e

HEURISTICS FOR TWO-DIMENSIONAL
RECTANGULAR GUILLOTINE CUTTING

BY

KIMSENG TIENG

A THESIS SUBMITTED IN PARTIAL FULFILLMENT OF
THE REQUIREMENTS FOR THE DEGREE OF MASTER OF
ENGINEERING (LOGISTICS AND SUPPLY CHAIN SYSTEMS
ENGINEERING)

SIRINDHORN INTERNATIONAL INSTITUTE OF TECHNOLOGY
THAMMASAT UNIVERSITY
ACADEMIC YEAR 2015

HEURISTICS FOR TWO-DIMENSIONAL
RECTANGULAR GUILLOTINE CUTTING

BY

KIMSENG TIENG

A THESIS SUBMITTED IN PARTIAL FULFILLMENT OF
THE REQUIREMENTS FOR THE DEGREE OF MASTER OF
ENGINEERING (LOGISTICS AND SUPPLY CHAIN SYSTEMS
ENGINEERING)

SIRINDHORN INTERNATIONAL INSTITUTE OF TECHNOLOGY
THAMMASAT UNIVERSITY
ACADEMIC YEAR 2015

0

OfA0

HEURISTICS FOR TWO-DIMENSIONAL RECTANGULAR GUILLOTINE
CUTTING

A Thesis Presented

By

KIMSENG TIENG

Submitted to
Sirindhorn International Institute of Technology
Thammasat University
In partial fulfillment of the requirements for the degree of
MASTER OF ENGINEERING (LOGISTICS AND SUPPLY CHAIN SYSTEMS
ENGINEERING)

Approved as to style and content by

Advisor and Chairperson of Thesis Committee
(Assoc. Prof. Dr. Chawalit Jeenanunta, Ph.D)

Committee Member and P 4 QZ./’—'—' :

Chairperson of Examination Committee
(Asst. Prof. Dr. Aussadavut Dumrongsiri, Ph.D)

Committee Member PM_/

(Assoc. Prof. Dr. Ruengsak Kawtummachai, Ph.D)

DECEMBER 2015

Abstract

HEURISTICS FOR TWO-DIMENSIONAL RECTANGULAR GUILLOTINE
CUTTING

by

KIMSENG TIENG

Bachelor of Science, Major Physics,
Royal University of Phnom Penh, 2013

Two-Dimensional Rectangular Guillotine Cutting (2DRGC) is an
important problem in the industrial. Paper, sheet, plate, glass, wood, or plastic is needed
to cut from stock in big rectangular area. Then a set of small sheet, plate, glass, wood,
or plastic in rectangular size is given. Guillotine is a cutting process, where the sheets
are needed to cut straightly. In this thesis, eight different methods are implemented to
find a good layout. They are 2D horizontal construction, 2D vertical construction, 2D
horizontal improvement, 2D vertical improvement, Sheet Width Panel Height
Horizontal Cut, Sheet Width Panel Width Vertical Cut, Minimum Sheet Width
Ordering Panel Height Horizontal Cut, and Minimum Sheet Height Ordering Panel
Width Vertical Cut. Given result of each method is used to compare with 2D simple
heuristic cutting and column generation method. The objective of this thesis is to find
the best layout within a short computational time, and demand of customer is fulfilled.
The result indicates that a good layout has been found in a short computational time

within some proposed heuristics.

Keywords: Heuristics, 2D guillotine cutting stock, Column generation,

Acknowledgements

This thesis will not accomplish if | did not get support and help from my
advisor and committees, Sirindhorn International Institute of Technology (SIIT),
faculty members, and colleagues, and especially my family and relatives.

First of all, 1 would like to reveal my deeply thankfulness to my advisor,
Dr. Chawalit Jeenanunta, for his invaluable guidances, motivation, and immense
knowledge throughout my limited time frame research at SIIT, Thailand. He is my best
advisor ever. Besides my advisor, | would like to express my sincere gratitude to my
internal and external committee Dr. Aussadavut Dumrongsiri and Dr. Ruengsak
Kawtummachai for every useful comments and suggestions through the entire process
of my research. Those guidances are extremely vital to push my research moving
forward; otherwise, | cannot graduate in time.

Secondly, | am highly indebted to SIIT, Thammasat University for their
constant supervision and continuous support by providing me an Excellent Foreign
Scholarship (EFS) scholarship. It is a golden opportunity to pursue my master degree.
In addition, many thanks and appreciation also go to all faculty members, staffs and my
colleagues in Logistics and Supply Chain System Engineering program (LSCSE) for
their helpfulness.

Last but not least, 1 would like to express my special gratitude and
thankfulness to both my parents and my siblings, as well as my relatives. They always

support, love, encourage, and stay by my side in all kind of situation.

Table of Contents

Chapter Title Page

Signature Page i
Abstract i
Acknowledgements iii
Table of Contents iv
List of Tables vii

List of Figures IX

1. Introduction
1.1. Background
1.2. Problem Description
1.3. Thesis Objective
1.4, Significant of the Thesis
1.5. Overview of Thesis

A A W W R R

2. Literature Review 5
2.1. Linear Programming 5
2.2. Mix Integer Programming 5
2.3. Dynamic Programming 6
2.4. Meta-Heuristics 6
2.5. Heuristics 9
3. Proposed Algorithms 12
3.1. Column Generation (CG) 12
3.2. 2D Simple Heuristic Cutting (2DSHC) 14
3.3. 2D Horizontal Construction (2DHC) 16
3.4. 2D Vertical Construction (2DVC) 18
3.5. 2D horizontal improvement (2DHI) 20
3.6. 2D Vertical Improvement (2DV1) 23

iv

3.7. Sheet Width Panel Height Horizontal Cut (SW_PH_HC) 26
3.8. Sheet Width Panel Width Vertical Cut (SW_PW_VC) 29
3.9. Minimum Sheet Width Ordering Panel Height Horizontal

Cut (MinSW_OPH_HC) 33
3.10. Minimum Sheet Height Ordering Panel Width Vertical
Cut (MinSH_OPW_VC) 36
4. Testing Instances 38
5. Experimental Result and Discussion 39
5.1. Comparison to column generation 39
5.2. Comparison to 2D Simple Heuristic Cutting 41
5.3. Comparison of computational time 44
5.4. Comparison of 2DHI, 2DVI, MinSW_OPH_HC,
MinSH_OPW_VC 44
6. Conclusions and Recommendations 46
6.1. Conclusion 46
6.2. Recommendation for Further Study 48
References 49
Appendices 52
7.1. Appendix A: Java Source Code 53
7.1.1. 2D Simple Heuristic Cutting 53
7.1.2. 2D Horizontal Construction 66
7.1.3. 2D Vertical Construction 71
7.1.4. 2D Horizontal Improvement 76
7.1.5. 2D Vertical Improvement 90
7.1.6. Sheet Width Panel Height Horizontal Cut 104
7.1.7. Sheet Width Panel Width Vertical Cut 110

7.1.8. Minimum Sheet Width Ordering Panel Height Horizontal

Cut 116
7.1.9. Minimum Sheet Height Ordering Panel Width Vertical

Cut 132
7.2. Appendix B: Input Twenty Testing Instances 147
7.3. Appendix C: Output Twenty Testing Instances 154
7.3.1. 2D Simple Heuristic Cutting 154
7.3.2. 2D Horizontal Construction 154
7.3.3. 2D Vertical Construction 159
7.3.4. 2D Horizontal Improvement 164
7.3.5. 2D Vertical Improvement 164
7.3.6. Sheet Width Panel Height Horizontal Cut 164
7.3.7. Sheet Width Panel Width Vertical Cut 170
7.3.8. Minimum Sheet Width Ordering Panel Height Horizontal

Cut 176
7.3.9. Minimum Sheet Height Ordering Panel Width Vertical

Cut 176

Vi

List of Tables

Tables Page
4.1 The input for small, medium, and large size instances 38
5.1 The output of CG, 2DSHC, 2DHC, 2DVC, 2DHI, and 2DV including

waste, time, and gap 42

5.2 The output of CG, 2DSHC, 2DHC_SW_PH, 2DVC_SW_PW,
MinSW_OPH_HC, and MinSH_OPW _VC including waste, time, and gap 43
5.3 Waste comparison of 2DHI, 2DVI, MinSW_OPH_HC, and

MinSW_OPW_VC 45
7.1 Instance 1 147
7.2 Instance 2 147
7.3 Instance 3 147
7.4 Instance 4 147
7.5 Instance 5 147
7.6 Instance 6 147
7.7 Instance 7 148
7.8 Instance 8 148
7.9 Instance 9 148
7.10 Instance 10 148
7.11 Instance 11 149
7.12 Instance 12 149
7.13 Instance 13 149
7.14 Instance 14 150
7.15 Instance 15 150
7.16 Instance 16 150
7.17 Instance 17 151
7.18 Instance 18 151
7.19 Instance 19 152
7.20 Instance 20 153
7.21 The output for the first instance using 2DSHC 154
7.22 The output for the first instance using 2DHC 154

vii

7.23 The output for the first instance using 2DVC

7.24 The output for the first instance using 2DHI

7.25 The output for the first instance using 2DVI

7.26 The output of the first instance using SW_PH_HC

7.27 The output of the first instance using SW_PW_VC

7.28 The output of the first instance using MinSW_OPH_HC
7.29 The output of the first instance using MinSH_OPW _VC

viii

159
164
164
164
170
176
176

List of Figures

Figures Page
1.1 Different types of guillotine cutting methods 3
3.1 Solution of 2DSHC 16
3.2 Solution of 2DHC 18
3.3 Solution of 2DVC 20
3.4 Solution of 2DHI 23
3.5 Solution of 2DVI 25
3.6 Solution of SW_PH_HC 29
3.7 Solution of (SW_PW _VC) 33
3.8 Solution of (MinSW_OPH_HC) 36
3.9 Solution of (MinSH_OPW _VC) 37

Chapter 1

Introduction

1.1. Background

Two-Dimensional Rectangular Guillotine Cutting (2DRGC) is an
important problem in the cutting industrial. Paper, sheet, plate, glass, wood, or plastic
is needed to cut from a stock in big rectangular area such that a set of small sheet, plate,
glass, wood, or plastic in rectangular size is given. In this thesis, eight different methods
are implemented to find a good layout. Many scholars proposed different methods in
this field namely: linear programming, dynamic programming, integer linear
programming, integer programming, column generation, heuristics, and meta-heuristic
method. Among these methods, heuristics become a popular method. Heuristics cannot
give an optimal layout as the exact algorithm, but it can provide a good layout in a short
computational time no matter what size of problem is.

Three different styles of cutting, 2D 2stage 1group, 2D 2stage 2group, and
t-shape 3group, are mentioned in Figure 1.1. Guillotine is a cutting process where each
sheet is needed to cut straightly. Group is the number of categories after sheet cutting.
Cutting each group can produce many strips. Strip can store only one level of panel
inside it. Panel is a result of strip cutting. Total number of times, raw materials are
rotated, called stage.

Figure 1.1(A), displays 2D 2stage 1group cutting. A horizontal cutting is
applied for the first stage to produce the strips. Then each strip is rotated to cut to
produce panel in the second stage. Another step of cutting is needed to separate waste
and panel, but it is not counted as stage. Figure 1.1(B) displays 2D 2stage 2group
cutting. Two sub-groups are given as a result of sheet cutting. Then each sub-groups is
applied 2D 2stage 1group. Figure 1.1(C) displays t-shape 3group cutting. A vertical cut
is applied to the sheet to produce two sub-groups, and one of the sub-groups is needed
to cut to produce another two sub-groups. In total, three sub-groups are produced. Then

each sub-groups is cut, using 2D 2stage 1group cutting.

.

A

Qs

_

/
% 5*g 5*g 5%9

2*11 |2*11 |2*11 5*5 5*5 5*5

LMHHHHHHHITHIT

7

C.
Figure 1.1 Different types of guillotine cutting methods

-

1.2. Problem Description

A small instance is selected to use in this thesis. Given a set of panel

P={p..p,...p,} coordinate with panel width set w={w,w,,..,w;}, panel height set
h={h.h,,...h}, and demand of each panel type set d ={d,,d,,...d;} where j=123..n.
The demand each panel type is needed to cut from a set of sheet s={s,s,,....s}
coordinate with sheet width set W ={W,,W,,..., W, }, and sheet height set H = {H, H,,... H,}

, Where i=1,2,..,m. In this case, the capacity of each sheets type in stock is unlimited.
Rotation of the sheet is prohibited. Demand for each panel type must be fulfilled. Only

guillotine cut is used. The over cut panels are regarded as waste.

1.3. Thesis Objective

The objective of this thesis is to find the best layout by making sure that the
demand of customer is fulfilled. A good layout have been found in a short

computational time within some heuristic methods.

1.4. Significant of the Thesis

This research is based on an Electronics Board Cutting Public Company
Limited, where the electronic boards are ordered by the customers in different sizes and
amounts. Replying to this order quantities, the company has to cut the rectangular sheet
in big size into the panels in small rectangular size from the raw material, existed in
stock. Every single year this company spent millions of dollars on the waste. The price
per unit of the produced products is expansive. Then the profit for each unit of products
in the company is also low. This problem is caused by the implementation of a simple
way of cutting. They place only one size of panels into one size of sheet. This method
cannot provide a minimum wastes for each cutting pattern.

Applying a heuristic cutting method is the best choice for this company
since the good patterns of cutting can be given in a short computational time for large
size of instances. It can combine different panel type into each size of sheet to cut. Thus,
it is very essential to improve cutting pattern such that raw material utilization is
maximized, and a competitive price for each unit of products can be sold by the

company to the customers.

1.5. Overview of Thesis

The structure of this thesis is organized by doing the literature review in
section 2. All proposed methods are mentioned in section 3. These methods are tested
with twenty different sizes of instances in section 4. Then section 5 mentions the
experimental result and discussion of each method. The conclusion from the experiment
is drawn in section 6. Finally the appendices including code for each heuristic method,
input data for all instances, and the output structure for each method is given in the

appendices part.

Chapter 2

Literature Review

Cutting stock is a widely problem in the operation research for both one-
dimensional cutting and two-dimensional cutting. It has been extensively treated in
different literatures by different researchers. They uses different methods to find the
best patterns to cut the sheet, cloth, steel, paper, glass, furniture, textiles, and metallurgy

with different criteria. Those methods are mentioned as in the following.

2.1. Linear Programming

Gilmore and Gomory (1965) proposed linear programming (LP) model,
using knapsack problem to deal with 1D and 2D cutting stock problem. In their paper,
a wide class of cutting stock problems have been restricted.

Lodi and Monaci (2003) has proposed an integer linear programming
models for 2D 2stage knapsack problems. The performance of their paper is analyzed
in term of the quality in accordance with the classical column generation approach.
They use standard branch-and-bound algorithm, and implemented it in CPLEX 6.5.3.
The objective of their research is to maximize the total number of panels used and the
total profit of cut panels.

H. H. Yanasse and Morabito (2008) have proposed a note on integer linear
programming models to generate pattern in 2-group and 3-group constrained and
unconstrained 2D guillotine cutting stock. This model is extended from linear models
for 1group guillotine cut. They select a randomly generated and an actual instances to
measure the performance of the model. Implemented this model in GAMS modelling

and CPLEX solver, they find that this model is not efficient for large size problem.

2.2. Mix Integer Programming

Andrade, Birgin, and Morabito (2013) have proposed a mix integer
programming to deal with non-exact 2D 2stage guillotine cutting problems with usable

leftover. If the plate remainder of the cutting pattern or trim loss is large enough, it can
be reused for the next cutting. It is characterized as a residual bin-packing problem since
the possibility of producing new residual panels did not regarded as waste. As long as
the trim loss size is large enough to cut to produce the panels, it can be considered as
sheet. An objective of their paper is to minimize the cost among all possible solution.

It only choose the patterns that the value of generated usable leftover is maximized.

2.3. Dynamic Programming

Yaodong Cui and Liu (2007) have proposed rectangular T-shape
homogenous block patterns for 2D cutting problem by using a dynamic programming
recursion to generate optimal blocks. Two segments of sheets are a result of a vertical
cut. Each segment consists of sections that have the same length and direction. Each
section stores a row of homogenous blocks. A homogenous block consists of
homogenous strips of the same panel type. The computational result indicates that the
algorithm is efficient in improving material utilization, and the computational time.

Yaodong Cui (2012c) has proposed a new dynamic programming
procedure for three-staged cutting patterns to solve 2D cutting stock problem. He
presents unconstrained three-staged patterns algorithm. The objective of his study is to
maximize the pattern value. This method can provide an efficient solution in short

computational time.

2.4. Meta-Heuristics

There are different kinds of method in the meta-heuristics namely:
Simulated Annealing (SA), Ant System (AS), Bee Algorithms (BA), Particle Swarm
Optimization (PSO), Genetic Algorithms (GAs), Tabu Search (TS), and Harmony
Search Algorithm (HSA).

SA is a random stochastic optimization method proposed by Kirkpatrick
and Vecchi (1983). It was given by T(t) = TOat where t was the counter of iterations,

TO was the initial temperature, and o varied from 0 and 1, and T(t) was the temperature

at iteration t. This problem appropriated for a continuous problem in the energy of
physical system.

AS was a stochastic search method. It is used to solve both discrete and
continuous optimization problem. It was proposed by Drigo, Maniezzo, and Colorni
(1996) to optimize by using a colony of cooperating agents. This method mimicked the
behavior of real ants to solve NP-hard combinatorial optimization problem. AS used
exploration and exploitation to search and improve the solution. Even this method
generated only a limited number of different solution when they applied greedy
algorithms. It was typically better than a completely random generated solution. The
final solution of AS was also depend on the initial solution.

BA was population-based combinatorial search algorithm developed by
Pham et al. (2006). This method mimicked the food foraging behaviors of swarms of
honey bees to look for the best solution. It could be applied to solve discrete and
continuous problem. First, the initialization of the algorithm was needed. Then it
searched for the solution iteration by iteration. The given solution was evaluated by
comparing the fitness function. Each iteration composed of five main steps. They were
recruitment, local search, neighborhood shrinking, site abandonment, and global
search. This process was terminated when the number of iteration was met or the
solution was acceptable.

PSO was a random stochastic continuous nonlinear optimization function
proposed by Kennedy and Eberhart (1995). Two main components in PSO were; firstly,
connecting to artificial life in general. Secondly, connecting to fish schooling, bird
flocking, and swarm theory in specifically. This method had a simple concept. It could
be implemented with a few line of code without affected to the computational time and
the memory requirement. From this paper, every individual in the school could get the
benefits from the discoveries, then they shared the information among their school to
improve those benefits.

GAs was a stochastic combinatorial natural search optimization method
proposed by Holland (1975). This method revealed about the genetic operator. It
adapted the environment such that it could be used to search and evaluate the solution
based on the fitness function in an effective and efficient way. Three operators, used to

develop new members of the population, were reproduction, crossover, and mutation.

7

GAs could search many peaks, and it could reduce the possibility of local minimum
trapping.

TS was a stochastic discrete combinatorial optimization methods proposed
by Glover (1977). It was used to explore the feasible solution by using the sequence of
move from one solution to another.

HSA is one of a recent stochastic meta-heuristics search method. It mimics
the musical process. This method is applicable in discrete and continuous variables. It
is a population based searching method. It has been proposed by Zong Woo Geem,
Kim, and Loganathan (2001). No papers, applied HSA to solve 2D rectangular
guillotine cutting problem, is found. Hence, the main objective of this research paper is
to apply a HSA to deal with a static optimization in the 2DRGC.

Ayachi.l, Kammarti.R, Ksouri.M, and Borne.P (2010) have applied HSA
to deal with a container storage problem to determine the best containers arrangement
such that it can meet customers delivery dates and reduce the number of container
movement. In this paper, they consider the influences of the number of containers,
stopping criteria value, and the harmony memory size as the fitness function. The result
indicates that the value of the fitness function of the last iteration is lower than the first
iteration. The higher the value of the stopping criteria is the better of the quality of the
fitness function. The higher of the HMS is the better of the value of the fitness function.
Comparing this method with GAs, they find that HSA can give a better value of fitness
function in all size of the containers.

Zong Woo Geem (2008) has summarized all the problems, using HSA.
They are vehicle routing Zong W Geem, Lee, and Park (2005), and Pichpibul and
Kawtummachai (2013), discrete structural optimization Lee, Geem, Lee, and Bae
(2005), water distribution network Zong Woo Geem (2006), multiple dam scheduling,
dome truss design, grillage structure design, grillage structure design, mix
proportioning of steel and concrete, satellite heat pipe design, petroleum structure
mooring, fluid transport minimal spanning tree, parameter calibration of flood routing
model, parameter calibration of rainfall-runoff model, energy-saving pump operation,
pipeline of oil well heat waste, soil slope stability, large-scale irrigation network design,

and web-based optimization.

Worasucheep (2011) have proposed an improved HS, called harmony
search with adaptive pitch adjustment (HSAPA) for continuous optimization problem.
This paper has found that the higher of HMCR can provide a better performance in
general, and the performance of HSAPA is shown not to be sensitive to its new
parameters.

2.5. Heuristics

Yaodong Cui (2012a) has proposed a CAM system 1D cutting stock
problem. M types of panels are cut from stock bars of multiple sizes. The solution,
given by this algorithms, is a set of cutting patterns with specified frequency. This paper
generates cutting plan such that the bar cost is minimized for the primary objective.
Pattern reduction and shorter stocks reduction are considered in the secondary
objective. The result indicates that the algorithms can provide a better solution,
compared to other pattern reduction algorithms.

Cerqueira and Yanasse (2009) proposed a pattern reduction procedure in
1D cutting stock problem by grouping items in accordance with their demands. They
used a heuristic method. Cutting solution consisted of determining a group of patterns
and their frequencies. Production cost relied on the changing of the pattern since it
required a set up cost. The objective of this paper was to reduce the amount of different
pattern in a given solution by grouping the panels in accordance with the customer
demand for each panel type.

Yaodong Cui (2012b) has proposed a fast heuristics for constrained
homogenous T-shape cutting patterns. He uses a heuristic method based on a dynamic
programming and branch-and-bound to generate the constrained of homogenous T-
shape pattern. For the first phase, plate is required to cut into homogenous strips, and
each strip is divided into pieces in the second phase. The objective is to maximize the
pattern value. From the computational result, he finds that the solution close to optimal,
and computational time is very fast. A good initial solution can improve time efficiency
lots.

Y. Cui (2004) has proposed an optimal T-shape cutting pattern for
rectangular blanks. He presents an algorithm to generate guillotine cutting patterns for

rectangular blanks. He tries to tradeoff between the material utilization and the

9

complexity of the cutting process. He allows to place only one size of panel to appear
in each strip. The algorithm uses a knapsack algorithm and an implicit enumeration
method to determine an optimal combination. An efficient material usage with simple
cutting pattern is given in a short computational time for the presented algorithm.

Yaodong Cui and Huang (2012) have proposed a heuristics for Constrained
T-shape cutting patterns of rectangular pieces. The tradeoff between the complexity of
cutting and plate cost is taken into consideration. The objective of this paper is to
maximize the frequency of each panel type and the pattern value. Many patterns are
produced, but only maximum pattern value is selected to be a solution. The result
indicates that the algorithm can provide a better material utilization solution in a fast
computational time, compared to those of the optimal 2stage patterns.

HORACIO H. Yanasse, Zinober, and HARRIS (1991) have proposed a 2D
cutting stock with multiple stock sizes. They use a heuristic algorithm to build the
pattern. An objective of this paper is to find the best mix of boards with a minimum
waste. Guillotine cut is considered to meet with an exact demand of each customer.

Suliman (2006) has proposed a sequential heuristic procedure for the 2D
cutting stock problem. He presents a 3stage sequential heuristic procedure for the 2D
rectangular guillotine cutting stock problem. A width cutting pattern is determined in
the first stage to produces the minimum width trim loss. Determination of table length
and the associated layout of the panel length mention in the second stage. Finally, a
number of iterations is used to end the cutting process. An overall objective of this
paper is to minimize the trim loss.

Alvarez-Valdes, Parajon, and Tamarit (2002) have proposed a
computational study of LP-based heuristic algorithms for 2D guillotine cutting stock
problems. They follow Gilmore and Gomory (1965) column generation scheme. For
each iteration, a new cutting layout is given from the sub model. Besides a dynamic
programming in the sub model, three heuristic procedures are developed to increase the
complexity. Those procedures are based on GRASP and Tabu Search techniques. The
computational result, given by a randomly generated test, shows that the solution is
effective and efficient in term of both total waste and computational time.

Horacio Hideki Yanasse and Limeira (2006) have proposed a hybrid

heuristics to reduce the number of different patterns in cutting stock problem. They

10

generate patterns with a limited waste. The demands are needed to fulfill when the
patterns are cut. Pattern reduction techniques are applied by starting with the generated
solution. The objective of this paper was to tradeoff between the total waste and the
number of patterns. The result indicates that the proposed scheme gave an alternative
solution to the pattern reduction problem.

Yaodong Cui, Yang, Zhao, Tang, and Yin (2013) have proposed a
sequential grouping heuristics to solve 2D cutting stock with pattern reduction. They
consider both input minimization as a primary objective and pattern reduction as the
secondary objective. A sequential heuristic procedure is generated for each next pattern,
using a dynamic programming recursion. This process is repeated until all the demand
of each panel type is fulfilled. The experimental result indicates that a sequential
grouping heuristics is powerful in pattern reduction, input minimization, and reduction
of the computational time.

Yaodong Cui and Zhao (2013) has proposed a heuristics for the rectangular
2D single stock size cutting stock problem with 2stage patterns. A heuristic algorithm
is presented to solve 2D 2stage single stock size cutting. The rotation of the panel is
allowed. A column generation method is used to solve the residual problems repeatedly
until customer demand for each panel type is satisfied. The computational result
indicates that the algorithm can solve most instances to optimality. It is more efficient
in reducing the number of plates, comparing to a published algorithm and a commercial

stock cutting software package.

11

Chapter 3
Proposed Algorithms

In this section, various techniques are presented namely: column generation
(CG), 2D simple heuristic cutting (2DSHC), 2D horizontal construction (2DHC), 2D
vertical construction (2DVC), 2D horizontal improvement (2DHI), 2D vertical
improvement (2DVI), Sheet Width Panel Height Horizontal Cut (SW_PH_HC), Sheet
Width Panel Width Vertical Cut (SW_PW_VC), Minimum Sheet Width Ordering
Panel Height Horizontal Cut (MinSW_OPH_HC), and Minimum Sheet Height
Ordering Panel Width Vertical Cut (MinSH_OPW_VC).

3.1. Column Generation (CG)

Column generation technique is used to solve a combinatorial problem with
many decisions. This technique bases on Danzig-Wolfe decomposition. Let

S'.(i=1..,0) isthe family of all feasible cutting pattern of sheeti . The decision variable
x,(peS')denotes the number of times when the cutting pattern p is used in the
solution. A, defines the waste from cutting pattern p. In constraints (2), the coefficients
CJ represents the number of panel j(j=1...n)in the cutting pattern p, and d,

represents the requirement of panel j .

0]
Minimize > AX, 1)
i=Lsfes; '
subject to
0 -
Clx, =dj ;j=1...,n (2)
i=lsies; !
Xs: eZ*t ;i1=1..,0 ,8, €S} 3

The above model is called master problem (MP). The objective function
(1) is to minimize waste of used sheets. Constraints (2) ensures that the number of panel
j must equal to the requirement, and constraints (3) is the integrality constraints.

In fact, we cannot generate all feasible patterns for a large size instances. A

restricted master problem (RMP) consists of a subset of patterns of master problem.

12

To obtain the optimal solution, we generated a sub-problem for each sheeti. We use
dual solution from the current solution in RMP. The sub-problem, deal with two-
dimensional two-stage knapsack problems with guillotine cuts (2DKP), is proposed by
Lodi and Monaci (2003). Therefore, solving this problem can give a pattern with the
most negative reduced cost to prove optimality. We show the model, which involves

integer variables x, denoting the number of panels of type j(j=1..n) in shelf

k(k =1...,,) and g, (k =1,..,n) denoting whether a shelf k is used (where n is the number

of panels and oz, => " d,).

s'<j
Let z;be a dual solution from the current optimal solution in RMP

associated with panel j. The mathematical model for each sheet type is shown below:

Maximize 373X+ 3. G) (4)
=1 k=1 k=aj 4+
subject to:
2] 2] _
Xj + Y. g <ub, ;j=1..,n (5)
k=1 k:aj_1+l
n
2 ijjks(\N—wﬁk)qk k=1..,n (6)
1=h
n_
dl,q.<L (7
k=1 A
j .
s=kajsgubj —(k-a;,) i=Ll.nkela; +1ai] (8)
OSXijdj ;xjkeinteger ;j:1,...,n;ke[1,aj] 9)
q, {0, k=1..,n (10)

The objective function (4) is to maximize the sum of the cost of panel in
pattern. Inequalities (5), (6), and (7) represent the cardinality constraints, the width
constraints, and the height constraint, respectively. Inequalities (8) is to strengthen the

bound on the x, variables (given by inequalities (9)). If the feasible pattern with

maximum profit, greater than zero, is found, the column corresponding to this pattern

is added to the current RMP. When no more feasible pattern with maximum profit,

13

greater than zero, is found, that mean, the current optimal solution of RMP is an optimal

solution of MP.

3.2. 2D Simple Heuristic Cutting (2DSHC)

2DSHC has been applied by most cutting companies. In this stage, each
sheet with minimum waste in a simple heuristics for 2D cutting method contain only
one panel type. The process of 2DSHC is implemented as follows:

Step 1: Given a set of sheets S ={s;,s,....,s;} and a set of panelsp={p,, p,....p;} .

Step 2: For each p,; e P, select s, S that has a minimum waste to cut, where p;is
put in sheet s,

Step 3: For each p; e P, number of the sheet need to cut equal to the ceiling of the
ratio between the demands and the number of panels used within the sheet

Step 4: Remove p,; € P that has been cut.

Step 5: If P={0}, terminate cutting process; otherwise, go to step 2.

For instance, given a set of panelp={p,p, p, p,}, coordinate with

w={2,8,54},h={11,9,54}, and d ={14,10,20,26}. These panel is cut from a sheet set
S ={s,,s,} coordinate with w ={14,22} and H ={30,17} . Each panel type selects only the

sheet that can give a minimum waste. The number of sheet, needed to cut for each panel
types in each pattern as illustrated in Figure 3.1, are 1, 4, 2, and 2 respectively. The total

waste after fulfill all the demands is 1652 in?

14

1 2 3 4 5 6 7

.

_

_

.. @@

7 7 0

/
16 ! 17 B 18 ! 19 B 20 ! %
%
4%4 4%4 4*4 4*4 4%4 /

11 12 13 14 15
%
6 4%4 7 4%4 8 4%4 9 4%4 ‘ 4%4 %
4*4 4%4 4%4 4%4 4%4 %

1 2 3 4 5

Figure 3.1 Solution of 2DSHC

= panel size (axb) put into the sheet in of N

= the waste of the sheet

3.3. 2D Horizontal Construction (2DHC)

In this section, the panels are arranged and cut horizontally. Multiple types
of panels are allowed to put in each size of sheet. The process of this method is
implemented as in the following.

Step 1: Given a set of sheets S ={s,,s,,...s} and a set of panelsp ={p, p,....p,}. Then

sort these two sets in descending order based on height.

Step 2: P'is the set of panel where p'; e P' , such that the number of p'; with the

same width and height is equal to the demanddof that p, with the same width and

height. Thus, [P{=3d,
j=L

16

Step 3: Each p'; e P'is selected to put into the space next to the previous panel on
the same strip s, € S in horizontal line until no more panels types can be inserted in that
strip, then move to next strip to cut horizontally. If there are not any strips available,

move to the new sheet.

Step 4: Remove p', eP' that has been used.
Step 5: If P'={0}, terminate the cutting process; otherwise, go to step 3

From the same instance mentioned in section 3.2, each panel P' is picked
to cut in the sheet in the chronological order; hence, the number of sheet, needs to cut
for each patterns as illustrated in Figure 3.2, are 1, 3, 1, and 1 respectively. The total

waste after fulfill all the demands is 576 in?

G
5%5 5%5
4*4
15 16 17 8*9
5%5
5 6
2%11 [2*11 [2*11 [2*11 [2*11 [2*11 |2*1a
8*9
8 9 |10 |11 [12 |13 J14 5%5
3 4
2%11 [2*11 [2*11 [2*11 [2*11 [2*11 |2*11
8*9
5%5
1 2 3 4 5 6 7 1 2

17

12

5%5

13

5*5

5*5

10

5*5

=
[

5*5

55

4*4

%%

=
>

§
\

4%4

\
§
.

4x4

5*5

5*5

ax4

8*9

3.4.

19

4%4

20

4%4

21

44

16

4*4

17

44

18

44

13

4*4

14

4%4

15

44

10

4%4

11

44

12

44

4*4

44

44

44

4*4

4*4

Figure 3.2 Solution of 2DHC

2D Vertical Construction (2DVC)

In this section, the panels are arranged and cut vertically. Multiple types of
panels are allowed to put in each size of sheet. The process of this method is
implemented as in the following.

Step 1: Given a set of sheets S ={s,,s,,....s,} and a set of panelspP={p,, p,....p;} . Then

sort the panel set based on width and sheet set based height in descending order.

Step 2: P'is the set of panel where p'; e P' , such that the number of p'; with the

same width and height is equal to the demanddof that p, with the same width and
height. Thus, |P|= Zn:di
j=1

Step 3: Each p'; e P'is selected to put into the space next to the previous panel on

the same strip s, € S in horizontal line until no more panels types can be inserted in that

18

strip, then move to next strip to cut horizontally. If there are not any strips available,
move to the new sheet.

Step 4: Remove p', eP' that has been used.

Step 5: If P'={0}, terminate the cutting process; otherwise, go to step 3

From the same instance mentioned in section 3.2, each panel P' is picked
to cut in the sheet in the chronological order; hence, the number of sheet, needs to cut
for each patterns as illustrated in Figure 3.3, are 3, 1, 1, and 1 respectively. The total

waste after fulfill all the demands is 576 in?

5%5
4*4
4*4 12
5
8*9 5%5
4*4
4*4 11
4
3
5%5 4*4 2*11
5%5 10
3
8*9 4*4
5*5 9
5*5 14
2 2 4*4
8
5*5
2*11
4*4
8*9 8*9 7
5%5
4*4
1 1 6 13

19

4%4 4%4
7 14
i
4%4 4%4 %
6 13
%/Z
2*11 7
4*4 4*4 _ 2*11
5 12 .
4%4 4*4 2
4 11 18
20
4*4 4*4 4*4
3 10 17
2*11
4%4 4%4 4*4
2 9 16
4%4 4%4 4%4
1 8 15 19 1 3

Figure 3.3 Solution of 2DVC

3.5. 2D horizontal improvement (2DHI)

In this section, the panels are arranged and cut horizontally. Multiple types
of panels are allowed to put in each size of sheet. Each type of panels, locates in the
first panel set, is selected to put into each type of sheets first until no more panel in that
size can fill up. Then the leftover area is tried to insert the other panel types. The process
of this technique is mentioned as in the following.

Step 1: Given a set of sheets s ={s,s,,...,s;} and a set of panels P={p,, p,....p;}. Then

sort the panel set in descending order based on height. P' is also the set of panel where

p', € P', such that the number of p’, with the same width and height is equal to the

demand d; with the same width and height. Thus, |P|= zn:dj .
j=1

20

Step 2: For each p'; e P', put p'; in each sheet s, as much as possible in horizontal

line. Once the horizontal strip is filled up, move to the next strip vertically until there

is no more space to put p’;

Step 3: For eachs, e S used in step 2, select the next p'; e P'to put into the leftover
area. Put p';in sheet s, as much as possible in horizontal line. Once the horizontal strip
is filled up, move to the next strip vertically until there is no space to put p’;. Repeat
this step for the next p’;

Step 4: Select s, €S are used in step 3 that can give a minimum waste to cut.

Step 5: Number of the sheet need to cut is equal to the ceiling of the smallest ratio
between the demands and the number of each panels types used in the pattern

Step 6: Remove p', eP' that has been used.
Step 7: If P'={0}, terminate the cutting process; otherwise, go to step 3

From the same instance mentioned in section 3.2, each panel P' is picked
to cut into the sheet in the chronological order; hence, the number of sheet, needs to cut
for each patterns as illustrated in Figure 3.4, are 2, 3, 2, and 1 respectively. The total

waste after fulfill all the demands is 1048 in’

777 %

5%5 5*5 5*5 5*5

.

12 13 14 15

2%¥11 |2*11 |2*11 |2*11 |2*11 |2*11 |2*11 [2*11 |2*11 |2*11 |2*11

21

pEEEEEEaa

.

T e

4%4 4%4 4*4
10 11 12
* 4*4 4*4 4*4
7 8

T

7 /
.

Figure 3.4 Solution of 2DHI

3.6. 2D Vertical Improvement (2DVI)

In this section, the panels are arranged and cut vertically. Multiple types of
panels are allowed to put in each size of sheet. Each type of panels located in the first
panel set is selected to put into each type of sheets first until no more panel in that size
can fill in. Then the leftover area is tried to insert the other panel types. The process of
this technique is mentioned as in the following.

Step 1: Given a set of sheets s ={s,s,,...,s;} and a set of panels P={p,, p,....p;}. Then

sort the panel set in descending order based on width. P'is also the set of panel where

p', € P', such that the number of p’, with the same width and height is equal to the
demand d; with the same width and height. Thus, [P = Zn:dj :
j=1

Step 2: For each p'; e P', put p'; in each sheet s as much as possible in vertical

line. Once the vertical strip is filled up, move to the next strip horizontally until there

is no more space to put p’,

23

Step 3: For eachs, e S used in step 2, select the next p'; e P'to put into the leftover
area. Put p';in sheet s as much as possible in vertical line. Once the vertical strip is
filled up, move to the next strip horizontally until there is no space to put p';. Repeat
this step for the next p’;

Step 4: Select s, €S are used in step 3 that can give a minimum waste to cut.

Step 5: Number of the sheet need to cut is equal to the ceiling of the smallest ratio
between the demands and the number of each panels types used in the pattern

Step 6: Remove p’, eP' that has been used.

Step 7: If P'={0}, terminate the cutting process; otherwise, go to step 3

From the same instance mentioned in section 3.2, each panel P' is picked
to cut in the sheet in the chronological order; hence, the number of sheet, needs to cut
for each patterns as illustrated in Figure 3.5, are 4, 2, and 1 respectively. The total waste
after fulfill all the demands is 904 in*.

5*5

8*9 5*5

: |
5*5

8*9
5*5

SRR

5*5

: |
8*9

5*5

24

%

i v 000000000,

4*4 4%4 4*4 4*4 4%4 2;222;
4 8 12 16 20 422222
4*4 4*4 4*4 4*4 4*4
3 7 11 15 19
2*%11
4*4 4*4 4*4 4*4 4*4
2 6 10 14 18
4*4 4*4 4*4 4*4 4*4
1 5 9 13 17 21
o, o, |
2*%11 |2*11 |2*11 |2*11 |2*11 |2*11 |2*11
2 4 6 8 10 12 14
2*11 |2*11 |2*11 |2*11 |2*11 |2*11 |2*11
1 3 5 7 9 11 13

Figure 3.5 Solution of 2DVI

25

3.7. Sheet Width Panel Height Horizontal Cut (SW_PH_HC)

In this section, the panels are arranged to cut horizontally. Multiple types
of panels are allowed to put into each size of the sheet. The process of this method is
implemented as in the following.

Step 1: Given a set of sheets s ={s,s,,..,s} and a set of panelsp={p, p,....p;}. Sort

the sheet based on width, and sort the panel based on height in descending order.

Step 2: P'is the set of panel where p'; e P' , such that the number of p'; with the

same width and height is equal to the demandd;of that p, with the same width and
height. Thus, [P1=>"d,
j=1

Step 3: Each p'; e P', selected p';to put into the space at the bottom left of the sheet
s;€S. Then, next panel p', P'is selected to put into the space next to the previous
panel on the same strips, €S in horizontal line until no more panels types can be
inserted in that strip, then move to next horizontal strip. If there are not any strips
available, it moves to the new sheet.

Step 4: Remove p', eP' that has been put.

Step 5: If P'={0}, end the cutting process; otherwise, go to step 3

From the same instance mentioned in section 3.2, total number of sheet
ought to cut for each pattern as illustrated in Figure 3.6is 1, 1, 2, 1, 1, and 1 respectively.

The total waste after satisfy all the demands is 674 in>.

26

2.

.

5*5 5*5 5*5 5*5
12 13 14 15
2*11 |2*11 [2*11 |2*11 |2*11 |2*11 |2*11 |2*11 [2*11 [2*11 |2*1n
1 2 3 4 5 6 7 8 9 |10 |1
5*5 5*5 5*5 5*5 éééééé
6 7 8 9 //////
2*11 |2*11 |2*11
8*9 8*9
1 2 3 4 5

27

AR,
N

T e

.

In this section, the panels are arranged to cut vertically. Multiple types of
panels are allowed to put in each size of sheet. The process of this method is
implemented as in the following.

Step 1: Given a set of sheets S={s,s,,...,s,} and a set of panelsp={p,,p,....p,} . Then

sort the panels and the sheets based on the width in descending order.

Step 2: p'is the set of panel where p'; e P' , such that the number of p'; with the

same width and height is equal to the demandd,of that p, with the same width and
height. Thus, [P1=>"d,
j=1

Step 3: Each p'; e P', selected p’;to put into the space at the bottom left of the sheet
s, €S . Then, next panels is selected to put into the space next to the previous panel on
the same strips, S in vertical line until no more panels types can be inserted in that
vertical strip, then move to next strip to cut vertically. If there are not any strips
available, move to the new sheet.

Step 4: Remove p'; eP' that has been put.

Step 5: If P'={0}, end the cutting process; otherwise, go to step 3

From the same instance mentioned in section 3.2, the number of sheet, cut
for each patterns as illustrated in Figure 3.7, are 4, 1, 1, 1, and 1 respectively. The total

waste after fulfill all the demands is 1048 in?

30

I

<

*

<
(o]

<
*
<

on

4*4
4*4

2
1

6
5

4*4
4*4

2*11 |2*11

2*11

2*¥11 [2*11 |2*11 |2*11 |2*11 |2*11 |2*11 |2*11

/////

Figure 3.7 Solution of (SW_PW _VC)

3.9. Minimum Sheet Width Ordering Panel Height Horizontal Cut
(MinSW_OPH_HC)

In this section, the panels are arranged to cut horizontally. Multiple types

of panels are allowed to put into each size of sheet. The process of this method is
mentioned as in the following.

Step 1: Given a set of sheets S ={s,,s,,...,s;} and a set of panels pP={p,, p,....p;}. Then

sort the panel set in descending order based on height. P' is also the set of panel where

p', € P', such that the number of p’; with the same width and height is equal to the

demand d; with the same width and height. Thus, |P/|= Zn:dj :
j=1

Step 2: Select p'; eP', put p'; in each sheet s eSat the bottom left corner in
horizontal line for the first strip. Then calculate the leftover width after putting the first
panel. Take the leftover width divide with each type of panel width. The panels that can
give the minimum division remainder is selected to put close to the first panel. This

process is repeated until no more panels can be filled up in the first strip. Once the

33

horizontal strip is filled up, move to the next strip vertically and repeat the same process
until there is no more space to place any panels p', eP'.

Step 3: Select s, €S are used in step 2 that can give a minimum waste to cut.

Step 4: Number of the sheet ought to cut is equal to the ceiling of the smallest ratio
between the demands and the number of each panel type used in the pattern

Step 5: Remove p', eP' that has been put.
Step 6: If P'={0}, end the cutting process; otherwise, go to step 2

From the same instance mentioned in section 3.2, total number of sheet,
needs to cut for each pattern as illustrated in Figure 3.8, are 2, 4, 1, and 1 respectively.
The total waste after fulfill all the demands is 1278 in?

D /////////////////////////////////

5%5 5*5
4*4 4*4 4*4

2%11 [2*11 |2*11 |2*11 |2*11 |2*11 |2*11 |2*11 |2*11 |2*11 |2*11

34

..

< < < <
* % 5 s
< <t < %

< <t < <
* * % 2
< <t < %

< < < «
* % x s
< < < %

4%4
4%4
4%4
4%4

//////////////////////////////

4%4
4%4
4%4
4%4

35

Figure 3.8 Solution of (MinSW_OPH_HC)

3.10. Minimum Sheet Height Ordering Panel Width Vertical Cut
(MinSH_OPW_VC)

In this section, the panels are arranged and cut vertically. Multiple types of
panels are allowed to put in each size of sheet. The process of this method is mentioned
as in the following.

Step 1: Given a set of sheets S ={s,,s,,...,s;} and a set of panels pP={p,, p,....p;}. Then

sort the panel set in descending order based on width. P'is also the set of panel where

p', e P', such that the number of p’; with the same width and height is equal to the
demand d; with the same width and height. Thus, |P| = Zn:dj :
j=1

Step 2: Select p'; e P', put p'; ineach sheet s, S at the bottom left corner in vertical
line for the first strip. Then calculate the leftover height after putting the first panel p',
. Take the leftover height divide with each type of panel height. The panels, that can
give the minimum division remainder, is selected to put above the first panel. This
process is repeated until no more panels can be filled up in the first strip. Once the
vertical strip is filled up, move to the next strip horizontally and repeat the same process
until there is no more space to place other panels p'; e P".

Step 3: Select s, €S are used in step 3 that can give a minimum waste to cut.

Step 4: Number of the sheet ought to cut is equal to the ceiling of the smallest ratio
between the demands and the number of each panel type put in the pattern

Step 5: Remove p', eP' that has been put.

Step 6: If P'={0}, end the cutting process; otherwise, go to step 3

From the same instance mention in section 3.2, the number of sheet, needs

to cut for each pattern as illustrated in Figure 3.9, are 4, 2, and 1 respectively. The total

waste after fulfill all the demands is 812in?.

36

.

<

*
<
o
—

. —

*

<
*
<

O
<
<

32}

ﬂ///

Chapter 4

Testing Instances

Table 4.1 illustrated a list of twenty different size of instances. These
instances are tested with ten techniques mentioned in section 3. Total instances are
grouped into three categories in accordance with the total number of sheet types and
panel types. If total different type of sheets and panels is less than 6, it is regarded as
small size instances. If it is from 7 to 20, it is regarded as medium size instances. It is a
large size instance when it is bigger than 20. CG is used as a benchmark to compare
with other 9 heuristic techniques. In addition, 2DSHC is used to compare with other 8
heuristic methods as well since it is a simple cutting patterns that applied by electronic
board cutting industrial. Both total waste and the computational time of each instance
are compared between each technique.

Table 4.1 The input for small, medium, and large size instances

Size No #Sheettype #Panel type #Demand

1 2 2 219
2 2 2 301
N 3 2 2 575
(9p]
= 4 2 3 537
E 5 3 3 552
6 4 2 300
7 5 1 209
8 5 6 1,492
9 5 8 2240
, 10 6 2 1,329
Y &N 6 3 219
E 12 8 7 596
3 13 9 3 2,192
= 1 9 9 3,068
15 11 4 4,299
16 11 5 748
Y, 15 12 4,429
& 18 16 6 1,121
% 19 17 27 10,611
-4 20 26 15 3,790

38

Chapter 5

Experimental Result and Discussion

In order to evaluate the performance of these techniques, we run it on
Intel® Core™ 15-4200U CPU @ 1.60GHz 2.30GHz, installed memory (RAM) 4.00GB
machine running under the Windows environment. CG technique is coded in IBM
ILOG CPLEX Optimization Studio (64bit) 12.6, and the rest of the techniques are
implemented on JAVA 7. All type of technique is used to compare with the CG
technique based on the gap given by:

waste of each technique —waste of CG «
waste of CG

Gap(%) = 100

5.1. Comparison to column generation

For 2DSHC, 3 instances provide same amount of total waste, 17 instances
provide higher total amount of waste for 2DSHC as illustrated in Table 5.1. This
method is not really good at all to find pattern to cut since it allows only one panel type
to put in each size of sheet. However, the patterns created is simple and easy to cut.

2DHC cannot provide any better solutions at all. It is even worse for
medium and large size of instances as illustrated in Table 5.1. This method cannot find
a good pattern. When a sheet set and a panel set are sorted in order from the highest to
the shortest based on height, only the first sheet is selected to cut since each sheet has
unlimited capacity in stock. For instance 15, the gap of waste goes up to 24,344.5%.
This gap might be reduced, if other sheet type is selected.

2DVC also cannot provide any better solutions at all. It is even worse for
medium and large size of instances as illustrated in Table 5.1. This method cannot find
a good pattern. When a sheet set and a panel set are sorted in order from the highest to
the shortest based on height and width respectively, only the first sheet is selected to
cut since each sheet has unlimited capacity in stock. For instance 15, the gap of waste
goes up to 23,302.8%. This gap might be reduced, if other sheet type is selected.

39

2DHI come from a combination between 2DSHC and 2DHC. 5 instances
provide same amount of waste, 11 instances provide a higher waste, and 4 instances
provide lower wastes as illustrated in Table 5.1. This technique is better than 2DHC
because it can explore additional sheets with a minimum waste to cut, and more than
one panel type is allowed to put into each types of sheet if the space is large enough.

2DVI come from a combination between 2DSHC and 2DVC. 5 instances
provide same amount of waste, 11 instances provide higher waste, and 4 instances
provide lower wastes as illustrated in Table 5.1. This technique is better than 2DHC
because it can explore additional sheets with a minimum waste to cut, and more than
one panel type is allowed to put into each types of sheet if the space is large enough.

SW_PH_HC cannot provide good solution. 2 instances provide same
amount of waste, and other 18 instances provide bad pattern with high amount of waste
as illustrated in Table 5.2. When a sheet set is sorted based on width, and a panel set is
sorted based on height from the highest one to the shortest one, only the first sheet is
selected to cut since each sheet has unlimited capacity in stock.

SW_PW_VC cannot provide good solution. 2 instances provide same
amount of waste, and other 18 instances provide bad pattern with high amount of waste
as illustrated in Table 5.2. When a sheet set and a panel set are sorted based on width
from the highest one to the shortest one, only the first sheet is selected to cut since each
sheet has unlimited capacity in stock.

MinSW_OPH_HC provides same amount of waste for 3 instances. 15
instances provide higher waste, and 2 instances get lower wastes or can find a better
pattern as illustrated in Table 5.2. Actually, after a panel set is sorted in descending
order in accordance with height, only the panel type provided a minimum sheet width
is selected to put from iteration to iteration to cut horizontally. This reason can make
the given pattern good, but data contain in each tested instances maybe not appropriate
to use this technique.

MinSH_OPW_VC provides same amount of waste for 5 instances. 11
instances provide higher waste, and 4 instances get lower wastes or can find a better
pattern as illustrated in Table 5.2. After a panel set is sorted in descending order in
accordance with width, only the panel type provided a minimum sheet height is selected

to put from iteration to iteration to cut horizontally. This reason can make the given

40

pattern good. Even some instances provide higher amount of waste, the gap is not much
different.

From this comparison in Table 5.1 and Table 5.2, four out of nine
techniques can provide better solution in some instances. They are 2DHI, 2DVI,
MinSW_OPH_HC, and MinSH_OPW _VC. These four technique are compared with
each other in Table 5.3.

5.2. Comparison to 2D Simple Heuristic Cutting

2DHC can provide a better pattern for 1 instance, same pattern for 1
instance, and other 18 instances cannot provide a better solution as illustrated in Table
5.1.

2DVC can provide a better pattern for 1 instance, and other 19 instances
cannot provide a better solution as illustrated in Table 5.1.

For 2DHI, 7 instances can provide the same amount of waste, 12 instances
can provide a better pattern, and only 1 instance that provide a bad pattern as illustrated
in Table 5.1.

For 2DVI, 9 instances can provide the same amount of waste, 11 instances
can provide a better pattern as illustrated in Table 5.1.

For SW_PH_HC, 6 instances provide a better pattern, 14 instances provide
a worse patterns as illustrated in Table 5.2.

SW_PW _VC, 4 instances provide a better pattern, 16 instances provide a
worse patterns as illustrated in Table 5.2.

For MinSW_OPH_HC, 3 instances provide the same amount of waste, 7
instances provide higher amount of waste, and 10 instances provide lower amount of
wastes as illustrated in Table 5.2.

For MinSH_OPW _VC, 6 instances provide the same amount of waste, and
the other 14 instances provide lower amount of waste as illustrated in .

From a comparison to 2D simple heuristic cutting we found that all
proposed technique is not bad. There are at least a few instances that can provide better
solution. Most of instances canTable 5.2 find a good pattern in 2DHI, 2DVI,
MinSW_OPH_HC, and MinSH_OPW _VC technique.

41

v0T- LT OF¥LTVET 26 LT 0Zv68'TyT L'€TL 9T T€S8ICT ¥l 2'¢ 0Z69r'G9E G9Z 67T 0Z0S7'68T 698 O¥SL'6¥T 06L'€ ST 92 02
€1 67 0029015 64T~ 27 0SY90TLE TSIT € 09989'TL6 6'80T €€ 09'G09'EY6 §'SC 1'C 00'OE0'L9S 00'L9y'T8'8LLTSY TI90T L2 LT 61 o
vS T 06GV'E€E TGZ ST 09TSL'6€ 690F 8T Ov0S0T9T 6907 LT OF0SO'TIT ¥'ET 9T O066T0°'9E 8G8 06'89.7T€ TZI'T 9 9T 8T §
ZT- 8T 0206529 € 9T 0906€0L 09/€€'€ 67 €L¥0'0SE'C OV'EEE'E 2'C €TOT'LYE'Z OYT LT 0€606'L9T €2.y OV'€9e'89 62v'y 2T ST LT
0 ©T 0080682 O T 0080682 +'162 LT 00GST'€IT 162 9T O00GST'EIT 86, ST 0S296'TS 679 008068 8¢, G IT 9T
68, 9T 0G9S5'ST 92 9T 00%S6'0T 820E'€C L' S9V8'YED'C SYVeE'vZ v'Z G2er'Sel' TIT 9T 0S00£'8T ¥'SvS 06'769'8 662y + TIT ST
€T 9T 8T96%92'T T€ 9T 8T80292'T 6275 €¢ 8SBIELV'T 625 TC 8S8T'ELY'T 6T 9T §/€€'0/2'T SS0Z OVEC'€96 890E 6 6 v
vvTl- GT 096/.'86 22T ST 0999€'95C 96/T ¢ 09€8v'2Z€ 96/ ¢ 09€87'22€ 69T ST 09'66£'0T€ 888 OOVE'STT 26TC € 6 €T c
TvY €T 0068L'er T¥ ST 00G8L€yr 162 9T 00T9SYS 262 9T 00T9SYS T+ ¥T 00G8L'€y GE 00102y 966 L 8 <T m
LT €T 0696'6 €T- v'T 0608V'. 8Eyy ¥T 06002Tr 8Evy vT 06002Ty LTE €T 06966 S 069.6L 612 € 9 TI =
60- ¥'T 05808'26T 60- €T 05808'Z6T 8G8 8T 09825'T9€ 868 9T 0S82GT9E 808 ST 0G808'TSE +'82 OTISY6T 62T ¢ 9 O
Z7 ST 0226966 2¢2C ST 02269'6 €T99 ¢ 00SYT'€TL €T99 8T 00GHI'€T. ¢Z LT 02269'G6 89 Ov'//9'€6 O¥Z'Z 8 G 6
€0T ST 09TIL'8SS TO0 ST Ovv06'v/Z €6Y9 6T 9€2T'850'C §8Sr T'Z 96507ES'T €0T T 09TTL'8SS 899 0€89%/Z 2¢6¥'T 9 G 8
70 €T 099/€0. ¥0 2T 09980, 6. T 099296, 62 ST 099296, #0 €T 099/€0. T 09T0T0. 60c T & L
9, €T 00veZve 92 2T 00%2g¥e O ST 00008'TE O T 00008TE 9L €T 00VZZ¥E ¥E€ 00008TE 00E Z ¥ 9
0 ©T 0280162 O T 0Z80T'6Z +OFE 9T 0208I'8ZT +¥OvE GT 0Z08T'82T O ¥T 0280T'6Z <¢6 0280T6Z 255 € € §
€7 €T 067299 v'6r €T 06T6Y2S €T. 9T 06€8T'09 €T. 9T 06€8T°09 69T €T 06GSY'¥6 G 06veT'SE L8§6 € ¢ ¥ m
0 €T 08086 0 €T 080886 T/ST 9T 0881625 T/ST 87T 08816752 G88 v 08Sr'SsT 2'€ 08086 SIS ¢ 2 €
0 €T OFv9e'STT 0 T OVy9e'sTT TG 9T Or9sevyT 0 T Orv9e'STT 0 €T Or¥9e'STT 8T OF9E'SIT T0€ ¢ C ¢
0 €T 0682285 0 T 068228 6T +T 062965 6T T 0629€'65 0 €T 0682285 ¢T 068228 612 ¢ ¢ 1
(%) (03s) (uIbs) (%) (98s) (u1 bs) (%) (09s) (urbs) (%) (08S) (urbs) (%) (08S) (urbs) (08S) (urbs) (jsued) (edAy) (edAl) 0 uun
QmO CIVINE EIN TN Qmmu swil | 91SeM\ Q@O ClIVINE 91SeM\ QmO sWwil | 91Se/\ QmO oWl 91SeAN oWl | 9ISEAA puews |sued 199yS

IAQZ IHAzZ oAQZ OHAz OHSAz 90 40 JaquINN ON 8IS

deb pue ‘awn ‘sisem Buipnoul IAQZ pue ‘IHAZ ‘OAQZ ‘OHAZ ‘OHSAZ ‘92 Jo Indino ayL T's ajgel

42

€7 €92’T 9T'BLTEST 68T 9/€T 99'6€08LT v¥T 9T 9T69YS9E v¥T 9T 9T'69¥G9E G'9Z 6T 0C0S'68T 7698 00¥GL'6YT 06L'€ ST 92 OC
CET 9EET €0Y'86CITS 20T 96T E09'9ETYT6 STT €6 9'GBITL6 60T €1'C 9'S09€v6 G'SZ 1'Z O00'9E0'L9S 00'9Y'TO8'8LLTSY TT90T L2 LT 6T o
'S 61T GZ6'G/VEE 68T T6T'T GZ6°08.T6 LOv ¥'T €EF0SOTIT OF 8ET E€0S0TIT #'€T 9T 066I09€ 8G8 0689.T€ TZI'T 9 9T 8T §
T- 1JTT G/81°999/9 8T 96€T G/8.T8569 T'99 €9T 6ZEESETT T99 G9'T 6Z°EESETT 9rT LT O0€606'.9T €27.v OFE€IE'B9 62y 2T ST LT

0 TOZT 80682 €/T 9/TT GT¢88. 182 62T G6900TT 182 €T G6900TT 86/ ST 0GZ96TS 679 008066 8y, G TIT 9T
9z ISTT ¥S60T ¥8T 9/€T Gv¥89ve T.6 VT G20T€6 TTS GGT GPETET TIT 9T 0S00€8T ¥'S¥S 06698 662 v TT GI
€TE PSTT GLTY6Y9ZT TE €TCT GL'T80Z9ZT 628 +9'T 8'G8TELYT 672G 6ST 8'G8TELYT 6TE 9T 08/E€'0/C'T GG0Z 00VEZ'EI6 890'E 6 6 T
vT- 9¢T'T G289'6//86 9€ TIT'T €8S T6V6TT 08T L¥'T 8G€E8YCZE 08T 99T 8G€E8YZZE 69T ST 0966€'0TE 888 000VE'STT 2617 € 6 €T c
9T 660T S0LC¥ 9T €/TT G0/gyr 162 GST T9S¥S 162 vET T9G¥S T¥ T 00G8L'€r GE 00TSO'ZFr 966 L 8 T m
€T- 6,0T 608y, €T- TOTT 6087, ¥by 6TT 6002TF twyr 9T'T 6002TF LTE €T 06966 GS 069/5. 612 € 9 11 =
60- 960'T G'808Z6T 60- LET'T G'80826T TZT €€T 89006r T2T €ST 8900y 808 ST 0S808'TSE 82 00TISV6T 62€T ¢ 9 01
2C CETT TT69S6 8y 99T 8'GB9SET 199 9¥'T GKIET. T99 €ST GIETL ZC LT 0C269'G6 89 Ov'LL9'€6 0vZ'Z 8 S 6
G0V €2T'T 6598668 G'T. GVE'T 60'ELTTLF T¥T v¥'T 60605099 ¥'€Z ¥9'T 60+7288EE €0T +'T 09TTL'8GS 899 00€89'v.Z ¢6V'T 9 S 8
70 9TT'T 99/€0. ¥0 960T 99/60. 27/ 6TT 99816, 2L vT'T 99€IS. +v0 €T 09960, T 09T0T0. 602 T s .
9, 8v0T ¥ZZve /8¢ V8T'T ZTIECT 0 8T 008TE O LT'T 008TE 9/ €T O00veZ¥e '€ 00008TE 00E ¢ v o9

0 290T /T'80T6Z 0 ¥9T'T /T'B0T6C OVE 62T LT°0818ZT OvE 22T LT°08182T O ¥'T 0Z80T'6C ¢6 0280T'6Z ¢S& € € G
€y CU'T G/88'7Z99€ ¥6v LET'T G/88'T6YZS €T. 92T 888°€8T09 €T/ GC'T 888'€8T09 69T €T 06GSH'Y6 G¥ 06+42T'SE €S € AN 4 m
0 6S0T G/'0/€86 0 /[2T'T GL0/€86 O €T GL0/€86 O €vT GL0/E86 G88 ¥'T 08GHY'SBT ¢€ 080/E86 G/S ¢ z ¢ 7
0 vOT ¥¥9ESTT 0 90T ¥P¥9ESTT TGZ ¢T #9SEVyT T'GZ TZT v9SEyT 0 €T Ovy9e'STT 8T O00V9E'STT T0E ¢ z C

0 690T G06'82¢8S ¥'[6 L/T'C S06'6Y6vTT 6T 8T'T S06'79€6G 6T LZT S0629€6G O €T 0682285 ¢T 068228 6T ¢ z 1
(%) (99s) (urbs) (%) (@S) (urbs) (%) (98s) (urbs) (%) (08S) (urbs) (%) (@S) (urbs) (08s) (urbs) (jsued) (edAy) (dh) 0 nun
QmO CIVINE 9]SeAN QmO swil 91Se/\ QmO CIVINE 91SeM\ Q@O sWwil | 9ISeM\ Qmmu CIVINE EINNY oWl | 9ISEAA puews |sued 199yS

OA MdO HSUIN OH HdO MSUIN OA Md MS OH Hd MS OHSaz 90 40 JaquinN ON 87iS

deb pue ‘swn ‘sisem Buipnjoul DA MdO HSUIIA pue ‘OH HdO MSUIIN ‘Md” MS DAQZ ‘Hd MS JHAZ 'OHSAZ ‘92 Jo ndino syl g's ajqeL

43

5.3. Comparison of computational time

In CG technique, when the size of the problems are larger and larger,
the computational time increases exponentially. The pattern can be provided in a
sort computational time even for large size instances for 2DSHC and all proposed

heuristic techniques.

5.4. Comparison of 2DHI, 2DVI, MinSW_OPH_HC, MinSH_OPW _VC

Four techniques namely: 2DHI, 2DVI, MinSW_OPH_HC, and
MinSH_OPW _VC are compared with each other in term of waste as illustrated in Table
5.3. Each of these four techniques provides a good pattern for a few instances. It is
better than column generation, and many instances is better than 2D simple heuristic
cutting. Among these four techniques, MinSW_OPH_HC can provide only 2 instances
which is better than the column generation while the other three techniques can provide
up to 4 instances for each technique.

It would be great to combine 2DHI with 2DVI or MinSW_OPW_VC
because the total number of instances provide a better pattern will go up to 6 instances.
Even some instances cannot provide better pattern, but those patterns do not provide a
large area of waste at all. To the best of our knowledge, 2DHI, 2DVI,
MinSW_OPH_HC, and MinSH_OPW _VC are not overlapped each other. It depends

on the size of each panel type and sheet type in each instance.

44

62C 9T'8LTEST 688T 996€08.T V0OT- CVv.IIVET GZ'S- 2ZV¥68'TYT TOVSL'6YT 06L'C ST 9¢ 0¢
LT'€T €0v'86CTTS €C0T €09'9¢T¥T6 €0°€ST 00729'0TS [8LT- ¥S¥90'TLE 08'8LL'TSY TI90T /L¢ LT 67)
I€'G G¢6'SLvEE 6887 GZ6'08LT6 LE€S €6'GLP'EE €T'Se T9TSL'6E 0689L'TE TZT'T 9 9T 8T w
20'T- G/8/°999/9 8L'T G/8/°T8569 6TT- 62°085/9 L6C ¥9°06E'0L 8E€IL'BY 62r'Y 4 ST LT

0 8068¢ L'CLT G'1288L 0 00°806'8¢ 0 008068 00°806'8C 8. S T 97
86'G¢ 5601 6°€8T S¥89¥¢ ¢6'8. 0G'9SG'GT 86'GZ 00¥S6'0T 06769'8 66C'F 1% T qT
2e'TE GL'T96V9CT €0'TE GL'T80C9ZT ¢2€TE GLT96V9Z'T €0'TE GL'T80°C92'T 00'7EC'€E96 890'E 6 6 Vi
v'vT- G289'6..86 9'€ €8S TI6VETT v'¥I- 856,86 €¢¢T 8599€'95¢ 000VE'STT 26T'C € 6 Sl .
99T S0LCy 99T S0LCY ¢TIy 00G8L'€y ¢TI’V 00G8L'Sy 00TSO'Cr 96§ L 8 (T m
LZT- 6°0817.L LC'T- 6°0817. 89'TE 069/6'6 LZT- 0608V'L 06'9.G'L 6T¢ € 9 T2
6°0- G'808¢6T 6°0- G'808¢6T 6'0- 05§'808°C6T 6°0- 0G'808C6T 00TISV6T 62E'T % 9 0T
14 276956 v8vy 8G89GET GT'C 02¢69'G6 SGT'C 0C'¢69'G6 OF'[.9'€6 0¥C'C 8 S 6
2S0F 6598658€ €ST. 60°ELTTLY ¥'€0T 6STTL'8SS 800 8EV06'.C 00€89V.C C6V'T 9 9 8
6€0 9'9/€0L 6€0 99.£0L 660 09°9/€'0. 6£0 099/€0.L 09T0T'0L 60¢ T 9 L
9L veeve 1°.8¢ crTeet 2¢9°L 00vee've ¢9L 00vZZ've 00008'TE 00E [4 1% 9

0 L1'80T6¢ 0 L1°80T6¢C 0 LT°80T'6¢ 0 /180T'6¢ 0C'80T'6C 2SS € S S
Ty S.88V299€ vv'evr G.88T6VCS LZV 681VC9'9E VY6 68 T6V'CS 067CT'SE LES € [4 14 ﬂma
0 G/'0,E86 0 GL'0LE86 0 GL'0.£'86 0 GL'0/£'86 08°0.£'86 G.S 14 14 € Q
0 Y'v9ESTT 0 V'¥9ESTT 0 Ov'¥9g'aTT 0 Ov'¥9€'STT 0079E'STT TOE 14 14 6

0 G06'8¢¢8S 1¥'.6 G06'6V6YIT O 16°82¢'8S 0 16'82¢'85 06'8¢2'85 6T¢ 14 14 T

(%) (ubs) (w) (wbs) (%) (wbs) (%) (ubs) (urbs) (eued) (adAy) (adh) 0 wuun
deo 21SeM\ deo 31SeM deo 21Se\ deo 91SeM 31Se\\ puewsq [dued 198YS

OA MdO HSUIN OH HdO MSUIN IAQz IHaz 90 40 JaquinN N oS

OA MdO MSUIIA pue ‘OH HdO MSUIIN ‘IAQZ ‘IHAgZ 40 uosiiedwod alsep £°G a|qel

45

Chapter 6

Conclusions and Recommendations

6.1. Conclusion

In this thesis, a set of rectangular panels in small size is required to cut from
a set of rectangular sheet in big size. Paper, metal bars, sheets, hardboards, leather, and
cloth are needed to cut. Only Two-Dimensional Rectangular Guillotine Cutting are
taken into account. Eight different techniques namely: 2DHC, 2DVC, 2DHI, 2DVI,
SW_PH_HC, SW_PW_VC, MinSW_OPH_HC, and MinSH_OPW _VC techniques are
proposed:

Firstly, 2D horizontal construction technique. A sheet set and a panel set
are sorted based on height from the highest to the shortest one. Then each panel is
picked to put into the sheet horizontally. Longitude is applied to each created pattern.

Secondly, 2D vertical construction technique. A sheet set is sorted in
descending order based on height, and a panel set is sorted in descending order based
on width. Then each panel is selected to put into each sheet vertically. Latitude cut is
applied to each created pattern.

Thirdly, 2D horizontal improvement. It come from a combination of 2D
simple heuristic cutting and 2D horizontal construction. A panel set is sorted based on
height from the highest to the shortest one. Each panel is picked to put horizontally into
each sheet type until no more space to fill in. A pattern with a minimum waste to
selected to cut horizontally. This process is needed to do repeatedly until all the demand
is fulfilled.

Fourthly, 2D vertical improvement. It come from a combination of 2D
simple heuristic cutting and 2D vertical construction. A panel set is sorted based on
width from the highest to the shortest one. Each panel is picked to put vertically into
each sheet type until no more space to fill in. A pattern with a minimum waste to
selected to cut vertically. This process is needed to do repeatedly until all the demand
is fulfilled.

46

Fifthly, Sheet Width Panel Height Horizontal Cut technique. A sheet set is
sorted based on width, and a panel set is sorted based on height from the highest to the
shortest one. Then each panel is selected to put into the sheet horizontally. Longitude
cut is applied to each created patterns.

Sixthly, Sheet Width Panel Width Vertical Cut technique. A sheet set is
sorted based on width, and a panel set is also sorted based on width from the highest to
the shortest one. Then each panel is selected to put into the sheet vertically. Latitude
cut is applied to each created patterns.

Seventhly, Minimum Sheet Width Ordering Panel Height Horizontal Cut
technique. A panel set is sorted in accordance with height. The first panels is selected
to put in a longitude way into each sheet type in a sheet set to cut horizontally. Leftover
width of each sheet is calculated to divide with each panel width. The panel that given
the smallest remainder is picked to put after the first selected panel. This process needed
to do repeatedly. Only the pattern that provide a minimum total waste is kept to cut.

Eighthly, Minimum Sheet Height Ordering Panel Width Vertical cut. A
panel set is sorted in accordance with width. Then the first panels is selected to put in a
latitude way into each sheet type in a sheet set to cut vertically. Leftover height of each
sheet is calculated to divide with each panel width. The panel that given the smallest
remainder is selected to put on the first selected panel vertically. This process needs to
do repeatedly. Only the pattern that provide a minimum total waste is kept to cut.

The output of these eight proposed techniques are evaluated by comparing
with Column Generation, which is used as a benchmark, and 2D Simple Heuristic
Cutting, a simple cutting method, in term of both total waste and computational time.

Twenty different size of instances are tested with these 10 techniques. The
result indicates that all proposed techniques can provide a better patterns in some
instances compared to 2D simple heuristic cutting. Only 4 out of 8 proposed techniques
can provide some good pattern comparing to column generation. They are 2D
horizontal improvement, 2D vertical improvement, Minimum Sheet Width Ordering
Panel Height Horizontal Cut method, and the Minimum Sheet Height Ordering Panel
Width Vertical cut. These 4 techniques are not overlapped each other. It totally depends

on the size of sheet in a sheet set and the size of panel in the panel set. It would be great

47

if we combine these four techniques together. Only the best pattern from each technique
of each instance is selected to cut.

All proposed techniques can provide the pattern of cutting in a very short
computational time. The computational time increases exponentially for column

generation technique when the size of the instance is bigger and bigger.

6.2. Recommendation for Further Study

For further study, 2D 3stage can be taken into consideration. In additional,
this problem should be applied by using meta-heuristic technique as well. Some
scholars suggested meta-heuristics as in the following. They are Harmony Search
Algorithm (HSA) proposed by Zong Woo Geem et al. (2001), Genetic Algorithms
(GAs) proposed by Holland (1975), Simulated Annealing (SA) proposed by
Kirkpatrick and Vecchi (1983), Particle Swarm Optimization (PSO) proposed by
Kennedy and Eberhart (1995), Bee Algorithms (BA) proposed by Pham et al. (2006),
Ant System (AS) proposed by Drigo et al. (1996), or Tabu Search (TS) proposed by
Glover (1977) to help exploring further good pattern.

48

References

Alvarez-Valdes, R., Parajon, A., & Tamarit, J. M. (2002). A computational study of
LP-based heuristic algorithms for two-dimensional guillotine cutting stock
problems. OR Spectrum, 24(2), 179-192. doi: 10.1007/s00291-002-0093-3

Andrade, R., Birgin, E. G., & Morabito, R. (2013). Two-stage two-dimensional
guillotine cutting problems with usable leftovers. Department of Computer
Science, Institute of Mathematics and Statistics, University of Sao Paulo, Brazil.

Ayachi.l, Kammarti.R, Ksouri.M, & Borne.P. (2010). Harmony Search Algorithm for
the Container Storage Problem. 8th International Conference of Modeling and
Simulation.

Cerqueira, G. R. L., & Yanasse, H. H. (2009). A pattern reduction procedure in a one-
dimensional cutting stock problem by grouping items according to their
demands. Journal of Computational Interdisciplinary Sciences, 1(2), 159-164.

Cui, Y. (2004). Generating optimal T-shape cutting patterns for rectangular blanks.
Proceedings of the Institution of Mechanical Engineers, Part B: Journal of
Engineering Manufacture, 218(8), 857-866.

Cui, Y. (2012a). A CAM system for one-dimensional stock cutting. Advances in
Engineering Software, 47(1), 7-16. doi: 10.1016/j.advengsoft.2011.12.004

Cui, Y. (2012b). Fast heuristic for constrained homogenous T-shape cutting patterns.
Applied Mathematical Modelling, 36(8), 3696-3711. doi:
10.1016/j.apm.2011.11.005

Cui, Y. (2012c). A new dynamic programming procedure for three-staged cutting
patterns. Journal of Global Optimization, 55(2), 349-357. doi: 10.1007/s10898-
012-9930-3

Cui, Y., & Huang, B. (2012). Heuristic for constrained T-shape cutting patterns of
rectangular pieces. Computers & Operations Research, 39(12), 3031-3039. doi:
10.1016/j.cor.2012.03.001

Cui, Y., & Liu, Z. (2007). T-shape homogenous block patterns for the two-dimensional
cutting problem. Journal of Global Optimization, 41(2), 267-281. doi:
10.1007/s10898-007-9252-z

49

Cui, Y., Yang, L., Zhao, Z., Tang, T., & Yin, M. (2013). Sequential grouping heuristic
for the two-dimensional cutting stock problem with pattern reduction.
International Journal of Production Economics, 144(2), 432-439. doi:
10.1016/j.ijpe.2013.03.011

Cui, Y., & Zhao, Z. (2013). Heuristic for the rectangular two-dimensional single stock
size cutting stock problem with two-staged patterns. European Journal of
Operational Research, 231(2), 288-298. doi: 10.1016/j.ejor.2013.05.042

Drigo, M., Maniezzo, V., & Colorni, A. (1996). The ant system: optimization by a
colony of cooperation agents. IEEE Transactions of Systems, Man, and
Cybernetics(Part B), 29-41.

Geem, Z. W. (2006). Improved harmony search from ensemble of music players. Paper
presented at the Knowledge-Based Intelligent Information and Engineering
Systems.

Geem, Z. W. (2008). Harmony Search Applications in Industry. In B. Prasad (Ed.), Soft
Computing Applications in Industry (Vol. 226, pp. 117-134): Springer Berlin
Heidelberg.

Geem, Z. W., Kim, J. H., & Loganathan, G. (2001). A new heuristic optimization
algorithm: harmony search. Simulation, 76(2), 60-68.

Geem, Z. W., Lee, K. S., & Park, Y. (2005). Application of harmony search to vehicle
routing. American Journal of Applied Sciences, 2(12), 1552.

Gilmore, P. C., & Gomory, R. E. (1965). Multistage cutting stock problems of two and
more dimensions. Operation Research, 13, 94-120.

Glover, F. (1977). Heuristics for integer programming using surrogate constraints.
Decision Sciences, 8(1), 156-166.

Holland, J. (1975). Adaptation in natural and artificial systems. University of Michigan
Press. Ann Arbor, 1(975), 1.

Kennedy, J., & Eberhart, R. (1995, Nov/Dec 1995). Particle swarm optimization. Paper
presented at the Neural Networks, 1995. Proceedings., IEEE International
Conference on.

Kirkpatrick, S., & Vecchi, M. (1983). Optimization by simmulated annealing. science,
220(4598), 671-680.

50

Lee, K. S., Geem, Z. W., Lee, S.-h., & Bae, K.-w. (2005). The harmony search heuristic
algorithm for discrete structural optimization. Engineering Optimization, 37(7),
663-684.

Lodi, A., & Monaci, M. (2003). Integer linear programming models for 2-staged two-
dimensional Knapsack problems. Mathematical Programming, 94(2-3), 257-
278. doi: 10.1007/s10107-002-0319-9

Pham, D., Ghanbarzadeh, A., Koc, E., Otri, S., Rahim, S., & Zaidi, M. (2006). The bees
algorithm-a novel tool for complex optimisation problems. Paper presented at
the Proceedings of the 2nd virtual international conference on intelligent
production machines and systems (IPROMS 2006).

Pichpibul, T., & Kawtummachai, R. (2013). Modified Harmony Search Algorithm for
the Capacitated Vehicle Routing Problem. Paper presented at the Proceedings
of the International Multi Conference of Engineers and Computer Scientists.

Suliman, S. M. A. (2006). A sequential heuristic procedure for the two-dimensional
cutting-stock problem. International Journal of Production Economics, 99(1-
2), 177-185. doi: DOI 10.1016/j.ijpe.2004.12.017

Worasucheep, C. (2011). A harmony search with adaptive pitch adjustment for
continuous optimization. International Journal of Hybrid Information
Technology, 4(4).

Yanasse, H. H., & Limeira, M. S. (2006). A hybrid heuristic to reduce the number of
different patterns in cutting stock problems. Computers & Operations Research,
33(9), 2744-2756. doi: 10.1016/j.cor.2005.02.026

Yanasse, H. H., & Morabito, R. (2008). A note on linear models for two-group and
three-group two-dimensional guillotine cutting problems. International Journal
of Production Research, 46(21), 6189-6206. doi: Doi
10.1080/00207540601011543

Yanasse, H. H., Zinober, A. S. I., & HARRIS, R. G. (1991). Two-dimensional Cutting
Stock with Multiple Stock Sizes. J. Opl Res. Soc., 42(8), 673-683.

51

Appendices

52

7.1. Appendix A: Java Source Code

7.1.1. 2D Simple Heuristic Cutting

package Simple_Heuristic_II;

import java.io.File;

import java.io.FilelnputStream;

import java.io.FileNotFoundException;

import java.io.FileOutputStream;

import java.io.|IOException;

import java.util. ArrayList;

import java.util.Collections;

import java.util.lterator;

import org.apache.poi.ss.usermodel.Cell;

import org.apache.poi.ss.usermodel.Row;

import org.apache.poi.xssf.usermodel. XSSFSheet;
import org.apache.poi.xssf.usermodel. XSSFWorkbook;

public class KCE_Simple_Heuristic_Cutting{
public static void main(String[] args) {

long startTime = System.currentTimeMillis();
ArrayList<Double> sWidth = new ArrayList<Double>();
ArrayList<Double> sHeight = new ArrayList<Double>();
ArrayList<Double> nSheet = new ArrayList<Double>();
ArrayList<Double> pWidth = new ArrayList<Double>();
ArrayList<Double> pHeight = new ArrayList<Double>();
ArrayList<Double> nPanel = new ArrayList<Double>();
ArrayList<Double> sLeftOverArea = new ArrayList<Double>();
String excelFile = "D:\\Input and output of heuristics based on height KCE.xIsx";

System.out.printin("ArrayList in row and column set: ");
ReadExcel(sWidth, sHeight, nSheet, pWidth, pHeight, nPanel, excelFile);

ArrayList<Double> sheetWidth = new ArrayList<Double>();
ArrayList<Double> sheetHeight = new ArrayList<Double>();
ArrayList<Double> panelWidth = new ArrayList<Double>();
ArrayList<Double> panelHeight = new ArrayList<Double>();
ArrayList<Double> overCutPanel = new ArrayList<Double>();
ArrayList<Double> overUnderCutPanel = new ArrayList<Double>();
ArrayList<Double> wasteForEachOverCutPanelForEachSheet = new
ArrayList<Double>();
ArrayList<Double> totalWastePerSheetArray = new ArrayList<Double>();

/ldefine sheet set
System.out.printin("\n" + "Sheet set:);

53

for (int i=0; i<nSheet.size(); i++) {
for (int a=0; a<nSheet.get(i); a++) {
sheetWidth.add(sWidth.get(i));
sheetHeight.add(sHeight.get(i));
sLeftOverArea.add(sWidth.get(i) * sHeight.get(i));
System.out.print("[" +sHeight.get(i)+" x "+sWidth.get(i)+"]" + ", ");
}System.out.printin();
}
//define panel set
System.out.printIn("\n" + "Panel set:");
for (int i=0; i<nPanel.size(); i++) {
for (int a=0; a<nPanel.get(i); a++) {
panelWidth.add(pWidth.get(i));
panelHeight.add(pHeight.get(i));
System.out.print("["+pHeight.get(i)+" x "+pWidth.get(i)+ "]" + ", ");
}System.out.printin();
}
/I To check and remove the big panel that we cannot put into the sheet, if we don't
have it, it might cause to error.
double maxSHeight = 0;
double maxSWidth = 0;
for (intj = 0; j < nPanel.size(); j++) {
for (inti = 0; i <nSheet.size(); i++) {
if (sHeight.get(i) > maxSHeight) {
maxSHeight = sHeight.get(i);
}
if (sWidth.get(i) > maxSWidth) {
maxSWidth = swWidth.get(i);
}

}
if (((pHeight.get(j) > maxSHeight)) || (pWidth.get(j) > maxSWidth)) {

pWidth.remove(j);
pHeight.remove(j);
nPanel.remove(j);
J-
}
}

//To check and remove the small sheet that we cannot use to cut other panel, if we
don't have it, it might cause to error
double minPHeight = 999999999;
double minPWidth = 999999999;
for (inti = 0; i < nSheet.size(); i++) {
for (int j = 0; j < nPanel.size(); j++) {
if (minPHeight > pHeight.get(j)) {
minPHeight = pHeight.get(j);
}
if (minPWidth > pWidth.get(j)) {

54

minPWidth = pWidth.get(j);
}

}
if ((sHeight.get(i) < minPHeight) || (sWidth.get(i) < minPWidth)) {
sWidth.remove(i);
sHeight.remove(i);
nSheet.remove(i);
i--;
}
}
//here is the process of cutting
try {
FilelnputStream file = new FilelnputStream(new File(excelFile));
XSSFWorkbook workbook = new XSSFWorkbook(file);
XSSFSheet sheet = workbook.getSheet("Output");
Row row; // Declare row variable as Excel row.
Cell cell; // Declare cell variable as Excel cell.

System.out.printIn("\n" + "Here is the step of cutting: ");
ArrayList<Integer> chosenPanellndex = new ArrayList<Integer>();
ArrayList<Integer> chosenPanelAmount = new ArrayList<Integer>();

ArrayList<Integer> usedPanellndex = new ArrayList<Integer>();//the index of
the panel that have been cut in each type of sheet

ArrayList<Integer> usedPanelAmount = new ArrayList<Integer>();//number of
panel in each type that used to cut

ArrayList<Double> leftOverDemand = new ArrayList<Double>();//number of
demand after update with the panel number cut

ArrayList<Double> xOrdinateArray = new ArrayList<Double>();//Use to add the
x ordinate one by one then when the panel is cut then clone it to xOrdinateSelected
when the sheet is full

ArrayList<Double> yOrdinateArray = new ArrayList<Double>();

ArrayList<Double> xOrdinateSelected = new ArrayList<Double>();//use to write
the coordinate in excel

ArrayList<Double> yOrdinateSelected = new ArrayList<Double>();

ArrayList<Double> pHeightArray = new ArrayList<Double>();//Use to add the
panel cut in order one by one then clone it to pHeightSelected when the sheet cut is
full

ArrayList<Double> pWidthArray = new ArrayList<Double>();

ArrayList<Double> pHeightSelected = new ArrayList<Double>();//use to write
the panel cut in excel in accordance with the coordinate

ArrayList<Double> pWidthSelected = new ArrayList<Double>();

ArrayList<Double> panelHeightAtBeginningLevel = new ArrayList<Double>();

ArrayList<Double> panelHeightAtBeginningLevelClone = new
ArrayList<Double>();

55

double leftoverHeight;
double leftoverWidth;
boolean existingLevel = false;// New or existing level check
double currentLeftOverArea=0;
double smallestLeftOverArea=0;// VVariable to store the smallest left over area of
sheet.
int smallestLeftOverSheet=0; // Store index of the smallest left over area sheet.
int numberPanelPerSheet=0;
int panelAmountWithMinimumWaste=0;
double sheetNumberNeeded;
long endTime = 0;
double xOrdinate = 0;
double yOrdinate = 0;
double w = 0;
int startRow = 2, numberingCell = 0, sHeightCell = 1, sWidthCell = 2,
pHeightCell = 3, pWidthCell = 4, demandCell = 5, wastePerSheetCell = 6,
numberPanelPerSheetCell = 7, numberSheetNeededToCut = 8, leftOverPanelCell =9,
computeTimeCell = 10, xCell = 11, yCell = 12, overCutPanelCell = 13,
totalWastePerSheetCell = 14, wasteForCuttingCell = 15;
int r=0;
int printNo = 0;
int i=0, j=0, k=0, level = 0;
int count = 0;
double totalWastePerSheet = 0;
//this loop for pick sheet one by one from all sheet
for (j = 0; j < nPanel.size(); j++) {
smallestLeftOverArea = sWidth.get(0)*sHeight.get(0);
row = sheet.createRow(startRow + r);
for (i = 0; i < sHeight.size(); i++) {
numberPanelPerSheet = 0;
leftoverHeight = sHeight.get(i);
level = 0;
System.out.print("\n" + "Sheet: " + (i+1) + " Size: " + sWidth.get(i) + " x " +
sHeight.get(i));
currentLeftOverArea = sWidth.get(i) * sHeight.get(i);
/Ithis loop use to define each level in a specific sheet
for (double h=leftoverHeight; h>=pHeight.get(pHeight.size()-1);
h=leftoverHeight) {
leftoverWidth = sWidth.get(i);
existingLevel = false;
ArrayList<Double>newPWidth = new ArrayList<Double>();
ArrayList<Double>newPHeight = new ArrayList<Double>();
ArrayList<Double>newNPanel = new ArrayList<Double>();
if (sHeight.get(i) == leftoverHeight) {//use to start the coordinate of y
yOrdinate = 0;
}

56

panelHeightAtBeginningLevel.add(pHeight.get(0));// Just want to add the
first panel before other panel add in
for (int 1 = 0; | < pHeight.size(); I++) {// use to continue to the next level by
increase y
if (sHeight.get(i)!= leftoverHeight) {
if (pHeight.get(l) <= leftoverHeight) {
yOrdinate = yOrdinate + panelHeightAtBeginningLevelClone.get(1);

break;

}
if (pHeight.get(l) > leftoverHeight){
continue;
}
}
}

level += 1,

System.out.printin();

System.out.print("\tLevel: " + level + " |");

/lto check the panel in case that it satisfies only one criteria like sample 34

if (existingLevel == false && ((leftoverHeight>=pHeight.get(j) &&
leftoverWidth>=pWidth.get(j)))){
existingLevel = true;
}else {
newPWidth = (ArrayList)pWidth.clone();
newPHeight =(ArrayList)pHeight.clone();
newNPanel = (ArrayList)nPanel.clone();
newPWidth.remove(pWidth.size()-1);
newPHeight.remove(pHeight.size()-1);
newNPanel.remove(nPanel.size()-1);
}
newPWidth.clear();
newPHeight.clear();
newNPanel.clear();
panelHeightAtBeginningLevelClone.clear();
/[Start cutting for the first panel that put into the sheet
if (leftoverHeight >= pHeight.get(j)) {
for (w = leftoverWidth; w >= pWidth.get(j); w = leftoverWidth) { /l
To do: make this loop take demand into consideration.
if (existingLevel == true && leftoverWidth>=pWidth.get(j)) {
System.out.print(" " + pWidth.get(j) + " x " + pHeight.get(j) + " |");
if (sWidth.get(i) == leftoverWidth) {
pHeightArray.add(pHeight.get(j));
pWidthArray.add(pWidth.get(j));
panelHeightAtBeginningLevel.add(pHeight.get(j));
xOrdinate = 0;
xOrdinateArray.add(xOrdinate);

57

yOrdinateArray.add(yOrdinate);
}else {
pHeightArray.add(pHeight.get(j));
pWidthArray.add(pWidth.get(j));
xOrdinate = xOrdinate + pWidthArray.get(pWidthArray.size()-2);
xOrdinateArray.add(xOrdinate);
yOrdinateArray.add(yOrdinate);
}
leftoverWidth = leftoverWidth - pWidth.get(j);
currentLeftOverArea = currentLeftOverArea-
(pWidth.get(j)*pHeight.get(j));
numberPanelPerSheet += 1;
if(usedPanellndex.indexOf(j) == -1) {
usedPanellndex.add(j);
usedPanelAmount.add(1);
}else {
usedPanelAmount.set(usedPanellndex.indexOf(j),
usedPanelAmount.get(usedPanelindex.indexOf(j))+1);//use to increase the amount of
the same panel size that put into the sheet

¥
k
k
¥

//Start cutting for the next panel that put into the sheet when we put other
types of panel in the same level or the next level
ArrayList<Double> nextPanelCut = new ArrayList<Double>();
panelHeightAtBeginningLevelClone =
(ArrayList)panelHeightAtBeginningLevel.clone();
panelHeightAtBeginningLevel.clear();
leftoverHeight = leftoverHeight - pHeight.get(j);
}
System.out.printin();
System.out.print("Total Waste for each sheet: " + currentLeftOverArea);
System.out.print("\nPanel fit: " + numberPanelPerSheet);
System.out.printin();
if (smallestLeftOverArea > currentLeftOverArea) {
smallestLeftOverArea = currentLeftOverArea;
smallestLeftOverSheet = i;
panelAmountWithMinimumWaste = numberPanelPerSheet;
pHeightSelected = (ArrayList)pHeightArray.clone();
pWidthSelected = (ArrayList)pWidthArray.clone();

xOrdinateSelected = (ArrayList)xOrdinateArray.clone();
yOrdinateSelected = (ArrayList)yOrdinateArray.clone();

chosenPanelindex = (ArrayList)usedPanellindex.clone();

58

chosenPanelAmount = (ArrayList)usedPanelAmount.clone();

}

for(int ind =0; ind < chosenPanellndex.size(); ind++) {
System.out.printin("Used Index " + chosenPanellndex.get(ind));
System.out.printin("Used Amount " + chosenPanelAmount.get(ind));

}

/I clear it first before selecting the next panel to cut; otherwise, it adds on the

existing data
pHeightArray.clear();
pWidthArray.clear();

xOrdinateArray.clear();
yOrdinateArray.clear();

usedPanelindex.clear();
usedPanelAmount.clear();
}
System.out.printin();
System.out.printIn(panel AmountWithMinimumWaste + " panels cut from panel
set by putting in sheet number " + (smallestLeftOverSheet+1) + " (" +
sWidth.get(smallestLeftOverSheet) + " x " + sHeight.get(smallestLeftOverSheet) + ")
with the minimum waste " + smallestLeftOverArea);

double minimumSheet =
10000000;//Math.ceil(nPanel.get(chosenPanelIndex.get(0)) /
chosenPanelAmount.get(0))
double result;
// This loop use to select the pattern that can give the minimum waste to cut.
for(int d=0; d < chosenPanelindex.size(); d++) {
result = Math.ceil(nPanel.get(chosenPanelIndex.get(d)) /
chosenPanelAmount.get(d));
if (minimumSheet > result) {
minimumSheet = result;
}
System.out.printin("To fulfill demand of " +
nPanel.get(chosenPanellndex.get(d)) + " we need to use " + result + " sheets");
}
System.out.printin("\nTherefore: To satisfy the demand we need: " +
minimumSheet + " sheets.");
//To find the over cut panel
double totalWasteOfOverCutPanel = 0;
for (int I = 0; | < chosenPanellndex.size(); 1++) {
overUnderCutPanel.add((minimumSheet * chosenPanelAmount.get(1l)) -
nPanel.get(chosenPanelindex.get(l)));
if (overUnderCutPanel.get(l)<=0) {
overCutPanel.add(0.0);

}else {

59

overCutPanel.add(overUnderCutPanel.get(l));
}
wasteForEachOverCutPanelForEachSheet.add(overCutPanel.get(l)*
pHeight.get(l) * pWidth.get(l));
totalWasteOfOverCutPanel = totalWasteOfOverCutPanel +
wasteForEachOverCutPanelForEachSheet.get(l);//To find the waste of the over cut
panel
System.out.printin("Over cut Panel =" + overCutPanel);
}
totalWastePerSheet = (smallestLeftOverArea * minimumSheet) +
totalWasteOfOverCutPanel;//Total waste per sheet included the over cut panel
totalWastePerSheetArray.add(totalWastePerSheet);

int index;
double amount;
double demand;
//Writing the panel of the pattern that we have selected to cut
for(int ind = 0; ind < chosenPanellndex.size(); ind++) {
System.out.printin("Chosen Index " + chosenPanelIndex.get(ind));
System.out.printin("Used Amount " + chosenPanelAmount.get(ind));
row = sheet.createRow(startRow + r);
index = chosenPanelIndex.get(ind);
amount = chosenPanelAmount.get(ind);
demand = nPanel.get(chosenPanellndex.get(ind));
leftOverDemand.add(demand - (amount * minimumSheet));
count = 0;
//Write only that first stage of cutting like No
if (ind == 0) {//ind = chosenPanelIndex
cell = row.createCell(numberingCell);
cell.setCellValue(printNo+1);

cell = row.createCell(sHeightCell);
cell.setCellValue(sHeight.get(smallestLeftOverSheet));

cell = row.createCell(sWidthCell);
cell.setCellValue(sWidth.get(smallestLeftOverSheet));

if (leftOverDemand.get(ind)> 0) {
cell = row.createCell(leftOverPanelCell);
cell.setCellValue(leftOverDemand.get(ind));

¥
ks

if (ind < chosenPanelindex.size()-1) { /do not let it increase the row when it is
the last panel that we put coz we have to put other data on the last row
cell = row.createCell(demandCell);
cell.setCellVValue(nPanel.get(chosenPanelIndex.get(ind)));

60

cell = row.createCell(overCutPanelCell);
cell.setCellValue(overCutPanel.get(ind));

cell = row.createCell(numberPanelPerSheetCell);
cell.setCellValue(chosenPanel Amount.get(ind));
if (leftOverDemand.get(ind)> 0) {
cell = row.createCell(leftOverPanelCell);
cell.setCellValue(leftOverDemand.get(ind));
¥
/I to spread the panel of cutting such that i can put the coordinate
for (int | = 0; | < chosenPanelAmount.get(ind); 1++) {

cell = row.createCell(pHeightCell);
cell.setCellValue(pHeightSelected.get(l));

cell = row.createCell(pWidthCell);
cell.setCellValue(pWidthSelected.get(l));

cell = row.createCell(xCell);
cell.setCellValue(xOrdinateSelected.get(1));

cell = row.createCell(yCell);
cell.setCellValue(yOrdinateSelected.get(1));

count = count + 1,
r++;

row = sheet.createRow(startRow + r);

}

//Remove that panel use such that it can print of other panel

for (int b = (count-1) ; b >=0; b--) {
pHeightSelected.remove(b);
pWidthSelected.remove(b);
xOrdinateSelected.remove(b);
yOrdinateSelected.remove(b);

¥

} else if ((chosenPanellndex.size()-1) == ind) {
cell = row.createCell(demandCell);
cell.setCellVValue(nPanel.get(chosenPanelIndex.get(ind)));

cell = row.createCell(overCutPanelCell);
cell.setCellValue(overCutPanel.get(ind));

cell = row.createCell(numberPanelPerSheetCell);
cell.setCellValue(chosenPanel Amount.get(ind));

if (leftOverDemand.get(ind)> 0) {
cell = row.createCell(leftOverPanelCell);

61

cell.setCellValue(leftOverDemand.get(ind));

}

for (int | = 0; | < chosenPanelAmount.get(ind); I++) {
cell = row.createCell(pHeightCell);
cell.setCellValue(pHeightSelected.get(l));
cell = row.createCell(pWidthCell);
cell.setCellValue(pWidthSelected.get(l));
cell = row.createCell(xCell);
cell.setCellValue(xOrdinateSelected.get(l));
cell = row.createCell(yCell);
cell.setCellValue(yOrdinateSelected.get(1));
count = count + 1,
r++;

row = sheet.createRow(startRow + r);
b
for (int b = (count-1) ; b >=0; b--) {
pHeightSelected.remove(b);
pWidthSelected.remove(b);

xOrdinateSelected.remove(b);
yOrdinateSelected.remove(b);
}
r--;
}
}

wasteForEachOverCutPanelForEachSheet.clear();
overUnderCutPanel.clear();

overCutPanel.clear();

r=r+2;

printNo++;

cell = row.createCell(wastePerSheetCell);
cell.setCellValue(smallestLeftOverArea);

cell = row.createCell(numberSheetNeededToCut);
cell.setCellValue(minimumsSheet);
cell = row.createCell(totalWastePerSheetCell);
cell.setCellValue(totalWastePerSheet);
endTime = System.currentTimeMillis();
System.out.printIn("Time taken for this process are: " + (endTime - startTime) +
" milli seconds");
cell = row.createCell(computeTimeCell);
cell.setCellVValue(endTime - startTime);
for(int d = chosenPanelindex.size()-1; d >=0; d--) {
index = chosenPanelIndex.indexOf(Collections.max(chosenPanellndex));
amount = chosenPanel Amount.get(index);
demand = nPanel.get(chosenPanellndex.get(index));
int newIndex = chosenPanellndex.get(index);

62

if (leftOverDemand.get(index) > 0) {
nPanel.set(newlndex, leftOverDemand.get(index));
chosenPanelindex.remove(index);
chosenPanel Amount.remove(index);
leftOverDemand.remove(index);

}else {
nPanel.remove(newlIndex);
pHeight.remove(newlndex);
pWidth.remove(newlIndex);
chosenPanellndex.remove(index);
chosenPanel Amount.remove(index);
leftOverDemand.remove(index);

k
¥

leftOverDemand.clear();

System.out.printIn('-----------=-=-m-mmmmm e ");

-

double wasteForCutting = 0;

for (int | = 0; | < total WastePerSheetArray.size(); I++) {
wasteForCutting = wasteForCutting + totalWastePerSheetArray.get(l);

}

cell = row.createCell(wasteForCuttingCell);
cell.setCellValue(wasteForCutting);
}
chosenPanellndex.clear();
chosenPanelAmount.clear();
file.close();

FileOutputStream outFile =new FileOutputStream(new File(excelFile));
workbook.write(outFile);
outFile.close();
} catch (FileNotFoundException €) {
e.printStackTrace();
} catch (IOException e) {
e.printStackTrace();

¥

¥
public static void ReadExcel(ArrayList<Double> sWidth,

ArrayList<Double> sHeight, ArrayList<Double> nSheet,
ArrayList<Double> pWidth, ArrayList<Double> pHeight,
ArrayList<Double> nPanel, String excelFile) {
try {
FilelnputStream file = new FilelnputStream(new File(excelFile));
XSSFWorkbook workbook = new XSSFWorkbook(file);
XSSFSheet sheet = workbook.getSheet("Input™);
// cRow = currentRow, pRow = processingRow
int cRow =0, pRow =0;

63

int cColumn =1;
int datalnRow = 0;
//terate through each rows from first sheet
Iterator<Row> rowlterator = sheet.iterator();
while(rowlterator.hasNext()) {
Row row = rowlterator.next();
CRow++;
cColumn =1,
datalnRow = 0;
//For each row, iterate through each columns
Iterator<Cell> celllterator = row.celllterator();
while(celllterator.hasNext()) {
Cell cell = celllterator.next();
switch(cell.getCellType()) {
case Cell.CELL_TYPE_BOOLEAN:
System.out.print(cell.getBooleanCellValue() + "\t\t");
datalnRow ++;
break;
case Cell. CELL_TYPE_NUMERIC:
System.out.print(cell.getNumericCellValue() + "\t\t");
if(cCRow>pRow) {
pRow = cRow;
}

else
{

switch(cColumn) {

case 1:
pHeight.add(cell.getNumericCellValue());
break;

case 2:
pWidth.add(cell.getNumericCellValue());
break;

case 3:
nPanel.add(cell.getNumericCellValue());
break;

case 4:
sHeight.add(cell.getNumericCellValue());
break;

case 5:
sWidth.add(cell.getNumericCellValue());
break;

case 6:
nSheet.add(cell.getNumericCellValue());

}

cColumn++;

¥

datalnRow++;

64

break;

case Cell.CELL_TYPE_STRING:
System.out.print(cell.getStringCellVValue() + "\t\t");
datalnRow++;
break;

}

}
if(datalnRow > 0) {

System.out.printin(*"");
¥

file.close();

} catch (FileNotFoundException e) {
e.printStackTrace();

} catch (IOException e) {
e.printStackTrace();

ks

65

7.1.2. 2D Horizontal Construction

package SHeightBased_PHeightBased_2D_2Stage_Horizontal _Cutting_P1;

import java.io.File;

import java.io.FilelnputStream;

import java.io.FileNotFoundException;

import java.io.FileOutputStream;

import java.io.|IOException;

import java.util. ArrayList;

import java.util.lIterator;

import org.apache.poi.ss.usermodel.Cell;

import org.apache.poi.ss.usermodel.Row;

import org.apache.poi.xssf.usermodel. XSSFSheet;
import org.apache.poi.xssf.usermodel. XSSFWorkbook;

public class SHeightBased PHeightBased 2D 2Stage Horizontal Cutting_P1{
public static void main(String[] args) {
long startTime = System.currentTimeMillis();
ArrayList<Double> sWidth = new ArrayList<Double>();
ArrayList<Double> sHeight = new ArrayList<Double>();
ArrayList<Double> nSheet = new ArrayList<Double>();
ArrayList<Double> pWidth = new ArrayList<Double>();
ArrayList<Double> pHeight = new ArrayList<Double>();
ArrayList<Double> nPanel = new ArrayList<Double>();
ArrayList<Double> sLeftOverArea = new ArrayList<Double>();
String excelFile = "D:\Input and output of heuristics For construction 1 and
2.xIsx™;
System.out.printIn("ArrayList in row and column set: ");
try {
FilelnputStream file = new FilelnputStream(new File(excelFile));
XSSFWorkbook workbook = new XSSFWorkbook(file);
XSSFSheet sheet = workbook.getSheet("Input™);
int cRow =0, pRow = 0;
int cColumn = 1;
int datalnRow = 0;
Iterator<Row> rowlterator = sheet.iterator();
while(rowlterator.hasNext()) {
Row row = rowlterator.next();
cRow++,
cColumn =1;
datalnRow = 0;
Iterator<Cell> celllterator = row.celllterator();
while(celllterator.hasNext()) {
Cell cell = celllterator.next();
switch(cell.getCellType()) {

66

case Cell.CELL_TYPE_BOOLEAN:
System.out.print(cell.getBooleanCellValue() + "\t\t");
datalnRow ++;
break;
case Cell.CELL_TYPE_NUMERIC:
System.out.print(cell.getNumericCellValue() + "\t\t");
if(cRow>pRow) {
pRow = cRow;
}else{
switch(cColumn) {
case 1:
pHeight.add(cell.getNumericCellValue());
break;
case 2:
pWidth.add(cell.getNumericCellValue());
break;
case 3:
nPanel.add(cell.getNumericCellValue());
break;
case 4:
sHeight.add(cell.getNumericCellValue());
break;
case 5:
sWidth.add(cell.getNumericCellValue());
break;
case 6:
nSheet.add(cell.getNumericCellValue());
}

cColumn++;
}
datalnRow++;
break;
case Cell.CELL_TYPE_STRING:
System.out.print(cell.getStringCellValue() + "\t\t");
datalnRow++;
break;

}

}
if(datalnRow > 0) {

System.out.printin(*"");

ks
ks

file.close();

} catch (FileNotFoundException e) {
e.printStackTrace();

} catch (IOException e) {
e.printStackTrace();

67

}
ArrayList<Double> sheetWidth = new ArrayList<Double>();

ArrayList<Double> sheetHeight = new ArrayList<Double>();
ArrayList<Double> panelWidth = new ArrayList<Double>();
ArrayList<Double> panelHeight = new ArrayList<Double>();
ArrayList<Double> totalWastePerSheet = new ArrayList<Double>();
//define sheet set
System.out.printIn("\n" + "Sheet set:);
for (int i=0; i<nSheet.size(); i++) {
for (int a=0; a<nSheet.get(i); a++) {
sheetWidth.add(sWidth.get(i));
sheetHeight.add(sHeight.get(i));
sLeftOverArea.add(sWidth.get(i) * sHeight.get(i));
System.out.print("[" + sHeight.get(i) + " x " + sWidth.get(i) + "]" + ", ");
}System.out.printin();
}
//define panel set
System.out.printin(*\n" + "Panel set:");
for (int i=0; i<nPanel.size(); i++) {
for (int a=0; a<nPanel.get(i); a++) {
panelWidth.add(pWidth.get(i));
panelHeight.add(pHeight.get(i));
System.out.print("[" + pHeight.get(i) + " x " + pWidth.get(i)+ "]" + ", ");
}System.out.printin();
¥

/Ihere is the process of cutting
try {
FilelnputStream file = new FilelnputStream(new File(excelFile));
XSSFWorkbook workbook = new XSSFWorkbook(file);
XSSFSheet sheet = workbook.getSheet("Output");
Row row; // Declare row variable as Excel row.
Cell cell; /I Declare cell variable as Excel cell.
System.out.printIn("\n" + "Here is the step of cutting: ");
double leftoverHeight;
double leftoverWidth;
double wasteBeforeCut = 0;
int startRow = 2, sHeightCell = 0, sWidthCell = 1, pHeightCell = 2, pWidthCell =
3, levelCell = 4, sLeftOverAreaCell = 5, computeTimeCell = 6, totalWasteCell = 7,
int r=0;
long computeTime = 0;
boolean existingLevel = false; // Level check if new calculate new
[leftoverHeight] and [leftoverWidth].
int i=0, j=0, level;
/Ithis loop for pick sheet one by one from all sheet
for (i = 0; i < sheetHeight.size(); i++) {
leftoverHeight = sheetHeight.get(i);
leftoverWidth = sheetWidth.get(i);//

68

level = 0;
row = sheet.createRow(startRow + r);
cell = row.createCell(sHeightCell);
cell.setCellValue(sheetHeight.get(i));
cell = row.createCell(sWidthCell);
cell.setCellValue(sheetWidth.get(i));
//To define the value of the waste
if i>0){
sheet.getRow(startRow + (r-
1)).createCell(sLeftOverAreaCell).setCellVValue(sLeftOverArea.get(i-1));
}
/Ithis loop use to define each level in a specific sheet
for (double h=leftoverHeight; h>=panelHeight.get(panelHeight.size()-1);
h=leftoverHeight) {
leftoverWidth = sheetWidth.get(i);
existingLevel = false;
/1 this loop use to pick the panel to put inside each level in a specific sheet
for (j = 0; j < panelHeight.size(); j++) {
if (existingLevel == false && (leftoverHeight>=panelHeight.get(j) &&
leftoverWidth>=panelWidth.get(j))) {
leftoverHeight = leftoverHeight - panelHeight.get(j);
existingLevel = true;
level +=1;
}
if (existingLevel == true && leftoverWidth >= panelWidth.get(j)) {
System.out.printin("put panel: " + panelHeight.get(j) + " x " +
panelWidth.get(j) + " into sheet: " + (i+1) + " level: " + level);
sLeftOverArea.set(i, sLeftOverArea.get(i) - (panelHeight.get(j) *
panelWidth.get(j)));
try {
row = sheet.getRow(startRow + r);
if (row ==null) {
row = sheet.createRow(startRow + r);
}

¥
catch (Exception e) {

row = sheet.createRow(startRow + r);
b
row.createCell(pHeightCell).setCell\Value(panelHeight.get(j));
row.createCell(pWidthCell).setCellVValue(panelWidth.get(j));
row.createCell(levelCell).setCellValue(level);
r=r+1; // move to new row.
leftoverWidth = leftoverWidth - panelWidth.get(j);
panelHeight.remove(j);
panelWidth.remove(j);
i=i-1
¥

69

¥
if(panelHeight.isEmpty()){

sheet.getRow(startRow + (r-
1)).createCell(sLeftOverAreaCell).setCellVValue(sLeftOverArea.get(i));

sheet.getRow(startRow + (r-
1)).createCell(computeTimeCell).setCell\VValue(computeTime);

totalWastePerSheet.add(sLeftOverArea.get(i));

for (int k = 0; k < totalWastePerSheet.size(); k++) {

wasteBeforeCut = wasteBeforeCut + totalWastePerSheet.get(k);

}

sheet.getRow(startRow + (r-
1)).createCell(totalWasteCell).setCell\VValue(wasteBeforeCut);

file.close();

FileOutputStream outFile =new FileOutputStream(new File(excelFile));

workbook.write(outFile);

outFile.close();

return;

}

}
totalWastePerSheet.add(sLeftOverArea.get(i));

sheetHeight.remove(0);
sheetWidth.remove(0);
long endTime = System.currentTimeMillis();
computeTime = endTime - startTime;
System.out.printIn("Time taken for this process are: " + (computeTime) + "
milli seconds");
cell = row.createCell(computeTimeCell);
cell.setCellValue(computeTime);
}
sheet.getRow(startRow + (r-
1)).createCell(sLeftOverAreaCell).setCellValue(sLeftOverArea.get(9));
file.close();
FileOutputStream outFile =new FileOutputStream(new File(excelFile));
workbook.write(outFile);
outFile.close();
for(int 1=0; | < sLeftOverArea.size(); I++) {
System.out.printIn("Sheet: " + (I+1) + " Left over area: " +
sLeftOverArea.get(l));

} catch (FileNotFoundException e) {
e.printStackTrace();

} catch (IOException e) {
e.printStackTrace();

k
¥
k

70

7.1.3. 2D Vertical Construction

package SHeightBased_PWidthBased 2D 2Stage Vertical_Cutting_P1;

import java.io.File;

import java.io.FilelnputStream;

import java.io.FileNotFoundException;

import java.io.FileOutputStream;

import java.io.lOException;

import java.util.ArrayList;

import java.util.lIterator;

import org.apache.poi.ss.usermodel.Cell;

import org.apache.poi.ss.usermodel.Row;

import org.apache.poi.xssf.usermodel. XSSFSheet;
import org.apache.poi.xssf.usermodel. XSSFWorkbook;

public class SHeightBased PWidthBased 2D 2Stage Vertical Cutting P1{
public static void main(String[] args) {
long startTime = System.currentTimeMillis();
ArrayList<Double> sWidth = new ArrayList<Double>();
ArrayList<Double> sHeight = new ArrayList<Double>();
ArrayList<Double> nSheet = new ArrayList<Double>();
ArrayList<Double> pWidth = new ArrayList<Double>();
ArrayList<Double> pHeight = new ArrayList<Double>();
ArrayList<Double> nPanel = new ArrayList<Double>();
ArrayList<Double> sLeftOverArea = new ArrayList<Double>();
String excelFile = "D:\\Input and output of heuristics For construction 1 and
2.XIsx™;
System.out.printIn("ArrayList in row and column set: ");
try {
FilelnputStream file = new FilelnputStream(new File(excelFile));
XSSFWorkbook workbook = new XSSFWorkbook(file);
XSSFSheet sheet = workbook.getSheet("Input2");
int cRow =0, pRow =0;
int cColumn = 1,
int datalnRow = 0;
/terate through each rows from first sheet
Iterator<Row> rowlterator = sheet.iterator();
while(rowlterator.hasNext()) {
Row row = rowlterator.next();
cRow++,
cColumn =1;
datalnRow = 0;
//For each row, iterate through each columns
Iterator<Cell> celllterator = row.celllterator();
while(celllterator.hasNext()) {
Cell cell = celllterator.next();

71

switch(cell.getCell Type()) {
case Cell. CELL_TYPE_BOOLEAN:
System.out.print(cell.getBooleanCellValue() + "\t\t");
datalnRow ++;
break;
case Cell.CELL_TYPE_NUMERIC:
System.out.print(cell.getNumericCellValue() + "\t\t");
if(cCRow>pRow) {
pRow = cRow;
}else{
switch(cColumn) {
case 1:
pHeight.add(cell.getNumericCellValue());
break;
case 2:
pWidth.add(cell.getNumericCellValue());
break;
case 3:
nPanel.add(cell.getNumericCellValue());
break;
case 4:
sHeight.add(cell.getNumericCellValue());
break;
case 5:
sWidth.add(cell.getNumericCellValue());
break;
case 6:
nSheet.add(cell.getNumericCellValue());
}

cColumn++;
}
datalnRow++;
break;
case Cell. CELL_TYPE_STRING:
System.out.print(cell.getStringCellVValue() + "\t\t");
datalnRow++;
break;

¥

}
if(datalnRow > 0) {

System.out.printin(""");
}
¥

file.close();

} catch (FileNotFoundException e) {
e.printStackTrace();

} catch (IOException e) {

72

e.printStackTrace();
}
ArrayList<Double> sheetWidth = new ArrayList<Double>();
ArrayList<Double> sheetHeight = new ArrayList<Double>();
ArrayList<Double> panelWidth = new ArrayList<Double>();
ArrayList<Double> panelHeight = new ArrayList<Double>();
ArrayList<Double> totalWastePerSheet = new ArrayList<Double>();
//define sheet set
System.out.printin("\n" + "Sheet set: ");
for (int i=0; i<nSheet.size(); i++) {
for (int a=0; a<nSheet.get(i); a++) {
sheetWidth.add(sWidth.get(i));
sheetHeight.add(sHeight.get(i));
sLeftOverArea.add(sWidth.get(i) * sHeight.get(i));
System.out.print("[" + sHeight.get(i) + " x " + sWidth.get(i) + "]" + ", ");
}System.out.printin();
}
//define panel set
System.out.printin("\n" + "Panel set:");
for (int i=0; i<nPanel.size(); i++) {
for (int a=0; a<nPanel.get(i); at++) {
panelWidth.add(pWidth.get(i));
panelHeight.add(pHeight.get(i));
System.out.print("[" + pHeight.get(i) + " x " + pWidth.get(i))+ "]" + ", ");
}System.out.printin();
}

/Ihere is the process of cutting
try {
// Open excel file.
FilelnputStream file = new FilelnputStream(new File(excelFile));
XSSFWorkbook workbook = new XSSFWorkbook(file);
XSSFSheet sheet = workbook.getSheet("Output2™);
Row row; // Declare row variable as Excel row.
Cell cell; // Declare cell variable as Excel cell.
System.out.printIn("\n" + "Here is the step of cutting: ");
double leftoverHeight;
double leftoverWidth;
double wasteBeforeCut = 0;
int startRow = 2, sHeightCell = 0, sWidthCell = 1, pHeightCell = 2, pWidthCell
= 3, levelCell = 4, sLeftOverAreaCell = 5, computeTimeCell = 6, totalWasteCell = 7;
int r=0;
long computeTime = 0;
boolean existingLevel = false;
int i=0, j=0, level,
/Ithis loop for pick sheet one by one from all sheet
for (i = 0; i < sheetWidth.size(); i++) {
leftoverHeight = sheetHeight.get(i);

73

leftoverWidth = sheetWidth.get(i);
level = 0;
row = sheet.createRow(startRow + r);
cell = row.createCell(sHeightCell);
cell.setCellValue(sheetHeight.get(i));
cell = row.createCell(sWidthCell);
cell.setCellValue(sheetWidth.get(i));
/[To define the value of the waste
if (1>0){
sheet.getRow(startRow + (r-
1)).createCell(sLeftOverAreaCell).setCellVValue(sLeftOverArea.get(i-1));
}
/lthis loop use to define each level in a specific sheet
for (double h=leftoverWidth; h>=panelWidth.get(panelWidth.size()-1);
h=leftoverWidth) {
leftoverHeight = sheetHeight.get(i);
existingLevel = false;
/I this loop use to pick the panel to put inside each level in a specific sheet
for (j = 0; j < panelWidth.size(); j++) {
if (existingLevel == false && (leftoverHeight>=panelHeight.get(j) &&
leftoverWidth>=panelWidth.get(j))) {
leftoverWidth = leftoverWidth - panelWidth.get(j);
existingLevel = true;
level +=1,
¥
if (existingLevel == true && leftoverHeight>=panelHeight.get(j)) {
System.out.printin("put panel: " + panelHeight.get(j) + " x " +
panelWidth.get(j) + " into sheet: " + (i+1) + " level: " + level);
sLeftOverArea.set(i, sLeftOverArea.get(i) - (panelHeight.get(j) *
panelWidth.get(j)));
try {
row = sheet.getRow(startRow + r);
if (row ==null) {
row = sheet.createRow(startRow + r);
}

}
catch (Exception e) {

row = sheet.createRow(startRow + r);
}
row.createCell(pHeightCell).setCell\VValue(panelHeight.get()));
row.createCell(pWidthCell).setCellValue(panelWidth.get(j));
row.createCell(levelCell).setCellValue(level);
r++;// move to new row.
leftoverHeight = leftoverHeight - panelHeight.get(j);
panelHeight.remove(j);
panelWidth.remove(j);
i=i-g

74

}

}
if(panelHeight.isEmpty()){

sheet.getRow(startRow + (r-
1)).createCell(sLeftOverAreaCell).setCellVValue(sLeftOverArea.get(i));

sheet.getRow(startRow + (r-
1)).createCell(computeTimeCell).setCell\VValue(computeTime);

totalWastePerSheet.add(sLeftOverArea.get(i));

for (int k = 0; k < totalWastePerSheet.size(); k++) {

wasteBeforeCut = wasteBeforeCut + totalWastePerSheet.get(k);

¥

sheet.getRow(startRow + (r-
1)).createCell(totalWasteCell).setCellVValue(wasteBeforeCut);

file.close();

FileOutputStream outFile =new FileOutputStream(new File(excelFile));

workbook.write(outFile);

outFile.close();

return;

}

b
totalWastePerSheet.add(sLeftOverArea.get(i));

sheetHeight.remove(0);
sheetWidth.remove(0);
long endTime = System.currentTimeMillis();
computeTime = endTime - startTime;
System.out.printIn("Time taken for this process are: " + (computeTime) + "
milli seconds™);
cell = row.createCell(computeTimeCell);
cell.setCellVValue(computeTime);
}
sheet.getRow(startRow + (r-
1)).createCell(sLeftOverAreaCell).setCellVValue(sLeftOverArea.get(9));
file.close();
FileOutputStream outFile =new FileOutputStream(new File(excelFile));
workbook.write(outFile);
outFile.close();
for(int 1=0; | < sLeftOverArea.size(); I++) {
System.out.printin("Sheet: " + (I+1) + " Left over area: " +
sLeftOverArea.get(l));

} catch (FileNotFoundException e) {
e.printStackTrace();
} catch (IOException e) {
e.printStackTrace();
}
}
}

75

7.1.4. 2D Horizontal Improvement

package Simple_Heuristic_lII;

import java.io.File;

import java.io.FilelnputStream;

import java.io.FileNotFoundException;

import java.io.FileOutputStream;

import java.io.|IOException;

import java.util. ArrayList;

import java.util.Collections;

import java.util.lIterator;

import org.apache.poi.ss.usermodel.Cell;

import org.apache.poi.ss.usermodel.Row;

import org.apache.poi.xssf.usermodel. XSSFSheet;
import org.apache.poi.xssf.usermodel. XSSFWorkbook;

public class Improvel Simple Heuristic P_HeightBased Cut_Horizontal{
public static void main(String[] args) {
long startTime = System.currentTimeMillis();
ArrayList<Double> sWidth = new ArrayList<Double>();
ArrayList<Double> sHeight = new ArrayList<Double>();
ArrayList<Double> nSheet = new ArrayList<Double>();

ArrayList<Double> pWidth = new ArrayList<Double>();
ArrayList<Double> pHeight = new ArrayList<Double>();
ArrayList<Double> nPanel = new ArrayList<Double>();

ArrayList<Double> sLeftOverArea = new ArrayList<Double>();
String excelFile = "D:\\Input and output of heuristics based on
height_ExactNumber.xlIsx";

System.out.printIn("ArrayList in row and column set: ");
ReadExcel(sWidth, sHeight, nSheet, pWidth, pHeight, nPanel, excelFile);

ArrayList<Double> sheetWidth = new ArrayList<Double>();
ArrayList<Double> sheetHeight = new ArrayList<Double>();

ArrayList<Double> panelWidth = new ArrayList<Double>();
ArrayList<Double> panelHeight = new ArrayList<Double>();

ArrayList<Double> overCutPanel = new ArrayList<Double>();
ArrayList<Double> overUnderCutPanel = new ArrayList<Double>();

ArrayList<Double> wasteForEachOverCutPanelForEachSheet = new
ArrayList<Double>();

76

ArrayList<Double> totalWastePerSheetArray = new ArrayList<Double>();

//define sheet set
System.out.printIn("\n" + "Sheet set: ");
for (int i=0; i<nSheet.size(); i++) {
for (int a=0; a<nSheet.get(i); a++) {
sheetWidth.add(sWidth.get(i));
sheetHeight.add(sHeight.get(i));
sLeftOverArea.add(sWidth.get(i) * sHeight.get(i));
System.out.print("[" + sHeight.get(i) + " x " + sWidth.get(i) + "]" + ", ");
}System.out.printin();
}
//define panel set
System.out.printIn("\n" + "Panel set:");
for (int i=0; i<nPanel.size(); i++) {
for (int a=0; a<nPanel.get(i); a++) {
panelWidth.add(pWidth.get(i));
panelHeight.add(pHeight.get(i));
System.out.print("[" + pHeight.get(i) + " x " + pWidth.get(i)+ "]" + ", ");
}System.out.printin();
}
I/ To check and remove the big panel that we cannot put into the sheet, if we don't
have it, it might cause to error.
double maxSHeight = 0;
double maxSWidth = 0;
for (int j = 0; j < nPanel.size(); j++) {
for (inti = 0; i <nSheet.size(); i++) {
if (sHeight.get(i) > maxSHeight) {
maxSHeight = sHeight.get(i);
}
if (sWidth.get(i) > maxSWidth) {
maxSWidth = sWidth.get(i);
}
}
if (((pHeight.get(j) > maxSHeight)) || (pWidth.get(j) > maxSWidth)) {
pWidth.remove(j);
pHeight.remove(j);
nPanel.remove(j);
-
}
}

//To check and remove the small sheet that we cannot use to cut other panel, if we
don't have it, it might cause to error
double minPHeight = 999999999;
double minPWidth = 999999999;
for (inti=0; i< nSheet.size(); i++) {
for (int j = 0; j < nPanel.size(); j++) {

77

if (minPHeight > pHeight.get(j)) {
minPHeight = pHeight.get(j);
}
if (minPWidth > pWidth.get(j)) {
minPWidth = pWidth.get(j);
}
}
if ((sHeight.get(i) < minPHeight) || (sWidth.get(i) < minPWidth)) {
sWidth.remove(i);
sHeight.remove(i);
nSheet.remove(i);
24
}
}
//here is the process of cutting
try {
FilelnputStream file = new FilelnputStream(new File(excelFile));
XSSFWorkbook workbook = new XSSFWorkbook(file);
XSSFSheet sheet = workbook.getSheet("Output");
Row row;
Cell cell;
System.out.printIn("\n" + "Here is the step of cutting: ");

ArrayList<Integer> chosenPanellndex = new ArrayList<Integer>();
ArrayList<Integer> chosenPanelAmount = new ArrayList<Integer>();

ArrayList<Integer> usedPanellndex = new ArrayList<Integer>();
ArrayList<Integer> usedPanelAmount = new ArrayL.ist<Integer>();
ArrayList<Double> leftOverDemand = new ArrayList<Double>();

ArrayList<Double> xOrdinateArray = new ArrayList<Double>();
ArrayList<Double> yOrdinateArray = new ArrayList<Double>();

ArrayList<Double> xOrdinateSelected = new ArrayList<Double>();
ArrayList<Double> yOrdinateSelected = new ArrayList<Double>();

ArrayList<Double> pHeightArray = new ArrayList<Double>();
ArrayList<Double> pWidthArray = new ArrayList<Double>();

ArrayList<Double> pHeightSelected = new ArrayList<Double>();
ArrayList<Double> pWidthSelected = new ArrayList<Double>();

ArrayList<Double> panelHeightAtBeginningLevel = new ArrayList<Double>();
ArrayList<Double> panelHeightAtBeginningLevelClone = new
ArrayList<Double>();

double leftoverHeight;

78

double leftoverWidth;
boolean existingLevel = false;
double currentLeftOverArea=0;
double smallestLeftOverArea=0;
int smallestLeftOverSheet=0;
int numberPanelPerSheet=0;
int panelAmountWithMinimumWaste=0;
double sheetNumberNeeded;
long endTime = 0;
double xOrdinate = 0;
double yOrdinate = 0;
double w = 0;
int startRow = 2, numberingCell = 0, sHeightCell = 1, sWidthCell = 2,
pHeightCell = 3, pWidthCell = 4, demandCell = 5, wastePerSheetCell = 6,
numberPanelPerSheetCell = 7, numberSheetNeededToCut = 8, leftOverPanelCell =9,
computeTimeCell = 10, xCell = 11, yCell = 12, overCutPanelCell = 13,
totalWastePerSheetCell = 14, wasteForCuttingCell = 15;
int r=0;
int printNo = 0;
int i=0, j=0, k=0, level = 0;
int count = 0;
double totalWastePerSheet = 0;
/1this loop for pick sheet one by one from all sheet
for (j = 0; j < nPanel.size(); j++) {
smallestLeftOverArea = sWidth.get(0)*sHeight.get(0);
row = sheet.createRow(startRow + r);
for (i = 0; i < sHeight.size(); i++) {
numberPanelPerSheet = 0;
leftoverHeight = sHeight.get(i);
level = 0;
System.out.print("\n" + "Sheet: " + (i+1) + " Size: " + sWidth.get(i) + " x " +
sHeight.get(i));
currentLeftOverArea = sWidth.get(i) * sHeight.get(i);
/Ithis loop use to define each level in a specific sheet
for (double h=leftoverHeight; h>=pHeight.get(pHeight.size()-1);
h=leftoverHeight) {
leftoverWidth = sWidth.get(i);
existingLevel = false;
ArrayList<Double>newPWidth = new ArrayList<Double>();
ArrayList<Double>newPHeight = new ArrayList<Double>();
ArrayList<Double>newNPanel = new ArrayList<Double>();
if (sHeight.get(i) == leftoverHeight) {
yOrdinate = 0;
}
panelHeightAtBeginningLevel.add(pHeight.get(0));
for (int I = 0; | < pHeight.size(); 1++) {
if (sHeight.get(i)!= leftoverHeight) {

79

if (pHeight.get(l) <= leftoverHeight && pWidth.get(l) <= leftoverWidth){
yOrdinate = yOrdinate + panelHeightAtBeginningLevelClone.get(1);

break;

}
if (pHeight.get(l) > leftoverHeight){
continue;
}
}
}

level +=1;

System.out.printin();

System.out.print("\tLevel: " + level + " |");

/lto check the panel in case that it satisfies only one criteria like sample 34

if (existingLevel == false && ((leftoverHeight>=pHeight.get(j) &&
leftoverWidth>=pWidth.get(j)))){
existingLevel = true;
}else {
newPWidth = (ArrayList)pWidth.clone();
newPHeight =(ArrayList)pHeight.clone();
newNPanel = (ArrayList)nPanel.clone();
newPWidth.remove(pWidth.size()-1);
newPHeight.remove(pHeight.size()-1);
newNPanel.remove(nPanel.size()-1);
}
newPWidth.clear();
newPHeight.clear();
newNPanel.clear();
panelHeightAtBeginningLevelClone.clear();
//Start cutting for the first panel that put into the sheet
if (leftoverHeight >= pHeight.get(j)) {
for (w = leftoverWidth; w >= pWidth.get(j); w = leftoverWidth) {
if (existingLevel == true && leftoverWidth>=pWidth.get(j)) {
System.out.print(" " + pWidth.get(j) + " x " + pHeight.get(j) + " |");
if (sWidth.get(i) == leftoverWidth) {
pHeightArray.add(pHeight.get(j));
pWidthArray.add(pWidth.get(j));
panelHeightAtBeginningLevel.add(pHeight.get(j));

xOrdinate = 0;
xOrdinateArray.add(xOrdinate);
yOrdinateArray.add(yOrdinate);
} else {
pHeightArray.add(pHeight.get(j));
pWidthArray.add(pWidth.get()));
xOrdinate = xOrdinate + pWidthArray.get(pWidthArray.size()-2);

80

xOrdinateArray.add(xOrdinate);
yOrdinateArray.add(yOrdinate);
}
leftoverWidth = leftoverWidth - pWidth.get(j);
currentLeftOverArea = currentLeftOverArea-
(pWidth.get(j)*pHeight.get(j));
numberPanelPerSheet += 1;
if(usedPanellndex.indexOf(j) == -1) {
usedPanellndex.add(j);
usedPanelAmount.add(1);
}else {
usedPanelAmount.set(usedPanelIndex.indexOf(j),
usedPanelAmount.get(usedPanellndex.indexOf(j))+1);

¥
¥
¥
¥

//Start cutting for the next panel that put into the sheet when we put other
types of panel in the same level or the next level
ArrayList<Double> nextPanelCut = new ArrayList<Double>();

for (k = j+1; k < pWidth.size(); k++) {
if(pHeight.get(k) <= leftoverHeight && pWidth.get(k) <= leftoverWidth) {

nextPanelCut.add((double) k);

/Ito pick the new coordinate in the new level

if (sWidth.get(i) == leftoverWidth) {
pHeightArray.add(pHeight.get(k));
panelHeightAtBeginningLevel.add(pHeight.get(k));
pWidthArray.add(pWidth.get(k));
xOrdinate = 0;
xOrdinateArray.add(xOrdinate);
yOrdinateArray.add(yOrdinate);

}else {
pHeightArray.add(pHeight.get(k));
pWidthArray.add(pWidth.get(k));

xOrdinate = xOrdinate + pWidthArray.get(pWidthArray.size()-2);
xOrdinateArray.add(xOrdinate);
yOrdinateArray.add(yOrdinate);
}
leftoverWidth -= pWidth.get(k);
currentLeftOverArea -= (pWidth.get(k)*pHeight.get(k));
System.out.print(" " + pWidth.get(k) + " x " + pHeight.get(k) + " |");
numberPanelPerSheet += 1;
if(usedPanellndex.indexOf(k) == -1) {
usedPanellndex.add(k);
usedPanelAmount.add(1);

81

}else {

usedPanelAmount.set(usedPanelIndex.indexOf(K),
usedPanelAmount.get(usedPanelIndex.indexOf(k))+1);
}
k--;
}

¥
panelHeightAtBeginningLevelClone =

(ArrayList)panelHeightAtBeginningLevel.clone();
panelHeightAtBeginningLevel.clear();
if (leftoverHeight >= pHeight.get(j)) {
leftoverHeight = leftoverHeight - pHeight.get(j);
}else {
if (nextPanelCut.size()!=0) {
double a = nextPanelCut.get(0);
leftoverHeight = leftoverHeight - pHeight.get((int) a);
}
if (nextPanelCut.isEmpty()) {
leftoverHeight = 0;
continue;

ki
¥

¥
System.out.printin();

System.out.print("Total Waste for each sheet: " + currentLeftOverArea);
System.out.print("\nPanel fit: " + numberPanelPerSheet);
System.out.printin();
if (smallestLeftOverArea > currentLeftOverArea) {
smallestLeftOverArea = currentLeftOverArea;
smallestLeftOverSheet = i;
panelAmountWithMinimumWaste = numberPanelPerSheet;
pHeightSelected = (ArrayList)pHeightArray.clone();
pWidthSelected = (ArrayList)pWidthArray.clone();

xOrdinateSelected = (ArrayList)xOrdinateArray.clone();
yOrdinateSelected = (ArrayList)yOrdinateArray.clone();

chosenPanelindex = (ArrayList)usedPanelindex.clone();

}

for(int ind =0; ind < chosenPanelIndex.size(); ind++) {
System.out.printin("Used Index " + chosenPanellndex.get(ind));
System.out.printin("Used Amount " + chosenPanelAmount.get(ind));

}

/I clear it first before selecting the next panel to cut; otherwise, it adds on the

existing data
pHeightArray.clear();
pWidthArray.clear();

82

xOrdinateArray.clear();
yOrdinateArray.clear();

usedPanellndex.clear();
usedPanelAmount.clear();
}
System.out.printin();
System.out.printin(panel AmountWithMinimumWaste + " panels is cut from
panel set by putting in sheet number " + (smallestLeftOverSheet+1) + " (" +
sWidth.get(smallestLeftOverSheet) + " x " + sHeight.get(smallestLeftOverSheet) + ")
with the minimum waste " + smallestLeftOverArea);

double minimumSheet = 10000000;
double result;
// This loop use to select the pattern that can give the minimum waste to cut.
for(int d=0; d < chosenPanelindex.size(); d++) {
result = Math.ceil(nPanel.get(chosenPanelIndex.get(d)) /
chosenPanelAmount.get(d));
if (minimumSheet > result) {
minimumSheet = result;
}
System.out.printin("To fulfill demand of " +
nPanel.get(chosenPanellndex.get(d)) + * we need to use " + result + " sheets");
}
System.out.printIn("\nTherefore: To satisfy the demand we need: " +
minimumSheet + " sheets.");
//To find the over cut panel
double totalWasteOfOverCutPanel = 0;
for (int 1 = 0; | < chosenPanelIndex.size(); I++) {
overUnderCutPanel.add((minimumSheet * chosenPanelAmount.get(l)) -
nPanel.get(chosenPanelIndex.get(l)));
if (overUnderCutPanel.get(l)<=0) {
overCutPanel.add(0.0);

}else {
overCutPanel.add(overUnderCutPanel.get(l));

¥
wasteForEachOverCutPanelForEachSheet.add(overCutPanel.get(l)*
pHeight.get(l) * pwidth.get(l));
totalWasteOfOverCutPanel = totalWasteOfOverCutPanel +
wasteForEachOverCutPanelForEachSheet.get(l);
System.out.printin("Over cut Panel =" + overCutPanel);
}
totalWastePerSheet = (smallestLeftOverArea * minimumSheet) +
totalWasteOfOverCutPanel;
totalWastePerSheetArray.add(totalWastePerSheet);
int index;

83

double amount;

double demand;

//Writing the panel of the pattern that we have selected to cut

for(int ind = 0; ind < chosenPanellndex.size(); ind++) {
System.out.printin("Chosen Index " + chosenPanelIndex.get(ind));
System.out.printin("Used Amount " + chosenPanelAmount.get(ind));
row = sheet.createRow(startRow + r);

index = chosenPanelIndex.get(ind);
amount = chosenPanelAmount.get(ind);
demand = nPanel.get(chosenPanellndex.get(ind));
leftOverDemand.add(demand - (amount * minimumSheet));
count = 0;
//\Write only that first stage of cutting like No
if (ind==0) {
cell = row.createCell(numberingCell);
cell.setCellValue(printNo+1);

cell = row.createCell(sHeightCell);
cell.setCellValue(sHeight.get(smallestLeftOverSheet));

cell = row.createCell(sWidthCell);
cell.setCellValue(sWidth.get(smallestLeftOverSheet));
if (leftOverDemand.get(ind)> 0) {
cell = row.createCell(leftOverPanelCell);
cell.setCellValue(leftOverDemand.get(ind));

¥
¥

It (ind < chosenPanelIndex.size()-1) {
cell = row.createCell(demandCell);
cell.setCellValue(nPanel.get(chosenPanelIndex.get(ind)));

cell = row.createCell(overCutPanelCell);
cell.setCellVValue(overCutPanel.get(ind));

cell = row.createCell(numberPanelPerSheetCell);
cell.setCellValue(chosenPanel Amount.get(ind));
if (leftOverDemand.get(ind)> 0) {
cell = row.createCell(leftOverPanelCell);
cell.setCellValue(leftOverDemand.get(ind));
¥
/1 to spread the panel of cutting such that i can put the coordinate
for (int I = 0; | < chosenPanelAmount.get(ind); 1++) {

cell = row.createCell(pHeightCell);
cell.setCellValue(pHeightSelected.get(l));

84

cell = row.createCell(pWidthCell);
cell.setCellValue(pWidthSelected.get(1));

cell = row.createCell(xCell);
cell.setCellValue(xOrdinateSelected.get(l));

cell = row.createCell(yCell);
cell.setCellValue(yOrdinateSelected.get(l));

count = count + 1;
r++:

row = sheet.createRow(startRow + r);
¥
/[Remove that panel use such that it can print of other panel
for (int b = (count-1) ; b >=0; b--) {
pHeightSelected.remove(b);
pWidthSelected.remove(b);

xOrdinateSelected.remove(b);
yOrdinateSelected.remove(b);

¥

} else if ((chosenPanellndex.size()-1) == ind) {
cell = row.createCell(demandCell);
cell.setCellValue(nPanel.get(chosenPanelIndex.get(ind)));

cell = row.createCell(overCutPanelCell);
cell.setCellValue(overCutPanel.get(ind));

cell = row.createCell(numberPanelPerSheetCell);
cell.setCellValue(chosenPanel Amount.get(ind));

if (leftOverDemand.get(ind)> 0) {
cell = row.createCell(leftOverPanelCell);
cell.setCellValue(leftOverDemand.get(ind));

b

for (int 1 = 0; | < chosenPanelAmount.get(ind); 1++) {
cell = row.createCell(pHeightCell);
cell.setCellValue(pHeightSelected.get(l));

cell = row.createCell(pWidthCell);
cell.setCellValue(pWidthSelected.get(1));

cell = row.createCell(xCell);
cell.setCellValue(xOrdinateSelected.get(l));

cell = row.createCell(yCell);
cell.setCellValue(yOrdinateSelected.get(l));

85

count = count + 1;
r++:

row = sheet.createRow(startRow + r);
b
for (int b = (count-1) ; b >=0; b--) {
pHeightSelected.remove(b);
pWidthSelected.remove(b);

xOrdinateSelected.remove(b);
yOrdinateSelected.remove(b);
}
r--;
}
}

wasteForEachOverCutPanelForEachSheet.clear();
overUnderCutPanel.clear();

overCutPanel.clear();

r=r+2;

printNo++;

cell = row.createCell(wastePerSheetCell);
cell.setCellValue(smallestLeftOverArea);

cell = row.createCell(numberSheetNeededToCut);
cell.setCellVValue(minimumsSheet);

cell = row.createCell(totalWastePerSheetCell);
cell.setCellValue(totalWastePerSheet);

endTime = System.currentTimeMillis();
System.out.printin("Time taken for this process are: " + (endTime - startTime) +
" milli seconds");

cell = row.createCell(computeTimeCell);
cell.setCellValue(endTime - startTime);
for(int d = chosenPanelindex.size()-1; d >=0; d--) {
index = chosenPanelIndex.indexOf(Collections.max(chosenPanelIndex));
amount = chosenPanelAmount.get(index);
demand = nPanel.get(chosenPanelIndex.get(index));
int newlndex = chosenPanellndex.get(index);
if (leftOverDemand.get(index) > 0) {
nPanel.set(newlindex, leftOverDemand.get(index));
chosenPanelIndex.remove(index);
chosenPanel Amount.remove(index);
leftOverDemand.remove(index);

}else {

nPanel.remove(newlindex);

86

pHeight.remove(newlIndex);
pWidth.remove(newlIndex);
chosenPanelindex.remove(index);
chosenPanel Amount.remove(index);
leftOverDemand.remove(index);

¥
¥

leftOverDemand.clear();
System.out.printIn(==---======smmmoeem e em oo ");
-
double wasteForCutting = 0;
for (int | = 0; | < total WastePerSheetArray.size(); 1++) {

wasteForCutting = wasteForCutting + totalWastePerSheetArray.get(l);
}
cell = row.createCell(wasteForCuttingCell);
cell.setCellValue(wasteForCutting);

chosenPanellndex.clear();
chosenPanelAmount.clear();
file.close();

FileOutputStream outFile =new FileOutputStream(new File(excelFile));
workbook.write(outFile);
outFile.close();
} catch (FileNotFoundException e) {
e.printStackTrace();
} catch (IOException e) {
e.printStackTrace();

ky

}
public static void ReadExcel(ArrayList<Double> sWidth,

ArrayList<Double> sHeight, ArrayList<Double> nSheet,
ArrayList<Double> pWidth, ArrayList<Double> pHeight,
ArrayList<Double> nPanel, String excelFile) {
try {
FilelnputStream file = new FilelnputStream(new File(excelFile));
XSSFWorkbook workbook = new XSSFWorkbook(file);
XSSFSheet sheet = workbook.getSheet("'Input™);// or .getsheetAt(2);
// cRow = currentRow, pRow = processingRow
int cRow =0, pRow = 0;
int cColumn = 1;
int datalnRow = 0;
//terate through each rows from first sheet
Iterator<Row> rowlterator = sheet.iterator();
while(rowlterator.hasNext()) {
Row row = rowlterator.next();
cRow++;

87

cColumn =1;
datalnRow = 0;

/[For each row, iterate through each columns
Iterator<Cell> celllterator = row.celllterator();
while(celllterator.hasNext()) {
Cell cell = celllterator.next();
switch(cell.getCell Type()) {
case Cell.CELL_TYPE_BOOLEAN:
System.out.print(cell.getBooleanCellValue() + "\t\t");
datalnRow ++;
break;
case Cell. CELL_TYPE_NUMERIC:
System.out.print(cell.getNumericCellValue() + "\t\t");
if(cRow>pRow) {
pRow = cRow;
b
else
{
switch(cColumn) {
case 1:
pHeight.add(cell.getNumericCellValue());
break;
case 2:
pWidth.add(cell.getNumericCellValue());
break;
case 3:
nPanel.add(cell.getNumericCellValue());
break;
case 4:
sHeight.add(cell.getNumericCellValue());
break;
case 5:
sWidth.add(cell.getNumericCellValue());
break;
case 6:
nSheet.add(cell.getNumericCellValue());
}

cColumn++;
}
datalnRow++;
break;
case Cell.CELL_TYPE_STRING:
System.out.print(cell.getStringCellValue() + "\t\t");
datalnRow++;
break;

}

88

}
if(datalnRow > 0) {

System.out.printin(*"");
¥

file.close();

} catch (FileNotFoundException e) {
e.printStackTrace();

} catch (I0OException e) {
e.printStackTrace();

ky

89

7.1.5. 2D Vertical Improvement

package Simple_Heuristic_lII;

import java.io.File;

import java.io.FilelnputStream;

import java.io.FileNotFoundException;

import java.io.FileOutputStream;

import java.io.|IOException;

import java.util. ArrayList;

import java.util.Collections;

import java.util.lIterator;

import org.apache.poi.ss.usermodel.Cell;

import org.apache.poi.ss.usermodel.Row;

import org.apache.poi.xssf.usermodel. XSSFSheet;
import org.apache.poi.xssf.usermodel. XSSFWorkbook;

public class Improve2_Simple_Heuristic P_WidthBased Cut_Vertical{
public static void main(String[] args) {
long startTime = System.currentTimeMillis();
ArrayList<Double> sWidth = new ArrayList<Double>();
ArrayList<Double> sHeight = new ArrayList<Double>();
ArrayList<Double> nSheet = new ArrayList<Double>();

ArrayList<Double> pWidth = new ArrayList<Double>();

ArrayList<Double> pHeight = new ArrayList<Double>();

ArrayList<Double> nPanel = new ArrayList<Double>();

ArrayList<Double> sLeftOverArea = new ArrayList<Double>();

String excelFile = "D:\\Input and output of heuristics based on
height_ExactNumber.xlIsx";

System.out.printIin("ArrayList in row and column set: ");

ReadExcel(sWidth, sHeight, nSheet, pWidth, pHeight, nPanel, excelFile);

ArrayList<Double> sheetWidth = new ArrayList<Double>();
ArrayList<Double> sheetHeight = new ArrayList<Double>();

ArrayList<Double> panelWidth = new ArrayList<Double>();
ArrayList<Double> panelHeight = new ArrayList<Double>();

ArrayList<Double> overCutPanel = new ArrayList<Double>();
ArrayList<Double> overUnderCutPanel = new ArrayList<Double>();

ArrayList<Double> wasteForEachOverCutPanelForEachSheet = new

ArrayList<Double>();
ArrayList<Double> totalWastePerSheetArray = new ArrayList<Double>();

90

//define sheet set
System.out.printIn("\n" + "Sheet set: ");
for (int i=0; i<nSheet.size(); i++) {
for (int a=0; a<nSheet.get(i); a++) {
sheetWidth.add(sWidth.get(i));
sheetHeight.add(sHeight.get(i));
sLeftOverArea.add(sWidth.get(i) * sHeight.get(i));
System.out.print("[" + sHeight.get(i) + " x " + sWidth.get(i) + "]" + ", ");
}System.out.printin();
}
//define panel set
System.out.printin("\n" + "Panel set:");
for (int i=0; i<nPanel.size(); i++) {
for (int a=0; a<nPanel.get(i); a++) {
panelWidth.add(pWidth.get(i));
panelHeight.add(pHeight.get(i));
System.out.print("[" + pHeight.get(i) + " x " + pWidth.get(i)+ "]" + ", ");
}System.out.printin();
}
/I To check and remove the big panel that we cannot put into the sheet, if we don't
have it, it might cause to error.
double maxSHeight = 0;
double maxSWidth = 0;
for (int j = 0; j < nPanel.size(); j++) {
for (inti = 0; i <nSheet.size(); i++) {
if (sHeight.get(i) > maxSHeight) {
maxSHeight = sHeight.get(i);

}
if (sWidth.get(i) > maxSWidth) {
maxSWidth = sWidth.get(i);

}

}

if (((pHeight.get(j) > maxSHeight)) || (pWidth.get(j) > maxSWidth)) {
pWidth.remove(j);
pHeight.remove(j);
nPanel.remove(j);
| i

}

}

//To check and remove the small sheet that we cannot use to cut other panel, if we
don't have it, it might cause to error
double minPHeight = 999999999;
double minPWidth = 999999999;
for (inti = 0; i < nSheet.size(); i++) {
for (intj = 0; j < nPanel.size(); j++) {
if (minPHeight > pHeight.get(j)) {
minPHeight = pHeight.get(j);

91

}

if (minPWidth > pwidth.get(j)) {
minPWidth = pWidth.get(j);

}

}
if ((sHeight.get(i) < minPHeight) || (sWidth.get(i) < minPWidth)) {
sWidth.remove(i);
sHeight.remove(i);
nSheet.remove(i);
i--;
}
}
//here is the process of cutting
try {
FilelnputStream file = new FilelnputStream(new File(excelFile));
XSSFWorkbook workbook = new XSSFWorkbook(file);
XSSFSheet sheet = workbook.getSheet("Output2");
Row row; // Declare row variable as Excel row.
Cell cell; // Declare cell variable as Excel cell.

System.out.printin(*\n" + "Here is the step of cutting: ");
ArrayList<Integer> chosenPanellndex = new ArrayList<Integer>();
ArrayList<Integer> chosenPanel Amount = new ArrayList<Integer>();

ArrayList<Integer> usedPanelIndex = new ArrayList<Integer>();
ArrayList<Integer> usedPanelAmount = new ArrayL.ist<Integer>();
ArrayList<Double> leftOverDemand = new ArrayList<Double>();

ArrayList<Double> xOrdinateArray = new ArrayList<Double>();
ArrayList<Double> yOrdinateArray = new ArrayList<Double>();

ArrayList<Double> xOrdinateSelected = new ArrayList<Double>();
ArrayList<Double> yOrdinateSelected = new ArrayList<Double>();

ArrayList<Double> pHeightArray = new ArrayList<Double>();
ArrayList<Double> pWidthArray = new ArrayList<Double>();

ArrayList<Double> pHeightSelected = new ArrayList<Double>();
ArrayList<Double> pWidthSelected = new ArrayList<Double>();

ArrayList<Double> panelHeightAtBeginningLevel = new ArrayList<Double>();
ArrayList<Double> panelHeightAtBeginningLevelClone = new
ArrayList<Double>();

double leftoverHeight;

double leftoverWidth;
boolean existingLevel = false;

92

double currentLeftOverArea=0;
double smallestLeftOverArea=0;
int smallestLeftOverSheet=0;
int numberPanelPerSheet=0;
int panelAmountWithMinimumWaste=0;
double sheetNumberNeeded;
long endTime = 0;
double xOrdinate = 0;
double yOrdinate = 0;
double w =0;
int startRow = 2, numberingCell = 0, sHeightCell = 1, sWidthCell = 2,
pHeightCell = 3, pWidthCell = 4, demandCell = 5, wastePerSheetCell = 6,
numberPanelPerSheetCell = 7, numberSheetNeededToCut = 8, leftOverPanelCell = 9,
computeTimeCell = 10, xCell = 11, yCell = 12, overCutPanelCell = 13,
totalWastePerSheetCell = 14, wasteForCuttingCell = 15;
int r=0;
int printNo = 0;
int i=0, j=0, k=0, level = 0;
int count = 0;
double totalWastePerSheet = 0;
//this loop for pick sheet one by one from all sheet
for (j = 0; j < nPanel.size(); j++) {
smallestLeftOverArea = sWidth.get(0)*sHeight.get(0);
row = sheet.createRow(startRow + r);
for (i = 0; i < sHeight.size(); i++) {
numberPanelPerSheet = 0;
leftoverWidth = sWidth.get(i);
level = 0;
System.out.print("\n" + "Sheet: " + (i+1) + " Size: " + sWidth.get(i) + " x " +
sHeight.get(i));
currentLeftOverArea = sWidth.get(i) * sHeight.get(i);

/1this loop use to define each level in a specific sheet
for (double h=leftoverWidth; h>=pWidth.get(pWidth.size()-1);
h=leftoverWidth) {

leftoverHeight = sHeight.get(i);
existingLevel = false;
ArrayList<Double>newPWidth = new ArrayList<Double>();
ArrayList<Double>newPHeight = new ArrayList<Double>();
ArrayList<Double>newNPanel = new ArrayList<Double>();

if (sWidth.get(i) == leftoverWidth) {
xOrdinate = 0;

}
panelHeightAtBeginningLevel.add(pWidth.get(0));
for (int 1 = 0; | < pWidth.size(); I++) {

if (sWidth.get(i)!= leftoverWidth) {

93

if (pWidth.get(l) <= leftoverWidth && pHeight.get(l) <= leftoverHeight) {
xOrdinate = xOrdinate + panelHeightAtBeginningLevelClone.get(1);

break;

}
if (pWidth.get(l) > leftoverWidth){
continue;

k
¥
¥

level +=1;
System.out.printin();
System.out.print("\tLevel: " + level + " |");
if (existingLevel == false && ((leftoverHeight>=pHeight.get(j) &&
leftoverWidth>=pWidth.get(j)))){
existingLevel = true;
}else {
newPWidth = (ArrayList)pWidth.clone();
newPHeight =(ArrayList)pHeight.clone();
newNPanel = (ArrayList)nPanel.clone();

newPWidth.remove(pWidth.size()-1);
newPHeight.remove(pHeight.size()-1);
newNPanel.remove(nPanel.size()-1);
}
newPWidth.clear();
newPHeight.clear();
newNPanel.clear();
panelHeightAtBeginningLevelClone.clear();
if (leftoverWidth >= pWidth.get(j)) {
for (w = leftoverHeight; w >= pHeight.get(j); w = leftoverHeight) {
if (existingLevel == true && leftoverHeight >= pHeight.get(j)) {
System.out.print(" " + pWidth.get(j) + " x " + pHeight.get(j) + " [");
if (sHeight.get(i) == leftoverHeight) {
pHeightArray.add(pHeight.get(j));
pWidthArray.add(pWidth.get()));
panelHeightAtBeginningLevel.add(pWidth.get(j));

yOrdinate = 0;
xOrdinateArray.add(xOrdinate);
yOrdinateArray.add(yOrdinate);
} else {
pHeightArray.add(pHeight.get(j));
pWidthArray.add(pWidth.get()));
yOrdinate = yOrdinate + pHeightArray.get(pHeightArray.size()-2);
xOrdinateArray.add(xOrdinate);
yOrdinateArray.add(yOrdinate);

94

}
leftoverHeight = leftoverHeight - pHeight.get(j);

currentLeftOverArea = currentLeftOverArea-
(pWidth.get(j)*pHeight.get(j));
numberPanelPerSheet += 1;
if(usedPanellndex.indexOf(j) == -1) {
usedPanellndex.add(j);
usedPanelAmount.add(1);
}else {
usedPanelAmount.set(usedPanelIndex.indexOf(j),
usedPanelAmount.get(usedPanelIndex.indexOf(j))+1);
/luse to increase the amount of the same panel size that put into the sheet

¥
ky
¥
¥

ArrayList<Double> nextPanelCut = new ArrayList<Double>();
for (k = j+1; k < pHeight.size(); k++) {
if(pHeight.get(k) <= leftoverHeight && pWidth.get(k) <= leftoverWidth) {
nextPanelCut.add((double) k);
if (sHeight.get(i) == leftoverHeight) {

pHeightArray.add(pHeight.get(k));

panelHeightAtBeginningLevel.add(pWidth.get(k));
pWidthArray.add(pWidth.get(k));

yOrdinate = 0;
xOrdinateArray.add(xOrdinate);
yOrdinateArray.add(yOrdinate);
}else {
pHeightArray.add(pHeight.get(k));
pWidthArray.add(pWidth.get(k));
yOrdinate = yOrdinate + pHeightArray.get(pHeightArray.size()-2);

xOrdinateArray.add(xOrdinate);
yOrdinateArray.add(yOrdinate);

}

leftoverHeight -= pHeight.get(k)

currentLeftOverArea -= (pWidth.get(k) * pHeight.get(k));

System.out.print(" " + pWidth.get(k) + " x " + pHeight.get(k) + " |");
numberPanelPerSheet += 1;
if(usedPanelIndex.indexOf(k) == -1) {

usedPanellndex.add(k);

usedPanelAmount.add(1);

}else {

95

usedPanelAmount.set(usedPanelIndex.indexOf(k),
usedPanelAmount.get(usedPanelIndex.indexOf(k))+1);
}
k--;
¥

¥
panelHeightAtBeginningLevelClone =

(ArrayList)panelHeightAtBeginningLevel.clone();
panelHeightAtBeginningLevel.clear();
if (leftoverWidth >= pWidth.get(j)) {
leftoverWidth = leftoverWidth - pWidth.get(j);
}else {
i (nextPanelCut.size()!=0) {
double a = nextPanelCut.get(0);
leftoverWidth = leftoverWidth - pWidth.get((int) a);
b
i (nextPanelCut.isEmpty()) {
leftoverWidth = 0;
continue;

¥
¥

¥
System.out.printin();

System.out.print("Total Waste for each sheet: " + currentLeftOverArea);
System.out.print("\nPanel fit: " + numberPanelPerSheet);
System.out.printin();
if (smallestLeftOverArea > currentLeftOverArea) {
smallestLeftOverArea = currentLeftOverArea;
smallestLeftOverSheet = i;
panelAmountWithMinimumWaste = numberPanelPerSheet;

pHeightSelected = (ArrayList)pHeightArray.clone();
pWidthSelected = (ArrayList)pWidthArray.clone();

xOrdinateSelected = (ArrayList)xOrdinateArray.clone();
yOrdinateSelected = (ArrayList)yOrdinateArray.clone();

chosenPanelIndex = (ArrayList)usedPanellndex.clone();
chosenPanelAmount = (ArrayList)usedPanel Amount.clone();

}

for (int ind =0; ind < chosenPanellndex.size(); ind++) {
System.out.printIn("Used Index " + chosenPanellndex.get(ind));
System.out.printIn("Used Amount * + chosenPanelAmount.get(ind));

}

pHeightArray.clear();

pWidthArray.clear();

96

xOrdinateArray.clear();
yOrdinateArray.clear();

usedPanellndex.clear();
usedPanelAmount.clear();

}

System.out.printin();

System.out.printin(panel AmountWithMinimumWaste + " panels is cut from
panel set by putting in sheet number " + (smallestLeftOverSheet+1) + " (" +
sWidth.get(smallestLeftOverSheet) + " x " + sHeight.get(smallestLeftOverSheet) + ")
with the minimum waste " + smallestLeftOverArea);

double minimumSheet = 10000000;

double result;

for(int d=0; d < chosenPanelIndex.size(); d++) {

result = Math.ceil(nPanel.get(chosenPanelindex.get(d)) /
chosenPanelAmount.get(d));
if (minimumSheet > result) {
minimumsSheet = result;
}
System.out.printin(*To fulfill demand of " +
nPanel.get(chosenPanelindex.get(d)) + " we need to use " + result + " sheets");

}

System.out.printIn("\nTherefore: To satisfy the demand we need: " +
minimumSheet + " sheets.");

//To find the over cut panel

double totalWasteOfOverCutPanel = 0;

for (int | = 0; | < chosenPanelIndex.size(); I++) {

overUnderCutPanel.add((minimumSheet * chosenPanelAmount.get(l)) -
nPanel.get(chosenPanelindex.get(l)));
if (overUnderCutPanel.get(l)<=0) {
overCutPanel.add(0.0);

}else {
overCutPanel.add(overUnderCutPanel.get(l));

}
wasteForEachOverCutPanelForEachSheet.add(overCutPanel.get(l)*
pHeight.get(l) * pwidth.get(l));
totalWasteOfOverCutPanel = totalWasteOfOverCutPanel +
wasteForEachOverCutPanelForEachSheet.get(l);
System.out.printIn("Over cut Panel =" + overCutPanel);
}
totalWastePerSheet = (smallestLeftOverArea * minimumSheet) +
totalWasteOfOverCutPanel;
totalWastePerSheetArray.add(totalWastePerSheet);
int index;
double amount;
double demand,
for(int ind = 0; ind < chosenPanellndex.size(); ind++) {

97

System.out.printIn("Chosen Index " + chosenPanellndex.get(ind));
System.out.printIn("Used Amount " + chosenPanelAmount.get(ind));
row = sheet.createRow(startRow + r);

index = chosenPanellndex.get(ind);
amount = chosenPanelAmount.get(ind);
demand = nPanel.get(chosenPanelIndex.get(ind));
leftOverDemand.add(demand - (amount * minimumSheet));
count = 0;
if (ind==0) {
cell = row.createCell(numberingCell);
cell.setCellValue(printNo+1);

cell = row.createCell(sHeightCell);
cell.setCellValue(sHeight.get(smallestLeftOverSheet));

cell = row.createCell(sWidthCell);
cell.setCellValue(sWidth.get(smallestLeftOverSheet));

if (leftOverDemand.get(ind)> 0) {
cell = row.createCell(leftOverPanelCell);
cell.setCellValue(leftOverDemand.get(ind));

¥
¥

if (ind < chosenPanelindex.size()-1) {
cell = row.createCell(demandCell);
cell.setCellValue(nPanel.get(chosenPanelIndex.get(ind)));

cell = row.createCell(overCutPanelCell);
cell.setCellValue(overCutPanel.get(ind));

cell = row.createCell(numberPanelPerSheetCell);
cell.setCellValue(chosenPanel Amount.get(ind));
if (leftOverDemand.get(ind)> 0) {
cell = row.createCell(leftOverPanelCell);
cell.setCellValue(leftOverDemand.get(ind));
¥
/1 to spread the panel of cutting such that i can put the coordinate
for (int I = 0; | < chosenPanelAmount.get(ind); 1++) {

cell = row.createCell(pHeightCell);
cell.setCellValue(pHeightSelected.get(l));

cell = row.createCell(pWidthCell);
cell.setCellValue(pWidthSelected.get(l));

cell = row.createCell(xCell);

98

cell.setCellValue(xOrdinateSelected.get(1));

cell = row.createCell(yCell);
cell.setCellValue(yOrdinateSelected.get(1));

count = count + 1;
r4+:

row = sheet.createRow(startRow + r);
¥
/[Remove that panel use such that it can print of other panel
for (intb = (count-1) ; b >=0; b--) {
pHeightSelected.remove(b);
pWidthSelected.remove(b);

xOrdinateSelected.remove(b);
yOrdinateSelected.remove(b);

¥

} else if ((chosenPanellndex.size()-1) == ind) {
cell = row.createCell(demandCell);
cell.setCellValue(nPanel.get(chosenPanelIndex.get(ind)));

cell = row.createCell(overCutPanelCell);
cell.setCellValue(overCutPanel.get(ind));

cell = row.createCell(numberPanelPerSheetCell);
cell.setCellValue(chosenPanel Amount.get(ind));

if (leftOverDemand.get(ind)> 0) {
cell = row.createCell(leftOverPanelCell);
cell.setCellValue(leftOverDemand.get(ind));

}

for (int 1 = 0; | < chosenPanelAmount.get(ind); I++) {
cell = row.createCell(pHeightCell);
cell.setCellValue(pHeightSelected.get(l));

cell = row.createCell(pWidthCell);
cell.setCellValue(pWidthSelected.get(l));

cell = row.createCell(xCell);
cell.setCellVValue(xOrdinateSelected.get(l));

cell = row.createCell(yCell);
cell.setCellValue(yOrdinateSelected.get(1));

count = count + 1;
r4+:

row = sheet.createRow(startRow + r);

99

b

for (int b = (count-1) ; b >=0; b--) {
pHeightSelected.remove(b);
pWidthSelected.remove(b);

xOrdinateSelected.remove(b);
yOrdinateSelected.remove(b);
}
r--
}
}

wasteForEachOverCutPanelForEachSheet.clear();
overUnderCutPanel.clear();

overCutPanel.clear();

r=r+2;

printNo++;

cell = row.createCell(wastePerSheetCell);
cell.setCellValue(smallestLeftOverArea);

cell = row.createCell(numberSheetNeededToCut);
cell.setCellValue(minimumsSheet);

cell = row.createCell(total WastePerSheetCell);
cell.setCellValue(totalWastePerSheet);

endTime = System.currentTimeMillis();
System.out.printin("Time taken for this process are: " + (endTime - startTime) +
" milli seconds");

cell = row.createCell(computeTimeCell);
cell.setCellValue(endTime - startTime);

for(int d = chosenPanellndex.size()-1; d >=0; d--) {

index = chosenPanelIndex.indexOf(Collections.max(chosenPanelindex));

amount = chosenPanel Amount.get(index);

demand = nPanel.get(chosenPanellndex.get(index));

int newlndex = chosenPanelIndex.get(index);

if (leftOverDemand.get(index) > 0) {
nPanel.set(newlindex, leftOverDemand.get(index));
chosenPanelIndex.remove(index);
chosenPanel Amount.remove(index);
leftOverDemand.remove(index);

} else {
nPanel.remove(newlindex);
pHeight.remove(newlndex);
pWidth.remove(newlIndex);

100

chosenPanelindex.remove(index);
chosenPanel Amount.remove(index);
leftOverDemand.remove(index);

k
¥

leftOverDemand.clear();
System.out.printIn(*-----===-=-m- o ")
-
double wasteForCutting = 0;
for (int | = 0; | < totalWastePerSheetArray.size(); 1++) {
wasteForCutting = wasteForCutting + totalWastePerSheetArray.get(l);
}
cell = row.createCell(wasteForCuttingCell);
cell.setCellValue(wasteForCutting);

chosenPanellndex.clear();
chosenPanelAmount.clear();
file.close();

FileOutputStream outFile =new FileOutputStream(new File(excelFile));
workbook.write(outFile);
outFile.close();
} catch (FileNotFoundException e) {
e.printStackTrace();
} catch (IOException e) {
e.printStackTrace();

ky

}
public static void ReadExcel(ArrayList<Double> sWidth,

ArrayList<Double> sHeight, ArrayList<Double> nSheet,
ArrayList<Double> pWidth, ArrayList<Double> pHeight,
ArrayList<Double> nPanel, String excelFile) {
try {
FilelnputStream file = new FilelnputStream(new File(excelFile));
XSSFWorkbook workbook = new XSSFWorkbook(file);
XSSFSheet sheet = workbook.getSheet("Input2");
// cRow = currentRow, pRow = processingRow
int cRow =0, pRow = 0;
int cColumn = 1;
int datalnRow = 0;

/terate through each rows from first sheet
Iterator<Row> rowlterator = sheet.iterator();
while(rowlterator.hasNext()) {

Row row = rowlterator.next();

CRow++;

cColumn =1,

101

datalnRow = 0;
/[For each row, iterate through each columns
Iterator<Cell> celllterator = row.celllterator();
while(celllterator.hasNext()) {
Cell cell = celllterator.next();
switch(cell.getCell Type()) {
case Cell.CELL_TYPE_BOOLEAN:
System.out.print(cell.getBooleanCellValue() + "\t\t");
datalnRow ++;
break;
case Cell.CELL_TYPE_NUMERIC:
System.out.print(cell.getNumericCellValue() + "\t\t");
if(cRow>pRow) {
pRow = cRow;
by

else

switch(cColumn) {

case 1:
pHeight.add(cell.getNumericCellValue());
break;

case 2:
pWidth.add(cell.getNumericCellValue());
break;

case 3:
nPanel.add(cell.getNumericCellValue());
break;

case 4:
sHeight.add(cell.getNumericCellValue());
break;

case 5:
sWidth.add(cell.getNumericCellValue());
break;

case 6:
nSheet.add(cell.getNumericCellValue());

}

cColumn++;

}

datalnRow++;

break;

case Cell.CELL_TYPE_STRING:
System.out.print(cell.getStringCellValue() + "\t\t");
datalnRow++;
break;

}

}
if(datalnRow > 0) {

102

System.out.printin("""");
}

file.close();

} catch (FileNotFoundException e) {
e.printStackTrace();

} catch (I0Exception e) {
e.printStackTrace();

ks

103

7.1.6. Sheet Width Panel Height Horizontal Cut

package SWidthBased_PHeightBased 2D 2Stage Horizontal_Cutting_P3;

import java.io.File;

import java.io.FilelnputStream;

import java.io.FileNotFoundException;

import java.io.FileOutputStream;

import java.io.|IOException;

import java.util. ArrayList;

import java.util.lterator;

import org.apache.poi.ss.usermodel.Cell;

import org.apache.poi.ss.usermodel.Row;

import org.apache.poi.xssf.usermodel. XSSFSheet;
import org.apache.poi.xssf.usermodel. XSSFWorkbook;

public class SWidthBased_PHeightBased 2D_2Stage Horizontal Cutting_P3{
public static void main(String[] args) {
long startTime = System.currentTimeMillis();
ArrayList<Double> sWidth = new ArrayList<Double>();
ArrayList<Double> sHeight = new ArrayList<Double>(); // Unique sheet height.
ArrayList<Double> nSheet = new ArrayList<Double>(); // Amount of sheet of
each size.

ArrayList<Double> pWidth = new ArrayList<Double>();
ArrayList<Double> pHeight = new ArrayList<Double>();
ArrayList<Double> nPanel = new ArrayList<Double>();

ArrayList<Double> sLeftOverArea = new ArrayList<Double>();

String excelFile = "C:\\Users\\Tiengkimseng\\Google
Drive\\Kimseng\\Thesis\CODE_2D 2S AND 2D 3S _CUTTING_8MODELS\\Heu
ristic_for_2D_2Stage Conl Con2_P1 P3\\SWidth PHeight P3\\CuttingData -
Sample 39.xIsx™;

//String excelFile = "D:\\Input and output of heuristics For construction 1 and
2.xIsx";

System.out.printIn("ArrayList in row and column set: ");

try {
FileInputStream file = new FilelnputStream(new File(excelFile));

XSSFWorkbook workbook = new XSSFWorkbook(file);

XSSFSheet sheet = workbook.getSheet("Input™);// or .getsheetAt(2);

Il cRow = currentRow, pRow = processingRow

int cRow =0, pRow =0; /I cRow can give any value but pRow cannot
int cColumn =1, Il here we also can change it

int datalnRow = 0;

104

//terate through each rows from first sheet
Iterator<Row> rowlterator = sheet.iterator();
while(rowlterator.hasNext()) {

Row row = rowlterator.next();

CRow++;

cColumn =1,

datalnRow = 0;

//For each row, iterate through each columns
Iterator<Cell> celllterator = row.celllterator();
while(celllterator.hasNext()) {
Cell cell = celllterator.next();
switch(cell.getCell Type()) {
case Cell. CELL_TYPE_BOOLEAN:
System.out.print(cell.getBooleanCellValue() + "\t\t");
datalnRow ++;
break;
case Cell. CELL_TYPE_NUMERIC:
System.out.print(cell.getNumericCellValue() + "\t\t");
if(cCRow>pRow) {
pRow = cRow;
¥
Else
{
switch(cColumn) {
case 1:
pHeight.add(cell.getNumericCellValue());
break;
case 2:
pWidth.add(cell.getNumericCellValue());
break;
case 3:
nPanel.add(cell.getNumericCellValue());
break;
case 4:
sHeight.add(cell.getNumericCellValue());
break;
case 5:
sWidth.add(cell.getNumericCellValue());
break;
case 6:
nSheet.add(cell.getNumericCellValue());
}

cColumn++;

}

datalnRow++;
break;

105

case Cell.CELL_TYPE_STRING:
System.out.print(cell.getStringCellVValue() + "\t\t");
datalnRow++;
break;

}

}
if(datalnRow > 0) {

System.out.printin(*");
ki

file.close();
} catch (FileNotFoundException e) {
e.printStackTrace();
} catch (IOException e) {
e.printStackTrace();
}
ArrayList<Double> sheetWidth = new ArrayList<Double>();
ArrayList<Double> sheetHeight = new ArrayList<Double>();

ArrayList<Double> panelWidth = new ArrayList<Double>();
ArrayList<Double> panelHeight = new ArrayList<Double>();

ArrayList<Double> totalWastePerSheet = new ArrayList<Double>();
//define sheet set
System.out.printIn("\n" + "Sheet set: "');
for (int i=0; i<nSheet.size(); i++) {
for (int a=0; a<nSheet.get(i); at++) {
sheetWidth.add(sWidth.get(i));
sheetHeight.add(sHeight.get(i));
sLeftOverArea.add(sWidth.get(i) * sHeight.get(i));
//System.out.print("[" + sHeight.get(i) + " x " + sWidth.get(i) + "]" + ", "™);
}System.out.printin();
}
//define panel set
System.out.printIn("\n" + "Panel set:");
for (int i=0; i<nPanel.size(); i++) {
for (int a=0; a<nPanel.get(i); a++) {
panelWidth.add(pWidth.get(i));
panelHeight.add(pHeight.get(i));
//System.out.print("[" + pHeight.get(i) + " x " + pWidth.get(i)+ "]" + ", ");
}System.out.printin();
}

/Ihere is the process of cutting

try {
I/l Open excel file.

FileInputStream file = new FilelnputStream(new File(excelFile));

106

XSSFWorkbook workbook = new XSSFWorkbook(file);
XSSFSheet sheet = workbook.getSheet("Output™);// or .getsheetAt(2);

Row row; // Declare row variable as Excel row.
Cell cell; // Declare cell variable as Excel cell.

System.out.printIn("\n" + "Here is the step of cutting: ");
double leftoverHeight;
double leftoverWidth;
double wasteBeforeCut = 0;
/I Now everything is still working as expected. So no other code editing is
necessary.
int startRow = 2, sHeightCell = 0, sWidthCell = 1, pHeightCell = 2, pWidthCell
=3, levelCell = 4, sLeftOverAreaCell = 5, computeTimeCell = 6, totalWasteCell = 7,
int r=0;
long computeTime = 0;
boolean existingLevel = false; // Level check if new calculate new
[leftoverHeight] and [leftoverWidth].
int i=0, j=0, level;
//.size equal to .length but one use in arraylist and another one use in array
this loop for pick sheet one by one from all sheet
for (i = 0; i < sheetHeight.size(); i++) {
leftoverHeight = sheetHeight.get(i);
leftoverWidth = sheetWidth.get(i);//.get(i) use in arraylist
level = 0;

row = sheet.createRow(startRow + r);

cell = row.createCell(sHeightCell);
cell.setCellValue(sheetHeight.get(i));

cell = row.createCell(sWidthCell);
cell.setCellValue(sheetWidth.get(i));
/ITo define the value of the waste
if (i>0){
sheet.getRow(startRow + (r-
1)).createCell(sLeftOverAreaCell).setCellValue(sLeftOverArea.get(i-1));
}
/this loop use to define each level in a specific sheet
for (double h=leftoverHeight; h>=panelHeight.get(panelHeight.size()-1);
h=leftoverHeight) {
leftoverWidth = sheetWidth.get(i);
existingLevel = false;
/I this loop use to pick the panel to put inside each level in a specific sheet
for (j = 0; j < panelHeight.size(); j++) {
if (existingLevel == false && (leftoverHeight>=panelHeight.get(j) &&
leftoverWidth>=panelWidth.get(j))) {

107

leftoverHeight = leftoverHeight - panelHeight.get(j);
existingLevel = true;
level +=1;
¥
if (existingLevel == true && leftoverWidth >= panelWidth.get(j)) {
System.out.printIn(“put panel: " + panelHeight.get(j) + " x " +
panelWidth.get(j) + " into sheet: " + (i+1) + " level: " + level);
sLeftOverArea.set(i, sLeftOverArea.get(i) - (panelHeight.get(j) *
panelWidth.get(j)));
try {
row = sheet.getRow(startRow + r);
if (row ==null) {
row = sheet.createRow(startRow + r);

}

catch (Exception e) {

row = sheet.createRow(startRow + r);
}
row.createCell(pHeightCell).setCellVValue(panelHeight.get(j));
row.createCell(pWidthCell).setCellValue(panelWidth.get(j));
row.createCell(levelCell).setCellValue(level);

r=r+1; // move tonew row.
leftoverWidth = leftoverWidth - panelWidth.get(j);
panelHeight.remove(j);
panelWidth.remove(j);
i=i-%
}

¥
if(panelHeight.isEmpty()){

sheet.getRow(startRow + (r-
1)).createCell(sLeftOverAreaCell).setCellVValue(sLeftOverArea.get(i));

sheet.getRow(startRow + (r-
1)).createCell(computeTimeCell).setCellVValue(computeTime);

totalWastePerSheet.add(sLeftOverArea.get(i));

for (int k = 0; k < totalWastePerSheet.size(); k++) {

wasteBeforeCut = wasteBeforeCut + totalWastePerSheet.get(k);

b

sheet.getRow(startRow + (r-
1)).createCell(totalWasteCell).setCellVValue(wasteBeforeCut);

file.close();

FileOutputStream outFile =new FileOutputStream(new File(excelFile));

workbook.write(outFile);

outFile.close();

return;

108

totalWastePerSheet.add(sLeftOverArea.get(i));
sheetHeight.remove(0);
sheetWidth.remove(0);
long endTime = System.currentTimeMillis();
computeTime = endTime - startTime;
System.out.printIn("Time taken for this process are: " + (computeTime) +
milli seconds");
cell = row.createCell(computeTimeCell);
cell.setCellVValue(computeTime);
}
sheet.getRow(startRow + (r-
1)).createCell(sLeftOverAreaCell).setCellVValue(sLeftOverArea.get(9));
file.close();
FileOutputStream outFile =new FileOutputStream(new File(excelFile));
workbook.write(outFile);
outFile.close();
for(int 1=0; | < sLeftOverArea.size(); I++) {
System.out.printin("Sheet: " + (I+1) + " Left over area: " +
sLeftOverArea.get(l));
}
} catch (FileNotFoundException e) {
e.printStackTrace();
} catch (IOException e) {
e.printStackTrace();
}
}
}

109

7.1.7. Sheet Width Panel Width Vertical Cut

package SWidthBased_PWidthBased_2D_ 2Stage Vertical _Cutting_P3;

import java.io.File;

import java.io.FilelnputStream;

import java.io.FileNotFoundException;

import java.io.FileOutputStream;

import java.io.|OException;

import java.util. ArrayList;

import java.util.lterator;

import org.apache.poi.ss.usermodel.Cell;

import org.apache.poi.ss.usermodel.Row;

import org.apache.poi.xssf.usermodel. XSSFSheet;
import org.apache.poi.xssf.usermodel. XSSFWorkbook;

public class SWidthBased_PWidthBased_2D_2Stage Vertical_Cutting_P3{
public static void main(String[] args) {
long startTime = System.currentTimeMillis();
ArrayList<Double> sWidth = new ArrayList<Double>();
ArrayList<Double> sHeight = new ArrayList<Double>(); // Unique sheet height.
ArrayList<Double> nSheet = new ArrayList<Double>(); // Amount of sheet of
each size.

ArrayList<Double> pWidth = new ArrayList<Double>();
ArrayList<Double> pHeight = new ArrayList<Double>();
ArrayList<Double> nPanel = new ArrayList<Double>();

ArrayList<Double> sLeftOverArea = new ArrayList<Double>();

String excelFile = "C:\\Users\\Tiengkimseng\\Google
Drive\\Kimseng\\Thesis\CODE_2D 2S AND 2D 3S _CUTTING_8MODELS\\Heu
ristic_for_2D_2Stage Conl Con2_ P1 P3\\SWidth_PWidth_P3\\CuttingData -
Sample 39.xIsx™;

//String excelFile = "D:\\Input and output of heuristics For construction 1 and
2.xIsx";

System.out.printIn("ArrayList in row and column set:);

try {

FileInputStream file = new FilelnputStream(new File(excelFile));
XSSFWorkbook workbook = new XSSFWorkbook(file);
IIXSSFSheet sheet = workbook.getSheet("Input4™);// or .getsheetAt(2);

XSSFSheet sheet = workbook.getSheet("Input™);// or .getsheetAt(2);
/I cRow = currentRow, pRow = processingRow

int cRow =0, pRow =0; // cRow can give any values but pRow cannot
(what is its function?)
int cColumn =1, I/ here we also can change it

110

int datalnRow = 0;

//terate through each rows from first sheet
Iterator<Row> rowlterator = sheet.iterator();
while(rowlterator.hasNext()) {

Row row = rowlterator.next();

CRow++;

cColumn =1,

datalnRow = 0;

//For each row, iterate through each columns
Iterator<Cell> celllterator = row.celllterator();
while(celllterator.hasNext()) {
Cell cell = celllterator.next();
switch(cell.getCell Type()) {
case Cell. CELL_TYPE_BOOLEAN:
System.out.print(cell.getBooleanCellValue() + "\t\t");
datalnRow ++;
break;
case Cell.CELL_TYPE_NUMERIC:
System.out.print(cell.getNumericCellValue() + "\t\t");
if(cCRow>pRow) {
pRow = cRow;
¥
Else
{
switch(cColumn) {
case 1:
pHeight.add(cell.getNumericCellValue());
break;
case 2:
pWidth.add(cell.getNumericCellValue());
break;
case 3:
nPanel.add(cell.getNumericCellValue());
break;
case 4:
sHeight.add(cell.getNumericCellValue());
break;
case 5:
sWidth.add(cell.getNumericCellValue());
break;
case 6:
nSheet.add(cell.getNumericCellValue());
}

cColumn++;

}

111

datalnRow++;
break;

case Cell.CELL_TYPE_STRING:
System.out.print(cell.getStringCellVValue() + "\t\t");
datalnRow++;
break;

}

}
if(datalnRow > 0) {

System.out.printin("""");

k
¥

file.close();

} catch (FileNotFoundException €) {
e.printStackTrace();

} catch (IOException e) {
e.printStackTrace();

}

ArrayList<Double> sheetWidth = new ArrayList<Double>();
ArrayList<Double> sheetHeight = new ArrayList<Double>();

ArrayList<Double> panelWidth = new ArrayList<Double>();
ArrayList<Double> panelHeight = new ArrayList<Double>();
ArrayList<Double> totalWastePerSheet = new ArrayList<Double>();

//define sheet set
System.out.printIn("\n" + "Sheet set: ");
for (int i=0; i<nSheet.size(); i++) {
for (int a=0; a<nSheet.get(i); a++) {
sheetWidth.add(sWidth.get(i));
sheetHeight.add(sHeight.get(i));
sLeftOverArea.add(sWidth.get(i) * sHeight.get(i));
//System.out.print("[" + sHeight.get(i) + " x " + sWidth.get(i) + "]" + ", ");//lt is
correct
}System.out.printin();
}
//define panel set
System.out.printIn("\n" + "Panel set:");
for (int i=0; i<nPanel.size(); i++) {
for (int a=0; a<nPanel.get(i); a++) {
panelWidth.add(pWidth.get(i));
panelHeight.add(pHeight.get(i));
//System.out.print("[" + pHeight.get(i) + " x " + pWidth.get(i)+ "]" + ", ");//1t is
correct
}System.out.printin();

112

//here is the process of cutting
try {
// Open excel file.
FilelnputStream file = new FilelnputStream(new File(excelFile));

XSSFWorkbook workbook = new XSSFWorkbook(file);
XSSFSheet sheet = workbook.getSheet("Output");// or .getsheetAt(2);

Row row; // Declare row variable as Excel row.
Cell cell; // Declare cell variable as Excel cell.
System.out.printIn("\n" + "Here is the step of cutting: ");

double leftoverHeight;

double leftoverWidth;

double wasteBeforeCut = 0;

/I Now everything is still working as expected. So no other code editing is
necessary.

int startRow = 2, sHeightCell = 0, sWidthCell = 1, pHeightCell = 2, pWidthCell
=3, levelCell = 4, sLeftOverAreaCell = 5, computeTimeCell = 6, totalWasteCell = 7,

int r=0;

long computeTime = 0;

boolean existingLevel = false; // Level check if new calculate new
[leftoverHeight] and [leftoverWidth].

int i=0, j=0, level;

for (i = 0; i < sheetWidth.size(); i++) {
leftoverHeight = sheetHeight.get(i);
leftoverWidth = sheetWidth.get(i);//.get(i) use in arraylist
level = 0;

row = sheet.createRow(startRow + r);

cell = row.createCell(sHeightCell);
cell.setCellValue(sheetHeight.get(i));

cell = row.createCell(sWidthCell);
cell.setCellValue(sheetWidth.get(i));

//To define the value of the waste
if (i>0){
sheet.getRow(startRow + (r-
1)).createCell(sLeftOverAreaCell).setCellVValue(sLeftOverArea.get(i-1));
}
/lthis loop use to define each level in a specific sheet
for (double h=leftoverWidth; h>=panelWidth.get(panelWidth.size()-1);
h=leftoverWidth) {
leftoverHeight = sheetHeight.get(i);

113

existingLevel = false;
/] this loop use to pick the panel to put inside each level in a specific sheet
for (j = 0; j < panelWidth.size(); j++) {
if (existingLevel == false && (leftoverHeight>=panelHeight.get(j) &&
leftoverWidth>=panelWidth.get(j))) {
leftoverWidth = leftoverWidth - panelWidth.get(j);
existingLevel = true;
level +=1;
¥
if (existingLevel == true && leftoverHeight>=panelHeight.get(j)) {
System.out.printin("put panel: " + panelHeight.get(j) + " x " +
panelWidth.get(j) + " into sheet: " + (i+1) + " level: " + level);
sLeftOverArea.set(i, sLeftOverArea.get(i) - (panelHeight.get(j) *
panelWidth.get(j)));

//row = sheet.getRow(startRow + r); // read data at row: startRow + r
in sheet in Excel file.
try {

row = sheet.getRow(startRow + r);
if (row == null) {
row = sheet.createRow(startRow + r);

ks

catch (Exception e) {

row = sheet.createRow(startRow + r);
}
row.createCell(pHeightCell).setCell\VValue(panelHeight.get(j));
row.createCell(pWidthCell).setCellValue(panelWidth.get(j));
row.createCell(levelCell).setCellValue(level);

r++;// move to new row.
leftoverHeight = leftoverHeight - panelHeight.get(j);
panelHeight.remove(j);
panelWidth.remove(j);
i=i-1
¥
}
if(panelHeight.isEmpty()){
sheet.getRow(startRow + (r-
1)).createCell(sLeftOverAreaCell).setCellVValue(sLeftOverArea.get(i));
sheet.getRow(startRow + (r-
1)).createCell(computeTimeCell).setCell\VValue(computeTime);
totalWastePerSheet.add(sLeftOverArea.get(i));

for (int k = 0; k < totalWastePerSheet.size(); k++) {
wasteBeforeCut = wasteBeforeCut + totalWastePerSheet.get(k);

¥

114

sheet.getRow(startRow + (r-
1)).createCell(totalWasteCell).setCellValue(wasteBeforeCut);

file.close();

FileOutputStream outFile =new FileOutputStream(new File(excelFile));

workbook.write(outFile);

outFile.close();

return;

}

}
totalWastePerSheet.add(sLeftOverArea.get(i));

sheetHeight.remove(0);
sheetWidth.remove(0);
long endTime = System.currentTimeMillis();
computeTime = endTime - startTime;
System.out.printIn("Time taken for this process are: " + (computeTime) + "
milli seconds™);
cell = row.createCell(computeTimeCell);
cell.setCellValue(computeTime);
}
sheet.getRow(startRow + (r-
1)).createCell(sLeftOverAreaCell).setCellVValue(sLeftOverArea.get(9));
file.close();
FileOutputStream outFile =new FileOutputStream(new File(excelFile));
workbook.write(outFile);
outFile.close();

for(int 1=0; | < sLeftOverArea.size(); I++) {
System.out.printin("Sheet: " + (I+1) + " Left over area: " +
sLeftOverArea.get(l));

} catch (FileNotFoundException e) {
e.printStackTrace();

} catch (IOException e) {
e.printStackTrace();

ks
¥
ks

115

7.1.8. Minimum Sheet Width Ordering Panel Height Horizontal Cut

package Simple_Heuristic_Il_2D_2S _P3;

import java.io.File;

import java.io.FilelnputStream;

import java.io.FileNotFoundException;

import java.io.FileOutputStream;

import java.io.|IOException;

import java.util. ArrayList;

import java.util.Collections;

import java.util.lIterator;

import org.apache.poi.ss.usermodel.Cell;

import org.apache.poi.ss.usermodel.Row;

import org.apache.poi.xssf.usermodel. XSSFSheet;
import org.apache.poi.xssf.usermodel. XSSFWorkbook;

public class Im1_Min_SWidth_PH_Cut_Horizon P3{
public static void main(String[] args) {
long startTime = System.currentTimeMillis();
ArrayList<Double> sWidth = new ArrayList<Double>();
ArrayList<Double> sHeight = new ArrayList<Double>(); // Unique sheet height.
ArrayList<Double> nSheet = new ArrayList<Double>(); // Amount of sheet of
each size.

ArrayList<Double> pWidth = new ArrayList<Double>();
ArrayList<Double> pHeight = new ArrayList<Double>();
ArrayList<Double> nPanel = new ArrayList<Double>();

ArrayList<Double> sLeftOverArea = new ArrayList<Double>();

String excelFile = "C:\\Users\\Tiengkimseng\\Google
Drive\\Kimseng\\Thesis\CODE_2D 2S AND_2D 3S CUTTING_8MODELS\Sim
ple Heuristic 11_VS_Coordinate
(x,y)_MinSWidth_P3\\SWidth_PHeight_P3\\CuttingData - Sample 28.xlsx";

System.out.printin("ArrayList in row and column set: ");
ReadExcel(sWidth, sHeight, nSheet, pWidth, pHeight, nPanel, excelFile);

ArrayList<Double> sheetWidth = new ArrayList<Double>();
ArrayList<Double> sheetHeight = new ArrayList<Double>();

ArrayList<Double> panelWidth = new ArrayList<Double>();
ArrayList<Double> panelHeight = new ArrayList<Double>();

ArrayList<Double> overCutPanel = new ArrayList<Double>();
ArrayList<Double> overUnderCutPanel = new ArrayList<Double>();

116

ArrayList<Double> wasteForEachOverCutPanelForEachSheet = new

ArrayList<Double>();

ArrayList<Double> totalWastePerSheetArray = new ArrayList<Double>();

//define sheet set
System.out.printIn("\n" + "Sheet set: ");
for (int i=0; i<nSheet.size(); i++) {
for (int a=0; a<nSheet.get(i); at++) {
sheetWidth.add(sWidth.get(i));
sheetHeight.add(sHeight.get(i));
sLeftOverArea.add(sWidth.get(i) * sHeight.get(i));
System.out.print("[" + sHeight.get(i) + " x " + sWidth.get(i) + "]" + ", ");
}System.out.printin();
}
//define panel set
System.out.printIn("\n" + "Panel set:");
for (int i=0; i<nPanel.size(); i++) {
for (int a=0; a<nPanel.get(i); a++) {
panelWidth.add(pWidth.get(i));
panelHeight.add(pHeight.get(i));
System.out.print("[" + pHeight.get(i) + " x " + pWidth.get(i)+ "]" + ", ");
}System.out.printin();
}
double maxSHeight = 0;
double maxSWidth = 0;
for (intj = 0; j < nPanel.size(); j++) {
for (inti = 0; i < nSheet.size(); i++) {
if (sHeight.get(i) > maxSHeight) {
maxSHeight = sHeight.get(i);
}
if (sWidth.get(i) > maxSWidth) {
maxSWidth = sWidth.get(i);
}
}
if (((pHeight.get(j) > maxSHeight)) || (pWidth.get(j) > maxSWidth)) {
pWidth.remove(j);
pHeight.remove(j);
nPanel.remove(j);
-
}
}

//To check and remove the small sheet that we cannot use to cut other panel
double minPHeight = 999999999;
double minPWidth = 999999999;
for (inti=0; i <nSheet.size(); i++) {
for (int j = 0; j < nPanel.size(); j++) {

117

if (minPHeight > pHeight.get(j)) {
minPHeight = pHeight.get(j);
}
if (minPWidth > pWidth.get(j)) {
minPWidth = pWidth.get(j);
}
}
if ((sHeight.get(i) < minPHeight) || (sWidth.get(i) < minPWidth)) {
sWidth.remove(i);
sHeight.remove(i);
nSheet.remove(i);
1--;
}
}
//here is the process of cutting
try {
// Open excel file.
FilelnputStream file = new FilelnputStream(new File(excelFile));

//Get the workbook instance for XLSX file
XSSFWorkbook workbook = new XSSFWorkbook(file);

//Read sheet['Output']
XSSFSheet sheet = workbook.getSheet("Output");

Row row: // Declare row variable as Excel row.
Cell cell; // Declare cell variable as Excel cell.

System.out.printin("\n" + "Here is the step of cutting: ");

ArrayList<Integer> chosenPanelIndex = new ArrayList<Integer>();
ArrayList<Integer> chosenPanelAmount = new ArrayList<Integer>();

ArrayList<Integer> usedPanellndex = new ArrayList<Integer>();//the index of
the panel that have been cut in each type of sheet

ArrayList<Integer> usedPanelAmount = new ArrayList<Integer>();//number of
panel in each type that used to cut

ArrayList<Double> leftOverDemand = new ArrayList<Double>();//number of
demand after update with the panel number cut

ArrayList<Double> xOrdinateArray = new ArrayList<Double>();//Use to add the
x ordinate one by one then when the panel is cut then clone it to xOrdinateSelected
when the sheet is full

ArrayList<Double> yOrdinateArray = new ArrayList<Double>();

ArrayList<Double> xOrdinateSelected = new ArrayList<Double>();//use to write
the coordinate in excel

ArrayList<Double> yOrdinateSelected = new ArrayList<Double>();

118

ArrayList<Double> pHeightArray = new ArrayList<Double>();//Use to add the
panel cut in order one by one then clone it to pHeightSelected when the sheet cut is
full

ArrayList<Double> pWidthArray = new ArrayList<Double>();

ArrayList<Double> pHeightSelected = new ArrayList<Double>();//use to write
the panel cut in excel in accordance with the coordinate
ArrayList<Double> pWidthSelected = new ArrayList<Double>();

ArrayList<Double> panelHeightAtBeginningLevel = new ArrayList<Double>();
ArrayList<Double> panelHeightAtBeginningLevelClone = new
ArrayList<Double>();

ArrayList<Double> indexOfMinWidthGapCopy = new ArrayList<Double>();
ArrayList<Double> indexOfMinWidthGapCopyClone = new
ArrayList<Double>();

double leftoverHeight;
double leftoverWidth;
boolean existingLevel = false; // New or existing level check
double currentLeftOverArea=0;
double smallestLeftOverArea=0; Il Variable to store the smallest left over
area of sheet.
int smallestLeftOverSheet=0; // Store index of the smallest left over area sheet.
int numberPanelPerSheet=0;
int panel AmountWithMinimumWaste=0;
long endTime = 0;
double xOrdinate = 0;
double yOrdinate = 0;
double w = 0;
int startRow = 2, numberingCell = 0, sHeightCell = 1, sWidthCell = 2,
pHeightCell = 3, pWidthCell = 4, demandCell = 5, wastePerSheetCell = 6,
numberPanelPerSheetCell = 7, numberSheetNeededToCut = 8, leftOverPanelCell =9,
computeTimeCell = 10, xCell = 11, yCell = 12, overCutPanelCell = 13,
totalWastePerSheetCell = 14, wasteForCuttingCell = 15;
int r=0;
int printNo = 0;
int i=0, j=0, k=0, level = 0;
int count = 0;
double totalWastePerSheet = 0;
int indexOfMinWidthGap = 0;
/Ithis loop for pick sheet one by one from all sheet
for (j = 0; j < nPanel.size(); j++) {
smallestLeftOverArea = sWidth.get(0)*sHeight.get(0);
row = sheet.createRow(startRow + r);
for (i =0;1<sHeight.size(); i++) {
numberPanelPerSheet = 0;

119

leftoverHeight = sHeight.get(i);
level = 0;
System.out.print("\n" + "Sheet: " + (i+1) + " Size: " + sWidth.get(i) + " x " +
sHeight.get(i));
currentLeftOverArea = sWidth.get(i) * sHeight.get(i);
/Ithis loop use to define each level in a specific sheet
for (double h=leftoverHeight; h>=pHeight.get(pHeight.size()-1);
h=leftoverHeight) {//pHeight.get(pHeight.size()-1)= the last position of the which is
equal to 3 where we start from 0,1,2,3
leftoverWidth = sWidth.get(i);
existingLevel = false;
ArrayList<Double>newPWidth = new ArrayList<Double>();
ArrayList<Double>newPHeight = new ArrayList<Double>();
ArrayList<Double>newNPanel = new ArrayList<Double>();

if (sHeight.get(i) == leftoverHeight) {//use to start the coordinate of y
yOrdinate = 0;
¥
panelHeightAtBeginningLevel.add(pHeight.get(0));// Just want to add the
first panel before other panel add in
for (int | = 0; | < pHeight.size(); I1++) {// use to continue to the next level by
increase y
if (sHeight.get(i)!= leftoverHeight) {
if (pHeight.get(l) <= leftoverHeight && pWidth.get(l) <= leftoverWidth)

yOrdinate = yOrdinate + panelHeightAtBeginningLevelClone.get(1);
break;

}
if (pHeight.get(l) > leftoverHeight){
continue;
}
}
}

level +=1;
System.out.printin();
System.out.print("\tLevel: " + level + " |");
/lto check the panel in case that it satisfies only one criteria like sample 34
if (existingLevel == false && ((leftoverHeight>=pHeight.get(j) &&
leftoverWidth>=pWidth.get(j)))){
existingLevel = true;
}else {
newPWidth = (ArrayList)pWidth.clone();
newPHeight =(ArrayList)pHeight.clone();
newNPanel = (ArrayList)nPanel.clone();

newPWidth.remove(pWidth.size()-1);
newPHeight.remove(pHeight.size()-1);

120

newNPanel.remove(nPanel.size()-1);
¥
newPWidth.clear();
newPHeight.clear();
newNPanel.clear();
panelHeightAtBeginningLevelClone.clear();
ArrayList <Double> leftoverWidthGapArray = new ArrayList<Double>();
/[Start cutting for the first panel that put into the sheet
if (leftoverHeight >= pHeight.get(j)) {
indexOfMinWidthGap = 0;
for (w = leftoverWidth; w >= pWidth.get(indexOfMinWidthGap); w =
leftoverWidth) {
// To do: make this loop take demand into consideration.
if (existingLevel == true &&
leftoverWidth>=pWidth.get(indexOfMinWidthGap)) {
System.out.print(" " + pWidth.get(indexOfMinWidthGap) + " x " +
pHeight.get(indexOfMinWidthGap) + " |");
if (sWidth.get(i) == leftoverWidth) {
pHeightArray.add(pHeight.get(indexOfMinWidthGap));
pWidthArray.add(pWidth.get(indexOfMinWidthGap));
panelHeightAtBeginningLevel.add(pHeight.get(indexOfMinWidthGap
);

xOrdinate = 0;
xOrdinateArray.add(xOrdinate);
yOrdinateArray.add(yOrdinate);
}else {
pHeightArray.add(pHeight.get(indexOfMinWidthGap));
pWidthArray.add(pWidth.get(indexOfMinWidthGap));
xOrdinate = xOrdinate + pWidthArray.get(pWidthArray.size()-2);
xOrdinateArray.add(xOrdinate);
yOrdinateArray.add(yOrdinate);
}
leftoverWidth = leftoverWidth - pWidth.get(indexOfMinWidthGap);
currentLeftOverArea = currentLeftOverArea-
(pWidth.get(indexOfMinWidthGap)*pHeight.get(indexOfMinWidthGap));
numberPanelPerSheet += 1;
if(usedPanelIndex.indexOf(indexOfMinWidthGap) == -1) {
usedPanellndex.add(indexOfMinWidthGap);
usedPanelAmount.add(1);
}else {
usedPanelAmount.set(usedPanelIndex.indexOf(indexOfMinWidthGap)
, usedPanelAmount.get(usedPanelIndex.indexOf(indexOfMinWidthGap))+1);//use to
increase the amount of the same panel size that put into the sheet

}
indexOfMinWidthGapCopy.add((double) indexOfMinWidthGap);

121

indexOfMinWidthGapCopyClone = (ArrayList<Double>)
indexOfMinWidthGapCopy.clone();

¥

/[To select the panel that can give the minimum of leftoverWidth % for all
pWidth
double minWidthGap = 900000000;
for (int 1 = 0; | < pWidth.size(); I++) {
double leftoverWidthGap = leftoverWidth % pWidth.get(l);
leftoverWidthGapArray.add(leftoverWidthGap);
if (I >= indexOfMinWidthGapCopyClone.get(0)) {
if (leftoverWidthGap < minWidthGap) {
minWidthGap = leftoverWidthGap;
indexOfMinWidthGap =
leftoverWidthGapArray.indexOf(minWidthGap);

¥
}
leftoverWidthGapArray.set(l, 100000.0);
}
leftoverWidthGapArray.clear();
indexOfMinWidthGapCopyClone.clear();

ki
¥

//Start cutting for the next panel that put into the sheet when we put other
types of panel in the same level or the next level
ArrayList<Double> nextPanelCut = new ArrayList<Double>();
for (k = (indexOfMinWidthGap+1); k < pWidth.size(); k++) {
if(pHeight.get(k) <= leftoverHeight && pWidth.get(k) <= leftoverWidth) {
nextPanelCut.add((double) k);// want to pick the first panel to calculate
the leftoverHeight
[/lto pick the new coordinate in the new level
if (SWidth.get(i) == leftoverWidth) {
pHeightArray.add(pHeight.get(k));
panelHeightAtBeginningLevel.add(pHeight.get(k));
pWidthArray.add(pWidth.get(k));

xOrdinate = 0;
xOrdinateArray.add(xOrdinate);
yOrdinateArray.add(yOrdinate);
}else {
pHeightArray.add(pHeight.get(k));
pWidthArray.add(pWidth.get(k));
xOrdinate = xOrdinate + pWidthArray.get(pWidthArray.size()-2);

xOrdinateArray.add(xOrdinate);
yOrdinateArray.add(yOrdinate);

}
leftoverWidth -= pWidth.get(k);

122

currentLeftOverArea -= (pWidth.get(k)*pHeight.get(k));
System.out.print(" " + pWidth.get(k) + " x " + pHeight.get(k) + " |");
numberPanelPerSheet += 1,
if(usedPanellndex.indexOf(k) == -1) {
usedPanellndex.add(k);
usedPanelAmount.add(1);
}else {
usedPanelAmount.set(usedPanelIndex.indexOf(k),
usedPanelAmount.get(usedPanellndex.indexOf(k))+1);
}
indexOfMinWidthGapCopy.add((double) k);
indexOfMinWidthGapCopyClone = (ArrayList<Double>)
indexOfMinWidthGapCopy.clone();
//To select the panel that can give the minimum of leftoverWidth % for all
pWidth
double minWidthGap = 900000000;
for (int | = 0; | < pWidth.size(); I++) {
double leftoverWidthGap = leftoverWidth % pWidth.get(l);
leftoverWidthGapArray.add(leftoverWidthGap);
if (I >= indexOfMinWidthGapCopyClone.get(0)) {
/I Pick only the smaller panel to put into each level
if (leftoverWidthGap < minWidthGap) {
minWidthGap = leftoverWidthGap;//Find the panel to put that can
give the minimum leftover width
indexOfMinWidthGap =
leftoverWidthGapArray.indexOf(minWidthGap);

¥
}
leftoverWidthGapArray.set(l, 100000.0);//to avoid picking the first panel
when the result of % are the same
}
leftoverWidthGapArray.clear();
indexOfMinWidthGapCopyClone.clear();
k = indexOfMinWidthGap - 1 ;
}

¥
panelHeightAtBeginningLevelClone =

(ArrayList)panelHeightAtBeginningLevel.clone();
panelHeightAtBeginningLevel.clear();
if (leftoverHeight >= pHeight.get(j)) {
leftoverHeight = leftoverHeight - pHeight.get(j);
}else {
if (nextPanelCut.size()!=0) {
double a = nextPanelCut.get(0);
leftoverHeight = leftoverHeight - pHeight.get((int) a);

¥
if (nextPanelCut.isEmpty()) {

123

leftoverHeight = 0;
continue;

}

¥

indexOfMinWidthGapCopy.clear();
¥
System.out.printin();
System.out.print("Total Waste for each sheet: " + currentLeftOverArea);
System.out.print("\nPanel fit: " + numberPanelPerSheet);
System.out.printin();

if (smallestLeftOverArea > currentLeftOverArea) {
smallestLeftOverArea = currentLeftOverArea;
smallestLeftOverSheet = i;
panelAmountWithMinimumWaste = numberPanelPerSheet;
//We have to copy it to use when we write the answer in excel
pHeightSelected = (ArrayList)pHeightArray.clone();
pWidthSelected = (ArrayList)pWidthArray.clone();

xOrdinateSelected = (ArrayList)xOrdinateArray.clone();
yOrdinateSelected = (ArrayList)yOrdinateArray.clone();

chosenPanelindex = (ArrayList)usedPanellndex.clone();
chosenPanelAmount = (ArrayList)usedPanelAmount.clone();

}

for(int ind =0; ind < chosenPanellndex.size(); ind++) {
System.out.printin("Used Index " + chosenPanellndex.get(ind));
System.out.printin("Used Amount " + chosenPanelAmount.get(ind));

}

/I clear it first before selecting the next panel to cut; otherwise, it adds on the

existing data
pHeightArray.clear();
pWidthArray.clear();

xOrdinateArray.clear();
yOrdinateArray.clear();

usedPanellndex.clear();
usedPanelAmount.clear();
}
System.out.printiIn();
System.out.printIn(panel AmountWithMinimumWaste + "' panels are cut from
panel set by putting in sheet number " + (smallestLeftOverSheet+1) + " (" +
sWidth.get(smallestLeftOverSheet) + " x " + sHeight.get(smallestLeftOverSheet) + ")
with the minimum waste " + smallestLeftOverArea);

124

double minimumSheet =
10000000;//Math.ceil(nPanel.get(chosenPanelIndex.get(0)) /
chosenPanelAmount.get(0))
double result;
// This loop use to select the pattern that can give the minimum waste to cut.
for(int d=0; d < chosenPanelIndex.size(); d++) {
result = Math.ceil(nPanel.get(chosenPanelIndex.get(d)) /
chosenPanelAmount.get(d));
if (minimumSheet > result) {
minimumSheet = result;
¥
System.out.printin("To fulfill demand of " +
nPanel.get(chosenPanelindex.get(d)) + " we need to use " + result + " sheets");
}
System.out.printIn("\nTherefore: To satisfy the demand we need: " +
minimumSheet + " sheets.");
/ITo find the over cut panel
double totalWasteOfOverCutPanel = 0;
for (int | = 0; | < chosenPanelIndex.size(); 1++) {
overUnderCutPanel.add((minimumSheet * chosenPanelAmount.get(1l)) -
nPanel.get(chosenPanelindex.get(l)));
if (overUnderCutPanel.get(l)<=0) {
overCutPanel.add(0.0);

}else {
overCutPanel.add(overUnderCutPanel.get(l));

}
}/To cut the panel based on the index of the panel selected
for (int 1 = 0; I < chosenPanelIndex.size(); I++) {
wasteForEachOverCutPanelForEachSheet.add(overCutPanel.get(l)*
pHeight.get(chosenPanellndex.get(l)) * pWidth.get(chosenPanellndex.get(l)));
totalWasteOfOverCutPanel = totalWasteOfOverCutPanel +
wasteForEachOverCutPanelForEachSheet.get(l);//To find the waste of the over cut
panel
System.out.printin("Over cut Panel =" + overCutPanel);
}
totalWastePerSheet = (smallestLeftOverArea * minimumSheet) +
totalWasteOfOverCutPanel;//Total waste per sheet included the over cut panel
totalWastePerSheetArray.add(totalWastePerSheet);

int index;

double amount;

double demand,

//Writing the panel of the pattern that we have selected to cut

for(int ind = 0; ind < chosenPanelIndex.size(); ind++) {
System.out.printin("Chosen Index " + chosenPanelIndex.get(ind));
System.out.printin("Used Amount " + chosenPanelAmount.get(ind));
row = sheet.createRow(startRow + r);

125

index = chosenPanelIndex.get(ind);
amount = chosenPanelAmount.get(ind);
demand = nPanel.get(chosenPanellndex.get(ind));
leftOverDemand.add(demand - (amount * minimumSheet));
count = 0;
//\Write only that first stage of cutting like No
if (ind == 0) {//ind = chosenPanellndex
cell = row.createCell(numberingCell);
cell.setCellValue(printNo+1);

cell = row.createCell(sHeightCell);
cell.setCellValue(sHeight.get(smallestLeftOverSheet));

cell = row.createCell(sWidthCell);
cell.setCellValue(sWidth.get(smallestLeftOverSheet));

if (leftOverDemand.get(ind)> 0) {
cell = row.createCell(leftOverPanelCell);
cell.setCellValue(leftOverDemand.get(ind));

¥
¥

if (ind < chosenPanellndex.size()-1) { //do not let it increase the row when it is
the last panel that we put coz we have to put other data on the last row
cell = row.createCell(demandCell);
cell.setCellValue(nPanel.get(chosenPanelIndex.get(ind)));

cell = row.createCell(overCutPanelCell);
cell.setCellValue(overCutPanel.get(ind));

cell = row.createCell(numberPanelPerSheetCell);
cell.setCellValue(chosenPanel Amount.get(ind));

if (leftOverDemand.get(ind)> 0) {
cell = row.createCell(leftOverPanelCell);
cell.setCellValue(leftOverDemand.get(ind));
}
/1 to spread the panel of cutting such that i can put the coordinate
for (int 1 = 0; | < chosenPanelAmount.get(ind); 1++) {
cell = row.createCell(pHeightCell);
/lcell.setCellVValue(pHeight.get(chosenPanelIndex.get(ind)));

cell.setCellValue(pHeightSelected.get(l));
cell = row.createCell(pWidthCell);
/lcell.setCellVValue(pWidth.get(chosenPanelIndex.get(ind)));

cell.setCellValue(pWidthSelected.get(l));
cell = row.createCell(xCell);

126

cell.setCellValue(xOrdinateSelected.get(l));

cell = row.createCell(yCell);
cell.setCellValue(yOrdinateSelected.get(l));

count = count + 1;
r++:

row = sheet.createRow(startRow + r);
¥
//[Remove that panel use such that it can print of other panel
for (intb = (count-1) ; b >=0; b--) {
pHeightSelected.remove(b);
pWidthSelected.remove(b);

xOrdinateSelected.remove(b);
yOrdinateSelected.remove(b);

¥

} else if ((chosenPanellndex.size()-1) == ind) {
cell = row.createCell(demandCell);
cell.setCellValue(nPanel.get(chosenPanelIndex.get(ind)));

cell = row.createCell(overCutPanelCell);
cell.setCellValue(overCutPanel.get(ind));

cell = row.createCell(numberPanelPerSheetCell);
cell.setCellValue(chosenPanel Amount.get(ind));

if (leftOverDemand.get(ind)> 0) {
cell = row.createCell(leftOverPanelCell);
cell.setCellValue(leftOverDemand.get(ind));

¥

for (int I = 0; | < chosenPanelAmount.get(ind); I++) {
cell = row.createCell(pHeightCell);
//cell.setCellVValue(pHeight.get(chosenPanelIndex.get(ind)));
cell.setCellValue(pHeightSelected.get(l));

cell = row.createCell(pWidthCell);
/lcell.setCellVValue(pWidth.get(chosenPanelIndex.get(ind)));
cell.setCellValue(pWidthSelected.get(1));

cell = row.createCell(xCell);
cell.setCellValue(xOrdinateSelected.get(l));

cell = row.createCell(yCell);
cell.setCellValue(yOrdinateSelected.get(l));

count = count + 1;

127

r++;

row = sheet.createRow(startRow + r);
b
for (int b = (count-1) ; b >=0; b--) {
pHeightSelected.remove(b);
pWidthSelected.remove(b);

xOrdinateSelected.remove(b);
yOrdinateSelected.remove(b);
}
r--;
}
}

wasteForEachOverCutPanelForEachSheet.clear();
overUnderCutPanel.clear();

overCutPanel.clear();

r=r+2;

printNo++;

cell = row.createCell(wastePerSheetCell);
cell.setCellValue(smallestLeftOverArea);

cell = row.createCell(numberSheetNeededToCut);
cell.setCellVValue(minimumsSheet);

cell = row.createCell(totalWastePerSheetCell);
cell.setCellValue(totalWastePerSheet);

endTime = System.currentTimeMillis();
System.out.printin(*Time taken for this process are: " + (endTime - startTime) +
" milli seconds");

cell = row.createCell(computeTimeCell);
cell.setCellValue(endTime - startTime);

for(int d = chosenPanelindex.size()-1; d >=0; d--) {

index = chosenPanelIndex.indexOf(Collections.max(chosenPanelIndex));

amount = chosenPanelAmount.get(index);

demand = nPanel.get(chosenPanellndex.get(index));

int newlIndex = chosenPanellndex.get(index);

if (leftOverDemand.get(index) > 0) {
nPanel.set(newlndex, leftOverDemand.get(index));
chosenPanelindex.remove(index);
chosenPanel Amount.remove(index);
leftOverDemand.remove(index);

}else {
nPanel.remove(newlIndex);
pHeight.remove(newlndex);

128

pWidth.remove(newlIndex);
chosenPanelindex.remove(index);
chosenPanelAmount.remove(index);
leftOverDemand.remove(index);

¥
¥

leftOverDemand.clear();
System.out. PrintIn(*'-==--=====mmnmoooo oo

--------------------------);

double wasteForCutting = 0;

for (int | = 0; | < total WastePerSheetArray.size(); 1++) {
wasteForCutting = wasteForCutting + totalWastePerSheetArray.get(l);

}

cell = row.createCell(wasteForCuttingCell);

cell.setCellValue(wasteForCutting);

chosenPanellndex.clear();
chosenPanel Amount.clear();
file.close();

FileOutputStream outFile =new FileOutputStream(new File(excelFile));
workbook.write(outFile);
outFile.close();
} catch (FileNotFoundException e) {
e.printStackTrace();
} catch (IOException e) {
e.printStackTrace();

ky

}
public static void ReadExcel(ArrayList<Double> sWidth,

ArrayList<Double> sHeight, ArrayList<Double> nSheet,
ArrayList<Double> pWidth, ArrayList<Double> pHeight,
ArrayList<Double> nPanel, String excelFile) {
try {
FilelnputStream file = new FilelnputStream(new File(excelFile));
//Get the workbook instance for XLSX file
XSSFWorkbook workbook = new XSSFWorkbook(file);

//Get first sheet from the workbook
XSSFSheet sheet = workbook.getSheet("Input");// or .getsheetAt(2);

/I cRow = currentRow, pRow = processingRow

int cRow =0, pRow = 0; // cRow can give any values but pRow cannot
int cColumn =1, Il here we also can change it

int datalnRow = 0;

129

//terate through each rows from first sheet
Iterator<Row> rowlterator = sheet.iterator();
while(rowlterator.hasNext()) {

Row row = rowlterator.next();

CRow++;

cColumn =1,

datalnRow = 0;

//For each row, iterate through each columns
Iterator<Cell> celllterator = row.celllterator();
while(celllterator.hasNext()) {
Cell cell = celllterator.next();
switch(cell.getCell Type()) {
case Cell. CELL_TYPE_BOOLEAN:
System.out.print(cell.getBooleanCellValue() + "\t\t");
datalnRow ++;
break;
case Cell. CELL_TYPE_NUMERIC:
System.out.print(cell.getNumericCellValue() + "\t\t");
if(cCRow>pRow) {
pRow = cRow;
¥
Else
{
switch(cColumn) {
case 1:
pHeight.add(cell.getNumericCellValue());
break;
case 2:
pWidth.add(cell.getNumericCellValue());
break;
case 3:
nPanel.add(cell.getNumericCellValue());
break;
case 4:
sHeight.add(cell.getNumericCellValue());
break;
case 5:
sWidth.add(cell.getNumericCellValue());
break;
case 6:
nSheet.add(cell.getNumericCellValue());
}

cColumn++;

}

datalnRow++;
break;

130

case Cell.CELL_TYPE_STRING:
System.out.print(cell.getStringCellVValue() + "\t\t");
datalnRow++;
break;

}

}
if(datalnRow > 0) {

System.out.printin(*");
ki

file.close();

} catch (FileNotFoundException e) {
e.printStackTrace();

} catch (IOException e) {
e.printStackTrace();

¥

131

7.1.9. Minimum Sheet Height Ordering Panel Width Vertical Cut

package Simple_Heuristic_Il_2D_2S _P3;

import java.io.File;
import java.io.FilelnputStream;
import java.io.FileNotFoundException;
import java.io.FileOutputStream;
import java.io.|OException;
import java.util. ArrayList;
import java.util.Collections;
import java.util.lIterator;
import org.apache.poi.ss.usermodel.Cell;
import org.apache.poi.ss.usermodel.Row;
import org.apache.poi.xssf.usermodel. XSSFSheet;
import org.apache.poi.xssf.usermodel. XSSFWorkbook;
public class Im2_Min_SHeight PW_Cut_Vertical _P3{
public static void main(String[] args) {
long startTime = System.currentTimeMillis();
ArrayList<Double> sWidth = new ArrayList<Double>();
ArrayList<Double> sHeight = new ArrayList<Double>(); // Unique sheet height.
ArrayList<Double> nSheet = new ArrayList<Double>(); // Amount of sheet of
each size.

ArrayList<Double> pWidth = new ArrayList<Double>();
ArrayList<Double> pHeight = new ArrayList<Double>();
ArrayList<Double> nPanel = new ArrayList<Double>();

ArrayList<Double> sLeftOverArea = new ArrayList<Double>();

String excelFile = "C:\\Users\\Tiengkimseng\\Google
Drive\\Kimseng\\Thesis\CODE_2D_2S_AND_2D_3S_CUTTING_8MODELS\Sim
ple Heuristic 11_VS_Coordinate
(x,y)_MinSWidth_P3\SWidth_PWidth_P3\\CuttingData - Sample 39.xIsx";

System.out.printIn("ArrayList in row and column set: ");
ReadExcel(sWidth, sHeight, nSheet, pWidth, pHeight, nPanel, excelFile);

ArrayList<Double> sheetWidth = new ArrayList<Double>();
ArrayList<Double> sheetHeight = new ArrayList<Double>();

ArrayList<Double> panelWidth = new ArrayList<Double>();
ArrayList<Double> panelHeight = new ArrayList<Double>();

ArrayList<Double> overCutPanel = new ArrayList<Double>();
ArrayList<Double> overUnderCutPanel = new ArrayList<Double>();

132

ArrayList<Double> wasteForEachOverCutPanelForEachSheet = new
ArrayList<Double>();
ArrayList<Double> totalWastePerSheetArray = new ArrayList<Double>();

//define sheet set
System.out.printIn("\n" + "Sheet set: ");
for (int i=0; i<nSheet.size(); i++) {
for (int a=0; a<nSheet.get(i); a++) {
sheetWidth.add(sWidth.get(i));
sheetHeight.add(sHeight.get(i));
sLeftOverArea.add(sWidth.get(i) * sHeight.get(i));
/[System.out.print("["" + sHeight.get(i) + " x " + sWidth.get(i) + "]" + ", ");
}System.out.printin();
}
//define panel set
System.out.printin("\n" + "Panel set:");
for (int i=0; i<nPanel.size(); i++) {
for (int a=0; a<nPanel.get(i); a++) {
panelWidth.add(pWidth.get(i));
panelHeight.add(pHeight.get(i));
//System.out.print("[" + pHeight.get(i) + " x " + pWidth.get(i)+ "]" + ", ");
}System.out.printin();
}
/] To check and remove the big panel that we cannot put into the sheet, if we don't
have it, it might cause to error.
double maxSHeight = 0;
double maxSWidth = 0;
for (int j = 0; j < nPanel.size(); j++) {
for (inti = 0; i <nSheet.size(); i++) {
if (sHeight.get(i) > maxSHeight) {
maxSHeight = sHeight.get(i);
}
if (sWidth.get(i) > maxSWidth) {
maxSWidth = sWidth.get(i);
}
}
if (((pHeight.get(j) > maxSHeight)) || (pWidth.get(j) > maxSWidth)) {
pWidth.remove(j);
pHeight.remove(j);
nPanel.remove(j);
J=
}
}

//To check and remove the small sheet that we cannot use to cut other panel, if we
don't have it, it might cause to error

double minPHeight = 999999999;

double minPWidth = 999999999;

133

for (inti=0; i <nSheet.size(); i++) {
for (int j = 0; j < nPanel.size(); j++) {

if (minPHeight > pHeight.get(j)) {
minPHeight = pHeight.get(j);

}

if (minPWidth > pWidth.get(j)) {
minPWidth = pWidth.get(j);

}

}
if ((sHeight.get(i) < minPHeight) || (sWidth.get(i) < minPWidth)) {
sWidth.remove(i);
sHeight.remove(i);
nSheet.remove(i);
i--;
}
}
//here is the process of cutting
try {
I/ Open excel file.
FilelnputStream file = new FilelnputStream(new File(excelFile));
//Get the workbook instance for XLSX file
XSSFWorkbook workbook = new XSSFWorkbook(file);

XSSFSheet sheet = workbook.getSheet("Output");

Row row; // Declare row variable as Excel row.

Cell cell; // Declare cell variable as Excel cell.
System.out.printIn("\n" + "Here is the step of cutting: ");

ArrayList<Integer> chosenPanelindex = new ArrayList<Integer>();
ArrayList<Integer> chosenPanelAmount = new ArrayList<Integer>();

ArrayList<Integer> usedPanellndex = new ArrayList<Integer>();
ArrayList<Integer> usedPanelAmount = new ArrayList<Integer>();
ArrayList<Double> leftOverDemand = new ArrayList<Double>();

ArrayList<Double> xOrdinateArray = new ArrayList<Double>();//Use to add the

x ordinate one by one then when the panel is cut then clone it to xOrdinateSelected

when the sheet is full

ArrayList<Double> yOrdinateArray = new ArrayList<Double>();

ArrayList<Double> xOrdinateSelected = new ArrayList<Double>();//use to write
the coordinate in excel

ArrayList<Double> yOrdinateSelected = new ArrayList<Double>();

ArrayList<Double> pHeightArray = new ArrayList<Double>();//Use to add the

panel cut in order one by one then clone it to pHeightSelected when the sheet cut is

full

ArrayList<Double> pWidthArray = new ArrayList<Double>();

134

ArrayList<Double> pHeightSelected = new ArrayList<Double>();//use to write
the panel cut in excel in accordance with the coordinate

ArrayList<Double> pWidthSelected = new ArrayList<Double>();

ArrayList<Double> panelWidthAtBeginningLevel = new ArrayList<Double>();

ArrayList<Double> panelWidthAtBeginningLevelClone = new
ArrayList<Double>();

ArrayList<Double> indexOfMinHeightGapCopy = new ArrayList<Double>();
ArrayList<Double> indexOfMinHeightGapCopyClone = new
ArrayList<Double>();

double leftoverHeight;
double leftoverWidth;
boolean existingLevel = false; // New or existing level check
double currentLeftOverArea=0;
double smallestLeftOverArea=0; // Variable to store the smallest left over
area of sheet.
int smallestLeftOverSheet=0; // Store index of the smallest left over area sheet.
int numberPanelPerSheet=0;
int panel AmountWithMinimumWaste=0;
long endTime = 0;
double xOrdinate = 0;
double yOrdinate = 0;
double w = 0;
int startRow = 2, numberingCell = 0, sHeightCell = 1, sWidthCell = 2,
pHeightCell = 3, pWidthCell = 4, demandCell = 5, wastePerSheetCell = 6,
numberPanelPerSheetCell = 7, numberSheetNeededToCut = 8, leftOverPanelCell =9,
computeTimeCell = 10, xCell = 11, yCell = 12, overCutPanelCell = 13,
totalWastePerSheetCell = 14, wasteForCuttingCell = 15;
int r=0;
int printNo = 0;
int i=0, j=0, k=0, level = 0;
int count = 0;
double totalWastePerSheet = 0;
int indexOfMinHeightGap = 0;
/Ithis loop for pick sheet one by one from all sheet
for (j = 0; j < nPanel.size(); j++) {
smallestLeftOverArea = sWidth.get(0)*sHeight.get(0);
row = sheet.createRow(startRow + r);
for (i = 0; i < sHeight.size(); i++) {
numberPanelPerSheet = 0;
leftoverWidth = sWidth.get(i);
level = 0;
System.out.print("\n" + "Sheet: " + (i+1) + " Size: " + sWidth.get(i) + " x " +
sHeight.get(i));
currentLeftOverArea = sWidth.get(i) * sHeight.get(i);
/lthis loop use to define each level in a specific sheet

135

for (double h=leftoverWidth; h>=pWidth.get(pWidth.size()-1);
h=leftoverWidth){
//pHeight.get(pHeight.size()-1)= the last position of the which is equal to 3
where we start from 0,1,2,3
leftoverHeight = sHeight.get(i);
existingLevel = false;

ArrayList<Double>newPWidth = new ArrayList<Double>();
ArrayList<Double>newPHeight = new ArrayList<Double>();
ArrayList<Double>newNPanel = new ArrayList<Double>();

if (sWidth.get(i) == leftoverWidth) {//use to start the coordinate of y
xOrdinate = 0;
}
panelWidthAtBeginningLevel.add(pWidth.get(0));// Just want to add the first
panel before other panel add in
for (int | = 0; | < pWidth.size(); I++) {// use to continue to the next level by
increase y
if (SWidth.get(i)!= leftoverWidth) {
if (pWidth.get(l) <= leftoverWidth && pHeight.get(l) <= leftoverHeight)
{/Ithe second part have just added to satisfy sample 34
xOrdinate = xOrdinate + panelWidthAtBeginningLevelClone.get(1);
break;
}
if (pWidth.get(l) > leftoverWidth){
continue;

¥
¥
¥

level +=1;
System.out.printin();
System.out.print("\tLevel: " + level + " |");
if (existingLevel == false && ((leftoverHeight>=pHeight.get(j) &&
leftoverWidth>=pWidth.get(j)))){
existingLevel = true;
} else {//to check the panel in case that it satisfies only one criteria sample 34
newPWidth = (ArrayList)pWidth.clone();
newPHeight =(ArrayList)pHeight.clone();
newNPanel = (ArrayList)nPanel.clone();

newPWidth.remove(pWidth.size()-1);

newPHeight.remove(pHeight.size()-1);
newNPanel.remove(nPanel.size()-1);

newPWidth.clear();
newPHeight.clear();

136

newNPanel.clear();
panelWidthAtBeginningLevelClone.clear();
ArrayList <Double> leftoverHeightGapArray = new ArrayList<Double>();
if (leftoverWidth >= pWidth.get(j)) {
indexOfMinHeightGap = 0;
for (w = leftoverHeight; w >= pHeight.get(indexOfMinHeightGap); w =
leftoverHeight) {
/I To do make this loop take demand into consideration.
if (existingLevel == true && leftoverHeight >=
pHeight.get(indexOfMinHeightGap)) {
System.out.print(" " + pWidth.get(indexOfMinHeightGap) + " x " +
pHeight.get(indexOfMinHeightGap) + * |);
if (sHeight.get(i) == leftoverHeight) {
pHeightArray.add(pHeight.get(indexOfMinHeightGap));
pWidthArray.add(pWidth.get(indexOfMinHeightGap));
panelWidthAtBeginningLevel.add(pWidth.get(indexOfMinHeightGap)

yOrdinate = 0;
xOrdinateArray.add(xOrdinate);
yOrdinateArray.add(yOrdinate);
}else {
pHeightArray.add(pHeight.get(indexOfMinHeightGap));
pWidthArray.add(pWidth.get(indexOfMinHeightGap));
yOrdinate = yOrdinate + pHeightArray.get(pHeightArray.size()-2);
xOrdinateArray.add(xOrdinate);
yOrdinateArray.add(yOrdinate);
}
leftoverHeight = leftoverHeight - pHeight.get(indexOfMinHeightGap);
currentLeftOverArea = currentLeftOverArea-
(pWidth.get(indexOfMinHeightGap)*pHeight.get(indexOfMinHeightGap));
numberPanelPerSheet += 1;
if(usedPanellndex.indexOf(indexOfMinHeightGap) == -1) {
usedPanellndex.add(indexOfMinHeightGap);
usedPanelAmount.add();
}else {
usedPanelAmount.set(usedPanellndex.indexOf(indexOfMinHeightGap
), usedPanelAmount.get(usedPanelIndex.indexOf(indexOfMinHeightGap))+1);//use
to increase the amount of the same panel size that put into the sheet
}
indexOfMinHeightGapCopy.add((double) indexOfMinHeightGap);
indexOfMinHeightGapCopyClone = (ArrayList<Double>)
indexOfMinHeightGapCopy.clone();
}
/ITo select the panel that can give the minimum of leftoverWidth % for all
pWidth
double minHeightGap = 900000000;
for (int 1 = 0; | < pWidth.size(); I++) {

137

double leftoverHeightGap = leftoverHeight % pHeight.get(1);
leftoverHeightGapArray.add(leftoverHeightGap);
if (I >=indexOfMinHeightGapCopyClone.get(0)) {
if (leftoverHeightGap < minHeightGap) {
minHeightGap = leftoverHeightGap;
indexOfMinHeightGap =
leftoverHeightGapArray.indexOf(minHeightGap);

}
}
leftoverHeightGapArray.set(l, 100000.0);
}
leftoverHeightGapArray.clear();
indexOfMinHeightGapCopyClone.clear();

¥
¥

ArrayList<Double> nextPanelCut = new ArrayList<Double>();
for (k = indexOfMinHeightGap+1; k < pHeight.size(); k++) {

if(pHeight.get(k) <= leftoverHeight && pWidth.get(k) <= leftoverWidth) {

nextPanelCut.add((double) k);

/I want to pick the first panel to calculate the leftoverHeight

if (sHeight.get(i) == leftoverHeight) {
pWidthArray.add(pWidth.get(k));
panelWidthAtBeginningLevel.add(pWidth.get(k));
pHeightArray.add(pHeight.get(k));
yOrdinate = 0;
xOrdinateArray.add(xOrdinate);
yOrdinateArray.add(yOrdinate);

}else {
pHeightArray.add(pHeight.get(k));
pWidthArray.add(pWidth.get(k));

yOrdinate = yOrdinate + pHeightArray.get(pHeightArray.size()-2);

//xOrdinate = xOrdinate + pWidth.get(j);
xOrdinateArray.add(xOrdinate);
yOrdinateArray.add(yOrdinate);

}

leftoverHeight -= pHeight.get(k);

currentLeftOverArea -= (pWidth.get(k) * pHeight.get(k));

System.out.print(" " + pWidth.get(k) + " x " + pHeight.get(k) + " |");

numberPanelPerSheet += 1;

if(usedPanelIindex.indexOf(k) == -1) {
usedPanelIndex.add(k);
usedPanelAmount.add(1);

}else {

usedPanelAmount.set(usedPanelIndex.indexOf(k),usedPanel Amount.get

(usedPanelindex.indexOf(k))+1);

}
indexOfMinHeightGapCopy.add((double) Kk);

138

indexOfMinHeightGapCopyClone = (ArrayList<Double>)
indexOfMinHeightGapCopy.clone();
//To select the panel that can give the minimum of leftoverWidth % for all
pWidth
double minHeightGap = 900000000;
for (int 1 = 0; | < pWidth.size(); 1++) {
double leftoverHeightGap = leftoverHeight % pHeight.get(l);
leftoverHeightGapArray.add(leftoverHeightGap);
if (I >= indexOfMinHeightGapCopyClone.get(0)) {// Pick only the
smaller panel to put into each level
if (leftoverHeightGap < minHeightGap) {
minHeightGap = leftoverHeightGap;//Find the panel to put that can
give the minimum leftover width
indexOfMinHeightGap =
leftoverHeightGapArray.indexOf(minHeightGap);

}
leftoverHeightGapArray.set(l, 100000.0);//to avoid picking the first

panel when the result of % are the same
}
leftoverHeightGapArray.clear();
indexOfMinHeightGapCopyClone.clear();
k = indexOfMinHeightGap - 1 ;
}

¥
panelWidthAtBeginningLevelClone =

(ArrayList)panelWidthAtBeginningLevel.clone();
panelWidthAtBeginningLevel.clear();
if (leftoverWidth >= pWidth.get(j)) {
leftoverWidth = leftoverWidth - pwidth.get(j);
}else {
if (nextPanelCut.size()!=0) {
double a = nextPanelCut.get(0);//to find the leftoverWidth when the first
panel cannot fill in, and the next panel is fit.
leftoverWidth = leftoverWidth - pWidth.get((int) a);// p in the index of
the panel of the other side
}
if (nextPanelCut.isEmpty()) {//In sample 34 we cannot find the pattern to
cut but the leftoverWidth can put other panel in
leftoverWidth = 0;
continue;

¥

¥
indexOfMinHeightGapCopy.clear();

¥
System.out.printin();

System.out.print("Total Waste for each sheet: " + currentLeftOverArea);

139

System.out.print("\nPanel fit: " + numberPanelPerSheet);

System.out.printin();

if (smallestLeftOverArea > currentLeftOverArea) {
smallestLeftOverArea = currentLeftOverArea;
smallestLeftOverSheet = i;
panel AmountWithMinimumWaste = numberPanelPerSheet;
pHeightSelected = (ArrayList)pHeightArray.clone();
pWidthSelected = (ArrayList)pWidthArray.clone();
xOrdinateSelected = (ArrayList)xOrdinateArray.clone();
yOrdinateSelected = (ArrayList)yOrdinateArray.clone();
chosenPanellndex = (ArrayList)usedPanellndex.clone();
chosenPanelAmount = (ArrayList)usedPanelAmount.clone();

}

for(int ind =0; ind < chosenPanellndex.size(); ind++) {
System.out.printin("Used Index " + chosenPanellndex.get(ind));
System.out.printin("Used Amount " + chosenPanelAmount.get(ind));

¥

pHeightArray.clear();

pWidthArray.clear();

xOrdinateArray.clear();
yOrdinateArray.clear();

usedPanellndex.clear();
usedPanelAmount.clear();
}
System.out.printiIn();
System.out.printin(panel AmountWithMinimumWaste + " panels are cut from
panel set by putting in sheet number " + (smallestLeftOverSheet+1) + " (" +
sWidth.get(smallestLeftOverSheet) + " x " + sHeight.get(smallestLeftOverSheet) + ")
with the minimum waste " + smallestLeftOverArea);
double minimumSheet =
10000000;//Math.ceil(nPanel.get(chosenPanelIndex.get(0)) /
chosenPanelAmount.get(0))
double result;
for(int d=0; d < chosenPanellndex.size(); d++) {
result = Math.ceil(nPanel.get(chosenPanelindex.get(d)) /
chosenPanelAmount.get(d));
if (minimumSheet > result) {
minimumSheet = result;
¥
System.out.printin("To fulfill demand of " +
nPanel.get(chosenPanelindex.get(d)) + " we need to use " + result + " sheets");
}
System.out.printIn("\nTherefore: To satisfy the demand we need: " +
minimumSheet + " sheets.");
/[To find the over cut panel

140

double totalWasteOfOverCutPanel = 0;
for (int 1 = 0; | < chosenPanelIndex.size(); I++) {
overUnderCutPanel.add((minimumSheet * chosenPanelAmount.get(l)) -
nPanel.get(chosenPanelindex.get(l)));
if (overUnderCutPanel.get(l)<=0) {
overCutPanel.add(0.0);
}else {
overCutPanel.add(overUnderCutPanel.get(l));
¥
}

for (int | = 0; | < chosenPanelIndex.size(); I++) {

wasteForEachOverCutPanelForEachSheet.add(overCutPanel.get(l)*
pHeight.get(chosenPanellndex.get(l)) * pwidth.get(chosenPanelindex.get(l)));

totalWasteOfOverCutPanel = totalWasteOfOverCutPanel +

wasteForEachOverCutPanelForEachSheet.get(l);//To find the waste of the over cut

panel
System.out.printIn("Over cut Panel =" + overCutPanel);
}
totalWastePerSheet = (smallestLeftOverArea * minimumSheet) +
totalWasteOfOverCutPanel;//Total waste per sheet included the over cut panel
totalWastePerSheetArray.add(totalWastePerSheet);
int index;
double amount;
double demand;
for(int ind = 0; ind < chosenPanellndex.size(); ind++) {
System.out.printIn("Chosen Index " + chosenPanellndex.get(ind));
System.out.printIn("Used Amount " + chosenPanelAmount.get(ind));
row = sheet.createRow(startRow + r);

index = chosenPanellndex.get(ind);

amount = chosenPanelAmount.get(ind);

demand = nPanel.get(chosenPanellndex.get(ind));
leftOverDemand.add(demand - (amount * minimumSheet));
count = 0;

if (ind==0) {
cell = row.createCell(numberingCell);
cell.setCellValue(printNo+1);

cell = row.createCell(sHeightCell);
cell.setCellValue(sHeight.get(smallestLeftOverSheet));

cell = row.createCell(sWidthCell);
cell.setCellVValue(sWidth.get(smallestLeftOverSheet));

if (leftOverDemand.get(ind)> 0) {
cell = row.createCell(leftOverPanelCell);

141

cell.setCellValue(leftOverDemand.get(ind));

¥
¥

if (ind < chosenPanelindex.size()-1) { //do not let it increase the row when it is
the last panel that we put coz we have to put other data on the last row
cell = row.createCell(demandCell);
cell.setCellValue(nPanel.get(chosenPanelindex.get(ind)));

cell = row.createCell(overCutPanelCell);
cell.setCellValue(overCutPanel.get(ind));

cell = row.createCell(numberPanelPerSheetCell);
cell.setCellValue(chosenPanel Amount.get(ind));

if (leftOverDemand.get(ind)> 0) {
cell = row.createCell(leftOverPanelCell);
cell.setCellValue(leftOverDemand.get(ind));
¥
/1 to spread the panel of cutting such that i can put the coordinate
for (int | = 0; | < chosenPanelAmount.get(ind); I++) {
cell = row.createCell(pHeightCell);
/lcell.setCellVValue(pHeight.get(chosenPanelIndex.get(ind)));
cell.setCellValue(pHeightSelected.get(l));
cell = row.createCell(pWidthCell);

/lcell.setCellVValue(pWidth.get(chosenPanelIndex.get(ind)));
cell.setCellValue(pWidthSelected.get(l));
cell = row.createCell(xCell);

cell.setCellValue(xOrdinateSelected.get(1));
cell = row.createCell(yCell);

cell.setCellValue(yOrdinateSelected.get(1));
count = count + 1;
r++;

row = sheet.createRow(startRow + r);

}

/[Remove that panel use such that it can print of other panel
for (intb = (count-1) ; b >=0; b--) {
pHeightSelected.remove(b);
pWidthSelected.remove(b);

xOrdinateSelected.remove(b);
yOrdinateSelected.remove(b);

} else if ((chosenPanellndex.size()-1) == ind) {
cell = row.createCell(demandCell);

142

cell.setCellValue(nPanel.get(chosenPanelIndex.get(ind)));

cell = row.createCell(overCutPanelCell);
cell.setCellValue(overCutPanel.get(ind));

cell = row.createCell(numberPanelPerSheetCell);
cell.setCellValue(chosenPanel Amount.get(ind));

if (leftOverDemand.get(ind)> 0) {
cell = row.createCell(leftOverPanelCell);
cell.setCellValue(leftOverDemand.get(ind));

¥

for (int I = 0; | < chosenPanelAmount.get(ind); 1++) {
cell = row.createCell(pHeightCell);
/lcell.setCellVValue(pHeight.get(chosenPanelIndex.get(ind)));

cell.setCellValue(pHeightSelected.get(l));

cell = row.createCell(pWidthCell);
/lcell.setCellVValue(pWidth.get(chosenPanelIndex.get(ind)));
cell.setCellValue(pWidthSelected.get(l));

cell = row.createCell(xCell);

cell.setCellValue(xOrdinateSelected.get(1));
cell = row.createCell(yCell);

cell.setCellValue(yOrdinateSelected.get(1));
count = count + 1;
r++:

row = sheet.createRow(startRow + r);
}
for (intb = (count-1) ; b >=0; b--) {
pHeightSelected.remove(b);
pWidthSelected.remove(b);

xOrdinateSelected.remove(b);
yOrdinateSelected.remove(b);
¥
r-
}
}

wasteForEachOverCutPanelForEachSheet.clear();
overUnderCutPanel.clear();

overCutPanel.clear();

r=r+2

printNo++;

cell = row.createCell(wastePerSheetCell);

143

cell.setCellVValue(smallestLeftOverArea);

cell = row.createCell(numberSheetNeededToCut);
cell.setCellValue(minimumsSheet);

cell = row.createCell(totalWastePerSheetCell);
cell.setCellValue(total WastePerSheet);

endTime = System.currentTimeMillis();

System.out.printin("Time taken for this process are: " + (endTime - startTime) +
" milli seconds");

cell = row.createCell(computeTimeCell);

cell.setCellVValue(endTime - startTime);

for(int d = chosenPanelindex.size()-1; d >=0; d--) {
index = chosenPanellndex.indexOf(Collections.max(chosenPanelIndex));
amount = chosenPanelAmount.get(index);
demand = nPanel.get(chosenPanellndex.get(index));
int newIndex = chosenPanellndex.get(index);
if (leftOverDemand.get(index) > 0) {
nPanel.set(newlIndex, leftOverDemand.get(index)); //Here we have to set it in
a different way
chosenPanelIndex.remove(index);
chosenPanel Amount.remove(index);
leftOverDemand.remove(index);
}else {
nPanel.remove(newlindex);
pHeight.remove(newlndex);
pWidth.remove(newIndex);
chosenPanelIndex.remove(index);
chosenPanel Amount.remove(index);
leftOverDemand.remove(index);

¥
¥

leftOverDemand.clear();
SyStem.oUt. PrintIn(*----===mmmmmm oo

R}
)=
double wasteForCutting = 0;
for (int I = 0; | < totalWastePerSheetArray.size(); 1++) {

wasteForCutting = wasteForCutting + totalWastePerSheetArray.get(l);

}
cell = row.createCell(wasteForCuttingCell);
cell.setCellValue(wasteForCutting);

chosenPanellndex.clear();
chosenPanelAmount.clear();

144

file.close();

FileOutputStream outFile =new FileOutputStream(new File(excelFile));
workbook.write(outFile);
outFile.close();
} catch (FileNotFoundException e) {
e.printStackTrace();
} catch (IOException e) {
e.printStackTrace();

}

¥
public static void ReadExcel(ArrayList<Double> sWidth,

ArrayList<Double> sHeight, ArrayList<Double> nSheet,
ArrayList<Double> pWidth, ArrayList<Double> pHeight,
ArrayList<Double> nPanel, String excelFile) {

try {
FilelnputStream file = new FilelnputStream(new File(excelFile));

//Get the workbook instance for XLSX file
XSSFWorkbook workbook = new XSSFWorkbook(file);

//Get first sheet from the workbook
XSSFSheet sheet = workbook.getSheet("Input™);// or .getsheetAt(2);

// cRow = currentRow, pRow = processingRow

int cRow =0, pRow =0; // cRow can give any values but pRow cannot
int cColumn = 1; // here we also can change it

datalnRow = 0;

/terate through each rows from first sheet
Iterator<Row> rowlterator = sheet.iterator();
while(rowlterator.hasNext()) {
Row row = rowlterator.next();
cRow++;
cColumn =1;
datalnRow = 0;
//For each row, iterate through each columns
Iterator<Cell> celllterator = row.celllterator();
while(celllterator.hasNext()) {
Cell cell = celllterator.next();
switch(cell.getCell Type()) {
case Cell. CELL_TYPE_BOOLEAN:
System.out.print(cell.getBooleanCellValue() + "\t\t");
datalnRow ++;
break;
case Cell.CELL_TYPE_NUMERIC:
System.out.print(cell.getNumericCellValue() + "\t\t");

145

if(cRow>pRow) {
pRow = cRow;
}else {

switch(cColumn) {

case 1:
pHeight.add(cell.getNumericCellValue());
break;

case 2:
pWidth.add(cell.getNumericCellValue());
break;

case 3:
nPanel.add(cell.getNumericCellValue());
break;

case 4:
sHeight.add(cell.getNumericCellValue());
break;

case 5:
sWidth.add(cell.getNumericCellValue());
break;

case 6:
nSheet.add(cell.getNumericCellValue());

}

cColumn++;
}
datalnRow++;
break;
case Cell. CELL_TYPE_STRING:
System.out.print(cell.getStringCellVValue() + "\t\t");
datalnRow++;
break;

}

¥
if(datalnRow > 0) {

System.out.printin(*");

¥
by

file.close();

} catch (FileNotFoundException e) {
e.printStackTrace();

} catch (IOException e) {
e.printStackTrace();

¥

146

7.2. Appendix B: Input Twenty Testing Instances

techniques. These instances have to sort vertical or horizontally for the width or height
in accordance with the regulation for each technique before running it. Again, the total

number of sheet in stock is unlimited for all techniques. Later, other techniques by

considering the number of sheet in stock is developed.

Table 7.1 Instance 1

These are all the twenty different size of instances that are used to run in all

No pHeight pWidth nPanel sHeight sWidth nSheet
1 25.55 20.70 107.00 51.00 42.00 10000
2 25.50 20.90 112.00 50.50 42.00 10000

Table 7.2 Instance 2

No pHeight pWidth ~ nPanel sHeight sWidth nSheet
1 20.15 24.00 67.00 40.00 48.00 10000
2 20.15 24.00 234.00 36.00 48.00 10000

Table 7.3 Instance 3

No pHeight pWidth nPanel sHeight sWidth nSheet
1 20.50 21.50 375.00 45.00 42.00 10000
2 15.00 21.25 200.00 40.50 43.00 10000

Table 7.4 Instance 4

No pHeight pWidth nPanel sHeight sWidth nSheet
1 26.8 20.15 244.00 58.50 48.00 10000
2 25.45 19.45 93.00 53.50 42.00 10000
3 19.45 24 200.00 50.50 42.00 10000

Table 7.5 Instance 5

No pHeight pWidth nPanel sHeight sWidth nSheet
1 22.25 22.90 116.00 40.00 48.00 10000
2 21.70 22.90 141.00 26.80 48.00 10000
3 19.60 22.90 295.00 24.00 48.00 10000

Table 7.6 Instance 6

147

No pHeight pWidth nPanel sHeight sWidth nSheet
1 25.00 20.00 150.00 50.50 48.00 10000
2 25.00 20.00 150.00 49.50 42.00 10000
3 9999 9999 0.00 42.00 48.00 10000
4 9999 9999 0.00 41.00 43.00 10000

Table 7.7 Instance 7

No pHeight pWidth ~ nPanel sHeight sWidth nSheet
1 14.00 25.90 209.00 51.50 42.00 10000
2 9999 9999 0.00 44.00 49.00 10000
3 9999 9999 0.00 43.50 48.00 10000
4 9999 9999 0.00 40.50 48.00 10000
5 9999 9999 0.00 37.00 49.00 10000

Table 7.8 Instance 8

No pHeight pWidth nPanel sHeight sWidth nSheet
1 25.95 24.20 200.00 51.50 48.00 10000
2 25.95 24.20 239.00 50.50 49.00 10000
3 25.95 24.20 180.00 47.50 49.00 10000
4 25.95 24.20 350.00 47.00 49.00 10000
5 23.60 24.50 223.00 43.50 48.00 10000
6 16.85 24.50 300.00 0.00 0.00 0.00

Table 7.9 Instance 9

No pHeight pWidth nPanel sHeight sWidth nSheet
1 28.00 22.50 426.00 42.00 48.00 10000
2 26.50 22.50 75.00 40.00 48.00 10000
3 26.50 22.50 500.00 28.00 48.00 10000
4 26.50 22.50 659.00 26.80 48.00 10000
5 26.00 22.50 60.00 24.00 48.00 10000
6 21.00 23.00 292.00 0.00 0.00 0.00
7 20.00 22.50 99.00 0.00 0.00 0.00
8 19.50 23.00 129.00 0.00 0.00 0.00

Table 7.10 Instance 10

No pHeight pWidth nPanel sHeight sWidth nSheet
1 26.00 24.00 912.00 51.50 48.00 10000
2 20.50 23.00 417.00 48.50 48.00 10000
3 9999 9999 0.00 46.50 48.00 10000

148

No pHeight pWidth nPanel sHeight sWidth nSheet
4 9999 9999 0.00 43.50 49.00 10000
5 9999 9999 0.00 42.50 48.00 10000
6 9999 9999 0.00 41.50 48.00 10000

Table 7.11 Instance 11

No pHeight pWidth nPanel sHeight sWidth nSheet
1 20.70 23.50 80.00 53.50 48.00 10000
2 20.50 22.20 21.00 52.50 48.00 10000
3 19.00 23.00 118.00 49.50 48.00 10000
4 9999 9999 0.00 42.00 48.00 10000
5 9999 9999 0.00 40.00 48.00 10000
6 9999 9999 0.00 36.00 48.00 10000

Table 7.12 Instance 12

No pHeight pWidth nPanel sHeight sWidth nSheet
1 26.00 22.50 59.00 53.00 48.00 10000
2 22.50 24.00 60.00 52.50 48.00 10000
3 22.50 24.00 60.00 51.50 48.00 10000
4 22.50 24.00 60.00 51.00 48.00 10000
5 22.50 24.00 119.00 44.50 48.00 10000
6 22.50 24.00 119.00 42.00 48.00 10000
7 22.50 24.00 119.00 40.00 48.00 10000
8 9999 9999 0.00 36.00 48.00 10000

Table 7.13 Instance 13

No pHeight pWidth nPanel sHeight sWidth nSheet
1 26.20 22.70 858 58.00 48.00 10000
2 24.00 24.25 375 55.50 42.00 10000
3 21.85 22.65 959 55.00 48.00 10000
4 9999 9999 0.00 54.50 42.00 10000
5 9999 9999 0.00 52.00 48.00 10000
6 9999 9999 0.00 50.50 42.00 10000
7 9999 9999 0.00 49.50 48.00 10000
8 9999 9999 0.00 47.50 48.00 10000
9 9999 9999 0.00 43.50 48.00 10000

149

Table 7.14 Instance 14

No pHeight pWidth nPanel sHeight sWidth nSheet
1 22.85 23.20 91.00 52.00 48.00 10000
2 20.75 26.50 342.00 50.00 48.00 10000
3 20.75 26.50 570.00 42.00 48.00 10000
4 20.75 26.50 1020.00 40.00 48.00 10000
5 20.65 27.45 99.00 36.00 48.00 10000
6 17.45 22.90 154.00 34.00 48.00 10000
7 17.00 22.25 175.00 28.00 48.00 10000
8 16.25 22.00 283.00 26.80 48.00 10000
9 16.00 22.25 334.00 24.00 48.00 10000

Table 7.15 Instance 15

No pHeight pWidth nPanel sHeight sWidth nSheet
1 27.00 23.50 86.00 55.50 48.00 10000
2 25.00 20.50 53.00 50.50 42.00 10000
3 21.00 24.50 160.00 48.00 49.00 10000
4 16.00 2450 4000.00 43.50 43.00 10000
5 9999 9999 0.00 41.50 49.00 10000
6 9999 9999 0.00 40.50 48.00 10000
7 9999 9999 0.00 39.50 49.00 10000
8 9999 9999 0.00 37.00 43.00 10000
9 9999 9999 0.00 28.00 48.00 10000
10 9999 9999 0.00 26.80 48.00 10000
11 9999 9999 0.00 24.00 48.00 10000

Table 7.16 Instance 16

No pHeight pWidth nPanel sHeight sWidth nSheet
1 26.50 22.00 160.00 57.00 48.00 10000
2 26.50 22.00 204.00 55.50 49.00 10000
3 21.00 24.50 60.00 53.50 48.00 10000
4 21.00 24.50 70.00 52.50 43.00 10000
5 20.00 23.50 254.00 52.50 48.00 10000
6 9999 9999 0.00 50.50 42.00 10000
7 9999 9999 0.00 49.50 42.00 10000
8 9999 9999 0.00 41.50 48.00 10000
9 9999 9999 0.00 41.50 49.00 10000
10 9999 9999 0.00 40.50 49.00 10000
11 9999 9999 0.00 39.50 48.00 10000

150

Table 7.17 Instance 17

No pHeight pWidth nPanel sHeight sWidth nSheet
1 21.00 24.40 200.00 59.50 48.00 10000
2 20.70 24.50 123.00 54.00 48.00 10000
3 20.70 24.50 112.00 53.50 48.00 10000
4 20.55 24.10 134.00 52.00 48.00 10000
5 20.55 24.00 167.00 49.00 48.00 10000
6 20.50 24.00 123.00 45.00 48.00 10000
7 20.50 24.05 445.00 42.50 48.00 10000
8 20.45 24.05 167.00 41.50 49.00 10000
9 20.45 24.00 223.00 41.00 48.00 10000

10 20.00 21.00 129.00 41.00 49.00 10000

11 19.70 24.30 2556.00 40.50 48.00 10000

12 17.30 23.05 50.00 40.50 49.00 10000

13 9999 9999 0.00 40.00 48.00 10000

14 9999 9999 0.00 40.00 48.00 10000

15 9999 9999 0.00 39.50 42.00 10000

Table 7.18 Instance 18

No pHeight pWidth nPanel sHeight sWidth nSheet
1 27.50 22.90 319.00 58.50 49.00 10000
2 27.10 20.80 90.00 55.50 42.00 10000
3 21.00 24.00 211.00 55.00 42.00 10000
4 20.50 24.00 286.00 54.50 42.00 10000
5 20.45 24.00 150.00 54.50 48.00 10000
6 16.75 21.50 65.00 54.00 42.00 10000
7 9999 9999 0.00 53.50 48.00 10000
8 9999 9999 0.00 52.50 42.00 10000
9 9999 9999 0.00 52.50 48.00 10000

10 9999 9999 0.00 51.50 48.00 10000

11 9999 9999 0.00 51.00 42.00 10000

12 9999 9999 0.00 50.50 43.00 10000

13 9999 9999 0.00 43.00 48.00 10000

14 9999 9999 0.00 41.50 48.00 10000

15 9999 9999 0.00 41.00 48.00 10000

16 9999 9999 0.00 40.50 48.00 10000

151

Table 7.19 Instance 19

No pHeight pWidth nPanel sHeight sWidth nSheet
1 27.9 23.5 225.00 58.50 48.00 10000
2 27.35 20.45 240.00 55.50 42.00 10000
3 27.3 22.3 2,477.00 55.50 48.00 10000
4 26.4 22.2 109.00 55.00 42.00 10000
5 26.3 22.3 780.00 54.50 42.00 10000
6 26.25 22.5 1,180.00 51.50 42.00 10000
7 25.65 22.2 3.00 51.00 48.00 10000
8 25.65 2427 90.00 49.00 42.00 10000
9 25.5 22.2 84.00 49.00 48.00 10000

10 255 22.2 199.00 42.50 48.00 10000

11 25.5 22.2 84.00 42.00 48.00 10000

12 24.1 16 97.00 41.00 48.00 10000

13 24 23.35 71.00 40.00 48.00 10000

14 23.85 24.15 70.00 36.00 48.00 10000

15 215 15.75 556.00 28.00 48.00 10000

16 20.5 24 98.00 26.80 48.00 10000

17 20.3 22.3 850.00 24.00 48.00 10000

18 20.3 22.3 1,159.00 0.00 0.00 0.00

19 20.1 23.4 40.00 0.00 0.00 0.00

20 19.9 23.4 534.00 0.00 0.00 0.00

21 19.5 23.75 108.00 0.00 0.00 0.00

22 19.5 23.4 259.00 0.00 0.00 0.00

23 19.15 23.4 157.00 0.00 0.00 0.00

24 18.5 24 94.00 0.00 0.00 0.00

25 16.6 21.15 840.00 0.00 0.00 0.00

26 15.75 22.25 96.00 0.00 0.00 0.00

27 15.75 22.25 111.00 0.00 0.00 0.00

152

Table 7.20 Instance 20

No pHeight pWidth nPanel sHeight sWidth nSheet
1 25.85 24.20 500.00 56.50 49.00 10000
2 25.85 24.20 970.00 55.50 48.00 10000
3 25.50 14.00 75.00 54.00 48.00 10000
4 25.40 22.25 226.00 53.50 48.00 10000
5 22.75 16.00 267.00 53.00 42.00 10000
6 22.75 16.25 500.00 53.00 48.00 10000
7 22.25 23.40 135.00 52.50 48.00 10000
8 22.25 16.30 182.00 52.00 42.00 10000
9 22.20 23.30 130.00 51.50 48.00 10000

10 21.50 23.40 120.00 51.00 48.00 10000

11 21.30 23.40 112.00 50.50 42.00 10000

12 21.00 24.25 134.00 50.50 48.00 10000

13 18.50 24.00 131.00 49.50 48.00 10000

14 17.00 22.75 129.00 47.00 48.00 10000

15 16.80 23.00 179.00 45.00 48.00 10000

16 9999 9999 0.00 45.00 49.00 10000

17 9999 9999 0.00 44.50 48.00 10000

18 9999 9999 0.00 44.00 48.00 10000

19 9999 9999 0.00 44.00 49.00 10000

20 9999 9999 0.00 42.50 48.00 10000

21 9999 9999 0.00 42.50 49.00 10000

22 9999 9999 0.00 41.50 48.00 10000

23 9999 9999 0.00 41.00 48.00 10000

24 9999 9999 0.00 40.50 43.00 10000

25 9999 9999 0.00 40.50 48.00 10000

26 9999 9999 0.00 40.00 48.00 10000

153

7.3. Appendix C: Output Twenty Testing Instances

Since there are so many instances, only the first instance and its output

pattern are given for each technique of the heuristic methods.

7.3.1. 2D Simple Heuristic Cutting
Table 7.21 The output for the first instance using 2DSHC

Sheet Panel Minimum Number of Number of sheet Leftover Compute Coordinate Over Cut waste/sheet - Total Waste
Height Width height width Demand Waste/sheet panel/sheet that we will cut _ panel time X Yy Panel over cut panel For Cutting
1 505 42 2555 207 107 2 0 0 1
2555 20.7 207 0
1063.23 54 1258 57943.31 57943.31
2 51 42 255 209 112 4 0 0 0
255 209 209 0
255 209 0 255
255 209 209 255
10.2 28 1263 285.6 58228.91

7.3.2. 2D Horizontal Construction
Table 7.22 The output for the first instance using 2DHC

Sheet Panel Level Waste Time Total
Height Width height width Waste

51 42 25.55 20.7 1

25.55 20.7 1 1084.23 1305
51 42 25.55 20.7 1

25.55 20.7 1 1084.23 1307
51 42 25.55 20.7 1

25.55 20.7 1 1084.23 1309
51 42 25.55 20.7 1

25.55 20.7 1 1084.23 1310
51 42 25.55 20.7 1

25.55 20.7 1 1084.23 1312
51 42 25.55 20.7 1

25.55 20.7 1 1084.23 1314
51 42 25.55 20.7 1

25.55 20.7 1 1084.23 1315
51 42 25.55 20.7 1

25.55 20.7 1 1084.23 1317
51 42 25.55 20.7 1

25.55 20.7 1 1084.23 1318
51 42 25.55 20.7 1

25.55 20.7 1 1084.23 1320
51 42 25.55 20.7 1

25.55 20.7 1 1084.23 1322
51 42 25.55 20.7 1

25.55 20.7 1 1084.23 1324
51 42 25.55 20.7 1

25.55 20.7 1 1084.23 1325
51 42 25.55 20.7 1

154

Sheet Panel . Total
Height Width height width Ccvel Waste Time o ce

2555 207 1 108423 1327
51 42 2555 207 1

2555 207 1 108423 1330
51 42 2555 207 1

2555 207 1 108423 1332
51 42 2555 207 1

2555 207 1 108423 1333
51 42 2555 207 1

2555 207 1 108423 1335
51 42 2555 207 1

2555 207 1 108423 1337
51 42 2555 207 1

2555 207 1 108423 1339
51 42 2555 207 1

2555 207 1 108423 1341
51 42 2555 207 1

2555 207 1 108423 1342
51 42 2555 207 1

2555 207 1 108423 1344
51 42 2555 207 1

2555 207 1 108423 1345
51 42 2555 207 1

2555 207 1 108423 1347
51 42 2555 207 1

2555 207 1 108423 1349
51 42 2555 207 1

2555 207 1 108423 1350
51 42 2555 207 1

2555 207 1 108423 1351
51 42 2555 207 1

2555 207 1 108423 1352
51 42 2555 207 1

2555 207 1 108423 1353
51 42 2555 207 1

2555 207 1 108423 1354
51 42 2555 207 1

2555 207 1 108423 1355
51 42 2555 207 1

2555 207 1 108423 1356
51 42 2555 207 1

2555 207 1 108423 1357
51 42 2555 207 1

2555 207 1 1084.23 1358
51 42 2555 207 1

2555 207 1 1084.23 1359

155

Sheet Panel . Total
Height Width height width Ccvel Waste Time o ce
51 22 2555 207 1

2555 207 1 1084.23 1360

51 42 2555 207 1

2555 207 1 1084.23 1361
51 42 2555 207 1

2555 207 1 1084.23 1362
51 42 2555 207 1

2555 207 1 1084.23 1363
51 42 2555 207 1

2555 207 1 108423 1364
51 42 2555 207 1

2555 207 1 1084.23 1365
51 42 2555 207 1

2555 207 1 1084.23 1366
51 42 2555 207 1

2555 207 1 1084.23 1368
51 42 2555 207 1

2555 207 1 1084.23 1369
51 42 B YA e

2555 207 1 1084.23 1370
51 42 2555 207 1

2555 207 1 108423 1371
51 42 2555 207 1

2555 207 1 108423 1372
51 42 2555 207 1

2555 207 1 108423 1372
51 42 2555 207 1

2555 207 1 1084.23 1373
51 42 2555 207 1

2555 207 1 108423 1374
51 42 2555 207 1

2555 207 1 108423 1375
51 42 2555 207 1

2555 207 1 108423 1375
51 42 2555 207 1

255 209 1 1080.165 1376
51 42 255 209 1

255 209 1

255 209 2

255 209 2 102 1377
51 42 255 209 1

255 209 1

255 209 2

255 209 2 102 1378
51 42 255 209 1

156

Sheet Panel . Total
Height Width height width Ccvel Waste Time o ce

255 209 1

255 209 2

255 209 2 102 1380
51 42 255 209 1

255 209 1

255 209 2

255 209 2 102 1381
51 42 255 209 1

255 209 1

255 209 2

255 209 2 102 1382
51 42 255 209 1

255 209 1

255 209 2

255 209 2 102 1383
51 42 255 209 1

255 209 1

255 209 2

255 209 2 102 1384
51 42 255 209 1

255 209 1

255 209 2

255 209 2 102 1385
51 42 255 209 1

255 209 1

255 209 2

255 209 2 102 1386
51 42 255 209 1

255 209 1

255 209 2

255 209 2 102 1387
51 42 255 209 1

255 209 1

255 209 2

255 209 2 102 1388
51 42 255 209 1

255 209 1

255 209 2

255 209 2 102 1394
51 42 255 209 1

255 209 1

255 209 2

255 209 2 102 1395
51 42 255 209 1

255 209 1

157

Sheet Panel . Total
Height Width height width Ccvel Waste Time o ce

255 209 2

255 209 2 102 1397
51 42 255 209 1

255 209 1

255 209 2

255 209 2 102 1398
51 42 255 209 1

255 209 1

255 209 2

255 209 2 102 1400
51 42 255 209 1

255 209 1

255 209 2

255 209 2 102 1401
51 42 255 209 1

255 209 1

255 209 2

255 209 2 102 1403
51 42 255 209 1

255 209 1

255 209 2

255 209 2 102 1404
51 42 oA Lonid—X\ 1

255 209 1

255 209 2

255 209 2 102 1405
51 42 255 209 1

255 209 1

255 209 2

255 209 2 102 1406
51 42 255 209 1

255 209 1

255 209 2

255 209 2 102 1407
51 42 255 209 1

255 209 1

255 209 2

255 209 2 102 1408
51 42 255 209 1

255 209 1

255 209 2

255 209 2 102 1409
51 42 255 209 1

255 209 1

255 209 2

158

Sheet Panel Level Waste Time Total
Height Width height width Waste
255 20.9 2 10.2 1410
51 42 255 20.9 1
255 20.9 1
255 20.9 2
255 20.9 2 10.2 1411
51 42 255 20.9 1
255 20.9 1
255 20.9 2
255 20.9 2 10.2 1411
51 42 255 20.9 1
255 20.9 1
25.5 20.9 2 543.15 1411 59362.91
7.3.3. 2D Vertical Construction
Table 7.23 The output for the first instance using 2DVC
Sheet Panel . Total
Height Width height wigth —cvel Waste Time e
51 42 255 20.9 1
255 20.9 1
255 20.9 2
255 20.9 2 10.2 1328
51 42 255 20.9 1
255 20.9 1
255 20.9 2
25.5 20.9 2 10.2 1332
51 42 255 20.9 1
255 20.9 1
255 20.9 2
255 20.9 2 10.2 1335
51 42 255 20.9 1
255 20.9 1
255 20.9 2
255 20.9 2 10.2 1339
51 42 255 20.9 1
255 20.9 1
255 20.9 2
255 20.9 2 10.2 1342
51 42 255 20.9 1
255 20.9 1
255 20.9 2
255 20.9 2 10.2 1345
51 42 255 20.9 1
255 20.9 1
255 20.9 2

159

Sheet Panel . Total
Height Width height width Ccvel Waste Time o ce

255 209 2 102 1348
51 42 255 209 1

255 209 1

255 209 2

255 209 2 102 1351
51 42 255 209 1

255 209 1

255 209 2

255 209 2 102 1353
51 42 255 209 1

255 209 1

255 209 2

255 209 2 102 1356
51 42 255 209 1

255 209 1

255 209 2

255 209 2 102 1359
51 42 255 209 1

255 209 1

255 209 2

255 209 2 102 1362
51 42 255 209 1

oA Lonid—X\ 1

255 209 2

255 209 2 102 1365
51 42 255 209 1

255 209 1

255 209 2

255 209 2 102 1368
51 42 255 209 1

255 209 1

255 209 2

255 209 2 102 1370
51 42 255 209 1

255 209 1

255 209 2

255 209 2 102 1372
51 42 255 209 1

255 209 1

255 209 2

255 209 2 102 1374
51 42 255 209 1

255 209 1

255 209 2

255 209 2 102 1376

160

Sheet Panel . Total
Height Width height width Ccvel Waste Time o ce
51 22 255 209 1

255 209 1

255 209 2

255 209 2 102 1379
51 42 255 209 1

255 209 1

255 209 2

255 209 2 102 1382
51 42 255 209 1

255 209 1

255 209 2

255 209 2 102 1384
51 42 255 209 1

255 209 1

255 209 2

255 209 2 102 1386
51 42 255 209 1

255 209 1

255 209 2

255 209 2 102 1388
51 42 255 209 1

255 209 1

oA Lonid—X\5

255 209 2 102 1390
51 42 255 209 1

255 209 1

255 209 2

255 209 2 102 1392
51 42 255 209 1

255 209 1

255 209 2

255 209 2 102 1394
51 42 255 209 1

255 209 1

255 209 2

255 209 2 102 139
51 42 255 209 1

255 209 1

255 209 2

255 209 2 102 1397
51 42 2555 207 1

2555 207 2 1084.23 1398
51 42 2555 207 1

2555 207 2 108423 1399
51 42 2555 207 1

161

Sheet Panel Level Waste Time Total
Height Width height width Waste

25.55 20.7 2 1084.23 1400
51 42 25.55 20.7 1

25.55 20.7 2 1084.23 1401
51 42 25.55 20.7 1

25.55 20.7 2 1084.23 1401
51 42 25.55 20.7 1

25.55 20.7 2 1084.23 1402
51 42 25.55 20.7 1

25.55 20.7 2 1084.23 1403
51 42 25.55 20.7 1

25.55 20.7 2 1084.23 1404
51 42 25.55 20.7 1

25.55 20.7 2 1084.23 1405
51 42 25.55 20.7 1

25.55 20.7 2 1084.23 1406
51 42 25.55 20.7 1

25.55 20.7 2 1084.23 1407
51 42 25.55 20.7 1

25.55 20.7 2 1084.23 1408
51 42 25.55 20.7 1

25.55 20.7 2 1084.23 1409
51 42 25.55 20.7 1

25.55 20.7 2 1084.23 1409
51 42 25.55 20.7 1

25.55 20.7 2 1084.23 1410
51 42 25.55 20.7 1

25.55 20.7 2 1084.23 1411
51 42 25.55 20.7 1

25.55 20.7 2 1084.23 1411
51 42 25.55 20.7 1

25.55 20.7 2 1084.23 1412
51 42 25.55 20.7 1

25.55 20.7 2 1084.23 1413
51 42 25.55 20.7 1

25.55 20.7 2 1084.23 1414
51 42 25.55 20.7 1

25.55 20.7 2 1084.23 1415
51 42 25.55 20.7 1

25.55 20.7 2 1084.23 1415
51 42 25.55 20.7 1

25.55 20.7 2 1084.23 1416
51 42 25.55 20.7 1

25.55 20.7 2 1084.23 1417
ol 42 25.55 20.7 1

25.55 20.7 2 1084.23 1418

162

Sheet Panel . Total
Height Width height width Ccvel Waste Time o ce

51 22 2555 207 1

2555 207 2 1084.23 1418
51 42 2555 207 1

2555 207 2 1084.23 1419
51 42 2555 207 1

2555 207 2 1084.23 1420
51 42 2555 207 1

2555 207 2 1084.23 1420
51 42 2555 207 1

2555 207 2 108423 1421
51 42 2555 207 1

2555 207 2 1084.23 1422
51 42 2555 207 1

2555 207 2 108423 1422
51 42 2555 207 1

2555 207 2 1084.23 1423
51 42 2555 207 1

2555 207 2 108423 1424
51 42 B YA

2555 207 2 108423 1424
51 42 2555 207 1

2555 207 2 1084.23 1425
51 42 2555 207 1

2555 207 2 108423 1426
51 42 2555 207 1

2555 207 2 108423 1426
51 42 2555 207 1

2555 207 2 1084.23 1427
51 42 2555 207 1

2555 207 2 1084.23 1427
51 42 2555 207 1

2555 207 2 1084.23 1428
51 42 2555 207 1

2555 207 2 108423 1429
51 42 2555 207 1

2555 207 2 1084.23 1429
51 42 2555 207 1

2555 207 2 1084.23 1430
51 42 2555 207 1

2555 207 2 1084.23 1430
51 42 2555 207 1

2555 207 2 108423 1431
51 42 2555 207 1

2555 207 2 108423 1431
51 42 2555 207 1

163

Sheet Panel Level Waste Time Total

Height Width height width Waste

25.55 20.7 2 1084.23 1432

51 42 25.55 20.7 1
25.55 20.7 2 1084.23 1432

51 42 25.55 20.7 1
25.55 20.7 2 1084.23 1433

51 42 25.55 20.7 1
25.55 20.7 2 1084.23 1433

51 42 25.55 20.7 1
25.55 20.7 2 1084.23 1434

51 42 25.55 20.7 1
25.55 20.7 2 1084.23 1434

51 42 25.55 20.7 1 1613.115 1434 59362.91

7.3.4. 2D Horizontal Improvement
Table 7.24 The output for the first instance using 2DHI

Sheet Panel Minimum _ Number of Number of sheet Leftover Compute Coordinate Over Cut waste/sheet - Total Waste
Height Width height width Demand Waste/sheet panel/sheet that we willcut panel time X Yy Panel over cut panel For Cutting
1 505 42 2555 207 107 2 0 o0 1
2555 207 207 0
1063.23 54 1161 57943.31 57943.31
2 51 42 255 209 112 4 0 o0 0
255 209 209 0
255 209 0 255
255 209 209 255
10.2 28 1168 285.6 58228.91

7.3.5. 2D Vertical Improvement
Table 7.25 The output for the first instance using 2DVI

Sheet Panel Minimum Number of Number of sheet Leftover Compute Coordinate Over Cut waste/sheet - Total Waste
Height Width height width Demand Waste/sheet panel/sheet that we willcut panel time X y Panel _over cut panel For Cutting
1 51 42 255 209 112 4 0 0 0
255 209 0 255
255 209 209 0
255 209 209 255
10.2 28 1314 285.6 285.6
2 505 42 2555 207 107 2 0 0 1
2555 207 207 0
1063.23 54 1319 5794331 58228.91

7.3.6. Sheet Width Panel Height Horizontal Cut
Table 7.26 The output of the first instance using SW_PH_HC

Sheet Panel Level W Ti Total
Height Width height width "¢ aste TIme \yaste
51 42 2555 207 1
2555 207 1 108423 1152
51 42 2555 207 1
2555 207 1 108423 1155
51 42 2555 207 1

164

Sheet Panel Level Wast Ti Total
Height Width height width e M Waste

2555 20.7 1 108423 1157
51 42 2555 207 1

2555 20.7 1 108423 1159
51 42 2555 207 1

2555 20.7 1 108423 1161
51 42 2555 207 1

2555 20.7 1 108423 1164
51 42 2555 207 1

2555 20.7 1 108423 1166
51 42 2555 207 1

2555 20.7 1 108423 1169
51 42 2555 207 1

2555 20.7 1 108423 1171
51 42 2555 207 1

2555 20.7 1 108423 1174
51 42 2555 207 1

2555 20.7 1 108423 1175
51 42 2555 207 1

2555 20.7 1 108423 1177
51 42 2555 207 1

2555 20.7 1 108423 1179
51 42 2555 207 1

2555 20.7 1 108423 1180
51 42 2555 207 1

2555 20.7 1 108423 1182
51 42 2555 207 1

2555 20.7 1 108423 1184
51 42 2555 207 1

2555 20.7 1 108423 1186
51 42 2555 207 1

2555 20.7 1 108423 1188
51 42 2555 207 1

2555 20.7 1 108423 1189
51 42 2555 207 1

2555 20.7 1 108423 1191
51 42 2555 207 1

2555 20.7 1 108423 1193
51 42 2555 207 1

2555 20.7 1 108423 1195

165

Sheet Panel Level Wast Ti Total
Height Width height width e M Waste

51 22 2555 207 1

2555 20.7 1 108423 1201
51 42 2555 207 1

2555 20.7 1 108423 1202
51 42 2555 207 1

2555 20.7 1 108423 1204
51 42 2555 207 1

2555 20.7 1 108423 1206
51 42 2555 207 1

2555 20.7 1 108423 1207
51 42 2555 207 1

2555 20.7 1 108423 1209
51 42 2555 207 1

2555 20.7 1 108423 1210
51 2 2555 207 1

2555 20.7 1 108423 1211
51 42 2555 207 1

2555 20.7 1 108423 1213
51 42 2555 207 1

2555 20.7 1 108423 1214
51 42 2555 207 1

2555 20.7 1 108423 1215
51 42 2555 207 1

2555 20.7 1 108423 1217
51 42 2555 207 1

2555 20.7 1 108423 1218
51 42 2555 207 1

2555 20.7 1 108423 1219
51 42 2555 207 1

2555 20.7 1 108423 1220
51 42 2555 207 1

2555 20.7 1 108423 1221
51 42 2555 207 1

2555 20.7 1 108423 1222
51 42 2555 207 1

2555 20.7 1 108423 1224
51 42 2555 207 1

2555 20.7 1 108423 1225
51 42 2555 207 1

166

Sheet Panel Level Wast Ti Total
Height Width height width e M Waste

2555 20.7 1 108423 1226
51 42 2555 207 1

2555 20.7 1 108423 1228
51 42 2555 207 1

2555 20.7 1 108423 1229
51 42 2555 207 1

2555 20.7 1 108423 1230
51 42 2555 207 1

2555 20.7 1 108423 1231
51 42 2555 207 1

2555 20.7 1 108423 1232
51 42 2555 207 1

2555 20.7 1 108423 1233
51 42 2555 207 1

2555 20.7 1 108423 1234
51 42 2555 207 1

2555 20.7 1 108423 1235
51 42 2555 207 1

2555 20.7 1 108423 1236
51 42 2555 207 1

2555 20.7 1 108423 1237
51 42 2555 207 1

2555 20.7 1 108423 1238
51 42 2555 207 1

255 209 1 108017 1239
51 42 255 209 1

255 209 1

255 209 2

255 209 2 102 1240
51 42 255 209 1

255 209 1

255 209 2

255 209 2 102 1241
51 42 255 209 1

255 209 1

255 209 2

255 209 2 102 1243
51 42 255 209 1

255 209 1

167

Sheet Panel Level Wast Ti Total

Height Width height width e M Waste

255 200 2

255 209 2 102 1245
51 42 255 209 1

255 209 1

255 209 2

255 209 2 102 1246
51 42 255 209 1

255 209 1

255 209 2

255 209 2 102 1248
51 42 255 209 1

255 209 1

255 209 2

255 209 2 102 1249
51 42 255 209 1

255 209 1

255 209 2

255 209 2 102 1250
51 42 255 209 1

255 209 1

255 209 2

255 209 2 102 1251
51 42 255 209 1

255 209 1

255 209 2

255 209 2 102 1252
51 42 255 209 1

255 209 1

255 209 2

255 209 2 102 1254
51 42 255 209 1

255 209 1

255 209 2

255 209 2 102 1255
51 42 255 209 1

255 209 1

255 209 2

255 209 2 102 1258
51 42 255 209 1

168

Sheet Panel Level Wast Ti Total

Height Width height width e M Waste

255 209 1

255 209 2

255 209 2 102 1259
51 42 255 209 1

255 209 1

255 209 2

255 209 2 102 1260
51 42 255 209 1

255 209 1

255 209 2

255 209 2 102 1261
51 42 255 209 1

255 209 1

255 209 2

255 209 2 102 1262
51 42 255 209 1

255 209 1

255 209 2

255 209 2 02 1263
51 42 255 209 1

255 209 1

255 209 2

255 209 2 102 1264
51 42 255 209 1

255 209 1

255 209 2

255 209 2 102 1265
51 42 255 209 1

255 209 1

255 209 2

255 209 2 102 1266
51 42 255 209 1

255 209 1

255 209 2

255 209 2 102 1267
51 42 255 209 1

255 209 1

255 209 2

255 209 2 102 1268

169

Sheet

Panel

Height

Width

height

width

Waste

Time

Total
Waste

o1

51

o1

51

o1

42

42

42

42

42

255
25.5
25.5
25.5
25.5
255
255
25.5
255
25.5
25.5
255
25.5
255
255
25.5
255
25.5
25.5

20.9
20.9
20.9
20.9
20.9
20.9
20.9
20.9
20.9
20.9
20.9
20.9
20.9
20.9
20.9
20.9
20.9
20.9
20.9

10.2

10.2

10.2

10.2

543.15

1269

1270

1271

1272

1272

59362.9

7.3.7. Sheet Width Panel Width Vertical Cut

Table 7.27 The output of the first instance using SW_PW_VC

Sheet

Panel

Height

Width

height

width

Level

Waste

Time

Total
Waste

51

51

o1

42

42

42

42

255
25.5
255
25.5
25.5
255
25.5
255
255
25.5
255
25.5
25.5
25.5

20.9
20.9
20.9
20.9
20.9
20.9
20.9
20.9
20.9
20.9
20.9
20.9
20.9
20.9

170

P P NOMNNRPRPNONMNNRERNNPRRE

10.2

10.2

10.2

1057

1064

1069

Sheet Panel Level Wast Ti Total
Height Width height width — e HME T \Waste

255 209 2

255 209 2 102 1075
51 42 255 209 1

255 209 1

255 209 2

255 209 2 102 1080
51 42 255 209 1

255 209 1

255 209 2

255 209 2 102 1084
51 42 255 209 1

255 209 1

255 209 2

255 209 2 102 1088
51 42 255 209 1

255 209 1

255 209 2

255 209 2 102 1094
51 42 255 209 1

255 209 1

255 209 2

255 209 2 102 1099
51 42 255 209 1

255 209 1

255 209 2

255 209 2 102 1102
51 42 255 209 1

255 209 1

255 209 2

255 209 2 102 1105
51 42 255 209 1

255 209 1

255 209 2

255 209 2 102 1108
51 42 255 209 1

255 209 1

255 209 2

255 209 2 102 1111
51 42 255 209 1

171

Sheet Panel Level Wast Ti Total
Height Width height width — e HME T \Waste

255 200 1

255 209 2

255 209 2 102 1114
51 42 255 209 1

255 209 1

255 209 2

255 209 2 102 1116
51 42 255 209 1

255 209 1

255 209 2

255 209 2 102 1119
51 42 255 209 1

255 209 1

255 209 2

255 209 2 102 1121
51 42 255 209 1

255 209 1

255 209 2

255 209 2 102 1124
51 42 255 209 1

255 209 1

255 209 2

255 209 2 102 1127
51 42 255 209 1

255 209 1

255 209 2

255 209 2 102 1129
51 42 255 209 1

255 209 1

255 209 2

255 209 2 102 1131
51 42 255 209 1

255 209 1

255 209 2

255 209 2 102 1133
51 42 255 209 1

255 209 1

255 209 2

255 209 2 102 1135

172

Sheet Panel Level Wast Ti Total
Height Width height width — e HME T \Waste
51 22 255 200 1

255 209 1

255 209 2

255 209 2 102 1136
51 42 255 209 1

255 209 1

255 209 2

255 209 2 102 1138
51 42 255 209 1

255 209 1

255 209 2

255 209 2 102 1140
51 42 255 209 1

255 209 1

255 209 2

255 209 2 102 1142
51 42 255 209 1

255 209 1

255 209 2

255 209 2 102 1144
51 42 2555 207 1

2555 207 2 108423 1145
51 42 2555 207 1

2555 207 2 108423 1146
51 42 2555 207 1

2555 207 2 108423 1147
51 42 2555 207 1

2555 207 2 108423 1148
51 42 2555 207 1

2555 207 2 108423 1149
51 42 2555 207 1

2555 207 2 108423 1150
51 42 2555 207 1

2555 207 2 108423 1150
51 42 2555 207 1

2555 207 2 108423 1151
51 42 2555 207 1

2555 207 2 108423 1152
51 42 2555 207 1

173

Sheet Panel Level Wast Ti Total
Height Width height width — e HME T \Waste

2555 207 2 108423 1153
51 42 2555 207 1

2555 207 2 108423 1154
51 42 2555 207 1

2555 207 2 108423 1154
51 42 2555 207 1

2555 207 2 108423 1155
51 42 2555 207 1

2555 207 2 108423 1156
51 42 2555 207 1

2555 207 2 108423 1157
51 42 2555 207 1

2555 207 2 108423 1157
51 42 2555 207 1

2555 207 2 108423 1158
51 42 2555 207 1

2555 207 2 108423 1159
51 42 2555 207 1

2555 207 2 108423 1159
51 42 2555 207 1

2555 207 2 108423 1161
51 42 2555 207 1

2555 207 2 108423 1161
51 42 2555 207 1

2555 207 2 108423 1162
51 42 2555 207 1

2555 207 2 108423 1163
51 42 2555 207 1

2555 207 2 108423 1163
51 42 2555 207 1

2555 207 2 108423 1164
51 42 2555 207 1

2555 207 2 108423 1165
51 42 2555 207 1

2555 207 2 108423 1165
51 42 2555 207 1

2555 207 2 108423 1166
51 42 2555 207 1

2555 207 2 108423 1166

174

Sheet Panel Level Wast Ti Total
Height Width height width — e HME T \Waste

51 22 2555 207 1

2555 207 2 108423 1167
51 42 2555 207 1

2555 207 2 108423 1167
51 42 2555 207 1

2555 207 2 108423 1168
51 42 2555 207 1

2555 207 2 108423 1169
51 42 2555 207 1

2555 207 2 108423 1169
51 42 2555 207 1

2555 207 2 108423 1170
51 42 2555 207 1

2555 207 2 108423 1170
51 42 2555 207 1

2555 207 2 108423 1171
51 42 2555 207 1

2555 207 2 108423 1171
51 42 2555 207 1

2555 207 2 108423 1172
51 42 2555 207 1

2555 207 2 108423 1173
51 42 2555 207 1

2555 207 2 108423 1173
51 42 2555 207 1

2555 207 2 108423 1174
51 42 2555 207 1

2555 207 2 108423 1174
51 42 2555 207 1

2555 207 2 108423 1175
51 42 2555 207 1

2555 207 2 108423 1175
51 42 2555 207 1

2555 207 2 108423 1176
51 42 2555 207 1

2555 207 2 108423 1176
51 42 2555 207 1

2555 207 2 108423 1177
51 42 2555 207 1

175

Sheet Panel Level Wast Ti Total
Height Width height width — st HMe \aste
2555 207 2 108423 1177
51 42 2555 207 1
2555 207 2 108423 1178
51 42 2555 207 1
2555 207 2 108423 1179
51 42 2555 207 1
2555 207 2 108423 1179
51 42 2555 207 1
2555 207 2 108423 1180
51 42 2555 207 1 1613.115 1180 59362.905

7.3.8. Minimum Sheet Width Ordering Panel Height Horizontal Cut
Table 7.28 The output of the first instance using MinSW_OPH_HC

Sheet Panel Minimum Number of Number of sheet Leftover Compute Coordinate Over Cut waste/sheet - Total Waste
Height Width height width Demand Waste/sheet panel/sheet that we willcut panel time X y Panel over cut panel For Cutting
1 505 42 256 207 107 1 0 0 0
255 209 112 1 5! 207 0 0
1059.165 107 2169 113330.655 113330.66
2 51 42 255 209 5 4 0 0 3
255 209 209 0
255 209 0 255
255 209 209 255
10.2 2 2177 1619.25 114949.91
7.3.9. Minimum Sheet Height Ordering Panel Width Vertical Cut

Table 7.29 The output of the first instance using MinSH_OPW_VC

NO Sheet Panel Minimum Number of Number of sheet Leftover Compute Coordinate Over Cut waste/sheet - Total Waste
Height Width height width Demand Waste/sheet panel/sheet that we willcut panel time X y Panel over cut panel For Cuiting
1 51 42 255 209 112 4 0 40 0
255 20.9 0 255
255 209 209 0
255 20.9 209 255
10.2 28 1063 285.6 285.6
2 505 42 256 207 107 2 0 0 1
256 20.7 207 0
1063.23 54 1069 57943.305 58228.905

176

