeight.get(j) *

panelWidth.get(j)));

//row = sheet.getRow(startRow + r); // read data at row: startRow + r

in sheet in Excel file.

try {

row = sheet.getRow(startRow + r);

if (row == null) {

row = sheet.createRow(startRow + r);

}

}

catch (Exception e) {

row = sheet.createRow(startRow + r);

}

row.createCell(pHeightCell).setCellValue(panelHeight.get(j));

row.createCell(pWidthCell).setCellValue(panelWidth.get(j));

row.createCell(levelCell).setCellValue(level);

r++; // move to new row.

leftoverHeight = leftoverHeight - panelHeight.get(j);

panelHeight.remove(j);

panelWidth.remove(j);

j = j - 1;

}

}

if(panelHeight.isEmpty()){

sheet.getRow(startRow + (r-

1)).createCell(sLeftOverAreaCell).setCellValue(sLeftOverArea.get(i));

sheet.getRow(startRow + (r-

1)).createCell(computeTimeCell).setCellValue(computeTime);

totalWastePerSheet.add(sLeftOverArea.get(i));

for (int k = 0; k < totalWastePerSheet.size(); k++) {

wasteBeforeCut = wasteBeforeCut + totalWastePerSheet.get(k);

}

115

sheet.getRow(startRow + (r-

1)).createCell(totalWasteCell).setCellValue(wasteBeforeCut);

file.close();

FileOutputStream outFile =new FileOutputStream(new File(excelFile));

workbook.write(outFile);

outFile.close();

return;

}

}

totalWastePerSheet.add(sLeftOverArea.get(i));

sheetHeight.remove(0);

sheetWidth.remove(0);

long endTime = System.currentTimeMillis();

computeTime = endTime - startTime;

System.out.println("Time taken for this process are: " + (computeTime) + "

milli seconds");

cell = row.createCell(computeTimeCell);

cell.setCellValue(computeTime);

}

sheet.getRow(startRow + (r-

1)).createCell(sLeftOverAreaCell).setCellValue(sLeftOverArea.get(9));

file.close();

FileOutputStream outFile =new FileOutputStream(new File(excelFile));

workbook.write(outFile);

outFile.close();

for(int l=0; l < sLeftOverArea.size(); l++) {

System.out.println("Sheet: " + (l+1) + " Left over area: " +

sLeftOverArea.get(l));

}

} catch (FileNotFoundException e) {

e.printStackTrace();

} catch (IOException e) {

e.printStackTrace();

}

}

}

116

7.1.8. Minimum Sheet Width Ordering Panel Height Horizontal Cut

package Simple_Heuristic_II_2D_2S_P3;

import java.io.File;

import java.io.FileInputStream;

import java.io.FileNotFoundException;

import java.io.FileOutputStream;

import java.io.IOException;

import java.util.ArrayList;

import java.util.Collections;

import java.util.Iterator;

import org.apache.poi.ss.usermodel.Cell;

import org.apache.poi.ss.usermodel.Row;

import org.apache.poi.xssf.usermodel.XSSFSheet;

import org.apache.poi.xssf.usermodel.XSSFWorkbook;

public class Im1_Min_SWidth_PH_Cut_Horizon_P3{

public static void main(String[] args) {

long startTime = System.currentTimeMillis();

ArrayList<Double> sWidth = new ArrayList<Double>();

ArrayList<Double> sHeight = new ArrayList<Double>(); // Unique sheet height.

ArrayList<Double> nSheet = new ArrayList<Double>(); // Amount of sheet of

each size.

ArrayList<Double> pWidth = new ArrayList<Double>();

ArrayList<Double> pHeight = new ArrayList<Double>();

ArrayList<Double> nPanel = new ArrayList<Double>();

ArrayList<Double> sLeftOverArea = new ArrayList<Double>();

String excelFile = "C:\\Users\\Tiengkimseng\\Google

Drive\\Kimseng\\Thesis\\CODE_2D_2S_AND_2D_3S_CUTTING_8MODELS\\Sim

ple Heuristic II_VS_Coordinate

(x,y)_MinSWidth_P3\\SWidth_PHeight_P3\\CuttingData - Sample 28.xlsx";

System.out.println("ArrayList in row and column set: ");

ReadExcel(sWidth, sHeight, nSheet, pWidth, pHeight, nPanel, excelFile);

ArrayList<Double> sheetWidth = new ArrayList<Double>();

ArrayList<Double> sheetHeight = new ArrayList<Double>();

ArrayList<Double> panelWidth = new ArrayList<Double>();

ArrayList<Double> panelHeight = new ArrayList<Double>();

ArrayList<Double> overCutPanel = new ArrayList<Double>();

ArrayList<Double> overUnderCutPanel = new ArrayList<Double>();

117

ArrayList<Double> wasteForEachOverCutPanelForEachSheet = new

ArrayList<Double>();

ArrayList<Double> totalWastePerSheetArray = new ArrayList<Double>();

//define sheet set

System.out.println("\n" + "Sheet set: ");

for (int i=0; i<nSheet.size(); i++) {

for (int a=0; a<nSheet.get(i); a++) {

sheetWidth.add(sWidth.get(i));

sheetHeight.add(sHeight.get(i));

sLeftOverArea.add(sWidth.get(i) * sHeight.get(i));

System.out.print("[" + sHeight.get(i) + " x " + sWidth.get(i) + "]" + ", ");

}System.out.println();

}

//define panel set

System.out.println("\n" + "Panel set:");

for (int i=0; i<nPanel.size(); i++) {

for (int a=0; a<nPanel.get(i); a++) {

panelWidth.add(pWidth.get(i));

panelHeight.add(pHeight.get(i));

System.out.print("[" + pHeight.get(i) + " x " + pWidth.get(i)+ "]" + ", ");

}System.out.println();

}

double maxSHeight = 0;

double maxSWidth = 0;

for (int j = 0; j < nPanel.size(); j++) {

for (int i = 0; i < nSheet.size(); i++) {

if (sHeight.get(i) > maxSHeight) {

maxSHeight = sHeight.get(i);

}

if (sWidth.get(i) > maxSWidth) {

maxSWidth = sWidth.get(i);

}

}

if (((pHeight.get(j) > maxSHeight)) || (pWidth.get(j) > maxSWidth)) {

pWidth.remove(j);

pHeight.remove(j);

nPanel.remove(j);

j--;

}

}

//To check and remove the small sheet that we cannot use to cut other panel

double minPHeight = 999999999;

double minPWidth = 999999999;

for (int i = 0; i < nSheet.size(); i++) {

for (int j = 0; j < nPanel.size(); j++) {

118

if (minPHeight > pHeight.get(j)) {

minPHeight = pHeight.get(j);

}

if (minPWidth > pWidth.get(j)) {

minPWidth = pWidth.get(j);

}

}

if ((sHeight.get(i) < minPHeight) || (sWidth.get(i) < minPWidth)) {

sWidth.remove(i);

sHeight.remove(i);

nSheet.remove(i);

i--;

}

}

//here is the process of cutting

try {

// Open excel file.

FileInputStream file = new FileInputStream(new File(excelFile));

//Get the workbook instance for XLSX file

XSSFWorkbook workbook = new XSSFWorkbook(file);

//Read sheet['Output']

XSSFSheet sheet = workbook.getSheet("Output");

Row row; // Declare row variable as Excel row.

Cell cell; // Declare cell variable as Excel cell.

System.out.println("\n" + "Here is the step of cutting: ");

ArrayList<Integer> chosenPanelIndex = new ArrayList<Integer>();

ArrayList<Integer> chosenPanelAmount = new ArrayList<Integer>();

ArrayList<Integer> usedPanelIndex = new ArrayList<Integer>();//the index of

the panel that have been cut in each type of sheet

ArrayList<Integer> usedPanelAmount = new ArrayList<Integer>();//number of

panel in each type that used to cut

ArrayList<Double> leftOverDemand = new ArrayList<Double>();//number of

demand after update with the panel number cut

ArrayList<Double> xOrdinateArray = new ArrayList<Double>();//Use to add the

x ordinate one by one then when the panel is cut then clone it to xOrdinateSelected

when the sheet is full

ArrayList<Double> yOrdinateArray = new ArrayList<Double>();

ArrayList<Double> xOrdinateSelected = new ArrayList<Double>();//use to write

the coordinate in excel

ArrayList<Double> yOrdinateSelected = new ArrayList<Double>();

119

ArrayList<Double> pHeightArray = new ArrayList<Double>();//Use to add the

panel cut in order one by one then clone it to pHeightSelected when the sheet cut is

full

ArrayList<Double> pWidthArray = new ArrayList<Double>();

ArrayList<Double> pHeightSelected = new ArrayList<Double>();//use to write

the panel cut in excel in accordance with the coordinate

ArrayList<Double> pWidthSelected = new ArrayList<Double>();

ArrayList<Double> panelHeightAtBeginningLevel = new ArrayList<Double>();

ArrayList<Double> panelHeightAtBeginningLevelClone = new

ArrayList<Double>();

ArrayList<Double> indexOfMinWidthGapCopy = new ArrayList<Double>();

ArrayList<Double> indexOfMinWidthGapCopyClone = new

ArrayList<Double>();

double leftoverHeight;

double leftoverWidth;

boolean existingLevel = false; // New or existing level check

double currentLeftOverArea=0;

double smallestLeftOverArea=0; // Variable to store the smallest left over

area of sheet.

int smallestLeftOverSheet=0; // Store index of the smallest left over area sheet.

int numberPanelPerSheet=0;

int panelAmountWithMinimumWaste=0;

long endTime = 0;

double xOrdinate = 0;

double yOrdinate = 0;

double w = 0;

int startRow = 2, numberingCell = 0, sHeightCell = 1, sWidthCell = 2,

pHeightCell = 3, pWidthCell = 4, demandCell = 5, wastePerSheetCell = 6,

numberPanelPerSheetCell = 7, numberSheetNeededToCut = 8, leftOverPanelCell = 9,

computeTimeCell = 10, xCell = 11, yCell = 12, overCutPanelCell = 13,

totalWastePerSheetCell = 14, wasteForCuttingCell = 15;

int r=0;

int printNo = 0;

int i=0, j=0, k=0, level = 0;

int count = 0;

double totalWastePerSheet = 0;

int indexOfMinWidthGap = 0;

//this loop for pick sheet one by one from all sheet

for (j = 0; j < nPanel.size(); j++) {

smallestLeftOverArea = sWidth.get(0)*sHeight.get(0);

row = sheet.createRow(startRow + r);

for (i = 0; i < sHeight.size(); i++) {

numberPanelPerSheet = 0;

120

leftoverHeight = sHeight.get(i);

level = 0;

System.out.print("\n" + "Sheet: " + (i+1) + " Size: " + sWidth.get(i) + " x " +

sHeight.get(i));

currentLeftOverArea = sWidth.get(i) * sHeight.get(i);

//this loop use to define each level in a specific sheet

for (double h=leftoverHeight; h>=pHeight.get(pHeight.size()-1);

h=leftoverHeight) {//pHeight.get(pHeight.size()-1)= the last position of the which is

equal to 3 where we start from 0,1,2,3

leftoverWidth = sWidth.get(i);

existingLevel = false;

ArrayList<Double>newPWidth = new ArrayList<Double>();

ArrayList<Double>newPHeight = new ArrayList<Double>();

ArrayList<Double>newNPanel = new ArrayList<Double>();

if (sHeight.get(i) == leftoverHeight) {//use to start the coordinate of y

yOrdinate = 0;

}

panelHeightAtBeginningLevel.add(pHeight.get(0));// Just want to add the

first panel before other panel add in

for (int l = 0; l < pHeight.size(); l++) {// use to continue to the next level by

increase y

if (sHeight.get(i)!= leftoverHeight) {

if (pHeight.get(l) <= leftoverHeight && pWidth.get(l) <= leftoverWidth)

{

yOrdinate = yOrdinate + panelHeightAtBeginningLevelClone.get(1);

break;

}

if (pHeight.get(l) > leftoverHeight){

continue;

}

}

}

level += 1;

System.out.println();

System.out.print("\tLevel: " + level + " |");

//to check the panel in case that it satisfies only one criteria like sample 34

if (existingLevel == false && ((leftoverHeight>=pHeight.get(j) &&

leftoverWidth>=pWidth.get(j)))){

existingLevel = true;

} else {

newPWidth = (ArrayList)pWidth.clone();

newPHeight =(ArrayList)pHeight.clone();

newNPanel = (ArrayList)nPanel.clone();

newPWidth.remove(pWidth.size()-1);

newPHeight.remove(pHeight.size()-1);

121

newNPanel.remove(nPanel.size()-1);

}

newPWidth.clear();

newPHeight.clear();

newNPanel.clear();

panelHeightAtBeginningLevelClone.clear();

ArrayList <Double> leftoverWidthGapArray = new ArrayList<Double>();

//Start cutting for the first panel that put into the sheet

if (leftoverHeight >= pHeight.get(j)) {

indexOfMinWidthGap = 0;

for (w = leftoverWidth; w >= pWidth.get(indexOfMinWidthGap); w =

leftoverWidth) {

// To do: make this loop take demand into consideration.

if (existingLevel == true &&

leftoverWidth>=pWidth.get(indexOfMinWidthGap)) {

System.out.print(" " + pWidth.get(indexOfMinWidthGap) + " x " +

pHeight.get(indexOfMinWidthGap) + " |");

if (sWidth.get(i) == leftoverWidth) {

pHeightArray.add(pHeight.get(indexOfMinWidthGap));

pWidthArray.add(pWidth.get(indexOfMinWidthGap));

panelHeightAtBeginningLevel.add(pHeight.get(indexOfMinWidthGap

));

xOrdinate = 0;

xOrdinateArray.add(xOrdinate);

yOrdinateArray.add(yOrdinate);

} else {

pHeightArray.add(pHeight.get(indexOfMinWidthGap));

pWidthArray.add(pWidth.get(indexOfMinWidthGap));

xOrdinate = xOrdinate + pWidthArray.get(pWidthArray.size()-2);

xOrdinateArray.add(xOrdinate);

yOrdinateArray.add(yOrdinate);

}

leftoverWidth = leftoverWidth - pWidth.get(indexOfMinWidthGap);

currentLeftOverArea = currentLeftOverArea-

(pWidth.get(indexOfMinWidthGap)*pHeight.get(indexOfMinWidthGap));

numberPanelPerSheet += 1;

if(usedPanelIndex.indexOf(indexOfMinWidthGap) == -1) {

usedPanelIndex.add(indexOfMinWidthGap);

usedPanelAmount.add(1);

} else {

usedPanelAmount.set(usedPanelIndex.indexOf(indexOfMinWidthGap)

, usedPanelAmount.get(usedPanelIndex.indexOf(indexOfMinWidthGap))+1);//use to

increase the amount of the same panel size that put into the sheet

}

indexOfMinWidthGapCopy.add((double) indexOfMinWidthGap);

122

indexOfMinWidthGapCopyClone = (ArrayList<Double>)

indexOfMinWidthGapCopy.clone();

}

//To select the panel that can give the minimum of leftoverWidth % for all

pWidth

double minWidthGap = 900000000;

for (int l = 0; l < pWidth.size(); l++) {

double leftoverWidthGap = leftoverWidth % pWidth.get(l);

leftoverWidthGapArray.add(leftoverWidthGap);

if (l >= indexOfMinWidthGapCopyClone.get(0)) {

if (leftoverWidthGap < minWidthGap) {

minWidthGap = leftoverWidthGap;

indexOfMinWidthGap =

leftoverWidthGapArray.indexOf(minWidthGap);

}

}

leftoverWidthGapArray.set(l, 100000.0);

}

leftoverWidthGapArray.clear();

indexOfMinWidthGapCopyClone.clear();

}

}

//Start cutting for the next panel that put into the sheet when we put other

types of panel in the same level or the next level

ArrayList<Double> nextPanelCut = new ArrayList<Double>();

for (k = (indexOfMinWidthGap+1); k < pWidth.size(); k++) {

if(pHeight.get(k) <= leftoverHeight && pWidth.get(k) <= leftoverWidth) {

nextPanelCut.add((double) k);// want to pick the first panel to calculate

the leftoverHeight

//to pick the new coordinate in the new level

if (sWidth.get(i) == leftoverWidth) {

pHeightArray.add(pHeight.get(k));

panelHeightAtBeginningLevel.add(pHeight.get(k));

pWidthArray.add(pWidth.get(k));

xOrdinate = 0;

xOrdinateArray.add(xOrdinate);

yOrdinateArray.add(yOrdinate);

} else {

pHeightArray.add(pHeight.get(k));

pWidthArray.add(pWidth.get(k));

xOrdinate = xOrdinate + pWidthArray.get(pWidthArray.size()-2);

xOrdinateArray.add(xOrdinate);

yOrdinateArray.add(yOrdinate);

}

leftoverWidth -= pWidth.get(k);

123

currentLeftOverArea -= (pWidth.get(k)*pHeight.get(k));

System.out.print(" " + pWidth.get(k) + " x " + pHeight.get(k) + " |");

numberPanelPerSheet += 1;

if(usedPanelIndex.indexOf(k) == -1) {

usedPanelIndex.add(k);

usedPanelAmount.add(1);

} else {

usedPanelAmount.set(usedPanelIndex.indexOf(k),

usedPanelAmount.get(usedPanelIndex.indexOf(k))+1);

}

indexOfMinWidthGapCopy.add((double) k);

indexOfMinWidthGapCopyClone = (ArrayList<Double>)

indexOfMinWidthGapCopy.clone();

//To select the panel that can give the minimum of leftoverWidth % for all

pWidth

double minWidthGap = 900000000;

for (int l = 0; l < pWidth.size(); l++) {

double leftoverWidthGap = leftoverWidth % pWidth.get(l);

leftoverWidthGapArray.add(leftoverWidthGap);

if (l >= indexOfMinWidthGapCopyClone.get(0)) {

// Pick only the smaller panel to put into each level

if (leftoverWidthGap < minWidthGap) {

minWidthGap = leftoverWidthGap;//Find the panel to put that can

give the minimum leftover width

indexOfMinWidthGap =

leftoverWidthGapArray.indexOf(minWidthGap);

}

}

leftoverWidthGapArray.set(l, 100000.0);//to avoid picking the first panel

when the result of % are the same

}

leftoverWidthGapArray.clear();

indexOfMinWidthGapCopyClone.clear();

k = indexOfMinWidthGap - 1 ;

}

}

panelHeightAtBeginningLevelClone =

(ArrayList)panelHeightAtBeginningLevel.clone();

panelHeightAtBeginningLevel.clear();

if (leftoverHeight >= pHeight.get(j)) {

leftoverHeight = leftoverHeight - pHeight.get(j);

} else {

if (nextPanelCut.size()!=0) {

double a = nextPanelCut.get(0);

leftoverHeight = leftoverHeight - pHeight.get((int) a);

}

if (nextPanelCut.isEmpty()) {

124

leftoverHeight = 0;

continue;

}

}

indexOfMinWidthGapCopy.clear();

}

System.out.println();

System.out.print("Total Waste for each sheet: " + currentLeftOverArea);

System.out.print("\nPanel fit: " + numberPanelPerSheet);

System.out.println();

if (smallestLeftOverArea > currentLeftOverArea) {

smallestLeftOverArea = currentLeftOverArea;

smallestLeftOverSheet = i;

panelAmountWithMinimumWaste = numberPanelPerSheet;

//We have to copy it to use when we write the answer in excel

pHeightSelected = (ArrayList)pHeightArray.clone();

pWidthSelected = (ArrayList)pWidthArray.clone();

xOrdinateSelected = (ArrayList)xOrdinateArray.clone();

yOrdinateSelected = (ArrayList)yOrdinateArray.clone();

chosenPanelIndex = (ArrayList)usedPanelIndex.clone();

chosenPanelAmount = (ArrayList)usedPanelAmount.clone();

}

for(int ind =0; ind < chosenPanelIndex.size(); ind++) {

System.out.println("Used Index " + chosenPanelIndex.get(ind));

System.out.println("Used Amount " + chosenPanelAmount.get(ind));

}

// clear it first before selecting the next panel to cut; otherwise, it adds on the

existing data

pHeightArray.clear();

pWidthArray.clear();

xOrdinateArray.clear();

yOrdinateArray.clear();

usedPanelIndex.clear();

usedPanelAmount.clear();

}

System.out.println();

System.out.println(panelAmountWithMinimumWaste + " panels are cut from

panel set by putting in sheet number " + (smallestLeftOverSheet+1) + " (" +

sWidth.get(smallestLeftOverSheet) + " x " + sHeight.get(smallestLeftOverSheet) + ")

with the minimum waste " + smallestLeftOverArea);

125

double minimumSheet =

10000000;//Math.ceil(nPanel.get(chosenPanelIndex.get(0)) /

chosenPanelAmount.get(0))

double result;

// This loop use to select the pattern that can give the minimum waste to cut.

for(int d=0; d < chosenPanelIndex.size(); d++) {

result = Math.ceil(nPanel.get(chosenPanelIndex.get(d)) /

chosenPanelAmount.get(d));

if (minimumSheet > result) {

minimumSheet = result;

}

System.out.println("To fulfill demand of " +

nPanel.get(chosenPanelIndex.get(d)) + " we need to use " + result + " sheets");

}

System.out.println("\nTherefore: To satisfy the demand we need: " +

minimumSheet + " sheets.");

//To find the over cut panel

double totalWasteOfOverCutPanel = 0;

for (int l = 0; l < chosenPanelIndex.size(); l++) {

overUnderCutPanel.add((minimumSheet * chosenPanelAmount.get(l)) -

nPanel.get(chosenPanelIndex.get(l)));

if (overUnderCutPanel.get(l)<= 0) {

overCutPanel.add(0.0);

} else {

overCutPanel.add(overUnderCutPanel.get(l));

}

}//To cut the panel based on the index of the panel selected

for (int l = 0; l < chosenPanelIndex.size(); l++) {

wasteForEachOverCutPanelForEachSheet.add(overCutPanel.get(l)*

pHeight.get(chosenPanelIndex.get(l)) * pWidth.get(chosenPanelIndex.get(l)));

totalWasteOfOverCutPanel = totalWasteOfOverCutPanel +

wasteForEachOverCutPanelForEachSheet.get(l);//To find the waste of the over cut

panel

System.out.println("Over cut Panel = " + overCutPanel);

}

totalWastePerSheet = (smallestLeftOverArea * minimumSheet) +

totalWasteOfOverCutPanel;//Total waste per sheet included the over cut panel

totalWastePerSheetArray.add(totalWastePerSheet);

int index;

double amount;

double demand;

//Writing the panel of the pattern that we have selected to cut

for(int ind = 0; ind < chosenPanelIndex.size(); ind++) {

System.out.println("Chosen Index " + chosenPanelIndex.get(ind));

System.out.println("Used Amount " + chosenPanelAmount.get(ind));

row = sheet.createRow(startRow + r);

126

index = chosenPanelIndex.get(ind);

amount = chosenPanelAmount.get(ind);

demand = nPanel.get(chosenPanelIndex.get(ind));

leftOverDemand.add(demand - (amount * minimumSheet));

count = 0;

//Write only that first stage of cutting like No

if (ind == 0) {//ind = chosenPanelIndex

cell = row.createCell(numberingCell);

cell.setCellValue(printNo+1);

cell = row.createCell(sHeightCell);

cell.setCellValue(sHeight.get(smallestLeftOverSheet));

cell = row.createCell(sWidthCell);

cell.setCellValue(sWidth.get(smallestLeftOverSheet));

if (leftOverDemand.get(ind)> 0) {

cell = row.createCell(leftOverPanelCell);

cell.setCellValue(leftOverDemand.get(ind));

}

}

if (ind < chosenPanelIndex.size()-1) { //do not let it increase the row when it is

the last panel that we put coz we have to put other data on the last row

cell = row.createCell(demandCell);

cell.setCellValue(nPanel.get(chosenPanelIndex.get(ind)));

cell = row.createCell(overCutPanelCell);

cell.setCellValue(overCutPanel.get(ind));

cell = row.createCell(numberPanelPerSheetCell);

cell.setCellValue(chosenPanelAmount.get(ind));

if (leftOverDemand.get(ind)> 0) {

cell = row.createCell(leftOverPanelCell);

cell.setCellValue(leftOverDemand.get(ind));

}

// to spread the panel of cutting such that i can put the coordinate

for (int l = 0; l < chosenPanelAmount.get(ind); l++) {

cell = row.createCell(pHeightCell);

//cell.setCellValue(pHeight.get(chosenPanelIndex.get(ind)));

cell.setCellValue(pHeightSelected.get(l));

cell = row.createCell(pWidthCell);

//cell.setCellValue(pWidth.get(chosenPanelIndex.get(ind)));

cell.setCellValue(pWidthSelected.get(l));

cell = row.createCell(xCell);

127

cell.setCellValue(xOrdinateSelected.get(l));

cell = row.createCell(yCell);

cell.setCellValue(yOrdinateSelected.get(l));

count = count + 1;

r++;

row = sheet.createRow(startRow + r);

}

//Remove that panel use such that it can print of other panel

for (int b = (count-1) ; b >= 0; b--) {

pHeightSelected.remove(b);

pWidthSelected.remove(b);

xOrdinateSelected.remove(b);

yOrdinateSelected.remove(b);

}

} else if ((chosenPanelIndex.size()-1) == ind) {

cell = row.createCell(demandCell);

cell.setCellValue(nPanel.get(chosenPanelIndex.get(ind)));

cell = row.createCell(overCutPanelCell);

cell.setCellValue(overCutPanel.get(ind));

cell = row.createCell(numberPanelPerSheetCell);

cell.setCellValue(chosenPanelAmount.get(ind));

if (leftOverDemand.get(ind)> 0) {

cell = row.createCell(leftOverPanelCell);

cell.setCellValue(leftOverDemand.get(ind));

}

for (int l = 0; l < chosenPanelAmount.get(ind); l++) {

cell = row.createCell(pHeightCell);

//cell.setCellValue(pHeight.get(chosenPanelIndex.get(ind)));

cell.setCellValue(pHeightSelected.get(l));

cell = row.createCell(pWidthCell);

//cell.setCellValue(pWidth.get(chosenPanelIndex.get(ind)));

cell.setCellValue(pWidthSelected.get(l));

cell = row.createCell(xCell);

cell.setCellValue(xOrdinateSelected.get(l));

cell = row.createCell(yCell);

cell.setCellValue(yOrdinateSelected.get(l));

count = count + 1;

128

r++;

row = sheet.createRow(startRow + r);

}

for (int b = (count-1) ; b >= 0; b--) {

pHeightSelected.remove(b);

pWidthSelected.remove(b);

xOrdinateSelected.remove(b);

yOrdinateSelected.remove(b);

}

r--;

}

}

wasteForEachOverCutPanelForEachSheet.clear();

overUnderCutPanel.clear();

overCutPanel.clear();

r = r + 2;

printNo++;

cell = row.createCell(wastePerSheetCell);

cell.setCellValue(smallestLeftOverArea);

cell = row.createCell(numberSheetNeededToCut);

cell.setCellValue(minimumSheet);

cell = row.createCell(totalWastePerSheetCell);

cell.setCellValue(totalWastePerSheet);

endTime = System.currentTimeMillis();

System.out.println("Time taken for this process are: " + (endTime - startTime) +

" milli seconds");

cell = row.createCell(computeTimeCell);

cell.setCellValue(endTime - startTime);

for(int d = chosenPanelIndex.size()-1; d >= 0; d--) {

index = chosenPanelIndex.indexOf(Collections.max(chosenPanelIndex));

amount = chosenPanelAmount.get(index);

demand = nPanel.get(chosenPanelIndex.get(index));

int newIndex = chosenPanelIndex.get(index);

if (leftOverDemand.get(index) > 0) {

nPanel.set(newIndex, leftOverDemand.get(index));

chosenPanelIndex.remove(index);

chosenPanelAmount.remove(index);

leftOverDemand.remove(index);

} else {

nPanel.remove(newIndex);

pHeight.remove(newIndex);

129

pWidth.remove(newIndex);

chosenPanelIndex.remove(index);

chosenPanelAmount.remove(index);

leftOverDemand.remove(index);

}

}

leftOverDemand.clear();

System.out.println("--

-----------------------------");

j--;

double wasteForCutting = 0;

for (int l = 0; l < totalWastePerSheetArray.size(); l++) {

wasteForCutting = wasteForCutting + totalWastePerSheetArray.get(l);

}

cell = row.createCell(wasteForCuttingCell);

cell.setCellValue(wasteForCutting);

}

chosenPanelIndex.clear();

chosenPanelAmount.clear();

file.close();

FileOutputStream outFile =new FileOutputStream(new File(excelFile));

workbook.write(outFile);

outFile.close();

} catch (FileNotFoundException e) {

e.printStackTrace();

} catch (IOException e) {

e.printStackTrace();

}

}

public static void ReadExcel(ArrayList<Double> sWidth,

 ArrayList<Double> sHeight, ArrayList<Double> nSheet,

 ArrayList<Double> pWidth, ArrayList<Double> pHeight,

 ArrayList<Double> nPanel, String excelFile) {

try {

FileInputStream file = new FileInputStream(new File(excelFile));

//Get the workbook instance for XLSX file

XSSFWorkbook workbook = new XSSFWorkbook(file);

//Get first sheet from the workbook

XSSFSheet sheet = workbook.getSheet("Input");// or .getsheetAt(2);

// cRow = currentRow, pRow = processingRow

int cRow = 0 , pRow = 0; // cRow can give any values but pRow cannot

int cColumn = 1; // here we also can change it

int dataInRow = 0;

130

//Iterate through each rows from first sheet

Iterator<Row> rowIterator = sheet.iterator();

while(rowIterator.hasNext()) {

Row row = rowIterator.next();

cRow++;

cColumn = 1;

dataInRow = 0;

//For each row, iterate through each columns

Iterator<Cell> cellIterator = row.cellIterator();

while(cellIterator.hasNext()) {

Cell cell = cellIterator.next();

switch(cell.getCellType()) {

case Cell.CELL_TYPE_BOOLEAN:

System.out.print(cell.getBooleanCellValue() + "\t\t");

dataInRow ++;

break;

case Cell.CELL_TYPE_NUMERIC:

System.out.print(cell.getNumericCellValue() + "\t\t");

if(cRow>pRow) {

pRow = cRow;

}

Else
{

switch(cColumn) {

case 1:

pHeight.add(cell.getNumericCellValue());

break;

case 2:

pWidth.add(cell.getNumericCellValue());

break;

case 3:

nPanel.add(cell.getNumericCellValue());

break;

case 4:

sHeight.add(cell.getNumericCellValue());

break;

case 5:

sWidth.add(cell.getNumericCellValue());

break;

case 6:

nSheet.add(cell.getNumericCellValue());

}

cColumn++;

}

dataInRow++;

break;

131

case Cell.CELL_TYPE_STRING:

System.out.print(cell.getStringCellValue() + "\t\t");

dataInRow++;

break;

}

}

if(dataInRow > 0) {

System.out.println("");

}

}

file.close();

} catch (FileNotFoundException e) {

e.printStackTrace();

} catch (IOException e) {

e.printStackTrace();

}

}

}

132

7.1.9. Minimum Sheet Height Ordering Panel Width Vertical Cut

package Simple_Heuristic_II_2D_2S_P3;

import java.io.File;

import java.io.FileInputStream;

import java.io.FileNotFoundException;

import java.io.FileOutputStream;

import java.io.IOException;

import java.util.ArrayList;

import java.util.Collections;

import java.util.Iterator;

import org.apache.poi.ss.usermodel.Cell;

import org.apache.poi.ss.usermodel.Row;

import org.apache.poi.xssf.usermodel.XSSFSheet;

import org.apache.poi.xssf.usermodel.XSSFWorkbook;

public class Im2_Min_SHeight_PW_Cut_Vertical_P3{

public static void main(String[] args) {

long startTime = System.currentTimeMillis();

ArrayList<Double> sWidth = new ArrayList<Double>();

ArrayList<Double> sHeight = new ArrayList<Double>(); // Unique sheet height.

ArrayList<Double> nSheet = new ArrayList<Double>(); // Amount of sheet of

each size.

ArrayList<Double> pWidth = new ArrayList<Double>();

ArrayList<Double> pHeight = new ArrayList<Double>();

ArrayList<Double> nPanel = new ArrayList<Double>();

ArrayList<Double> sLeftOverArea = new ArrayList<Double>();

String excelFile = "C:\\Users\\Tiengkimseng\\Google

Drive\\Kimseng\\Thesis\\CODE_2D_2S_AND_2D_3S_CUTTING_8MODELS\\Sim

ple Heuristic II_VS_Coordinate

(x,y)_MinSWidth_P3\\SWidth_PWidth_P3\\CuttingData - Sample 39.xlsx";

System.out.println("ArrayList in row and column set: ");

ReadExcel(sWidth, sHeight, nSheet, pWidth, pHeight, nPanel, excelFile);

ArrayList<Double> sheetWidth = new ArrayList<Double>();

ArrayList<Double> sheetHeight = new ArrayList<Double>();

ArrayList<Double> panelWidth = new ArrayList<Double>();

ArrayList<Double> panelHeight = new ArrayList<Double>();

ArrayList<Double> overCutPanel = new ArrayList<Double>();

ArrayList<Double> overUnderCutPanel = new ArrayList<Double>();

133

ArrayList<Double> wasteForEachOverCutPanelForEachSheet = new

ArrayList<Double>();

ArrayList<Double> totalWastePerSheetArray = new ArrayList<Double>();

//define sheet set

System.out.println("\n" + "Sheet set: ");

for (int i=0; i<nSheet.size(); i++) {

for (int a=0; a<nSheet.get(i); a++) {

sheetWidth.add(sWidth.get(i));

sheetHeight.add(sHeight.get(i));

sLeftOverArea.add(sWidth.get(i) * sHeight.get(i));

//System.out.print("[" + sHeight.get(i) + " x " + sWidth.get(i) + "]" + ", ");

}System.out.println();

}

//define panel set

System.out.println("\n" + "Panel set:");

for (int i=0; i<nPanel.size(); i++) {

for (int a=0; a<nPanel.get(i); a++) {

panelWidth.add(pWidth.get(i));

panelHeight.add(pHeight.get(i));

//System.out.print("[" + pHeight.get(i) + " x " + pWidth.get(i)+ "]" + ", ");

}System.out.println();

}

// To check and remove the big panel that we cannot put into the sheet, if we don't

have it, it might cause to error.

double maxSHeight = 0;

double maxSWidth = 0;

for (int j = 0; j < nPanel.size(); j++) {

for (int i = 0; i < nSheet.size(); i++) {

if (sHeight.get(i) > maxSHeight) {

maxSHeight = sHeight.get(i);

}

if (sWidth.get(i) > maxSWidth) {

maxSWidth = sWidth.get(i);

}

}

if (((pHeight.get(j) > maxSHeight)) || (pWidth.get(j) > maxSWidth)) {

pWidth.remove(j);

pHeight.remove(j);

nPanel.remove(j);

j--;

}

}

//To check and remove the small sheet that we cannot use to cut other panel, if we

don't have it, it might cause to error

double minPHeight = 999999999;

double minPWidth = 999999999;

134

for (int i = 0; i < nSheet.size(); i++) {

for (int j = 0; j < nPanel.size(); j++) {

if (minPHeight > pHeight.get(j)) {

minPHeight = pHeight.get(j);

}

if (minPWidth > pWidth.get(j)) {

minPWidth = pWidth.get(j);

}

}

if ((sHeight.get(i) < minPHeight) || (sWidth.get(i) < minPWidth)) {

sWidth.remove(i);

sHeight.remove(i);

nSheet.remove(i);

i--;

}

}

//here is the process of cutting

try {

// Open excel file.

FileInputStream file = new FileInputStream(new File(excelFile));

//Get the workbook instance for XLSX file

XSSFWorkbook workbook = new XSSFWorkbook(file);

XSSFSheet sheet = workbook.getSheet("Output");

Row row; // Declare row variable as Excel row.

Cell cell; // Declare cell variable as Excel cell.

System.out.println("\n" + "Here is the step of cutting: ");

ArrayList<Integer> chosenPanelIndex = new ArrayList<Integer>();

ArrayList<Integer> chosenPanelAmount = new ArrayList<Integer>();

ArrayList<Integer> usedPanelIndex = new ArrayList<Integer>();

ArrayList<Integer> usedPanelAmount = new ArrayList<Integer>();

ArrayList<Double> leftOverDemand = new ArrayList<Double>();

ArrayList<Double> xOrdinateArray = new ArrayList<Double>();//Use to add the

x ordinate one by one then when the panel is cut then clone it to xOrdinateSelected

when the sheet is full

ArrayList<Double> yOrdinateArray = new ArrayList<Double>();

ArrayList<Double> xOrdinateSelected = new ArrayList<Double>();//use to write

the coordinate in excel

ArrayList<Double> yOrdinateSelected = new ArrayList<Double>();

ArrayList<Double> pHeightArray = new ArrayList<Double>();//Use to add the

panel cut in order one by one then clone it to pHeightSelected when the sheet cut is

full

ArrayList<Double> pWidthArray = new ArrayList<Double>();

135

ArrayList<Double> pHeightSelected = new ArrayList<Double>();//use to write

the panel cut in excel in accordance with the coordinate

ArrayList<Double> pWidthSelected = new ArrayList<Double>();

ArrayList<Double> panelWidthAtBeginningLevel = new ArrayList<Double>();

ArrayList<Double> panelWidthAtBeginningLevelClone = new

ArrayList<Double>();

ArrayList<Double> indexOfMinHeightGapCopy = new ArrayList<Double>();

ArrayList<Double> indexOfMinHeightGapCopyClone = new

ArrayList<Double>();

double leftoverHeight;

double leftoverWidth;

boolean existingLevel = false; // New or existing level check

double currentLeftOverArea=0;

double smallestLeftOverArea=0; // Variable to store the smallest left over

area of sheet.

int smallestLeftOverSheet=0; // Store index of the smallest left over area sheet.

int numberPanelPerSheet=0;

int panelAmountWithMinimumWaste=0;

long endTime = 0;

double xOrdinate = 0;

double yOrdinate = 0;

double w = 0;

int startRow = 2, numberingCell = 0, sHeightCell = 1, sWidthCell = 2,

pHeightCell = 3, pWidthCell = 4, demandCell = 5, wastePerSheetCell = 6,

numberPanelPerSheetCell = 7, numberSheetNeededToCut = 8, leftOverPanelCell = 9,

computeTimeCell = 10, xCell = 11, yCell = 12, overCutPanelCell = 13,

totalWastePerSheetCell = 14, wasteForCuttingCell = 15;

int r=0;

int printNo = 0;

int i=0, j=0, k=0, level = 0;

int count = 0;

double totalWastePerSheet = 0;

int indexOfMinHeightGap = 0;

//this loop for pick sheet one by one from all sheet

for (j = 0; j < nPanel.size(); j++) {

smallestLeftOverArea = sWidth.get(0)*sHeight.get(0);

row = sheet.createRow(startRow + r);

for (i = 0; i < sHeight.size(); i++) {

numberPanelPerSheet = 0;

leftoverWidth = sWidth.get(i);

level = 0;

System.out.print("\n" + "Sheet: " + (i+1) + " Size: " + sWidth.get(i) + " x " +

sHeight.get(i));

currentLeftOverArea = sWidth.get(i) * sHeight.get(i);

//this loop use to define each level in a specific sheet

136

for (double h=leftoverWidth; h>=pWidth.get(pWidth.size()-1);

h=leftoverWidth){

//pHeight.get(pHeight.size()-1)= the last position of the which is equal to 3

where we start from 0,1,2,3

leftoverHeight = sHeight.get(i);

existingLevel = false;

ArrayList<Double>newPWidth = new ArrayList<Double>();

ArrayList<Double>newPHeight = new ArrayList<Double>();

ArrayList<Double>newNPanel = new ArrayList<Double>();

if (sWidth.get(i) == leftoverWidth) {//use to start the coordinate of y

xOrdinate = 0;

}

panelWidthAtBeginningLevel.add(pWidth.get(0));// Just want to add the first

panel before other panel add in

for (int l = 0; l < pWidth.size(); l++) {// use to continue to the next level by

increase y

if (sWidth.get(i)!= leftoverWidth) {

if (pWidth.get(l) <= leftoverWidth && pHeight.get(l) <= leftoverHeight)

{//the second part have just added to satisfy sample 34

xOrdinate = xOrdinate + panelWidthAtBeginningLevelClone.get(1);

break;

}

if (pWidth.get(l) > leftoverWidth){

continue;

}

}

}

level += 1;

System.out.println();

System.out.print("\tLevel: " + level + " |");

if (existingLevel == false && ((leftoverHeight>=pHeight.get(j) &&

leftoverWidth>=pWidth.get(j)))){

existingLevel = true;

} else {//to check the panel in case that it satisfies only one criteria sample 34

newPWidth = (ArrayList)pWidth.clone();

newPHeight =(ArrayList)pHeight.clone();

newNPanel = (ArrayList)nPanel.clone();

newPWidth.remove(pWidth.size()-1);

newPHeight.remove(pHeight.size()-1);

newNPanel.remove(nPanel.size()-1);

}

newPWidth.clear();

newPHeight.clear();

137

newNPanel.clear();

panelWidthAtBeginningLevelClone.clear();

ArrayList <Double> leftoverHeightGapArray = new ArrayList<Double>();

if (leftoverWidth >= pWidth.get(j)) {

indexOfMinHeightGap = 0;

for (w = leftoverHeight; w >= pHeight.get(indexOfMinHeightGap); w =

leftoverHeight) {

// To do make this loop take demand into consideration.

if (existingLevel == true && leftoverHeight >=

pHeight.get(indexOfMinHeightGap)) {

System.out.print(" " + pWidth.get(indexOfMinHeightGap) + " x " +

pHeight.get(indexOfMinHeightGap) + " |");

if (sHeight.get(i) == leftoverHeight) {

pHeightArray.add(pHeight.get(indexOfMinHeightGap));

pWidthArray.add(pWidth.get(indexOfMinHeightGap));

panelWidthAtBeginningLevel.add(pWidth.get(indexOfMinHeightGap)

);

yOrdinate = 0;

xOrdinateArray.add(xOrdinate);

yOrdinateArray.add(yOrdinate);

} else {

pHeightArray.add(pHeight.get(indexOfMinHeightGap));

pWidthArray.add(pWidth.get(indexOfMinHeightGap));

yOrdinate = yOrdinate + pHeightArray.get(pHeightArray.size()-2);

xOrdinateArray.add(xOrdinate);

yOrdinateArray.add(yOrdinate);

}

leftoverHeight = leftoverHeight - pHeight.get(indexOfMinHeightGap);

currentLeftOverArea = currentLeftOverArea-

(pWidth.get(indexOfMinHeightGap)*pHeight.get(indexOfMinHeightGap));

numberPanelPerSheet += 1;

if(usedPanelIndex.indexOf(indexOfMinHeightGap) == -1) {

usedPanelIndex.add(indexOfMinHeightGap);

usedPanelAmount.add(1);

} else {

usedPanelAmount.set(usedPanelIndex.indexOf(indexOfMinHeightGap

), usedPanelAmount.get(usedPanelIndex.indexOf(indexOfMinHeightGap))+1);//use

to increase the amount of the same panel size that put into the sheet

}

indexOfMinHeightGapCopy.add((double) indexOfMinHeightGap);

indexOfMinHeightGapCopyClone = (ArrayList<Double>)

indexOfMinHeightGapCopy.clone();

}

//To select the panel that can give the minimum of leftoverWidth % for all

pWidth

double minHeightGap = 900000000;

for (int l = 0; l < pWidth.size(); l++) {

138

double leftoverHeightGap = leftoverHeight % pHeight.get(l);

leftoverHeightGapArray.add(leftoverHeightGap);

if (l >= indexOfMinHeightGapCopyClone.get(0)) {

if (leftoverHeightGap < minHeightGap) {

minHeightGap = leftoverHeightGap;

indexOfMinHeightGap =

leftoverHeightGapArray.indexOf(minHeightGap);

}

}

leftoverHeightGapArray.set(l, 100000.0);

}

leftoverHeightGapArray.clear();

indexOfMinHeightGapCopyClone.clear();

}

}

ArrayList<Double> nextPanelCut = new ArrayList<Double>();

for (k = indexOfMinHeightGap+1; k < pHeight.size(); k++) {

if(pHeight.get(k) <= leftoverHeight && pWidth.get(k) <= leftoverWidth) {

nextPanelCut.add((double) k);

// want to pick the first panel to calculate the leftoverHeight

if (sHeight.get(i) == leftoverHeight) {

pWidthArray.add(pWidth.get(k));

panelWidthAtBeginningLevel.add(pWidth.get(k));

pHeightArray.add(pHeight.get(k));

yOrdinate = 0;

xOrdinateArray.add(xOrdinate);

yOrdinateArray.add(yOrdinate);

} else {

pHeightArray.add(pHeight.get(k));

pWidthArray.add(pWidth.get(k));

yOrdinate = yOrdinate + pHeightArray.get(pHeightArray.size()-2);

//xOrdinate = xOrdinate + pWidth.get(j);

xOrdinateArray.add(xOrdinate);

yOrdinateArray.add(yOrdinate);

}

leftoverHeight -= pHeight.get(k);

currentLeftOverArea -= (pWidth.get(k) * pHeight.get(k));

System.out.print(" " + pWidth.get(k) + " x " + pHeight.get(k) + " |");

numberPanelPerSheet += 1;

if(usedPanelIndex.indexOf(k) == -1) {

usedPanelIndex.add(k);

usedPanelAmount.add(1);

} else {

usedPanelAmount.set(usedPanelIndex.indexOf(k),usedPanelAmount.get

(usedPanelIndex.indexOf(k))+1);

}

indexOfMinHeightGapCopy.add((double) k);

139

indexOfMinHeightGapCopyClone = (ArrayList<Double>)

indexOfMinHeightGapCopy.clone();

//To select the panel that can give the minimum of leftoverWidth % for all

pWidth

double minHeightGap = 900000000;

for (int l = 0; l < pWidth.size(); l++) {

double leftoverHeightGap = leftoverHeight % pHeight.get(l);

leftoverHeightGapArray.add(leftoverHeightGap);

if (l >= indexOfMinHeightGapCopyClone.get(0)) {// Pick only the

smaller panel to put into each level

if (leftoverHeightGap < minHeightGap) {

minHeightGap = leftoverHeightGap;//Find the panel to put that can

give the minimum leftover width

indexOfMinHeightGap =

leftoverHeightGapArray.indexOf(minHeightGap);

}

}

leftoverHeightGapArray.set(l, 100000.0);//to avoid picking the first

panel when the result of % are the same

}

leftoverHeightGapArray.clear();

indexOfMinHeightGapCopyClone.clear();

k = indexOfMinHeightGap - 1 ;

}

}

panelWidthAtBeginningLevelClone =

(ArrayList)panelWidthAtBeginningLevel.clone();

panelWidthAtBeginningLevel.clear();

if (leftoverWidth >= pWidth.get(j)) {

leftoverWidth = leftoverWidth - pWidth.get(j);

} else {

if (nextPanelCut.size()!= 0) {

double a = nextPanelCut.get(0);//to find the leftoverWidth when the first

panel cannot fill in, and the next panel is fit.

leftoverWidth = leftoverWidth - pWidth.get((int) a);// p in the index of

the panel of the other side

}

if (nextPanelCut.isEmpty()) {//In sample 34 we cannot find the pattern to

cut but the leftoverWidth can put other panel in

leftoverWidth = 0;

continue;

}

}

indexOfMinHeightGapCopy.clear();

}

System.out.println();

System.out.print("Total Waste for each sheet: " + currentLeftOverArea);

140

System.out.print("\nPanel fit: " + numberPanelPerSheet);

System.out.println();

if (smallestLeftOverArea > currentLeftOverArea) {

smallestLeftOverArea = currentLeftOverArea;

smallestLeftOverSheet = i;

panelAmountWithMinimumWaste = numberPanelPerSheet;

pHeightSelected = (ArrayList)pHeightArray.clone();

pWidthSelected = (ArrayList)pWidthArray.clone();

xOrdinateSelected = (ArrayList)xOrdinateArray.clone();

yOrdinateSelected = (ArrayList)yOrdinateArray.clone();

chosenPanelIndex = (ArrayList)usedPanelIndex.clone();

chosenPanelAmount = (ArrayList)usedPanelAmount.clone();

}

for(int ind =0; ind < chosenPanelIndex.size(); ind++) {

System.out.println("Used Index " + chosenPanelIndex.get(ind));

System.out.println("Used Amount " + chosenPanelAmount.get(ind));

}

pHeightArray.clear();

pWidthArray.clear();

xOrdinateArray.clear();

yOrdinateArray.clear();

usedPanelIndex.clear();

usedPanelAmount.clear();

}

System.out.println();

System.out.println(panelAmountWithMinimumWaste + " panels are cut from

panel set by putting in sheet number " + (smallestLeftOverSheet+1) + " (" +

sWidth.get(smallestLeftOverSheet) + " x " + sHeight.get(smallestLeftOverSheet) + ")

with the minimum waste " + smallestLeftOverArea);

double minimumSheet =

10000000;//Math.ceil(nPanel.get(chosenPanelIndex.get(0)) /

chosenPanelAmount.get(0))

double result;

for(int d=0; d < chosenPanelIndex.size(); d++) {

result = Math.ceil(nPanel.get(chosenPanelIndex.get(d)) /

chosenPanelAmount.get(d));

if (minimumSheet > result) {

minimumSheet = result;

}

System.out.println("To fulfill demand of " +

nPanel.get(chosenPanelIndex.get(d)) + " we need to use " + result + " sheets");

}

System.out.println("\nTherefore: To satisfy the demand we need: " +

minimumSheet + " sheets.");

//To find the over cut panel

141

double totalWasteOfOverCutPanel = 0;

for (int l = 0; l < chosenPanelIndex.size(); l++) {

overUnderCutPanel.add((minimumSheet * chosenPanelAmount.get(l)) -

nPanel.get(chosenPanelIndex.get(l)));

if (overUnderCutPanel.get(l)<= 0) {

overCutPanel.add(0.0);

} else {

overCutPanel.add(overUnderCutPanel.get(l));

}

}

for (int l = 0; l < chosenPanelIndex.size(); l++) {

wasteForEachOverCutPanelForEachSheet.add(overCutPanel.get(l)*

pHeight.get(chosenPanelIndex.get(l)) * pWidth.get(chosenPanelIndex.get(l)));

totalWasteOfOverCutPanel = totalWasteOfOverCutPanel +

wasteForEachOverCutPanelForEachSheet.get(l);//To find the waste of the over cut

panel

System.out.println("Over cut Panel = " + overCutPanel);

}

totalWastePerSheet = (smallestLeftOverArea * minimumSheet) +

totalWasteOfOverCutPanel;//Total waste per sheet included the over cut panel

totalWastePerSheetArray.add(totalWastePerSheet);

int index;

double amount;

double demand;

for(int ind = 0; ind < chosenPanelIndex.size(); ind++) {

System.out.println("Chosen Index " + chosenPanelIndex.get(ind));

System.out.println("Used Amount " + chosenPanelAmount.get(ind));

row = sheet.createRow(startRow + r);

index = chosenPanelIndex.get(ind);

amount = chosenPanelAmount.get(ind);

demand = nPanel.get(chosenPanelIndex.get(ind));

leftOverDemand.add(demand - (amount * minimumSheet));

count = 0;

if (ind == 0) {

cell = row.createCell(numberingCell);

cell.setCellValue(printNo+1);

cell = row.createCell(sHeightCell);

cell.setCellValue(sHeight.get(smallestLeftOverSheet));

cell = row.createCell(sWidthCell);

cell.setCellValue(sWidth.get(smallestLeftOverSheet));

if (leftOverDemand.get(ind)> 0) {

cell = row.createCell(leftOverPanelCell);

142

cell.setCellValue(leftOverDemand.get(ind));

}

}

if (ind < chosenPanelIndex.size()-1) { //do not let it increase the row when it is

the last panel that we put coz we have to put other data on the last row

cell = row.createCell(demandCell);

cell.setCellValue(nPanel.get(chosenPanelIndex.get(ind)));

cell = row.createCell(overCutPanelCell);

cell.setCellValue(overCutPanel.get(ind));

cell = row.createCell(numberPanelPerSheetCell);

cell.setCellValue(chosenPanelAmount.get(ind));

if (leftOverDemand.get(ind)> 0) {

cell = row.createCell(leftOverPanelCell);

cell.setCellValue(leftOverDemand.get(ind));

}

// to spread the panel of cutting such that i can put the coordinate

for (int l = 0; l < chosenPanelAmount.get(ind); l++) {

cell = row.createCell(pHeightCell);

//cell.setCellValue(pHeight.get(chosenPanelIndex.get(ind)));

cell.setCellValue(pHeightSelected.get(l));

cell = row.createCell(pWidthCell);

//cell.setCellValue(pWidth.get(chosenPanelIndex.get(ind)));

cell.setCellValue(pWidthSelected.get(l));

cell = row.createCell(xCell);

cell.setCellValue(xOrdinateSelected.get(l));

cell = row.createCell(yCell);

cell.setCellValue(yOrdinateSelected.get(l));

count = count + 1;

r++;

row = sheet.createRow(startRow + r);

}

//Remove that panel use such that it can print of other panel

for (int b = (count-1) ; b >= 0; b--) {

pHeightSelected.remove(b);

pWidthSelected.remove(b);

xOrdinateSelected.remove(b);

yOrdinateSelected.remove(b);

}

} else if ((chosenPanelIndex.size()-1) == ind) {

cell = row.createCell(demandCell);

143

cell.setCellValue(nPanel.get(chosenPanelIndex.get(ind)));

cell = row.createCell(overCutPanelCell);

cell.setCellValue(overCutPanel.get(ind));

cell = row.createCell(numberPanelPerSheetCell);

cell.setCellValue(chosenPanelAmount.get(ind));

if (leftOverDemand.get(ind)> 0) {

cell = row.createCell(leftOverPanelCell);

cell.setCellValue(leftOverDemand.get(ind));

}

for (int l = 0; l < chosenPanelAmount.get(ind); l++) {

cell = row.createCell(pHeightCell);

//cell.setCellValue(pHeight.get(chosenPanelIndex.get(ind)));

cell.setCellValue(pHeightSelected.get(l));

cell = row.createCell(pWidthCell);

//cell.setCellValue(pWidth.get(chosenPanelIndex.get(ind)));

cell.setCellValue(pWidthSelected.get(l));

cell = row.createCell(xCell);

cell.setCellValue(xOrdinateSelected.get(l));

cell = row.createCell(yCell);

cell.setCellValue(yOrdinateSelected.get(l));

count = count + 1;

r++;

row = sheet.createRow(startRow + r);

}

for (int b = (count-1) ; b >= 0; b--) {

pHeightSelected.remove(b);

pWidthSelected.remove(b);

xOrdinateSelected.remove(b);

yOrdinateSelected.remove(b);

}

r--;

}

}

wasteForEachOverCutPanelForEachSheet.clear();

overUnderCutPanel.clear();

overCutPanel.clear();

r = r + 2;

printNo++;

cell = row.createCell(wastePerSheetCell);

144

cell.setCellValue(smallestLeftOverArea);

cell = row.createCell(numberSheetNeededToCut);

cell.setCellValue(minimumSheet);

cell = row.createCell(totalWastePerSheetCell);

cell.setCellValue(totalWastePerSheet);

endTime = System.currentTimeMillis();

System.out.println("Time taken for this process are: " + (endTime - startTime) +

" milli seconds");

cell = row.createCell(computeTimeCell);

cell.setCellValue(endTime - startTime);

for(int d = chosenPanelIndex.size()-1; d >= 0; d--) {

index = chosenPanelIndex.indexOf(Collections.max(chosenPanelIndex));

amount = chosenPanelAmount.get(index);

demand = nPanel.get(chosenPanelIndex.get(index));

int newIndex = chosenPanelIndex.get(index);

if (leftOverDemand.get(index) > 0) {

nPanel.set(newIndex, leftOverDemand.get(index)); //Here we have to set it in

a different way

chosenPanelIndex.remove(index);

chosenPanelAmount.remove(index);

leftOverDemand.remove(index);

} else {

nPanel.remove(newIndex);

pHeight.remove(newIndex);

pWidth.remove(newIndex);

chosenPanelIndex.remove(index);

chosenPanelAmount.remove(index);

leftOverDemand.remove(index);

}

}

leftOverDemand.clear();

System.out.println("--

---------------");

j--;

double wasteForCutting = 0;

for (int l = 0; l < totalWastePerSheetArray.size(); l++) {

wasteForCutting = wasteForCutting + totalWastePerSheetArray.get(l);

}

cell = row.createCell(wasteForCuttingCell);

cell.setCellValue(wasteForCutting);

}

chosenPanelIndex.clear();

chosenPanelAmount.clear();

145

file.close();

FileOutputStream outFile =new FileOutputStream(new File(excelFile));

workbook.write(outFile);

outFile.close();

} catch (FileNotFoundException e) {

e.printStackTrace();

} catch (IOException e) {

e.printStackTrace();

}

}

public static void ReadExcel(ArrayList<Double> sWidth,

 ArrayList<Double> sHeight, ArrayList<Double> nSheet,

 ArrayList<Double> pWidth, ArrayList<Double> pHeight,

 ArrayList<Double> nPanel, String excelFile) {

try {

FileInputStream file = new FileInputStream(new File(excelFile));

//Get the workbook instance for XLSX file

XSSFWorkbook workbook = new XSSFWorkbook(file);

//Get first sheet from the workbook

XSSFSheet sheet = workbook.getSheet("Input");// or .getsheetAt(2);

// cRow = currentRow, pRow = processingRow

int cRow = 0 , pRow = 0; // cRow can give any values but pRow cannot

int cColumn = 1; // here we also can change it

dataInRow = 0;

//Iterate through each rows from first sheet

Iterator<Row> rowIterator = sheet.iterator();

while(rowIterator.hasNext()) {

Row row = rowIterator.next();

cRow++;

cColumn = 1;

dataInRow = 0;

//For each row, iterate through each columns

Iterator<Cell> cellIterator = row.cellIterator();

while(cellIterator.hasNext()) {

Cell cell = cellIterator.next();

switch(cell.getCellType()) {

case Cell.CELL_TYPE_BOOLEAN:

System.out.print(cell.getBooleanCellValue() + "\t\t");

dataInRow ++;

break;

case Cell.CELL_TYPE_NUMERIC:

System.out.print(cell.getNumericCellValue() + "\t\t");

146

if(cRow>pRow) {

pRow = cRow;

} else {

switch(cColumn) {

case 1:

pHeight.add(cell.getNumericCellValue());

break;

case 2:

pWidth.add(cell.getNumericCellValue());

break;

case 3:

nPanel.add(cell.getNumericCellValue());

break;

case 4:

sHeight.add(cell.getNumericCellValue());

break;

case 5:

sWidth.add(cell.getNumericCellValue());

break;

case 6:

nSheet.add(cell.getNumericCellValue());

}

cColumn++;

}

dataInRow++;

break;

case Cell.CELL_TYPE_STRING:

System.out.print(cell.getStringCellValue() + "\t\t");

dataInRow++;

break;

}

}

if(dataInRow > 0) {

System.out.println("");

}

}

file.close();

} catch (FileNotFoundException e) {

e.printStackTrace();

} catch (IOException e) {

e.printStackTrace();

}

}

}

147

7.2. Appendix B: Input Twenty Testing Instances

These are all the twenty different size of instances that are used to run in all

techniques. These instances have to sort vertical or horizontally for the width or height

in accordance with the regulation for each technique before running it. Again, the total

number of sheet in stock is unlimited for all techniques. Later, other techniques by

considering the number of sheet in stock is developed.

Table 7.1 Instance 1

No pHeight pWidth nPanel sHeight sWidth nSheet

1 25.55 20.70 107.00 51.00 42.00 10000

2 25.50 20.90 112.00 50.50 42.00 10000

Table 7.2 Instance 2

No pHeight pWidth nPanel sHeight sWidth nSheet

1 20.15 24.00 67.00 40.00 48.00 10000

2 20.15 24.00 234.00 36.00 48.00 10000

Table 7.3 Instance 3

No pHeight pWidth nPanel sHeight sWidth nSheet

1 20.50 21.50 375.00 45.00 42.00 10000

2 15.00 21.25 200.00 40.50 43.00 10000

Table 7.4 Instance 4

No pHeight pWidth nPanel sHeight sWidth nSheet

1 26.8 20.15 244.00 58.50 48.00 10000

2 25.45 19.45 93.00 53.50 42.00 10000

3 19.45 24 200.00 50.50 42.00 10000

Table 7.5 Instance 5

No pHeight pWidth nPanel sHeight sWidth nSheet

1 22.25 22.90 116.00 40.00 48.00 10000

2 21.70 22.90 141.00 26.80 48.00 10000

3 19.60 22.90 295.00 24.00 48.00 10000

Table 7.6 Instance 6

148

No pHeight pWidth nPanel sHeight sWidth nSheet

1 25.00 20.00 150.00 50.50 48.00 10000

2 25.00 20.00 150.00 49.50 42.00 10000

3 9999 9999 0.00 42.00 48.00 10000

4 9999 9999 0.00 41.00 43.00 10000

Table 7.7 Instance 7

No pHeight pWidth nPanel sHeight sWidth nSheet

1 14.00 25.90 209.00 51.50 42.00 10000

2 9999 9999 0.00 44.00 49.00 10000

3 9999 9999 0.00 43.50 48.00 10000

4 9999 9999 0.00 40.50 48.00 10000

5 9999 9999 0.00 37.00 49.00 10000

Table 7.8 Instance 8

No pHeight pWidth nPanel sHeight sWidth nSheet

1 25.95 24.20 200.00 51.50 48.00 10000

2 25.95 24.20 239.00 50.50 49.00 10000

3 25.95 24.20 180.00 47.50 49.00 10000

4 25.95 24.20 350.00 47.00 49.00 10000

5 23.60 24.50 223.00 43.50 48.00 10000

6 16.85 24.50 300.00 0.00 0.00 0.00

Table 7.9 Instance 9

No pHeight pWidth nPanel sHeight sWidth nSheet

1 28.00 22.50 426.00 42.00 48.00 10000

2 26.50 22.50 75.00 40.00 48.00 10000

3 26.50 22.50 500.00 28.00 48.00 10000

4 26.50 22.50 659.00 26.80 48.00 10000

5 26.00 22.50 60.00 24.00 48.00 10000

6 21.00 23.00 292.00 0.00 0.00 0.00

7 20.00 22.50 99.00 0.00 0.00 0.00

8 19.50 23.00 129.00 0.00 0.00 0.00

Table 7.10 Instance 10

No pHeight pWidth nPanel sHeight sWidth nSheet

1 26.00 24.00 912.00 51.50 48.00 10000

2 20.50 23.00 417.00 48.50 48.00 10000

3 9999 9999 0.00 46.50 48.00 10000

149

No pHeight pWidth nPanel sHeight sWidth nSheet

4 9999 9999 0.00 43.50 49.00 10000

5 9999 9999 0.00 42.50 48.00 10000

6 9999 9999 0.00 41.50 48.00 10000

Table 7.11 Instance 11

No pHeight pWidth nPanel sHeight sWidth nSheet

1 20.70 23.50 80.00 53.50 48.00 10000

2 20.50 22.20 21.00 52.50 48.00 10000

3 19.00 23.00 118.00 49.50 48.00 10000

4 9999 9999 0.00 42.00 48.00 10000

5 9999 9999 0.00 40.00 48.00 10000

6 9999 9999 0.00 36.00 48.00 10000

Table 7.12 Instance 12

No pHeight pWidth nPanel sHeight sWidth nSheet

1 26.00 22.50 59.00 53.00 48.00 10000

2 22.50 24.00 60.00 52.50 48.00 10000

3 22.50 24.00 60.00 51.50 48.00 10000

4 22.50 24.00 60.00 51.00 48.00 10000

5 22.50 24.00 119.00 44.50 48.00 10000

6 22.50 24.00 119.00 42.00 48.00 10000

7 22.50 24.00 119.00 40.00 48.00 10000

8 9999 9999 0.00 36.00 48.00 10000

Table 7.13 Instance 13

No pHeight pWidth nPanel sHeight sWidth nSheet

1 26.20 22.70 858 58.00 48.00 10000

2 24.00 24.25 375 55.50 42.00 10000

3 21.85 22.65 959 55.00 48.00 10000

4 9999 9999 0.00 54.50 42.00 10000

5 9999 9999 0.00 52.00 48.00 10000

6 9999 9999 0.00 50.50 42.00 10000

7 9999 9999 0.00 49.50 48.00 10000

8 9999 9999 0.00 47.50 48.00 10000

9 9999 9999 0.00 43.50 48.00 10000

150

Table 7.14 Instance 14

No pHeight pWidth nPanel sHeight sWidth nSheet

1 22.85 23.20 91.00 52.00 48.00 10000

2 20.75 26.50 342.00 50.00 48.00 10000

3 20.75 26.50 570.00 42.00 48.00 10000

4 20.75 26.50 1020.00 40.00 48.00 10000

5 20.65 27.45 99.00 36.00 48.00 10000

6 17.45 22.90 154.00 34.00 48.00 10000

7 17.00 22.25 175.00 28.00 48.00 10000

8 16.25 22.00 283.00 26.80 48.00 10000

9 16.00 22.25 334.00 24.00 48.00 10000

Table 7.15 Instance 15

No pHeight pWidth nPanel sHeight sWidth nSheet

1 27.00 23.50 86.00 55.50 48.00 10000

2 25.00 20.50 53.00 50.50 42.00 10000

3 21.00 24.50 160.00 48.00 49.00 10000

4 16.00 24.50 4000.00 43.50 43.00 10000

5 9999 9999 0.00 41.50 49.00 10000

6 9999 9999 0.00 40.50 48.00 10000

7 9999 9999 0.00 39.50 49.00 10000

8 9999 9999 0.00 37.00 43.00 10000

9 9999 9999 0.00 28.00 48.00 10000

10 9999 9999 0.00 26.80 48.00 10000

11 9999 9999 0.00 24.00 48.00 10000

Table 7.16 Instance 16

No pHeight pWidth nPanel sHeight sWidth nSheet

1 26.50 22.00 160.00 57.00 48.00 10000

2 26.50 22.00 204.00 55.50 49.00 10000

3 21.00 24.50 60.00 53.50 48.00 10000

4 21.00 24.50 70.00 52.50 43.00 10000

5 20.00 23.50 254.00 52.50 48.00 10000

6 9999 9999 0.00 50.50 42.00 10000

7 9999 9999 0.00 49.50 42.00 10000

8 9999 9999 0.00 41.50 48.00 10000

9 9999 9999 0.00 41.50 49.00 10000

10 9999 9999 0.00 40.50 49.00 10000

11 9999 9999 0.00 39.50 48.00 10000

151

Table 7.17 Instance 17

No pHeight pWidth nPanel sHeight sWidth nSheet

1 21.00 24.40 200.00 59.50 48.00 10000

2 20.70 24.50 123.00 54.00 48.00 10000

3 20.70 24.50 112.00 53.50 48.00 10000

4 20.55 24.10 134.00 52.00 48.00 10000

5 20.55 24.00 167.00 49.00 48.00 10000

6 20.50 24.00 123.00 45.00 48.00 10000

7 20.50 24.05 445.00 42.50 48.00 10000

8 20.45 24.05 167.00 41.50 49.00 10000

9 20.45 24.00 223.00 41.00 48.00 10000

10 20.00 21.00 129.00 41.00 49.00 10000

11 19.70 24.30 2556.00 40.50 48.00 10000

12 17.30 23.05 50.00 40.50 49.00 10000

13 9999 9999 0.00 40.00 48.00 10000

14 9999 9999 0.00 40.00 48.00 10000

15 9999 9999 0.00 39.50 42.00 10000

Table 7.18 Instance 18

No pHeight pWidth nPanel sHeight sWidth nSheet

1 27.50 22.90 319.00 58.50 49.00 10000

2 27.10 20.80 90.00 55.50 42.00 10000

3 21.00 24.00 211.00 55.00 42.00 10000

4 20.50 24.00 286.00 54.50 42.00 10000

5 20.45 24.00 150.00 54.50 48.00 10000

6 16.75 21.50 65.00 54.00 42.00 10000

7 9999 9999 0.00 53.50 48.00 10000

8 9999 9999 0.00 52.50 42.00 10000

9 9999 9999 0.00 52.50 48.00 10000

10 9999 9999 0.00 51.50 48.00 10000

11 9999 9999 0.00 51.00 42.00 10000

12 9999 9999 0.00 50.50 43.00 10000

13 9999 9999 0.00 43.00 48.00 10000

14 9999 9999 0.00 41.50 48.00 10000

15 9999 9999 0.00 41.00 48.00 10000

16 9999 9999 0.00 40.50 48.00 10000

152

Table 7.19 Instance 19

No pHeight pWidth nPanel sHeight sWidth nSheet

1 27.9 23.5 225.00 58.50 48.00 10000

2 27.35 20.45 240.00 55.50 42.00 10000

3 27.3 22.3 2,477.00 55.50 48.00 10000

4 26.4 22.2 109.00 55.00 42.00 10000

5 26.3 22.3 780.00 54.50 42.00 10000

6 26.25 22.5 1,180.00 51.50 42.00 10000

7 25.65 22.2 3.00 51.00 48.00 10000

8 25.65 22.2 90.00 49.00 42.00 10000

9 25.5 22.2 84.00 49.00 48.00 10000

10 25.5 22.2 199.00 42.50 48.00 10000

11 25.5 22.2 84.00 42.00 48.00 10000

12 24.1 16 97.00 41.00 48.00 10000

13 24 23.35 71.00 40.00 48.00 10000

14 23.85 24.15 70.00 36.00 48.00 10000

15 21.5 15.75 556.00 28.00 48.00 10000

16 20.5 24 98.00 26.80 48.00 10000

17 20.3 22.3 850.00 24.00 48.00 10000

18 20.3 22.3 1,159.00 0.00 0.00 0.00

19 20.1 23.4 40.00 0.00 0.00 0.00

20 19.9 23.4 534.00 0.00 0.00 0.00

21 19.5 23.75 108.00 0.00 0.00 0.00

22 19.5 23.4 259.00 0.00 0.00 0.00

23 19.15 23.4 157.00 0.00 0.00 0.00

24 18.5 24 94.00 0.00 0.00 0.00

25 16.6 21.15 840.00 0.00 0.00 0.00

26 15.75 22.25 96.00 0.00 0.00 0.00

27 15.75 22.25 111.00 0.00 0.00 0.00

153

Table 7.20 Instance 20

No pHeight pWidth nPanel sHeight sWidth nSheet

1 25.85 24.20 500.00 56.50 49.00 10000

2 25.85 24.20 970.00 55.50 48.00 10000

3 25.50 14.00 75.00 54.00 48.00 10000

4 25.40 22.25 226.00 53.50 48.00 10000

5 22.75 16.00 267.00 53.00 42.00 10000

6 22.75 16.25 500.00 53.00 48.00 10000

7 22.25 23.40 135.00 52.50 48.00 10000

8 22.25 16.30 182.00 52.00 42.00 10000

9 22.20 23.30 130.00 51.50 48.00 10000

10 21.50 23.40 120.00 51.00 48.00 10000

11 21.30 23.40 112.00 50.50 42.00 10000

12 21.00 24.25 134.00 50.50 48.00 10000

13 18.50 24.00 131.00 49.50 48.00 10000

14 17.00 22.75 129.00 47.00 48.00 10000

15 16.80 23.00 179.00 45.00 48.00 10000

16 9999 9999 0.00 45.00 49.00 10000

17 9999 9999 0.00 44.50 48.00 10000

18 9999 9999 0.00 44.00 48.00 10000

19 9999 9999 0.00 44.00 49.00 10000

20 9999 9999 0.00 42.50 48.00 10000

21 9999 9999 0.00 42.50 49.00 10000

22 9999 9999 0.00 41.50 48.00 10000

23 9999 9999 0.00 41.00 48.00 10000

24 9999 9999 0.00 40.50 43.00 10000

25 9999 9999 0.00 40.50 48.00 10000

26 9999 9999 0.00 40.00 48.00 10000

154

7.3. Appendix C: Output Twenty Testing Instances

Since there are so many instances, only the first instance and its output

pattern are given for each technique of the heuristic methods.

7.3.1. 2D Simple Heuristic Cutting

Table 7.21 The output for the first instance using 2DSHC

7.3.2. 2D Horizontal Construction

Table 7.22 The output for the first instance using 2DHC

Sheet Panel
Level Waste Time

Total

Height Width height width Waste

51 42 25.55 20.7 1

 25.55 20.7 1 1084.23 1305

51 42 25.55 20.7 1

 25.55 20.7 1 1084.23 1307

51 42 25.55 20.7 1

 25.55 20.7 1 1084.23 1309

51 42 25.55 20.7 1

 25.55 20.7 1 1084.23 1310

51 42 25.55 20.7 1

 25.55 20.7 1 1084.23 1312

51 42 25.55 20.7 1

 25.55 20.7 1 1084.23 1314

51 42 25.55 20.7 1

 25.55 20.7 1 1084.23 1315

51 42 25.55 20.7 1

 25.55 20.7 1 1084.23 1317

51 42 25.55 20.7 1

 25.55 20.7 1 1084.23 1318

51 42 25.55 20.7 1

 25.55 20.7 1 1084.23 1320

51 42 25.55 20.7 1

 25.55 20.7 1 1084.23 1322

51 42 25.55 20.7 1

 25.55 20.7 1 1084.23 1324

51 42 25.55 20.7 1

 25.55 20.7 1 1084.23 1325

51 42 25.55 20.7 1

Minimum Number of Number of sheet Leftover Compute Over Cut waste/sheet - Total Waste

Height Width height width Demand Waste/sheet panel/sheet that we will cut panel time x y Panel over cut panel For Cutting

1 50.5 42 25.55 20.7 107 2 0 0 1

25.55 20.7 20.7 0

1063.23 54 1258 57943.31 57943.31

2 51 42 25.5 20.9 112 4 0 0 0

25.5 20.9 20.9 0

25.5 20.9 0 25.5

25.5 20.9 20.9 25.5

10.2 28 1263 285.6 58228.91

NO
Sheet Panel Coordinate

155

Sheet Panel
Level Waste Time

Total

Height Width height width Waste

 25.55 20.7 1 1084.23 1327

51 42 25.55 20.7 1

 25.55 20.7 1 1084.23 1330

51 42 25.55 20.7 1

 25.55 20.7 1 1084.23 1332

51 42 25.55 20.7 1

 25.55 20.7 1 1084.23 1333

51 42 25.55 20.7 1

 25.55 20.7 1 1084.23 1335

51 42 25.55 20.7 1

 25.55 20.7 1 1084.23 1337

51 42 25.55 20.7 1

 25.55 20.7 1 1084.23 1339

51 42 25.55 20.7 1

 25.55 20.7 1 1084.23 1341

51 42 25.55 20.7 1

 25.55 20.7 1 1084.23 1342

51 42 25.55 20.7 1

 25.55 20.7 1 1084.23 1344

51 42 25.55 20.7 1

 25.55 20.7 1 1084.23 1345

51 42 25.55 20.7 1

 25.55 20.7 1 1084.23 1347

51 42 25.55 20.7 1

 25.55 20.7 1 1084.23 1349

51 42 25.55 20.7 1

 25.55 20.7 1 1084.23 1350

51 42 25.55 20.7 1

 25.55 20.7 1 1084.23 1351

51 42 25.55 20.7 1

 25.55 20.7 1 1084.23 1352

51 42 25.55 20.7 1

 25.55 20.7 1 1084.23 1353

51 42 25.55 20.7 1

 25.55 20.7 1 1084.23 1354

51 42 25.55 20.7 1

 25.55 20.7 1 1084.23 1355

51 42 25.55 20.7 1

 25.55 20.7 1 1084.23 1356

51 42 25.55 20.7 1

 25.55 20.7 1 1084.23 1357

51 42 25.55 20.7 1

 25.55 20.7 1 1084.23 1358

51 42 25.55 20.7 1

 25.55 20.7 1 1084.23 1359

156

Sheet Panel
Level Waste Time

Total

Height Width height width Waste

51 42 25.55 20.7 1

 25.55 20.7 1 1084.23 1360

51 42 25.55 20.7 1

 25.55 20.7 1 1084.23 1361

51 42 25.55 20.7 1

 25.55 20.7 1 1084.23 1362

51 42 25.55 20.7 1

 25.55 20.7 1 1084.23 1363

51 42 25.55 20.7 1

 25.55 20.7 1 1084.23 1364

51 42 25.55 20.7 1

 25.55 20.7 1 1084.23 1365

51 42 25.55 20.7 1

 25.55 20.7 1 1084.23 1366

51 42 25.55 20.7 1

 25.55 20.7 1 1084.23 1368

51 42 25.55 20.7 1

 25.55 20.7 1 1084.23 1369

51 42 25.55 20.7 1

 25.55 20.7 1 1084.23 1370

51 42 25.55 20.7 1

 25.55 20.7 1 1084.23 1371

51 42 25.55 20.7 1

 25.55 20.7 1 1084.23 1372

51 42 25.55 20.7 1

 25.55 20.7 1 1084.23 1372

51 42 25.55 20.7 1

 25.55 20.7 1 1084.23 1373

51 42 25.55 20.7 1

 25.55 20.7 1 1084.23 1374

51 42 25.55 20.7 1

 25.55 20.7 1 1084.23 1375

51 42 25.55 20.7 1

 25.55 20.7 1 1084.23 1375

51 42 25.55 20.7 1

 25.5 20.9 1 1080.165 1376

51 42 25.5 20.9 1

 25.5 20.9 1

 25.5 20.9 2

 25.5 20.9 2 10.2 1377

51 42 25.5 20.9 1

 25.5 20.9 1

 25.5 20.9 2

 25.5 20.9 2 10.2 1378

51 42 25.5 20.9 1

157

Sheet Panel
Level Waste Time

Total

Height Width height width Waste

 25.5 20.9 1

 25.5 20.9 2

 25.5 20.9 2 10.2 1380

51 42 25.5 20.9 1

 25.5 20.9 1

 25.5 20.9 2

 25.5 20.9 2 10.2 1381

51 42 25.5 20.9 1

 25.5 20.9 1

 25.5 20.9 2

 25.5 20.9 2 10.2 1382

51 42 25.5 20.9 1

 25.5 20.9 1

 25.5 20.9 2

 25.5 20.9 2 10.2 1383

51 42 25.5 20.9 1

 25.5 20.9 1

 25.5 20.9 2

 25.5 20.9 2 10.2 1384

51 42 25.5 20.9 1

 25.5 20.9 1

 25.5 20.9 2

 25.5 20.9 2 10.2 1385

51 42 25.5 20.9 1

 25.5 20.9 1

 25.5 20.9 2

 25.5 20.9 2 10.2 1386

51 42 25.5 20.9 1

 25.5 20.9 1

 25.5 20.9 2

 25.5 20.9 2 10.2 1387

51 42 25.5 20.9 1

 25.5 20.9 1

 25.5 20.9 2

 25.5 20.9 2 10.2 1388

51 42 25.5 20.9 1

 25.5 20.9 1

 25.5 20.9 2

 25.5 20.9 2 10.2 1394

51 42 25.5 20.9 1

 25.5 20.9 1

 25.5 20.9 2

 25.5 20.9 2 10.2 1395

51 42 25.5 20.9 1

 25.5 20.9 1

158

Sheet Panel
Level Waste Time

Total

Height Width height width Waste

 25.5 20.9 2

 25.5 20.9 2 10.2 1397

51 42 25.5 20.9 1

 25.5 20.9 1

 25.5 20.9 2

 25.5 20.9 2 10.2 1398

51 42 25.5 20.9 1

 25.5 20.9 1

 25.5 20.9 2

 25.5 20.9 2 10.2 1400

51 42 25.5 20.9 1

 25.5 20.9 1

 25.5 20.9 2

 25.5 20.9 2 10.2 1401

51 42 25.5 20.9 1

 25.5 20.9 1

 25.5 20.9 2

 25.5 20.9 2 10.2 1403

51 42 25.5 20.9 1

 25.5 20.9 1

 25.5 20.9 2

 25.5 20.9 2 10.2 1404

51 42 25.5 20.9 1

 25.5 20.9 1

 25.5 20.9 2

 25.5 20.9 2 10.2 1405

51 42 25.5 20.9 1

 25.5 20.9 1

 25.5 20.9 2

 25.5 20.9 2 10.2 1406

51 42 25.5 20.9 1

 25.5 20.9 1

 25.5 20.9 2

 25.5 20.9 2 10.2 1407

51 42 25.5 20.9 1

 25.5 20.9 1

 25.5 20.9 2

 25.5 20.9 2 10.2 1408

51 42 25.5 20.9 1

 25.5 20.9 1

 25.5 20.9 2

 25.5 20.9 2 10.2 1409

51 42 25.5 20.9 1

 25.5 20.9 1

 25.5 20.9 2

159

Sheet Panel
Level Waste Time

Total

Height Width height width Waste

 25.5 20.9 2 10.2 1410

51 42 25.5 20.9 1

 25.5 20.9 1

 25.5 20.9 2

 25.5 20.9 2 10.2 1411

51 42 25.5 20.9 1

 25.5 20.9 1

 25.5 20.9 2

 25.5 20.9 2 10.2 1411

51 42 25.5 20.9 1

 25.5 20.9 1

 25.5 20.9 2 543.15 1411 59362.91

7.3.3. 2D Vertical Construction

Table 7.23 The output for the first instance using 2DVC

Sheet Panel
Level Waste Time

Total

Height Width height width Waste

51 42 25.5 20.9 1

 25.5 20.9 1

 25.5 20.9 2

 25.5 20.9 2 10.2 1328

51 42 25.5 20.9 1

 25.5 20.9 1

 25.5 20.9 2

 25.5 20.9 2 10.2 1332

51 42 25.5 20.9 1

 25.5 20.9 1

 25.5 20.9 2

 25.5 20.9 2 10.2 1335

51 42 25.5 20.9 1

 25.5 20.9 1

 25.5 20.9 2

 25.5 20.9 2 10.2 1339

51 42 25.5 20.9 1

 25.5 20.9 1

 25.5 20.9 2

 25.5 20.9 2 10.2 1342

51 42 25.5 20.9 1

 25.5 20.9 1

 25.5 20.9 2

 25.5 20.9 2 10.2 1345

51 42 25.5 20.9 1

 25.5 20.9 1

 25.5 20.9 2

160

Sheet Panel
Level Waste Time

Total

Height Width height width Waste

 25.5 20.9 2 10.2 1348

51 42 25.5 20.9 1

 25.5 20.9 1

 25.5 20.9 2

 25.5 20.9 2 10.2 1351

51 42 25.5 20.9 1

 25.5 20.9 1

 25.5 20.9 2

 25.5 20.9 2 10.2 1353

51 42 25.5 20.9 1

 25.5 20.9 1

 25.5 20.9 2

 25.5 20.9 2 10.2 1356

51 42 25.5 20.9 1

 25.5 20.9 1

 25.5 20.9 2

 25.5 20.9 2 10.2 1359

51 42 25.5 20.9 1

 25.5 20.9 1

 25.5 20.9 2

 25.5 20.9 2 10.2 1362

51 42 25.5 20.9 1

 25.5 20.9 1

 25.5 20.9 2

 25.5 20.9 2 10.2 1365

51 42 25.5 20.9 1

 25.5 20.9 1

 25.5 20.9 2

 25.5 20.9 2 10.2 1368

51 42 25.5 20.9 1

 25.5 20.9 1

 25.5 20.9 2

 25.5 20.9 2 10.2 1370

51 42 25.5 20.9 1

 25.5 20.9 1

 25.5 20.9 2

 25.5 20.9 2 10.2 1372

51 42 25.5 20.9 1

 25.5 20.9 1

 25.5 20.9 2

 25.5 20.9 2 10.2 1374

51 42 25.5 20.9 1

 25.5 20.9 1

 25.5 20.9 2

 25.5 20.9 2 10.2 1376

161

Sheet Panel
Level Waste Time

Total

Height Width height width Waste

51 42 25.5 20.9 1

 25.5 20.9 1

 25.5 20.9 2

 25.5 20.9 2 10.2 1379

51 42 25.5 20.9 1

 25.5 20.9 1

 25.5 20.9 2

 25.5 20.9 2 10.2 1382

51 42 25.5 20.9 1

 25.5 20.9 1

 25.5 20.9 2

 25.5 20.9 2 10.2 1384

51 42 25.5 20.9 1

 25.5 20.9 1

 25.5 20.9 2

 25.5 20.9 2 10.2 1386

51 42 25.5 20.9 1

 25.5 20.9 1

 25.5 20.9 2

 25.5 20.9 2 10.2 1388

51 42 25.5 20.9 1

 25.5 20.9 1

 25.5 20.9 2

 25.5 20.9 2 10.2 1390

51 42 25.5 20.9 1

 25.5 20.9 1

 25.5 20.9 2

 25.5 20.9 2 10.2 1392

51 42 25.5 20.9 1

 25.5 20.9 1

 25.5 20.9 2

 25.5 20.9 2 10.2 1394

51 42 25.5 20.9 1

 25.5 20.9 1

 25.5 20.9 2

 25.5 20.9 2 10.2 1396

51 42 25.5 20.9 1

 25.5 20.9 1

 25.5 20.9 2

 25.5 20.9 2 10.2 1397

51 42 25.55 20.7 1

 25.55 20.7 2 1084.23 1398

51 42 25.55 20.7 1

 25.55 20.7 2 1084.23 1399

51 42 25.55 20.7 1

162

Sheet Panel
Level Waste Time

Total

Height Width height width Waste

 25.55 20.7 2 1084.23 1400

51 42 25.55 20.7 1

 25.55 20.7 2 1084.23 1401

51 42 25.55 20.7 1

 25.55 20.7 2 1084.23 1401

51 42 25.55 20.7 1

 25.55 20.7 2 1084.23 1402

51 42 25.55 20.7 1

 25.55 20.7 2 1084.23 1403

51 42 25.55 20.7 1

 25.55 20.7 2 1084.23 1404

51 42 25.55 20.7 1

 25.55 20.7 2 1084.23 1405

51 42 25.55 20.7 1

 25.55 20.7 2 1084.23 1406

51 42 25.55 20.7 1

 25.55 20.7 2 1084.23 1407

51 42 25.55 20.7 1

 25.55 20.7 2 1084.23 1408

51 42 25.55 20.7 1

 25.55 20.7 2 1084.23 1409

51 42 25.55 20.7 1

 25.55 20.7 2 1084.23 1409

51 42 25.55 20.7 1

 25.55 20.7 2 1084.23 1410

51 42 25.55 20.7 1

 25.55 20.7 2 1084.23 1411

51 42 25.55 20.7 1

 25.55 20.7 2 1084.23 1411

51 42 25.55 20.7 1

 25.55 20.7 2 1084.23 1412

51 42 25.55 20.7 1

 25.55 20.7 2 1084.23 1413

51 42 25.55 20.7 1

 25.55 20.7 2 1084.23 1414

51 42 25.55 20.7 1

 25.55 20.7 2 1084.23 1415

51 42 25.55 20.7 1

 25.55 20.7 2 1084.23 1415

51 42 25.55 20.7 1

 25.55 20.7 2 1084.23 1416

51 42 25.55 20.7 1

 25.55 20.7 2 1084.23 1417

51 42 25.55 20.7 1

 25.55 20.7 2 1084.23 1418

163

Sheet Panel
Level Waste Time

Total

Height Width height width Waste

51 42 25.55 20.7 1

 25.55 20.7 2 1084.23 1418

51 42 25.55 20.7 1

 25.55 20.7 2 1084.23 1419

51 42 25.55 20.7 1

 25.55 20.7 2 1084.23 1420

51 42 25.55 20.7 1

 25.55 20.7 2 1084.23 1420

51 42 25.55 20.7 1

 25.55 20.7 2 1084.23 1421

51 42 25.55 20.7 1

 25.55 20.7 2 1084.23 1422

51 42 25.55 20.7 1

 25.55 20.7 2 1084.23 1422

51 42 25.55 20.7 1

 25.55 20.7 2 1084.23 1423

51 42 25.55 20.7 1

 25.55 20.7 2 1084.23 1424

51 42 25.55 20.7 1

 25.55 20.7 2 1084.23 1424

51 42 25.55 20.7 1

 25.55 20.7 2 1084.23 1425

51 42 25.55 20.7 1

 25.55 20.7 2 1084.23 1426

51 42 25.55 20.7 1

 25.55 20.7 2 1084.23 1426

51 42 25.55 20.7 1

 25.55 20.7 2 1084.23 1427

51 42 25.55 20.7 1

 25.55 20.7 2 1084.23 1427

51 42 25.55 20.7 1

 25.55 20.7 2 1084.23 1428

51 42 25.55 20.7 1

 25.55 20.7 2 1084.23 1429

51 42 25.55 20.7 1

 25.55 20.7 2 1084.23 1429

51 42 25.55 20.7 1

 25.55 20.7 2 1084.23 1430

51 42 25.55 20.7 1

 25.55 20.7 2 1084.23 1430

51 42 25.55 20.7 1

 25.55 20.7 2 1084.23 1431

51 42 25.55 20.7 1

 25.55 20.7 2 1084.23 1431

51 42 25.55 20.7 1

164

Sheet Panel
Level Waste Time

Total

Height Width height width Waste

 25.55 20.7 2 1084.23 1432

51 42 25.55 20.7 1

 25.55 20.7 2 1084.23 1432

51 42 25.55 20.7 1

 25.55 20.7 2 1084.23 1433

51 42 25.55 20.7 1

 25.55 20.7 2 1084.23 1433

51 42 25.55 20.7 1

 25.55 20.7 2 1084.23 1434

51 42 25.55 20.7 1

 25.55 20.7 2 1084.23 1434

51 42 25.55 20.7 1 1613.115 1434 59362.91

7.3.4. 2D Horizontal Improvement

Table 7.24 The output for the first instance using 2DHI

7.3.5. 2D Vertical Improvement

Table 7.25 The output for the first instance using 2DVI

7.3.6. Sheet Width Panel Height Horizontal Cut

Table 7.26 The output of the first instance using SW_PH_HC

Sheet Panel
Level Waste Time

Total

Height Width height width Waste

51 42 25.55 20.7 1

 25.55 20.7 1 1084.23 1152

51 42 25.55 20.7 1

 25.55 20.7 1 1084.23 1155

51 42 25.55 20.7 1

Minimum Number of Number of sheet Leftover Compute Over Cut waste/sheet - Total Waste

Height Width height width Demand Waste/sheet panel/sheet that we will cut panel time x y Panel over cut panel For Cutting

1 50.5 42 25.55 20.7 107 2 0 0 1

25.55 20.7 20.7 0

1063.23 54 1161 57943.31 57943.31

2 51 42 25.5 20.9 112 4 0 0 0

25.5 20.9 20.9 0

25.5 20.9 0 25.5

25.5 20.9 20.9 25.5

10.2 28 1168 285.6 58228.91

NO
Sheet Panel Coordinate

Minimum Number of Number of sheet Leftover Compute Over Cut waste/sheet - Total Waste

Height Width height width Demand Waste/sheet panel/sheet that we will cut panel time x y Panel over cut panel For Cutting

1 51 42 25.5 20.9 112 4 0 0 0

25.5 20.9 0 25.5

25.5 20.9 20.9 0

25.5 20.9 20.9 25.5

10.2 28 1314 285.6 285.6

2 50.5 42 25.55 20.7 107 2 0 0 1

25.55 20.7 20.7 0

1063.23 54 1319 57943.31 58228.91

NO
Sheet Panel Coordinate

165

Sheet Panel
Level Waste Time

Total

Height Width height width Waste

 25.55 20.7 1 1084.23 1157

51 42 25.55 20.7 1

 25.55 20.7 1 1084.23 1159

51 42 25.55 20.7 1

 25.55 20.7 1 1084.23 1161

51 42 25.55 20.7 1

 25.55 20.7 1 1084.23 1164

51 42 25.55 20.7 1

 25.55 20.7 1 1084.23 1166

51 42 25.55 20.7 1

 25.55 20.7 1 1084.23 1169

51 42 25.55 20.7 1

 25.55 20.7 1 1084.23 1171

51 42 25.55 20.7 1

 25.55 20.7 1 1084.23 1174

51 42 25.55 20.7 1

 25.55 20.7 1 1084.23 1175

51 42 25.55 20.7 1

 25.55 20.7 1 1084.23 1177

51 42 25.55 20.7 1

 25.55 20.7 1 1084.23 1179

51 42 25.55 20.7 1

 25.55 20.7 1 1084.23 1180

51 42 25.55 20.7 1

 25.55 20.7 1 1084.23 1182

51 42 25.55 20.7 1

 25.55 20.7 1 1084.23 1184

51 42 25.55 20.7 1

 25.55 20.7 1 1084.23 1186

51 42 25.55 20.7 1

 25.55 20.7 1 1084.23 1188

51 42 25.55 20.7 1

 25.55 20.7 1 1084.23 1189

51 42 25.55 20.7 1

 25.55 20.7 1 1084.23 1191

51 42 25.55 20.7 1

 25.55 20.7 1 1084.23 1193

51 42 25.55 20.7 1

 25.55 20.7 1 1084.23 1195

166

Sheet Panel
Level Waste Time

Total

Height Width height width Waste

51 42 25.55 20.7 1

 25.55 20.7 1 1084.23 1201

51 42 25.55 20.7 1

 25.55 20.7 1 1084.23 1202

51 42 25.55 20.7 1

 25.55 20.7 1 1084.23 1204

51 42 25.55 20.7 1

 25.55 20.7 1 1084.23 1206

51 42 25.55 20.7 1

 25.55 20.7 1 1084.23 1207

51 42 25.55 20.7 1

 25.55 20.7 1 1084.23 1209

51 42 25.55 20.7 1

 25.55 20.7 1 1084.23 1210

51 42 25.55 20.7 1

 25.55 20.7 1 1084.23 1211

51 42 25.55 20.7 1

 25.55 20.7 1 1084.23 1213

51 42 25.55 20.7 1

 25.55 20.7 1 1084.23 1214

51 42 25.55 20.7 1

 25.55 20.7 1 1084.23 1215

51 42 25.55 20.7 1

 25.55 20.7 1 1084.23 1217

51 42 25.55 20.7 1

 25.55 20.7 1 1084.23 1218

51 42 25.55 20.7 1

 25.55 20.7 1 1084.23 1219

51 42 25.55 20.7 1

 25.55 20.7 1 1084.23 1220

51 42 25.55 20.7 1

 25.55 20.7 1 1084.23 1221

51 42 25.55 20.7 1

 25.55 20.7 1 1084.23 1222

51 42 25.55 20.7 1

 25.55 20.7 1 1084.23 1224

51 42 25.55 20.7 1

 25.55 20.7 1 1084.23 1225

51 42 25.55 20.7 1

167

Sheet Panel
Level Waste Time

Total

Height Width height width Waste

 25.55 20.7 1 1084.23 1226

51 42 25.55 20.7 1

 25.55 20.7 1 1084.23 1228

51 42 25.55 20.7 1

 25.55 20.7 1 1084.23 1229

51 42 25.55 20.7 1

 25.55 20.7 1 1084.23 1230

51 42 25.55 20.7 1

 25.55 20.7 1 1084.23 1231

51 42 25.55 20.7 1

 25.55 20.7 1 1084.23 1232

51 42 25.55 20.7 1

 25.55 20.7 1 1084.23 1233

51 42 25.55 20.7 1

 25.55 20.7 1 1084.23 1234

51 42 25.55 20.7 1

 25.55 20.7 1 1084.23 1235

51 42 25.55 20.7 1

 25.55 20.7 1 1084.23 1236

51 42 25.55 20.7 1

 25.55 20.7 1 1084.23 1237

51 42 25.55 20.7 1

 25.55 20.7 1 1084.23 1238

51 42 25.55 20.7 1

 25.5 20.9 1 1080.17 1239

51 42 25.5 20.9 1

 25.5 20.9 1

 25.5 20.9 2

 25.5 20.9 2 10.2 1240

51 42 25.5 20.9 1

 25.5 20.9 1

 25.5 20.9 2

 25.5 20.9 2 10.2 1241

51 42 25.5 20.9 1

 25.5 20.9 1

 25.5 20.9 2

 25.5 20.9 2 10.2 1243

51 42 25.5 20.9 1

 25.5 20.9 1

168

Sheet Panel
Level Waste Time

Total

Height Width height width Waste

 25.5 20.9 2

 25.5 20.9 2 10.2 1245

51 42 25.5 20.9 1

 25.5 20.9 1

 25.5 20.9 2

 25.5 20.9 2 10.2 1246

51 42 25.5 20.9 1

 25.5 20.9 1

 25.5 20.9 2

 25.5 20.9 2 10.2 1248

51 42 25.5 20.9 1

 25.5 20.9 1

 25.5 20.9 2

 25.5 20.9 2 10.2 1249

51 42 25.5 20.9 1

 25.5 20.9 1

 25.5 20.9 2

 25.5 20.9 2 10.2 1250

51 42 25.5 20.9 1

 25.5 20.9 1

 25.5 20.9 2

 25.5 20.9 2 10.2 1251

51 42 25.5 20.9 1

 25.5 20.9 1

 25.5 20.9 2

 25.5 20.9 2 10.2 1252

51 42 25.5 20.9 1

 25.5 20.9 1

 25.5 20.9 2

 25.5 20.9 2 10.2 1254

51 42 25.5 20.9 1

 25.5 20.9 1

 25.5 20.9 2

 25.5 20.9 2 10.2 1255

51 42 25.5 20.9 1

 25.5 20.9 1

 25.5 20.9 2

 25.5 20.9 2 10.2 1258

51 42 25.5 20.9 1

169

Sheet Panel
Level Waste Time

Total

Height Width height width Waste

 25.5 20.9 1

 25.5 20.9 2

 25.5 20.9 2 10.2 1259

51 42 25.5 20.9 1

 25.5 20.9 1

 25.5 20.9 2

 25.5 20.9 2 10.2 1260

51 42 25.5 20.9 1

 25.5 20.9 1

 25.5 20.9 2

 25.5 20.9 2 10.2 1261

51 42 25.5 20.9 1

 25.5 20.9 1

 25.5 20.9 2

 25.5 20.9 2 10.2 1262

51 42 25.5 20.9 1

 25.5 20.9 1

 25.5 20.9 2

 25.5 20.9 2 10.2 1263

51 42 25.5 20.9 1

 25.5 20.9 1

 25.5 20.9 2

 25.5 20.9 2 10.2 1264

51 42 25.5 20.9 1

 25.5 20.9 1

 25.5 20.9 2

 25.5 20.9 2 10.2 1265

51 42 25.5 20.9 1

 25.5 20.9 1

 25.5 20.9 2

 25.5 20.9 2 10.2 1266

51 42 25.5 20.9 1

 25.5 20.9 1

 25.5 20.9 2

 25.5 20.9 2 10.2 1267

51 42 25.5 20.9 1

 25.5 20.9 1

 25.5 20.9 2

 25.5 20.9 2 10.2 1268

170

Sheet Panel
Level Waste Time

Total

Height Width height width Waste

51 42 25.5 20.9 1

 25.5 20.9 1

 25.5 20.9 2

 25.5 20.9 2 10.2 1269

51 42 25.5 20.9 1

 25.5 20.9 1

 25.5 20.9 2

 25.5 20.9 2 10.2 1270

51 42 25.5 20.9 1

 25.5 20.9 1

 25.5 20.9 2

 25.5 20.9 2 10.2 1271

51 42 25.5 20.9 1

 25.5 20.9 1

 25.5 20.9 2

 25.5 20.9 2 10.2 1272

51 42 25.5 20.9 1

 25.5 20.9 1

 25.5 20.9 2 543.15 1272 59362.9

7.3.7. Sheet Width Panel Width Vertical Cut

Table 7.27 The output of the first instance using SW_PW_VC

Sheet Panel
Level Waste Time

Total

Height Width height width Waste

42 25.5 20.9 1

 25.5 20.9 1

 25.5 20.9 2

 25.5 20.9 2 10.2 1057

51 42 25.5 20.9 1

 25.5 20.9 1

 25.5 20.9 2

 25.5 20.9 2 10.2 1064

51 42 25.5 20.9 1

 25.5 20.9 1

 25.5 20.9 2

 25.5 20.9 2 10.2 1069

51 42 25.5 20.9 1

 25.5 20.9 1

171

Sheet Panel
Level Waste Time

Total

Height Width height width Waste

 25.5 20.9 2

 25.5 20.9 2 10.2 1075

51 42 25.5 20.9 1

 25.5 20.9 1

 25.5 20.9 2

 25.5 20.9 2 10.2 1080

51 42 25.5 20.9 1

 25.5 20.9 1

 25.5 20.9 2

 25.5 20.9 2 10.2 1084

51 42 25.5 20.9 1

 25.5 20.9 1

 25.5 20.9 2

 25.5 20.9 2 10.2 1088

51 42 25.5 20.9 1

 25.5 20.9 1

 25.5 20.9 2

 25.5 20.9 2 10.2 1094

51 42 25.5 20.9 1

 25.5 20.9 1

 25.5 20.9 2

 25.5 20.9 2 10.2 1099

51 42 25.5 20.9 1

 25.5 20.9 1

 25.5 20.9 2

 25.5 20.9 2 10.2 1102

51 42 25.5 20.9 1

 25.5 20.9 1

 25.5 20.9 2

 25.5 20.9 2 10.2 1105

51 42 25.5 20.9 1

 25.5 20.9 1

 25.5 20.9 2

 25.5 20.9 2 10.2 1108

51 42 25.5 20.9 1

 25.5 20.9 1

 25.5 20.9 2

 25.5 20.9 2 10.2 1111

51 42 25.5 20.9 1

172

Sheet Panel
Level Waste Time

Total

Height Width height width Waste

 25.5 20.9 1

 25.5 20.9 2

 25.5 20.9 2 10.2 1114

51 42 25.5 20.9 1

 25.5 20.9 1

 25.5 20.9 2

 25.5 20.9 2 10.2 1116

51 42 25.5 20.9 1

 25.5 20.9 1

 25.5 20.9 2

 25.5 20.9 2 10.2 1119

51 42 25.5 20.9 1

 25.5 20.9 1

 25.5 20.9 2

 25.5 20.9 2 10.2 1121

51 42 25.5 20.9 1

 25.5 20.9 1

 25.5 20.9 2

 25.5 20.9 2 10.2 1124

51 42 25.5 20.9 1

 25.5 20.9 1

 25.5 20.9 2

 25.5 20.9 2 10.2 1127

51 42 25.5 20.9 1

 25.5 20.9 1

 25.5 20.9 2

 25.5 20.9 2 10.2 1129

51 42 25.5 20.9 1

 25.5 20.9 1

 25.5 20.9 2

 25.5 20.9 2 10.2 1131

51 42 25.5 20.9 1

 25.5 20.9 1

 25.5 20.9 2

 25.5 20.9 2 10.2 1133

51 42 25.5 20.9 1

 25.5 20.9 1

 25.5 20.9 2

 25.5 20.9 2 10.2 1135

173

Sheet Panel
Level Waste Time

Total

Height Width height width Waste

51 42 25.5 20.9 1

 25.5 20.9 1

 25.5 20.9 2

 25.5 20.9 2 10.2 1136

51 42 25.5 20.9 1

 25.5 20.9 1

 25.5 20.9 2

 25.5 20.9 2 10.2 1138

51 42 25.5 20.9 1

 25.5 20.9 1

 25.5 20.9 2

 25.5 20.9 2 10.2 1140

51 42 25.5 20.9 1

 25.5 20.9 1

 25.5 20.9 2

 25.5 20.9 2 10.2 1142

51 42 25.5 20.9 1

 25.5 20.9 1

 25.5 20.9 2

 25.5 20.9 2 10.2 1144

51 42 25.55 20.7 1

 25.55 20.7 2 1084.23 1145

51 42 25.55 20.7 1

 25.55 20.7 2 1084.23 1146

51 42 25.55 20.7 1

 25.55 20.7 2 1084.23 1147

51 42 25.55 20.7 1

 25.55 20.7 2 1084.23 1148

51 42 25.55 20.7 1

 25.55 20.7 2 1084.23 1149

51 42 25.55 20.7 1

 25.55 20.7 2 1084.23 1150

51 42 25.55 20.7 1

 25.55 20.7 2 1084.23 1150

51 42 25.55 20.7 1

 25.55 20.7 2 1084.23 1151

51 42 25.55 20.7 1

 25.55 20.7 2 1084.23 1152

51 42 25.55 20.7 1

174

Sheet Panel
Level Waste Time

Total

Height Width height width Waste

 25.55 20.7 2 1084.23 1153

51 42 25.55 20.7 1

 25.55 20.7 2 1084.23 1154

51 42 25.55 20.7 1

 25.55 20.7 2 1084.23 1154

51 42 25.55 20.7 1

 25.55 20.7 2 1084.23 1155

51 42 25.55 20.7 1

 25.55 20.7 2 1084.23 1156

51 42 25.55 20.7 1

 25.55 20.7 2 1084.23 1157

51 42 25.55 20.7 1

 25.55 20.7 2 1084.23 1157

51 42 25.55 20.7 1

 25.55 20.7 2 1084.23 1158

51 42 25.55 20.7 1

 25.55 20.7 2 1084.23 1159

51 42 25.55 20.7 1

 25.55 20.7 2 1084.23 1159

51 42 25.55 20.7 1

 25.55 20.7 2 1084.23 1161

51 42 25.55 20.7 1

 25.55 20.7 2 1084.23 1161

51 42 25.55 20.7 1

 25.55 20.7 2 1084.23 1162

51 42 25.55 20.7 1

 25.55 20.7 2 1084.23 1163

51 42 25.55 20.7 1

 25.55 20.7 2 1084.23 1163

51 42 25.55 20.7 1

 25.55 20.7 2 1084.23 1164

51 42 25.55 20.7 1

 25.55 20.7 2 1084.23 1165

51 42 25.55 20.7 1

 25.55 20.7 2 1084.23 1165

51 42 25.55 20.7 1

 25.55 20.7 2 1084.23 1166

51 42 25.55 20.7 1

 25.55 20.7 2 1084.23 1166

175

Sheet Panel
Level Waste Time

Total

Height Width height width Waste

51 42 25.55 20.7 1

 25.55 20.7 2 1084.23 1167

51 42 25.55 20.7 1

 25.55 20.7 2 1084.23 1167

51 42 25.55 20.7 1

 25.55 20.7 2 1084.23 1168

51 42 25.55 20.7 1

 25.55 20.7 2 1084.23 1169

51 42 25.55 20.7 1

 25.55 20.7 2 1084.23 1169

51 42 25.55 20.7 1

 25.55 20.7 2 1084.23 1170

51 42 25.55 20.7 1

 25.55 20.7 2 1084.23 1170

51 42 25.55 20.7 1

 25.55 20.7 2 1084.23 1171

51 42 25.55 20.7 1

 25.55 20.7 2 1084.23 1171

51 42 25.55 20.7 1

 25.55 20.7 2 1084.23 1172

51 42 25.55 20.7 1

 25.55 20.7 2 1084.23 1173

51 42 25.55 20.7 1

 25.55 20.7 2 1084.23 1173

51 42 25.55 20.7 1

 25.55 20.7 2 1084.23 1174

51 42 25.55 20.7 1

 25.55 20.7 2 1084.23 1174

51 42 25.55 20.7 1

 25.55 20.7 2 1084.23 1175

51 42 25.55 20.7 1

 25.55 20.7 2 1084.23 1175

51 42 25.55 20.7 1

 25.55 20.7 2 1084.23 1176

51 42 25.55 20.7 1

 25.55 20.7 2 1084.23 1176

51 42 25.55 20.7 1

 25.55 20.7 2 1084.23 1177

51 42 25.55 20.7 1

176

Sheet Panel
Level Waste Time

Total

Height Width height width Waste

 25.55 20.7 2 1084.23 1177

51 42 25.55 20.7 1

 25.55 20.7 2 1084.23 1178

51 42 25.55 20.7 1

 25.55 20.7 2 1084.23 1179

51 42 25.55 20.7 1

 25.55 20.7 2 1084.23 1179

51 42 25.55 20.7 1

 25.55 20.7 2 1084.23 1180

51 42 25.55 20.7 1 1613.115 1180 59362.905

7.3.8. Minimum Sheet Width Ordering Panel Height Horizontal Cut

Table 7.28 The output of the first instance using MinSW_OPH_HC

7.3.9. Minimum Sheet Height Ordering Panel Width Vertical Cut

Table 7.29 The output of the first instance using MinSH_OPW_VC

Minimum Number of Number of sheet Leftover Compute Over Cut waste/sheet - Total Waste

Height Width height width Demand Waste/sheet panel/sheet that we will cut panel time x y Panel over cut panel For Cutting

1 50.5 42 25.6 20.7 107 1 0 0 0

25.5 20.9 112 1 5 20.7 0 0

1059.165 107 2169 113330.655 113330.66

2 51 42 25.5 20.9 5 4 0 0 3

25.5 20.9 20.9 0

25.5 20.9 0 25.5

25.5 20.9 20.9 25.5

10.2 2 2177 1619.25 114949.91

NO
Sheet Panel Coordinate

Minimum Number of Number of sheet Leftover Compute Over Cut waste/sheet - Total Waste

Height Width height width Demand Waste/sheet panel/sheet that we will cut panel time x y Panel over cut panel For Cutting

1 51 42 25.5 20.9 112 4 0 0 0

25.5 20.9 0 25.5

25.5 20.9 20.9 0

25.5 20.9 20.9 25.5

10.2 28 1063 285.6 285.6

2 50.5 42 25.6 20.7 107 2 0 0 1

25.6 20.7 20.7 0

1063.23 54 1069 57943.305 58228.905

NO
Sheet Panel Coordinate

