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Abstract 

 
SYMBOLIC-NUMERICAL OBJECT-ORIENTED FINITE ELEMENT 

PROGRAMMING 

 

by 

 

 

PISITH SAM 

 

 

B.Eng. in Civil Engineering, Institute of Technology of Cambodia, 2013 

 

There are times when closed-form analysis of solids and structures is needed. When 

only a structural member is considered, it is certainly possible to perform this type of 

analysis by hand. However, when a structure with several members is to be considered, 

manual calculation becomes practically impossible even when closed-form solutions 

are theoretically obtainable. A finite element (FE) program that can symbolically 

analyze elasticity problems of solids and structures can therefore be quite useful. 

Unfortunately, symbolic computations are usually difficult to perform when problems 

are complex. In these cases, numerical computations are still necessary. This study 

presents an object-oriented FE program that can perform both symbolic and numerical 

computations. The program is implemented in MATLAB. The object-oriented 

programming (OOP) technique is used to enhance the maintainability, extendibility, 

and reusability of the program. The proposed program is capable of performing 

symbolic and numerical finite element analysis depending on the input it receives. The 

obtained program is tested using some engineering problems in order to demonstrate 

its usefulness. The results obtained from the program are found to be satisfactory. 

 

Keywords: Finite element programming, Closed-form analysis, Linear elasticity, 

Symbolic computation, Numerical computation, Symbolic-numerical computation, 

Object-oriented programming. 
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Chapter 1 

Introduction 

 

1.1 General 
 

The finite element method (FEM) is an efficient method for solving differential 

equations. As most physical problems can be expressed as differential equations, FEM 

has become a power tool for solving these problems. Finite element (FE) programs have 

been developed with many programming languages by procedural and object-oriented 

programming (OOP) paradigms. The procedural programming paradigm is a simple 

kind of programming technique that focuses on separating computational tasks into 

many systematical procedures or subroutines that can be reused. Although this 

procedural technique is simple and easy to program, it has some remarkable drawbacks, 

such as difficulties to relate with real world objects, maintenance of the codes, and 

management of data memories, and securities. These drawbacks are more pronounced 

when programs become large and complex. To deal with these data-related problems, 

the OOP paradigm can be used. The OOP technique treats programs as communications 

and interacts between objects. Programs that use OOP can be considered as a collection 

of interactive objects which consist of data fields associated with procedures known as 

methods. The OOP technique can effectively improve the maintainability, extendibility, 

and reusability of programs. 

As aforementioned, FE programs have been written in various programming 

languages. Some of the popular languages for implementing FEM include FORTRAN, 

C, C++, C#, Java, Mathematica, Maple, MATLAB, Python, and Smalltalk. These 

programming languages may have different capacities and employ different 

programming paradigms. For instance, FORTRAN relies heavily on the procedural 

programming technique although some OOP capacities have been recently added. In 

addition, C, C++, C# and Java allow only numerical computations while Mathematica, 

Maple, MATLAB, Python, and Smalltalk can perform both numerical and symbolic 

computations. Oftentimes, symbolic computations are necessary and desirable in 

engineering calculations. For example, symbolic computations offer closed-form 

solutions for engineering problems as practical and ready-to-use formulas. However, 
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symbolic computations are usually difficult to perform. For many complex problems, 

closed-form solutions sometimes do not exist at all. 

Most of the time, programming languages that do not support symbolic 

computations are used to implement FEM such as FORTRAN, C, C++, C#, and Java. 

This is because of the fact that real problems are usually large and complex; therefore, 

they can be managed only by efficient numerical programs. However, programming 

languages that allow both numerical and symbolic computations have been 

significantly improved recently. As a result, it is now possible to develop FE programs 

that are capable of handling both symbolic and numerical computations. These 

programs are quite useful since they can give symbolic solutions when it is possible, 

and give numerical solutions when symbolic solutions are not possible or not required. 

Closed-form analysis of simple structural problems can be solved manually by 

engineers. Those structures can be, for example, simple trusses and frames. Closed-

form analysis is a kind of mathematical analysis that is used to determine expressions 

of closed-form solutions which will be later used as formulas. In finite element analysis 

(FEA) of structural problems, closed-form analysis can be used to find symbolic 

expressions of element stiffness matrices, unknown displacements, strains, stresses, and 

strain energy. Closed-form solutions of element stiffness have been studied and 

considered in many research works (Yew et al., 1995, Jiang and Wang, 2008, Shiakolas 

et al., 1994). Closed-form stiffness can be used to speed up FEA processes significantly 

since the formation of stiffness matrices in real time is no longer required. There are 

also some research works that deal with closed-form analysis of strain energy. For 

example, in the works by Zhang et al. (2007), Dai and Zhang (2009), and Wang et al. 

(2008), the closed forms of strain energy of unit cells of periodic cellular solids are used 

to determine the effective elastic properties of the solids. 

 

1.2 Statement of the problem 

 

FE programs are mostly written using the procedural programming paradigm, 

which in general cannot handle complex data structures well. As a result, these codes 

contain many fragmented data variables, which are accessed throughout the programs. 

This causes many difficulties in modifying and extending the existing codes for new 
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uses, models, and solution procedures. To deal with these problems, the OOP paradigm 

becomes an interest. 

Under the OOP paradigm, software is organized as a collection of discrete and 

distinguishable objects that incorporate both data structures and behavior. The key idea 

of this approach is to consider tasks in software as communications between and 

operations within various objects. As aforementioned, the concept greatly improves 

maintainability, extendibility, and reusability of software. There exist large quantities 

of research works that are concerned with the development of object-oriented FE 

programs (Forde et al., 1990, Abdalla and Yoon, 1992, Mackie, 1998, Archer et al., 

1999, Mackie, 2002, Mackie, 2007). When the OOP technique is used in 

implementation of FEM, the process of FEA must be thought of as interactions between 

various entities. These entities can be classified into various classes of objects whose 

data and behavior are clearly defined. Common examples of these classes include 

nodes, elements, and materials. As seeing each entity as an object can be achieved quite 

naturally by programmers, programming FEM using the OOP paradigm becomes a 

smooth and natural process. 

Most FE programs are only implemented for numerical computations. In fact, it is 

generally sufficient to solve engineering problems numerically. However, there are 

some problems that symbolic computations are necessary or preferred (Shiakolas et al., 

1994, Pavlovic, 2003, Shiakolas et al., 1993). By using symbolic computations in FE 

programs, closed-form solutions of FE problems can be obtained and can be later used 

as formulas. Thus, developing a symbolic FE program that can handle both symbolic 

and numerical FEA can be beneficial. In order to develop a symbolic FE program, a 

powerful programming language that can manipulate symbolic computations is 

necessary. In addition, in order to utilize the OOP paradigm, the programming language 

must also have the OOP capabilities. One of the powerful programming languages that 

allow symbolic and numerical computations and have the OOP capabilities is 

MATLAB. 

 

 

 

 

 



 

 

4 
 

1.3 Objectives of the study 

 

The main objective of this study is to develop a symbolic-numerical object-

oriented FE program. To achieve this objective, the following research goals are 

warranted: 

 To develop a symbolic-numerical object-oriented FE program by using the 

MATLAB programming language. 

 To demonstrate the usefulness of the obtained program by using it to 

symbolically solve some engineering problems whose closed-form solutions 

are useful and preferable to numerical solutions. 

 

1.4 Scope of the study 

 

As the objectives of study are clearly identified, the scope of this study is set to 

specify the limitations and the sub-purposes of this study. The scope of the study is as 

follows: 

 The obtained program solves only linear static problems of solids and 

structures. 

 The analysis results from the program include displacements, strains, stresses, 

and strain energy. 

 For finite element problems that do not possess closed-form solutions, the 

program provides only numerical solutions. 

 Due to the limitation of MATLAB, it may not be possible to obtain closed-

form solutions of complex FE problems. 

 The input of the program is in the text format. 

 The output of the program is in both text format and graphical format, when 

required. 
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Chapter 2  

Literature Review 

 

2.1 General 

 

According to a bibliography by Mackerle (2000), there are many research works 

on object-oriented FE programming. Most of the programs in these research works are 

developed for numerical computations. Only a small number of them are implemented 

for symbolic computations. Mackerle (2000) stated that symbolic computations are still 

the difficult tasks to perform due to the lack of symbolic manipulation efficiencies in 

most of the conventional programming languages. Pavlovic (2003) discussed some 

available programming languages that can be used to perform symbolic FE 

programming such as Maple and Mathematica. 

 

2.2 Numerical FE programs 

 

Forde et al. (1990) mentioned that the capability of the object-oriented FE approach 

to create expandable application frameworks is probably singularly responsible for its 

popularity. In their work, different shape function classes are used to define different 

types of shape function. Each shape function class provides the strain-displacement 

matrix, also commonly known as the B matrix, determined from its designated shape 

functions. The shape function classes are individually employed in different element 

classes to create different types of element. 

Abdalla and Yoon (1992) presented an object-oriented approach to integrate both 

FE and graphical application programs. The objective of this work is to develop a 

general data-translation facility by using C++ for translating data among FE and 

graphics based programs. To transform the data form a graphical program, AutoCAD, 

an initial graphical exchange standard (IGES), which is a standard format supported by 

the drawing applications, is used. Finally, they investigated the effectiveness and 

viability of object-oriented approaches to integrate programs with different data 

formats. 

Kwon and Bang (2000) introduced a numerical FE program by using the MATLAB 

language. The main purpose of their work is to demonstrate how to program FEM in 
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MATLAB. Moreover, they provided examples of the conventional FE codes for 

structural and mechanical problems.  

Patzák and Bittnar (2001) developed an object-oriented FE program by using C++ 

programming language. Their program covers linear, nonlinear, static, and dynamic 

problems. In addition, the concepts of a kernel structure are presented in order to 

illustrate the environments of their program.  

Akin and Singh (2002) used the OOP paradigm in the implementation of the P-

adaptive method in FEM. In their work, they introduced the advantages of the OOP 

paradigm in FORTRAN 90 and FORTRAN 95 that can be used to improve the 

flexibility, maintainability and extensibility of the program. Moreover, the error 

estimator called “P-adaptive method” has been developed within the program to 

improve the solutions in FEM. 

Martha and Parente Jr (2002) developed an object-oriented framework for a FE 

program called “FEMOOP.” They presented some principle views of the consumer-

supplier techniques in order to explain the OOP and conventional programming 

paradigms. In their work, the computational tasks of analysis problems are grouped into 

three distinct levels, namely the structural level, element level, and integration level. 

The structural level deals with the algorithms used to analyze the problems of different 

types, such as linear or nonlinear problems. The element level deals with computing 

the element vectors and matrices, such as force vectors and stiffness matrix. The 

integration level used to handle and compute the strain and stress vectors. 

Heng and Mackie (2009) presented a design pattern of an object-oriented FE 

program. In their study, the program is classified into two specific subsystems, i.e. 

modeling and analyzing. The modeling subsystem is used to handle the classes of node, 

element, boundary condition, and material properties of the program while the 

analyzing subsystem is used to manage the solvers for solving the equations in FEM. 

A unified modeling language (UML) is used to present the concepts of the program in 

order that the design can be used with different programming languages. Finally, the 

graphical user interface (GUI) is introduced to the program. 

Piedade Neto et al. (2013) proposed an object-oriented class design for a 

generalized FEM (GFEM) by using the Python language. GFEM is based on generating 

new shape functions called “enriched shape functions,” which are obtained by 
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multiplying a partition of unit shape functions and special functions. As a result, new 

classes are created and inserted into the conventional FE program to create GFEM. The 

program is successfully created to numerically solve linear elastic mechanical 

problems, and future development for nonlinear problems is also discussed. 

Alves et al. (2013) also developed an object-oriented program for GFEM. In their 

study, the program is implemented in Java language, which is different from the 

previous programming language used by Piedade Neto et al. (2013). The new program 

can be used to numerically solve linear, nonlinear, static, and dynamic structural 

problems. 

Rahman and Valdman (2013) depicted a fast technique for FE programming, called 

array operations, to numerically assemble the element stiffness matrices for two-and 

three-dimensional elements by using MATLAB. 

Zander et al. (2014) presented an object-oriented toolbox for a finite-cell method 

in MATLAB called “FCMLab.” The method is used to apply mesh generations by using 

P-adaptive and H-adaptive refinements over fictitious and real physical domains. Due 

to various capacities of the FCMLab toolbox, it allows new algorithms to be easily and 

quickly added without affecting other codes in the program. 

 

2.3 Symbolic FE programs 

 

Yew et al. (1995) wrote a symbolic FE program for analysis of 2D beam structures 

by using Mathematica language. In their work, the closed-form integration of element 

stiffness matrices, which are derived from the mixed-formulation functional based on 

the Hellinger-Reissner principle, is employed. Unlike the conventional FEM based on 

the displacement functional, whose displacement fields are the primary variables, FEM 

based on the Hellinger-Reissner functional, whose stresses and displacements are the 

unknown fields, can give results that are more accurate. However, this method can be 

applied only in linear elasticity when the complimentary strain energy is equivalent to 

the strain energy. 

Jiang and Wang (2008) introduced a symbolic FE program in plasticity written in 

Mathematica language. In their study, the closed-form expressions of stiffness matrices 
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of the 2D plane strain elements in plasticity are determined. The Newton-Raphson 

method is used to solve the nonlinear equations of the problems. 

Eyheramendy and Zimmermann published many research works about symbolic 

OOP using Smalltalk programming language. The first publication has intension to 

determine the symbolic integrations of the element stiffness matrices for linear 

elastodynamic problems (Zimmermann and Eyheramendy, 1996). The second 

publication is about a symbolic object-oriented FE program for linear elastodynamic 

problems as well (Eyheramendy and Zimmermann, 1996). In this publication, the 

detailed descriptions of symbolic derivations and automatic principles are presented. 

Moreover, the symbolic computations are derived from the initial-boundary-value 

problems into matrix form in a quasi-automatic environment. The third publication 

aims to improve capacities and automatic environments of the second publication 

(Eyheramendy and Zimmermann, 1996). In the third publication, the program is tested 

using several problems, such as thermal, elastodynamic, dynamic uniaxial bar 

problems, and Navier-Stoke flow problems. Some weak points relating to the 

performances of the symbolic computations of shape functions, in which the automatic 

environments for symbolic computations are still limited, are pointed out. The fourth 

publication accomplishes the automatic environments of the program that can combine 

symbolic mathematical manipulations, symbolic computations, and automatic 

programming (Eyheramendy and Zimmermann, 1998). The last publication aims to 

improve the capacities of the previous program by introducing new concepts of 

nonlinear analysis (Eyheramendy and Zimmermann, 2001). 

 

2.4 Symbolic-numerical FE programs 

 

Cheng (1991) developed a symbolic FE program for heat transfer problems by 

using hybrid techniques. The techniques are implemented by both Mathematica and C 

languages. The objective of his work is to determine the symbolic closed-form solutions 

of the Nusselt number, which is a ratio of convection and conduction in heat transfer 

problems. In his work, the symbolic derivations are first implemented in Mathematica 

in order to identify all the coefficients for systems of polynomials. Due to the available 
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Gauss elimination algorithm in C, the proposed hybrid techniques are used to link the 

symbolic computations in Mathematica and the numerical computations in C. 

Shiakolas et al. (1993) presented a FE program for closed-form analysis of a 

Zienkiewicz-Zhu (ZZ) error estimator for linear and quadratic strain tetrahedron 

elements. The ZZ error estimator is firstly suggested by Zienkiewicz and Zhu, and it is 

different from adaptive mesh refinement methods. The basic ideas of this method are 

to introduce an error of computed stress, which is obtained from the difference between 

the smoothed stress distribution and the computed nodal stress, into the errors of the 

energy-norm formulations. In addition, Shiakolas et al. (1994) determined the closed-

form expressions of element stiffness matrices for these elements as well. In their work, 

the symbolic derivations are implemented in Mathematica. Finally, the numerical 

results are obtained by FORTRAN via its existing Gauss numerical algorithms. 

Tummarakota and Lieh (1996) proposed a symbolic FE model of structural 

systems. The purpose of their work is to determine the symbolic equations of motions 

for 2D multibody systems from the Lagrange’s method. Moreover, the symbolic 

derivations are written in Maple programming language. As the systems of equations 

are obtained, a well-known numerical method “Runge-Kutta-Fehlberg” is then used. 

Finally, the numerical computations are implemented in FORTRAN.  

Cameron (1997) presented symbolic computations to evaluate multivariate 

polynomials in FEM. In his work, the polynomial expressions of 2D and 3D 

isoparametric elements are considered. To obtain those polynomial expressions, two 

procedures of Horner’s method are presented. One is employed with the loop operations 

and the other is used with nested bracket operations. As it is difficult to derive the 

symbolic expressions of the polynomials with the nested implementations, the loop 

method is preferred. Finally, the symbolic derivations and numerical computations are 

written in the Maple and C languages, respectively. 

Korelc (1997) developed an automatic nonlinear FE program by simultaneous 

optimizations of the expressions. The purpose of his work is to determine the closed-

form expressions of the gradient and Hessian, which are necessary for applications in 

nonlinear analysis. Moreover, the symbolic derivations are implemented in 

Mathematica language. However, the symbolic derivations became a difficult task due 

to the lack of efficiency of simplify commands in Mathematica. A stochastic 
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evaluation algorithm is used to effectively simplify the symbolic expressions. Finally, 

the numerical computations are implemented in FORTRAN. 

Lee and Hobbs (1998) presented closed-from analysis of element stiffness matrices 

for 2D plane stress elements by using mixed formulations based on the Hellinger-

Reissner functional. In their work, there is no mention of the programming language 

used to derive their symbolic computations of the problems. However, the numerical 

computations are written in FORTRAN. 

Zimmermann et al. (1998) presented an integrated environment of an object-

oriented FE program by using Smalltalk and C++. The objective of their work is to 

develop a user-friendly interface for FE developers. The interface consists of a 

graphical interface, operations for symbolic mathematical derivations, and FE 

formulations that can handle both symbolic and numerical computations. Moreover, 

new element classes of some structural problems are also created and added to their 

previous research works. 

Eriksson and Pacoste (1999) introduced a new technique of symbolic computations 

in a FE program that can be implemented by using symbolic languages such as Maple 

and Mathematica. In their work, the symbolic derivations of elements stiffness and 

rotational-transformation matrices for 3D beam and 2D plane stress elements are 

considered. Moreover, the symbolic computations are presented in both Maple and 

Mathematica. Finally the numerical results are evaluated in FORTRAN. 

Eyheramendy (2000) proposed an object-oriented FE program that employs hybrid 

symbolic and numerical approaches. As the symbolic derivations in the author’s 

previous work (Zimmermann et al., 1998) are derived from the Galerkin method, the 

author created new object classes in the existing FE program by using the variational 

methods. The symbolic derivations and numerical computations are implemented in 

Smalltalk and C++, respectively. 

McCaslin et al. (2012) improved the work by Shiakolas et al. (1994). They aim to 

determine the closed-form solutions of elements stiffness for tetrahedral elements by 

increasing the degree of the shape functions. The symbolic derivations are implemented 

in Mathematica and the numerical computations are implemented in FORTRAN. 
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Chapter 3 

Theoretical Background 

 

3.1 FE formulations 

 

For the finite element method based on a functional of displacements, the total 

potential energy of an element, whose domain is 𝑉𝑒𝑙  and boundary is 𝑆𝑒𝑙 , can be 

expressed as 

𝛱𝑒𝑙 =
1

2
∫ 𝛆𝑇𝛔𝑑𝑉
𝑉𝑒𝑙

−∫ 𝐮𝑇𝐛𝑑𝑉
𝑉𝑒𝑙

−∫ 𝐮𝑇�̅�𝑑𝑆
𝑆𝑒𝑙

, (1) 

where 𝛆, 𝛔, 𝐮, 𝐛, and �̅� represent the strain, stress, displacement, body force, and 

prescribed traction vectors, respectively. The displacements in 𝐮 are interpolated from 

the nodal displacements as 

𝐮 = 𝐍𝐪, (2) 

where 𝐍  and 𝐪  are the shape function matrix and the nodal displacement vector, 

respectively. 

From the strain-displacement relations, the strain vector can be expressed as 

𝛆 = 𝐋𝐍𝐪 = 𝐁𝐪. (3) 

Here, 𝐋 is the strain displacement operator matrix. For linear elasticity, the stress vector 

𝛔 can be written as 

𝛔 = 𝐃𝛆 = 𝐃𝐁𝐪, (4) 

where D is a constitutive matrix. 

By substituting the Eqs. (2)-(4) into Eq. (1), the total potential energy can be 

expressed as  

𝛱𝑒𝑙 =
1

2
𝐪𝑇𝐊𝑒𝑙𝐪 − 𝐪

𝑇𝐅𝑒𝑙 , (5) 

where 𝐊𝑒𝑙 and 𝐅𝑒𝑙 denote the element stiffness matrix and force vector, respectively. 

They are expressed as 

𝐊𝑒𝑙 = ∫ 𝐁𝑇𝐃𝐁𝑑𝑉
𝑉𝑒𝑙

, (6) 

𝐅𝑒𝑙 = ∫ 𝐍𝑇𝐛𝑑𝑉
𝑉𝑒𝑙

+∫ 𝐍𝑇�̅�𝑑𝑆
𝑆𝑒𝑙

. (7) 
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By employing the principle of stationary potential energy to the Eq. (5), an element 

stiffness equation can be obtained as 

𝐊𝑒𝑙𝐪 = 𝐅𝑒𝑙 . (8) 

After all elements are assembled by considering their connectivities, the following 

equations can be obtained 

𝛱 =
1

2
𝐐𝑇𝐊𝐐 − 𝐐𝑇𝐅, (9) 

𝐊𝐐 = 𝐅. (10) 

Here, 𝛱  is the total potential energy of the whole domain. In addition, 𝐊, 𝐐 and 𝐅 are 

the global stiffness matrix, the global displacement vector, and the global force vector, 

respectively. In FEM, some displacement degrees of freedom and forces are known. As 

a result, the Eq. (10) can be rearranged into the following form, i.e. 

[
𝐊𝐼,𝐼 𝐊𝐼,𝐼𝐼
𝐊𝐼𝐼,𝐼 𝐊𝐼𝐼,𝐼𝐼

] {
𝐐𝐼
𝐐𝐼𝐼
} = {

𝐅𝐼
𝐅𝐼𝐼
}. (11) 

Note that 𝐐𝐼𝐼  contains the prescribed displacements while 𝐅𝐼  contains the prescribed 

forces. In addition, 𝐐𝐼 and 𝐅𝐼𝐼, respectively, contain the unknown displacements and 

the unknown forces. The unknown displacements in 𝐐𝐼 can be easily obtained as 

𝐐𝑰 = 𝐊𝐼,𝐼
−1(𝐅𝐼 − 𝐊𝐼,𝐼𝐼𝐐𝐼𝐼). (12) 

As all displacement degrees of freedom are now known, the strain energy 𝑈 can be 

obtained from 

𝑈 =
1

2
𝐐𝑇𝐊𝐐. (13) 

 

3.2 FE programming 

 

3.2.1 OOP concepts 

 

The OOP paradigm is more advantageous than the procedural programming 

technique. To further understand the OOP concept, Martha and Parente Jr (2002) have 

introduced a consumer-supplier concept in the OOP paradigm that can help to 

effectively improve the reusability, maintainability and extendibility of the FE program. 

The principle concept of OOP is generally based on classes, objects, encapsulation, 

inheritance, and polymorphism. A class is a blueprint which can represent the 

characteristics of objects, namely their properties and behavior. A class contains data 
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members and function members of objects. An object is an instance of a class. It means 

that a class can create many possible objects from its existing blueprint. Encapsulation 

defines types of specialized access to members of classes. Encapsulation allows the 

details of the implementations of objects to be hidden from the users. Inheritance allows 

subclasses or derived classes to be derived from a parent or base class and inherits the 

characteristics of the base class. Inheritance removes the necessities for repeating the 

codes that represent the inherited characteristics in the derived classes. This inheritance 

concept can help improve the extendibility of codes. Polymorphism is a consequence 

of inheritance that allows the same operations to behave differently in different classes 

(Glasser, 2009). 

 

3.2.2 Object modeling technique 

 

An object modeling technique (OMT) is a kind of diagram languages used for 

software modeling and designing. The OMT has been first introduced by Rumbaugh et 

al. (2004). This technique allows relationships between classes and objects to be 

summarily and clearly presented. Moreover, the OMT allows different types of entity 

relationship, such as associations (link), aggregations and compositions (has-a), 

generalizations (is-a), dependencies, and realizations, to be clearly shown. 

Associations describe reference-based relationships which allow objects to 

comminute with each other. Roles that specify the purposes of relationships can be 

specified in associations. In addition, each end of an association can have a multiplicity 

value, which indicates how many objects on one side can relate to other objects on the 

other side. For example in Fig. 3.1, an Element class connects to a Node class. In 

fact, many elements can be connected to many nodes. Hence, the multiplicity values of 

this relationship can be zero or more, which are represented by darkened circles at the 

ends of the connection. A multiplicity value can also be expressed as a specific-number 

representation. 

Aggregations and compositions are special kinds of association. They represent 

types of relationships in which objects are part of other objects in a system. These 

relationships are “has-a” relationships. For instance, in Fig. 3.1, many elements and 

many nodes in Element and Node classes are part of a FESys class. An aggregation 

implies a relationship where an object being used can exist independently of another 
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object using the former object. A composition implies a relationship where an object 

being used cannot exist independent of another object using the former one. 

Aggregations and composition are represented by diamond ends at classes that own or 

use objects of other classes. Diamonds for aggregations are unfilled while those for 

compositions are filled. 

Generalizations and specializations present the inheritance concept where classes 

are derived from their base classes. They represent “is-a” relationships. For example in 

Fig. 3.1, the Element class is a generalization of ELine2, ETri3, and other classes 

represented by the dots. On the contrary, ELine2, ETri3, and other classes are 

specializations of the Element class. A generalization is represented by a triangle 

symbol. 

Dependencies describe dependent or weaker relationships of objects. For example, 

changes in one object can affect other objects in a system. Realizations describe 

implementations of functionalities defined in one class by other classes. 

 

 
 

Fig. 3.1 Simple relationship diagram of class entities 
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Chapter 4 

Symbolic-Numerical Object-Oriented Finite Element Programming 

 

4.1 Object-oriented FE programming 

 

According to Heng and Mackie (2009), a good design pattern of an object-oriented 

FE program should decompose the program into two main subsystems, namely the 

model and analysis subsystems. In this study, the model subsystem represented by the 

Object class in Fig. 4.1 focuses on defining model classes such as the classes for 

nodes, boundary conditions, elements, geometry sets, and materials: Node, 

BounCond, Element, Geometry and Material. The analysis subsystems in this 

study include the Solver class, which is a generalization of solvers, and the FESys 

class, which is the main class of the proposed symbolic FE system. The two analysis 

classes are responsible for forming and solving the equations in FEM. The class 

dependencies in the proposed program is shown in Fig. 4.1. 

 

 

 

Fig. 4.1 Dependency relationship of a model-analysis pattern 

 

In detail, the Object class is an abstract class which is used to derive the model 

classes such as Node, BounCond, Element, Geometry and Material as shown 

in Fig. 4.2. 

 

 

 

Fig. 4.2 Object class relationship 
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BounCond 

Object 

Node Element Geometry Material 
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As MATLAB consists of many available solvers for solving not only linear but 

also nonlinear equations, MATLAB’s solvers are directly used in this study. A Solver 

class is used as a generalization of all MATLAB’s solvers. This Solver class has a 

simple relationship or an association with the FESys class. The overall class 

relationship of the program is expressed in Fig. 4.3. 

 

 

 

Fig. 4.3 Overall class relationship 

 

As aforementioned, FESys is the main class of the symbolic FE system proposed 

in this study. This class is basically used to store the objects of the Node, Element, 

Material, Geometry, and BounCond classes. The main tasks of this class are to 

read the inputs from the text files, to assemble the global element stiffness matrices and 

force vectors, to compute the unknown nodal displacements and reaction forces, to 

update the nodal displacements, to determine the strain energy and force resultants of 

the structures, and to print out the outputs in the text files. 

The Node class stores the nodal coordinates from the input file. It is a composition 

of the FESys class and has associations with the Element and Boundary classes. 

It also provides some methods to receive the number of degrees of freedom and the 

updated nodal displacement results. 

The Element class is basically used to create the elements from the nodal 

connectivity. It is a composition of the FESys class and has an association with the 

Node, Material, and Geometry classes. The main tasks of this class are to store 

the objects of the Node, Material, and Geometry classes. It also provides several 

methods to generate the shape function matrices, mapping function matrices, and the 

BounCond 

FESys 

Node Element Geometry Material 

Solver 
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element stiffness matrices in FEM. This class is used to derive many derived classes 

such as Eline2 for 2D and 3D truss and beam elements, ETri3 for 2D-three-node 

solid elements, EQuad4 for 2D-four-node solid elements, and ETet4 for 3D-eight-

node solid elements. The specialization relationship of the Element class is shown in 

Fig. 4.4. In addition, to implement this Element class, there are some additional 

classes that are required such as the Interpolation and MathModel classes. The 

Interpolation class is responsible for storing various kinds of shape functions or 

interpolation functions. The MathModel class is used to store the mathematical 

formulations of different types of element in FE domains. The composition relationship 

of the Element class is illustrated in Fig. 4.5. 

 

 

 

Fig. 4.4 Element class design relationship 

 

 

 

Fig. 4.5 Composition relationship of the Element class 
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The Material class provides a generic interface to handle different types of 

material in the program. The relation between this class and FESys is of a composition 

type. The Material class has an association with the Element class. It is used to 

store the material properties such as Young’s modulus (𝐸) and Poisson ratio (𝑣) , and 

to provide methods to query these properties. Different types of material can be 

specialized by using derived classes as shown in Fig. 4.6. In the figure, the 

MLElasIso class represents linear elastic isotropic materials. 

 

 

 

Fig. 4.6 Material class relationship 

 

The Geometry class is used to store the geometry properties of structural 

elements. Examples include the cross sectional area (𝐴), the moment inertia (𝐼), and the 

torsional constant (𝐽) for beam elements. This class is a composition of the FESys 

class, and has an association with the Element class. The class is used to derive some 

classes such as GLine for truss and beam elements and GPlane for 2D solid elements. 

The class relationship of the Geometry class is illustrated in Fig. 4.7. 

 

 

 

Fig. 4.7 Geometry class relationship 

 

The BounCond class is used to store loads and prescribed displacement values 

from the input. This class is a composition of the FESys class, and also has an 

association with the Node class. Moreover, the class provides some methods to query 
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the information of the boundary conditions in FESys. There are some classes that are 

derived from this class such as NodalForce for nodal forces and NodalDisp for 

nodal displacement values. The class relationship of the Boundary class is shown in 

Fig. 4.8. 

 

 

 

Fig. 4.8 Boundary class relationship 

 

4.2 Symbolic computations 

 

In order to perform symbolic computations, the employed computation platform 

must allow symbolic variables to be created. Naturally, it must also allow mathematical 

operations to be performed symbolically on these symbolic variables. The symbolic 

object-oriented FE program in this study is written in the symbolic language of 

MATLAB. In MATLAB, symbolic variables can be created by using commands syms 

or sym('var'). For example, to create symbolic variables for a sectional area A, a 

moment of inertia I, a beam length L, and Young’s modulus E, the following statement 

can be used: 

syms A I L E;  

By using symbolic variables, it is straightforward to create symbolic data types in 

classes. Consider, for example, the Material and MLElasIso classes shown below. 

The Material class is the base class of all material types while the MLElasIso 

class represents linear elastic isotropic materials and is derived from Material. Parts 

of the two classes are shown below: 

 1: classdef Material 

 2: % This class is the base class for material classes 

 3:    properties (SetAccess = protected) 

 4:        number   = 0;        % Material ID number 

 5:        para     = {};       % Material parameters 

 6:    end 

 7:    methods 

BounCond 

NodalForce NodalDisp … 
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 8:        ... 

 9:    end 

10: end 

 

 1: classdef MLElasIso < Material 

 2: % This class is the class for linear elastic  

 3: % isotropic materials 

 4:    properties 

 5:        ... 

 6:    end 

 7:    methods 

 8:        % Constructor ------------------------------ 

 9:        function s = MLElasIso(varargin) 

10:            syms E Nu positive      % Young’s modulus,   

11:           % Poisson’s ratio 

12:            if nargin == 0          % No parameter 

13:                s.para = {E, Nu};   % Default symbolic  

14:            % E and Nu 

15:            elseif nargin == 1      % One parameter:  

16:                                    % ID number 

17:                s.number = varargin{1}; 

18:                s.para = {E, Nu};   % Default symbolic  

19:                                    % E and Nu 

20:            elseif nargin == 2      % Two parameters:  

21:                                    % E and Nu 

22:                for i = 1:2 

23:                    if isnumeric(varargin{i})   % If  

24:                                      % numerical data 

25:                        s.para{i} = varargin{i}; 

26:                    else                        % Else 

27:                s.para{i}=sym(varargin{i},'positive'); 

28:                    end 

29:                end 

30:            end 

31:        end 

32:        % Function for setting Young’s modulus----- 

33:        function s = SetE(s,E) 

34:            if isnumeric(E)   % If numerical data 

35:                s.para{1} = E; 

36:            else              % Else 

37:                s.para{1} = sym(E,'positive'); 

38:            end 

39:        end 

40:        % Function for retrieving Young’s modulus-- 

41:        function e = E(s) 

42:             e = s.para{1}; 

43:        end 

44:        ... 
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45:    end 

46: end 

 

The Material class has number for storing the material ID number, and para 

for storing material parameters. The modification access to these data is set to 

protected, which means that only modifications from within the class itself and 

from within derived classes are allowed. As the MLElasIso class is derived from 

Material, it automatically inherits number and para from Material. The 

MLElasIso class keeps only two material parameters, which are Young’s modulus 

and Poisson’s ratio. Young’s modulus is kept in para{1} while Poisson’s ratio in 

para{2}. If an object of type MLElasIso is created with no argument, then the 

MLElasIso class sets a symbolic E as Young’s modulus and a symbolic Nu as 

Poisson’s ratio. Functions can be prepared for setting and retrieving Young’s modulus 

and Poisson’s ratio from objects of type MLElasIso. For example, the functions 

SetE(s,E) in lines 33-39 of MLElasIso and E(s) in lines 41-43 are provided for 

setting and retrieving Young’s modulus kept in para{1}.  

An example below demonstrates how an object of type MLElasIso can be created 

and used: 

>> m1 = MLElasIso(); 

>> m1.E()*m1.E() 

  

ans = 

  

E^2 

 

Here, m1 is an object of type MLElasIso created with no initial argument. As a result, 

the default symbolic E and Nu are used as Young’s modulus and Poisson’s ratio of m1. 

After that, as an example, the square of Young’s modulus is symbolically computed. 

Young’s modulus of m1 is retrieved by using the function m1.E(). Note that, in 

MATLAB, the first argument of a member function of a class is always the object that 

is calling the function. For example, s in E(s) is the calling object itself. If the calling 

object is m1, then it can be passed into the function E(s) by writing m1.E() or 

E(m1). 
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4.3 Symbolic argument passing 

 

Simple symbolic computation capabilities can be found in high-end calculators. 

These calculators allow mathematical operations to be performed on symbolic 

variables. However, they generally do not allow symbolic argument passing in their 

programming platforms. As a result, complicated symbolic programs cannot be created. 

In MATLAB, symbolic arguments can be passed into a functions in the same way as 

numerical arguments. For example, if m1 in the previous example is to be created with 

initial symbolic Young’s modulus E1 and Poisson’s ratio Nu1, the following 

statements can be used: 

>> syms E1 Nu1 

>> m1 = MLElasIso(E1,Nu1); 

>> m1.E()*m1.E() 

  

ans = 

  

E1^2 

 

It can be seen that the square of Young’s modulus correctly becomes E1^2. 

Technically, a copy of E1 is created in m1. The function SetE(s,E) can be used to 

change Young’s modulus from its current value, i.e. 

>> syms E2 

>> m1 = m1.SetE(E2); 

>> sqrt(m1.E()) 

  

ans = 

  

E2^(1/2) 

 

Here, Young’s modulus of m1 is set to E2. This time, the square root of Young’s 

modulus is symbolically computed. The correct symbolic result obtained confirms that 

the symbolic variable E2 is successfully passed into the function SetE(s,E). Note 

that it is also possible to set Young’s modulus of m1 to be numerical, i.e. 

>> m1=m1.SetE(10.); 

>> sqrt(m1.E()) 

 

ans = 

 

    3.1623 
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It can be seen from lines 33-39 of MLElasIso that the function SetE(s,E) first 

checks whether the variable E received is a numerical variable or not. If it is a numerical 

variable, its value is copied to para{1}. If it is not, the function will create a symbolic 

positive real variable from E and copy it to para{1}. In addition to passing symbolic 

variables directly to a function, when an object is passed into a function, all of its 

member data, including its symbolic variables, are automatically passed into the 

function as internal parts of the object. 

Another excellent example that shows why symbolic argument passing is essential 

to FE programming is a function for computing the local element stiffness matrix of a 

2D Euler beam element. Let EEulerBeamL2_2D be the class that represents 2D Euler 

beam elements. In the EEulerBeamL2_2D class, the function 

CalKel(s,EE,A,II,L) shown below can be created to compute the local element 

stiffness of a 2D Euler beam element: 

 1: function s = CalKel(s,EE,A,II,L) 

 2: % The local element stiffness of a 2D Euler beam is  

 3: % computed here 

 4:     s.Kel(1,1) = (A*EE)/L; 

 5:     s.Kel(1,2) = 0; 

 6:     s.Kel(1,3) = 0; 

 7:     s.Kel(1,4) = -(A*EE)/L; 

 8:     s.Kel(1,5) = 0; 

 9:     s.Kel(1,6) = 0; 

10:     s.Kel(2,1) = 0; 

11:     s.Kel(2,2) = (12*EE*II)/L^3; 

12:     ... 

13: end 

 

Besides the calling object itself, the function takes Young’s modulus EE, the 

sectional area of the beam A, the moment of inertia II, and the length L as its 

arguments. Here, the variable Kel is the local stiffness matrix of a 2D Euler beam 

element and it is a member variable of EEulerBeamL2_2D. The statements below 

demonstrates how CalKel(s,EE,A,II,L) actually works: 

>> syms E1 A1 I1 L1 

>> myBeam = EEulerBeamL2_2D; 

>> myBeam = myBeam.CalKel(E1,A1,I1,L1); 

>> myBeam.Kel(2,2) 
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ans = 

  

(12*E1*I1)/L1^3 

 

Here, an object of type EEulerBeamL2_2D, called myBeam, is created to represent 

a 2D Euler beam element. The function CalKel(s,EE,A,II,L) of myBeam is 

executed with Young’s modulus, the sectional area, the moment of inertia, and the beam 

length equal to E1, A1, I1, and L1, respectively. After that, as a demonstration, 

Kel(2,2) of myBeam is retrieved. Normally, the whole local element stiffness matrix 

will be operated upon and it can be obtained simply through myBeam.Kel(). 

4.4 Simple user interface environments 

 

A simple user interface environment allows the users to use the proposed program 

conveniently. It is illustrated using a simple realization diagram in Fig. 4.9. 

 

 

 

Fig. 4.9 Relationship of user interface environments 

 

The interface environment of this program is created as a relationship between two 

files that are RunMFile and FEProj as shown in Fig. 4.10. RunMFile is an M-file 

used to run the program. The users can also use this file to extend the codes for other 

applications. FEProj is a function that performs all finite element processes from the 

beginning to the end. As shown in Fig. 4.10, the function FEProj receives the name 

of the input file InputTextFile. After that, the function performs the finite element 

processes as instructed. 

RunMFile 

FEProj 
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Fig. 4.10 Example template of the simple user interface environment 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

RunMFile 

 FEModel = FEProj(‘InputTextFile’) 

FEProj 

 

FES = FESys; 

FES = ReadInputFile; 

FES = PreAnalysis 

FES = Analysis; 

FES = StrainEnergy; 

---------------------------- 

End 
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Chapter 5 

Advantages of the Proposed Program 

 

5.1 General 

 

The program obtained in this study can be used to effectively perform both 

numerical and symbolic computations for finite element analysis. By providing 

numerical inputs, the program can give numerical solutions as shown in Fig. 5.1. If 

symbolic computations are considered, the program needs symbolic inputs as shown in 

Fig. 5.2. The obtained program can be used to solve engineering problems such as 

structural analysis, structural design, and mechanics of materials. Below, the 

advantages of the obtained program in solving different types of FE problem are briefly 

discussed. 

 

 
 

Fig. 5.1  Process of numerical computations in the program 

 

 

 

Fig. 5.2 Process of symbolic computations in the program 

 

5.2 Structural analysis problems 

 

The structural engineering field consists of structural analysis and structural design 

fields. Structural analysis helps engineers to understand the physical behavior of 

structures under loads caused by the gravity, climatic conditions and ground conditions, 

while structural design ensures and deals with the stability and durability of structures 

to withstand loads. 

Normally, displacements, forces, and stresses of structural members are the 

primary parameters for structural engineers. For example, in designing a truss structure, 

the stresses in its members must not exceed the allowable strength in the ultimate state, 

and the displacements of the truss must also satisfy the state of serviceability. By using 

the obtained program, it is straightforward to find the values of these stresses and 

Numerical Inputs Numerical Computations Numerical Outputs 

Symbolic Inputs Symbolic Computations Symbolic Outputs 
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displacements either by numerical or symbolic computations. Chapter 6 will illustrate 

some advantages of the proposed program when it is used to solve structural analysis 

problems. 

 

5.3 Structural design problems 

 

It is safe to say that structural design problems are in fact optimization problems. 

This is because each structural design problem is generally a problem of finding the 

most efficient design that results in a structure that satisfies all the required constraints. 

In real practice, the word “efficient’ usually means “economical.” Since the obtained 

program can perform closed-form analysis, the closed-form solutions of displacements, 

strains, forces, and stresses of structures can be determined. These symbolic results can 

be used to help solve structural optimization problems. For example, when a sizing 

optimization problem of a truss is to be solved by a conventional nonlinear 

programming technique, the closed-form solutions of displacements and stresses can 

be very useful. The closed-form displacements and stresses allow the gradients and 

Hessians of displacement and stress functions to be analytically determined. Since 

conventional nonlinear programming techniques are gradient-based methods, these 

analytical gradients and Hessians from the proposed program can be directly used in 

these optimization techniques without resorting to their numerical approximations. 

Chanter 7 will demonstrate the usefulness of the program in structural optimization 

problems. 

 

5.4 Mechanics of materials 

 

The capability of the proposed program in giving symbolic FE solutions can be 

used to derive closed-form solutions of some problems in the field of mechanics of 

materials. For example, the proposed program can be used to derive the closed-form 

effective elastic constants of some periodic cellular solids. Periodic cellular solids are 

made up of interconnected solid struts or plates which form the edges and faces of the 

cells (Gibson and Ashby, 1999). They are used in many types of structure in various 

scales. In many of their applications, their effective elastic properties such as the 

effective Young’s modulus, Poisson ratio and shear modulus are of interest. These 
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effective elastic constants can be computed by homogenization methods from unit cells 

of periodic cellular solids. 

Periodic cellular solids that are frame-like can be modelled accurately as frame 

structures using beam elements. Many researchers have manually determined the 

closed form effective elastic constants of frame-like periodic cellular solids. For 

example, Gibson and Ashby (1999) have determined the closed-form effective elastic 

constants of periodic cellular solids with square, triangle, and hexagon unit cells. 

However, manual computations are tedious and prone to errors. In addition, when the 

structures are too complex, manual computations are simply not possible. The proposed 

program can be used instead of manual computations. The determination of the closed-

form solutions of the effective elastic constants of the frame-like periodic cellular solids 

by using the obtained program are considered in Chapter 8. 
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Chapter 6 

Closed-Form Analysis of Simple Structures 

 

6.1 General 

 

 Closed-form analysis can be used to determine the mathematic expressions or 

formula of a particular problem. There are times when closed-form analysis of 

structures is required or preferred. When only a simple structural member is considered, 

it is possible to perform this type of analysis by hand. However, when a structure with 

several members is to be considered, manual calculation becomes impossible even 

when closed-form solutions are theoretically obtainable. By using the obtained 

program, the closed-form solutions of simple structures, such as simple trusses and 

frames can be determined straightforwardly. 

The obvious advantage of the obtained program when compared with other 

numerical FE programs is that the proposed program is capable of performing both 

numerical and symbolic FEA. When numerical computations are considered, the 

obtained program can be used in the same way as numerical FE programs. However, 

when symbolic computations are to be considered, the proposed program becomes 

distinctively useful. This chapter demonstrates the advantage of the obtained program 

in providing symbolic FE solutions by solving some FE problems of simple truss and 

frame structures. In order to validate the proposed program, the closed-form solutions 

obtained from the program are numerically compared with those from a commercial FE 

program. 

 

6.2 FEA of simple trusses and frames 

 

The truss and frame structures in Fig. 6.1 and Fig. 6.2 are analytically analyzed by 

the proposed program. The program is used to determine the closed forms of the nodal 

displacements, support reactions, total strain energy, internal forces, strains, and 

stresses for the structures as functions of the following variables: 

𝐴𝑖 = The cross-sectional area of structural member 𝑖,  

𝐼𝑖   = The moment inertia of structural member 𝑖, 

𝐿   = The length of the structure, 
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𝐻  = The height of the structure, 

𝐸𝑒= Young’s modulus of the material, 

𝑃𝑖 = The force value at node 𝑖. 

𝐷𝑥 = The prescribed displacement value, 

        

 

Fig. 6.1 2D and 3D trusses 

 

                     
Fig. 6.2 2D and 3D frames 

 

6.3 Results 

 

The symbolic inputs and symbolic outputs of the program are shown in the 

Appendix A and Appendix B, respectively. The comparisons of the numerical results 

from the obtained closed forms and MSC.Marc Mentat are provided in Appendix C. 

 

6.4 Discussions 

 

The comparisons of the numerical results from the obtained closed forms and the 

commercial FE program are satisfactory. Since the numbers can be kept as symbolic 

variables during computations in the proposed program, the numerical errors are 

reduced as well. Due to the obtained closed-form solutions, the engineers do not have 

to run the program many times. 
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Chapter 7 

Truss Optimization Problems 

 

7.1 General 

 

Various techniques of optimization have been used to achieve the optimal weights 

of truss structures. Truss optimization problems can be categorized into three different 

problems, namely sizing, shape and topology optimization problems (Christensen and 

Klarbring, 2008). Generally, the objective of a truss optimization problem is to 

minimize the total weight of the truss, which is subject to displacement and stress 

constraints. Most of the time, truss optimization problems are nonlinear problems that 

can be convex or non-convex problems. To deal with these problems, two well-known 

groups of methods have been used, namely the conventional nonlinear programming 

(NLP) approaches and metaheuristic algorithms. The conventional NLP methods are 

gradient-based methods. This means that the information on the gradients and Hessians 

of stress and displacement functions with respect to member areas is generally required. 

If an ordinary numerical FE program is used, the gradients and Hessians have to be 

numerically approximated. The lack of the gradients and Hessians of the constraint 

functions naturally encourages the use of metaheuristic optimization methods, which 

are non-gradient-based methods. Most of these methods are derived from observations 

of natural phenomena. Examples of these methods include genetic algorithms (GAs), 

particle swarm optimization (PSO), firefly algorithms (FAs), ant system (AS) 

algorithms, harmony search (HS) algorithms, and water cycle algorithms (WCAs). 

By using the proposed program, the closed-form solutions of displacements and 

stresses can be obtained. As a result, the conventional NLP methods can be used to deal 

with truss optimization problems because the gradients and Hessians of the 

displacement and stress functions can be exactly computed from the symbolic 

displacements and stresses. 

In this chapter, sizing optimization of 2D truss structures by using a conventional 

NLP method in MATLAB is presented. Some benchmark problems of 2D truss 

structures in the literature are tested and compared. 
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7.2 Truss optimization problems 

 

The objective of truss optimization in this study is to minimize the weight of the 

truss with respect to its member areas that are continuous variables. The problem can 

be expressed mathematically as 

Minimize  𝑊 = ∑ 𝜌𝑖𝐴𝑖𝑙𝑖
𝑛
𝑖=1  

Subject to 𝜎𝑎 − |𝜎𝑖(𝐴1, … , 𝐴𝑛)| ≥ 0, 𝑖 = 1,2, … , 𝑛 

  𝛿𝑎 − |𝛿𝑗(𝐴1, … , 𝐴𝑛)| ≥ 0,     𝑗 = 1,2, … ,𝑚 

  𝐴𝑖
𝑚𝑖𝑛 ≤ 𝐴𝑖 ≤ 𝐴𝑖

𝑚𝑎𝑥, 𝑖 = 1,2, … , 𝑛, 

(14) 

where 

𝑊 =   The overall weight of the truss structure. 

𝜌𝑖  =   The weight density of the material of member 𝑖. 

𝑙𝑖 =   The length of member 𝑖. 

𝐴𝑖  =   The area of member 𝑖. 

𝜎𝑖 =   The stress of member 𝑖. 

𝛿𝑗  =   The degree of freedom 𝑗. 

𝜎𝑎 =   The allowable stress.  

𝛿𝑎 =   The allowable displacement. 

𝐴𝑖
𝑚𝑖𝑛  =   The minimum area of member 𝑖. 

𝐴𝑖
𝑚𝑎𝑥 =   The maximum area of member 𝑖. 

𝑛 =   The number of members.  

𝑚 =   The number of degrees of freedom. 

 

7.3 MATLAB optimization toolbox 

 

MATLAB optimization toolbox provides a command fmincon to deal with 

constrained nonlinear optimization problems. Under fmincon, different optimization 

methods, such as interior-point, active-set, sequential-quadratic-programming and 

trust-region-reflective algorithms, can be selected for use. In this study, the command 

fmincon with the interior-point algorithm is used. The options available in fmincon 

to specify whether the gradients and Hessians of the objective and constraint functions 

are available for the optimization or not are also utilized. The syntax of fmincon can 

be show as follow: 
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[x,fval] = fmincon(fun,x0,A,b,Aeq,beq,lb,ub,nonlcon,options) 

Here, fun is the objective function. The constraint functions and their gradients, if they 

are considered, are specified via nonlcon. In addition, options is used to specify 

the set of optimization options. The set of options when the gradients and Hessians are 

not used can be specified as 

options = optimoptions('fmincon','Algorithm',... 

'interior-point','GradObj','off','GradConstr','off') 

Moreover, when the gradients and Hessians are considered, the set of options can 

be specified as below expression, where the Hessians are specified through myhess. 

options = optimoptions('fmincon','Algorithm', ... 

'interior-point','GradObj','on','GradConstr','on', ... 

'Hessian','user-supplied','HessFcn',myhess) 

 

7.4 Results 

7.4.1 Truss with six members and five nodes 

 

Fig. 7.1 shows a truss with six members and five nodes to be optimized. The 

problem parameters are as follows: Young’s modulus  𝐸 = 10000 𝑘𝑠𝑖 , the weight 

density  𝜌 = 0.1 𝑙𝑏 𝑖𝑛3⁄ , the allowable stress   𝜎𝑎 = 25 𝑘𝑠𝑖 , the allowable 

displacement 𝛿𝑎 = 2 𝑖𝑛, and the limit cross sectional areas 𝐴𝑚𝑖𝑛, 𝐴𝑚𝑎𝑥 = 0.09, 35 𝑖𝑛2. 

 

 
 

Fig. 7.1 Problem 1--truss with six members and five nodes 

 

The results are shown in Table 7.1. The results from fmincon without and with 

gradients and Hessians are shown as fmincon1 and fmincon2, respectively. The results 

from fmincon without and with gradients and Hessians are found to be the same and 

comparable to the results from the literature. Note that the results by Deb and Gulati 
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(2001) and Luh and Lin (2008) are from topology optimization. The comparison with 

the literature is only to validate the present results. Fig. 7.2 shows the convergence rates 

from fmincon without and with gradients and Hessians. It can be seen that the 

convergence rate from fmincon when gradients and Hessians are used is the fastest. 

 

Table 7.1 Results of Problem 1 

Member 

Area (𝑖𝑛2) 

Deb and Gulati 

(2001) 

Luh and Lin 

(2008) 

Present study 

fmincon1 fmincon2 

1 05.219 05.428 05.4000 05.4000 

2 20.310 20.549 20.3647 20.3640 

3 14.593 14.308 14.4000 14.4000 

4 07.772 07.617 07.6368 07.6368 

5 28.187 28.876 28.8000 28.8000 

6 20.650 20.265 20.3647 20.3647 

Weight of truss (𝑙𝑏) 4731.650 4730.824 4730.4000 4730.4000 

 

 
 

Fig. 7.2 Convergence rates of Problem 1 

 

7.4.2 Truss with ten members and six nodes 

 

Fig. 7.3 shows a truss with ten members and six nodes (Farshi and Alinia-ziazi, 

2010, Li et al., 2007). The problem parameters are the same as the previous problem 

except for 𝐴𝑚𝑖𝑛, which is equal to 0.1 𝑖𝑛2 in this problem. The applied loads are given 

as 𝑃1 = 150 𝑘𝑖𝑝𝑠 and 𝑃2 = 50 𝑘𝑖𝑝𝑠. 
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Fig. 7.3 Problem 2--truss with ten members and six nodes 

 

The results are shown in Table 7.2. The results from fmincon without and with 

gradients and Hessians are found to be the same and comparable with those from the 

literature. Note that the results by Farshi and Alinia-ziazi (2010) and Li et al. (2007) 

are from sizing optimization. From Fig. 7.4, it can be seen that the convergence rate 

from fmincon with gradients and Hessians is the fastest compared to fmincon 

without gradients and Hessian. 

 

Table 7.2 Results of Problem 2 

 

Member 

Area (𝑖𝑛2) 

Li et al. (2007) 

 

Farshi and Alinia-

ziazi (2010) 

Present study 

fmincon1 fmincon2 

1 23.353 23.5270 23.5307 23.5307 

2 00.100 00.1000 00.1000 00.1000 

3 25.502 25.2941 25.2851 25.2851 

4 14.250 14.3760 14.3745 14.3745 

5 00.100 00.1000 00.1000 00.1000 

6 01.972 01.9698 01.9697 01.9697 

7 12.363 12.4041 12.3906 12.3906 

8 12.894 12.8245 12.8277 12.8277 

9 20.356 20.3304 20.3286 20.3286 

10 00.101 00.1000 00.1000 00.1000 

Weight of truss (𝑙𝑏) 4677.29 4677.80 4676.92 4676.92 
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Fig. 7.4 Convergence rates of Problem 2 

 

7.5 Discussions 

 

In this chapter, the advantages of the obtained program for sizing optimization of 

truss structures are demonstrated. By using the proposed program, the constraint 

displacement and stress functions can be constructed from the stress and displacement 

solutions. In this study, two 2D truss optimization problems are solved as case studies 

using a conventional NLP algorithm in MATLAB. The analytical gradients and 

Hessians of the objective and constraint functions are used in the optimization. The 

obtained results show that, although symbolic FE solutions do not help improve the 

quality of the optimization solutions, they can help improve the convergence rates of 

the optimization process. 
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Chapter 8 

Effective Constants of Frame-Like Periodic Cellular Solids 

 

8.1 General 

 

The homogenization method based on equivalent strain energy is one of the well-

known homogenization methods that have been used to find the effective elastic 

properties of periodic cellular solids (Zhang et al., 2007, Dai and Zhang, 2009). In this 

method, the values of strain energy of a unit cell under different strain modes are used 

in the determination of the effective elastic properties. The unit cell can be modeled by 

using FEM. These strain modes are created by prescribing periodic kinematic boundary 

conditions to the unit cell. The periodic boundary conditions are constraint equations 

that prescribe relationships between different degrees of freedom in the FE model of 

the unit cell, and are usually called multi-point or multi-freedom constraints. The 

method of Lagrange multipliers are usually used to enforce multi-freedom constraints. 

The work in this chapter aims to demonstrate how symbolic FE programming can 

be used to analytically determine the closed-form solutions of the effective elastic 

constants of frame-like periodic cellular solids. Unit-cell structures are modelled by 

using Euler beam elements (Gibson and Ashby, 1999). Periodic boundary conditions 

are prescribed by the method of Lagrange multipliers. The proposed symbolic FE 

program is used to determine the closed-form effective elastic constants of some 2D 

frame-like periodic cellular solids. First, the symbolic FE program is used to determine 

the closed-form solutions of strain energy of a unit cell under various strain modes. 

These closed-form strain energy expressions are then used to determine the closed-form 

effective elastic constants. The closed-form effective elastic constants obtained in this 

study are compared numerically with numerical results obtained from a commercial FE 

program. 

 

8.2 Strain-energy based homogenization 

 

Consider a domain 𝑉 of a periodic cellular solid that is composed of a large number 

of unit cells. A set of kinematic boundary conditions is applied to the domain such that 

the displacement 𝑢𝑖 field becomes 
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𝑢𝑖 = 𝜀𝑖𝑗
𝑜𝑥𝑗 + 𝑢𝑖

𝑝
. (15) 

Here, 𝑥𝑗  is the coordinate vector. In addition, 𝜀𝑖𝑗
𝑜  is a constant symmetric tensor and 𝑢𝑖

𝑝
 

is the periodic component of 𝑢𝑖. Let 〈𝑄〉 denote the volume average of any quantity 𝑄 

in 𝑉. The effective material constitutive 𝐶𝑖𝑗𝑘𝑙
∗  tensor is defined as  

〈𝜎𝑖𝑗〉 =  𝐶𝑖𝑗𝑘𝑙 
∗ 〈𝜀𝑘𝑙〉. (16) 

It can be shown that Eq. (15) results in 〈𝜖𝑘𝑙〉 = 𝜖𝑘𝑙
𝑜 . (Suquet, 1987). For 2D 

orthotropic solids under the plane stress condition, Eq. (16) can be written in matrix 

form as 

𝛔𝑜 = 〈{

𝜎11
𝜎22
𝜎12
}〉 = [

𝑐11
∗ 𝑐12

∗ 0

𝑐22
∗ 0

𝑆𝑦𝑚 𝑐33
∗

] 〈{

𝜀11
𝜀22
2𝜀12

}〉 = 𝐂∗𝛆𝑜. (17) 

The effective elastic constants can be expressed in terms of components of the 

constitutive matrix as 

𝐸1
∗ = [𝑐11

∗ 𝑐22
∗ − (𝑐12

∗ )2]/𝑐22
∗ ,      𝐸2

∗ = [𝑐11
∗ 𝑐22

∗ − (𝑐12
∗ )2]/𝑐11

∗ , (18) 

𝑣12
∗ = 𝑐12

∗ /𝑐22
∗ ,      𝑣21

∗ = 𝑐12
∗ /𝑐11

∗ , 𝐺12
∗ = 𝑐33

∗ . (19) 

It can be shown that (Suquet, 1987) 

𝑈𝐶
𝑉𝐶
= 〈

1

2
𝜎𝑖𝑗𝜀𝑖𝑗〉 =

1

𝑉
∫
1

2
𝜎𝑖𝑗𝜀𝑖𝑗𝑑𝑉 =

1

𝑉𝐶
∫

1

2
𝜎𝑖𝑗𝜀𝑖𝑗𝑑𝑉

𝑉𝐶

=
1

2
〈𝜎𝑖𝑗〉〈𝜀𝑖𝑗〉

𝑉

=
1

2
𝐶𝑖𝑗𝑘𝑙
∗ 𝜀𝑘𝑙

𝑜 𝜀𝑖𝑗
𝑜 , (20) 

where 𝑈𝐶 and 𝑉𝐶 denote the strain energy and the volume of the unit cell, respectively. 

Note that the displacement field 𝑢𝑖 in Eq. (15) results in 𝜎𝑖𝑗 and 𝜀𝑖𝑗 that are periodic, 

and an average of a periodic quantity over 𝑉 is the same as an average over 𝑉𝐶. By 

prescribing different values of 𝜀𝑘𝑙
𝑜  to the unit cell via Eq. (15) and computing the 

corresponding strain energy values by FEM, 𝐶𝑖𝑗𝑘𝑙 
∗ can be obtained from Eq.(20).  

The constitutive matrix of a 2D periodic cellular solid under the plane stress 

condition can be obtained from its unit cell by using the following equations, i.e.  

𝑐11
∗ =

2𝑈𝐶1
𝑉𝐶

,       𝑐22
∗ =

2𝑈𝐶2
𝑉𝐶

,       𝑐33
∗ =

2𝑈𝐶4
𝑉𝐶

,       𝑐12
∗ =

(𝑈𝐶3 − 𝑈𝐶1 − 𝑈𝐶2)

𝑉𝐶
, (21) 

where 𝑈𝐶1, 𝑈𝐶2, 𝑈𝐶3, and 𝑈𝐶4 are the strain energy values of the unit cell under four 

strain modes in which, respectively, 

𝜀𝑜 = [1 0 0]𝑇 ,    [0 1 0]𝑇 ,    [1 1 0]𝑇,   and   [0 0 1]𝑇. (22) 

 

8.3 Periodic boundary conditions 



 

39 
 

 

When periodic boundary conditions are prescribed to an FE domain, two types of 

boundary prescription are necessary. The first type is the ordinary prescription of exact 

values of degrees of freedom. The second type is the prescription of relative values 

between degrees of freedom. The first type of boundary condition is used to prevent 

rigid body displacements and these boundary conditions must not, by themselves, 

create any strain. The second type of boundary condition is from the periodic 

displacement 𝑢𝑖
𝑝
 in Eq. (15). If any two nodes have the same 𝑢𝑖

𝑝
 because of the 

periodicity, the relative displacements between the two nodes can be obtained from Eq. 

(15) for each prescribed strain mode. In addition, their rotational degrees of freedom 

must be the same. 

Fig. 8.1 shows the 2D frame-like periodic cellular solids considered in this study. 

Fig. 8.2 shows the frame structures that represent the unit cells of the two cellular solids. 

Note that cutting a strut of a frame-like periodic cellular solid in half longitudinally to 

create its unit-cell structure results in a strut of the unit-cell structure that has only half 

axial and bending rigidities of the original strut (Theerakittayakorn and Nanakorn, 

2013). Write Eq. (15) in matrix form for 2D periodic cellular solids as 

𝐮 = {
𝑢1
𝑢2
} = [

𝜀11
𝑜 𝜀12

𝑜

𝑆𝑦𝑚 𝜀22
𝑜 ] {

𝑥1
𝑥2
} + {

𝑢1
𝑝

𝑢2
𝑝} = 𝐄

𝑜𝐱 + 𝒖𝒑. (23) 

 
(a)                                                (b)                             

A, I

 
 

Fig. 8.1 Periodic cellular solids: (a) square unit cells, (b) triangular unit cells 
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Fig. 8.2 Frame structures representing the square and triangular unit cells 
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In order to utilize Eq. (23) to create the required periodic boundary conditions, the 

periodicity of the unit cell must be considered. As an example, consider the triangular 

unit-cell structure in Fig. 8.2(b). This unit cell has the following periodicity conditions  

𝐮𝑝(0, 0) = 𝐮𝑝(𝐿, 0) = 𝐮𝑝 (
𝐿

2
,
√3𝐿

2
),      (24) 

𝒖𝑝 (
𝐿

2
, 0) = 𝒖𝑝 (𝐿,

√3𝐿

2
) = 𝒖𝑝 (0,

√3𝐿

2
),      (25) 

𝛉𝑝(0, 0) = 𝛉𝑝(𝐿, 0) = 𝛉𝑝 (
𝐿

2
,
√3𝐿

2
),      (26) 

𝛉𝑝 (
𝐿

2
, 0) = 𝛉𝑝 (𝐿,

√3𝐿

2
) = 𝛉𝑝 (0,

√3𝐿

2
).      (27) 

In order to prevent the rigid body displacements, 𝐮(0, 0) can be selected to be fixed. 

If, for example, 𝑈𝐶4 is to be determined, Eq. (23), Eq. (24) and Eq. (25) yield 

For node 1: 

{
𝑢1(0, 0)

𝑢2(0, 0)
} = [

0 1/2
1/2 0

] {
0
0
} + {

𝑢1
𝑝(0, 0)

𝑢2
𝑝(0, 0)

} = {
0
0
}, (28) 

For node 2: 

{
𝑢1 (

𝐿

2
, 0)

𝑢2 (
𝐿

2
, 0)

} = [
0 1/2
1/2 0

] {
𝐿

2
0

} + {
𝑢1
𝑝
(
𝐿

2
, 0)

𝑢2
𝑝
(
𝐿

2
, 0)

} = {
𝑢1
𝑝
(
𝐿

2
, 0)

𝐿

4
+ 𝑢2

𝑝
(
𝐿

2
, 0)

}, (29) 

For node 3: 

{
𝑢1(𝐿, 0)

𝑢2(𝐿, 0)
} = [

0 1/2
1/2 0

] {
𝐿
0
} + {

𝑢1
𝑝(𝐿, 0)

𝑢2
𝑝(𝐿, 0)

} = {
𝑢1
𝑝(0, 0)

𝐿

2
+ 𝑢2

𝑝(0, 0)
} = {

0
𝐿

2

}, (30) 

 

 

For node 4: 

{
 
 

 
 𝑢1 (

𝐿

2
,
√3𝐿

2
)

𝑢2 (
𝐿

2
,
√3𝐿

2
)
}
 
 

 
 

= [
0 1/2
1/2 0

]

{
 

 
𝐿

2

√3𝐿

2 }
 

 
+

{
 
 

 
 𝑢1

𝑝
(
𝐿

2
,
√3𝐿

2
)

𝑢2
𝑝
(
𝐿

2
,
√3𝐿

2
)
}
 
 

 
 

=

{
 

 √
3𝐿

4
𝐿

4 }
 

 
, (31) 
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For node 5: 

{
 
 

 
 𝑢1 (𝐿,

√3𝐿

2
)

𝑢2 (𝐿,
√3𝐿

2
)
}
 
 

 
 

= [
0 1/2
1/2 0

] {

𝐿

√3𝐿

2

} +

{
 
 

 
 𝑢1

𝑝
(𝐿,

√3𝐿

2
)

𝑢2
𝑝
(𝐿,

√3𝐿

2
)
}
 
 

 
 

=

{
 

 √
3𝐿

4
+ 𝑢1

𝑝
(
𝐿

2
, 0)

𝐿

2
+ 𝑢2

𝑝
(
𝐿

2
, 0) }

 

 

, (32) 

For node 6: 

{
 
 

 
 𝑢1 (0,

√3𝐿

2
)

𝑢2 (0,
√3𝐿

2
)
}
 
 

 
 

= [
0 1/2
1/2 0

] {

0

√3𝐿

2

} +

{
 
 

 
 𝑢1

𝑝
(0,

√3𝐿

2
)

𝑢2
𝑝
(0,

√3𝐿

2
)
}
 
 

 
 

=

{
 

 √
3𝐿

4
+ 𝑢1

𝑝
(
𝐿

2
, 0)

𝑢2
𝑝
(
𝐿

2
, 0) }

 

 

. (33) 

From Eq. (29) and Eq. (32), the multi-freedom constraints between nodes 2 and 5 

can be obtained as 

{
 
 

 
 𝑢1 (

𝐿

2
, 0) − 𝑢1 (𝐿,

√3𝐿

2
)

𝑢2 (
𝐿

2
, 0) − 𝑢2 (𝐿,

√3𝐿

2
)
}
 
 

 
 

=

{
 

 −
√3𝐿

4

−
𝐿

4 }
 

 
. (34) 

From Eq. (29) and Eq. (33), the multi-freedom constraints between nodes 2 and 6 

can be obtained as 

{
 
 

 
 𝑢1 (

𝐿

2
, 0) − 𝑢1 (0,

√3𝐿

2
)

𝑢2 (
𝐿

2
, 0) − 𝑢2 (0,

√3𝐿

2
)
}
 
 

 
 

=

{
 

 −
√3𝐿

4
𝐿

4 }
 

 
. (35) 

In addition to the four constraint equations from Eq. (34) and (35), the four 

constraint equations from Eq. (26) and (27) have to be considered. It can be seen from 

Eq. (30) and (31) that, for nodes 3 and 4, exact values of  𝑢1 and 𝑢2 are known and can 

be directly prescribed. The multi-freedom constraints in the determination of 𝑈𝐶1, 𝑈𝐶2, 

and 𝑈𝐶3 can be obtained in the same way. 

 

8.4 FE formulation with Lagrange multipliers 

 

The multi-freedom constraint equations are incorporated into FE analysis by means 

of Lagrange multipliers. To begin with, consider the total potential energy 𝛱 of an FE 

domain in Eq. (9). All multi-freedom constraint equations can be written together in 

matrix form as 
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𝐀𝐐 − 𝐁 = 𝟎. (36) 

Here, the sizes of the matrix 𝐀 and vector 𝐁 are 𝑛 ×𝑚 and 𝑛 × 1, respectively, where 

𝑛 denotes the number of the multi-freedom constraint equations and 𝑚 denotes the 

number of degrees of freedom in 𝐐. In order to consider Eq. (36), a Lagrange function 

can be created with a Lagrange multiplier vector 𝛌 as 

𝐿(𝐐, 𝛌) =
1

2
𝐐𝑇𝐊𝐐 − 𝐐𝑇𝐅 + 𝛌𝑇(𝐀𝐐 − 𝐁). (37) 

By minimizing L with respect to Q and 𝛌, Eq. (37) yields 

[𝐊 𝐀𝑇

𝐀 0
] {
𝐐
𝛌
} = {

𝐅
𝐁
}. (38) 

The Eq. (38) is implemented in a function of the FESys class. the program will 

determine the unknown displacement vector Q from this equation. 

 

8.5 Symbolic FE computations 

 

By using the obtained program, 𝑈𝐶1, 𝑈𝐶2, 𝑈𝐶3,  and 𝑈𝐶4  can be symbolically 

determined. Thereafter, the closed-form effective elastic constants can be obtained from 

the following statements in MATLAB scripts, 

c11 = 2*Uc1/Vc; 

c22 = 2*Uc2/Vc; 

c33 = 2*Uc4/Vc; 

c12 = (Uc3-Uc1-Uc2)/Vc; 

E1 = simplify((c11*c22-c12^2)/c22); 

E2 = simplify((c11*c22-c12^2)/c11); 

v12 = simplify(c12/c22); 

v21 = simplify(c12/c11); 

G12 = simplify(c33); 

 

8.6 Results 

 

Table 8.1 shows the obtained closed-form solutions of the effective elastic constants 

of the square and triangular periodic cellular solids. All struts in each solid have the 

same area 𝐴 and moment of inertia 𝐼. In the table, 𝐸 denotes Young’s modulus of the 

base material. In order to assure that the obtained closed forms are correct, numerical 
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comparisons with a commercial FE program are done. In the numerical comparisons, 

all struts are assumed to have the same square cross section of 𝑇 × 𝑇.  

Table 8.2 shows the comparisons of the obtained closed forms with those from 

MSC.Marc Mentat. It can be seen that the results from this study and MSC.Marc Mentat 

are exactly the same. 

 

Table 8.1 Closed-form solutions of effective elastic properties 

Unit cell Effective Young’s modulus Effective shear modulus 
Effective Poisson’s 

ratio 

Square  𝐸𝑖
∗ =

𝐸

𝑉𝐶
(𝐴𝐿) 

 

𝐺12
∗ =

𝐸

𝑉𝐶
[6 (

𝐼

𝐿
)] 

 

𝑣𝑖𝑗
∗ = 0 

 

Triangle  𝐸𝑖
∗ =

𝐸

𝑉𝐶
[
(𝐴𝐿)2 + 12(𝐴𝐼)

𝐴𝐿 + 4 (
𝐼
𝐿
)

] 

 

𝐺12
∗ =

𝐸

𝑉𝐶
[
3

8
(𝐴𝐿) +

36

8
(
𝐼

𝐿
)] 

 

𝑣𝑖𝑗
∗ =

1
3
(𝐴𝐿) − 4 (

𝐼
𝐿
)

𝐴𝐿 + 4 (
𝐼
𝐿
)

 

 

 

Table 8.2 Numerical results of the obtained closed forms and MSC.Marc Mentat 

Unit cell 

Parameters 
Effective Young’s 

modulus 

Effective shear 

modulus 

Effective Poisson’s 

ratio 

E L T 
Closed 

form 

MSC.Marc 

Mentat 
Closed 

form 

MSC.Marc 

Mentat 
Closed 

form 

MSC.Marc 

Mentat 

Square 1.0 1.0 0.1 0.1000 0.1000 0.0005 0.0005 0.0000 0.0000 

 1.0 1.0 0.2 0.2000 0.2000 0.0040 0.0040 0.0000 0.0000 

Triangle 1.0 1.0 0.1 0.1162 0.1162 0.0437 0.0437 0.3289 0.3289 

 1.0 1.0 0.2 0.2370 0.2370 0.0901 0.0901 0.3158 0.3158 

 

8.7 Discussions  

 

In this chapter, the obtained program is used to determine the effective elastic 

constants of frame-like periodic cellular solids that can be modelled accurately by using 

Euler beam elements. The program determines the closed-form solutions of strain 

energy of unit cells of frame-like periodic cellular solids under various strain modes. 

These closed-form strain energy expressions are then used to determine the closed-form 

effective elastic constants. The program can successfully yield the closed forms of 

effective elastic constants. The numerical results obtained from the closed forms 

compare satisfactorily with those numerical results from commercial FE software. 
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Chapter 9 

Conclusions 

 

This study proposes a symbolic-numerical object-oriented FE program. The 

program is completely developed in MATLAB programming language to handle both 

symbolic and numerical computations. The obtained program can only be used to 

perform FEA of linear elastic problems. The input of the program is in the text format. 

The main output is also in the text format and the output in the graphical format can be 

added as required. The program is designed using the OOP concept and employs the 

OOP capability in MATLAB. The symbolic computations in the program rely on the 

symbolic computing capability of MATLAB. The OOP concept allows the program to 

be implemented efficiently, exactly in the same way as ordinary numerical FE 

programs. 

The obtained program can be used to determine the closed-form solutions of simple 

structures such as trusses and frames. Examples of its advantages include those shown 

below: 

 The program can be used to determine the exact mathematical expressions or 

formulas of some responses of simple structures when closed-form solutions 

are required or preferred. The effects and relationships of parameters found in 

closed-form solutions can facilitate better understanding of the behavior of 

structures under loads. In addition, the obtained closed-form solutions can also 

be used in other engineering tasks, such as structural design and optimization. 

Consequently, the program can be a useful tool for researches in the fields of 

computational mechanics and structural engineering. 

 The program can help students and teachers better understand FEM by 

investigating the FE derivation processes in the program and symbolic analysis 

results from the symbolic computations. 

In this study, the advantages of the obtained program are shown by using it to solve 

several engineering problems analytically. The obtained results are found to be 

satisfactory. 
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Appendix A 

Inputs of the Program 

 

 
                            

2DTruss_Input 
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3DTruss_Input 
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2DFrame_Input 
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3DFrame_Input 
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Appendix B 

Outputs of the Program 
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Appendix C 

Numerical Comparisons 

 

For trusses, the numerical results are obtained by substituting the numerical values 

of the variables 𝐴𝑖  = 0.006 𝑚2, 𝑃𝑖 = 2 𝑘𝑁, 𝐿 = 3 𝑚, 𝐻 = 3 𝑚, and 𝐸𝑒 = 2 x 108 𝑘𝑃𝑎. For 

frames, the numerical results are obtained from these numerical variables 𝐴𝑖   = 

0.04 𝑚2, 𝐼𝑖  = 10-4/7500 𝑚2, 𝐷𝑥 = 0.01 𝑚, 𝐿 = 3 𝑚, 𝐻 = 3 𝑚, and 𝐸𝑒 = 2 x 108 𝑘𝑃𝑎. 

 

Structures Closed Forms MSC.Marc Mentat 

Types Node Nodal Displacements [m] 

2D Truss 

1 
𝑄𝑥 = 0 𝑄𝑥 = 0 

𝑄𝑦 = 0 𝑄𝑦 = 0 

2 
𝑄𝑥 = -0.00001 𝑄𝑥 = -0.00001 

𝑄𝑦 = -0.0000241421 𝑄𝑦 = -0.0000241421 

3 
𝑄𝑥 = -0.000015 𝑄𝑥 = -0.000015 

𝑄𝑦 = -0.0000632843 𝑄𝑦 = -0.0000632843 

4 
𝑄𝑥 = 0.00001 𝑄𝑥 = 0.00001 

𝑄𝑦 = -0.0000241421 𝑄𝑦 = -0.0000241421 

5  
𝑄𝑥 = 0 𝑄𝑥 = 0 

𝑄𝑦 = 0 𝑄𝑦 = 0 

Node Support Reactions [kN] 

1 
𝑅𝑥 = 6 𝑅𝑥 = 6 

𝑅𝑦 = 2 𝑅𝑦 = 2 

5 
𝑅𝑥 = -6 𝑅𝑥 = -6 

𝑅𝑦 = 2 𝑅𝑦 = 2 

Element Total Strain Energy [kN.m] 

All 𝑈 = 0.0000874264 𝑈 = 0.0000874264 

 Element Strains [m/m] 

 1 𝑒 = -0.00000333333 𝑒 = -0.00000333333 

 2 𝑒 = -0.00000166667 𝑒 = -0.00000166667 
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 3 𝑒 = 0.00000235702 𝑒 = 0.00000235702 

 4 𝑒 = 0.00000333333 𝑒 = 0.00000333333 

 5 𝑒 = -0.00000235702 𝑒 = -0.00000235702 

 6 𝑒 = 0.00000235702 𝑒 = 0.00000235702 

 Element Stresses [kN/m2] 

 1 𝑠 = -666.667 𝑠 = -666.667 

 2 𝑠 = -333.333 𝑠 = -333.333 

 3 𝑠 = 471.405 𝑠 = 471.405  

 4 𝑠 = 666.667 𝑠 = 666.667 

 5 𝑠 = -471.405 𝑠 = -471.405 

 6 𝑠 = 471.405 𝑠 = 471.405 

Types Node Nodal Displacements [m] 

3D Truss 

1 

𝑄𝑥 = 0 𝑄𝑥 = 0 

𝑄𝑦 = 0 𝑄𝑦 = 0 

𝑄𝑧 = 0 𝑄𝑧 = 0 

2 

𝑄𝑥 = 0 𝑄𝑥 = 0 

𝑄𝑦 = 0 𝑄𝑦 = 0 

𝑄𝑧 = 0 𝑄𝑧 = 0 

3 

𝑄𝑥 = 0 𝑄𝑥 = 0 

𝑄𝑦 = 0 𝑄𝑦 = 0 

𝑄𝑧 = 0 𝑄𝑧 = 0 

4 

𝑄𝑥 = 0 𝑄𝑥 = 0 

𝑄𝑦 = 0 𝑄𝑦 = 0 

𝑄𝑧 = 0 𝑄𝑧 = 0 

5  

𝑄𝑥 = 0 𝑄𝑥 = 0 

𝑄𝑦 = 0 𝑄𝑦 = 0 

𝑄𝑧 = 0 𝑄𝑧 = 0 

6 

𝑄𝑥 = 0 𝑄𝑥 = 0 

𝑄𝑦 = 0 𝑄𝑦 = 0 

𝑄𝑧 = 0 𝑄𝑧 = 0 
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7 

𝑄𝑥 = 0 𝑄𝑥 = 0 

𝑄𝑦 = 0 𝑄𝑦 = 0 

𝑄𝑧 = 0 𝑄𝑧 = 0 

8 

𝑄𝑥 = 0 𝑄𝑥 = 0 

𝑄𝑦 = 0 𝑄𝑦 = 0 

𝑄𝑧 = 0 𝑄𝑧 = 0 

9 

𝑄𝑥 = 0 𝑄𝑥 = 0 

𝑄𝑦 = -0.000001628 𝑄𝑦 = -0.000001628 

𝑄𝑧 = 0 𝑄𝑧 = 0 

Node Support Reactions [kN] 

1 

𝑅𝑥 = 0.25 𝑅𝑥 = 0.25 

𝑅𝑦 = 0.25 𝑅𝑦 = 0.25 

𝑅𝑧 = -0.25 𝑅𝑧 = -0.25 

2 

𝑅𝑥 = -0.25 𝑅𝑥 = -0.25 

𝑅𝑦 = 0.25 𝑅𝑦 = 0.25 

𝑅𝑧 = -0.25 𝑅𝑧 = -0.25 

3 

𝑅𝑥 = -0.25 𝑅𝑥 = -0.25 

𝑅𝑦 = 0.25 𝑅𝑦 = 0.25 

𝑅𝑧 = 0.25 𝑅𝑧 = 0.25 

4 

𝑅𝑥 = 0.25 𝑅𝑥 = 0.25 

𝑅𝑦 = 0.25 𝑅𝑦 = 0.25 

𝑅𝑧 = 0.25 𝑅𝑧 = 0.25 

5 

𝑅𝑥 = -0.25 𝑅𝑥 = -0.25 

𝑅𝑦 = 0.25 𝑅𝑦 = 0.25 

𝑅𝑧 = 0.25 𝑅𝑧 = 0.25 

6 

𝑅𝑥 = 0.25 𝑅𝑥 = 0.25 

𝑅𝑦 = 0.25 𝑅𝑦 = 0.25 

𝑅𝑧 = 0.25 𝑅𝑧 = 0.25 

7 
𝑅𝑥 = 0.25 𝑅𝑥 = 0.25 

𝑅𝑦 = 0.25 𝑅𝑦 = 0.25 
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𝑅𝑧 = -0.25 𝑅𝑧 = -0.25 

8 

𝑅𝑥 = -0.25 𝑅𝑥 = -0.25 

𝑅𝑦 = 0.25 𝑅𝑦 = 0.25 

𝑅𝑧 = -0.25 𝑅𝑧 = -0.25 

Element Total Strain Energy [kN.m] 

All 𝑈 = 0.0000016238 𝑈 = 0.0000016238 

 Element Strains [m/m] 

 1 𝑒 = -0.000000360844 𝑒 = -0.000000360844 

 2 𝑒 = -0.000000360844 𝑒 = -0.000000360844 

 3 𝑒 = -0.000000360844 𝑒 = -0.000000360844 

 4 𝑒 = -0.000000360844 𝑒 = -0.000000360844 

 5 𝑒 = 0.000000360844 𝑒 = 0.000000360844 

 6 𝑒 = 0.000000360844 𝑒 = 0.000000360844 

 7 𝑒 = 0.000000360844 𝑒 = 0.000000360844 

 8 𝑒 = 0.000000360844 𝑒 = 0.000000360844 

 Element Stresses [kN/m2] 

 1 𝑠 = -72.1688 𝑠 = -72.1688 

 2 𝑠 = -72.1688 𝑠 = -72.1688 

 3 𝑠 = -72.1688 𝑠 = -72.1688 

 4 𝑠 = -72.1688 𝑠 = -72.1688 

 5 𝑠 = 72.1688 𝑠 = 72.1688 

 6 𝑠 = 72.1688 𝑠 = 72.1688 

 7 𝑠 = 72.1688 𝑠 = 72.1688 

 8 𝑠 = 72.1688 𝑠 = 72.1688 

Types Node Nodal Displacements [m] 

2D Frame 

1 

𝑄𝑥 = 0 𝑄𝑥 = 0 

𝑄𝑦 = 0 𝑄𝑦 = 0 

𝑄𝑟 = 0 𝑄𝑟 = 0 

2 
𝑄𝑥 = 0.01 𝑄𝑥 = 0.01 

𝑄𝑦 = 0 𝑄𝑦 = 0 
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𝑄𝑟 = 0 𝑄𝑟 = 0 

3 

𝑄𝑥 = 0.01 𝑄𝑥 = 0.01 

𝑄𝑦 = 0 𝑄𝑦 = 0 

𝑄𝑟 = 0 𝑄𝑟 = 0 

4 

𝑄𝑥 = 0 𝑄𝑥 = 0 

𝑄𝑦 = 0 𝑄𝑦 = 0 

𝑄𝑟 = 0 𝑄𝑟 = 0 

Node Support Reactions [kN] 

1 

𝑅𝑥 = -26666.3 𝑅𝑥 = -26666.3 

𝑅𝑦 = 0 𝑅𝑦 = 0 

𝑅𝑟 = 0 𝑅𝑟 = 0 

2 

𝑅𝑥 = 26666.3 𝑅𝑥 = 26666.3 

𝑅𝑦 = 0 𝑅𝑦 = 0 

𝑅𝑟 = 0 𝑅𝑟 = 0 

3 

𝑅𝑥 = 26666.3 𝑅𝑥 = 26666.3 

𝑅𝑦 = 0 𝑅𝑦 = 0 

𝑅𝑟 = 0 𝑅𝑟 = 0 

4 

𝑅𝑥 = -26666.3 𝑅𝑥 = -26666.3 

𝑅𝑦 = 0 𝑅𝑦 = 0 

𝑅𝑟 = 0 𝑅𝑟 = 0 

Element Total Strain Energy [kN.m] 

All 𝑈 = 266.667 𝑈 = 266.667 

Element Internal Forces [kN] 

1 

𝑁 = 26666.7 𝑁 = 26666.7 

𝑉 = 0 𝑉 = 

 𝑀 = 0 𝑀 = 

 

2 

𝑁 = 0 𝑁 = 0 

 𝑉 = 0 𝑉 = 0 

 𝑀 = 0 𝑀 = 0 

 3 𝑁 = 26666.7 𝑁 = 26666.7 
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 𝑉 = 0 𝑉 = 0 

 𝑀 = 0 𝑀 = 0 

 

4 

𝑁 = 0 𝑁 = 0 

 𝑉 = 0 𝑉 = 0 

 𝑀 = 0 𝑀 = 0 

Types Node Nodal Displacements [m] 

3D Frame 

1 

𝑄𝑥 =  0 𝑄𝑥 =  0 

𝑄𝑟𝑥 = 0 𝑄𝑟𝑥 = 0 

𝑄𝑦 =  0 𝑄𝑦 =  0 

𝑄𝑟𝑦 = 0 𝑄𝑟𝑦 = 0 

𝑄𝑧 =  0 𝑄𝑧 =  0 

𝑄𝑟𝑧 = 0 𝑄𝑟𝑧 = 0 

2 

𝑄𝑥 =  0.01 𝑄𝑥 =  0.01 

𝑄𝑟𝑥 = 0 𝑄𝑟𝑥 = 0 

𝑄𝑦 =  0 𝑄𝑦 =  0 

𝑄𝑟𝑦 = 0 𝑄𝑟𝑦 = 0 

𝑄𝑧 =  0 𝑄𝑧 =  0 

𝑄𝑟𝑧 = 0 𝑄𝑟𝑧 = 0 

3 

𝑄𝑥 =  0.01 𝑄𝑥 =  0.01 

𝑄𝑟𝑥 = 0 𝑄𝑟𝑥 = 0 

𝑄𝑦 =  0 𝑄𝑦 =  0 

𝑄𝑟𝑦 = 0 𝑄𝑟𝑦 = 0 

𝑄𝑧 =  0 𝑄𝑧 =  0 

𝑄𝑟𝑧 = 0 𝑄𝑟𝑧 = 0 

4 

𝑄𝑥 =  0 𝑄𝑥 =  0 

𝑄𝑟𝑥 = 0 𝑄𝑟𝑥 = 0 

𝑄𝑦 =  0 𝑄𝑦 =  0 

𝑄𝑟𝑦 = 0 𝑄𝑟𝑦 = 0 

𝑄𝑧 =  0 𝑄𝑧 =  0 

𝑄𝑟𝑧 = 0 𝑄𝑟𝑧 = 0 
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5 

𝑄𝑥 =  0 𝑄𝑥 =  0 

𝑄𝑟𝑥 = 0 𝑄𝑟𝑥 = 0 

𝑄𝑦 =  0 𝑄𝑦 =  0 

𝑄𝑟𝑦 = 0 𝑄𝑟𝑦 = 0 

𝑄𝑧 =  0 𝑄𝑧 =  0 

𝑄𝑟𝑧 = 0 𝑄𝑟𝑧 = 0 

6 

𝑄𝑥 =  0.01 𝑄𝑥 =  0.01 

𝑄𝑟𝑥 = 0 𝑄𝑟𝑥 = 0 

𝑄𝑦 =  0 𝑄𝑦 =  0 

𝑄𝑟𝑦 = 0 𝑄𝑟𝑦 = 0 

𝑄𝑧 =  0 𝑄𝑧 =  0 

𝑄𝑟𝑧 = 0 𝑄𝑟𝑧 = 0 

7 

𝑄𝑥 =  0.01 𝑄𝑥 =  0.01 

𝑄𝑟𝑥 = 0 𝑄𝑟𝑥 = 0 

𝑄𝑦 =  0 𝑄𝑦 =  0 

𝑄𝑟𝑦 = 0 𝑄𝑟𝑦 = 0 

𝑄𝑧 =  0 𝑄𝑧 =  0 

𝑄𝑟𝑧 = 0 𝑄𝑟𝑧 = 0 

8 

𝑄𝑥 =  0 𝑄𝑥 =  0 

𝑄𝑟𝑥 = 0 𝑄𝑟𝑥 = 0 

𝑄𝑦 =  0 𝑄𝑦 =  0 

𝑄𝑟𝑦 = 0 𝑄𝑟𝑦 = 0 

𝑄𝑧 =  0 𝑄𝑧 =  0 

𝑄𝑟𝑧 = 0 𝑄𝑟𝑧 = 0 

Node Support Reactions [kN] 

1 

𝑅𝑥 = -26666.7 𝑅𝑥 = -26666.7 

𝑅𝑟𝑥 = 0 𝑅𝑟𝑥 = 0 

𝑅𝑦 =  0 𝑅𝑦 =  0 

𝑅𝑟𝑦 = 0 𝑅𝑟𝑦 = 0 

𝑅𝑧 =  0 𝑅𝑧 =  0 
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𝑅𝑟𝑧 = 0 𝑅𝑟𝑧 = 0 

2 

𝑅𝑥 =  26666.7 𝑅𝑥 =  26666.7 

𝑅𝑟𝑥 = 0 𝑅𝑟𝑥 = 0 

𝑅𝑦 =  0 𝑅𝑦 =  0 

𝑅𝑟𝑦 = 0 𝑅𝑟𝑦 = 0 

𝑅𝑧 =  0 𝑅𝑧 =  0 

𝑅𝑟𝑧 = 0 𝑅𝑟𝑧 = 0 

3 

𝑅𝑥 =  26666.7 𝑅𝑥 =  26666.7 

𝑅𝑟𝑥 = 0 𝑅𝑟𝑥 = 0 

𝑅𝑦 =  0 𝑅𝑦 =  0 

𝑅𝑟𝑦 = 0 𝑅𝑟𝑦 = 0 

𝑅𝑧 =  0 𝑅𝑧 =  0 

𝑅𝑟𝑧 = 0 𝑅𝑟𝑧 = 0 

4 

𝑅𝑥 = -26666.7 𝑅𝑥 = -26666.7 

𝑅𝑟𝑥 = 0 𝑅𝑟𝑥 = 0 

𝑅𝑦 =  0 𝑅𝑦 =  0 

𝑅𝑟𝑦 = 0 𝑅𝑟𝑦 = 0 

𝑅𝑧 =  0 𝑅𝑧 =  0 

𝑅𝑟𝑧 = 0 𝑅𝑟𝑧 = 0 

5 

𝑅𝑥 = -26666.7 𝑅𝑥 = -26666.7 

𝑅𝑟𝑥 = 0 𝑅𝑟𝑥 = 0 

𝑅𝑦 =  0 𝑅𝑦 =  0 

𝑅𝑟𝑦 = 0 𝑅𝑟𝑦 = 0 

𝑅𝑧 =  0 𝑅𝑧 =  0 

𝑅𝑟𝑧 = 0 𝑅𝑟𝑧 = 0 

6 

𝑅𝑥 =  26666.7 𝑅𝑥 =  26666.7 

𝑅𝑟𝑥 = 0 𝑅𝑟𝑥 = 0 

𝑅𝑦 =  0 𝑅𝑦 =  0 

𝑅𝑟𝑦 = 0 𝑅𝑟𝑦 = 0 

𝑅𝑧 =  0 𝑅𝑧 =  0 



 

76 
 

𝑅𝑟𝑧 = 0 𝑅𝑟𝑧 = 0 

7 

𝑅𝑥 =  26666.7 𝑅𝑥 =  26666.7 

𝑅𝑟𝑥 = 0 𝑅𝑟𝑥 = 0 

𝑅𝑦 =  0 𝑅𝑦 =  0 

𝑅𝑟𝑦 = 0 𝑅𝑟𝑦 = 0 

𝑅𝑧 =  0 𝑅𝑧 =  0 

𝑅𝑟𝑧 = 0 𝑅𝑟𝑧 = 0 

8 

𝑅𝑥 = -26666.7 𝑅𝑥 = -26666.7 

𝑅𝑟𝑥 = 0 𝑅𝑟𝑥 = 0 

𝑅𝑦 =  0 𝑅𝑦 =  0 

𝑅𝑟𝑦 = 0 𝑅𝑟𝑦 = 0 

𝑅𝑧 =  0 𝑅𝑧 =  0 

𝑅𝑟𝑧 = 0 𝑅𝑟𝑧 = 0 

Element Total Strain Energy [kN.m] 

All 𝑈 = 533.3333 𝑈 = 533.3333 

Element Internal Forces [kN] 

1 

𝑁𝑥  = 26666.6667 𝑁𝑥  = 26666.6667 

𝑀𝑥 = 0 𝑀𝑥 = 0 

 𝑁𝑦 = 0 𝑁𝑦 = 0 

 𝑀𝑦 = 0 𝑀𝑦 = 0 

 𝑁𝑧 =  0 𝑁𝑧 =  0 

 𝑀𝑧 = 0 𝑀𝑧 = 0 

 

2 

𝑁𝑥  = 0 𝑁𝑥  = 0 

 𝑀𝑥 = 0 𝑀𝑥 = 0 

 𝑁𝑦 = 0 𝑁𝑦 = 0 

 𝑀𝑦 = 0 𝑀𝑦 = 0 

 𝑁𝑧 = 0 𝑁𝑧 = 0 

 𝑀𝑧 = 0 𝑀𝑧 = 0 

 
3 

𝑁𝑥  = 26666.6667 𝑁𝑥  = 26666.6667 

 𝑀𝑥 = 0 𝑀𝑥 = 0 
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 𝑁𝑦 = 0 𝑁𝑦 = 0 

 𝑀𝑦 = 0 𝑀𝑦 = 0 

 𝑁𝑧 =  0 𝑁𝑧 =  0 

 𝑀𝑧 = 0 𝑀𝑧 = 0 

 

4 

𝑁𝑥  = 0 𝑁𝑥  = 0 

 𝑀𝑥 = 0 𝑀𝑥 = 0 

 𝑁𝑦 = 0 𝑁𝑦 = 0 

 𝑀𝑦 = 0 𝑀𝑦 = 0 

 𝑁𝑧 = 0 𝑁𝑧 = 0 

 𝑀𝑧 = 0 𝑀𝑧 = 0 

 

5 

𝑁𝑥  = 26666.6667 𝑁𝑥  = 26666.6667 

 𝑀𝑥 = 0 𝑀𝑥 = 0 

 𝑁𝑦 = 0 𝑁𝑦 = 0 

 𝑀𝑦 = 0 𝑀𝑦 = 0 

 𝑁𝑧 =  0 𝑁𝑧 =  0 

 𝑀𝑧 = 0 𝑀𝑧 = 0 

 

6 

𝑁𝑥  = 0 𝑁𝑥  = 0 

 𝑀𝑥 = 0 𝑀𝑥 = 0 

 𝑁𝑦 = 0 𝑁𝑦 = 0 

 𝑀𝑦 = 0 𝑀𝑦 = 0 

 𝑁𝑧 = 0 𝑁𝑧 = 0 

 𝑀𝑧 = 0 𝑀𝑧 = 0 

 

7 

𝑁𝑥  = 26666.6667 𝑁𝑥  = 26666.6667 

 𝑀𝑥 = 0 𝑀𝑥 = 0 

 𝑁𝑦 = 0 𝑁𝑦 = 0 

 𝑀𝑦 = 0 𝑀𝑦 = 0 

 𝑁𝑧 =  0 𝑁𝑧 =  0 

 𝑀𝑧 = 0 𝑀𝑧 = 0 

 
8 

𝑁𝑥  = 0 𝑁𝑥  = 0 

 𝑀𝑥 = 0 𝑀𝑥 = 0 
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 𝑁𝑦 = 0 𝑁𝑦 = 0 

 𝑀𝑦 = 0 𝑀𝑦 = 0 

 𝑁𝑧 = 0 𝑁𝑧 = 0 

 𝑀𝑧 = 0 𝑀𝑧 = 0 

 

9 

𝑁𝑥  = 0 𝑁𝑥  = 0 

 𝑀𝑥 = 0 𝑀𝑥 = 0 

 𝑁𝑦 = 0 𝑁𝑦 = 0 

 𝑀𝑦 = 0 𝑀𝑦 = 0 

 𝑁𝑧 = 0 𝑁𝑧 = 0 

 𝑀𝑧 = 0 𝑀𝑧 = 0 

 

10 

𝑁𝑥  = 0 𝑁𝑥  = 0 

 𝑀𝑥 = 0 𝑀𝑥 = 0 

 𝑁𝑦 = 0 𝑁𝑦 = 0 

 𝑀𝑦 = 0 𝑀𝑦 = 0 

 𝑁𝑧 = 0 𝑁𝑧 = 0 

 𝑀𝑧 = 0 𝑀𝑧 = 0 

 

11 

𝑁𝑥  = 0 𝑁𝑥  = 0 

 𝑀𝑥 = 0 𝑀𝑥 = 0 

 𝑁𝑦 = 0 𝑁𝑦 = 0 

 𝑀𝑦 = 0 𝑀𝑦 = 0 

 𝑁𝑧 = 0 𝑁𝑧 = 0 

 𝑀𝑧 = 0 𝑀𝑧 = 0 

 

12 

𝑁𝑥  = 0 𝑁𝑥  = 0 

 𝑀𝑥 = 0 𝑀𝑥 = 0 

 𝑁𝑦 = 0 𝑁𝑦 = 0 

 𝑀𝑦 = 0 𝑀𝑦 = 0 

 𝑁𝑧 = 0 𝑁𝑧 = 0 

 𝑀𝑧 = 0 𝑀𝑧 = 0 

 


