

SYMBOLIC-NUMERICAL OBJECT-ORIENTED FINITE

ELEMENT PROGRAMMING

BY

PISITH SAM

A THESIS SUBMITTED IN PARTIAL FULFILLMENT OF THE

REQUIREMENTS FOR THE DEGREE OF

MASTER OF SCIENCE (ENGINEERING AND TECHNOLOGY)

SIRINDHORN INTERNATIONAL INSTITUTE OF TECHNOLOGY

THAMMASAT UNIVERSITY

ACADEMIC YEAR 2015

SYMBOLIC-NUMERICAL OBJECT-ORIENTED FINITE

ELEMENT PROGRAMMING

BY

PISITH SAM

A THESIS SUBMITTED IN PARTIAL FULFILLMENT OF THE

REQUIREMENTS FOR THE DEGREE OF

MASTER OF SCIENCE (ENGINEERING AND TECHNOLOGY)

SIRINDHORN INTERNATIONAL INSTITUTE OF TECHNOLOGY

THAMMASAT UNIVERSITY

ACADEMIC YEAR 2015

ii

Abstract

SYMBOLIC-NUMERICAL OBJECT-ORIENTED FINITE ELEMENT

PROGRAMMING

by

PISITH SAM

B.Eng. in Civil Engineering, Institute of Technology of Cambodia, 2013

There are times when closed-form analysis of solids and structures is needed. When

only a structural member is considered, it is certainly possible to perform this type of

analysis by hand. However, when a structure with several members is to be considered,

manual calculation becomes practically impossible even when closed-form solutions

are theoretically obtainable. A finite element (FE) program that can symbolically

analyze elasticity problems of solids and structures can therefore be quite useful.

Unfortunately, symbolic computations are usually difficult to perform when problems

are complex. In these cases, numerical computations are still necessary. This study

presents an object-oriented FE program that can perform both symbolic and numerical

computations. The program is implemented in MATLAB. The object-oriented

programming (OOP) technique is used to enhance the maintainability, extendibility,

and reusability of the program. The proposed program is capable of performing

symbolic and numerical finite element analysis depending on the input it receives. The

obtained program is tested using some engineering problems in order to demonstrate

its usefulness. The results obtained from the program are found to be satisfactory.

Keywords: Finite element programming, Closed-form analysis, Linear elasticity,

Symbolic computation, Numerical computation, Symbolic-numerical computation,

Object-oriented programming.

iii

Acknowledgements

 First of all, I would like to thank my advisor, Prof. Dr. Pruettha Nanakorn, for his

precious guidance, encouragements, and opinions throughout my master’s degree

study. It is a great honor for me that I can be involved with his research teams to study

new knowledge and gain new experiences.

 I deeply thank the ASEAN University Network/the Southeast Asia Engineering

Education Development Network (AUN/SEED-Net) for providing me with the

scholarship. Without this scholarship, I would not be able to pursue my master’s degree

study in Thailand.

 I would never forget to thank my sending institution, Institute of Technology of

Cambodia (ITC), which has endorsed me for this scholarship. That was a good place

where I started my engineering life.

 I would also like to thank my host institution, Sirindhorn International Institute of

Technology (SIIT), which allows me to attend the school, and offers me a half of the

financial supports under the scholarship of AUN/SEED-Net program.

 A special thank to my senoirs in our research team such as Mr. Wasuwat Petprakob,

Mr. Kasem Theerakittayakorn, and Mr. Naga Venkata Chandrasekhar Koralla for

taking time to explain me about object-oriented programming, cellular solids, and the

finite element method.

 To my colleagues and friends in the reseach laboratory of the School of Civil

Engineering and Technology in SIIT, I thank them for their companionship and for

providing a pleasurable and friendly working environment.

 I would like to thank the professors in ITC who helped me during my bachelor’s

degree study, and especially to those who recommended me to pursue my graduate

study.

 My acknowledgment would finally mention my family. I wish to express my

gratitude to my parents for their finalcial supports and encourgagements untill the end

of my study.

iv

Table of Contents

Chapter Title Page

Signature Page i

Abstract iii

Acknowledgements ii

Table of Contents iv

List of Figures vii

List of Tables viii

1 Introduction 1

1.1 General 1

1.2 Statement of the problem 2

1.3 Objectives of the study 4

1.4 Scope of the study 4

2 Literature Review 5

2.1 General 5

2.2 Numerical FE programs 5

2.3 Symbolic FE programs 7

2.4 Symbolic-numerical FE programs 8

3 Theoretical Background 11

3.1 FE formulations 11

3.2 FE programming 12

3.2.1 OOP concepts 12

3.2.2 Object modeling technique 13

v

4 Symbolic-Numerical Object-Oriented Finite Element Programming 15

4.1 Object-oriented FE programming 15

4.2 Symbolic computations 19

4.3 Symbolic argument passing 22

4.3 Simple user interface environments 24

5 Advantages of the Proposed Program 26

5.1 General 26

5.2 Structural analysis problems 26

5.3 Structural design problems 27

5.4 Mechanics of materials 27

6 Closed-Form Analysis of Simple Structures 29

6.1 General 29

6.2 FEA of simple trusses and frames 29

6.3 Results 30

6.4 Discussions 30

7 Truss Optimization Problems 31

7.1 General 31

7.2 Truss optimization problems 32

7.3 MATLAB optimization toolbox 32

7.4 Results 33

7.4.1 Truss with six members and five nodes 33

7.4.1 Truss with ten members and six nodes 34

7.5 Discussions 36

8 Effective Constants of Frame-Like Periodic Cellular Solids 37

vi

8.1 General 37

8.2 Strain-energy based homogenization 37

8.3 Periodic boundary conditions 38

8.4 FE formulation with Lagrange multipliers 41

8.5 Symbolic FE computations 42

8.6 Results 42

8.7 Discussions 43

9 Conclusions 44

References 45

Appendices 49

Appendix A 50

Appendix B 56

Appendix C 68

vii

List of Figures

Figures Page

3.1 Simple relationship diagram of class entities 14

4.1 Dependency relationship of a model-analysis pattern 15

4.2 Object class relationship 15

4.3 Overall class relationship 16

4.4 Element class design relationship 17

4.5 Aggregation relationship of the Element class 17

4.6 Material class relationship 18

4.7 Geometry class relationship 18

4.8 Boundary class relationship 19

4.9 Relationship of user interface environments 24

4.10 Example template of the simple user interface environment 25

5.1 Process of numerical computations in the program 26

5.2 Process of symbolic computations in the program 26

6.1 2D and 3D trusses 30

6.2 2D and 3D frames 30

7.1 Problem 1--truss with six members and five nodes 33

7.2 Convergence rates of Problem 1 34

7.3 Problem 2--truss with ten members and six nodes 35

7.4 Convergence rates of Problem 2 36

8.1 Periodic cellular solids: (a) square unit cells, (b) triangular unit cells 39

8.2 Frame structures representing the square and triangular unit cells 39

viii

List of Tables

Tables Page

7.1 Results of Problem 1 34

7.2 Results of Problem 2 35

8.1 Closed-form solutions of effective elastic properties 43

8.2 Numerical results of the obtained closed forms and MSC.Marc Mentat 43

1

Chapter 1

Introduction

1.1 General

The finite element method (FEM) is an efficient method for solving differential

equations. As most physical problems can be expressed as differential equations, FEM

has become a power tool for solving these problems. Finite element (FE) programs have

been developed with many programming languages by procedural and object-oriented

programming (OOP) paradigms. The procedural programming paradigm is a simple

kind of programming technique that focuses on separating computational tasks into

many systematical procedures or subroutines that can be reused. Although this

procedural technique is simple and easy to program, it has some remarkable drawbacks,

such as difficulties to relate with real world objects, maintenance of the codes, and

management of data memories, and securities. These drawbacks are more pronounced

when programs become large and complex. To deal with these data-related problems,

the OOP paradigm can be used. The OOP technique treats programs as communications

and interacts between objects. Programs that use OOP can be considered as a collection

of interactive objects which consist of data fields associated with procedures known as

methods. The OOP technique can effectively improve the maintainability, extendibility,

and reusability of programs.

As aforementioned, FE programs have been written in various programming

languages. Some of the popular languages for implementing FEM include FORTRAN,

C, C++, C#, Java, Mathematica, Maple, MATLAB, Python, and Smalltalk. These

programming languages may have different capacities and employ different

programming paradigms. For instance, FORTRAN relies heavily on the procedural

programming technique although some OOP capacities have been recently added. In

addition, C, C++, C# and Java allow only numerical computations while Mathematica,

Maple, MATLAB, Python, and Smalltalk can perform both numerical and symbolic

computations. Oftentimes, symbolic computations are necessary and desirable in

engineering calculations. For example, symbolic computations offer closed-form

solutions for engineering problems as practical and ready-to-use formulas. However,

2

symbolic computations are usually difficult to perform. For many complex problems,

closed-form solutions sometimes do not exist at all.

Most of the time, programming languages that do not support symbolic

computations are used to implement FEM such as FORTRAN, C, C++, C#, and Java.

This is because of the fact that real problems are usually large and complex; therefore,

they can be managed only by efficient numerical programs. However, programming

languages that allow both numerical and symbolic computations have been

significantly improved recently. As a result, it is now possible to develop FE programs

that are capable of handling both symbolic and numerical computations. These

programs are quite useful since they can give symbolic solutions when it is possible,

and give numerical solutions when symbolic solutions are not possible or not required.

Closed-form analysis of simple structural problems can be solved manually by

engineers. Those structures can be, for example, simple trusses and frames. Closed-

form analysis is a kind of mathematical analysis that is used to determine expressions

of closed-form solutions which will be later used as formulas. In finite element analysis

(FEA) of structural problems, closed-form analysis can be used to find symbolic

expressions of element stiffness matrices, unknown displacements, strains, stresses, and

strain energy. Closed-form solutions of element stiffness have been studied and

considered in many research works (Yew et al., 1995, Jiang and Wang, 2008, Shiakolas

et al., 1994). Closed-form stiffness can be used to speed up FEA processes significantly

since the formation of stiffness matrices in real time is no longer required. There are

also some research works that deal with closed-form analysis of strain energy. For

example, in the works by Zhang et al. (2007), Dai and Zhang (2009), and Wang et al.

(2008), the closed forms of strain energy of unit cells of periodic cellular solids are used

to determine the effective elastic properties of the solids.

1.2 Statement of the problem

FE programs are mostly written using the procedural programming paradigm,

which in general cannot handle complex data structures well. As a result, these codes

contain many fragmented data variables, which are accessed throughout the programs.

This causes many difficulties in modifying and extending the existing codes for new

3

uses, models, and solution procedures. To deal with these problems, the OOP paradigm

becomes an interest.

Under the OOP paradigm, software is organized as a collection of discrete and

distinguishable objects that incorporate both data structures and behavior. The key idea

of this approach is to consider tasks in software as communications between and

operations within various objects. As aforementioned, the concept greatly improves

maintainability, extendibility, and reusability of software. There exist large quantities

of research works that are concerned with the development of object-oriented FE

programs (Forde et al., 1990, Abdalla and Yoon, 1992, Mackie, 1998, Archer et al.,

1999, Mackie, 2002, Mackie, 2007). When the OOP technique is used in

implementation of FEM, the process of FEA must be thought of as interactions between

various entities. These entities can be classified into various classes of objects whose

data and behavior are clearly defined. Common examples of these classes include

nodes, elements, and materials. As seeing each entity as an object can be achieved quite

naturally by programmers, programming FEM using the OOP paradigm becomes a

smooth and natural process.

Most FE programs are only implemented for numerical computations. In fact, it is

generally sufficient to solve engineering problems numerically. However, there are

some problems that symbolic computations are necessary or preferred (Shiakolas et al.,

1994, Pavlovic, 2003, Shiakolas et al., 1993). By using symbolic computations in FE

programs, closed-form solutions of FE problems can be obtained and can be later used

as formulas. Thus, developing a symbolic FE program that can handle both symbolic

and numerical FEA can be beneficial. In order to develop a symbolic FE program, a

powerful programming language that can manipulate symbolic computations is

necessary. In addition, in order to utilize the OOP paradigm, the programming language

must also have the OOP capabilities. One of the powerful programming languages that

allow symbolic and numerical computations and have the OOP capabilities is

MATLAB.

4

1.3 Objectives of the study

The main objective of this study is to develop a symbolic-numerical object-

oriented FE program. To achieve this objective, the following research goals are

warranted:

 To develop a symbolic-numerical object-oriented FE program by using the

MATLAB programming language.

 To demonstrate the usefulness of the obtained program by using it to

symbolically solve some engineering problems whose closed-form solutions

are useful and preferable to numerical solutions.

1.4 Scope of the study

As the objectives of study are clearly identified, the scope of this study is set to

specify the limitations and the sub-purposes of this study. The scope of the study is as

follows:

 The obtained program solves only linear static problems of solids and

structures.

 The analysis results from the program include displacements, strains, stresses,

and strain energy.

 For finite element problems that do not possess closed-form solutions, the

program provides only numerical solutions.

 Due to the limitation of MATLAB, it may not be possible to obtain closed-

form solutions of complex FE problems.

 The input of the program is in the text format.

 The output of the program is in both text format and graphical format, when

required.

5

Chapter 2

Literature Review

2.1 General

According to a bibliography by Mackerle (2000), there are many research works

on object-oriented FE programming. Most of the programs in these research works are

developed for numerical computations. Only a small number of them are implemented

for symbolic computations. Mackerle (2000) stated that symbolic computations are still

the difficult tasks to perform due to the lack of symbolic manipulation efficiencies in

most of the conventional programming languages. Pavlovic (2003) discussed some

available programming languages that can be used to perform symbolic FE

programming such as Maple and Mathematica.

2.2 Numerical FE programs

Forde et al. (1990) mentioned that the capability of the object-oriented FE approach

to create expandable application frameworks is probably singularly responsible for its

popularity. In their work, different shape function classes are used to define different

types of shape function. Each shape function class provides the strain-displacement

matrix, also commonly known as the B matrix, determined from its designated shape

functions. The shape function classes are individually employed in different element

classes to create different types of element.

Abdalla and Yoon (1992) presented an object-oriented approach to integrate both

FE and graphical application programs. The objective of this work is to develop a

general data-translation facility by using C++ for translating data among FE and

graphics based programs. To transform the data form a graphical program, AutoCAD,

an initial graphical exchange standard (IGES), which is a standard format supported by

the drawing applications, is used. Finally, they investigated the effectiveness and

viability of object-oriented approaches to integrate programs with different data

formats.

Kwon and Bang (2000) introduced a numerical FE program by using the MATLAB

language. The main purpose of their work is to demonstrate how to program FEM in

6

MATLAB. Moreover, they provided examples of the conventional FE codes for

structural and mechanical problems.

Patzák and Bittnar (2001) developed an object-oriented FE program by using C++

programming language. Their program covers linear, nonlinear, static, and dynamic

problems. In addition, the concepts of a kernel structure are presented in order to

illustrate the environments of their program.

Akin and Singh (2002) used the OOP paradigm in the implementation of the P-

adaptive method in FEM. In their work, they introduced the advantages of the OOP

paradigm in FORTRAN 90 and FORTRAN 95 that can be used to improve the

flexibility, maintainability and extensibility of the program. Moreover, the error

estimator called “P-adaptive method” has been developed within the program to

improve the solutions in FEM.

Martha and Parente Jr (2002) developed an object-oriented framework for a FE

program called “FEMOOP.” They presented some principle views of the consumer-

supplier techniques in order to explain the OOP and conventional programming

paradigms. In their work, the computational tasks of analysis problems are grouped into

three distinct levels, namely the structural level, element level, and integration level.

The structural level deals with the algorithms used to analyze the problems of different

types, such as linear or nonlinear problems. The element level deals with computing

the element vectors and matrices, such as force vectors and stiffness matrix. The

integration level used to handle and compute the strain and stress vectors.

Heng and Mackie (2009) presented a design pattern of an object-oriented FE

program. In their study, the program is classified into two specific subsystems, i.e.

modeling and analyzing. The modeling subsystem is used to handle the classes of node,

element, boundary condition, and material properties of the program while the

analyzing subsystem is used to manage the solvers for solving the equations in FEM.

A unified modeling language (UML) is used to present the concepts of the program in

order that the design can be used with different programming languages. Finally, the

graphical user interface (GUI) is introduced to the program.

Piedade Neto et al. (2013) proposed an object-oriented class design for a

generalized FEM (GFEM) by using the Python language. GFEM is based on generating

new shape functions called “enriched shape functions,” which are obtained by

7

multiplying a partition of unit shape functions and special functions. As a result, new

classes are created and inserted into the conventional FE program to create GFEM. The

program is successfully created to numerically solve linear elastic mechanical

problems, and future development for nonlinear problems is also discussed.

Alves et al. (2013) also developed an object-oriented program for GFEM. In their

study, the program is implemented in Java language, which is different from the

previous programming language used by Piedade Neto et al. (2013). The new program

can be used to numerically solve linear, nonlinear, static, and dynamic structural

problems.

Rahman and Valdman (2013) depicted a fast technique for FE programming, called

array operations, to numerically assemble the element stiffness matrices for two-and

three-dimensional elements by using MATLAB.

Zander et al. (2014) presented an object-oriented toolbox for a finite-cell method

in MATLAB called “FCMLab.” The method is used to apply mesh generations by using

P-adaptive and H-adaptive refinements over fictitious and real physical domains. Due

to various capacities of the FCMLab toolbox, it allows new algorithms to be easily and

quickly added without affecting other codes in the program.

2.3 Symbolic FE programs

Yew et al. (1995) wrote a symbolic FE program for analysis of 2D beam structures

by using Mathematica language. In their work, the closed-form integration of element

stiffness matrices, which are derived from the mixed-formulation functional based on

the Hellinger-Reissner principle, is employed. Unlike the conventional FEM based on

the displacement functional, whose displacement fields are the primary variables, FEM

based on the Hellinger-Reissner functional, whose stresses and displacements are the

unknown fields, can give results that are more accurate. However, this method can be

applied only in linear elasticity when the complimentary strain energy is equivalent to

the strain energy.

Jiang and Wang (2008) introduced a symbolic FE program in plasticity written in

Mathematica language. In their study, the closed-form expressions of stiffness matrices

8

of the 2D plane strain elements in plasticity are determined. The Newton-Raphson

method is used to solve the nonlinear equations of the problems.

Eyheramendy and Zimmermann published many research works about symbolic

OOP using Smalltalk programming language. The first publication has intension to

determine the symbolic integrations of the element stiffness matrices for linear

elastodynamic problems (Zimmermann and Eyheramendy, 1996). The second

publication is about a symbolic object-oriented FE program for linear elastodynamic

problems as well (Eyheramendy and Zimmermann, 1996). In this publication, the

detailed descriptions of symbolic derivations and automatic principles are presented.

Moreover, the symbolic computations are derived from the initial-boundary-value

problems into matrix form in a quasi-automatic environment. The third publication

aims to improve capacities and automatic environments of the second publication

(Eyheramendy and Zimmermann, 1996). In the third publication, the program is tested

using several problems, such as thermal, elastodynamic, dynamic uniaxial bar

problems, and Navier-Stoke flow problems. Some weak points relating to the

performances of the symbolic computations of shape functions, in which the automatic

environments for symbolic computations are still limited, are pointed out. The fourth

publication accomplishes the automatic environments of the program that can combine

symbolic mathematical manipulations, symbolic computations, and automatic

programming (Eyheramendy and Zimmermann, 1998). The last publication aims to

improve the capacities of the previous program by introducing new concepts of

nonlinear analysis (Eyheramendy and Zimmermann, 2001).

2.4 Symbolic-numerical FE programs

Cheng (1991) developed a symbolic FE program for heat transfer problems by

using hybrid techniques. The techniques are implemented by both Mathematica and C

languages. The objective of his work is to determine the symbolic closed-form solutions

of the Nusselt number, which is a ratio of convection and conduction in heat transfer

problems. In his work, the symbolic derivations are first implemented in Mathematica

in order to identify all the coefficients for systems of polynomials. Due to the available

9

Gauss elimination algorithm in C, the proposed hybrid techniques are used to link the

symbolic computations in Mathematica and the numerical computations in C.

Shiakolas et al. (1993) presented a FE program for closed-form analysis of a

Zienkiewicz-Zhu (ZZ) error estimator for linear and quadratic strain tetrahedron

elements. The ZZ error estimator is firstly suggested by Zienkiewicz and Zhu, and it is

different from adaptive mesh refinement methods. The basic ideas of this method are

to introduce an error of computed stress, which is obtained from the difference between

the smoothed stress distribution and the computed nodal stress, into the errors of the

energy-norm formulations. In addition, Shiakolas et al. (1994) determined the closed-

form expressions of element stiffness matrices for these elements as well. In their work,

the symbolic derivations are implemented in Mathematica. Finally, the numerical

results are obtained by FORTRAN via its existing Gauss numerical algorithms.

Tummarakota and Lieh (1996) proposed a symbolic FE model of structural

systems. The purpose of their work is to determine the symbolic equations of motions

for 2D multibody systems from the Lagrange’s method. Moreover, the symbolic

derivations are written in Maple programming language. As the systems of equations

are obtained, a well-known numerical method “Runge-Kutta-Fehlberg” is then used.

Finally, the numerical computations are implemented in FORTRAN.

Cameron (1997) presented symbolic computations to evaluate multivariate

polynomials in FEM. In his work, the polynomial expressions of 2D and 3D

isoparametric elements are considered. To obtain those polynomial expressions, two

procedures of Horner’s method are presented. One is employed with the loop operations

and the other is used with nested bracket operations. As it is difficult to derive the

symbolic expressions of the polynomials with the nested implementations, the loop

method is preferred. Finally, the symbolic derivations and numerical computations are

written in the Maple and C languages, respectively.

Korelc (1997) developed an automatic nonlinear FE program by simultaneous

optimizations of the expressions. The purpose of his work is to determine the closed-

form expressions of the gradient and Hessian, which are necessary for applications in

nonlinear analysis. Moreover, the symbolic derivations are implemented in

Mathematica language. However, the symbolic derivations became a difficult task due

to the lack of efficiency of simplify commands in Mathematica. A stochastic

10

evaluation algorithm is used to effectively simplify the symbolic expressions. Finally,

the numerical computations are implemented in FORTRAN.

Lee and Hobbs (1998) presented closed-from analysis of element stiffness matrices

for 2D plane stress elements by using mixed formulations based on the Hellinger-

Reissner functional. In their work, there is no mention of the programming language

used to derive their symbolic computations of the problems. However, the numerical

computations are written in FORTRAN.

Zimmermann et al. (1998) presented an integrated environment of an object-

oriented FE program by using Smalltalk and C++. The objective of their work is to

develop a user-friendly interface for FE developers. The interface consists of a

graphical interface, operations for symbolic mathematical derivations, and FE

formulations that can handle both symbolic and numerical computations. Moreover,

new element classes of some structural problems are also created and added to their

previous research works.

Eriksson and Pacoste (1999) introduced a new technique of symbolic computations

in a FE program that can be implemented by using symbolic languages such as Maple

and Mathematica. In their work, the symbolic derivations of elements stiffness and

rotational-transformation matrices for 3D beam and 2D plane stress elements are

considered. Moreover, the symbolic computations are presented in both Maple and

Mathematica. Finally the numerical results are evaluated in FORTRAN.

Eyheramendy (2000) proposed an object-oriented FE program that employs hybrid

symbolic and numerical approaches. As the symbolic derivations in the author’s

previous work (Zimmermann et al., 1998) are derived from the Galerkin method, the

author created new object classes in the existing FE program by using the variational

methods. The symbolic derivations and numerical computations are implemented in

Smalltalk and C++, respectively.

McCaslin et al. (2012) improved the work by Shiakolas et al. (1994). They aim to

determine the closed-form solutions of elements stiffness for tetrahedral elements by

increasing the degree of the shape functions. The symbolic derivations are implemented

in Mathematica and the numerical computations are implemented in FORTRAN.

11

Chapter 3

Theoretical Background

3.1 FE formulations

For the finite element method based on a functional of displacements, the total

potential energy of an element, whose domain is 𝑉𝑒𝑙 and boundary is 𝑆𝑒𝑙 , can be

expressed as

𝛱𝑒𝑙 =
1

2
∫ 𝛆𝑇𝛔𝑑𝑉
𝑉𝑒𝑙

−∫ 𝐮𝑇𝐛𝑑𝑉
𝑉𝑒𝑙

−∫ 𝐮𝑇�̅�𝑑𝑆
𝑆𝑒𝑙

, (1)

where 𝛆, 𝛔, 𝐮, 𝐛, and �̅� represent the strain, stress, displacement, body force, and

prescribed traction vectors, respectively. The displacements in 𝐮 are interpolated from

the nodal displacements as

𝐮 = 𝐍𝐪, (2)

where 𝐍 and 𝐪 are the shape function matrix and the nodal displacement vector,

respectively.

From the strain-displacement relations, the strain vector can be expressed as

𝛆 = 𝐋𝐍𝐪 = 𝐁𝐪. (3)

Here, 𝐋 is the strain displacement operator matrix. For linear elasticity, the stress vector

𝛔 can be written as

𝛔 = 𝐃𝛆 = 𝐃𝐁𝐪, (4)

where D is a constitutive matrix.

By substituting the Eqs. (2)-(4) into Eq. (1), the total potential energy can be

expressed as

𝛱𝑒𝑙 =
1

2
𝐪𝑇𝐊𝑒𝑙𝐪 − 𝐪

𝑇𝐅𝑒𝑙 , (5)

where 𝐊𝑒𝑙 and 𝐅𝑒𝑙 denote the element stiffness matrix and force vector, respectively.

They are expressed as

𝐊𝑒𝑙 = ∫ 𝐁𝑇𝐃𝐁𝑑𝑉
𝑉𝑒𝑙

, (6)

𝐅𝑒𝑙 = ∫ 𝐍𝑇𝐛𝑑𝑉
𝑉𝑒𝑙

+∫ 𝐍𝑇�̅�𝑑𝑆
𝑆𝑒𝑙

. (7)

12

By employing the principle of stationary potential energy to the Eq. (5), an element

stiffness equation can be obtained as

𝐊𝑒𝑙𝐪 = 𝐅𝑒𝑙 . (8)

After all elements are assembled by considering their connectivities, the following

equations can be obtained

𝛱 =
1

2
𝐐𝑇𝐊𝐐 − 𝐐𝑇𝐅, (9)

𝐊𝐐 = 𝐅. (10)

Here, 𝛱 is the total potential energy of the whole domain. In addition, 𝐊, 𝐐 and 𝐅 are

the global stiffness matrix, the global displacement vector, and the global force vector,

respectively. In FEM, some displacement degrees of freedom and forces are known. As

a result, the Eq. (10) can be rearranged into the following form, i.e.

[
𝐊𝐼,𝐼 𝐊𝐼,𝐼𝐼
𝐊𝐼𝐼,𝐼 𝐊𝐼𝐼,𝐼𝐼

] {
𝐐𝐼
𝐐𝐼𝐼
} = {

𝐅𝐼
𝐅𝐼𝐼
}. (11)

Note that 𝐐𝐼𝐼 contains the prescribed displacements while 𝐅𝐼 contains the prescribed

forces. In addition, 𝐐𝐼 and 𝐅𝐼𝐼, respectively, contain the unknown displacements and

the unknown forces. The unknown displacements in 𝐐𝐼 can be easily obtained as

𝐐𝑰 = 𝐊𝐼,𝐼
−1(𝐅𝐼 − 𝐊𝐼,𝐼𝐼𝐐𝐼𝐼). (12)

As all displacement degrees of freedom are now known, the strain energy 𝑈 can be

obtained from

𝑈 =
1

2
𝐐𝑇𝐊𝐐. (13)

3.2 FE programming

3.2.1 OOP concepts

The OOP paradigm is more advantageous than the procedural programming

technique. To further understand the OOP concept, Martha and Parente Jr (2002) have

introduced a consumer-supplier concept in the OOP paradigm that can help to

effectively improve the reusability, maintainability and extendibility of the FE program.

The principle concept of OOP is generally based on classes, objects, encapsulation,

inheritance, and polymorphism. A class is a blueprint which can represent the

characteristics of objects, namely their properties and behavior. A class contains data

13

members and function members of objects. An object is an instance of a class. It means

that a class can create many possible objects from its existing blueprint. Encapsulation

defines types of specialized access to members of classes. Encapsulation allows the

details of the implementations of objects to be hidden from the users. Inheritance allows

subclasses or derived classes to be derived from a parent or base class and inherits the

characteristics of the base class. Inheritance removes the necessities for repeating the

codes that represent the inherited characteristics in the derived classes. This inheritance

concept can help improve the extendibility of codes. Polymorphism is a consequence

of inheritance that allows the same operations to behave differently in different classes

(Glasser, 2009).

3.2.2 Object modeling technique

An object modeling technique (OMT) is a kind of diagram languages used for

software modeling and designing. The OMT has been first introduced by Rumbaugh et

al. (2004). This technique allows relationships between classes and objects to be

summarily and clearly presented. Moreover, the OMT allows different types of entity

relationship, such as associations (link), aggregations and compositions (has-a),

generalizations (is-a), dependencies, and realizations, to be clearly shown.

Associations describe reference-based relationships which allow objects to

comminute with each other. Roles that specify the purposes of relationships can be

specified in associations. In addition, each end of an association can have a multiplicity

value, which indicates how many objects on one side can relate to other objects on the

other side. For example in Fig. 3.1, an Element class connects to a Node class. In

fact, many elements can be connected to many nodes. Hence, the multiplicity values of

this relationship can be zero or more, which are represented by darkened circles at the

ends of the connection. A multiplicity value can also be expressed as a specific-number

representation.

Aggregations and compositions are special kinds of association. They represent

types of relationships in which objects are part of other objects in a system. These

relationships are “has-a” relationships. For instance, in Fig. 3.1, many elements and

many nodes in Element and Node classes are part of a FESys class. An aggregation

implies a relationship where an object being used can exist independently of another

14

object using the former object. A composition implies a relationship where an object

being used cannot exist independent of another object using the former one.

Aggregations and composition are represented by diamond ends at classes that own or

use objects of other classes. Diamonds for aggregations are unfilled while those for

compositions are filled.

Generalizations and specializations present the inheritance concept where classes

are derived from their base classes. They represent “is-a” relationships. For example in

Fig. 3.1, the Element class is a generalization of ELine2, ETri3, and other classes

represented by the dots. On the contrary, ELine2, ETri3, and other classes are

specializations of the Element class. A generalization is represented by a triangle

symbol.

Dependencies describe dependent or weaker relationships of objects. For example,

changes in one object can affect other objects in a system. Realizations describe

implementations of functionalities defined in one class by other classes.

Fig. 3.1 Simple relationship diagram of class entities

FESys

Node Element

ELine2 ETri3 …

15

Chapter 4

Symbolic-Numerical Object-Oriented Finite Element Programming

4.1 Object-oriented FE programming

According to Heng and Mackie (2009), a good design pattern of an object-oriented

FE program should decompose the program into two main subsystems, namely the

model and analysis subsystems. In this study, the model subsystem represented by the

Object class in Fig. 4.1 focuses on defining model classes such as the classes for

nodes, boundary conditions, elements, geometry sets, and materials: Node,

BounCond, Element, Geometry and Material. The analysis subsystems in this

study include the Solver class, which is a generalization of solvers, and the FESys

class, which is the main class of the proposed symbolic FE system. The two analysis

classes are responsible for forming and solving the equations in FEM. The class

dependencies in the proposed program is shown in Fig. 4.1.

Fig. 4.1 Dependency relationship of a model-analysis pattern

In detail, the Object class is an abstract class which is used to derive the model

classes such as Node, BounCond, Element, Geometry and Material as shown

in Fig. 4.2.

Fig. 4.2 Object class relationship

FESys

Solver Object

BounCond

Object

Node Element Geometry Material

16

As MATLAB consists of many available solvers for solving not only linear but

also nonlinear equations, MATLAB’s solvers are directly used in this study. A Solver

class is used as a generalization of all MATLAB’s solvers. This Solver class has a

simple relationship or an association with the FESys class. The overall class

relationship of the program is expressed in Fig. 4.3.

Fig. 4.3 Overall class relationship

As aforementioned, FESys is the main class of the symbolic FE system proposed

in this study. This class is basically used to store the objects of the Node, Element,

Material, Geometry, and BounCond classes. The main tasks of this class are to

read the inputs from the text files, to assemble the global element stiffness matrices and

force vectors, to compute the unknown nodal displacements and reaction forces, to

update the nodal displacements, to determine the strain energy and force resultants of

the structures, and to print out the outputs in the text files.

The Node class stores the nodal coordinates from the input file. It is a composition

of the FESys class and has associations with the Element and Boundary classes.

It also provides some methods to receive the number of degrees of freedom and the

updated nodal displacement results.

The Element class is basically used to create the elements from the nodal

connectivity. It is a composition of the FESys class and has an association with the

Node, Material, and Geometry classes. The main tasks of this class are to store

the objects of the Node, Material, and Geometry classes. It also provides several

methods to generate the shape function matrices, mapping function matrices, and the

BounCond

FESys

Node Element Geometry Material

Solver

17

element stiffness matrices in FEM. This class is used to derive many derived classes

such as Eline2 for 2D and 3D truss and beam elements, ETri3 for 2D-three-node

solid elements, EQuad4 for 2D-four-node solid elements, and ETet4 for 3D-eight-

node solid elements. The specialization relationship of the Element class is shown in

Fig. 4.4. In addition, to implement this Element class, there are some additional

classes that are required such as the Interpolation and MathModel classes. The

Interpolation class is responsible for storing various kinds of shape functions or

interpolation functions. The MathModel class is used to store the mathematical

formulations of different types of element in FE domains. The composition relationship

of the Element class is illustrated in Fig. 4.5.

Fig. 4.4 Element class design relationship

Fig. 4.5 Composition relationship of the Element class

ETri3

Element

Eline2 EQuad4 ETet4 …

ETrussL2 EEulerBeamL2

Element

Interpolation MathModel

IntpLine2 IntpQuad4 Truss Beam … …

18

The Material class provides a generic interface to handle different types of

material in the program. The relation between this class and FESys is of a composition

type. The Material class has an association with the Element class. It is used to

store the material properties such as Young’s modulus (𝐸) and Poisson ratio (𝑣) , and

to provide methods to query these properties. Different types of material can be

specialized by using derived classes as shown in Fig. 4.6. In the figure, the

MLElasIso class represents linear elastic isotropic materials.

Fig. 4.6 Material class relationship

The Geometry class is used to store the geometry properties of structural

elements. Examples include the cross sectional area (𝐴), the moment inertia (𝐼), and the

torsional constant (𝐽) for beam elements. This class is a composition of the FESys

class, and has an association with the Element class. The class is used to derive some

classes such as GLine for truss and beam elements and GPlane for 2D solid elements.

The class relationship of the Geometry class is illustrated in Fig. 4.7.

Fig. 4.7 Geometry class relationship

The BounCond class is used to store loads and prescribed displacement values

from the input. This class is a composition of the FESys class, and also has an

association with the Node class. Moreover, the class provides some methods to query

MLElasIso

Material

…

Geometry

GLine GPlane …

19

the information of the boundary conditions in FESys. There are some classes that are

derived from this class such as NodalForce for nodal forces and NodalDisp for

nodal displacement values. The class relationship of the Boundary class is shown in

Fig. 4.8.

Fig. 4.8 Boundary class relationship

4.2 Symbolic computations

In order to perform symbolic computations, the employed computation platform

must allow symbolic variables to be created. Naturally, it must also allow mathematical

operations to be performed symbolically on these symbolic variables. The symbolic

object-oriented FE program in this study is written in the symbolic language of

MATLAB. In MATLAB, symbolic variables can be created by using commands syms

or sym('var'). For example, to create symbolic variables for a sectional area A, a

moment of inertia I, a beam length L, and Young’s modulus E, the following statement

can be used:

syms A I L E;

By using symbolic variables, it is straightforward to create symbolic data types in

classes. Consider, for example, the Material and MLElasIso classes shown below.

The Material class is the base class of all material types while the MLElasIso

class represents linear elastic isotropic materials and is derived from Material. Parts

of the two classes are shown below:

 1: classdef Material

 2: % This class is the base class for material classes

 3: properties (SetAccess = protected)

 4: number = 0; % Material ID number

 5: para = {}; % Material parameters

 6: end

 7: methods

BounCond

NodalForce NodalDisp …

20

 8: ...

 9: end

10: end

 1: classdef MLElasIso < Material

 2: % This class is the class for linear elastic

 3: % isotropic materials

 4: properties

 5: ...

 6: end

 7: methods

 8: % Constructor ------------------------------

 9: function s = MLElasIso(varargin)

10: syms E Nu positive % Young’s modulus,

11: % Poisson’s ratio

12: if nargin == 0 % No parameter

13: s.para = {E, Nu}; % Default symbolic

14: % E and Nu

15: elseif nargin == 1 % One parameter:

16: % ID number

17: s.number = varargin{1};

18: s.para = {E, Nu}; % Default symbolic

19: % E and Nu

20: elseif nargin == 2 % Two parameters:

21: % E and Nu

22: for i = 1:2

23: if isnumeric(varargin{i}) % If

24: % numerical data

25: s.para{i} = varargin{i};

26: else % Else

27: s.para{i}=sym(varargin{i},'positive');

28: end

29: end

30: end

31: end

32: % Function for setting Young’s modulus-----

33: function s = SetE(s,E)

34: if isnumeric(E) % If numerical data

35: s.para{1} = E;

36: else % Else

37: s.para{1} = sym(E,'positive');

38: end

39: end

40: % Function for retrieving Young’s modulus--

41: function e = E(s)

42: e = s.para{1};

43: end

44: ...

21

45: end

46: end

The Material class has number for storing the material ID number, and para

for storing material parameters. The modification access to these data is set to

protected, which means that only modifications from within the class itself and

from within derived classes are allowed. As the MLElasIso class is derived from

Material, it automatically inherits number and para from Material. The

MLElasIso class keeps only two material parameters, which are Young’s modulus

and Poisson’s ratio. Young’s modulus is kept in para{1} while Poisson’s ratio in

para{2}. If an object of type MLElasIso is created with no argument, then the

MLElasIso class sets a symbolic E as Young’s modulus and a symbolic Nu as

Poisson’s ratio. Functions can be prepared for setting and retrieving Young’s modulus

and Poisson’s ratio from objects of type MLElasIso. For example, the functions

SetE(s,E) in lines 33-39 of MLElasIso and E(s) in lines 41-43 are provided for

setting and retrieving Young’s modulus kept in para{1}.

An example below demonstrates how an object of type MLElasIso can be created

and used:

>> m1 = MLElasIso();

>> m1.E()*m1.E()

ans =

E^2

Here, m1 is an object of type MLElasIso created with no initial argument. As a result,

the default symbolic E and Nu are used as Young’s modulus and Poisson’s ratio of m1.

After that, as an example, the square of Young’s modulus is symbolically computed.

Young’s modulus of m1 is retrieved by using the function m1.E(). Note that, in

MATLAB, the first argument of a member function of a class is always the object that

is calling the function. For example, s in E(s) is the calling object itself. If the calling

object is m1, then it can be passed into the function E(s) by writing m1.E() or

E(m1).

22

4.3 Symbolic argument passing

Simple symbolic computation capabilities can be found in high-end calculators.

These calculators allow mathematical operations to be performed on symbolic

variables. However, they generally do not allow symbolic argument passing in their

programming platforms. As a result, complicated symbolic programs cannot be created.

In MATLAB, symbolic arguments can be passed into a functions in the same way as

numerical arguments. For example, if m1 in the previous example is to be created with

initial symbolic Young’s modulus E1 and Poisson’s ratio Nu1, the following

statements can be used:

>> syms E1 Nu1

>> m1 = MLElasIso(E1,Nu1);

>> m1.E()*m1.E()

ans =

E1^2

It can be seen that the square of Young’s modulus correctly becomes E1^2.

Technically, a copy of E1 is created in m1. The function SetE(s,E) can be used to

change Young’s modulus from its current value, i.e.

>> syms E2

>> m1 = m1.SetE(E2);

>> sqrt(m1.E())

ans =

E2^(1/2)

Here, Young’s modulus of m1 is set to E2. This time, the square root of Young’s

modulus is symbolically computed. The correct symbolic result obtained confirms that

the symbolic variable E2 is successfully passed into the function SetE(s,E). Note

that it is also possible to set Young’s modulus of m1 to be numerical, i.e.

>> m1=m1.SetE(10.);

>> sqrt(m1.E())

ans =

 3.1623

23

It can be seen from lines 33-39 of MLElasIso that the function SetE(s,E) first

checks whether the variable E received is a numerical variable or not. If it is a numerical

variable, its value is copied to para{1}. If it is not, the function will create a symbolic

positive real variable from E and copy it to para{1}. In addition to passing symbolic

variables directly to a function, when an object is passed into a function, all of its

member data, including its symbolic variables, are automatically passed into the

function as internal parts of the object.

Another excellent example that shows why symbolic argument passing is essential

to FE programming is a function for computing the local element stiffness matrix of a

2D Euler beam element. Let EEulerBeamL2_2D be the class that represents 2D Euler

beam elements. In the EEulerBeamL2_2D class, the function

CalKel(s,EE,A,II,L) shown below can be created to compute the local element

stiffness of a 2D Euler beam element:

 1: function s = CalKel(s,EE,A,II,L)

 2: % The local element stiffness of a 2D Euler beam is

 3: % computed here

 4: s.Kel(1,1) = (A*EE)/L;

 5: s.Kel(1,2) = 0;

 6: s.Kel(1,3) = 0;

 7: s.Kel(1,4) = -(A*EE)/L;

 8: s.Kel(1,5) = 0;

 9: s.Kel(1,6) = 0;

10: s.Kel(2,1) = 0;

11: s.Kel(2,2) = (12*EE*II)/L^3;

12: ...

13: end

Besides the calling object itself, the function takes Young’s modulus EE, the

sectional area of the beam A, the moment of inertia II, and the length L as its

arguments. Here, the variable Kel is the local stiffness matrix of a 2D Euler beam

element and it is a member variable of EEulerBeamL2_2D. The statements below

demonstrates how CalKel(s,EE,A,II,L) actually works:

>> syms E1 A1 I1 L1

>> myBeam = EEulerBeamL2_2D;

>> myBeam = myBeam.CalKel(E1,A1,I1,L1);

>> myBeam.Kel(2,2)

24

ans =

(12*E1*I1)/L1^3

Here, an object of type EEulerBeamL2_2D, called myBeam, is created to represent

a 2D Euler beam element. The function CalKel(s,EE,A,II,L) of myBeam is

executed with Young’s modulus, the sectional area, the moment of inertia, and the beam

length equal to E1, A1, I1, and L1, respectively. After that, as a demonstration,

Kel(2,2) of myBeam is retrieved. Normally, the whole local element stiffness matrix

will be operated upon and it can be obtained simply through myBeam.Kel().

4.4 Simple user interface environments

A simple user interface environment allows the users to use the proposed program

conveniently. It is illustrated using a simple realization diagram in Fig. 4.9.

Fig. 4.9 Relationship of user interface environments

The interface environment of this program is created as a relationship between two

files that are RunMFile and FEProj as shown in Fig. 4.10. RunMFile is an M-file

used to run the program. The users can also use this file to extend the codes for other

applications. FEProj is a function that performs all finite element processes from the

beginning to the end. As shown in Fig. 4.10, the function FEProj receives the name

of the input file InputTextFile. After that, the function performs the finite element

processes as instructed.

RunMFile

FEProj

25

Fig. 4.10 Example template of the simple user interface environment

RunMFile

 FEModel = FEProj(‘InputTextFile’)

FEProj

FES = FESys;

FES = ReadInputFile;

FES = PreAnalysis

FES = Analysis;

FES = StrainEnergy;

End

26

Chapter 5

Advantages of the Proposed Program

5.1 General

The program obtained in this study can be used to effectively perform both

numerical and symbolic computations for finite element analysis. By providing

numerical inputs, the program can give numerical solutions as shown in Fig. 5.1. If

symbolic computations are considered, the program needs symbolic inputs as shown in

Fig. 5.2. The obtained program can be used to solve engineering problems such as

structural analysis, structural design, and mechanics of materials. Below, the

advantages of the obtained program in solving different types of FE problem are briefly

discussed.

Fig. 5.1 Process of numerical computations in the program

Fig. 5.2 Process of symbolic computations in the program

5.2 Structural analysis problems

The structural engineering field consists of structural analysis and structural design

fields. Structural analysis helps engineers to understand the physical behavior of

structures under loads caused by the gravity, climatic conditions and ground conditions,

while structural design ensures and deals with the stability and durability of structures

to withstand loads.

Normally, displacements, forces, and stresses of structural members are the

primary parameters for structural engineers. For example, in designing a truss structure,

the stresses in its members must not exceed the allowable strength in the ultimate state,

and the displacements of the truss must also satisfy the state of serviceability. By using

the obtained program, it is straightforward to find the values of these stresses and

Numerical Inputs Numerical Computations Numerical Outputs

Symbolic Inputs Symbolic Computations Symbolic Outputs

27

displacements either by numerical or symbolic computations. Chapter 6 will illustrate

some advantages of the proposed program when it is used to solve structural analysis

problems.

5.3 Structural design problems

It is safe to say that structural design problems are in fact optimization problems.

This is because each structural design problem is generally a problem of finding the

most efficient design that results in a structure that satisfies all the required constraints.

In real practice, the word “efficient’ usually means “economical.” Since the obtained

program can perform closed-form analysis, the closed-form solutions of displacements,

strains, forces, and stresses of structures can be determined. These symbolic results can

be used to help solve structural optimization problems. For example, when a sizing

optimization problem of a truss is to be solved by a conventional nonlinear

programming technique, the closed-form solutions of displacements and stresses can

be very useful. The closed-form displacements and stresses allow the gradients and

Hessians of displacement and stress functions to be analytically determined. Since

conventional nonlinear programming techniques are gradient-based methods, these

analytical gradients and Hessians from the proposed program can be directly used in

these optimization techniques without resorting to their numerical approximations.

Chanter 7 will demonstrate the usefulness of the program in structural optimization

problems.

5.4 Mechanics of materials

The capability of the proposed program in giving symbolic FE solutions can be

used to derive closed-form solutions of some problems in the field of mechanics of

materials. For example, the proposed program can be used to derive the closed-form

effective elastic constants of some periodic cellular solids. Periodic cellular solids are

made up of interconnected solid struts or plates which form the edges and faces of the

cells (Gibson and Ashby, 1999). They are used in many types of structure in various

scales. In many of their applications, their effective elastic properties such as the

effective Young’s modulus, Poisson ratio and shear modulus are of interest. These

28

effective elastic constants can be computed by homogenization methods from unit cells

of periodic cellular solids.

Periodic cellular solids that are frame-like can be modelled accurately as frame

structures using beam elements. Many researchers have manually determined the

closed form effective elastic constants of frame-like periodic cellular solids. For

example, Gibson and Ashby (1999) have determined the closed-form effective elastic

constants of periodic cellular solids with square, triangle, and hexagon unit cells.

However, manual computations are tedious and prone to errors. In addition, when the

structures are too complex, manual computations are simply not possible. The proposed

program can be used instead of manual computations. The determination of the closed-

form solutions of the effective elastic constants of the frame-like periodic cellular solids

by using the obtained program are considered in Chapter 8.

29

Chapter 6

Closed-Form Analysis of Simple Structures

6.1 General

 Closed-form analysis can be used to determine the mathematic expressions or

formula of a particular problem. There are times when closed-form analysis of

structures is required or preferred. When only a simple structural member is considered,

it is possible to perform this type of analysis by hand. However, when a structure with

several members is to be considered, manual calculation becomes impossible even

when closed-form solutions are theoretically obtainable. By using the obtained

program, the closed-form solutions of simple structures, such as simple trusses and

frames can be determined straightforwardly.

The obvious advantage of the obtained program when compared with other

numerical FE programs is that the proposed program is capable of performing both

numerical and symbolic FEA. When numerical computations are considered, the

obtained program can be used in the same way as numerical FE programs. However,

when symbolic computations are to be considered, the proposed program becomes

distinctively useful. This chapter demonstrates the advantage of the obtained program

in providing symbolic FE solutions by solving some FE problems of simple truss and

frame structures. In order to validate the proposed program, the closed-form solutions

obtained from the program are numerically compared with those from a commercial FE

program.

6.2 FEA of simple trusses and frames

The truss and frame structures in Fig. 6.1 and Fig. 6.2 are analytically analyzed by

the proposed program. The program is used to determine the closed forms of the nodal

displacements, support reactions, total strain energy, internal forces, strains, and

stresses for the structures as functions of the following variables:

𝐴𝑖 = The cross-sectional area of structural member 𝑖,

𝐼𝑖 = The moment inertia of structural member 𝑖,

𝐿 = The length of the structure,

30

𝐻 = The height of the structure,

𝐸𝑒= Young’s modulus of the material,

𝑃𝑖 = The force value at node 𝑖.

𝐷𝑥 = The prescribed displacement value,

Fig. 6.1 2D and 3D trusses

Fig. 6.2 2D and 3D frames

6.3 Results

The symbolic inputs and symbolic outputs of the program are shown in the

Appendix A and Appendix B, respectively. The comparisons of the numerical results

from the obtained closed forms and MSC.Marc Mentat are provided in Appendix C.

6.4 Discussions

The comparisons of the numerical results from the obtained closed forms and the

commercial FE program are satisfactory. Since the numbers can be kept as symbolic

variables during computations in the proposed program, the numerical errors are

reduced as well. Due to the obtained closed-form solutions, the engineers do not have

to run the program many times.

31

Chapter 7

Truss Optimization Problems

7.1 General

Various techniques of optimization have been used to achieve the optimal weights

of truss structures. Truss optimization problems can be categorized into three different

problems, namely sizing, shape and topology optimization problems (Christensen and

Klarbring, 2008). Generally, the objective of a truss optimization problem is to

minimize the total weight of the truss, which is subject to displacement and stress

constraints. Most of the time, truss optimization problems are nonlinear problems that

can be convex or non-convex problems. To deal with these problems, two well-known

groups of methods have been used, namely the conventional nonlinear programming

(NLP) approaches and metaheuristic algorithms. The conventional NLP methods are

gradient-based methods. This means that the information on the gradients and Hessians

of stress and displacement functions with respect to member areas is generally required.

If an ordinary numerical FE program is used, the gradients and Hessians have to be

numerically approximated. The lack of the gradients and Hessians of the constraint

functions naturally encourages the use of metaheuristic optimization methods, which

are non-gradient-based methods. Most of these methods are derived from observations

of natural phenomena. Examples of these methods include genetic algorithms (GAs),

particle swarm optimization (PSO), firefly algorithms (FAs), ant system (AS)

algorithms, harmony search (HS) algorithms, and water cycle algorithms (WCAs).

By using the proposed program, the closed-form solutions of displacements and

stresses can be obtained. As a result, the conventional NLP methods can be used to deal

with truss optimization problems because the gradients and Hessians of the

displacement and stress functions can be exactly computed from the symbolic

displacements and stresses.

In this chapter, sizing optimization of 2D truss structures by using a conventional

NLP method in MATLAB is presented. Some benchmark problems of 2D truss

structures in the literature are tested and compared.

32

7.2 Truss optimization problems

The objective of truss optimization in this study is to minimize the weight of the

truss with respect to its member areas that are continuous variables. The problem can

be expressed mathematically as

Minimize 𝑊 = ∑ 𝜌𝑖𝐴𝑖𝑙𝑖
𝑛
𝑖=1

Subject to 𝜎𝑎 − |𝜎𝑖(𝐴1, … , 𝐴𝑛)| ≥ 0, 𝑖 = 1,2, … , 𝑛

 𝛿𝑎 − |𝛿𝑗(𝐴1, … , 𝐴𝑛)| ≥ 0, 𝑗 = 1,2, … ,𝑚

 𝐴𝑖
𝑚𝑖𝑛 ≤ 𝐴𝑖 ≤ 𝐴𝑖

𝑚𝑎𝑥, 𝑖 = 1,2, … , 𝑛,

(14)

where

𝑊 = The overall weight of the truss structure.

𝜌𝑖 = The weight density of the material of member 𝑖.

𝑙𝑖 = The length of member 𝑖.

𝐴𝑖 = The area of member 𝑖.

𝜎𝑖 = The stress of member 𝑖.

𝛿𝑗 = The degree of freedom 𝑗.

𝜎𝑎 = The allowable stress.

𝛿𝑎 = The allowable displacement.

𝐴𝑖
𝑚𝑖𝑛 = The minimum area of member 𝑖.

𝐴𝑖
𝑚𝑎𝑥 = The maximum area of member 𝑖.

𝑛 = The number of members.

𝑚 = The number of degrees of freedom.

7.3 MATLAB optimization toolbox

MATLAB optimization toolbox provides a command fmincon to deal with

constrained nonlinear optimization problems. Under fmincon, different optimization

methods, such as interior-point, active-set, sequential-quadratic-programming and

trust-region-reflective algorithms, can be selected for use. In this study, the command

fmincon with the interior-point algorithm is used. The options available in fmincon

to specify whether the gradients and Hessians of the objective and constraint functions

are available for the optimization or not are also utilized. The syntax of fmincon can

be show as follow:

33

[x,fval] = fmincon(fun,x0,A,b,Aeq,beq,lb,ub,nonlcon,options)

Here, fun is the objective function. The constraint functions and their gradients, if they

are considered, are specified via nonlcon. In addition, options is used to specify

the set of optimization options. The set of options when the gradients and Hessians are

not used can be specified as

options = optimoptions('fmincon','Algorithm',...

'interior-point','GradObj','off','GradConstr','off')

Moreover, when the gradients and Hessians are considered, the set of options can

be specified as below expression, where the Hessians are specified through myhess.

options = optimoptions('fmincon','Algorithm', ...

'interior-point','GradObj','on','GradConstr','on', ...

'Hessian','user-supplied','HessFcn',myhess)

7.4 Results

7.4.1 Truss with six members and five nodes

Fig. 7.1 shows a truss with six members and five nodes to be optimized. The

problem parameters are as follows: Young’s modulus 𝐸 = 10000 𝑘𝑠𝑖 , the weight

density 𝜌 = 0.1 𝑙𝑏 𝑖𝑛3⁄ , the allowable stress 𝜎𝑎 = 25 𝑘𝑠𝑖 , the allowable

displacement 𝛿𝑎 = 2 𝑖𝑛, and the limit cross sectional areas 𝐴𝑚𝑖𝑛, 𝐴𝑚𝑎𝑥 = 0.09, 35 𝑖𝑛2.

Fig. 7.1 Problem 1--truss with six members and five nodes

The results are shown in Table 7.1. The results from fmincon without and with

gradients and Hessians are shown as fmincon1 and fmincon2, respectively. The results

from fmincon without and with gradients and Hessians are found to be the same and

comparable to the results from the literature. Note that the results by Deb and Gulati

34

(2001) and Luh and Lin (2008) are from topology optimization. The comparison with

the literature is only to validate the present results. Fig. 7.2 shows the convergence rates

from fmincon without and with gradients and Hessians. It can be seen that the

convergence rate from fmincon when gradients and Hessians are used is the fastest.

Table 7.1 Results of Problem 1

Member

Area (𝑖𝑛2)

Deb and Gulati

(2001)

Luh and Lin

(2008)

Present study

fmincon1 fmincon2

1 05.219 05.428 05.4000 05.4000

2 20.310 20.549 20.3647 20.3640

3 14.593 14.308 14.4000 14.4000

4 07.772 07.617 07.6368 07.6368

5 28.187 28.876 28.8000 28.8000

6 20.650 20.265 20.3647 20.3647

Weight of truss (𝑙𝑏) 4731.650 4730.824 4730.4000 4730.4000

Fig. 7.2 Convergence rates of Problem 1

7.4.2 Truss with ten members and six nodes

Fig. 7.3 shows a truss with ten members and six nodes (Farshi and Alinia-ziazi,

2010, Li et al., 2007). The problem parameters are the same as the previous problem

except for 𝐴𝑚𝑖𝑛, which is equal to 0.1 𝑖𝑛2 in this problem. The applied loads are given

as 𝑃1 = 150 𝑘𝑖𝑝𝑠 and 𝑃2 = 50 𝑘𝑖𝑝𝑠.

4000

5000

6000

7000

8000

9000

10000

11000

0 5 10 15 20 25

B
es

t
w

ei
g

h
t

(l
b

)

Iteration number

fmincon1

fmincon2

35

Fig. 7.3 Problem 2--truss with ten members and six nodes

The results are shown in Table 7.2. The results from fmincon without and with

gradients and Hessians are found to be the same and comparable with those from the

literature. Note that the results by Farshi and Alinia-ziazi (2010) and Li et al. (2007)

are from sizing optimization. From Fig. 7.4, it can be seen that the convergence rate

from fmincon with gradients and Hessians is the fastest compared to fmincon

without gradients and Hessian.

Table 7.2 Results of Problem 2

Member

Area (𝑖𝑛2)

Li et al. (2007)

Farshi and Alinia-

ziazi (2010)

Present study

fmincon1 fmincon2

1 23.353 23.5270 23.5307 23.5307

2 00.100 00.1000 00.1000 00.1000

3 25.502 25.2941 25.2851 25.2851

4 14.250 14.3760 14.3745 14.3745

5 00.100 00.1000 00.1000 00.1000

6 01.972 01.9698 01.9697 01.9697

7 12.363 12.4041 12.3906 12.3906

8 12.894 12.8245 12.8277 12.8277

9 20.356 20.3304 20.3286 20.3286

10 00.101 00.1000 00.1000 00.1000

Weight of truss (𝑙𝑏) 4677.29 4677.80 4676.92 4676.92

36

Fig. 7.4 Convergence rates of Problem 2

7.5 Discussions

In this chapter, the advantages of the obtained program for sizing optimization of

truss structures are demonstrated. By using the proposed program, the constraint

displacement and stress functions can be constructed from the stress and displacement

solutions. In this study, two 2D truss optimization problems are solved as case studies

using a conventional NLP algorithm in MATLAB. The analytical gradients and

Hessians of the objective and constraint functions are used in the optimization. The

obtained results show that, although symbolic FE solutions do not help improve the

quality of the optimization solutions, they can help improve the convergence rates of

the optimization process.

4000

6000

8000

10000

12000

14000

16000

0 10 20 30 40

B
es

t
w

ei
g

h
t

(l
b

)

Iteration number

fmincon1

fmincon2

37

Chapter 8

Effective Constants of Frame-Like Periodic Cellular Solids

8.1 General

The homogenization method based on equivalent strain energy is one of the well-

known homogenization methods that have been used to find the effective elastic

properties of periodic cellular solids (Zhang et al., 2007, Dai and Zhang, 2009). In this

method, the values of strain energy of a unit cell under different strain modes are used

in the determination of the effective elastic properties. The unit cell can be modeled by

using FEM. These strain modes are created by prescribing periodic kinematic boundary

conditions to the unit cell. The periodic boundary conditions are constraint equations

that prescribe relationships between different degrees of freedom in the FE model of

the unit cell, and are usually called multi-point or multi-freedom constraints. The

method of Lagrange multipliers are usually used to enforce multi-freedom constraints.

The work in this chapter aims to demonstrate how symbolic FE programming can

be used to analytically determine the closed-form solutions of the effective elastic

constants of frame-like periodic cellular solids. Unit-cell structures are modelled by

using Euler beam elements (Gibson and Ashby, 1999). Periodic boundary conditions

are prescribed by the method of Lagrange multipliers. The proposed symbolic FE

program is used to determine the closed-form effective elastic constants of some 2D

frame-like periodic cellular solids. First, the symbolic FE program is used to determine

the closed-form solutions of strain energy of a unit cell under various strain modes.

These closed-form strain energy expressions are then used to determine the closed-form

effective elastic constants. The closed-form effective elastic constants obtained in this

study are compared numerically with numerical results obtained from a commercial FE

program.

8.2 Strain-energy based homogenization

Consider a domain 𝑉 of a periodic cellular solid that is composed of a large number

of unit cells. A set of kinematic boundary conditions is applied to the domain such that

the displacement 𝑢𝑖 field becomes

38

𝑢𝑖 = 𝜀𝑖𝑗
𝑜𝑥𝑗 + 𝑢𝑖

𝑝
. (15)

Here, 𝑥𝑗 is the coordinate vector. In addition, 𝜀𝑖𝑗
𝑜 is a constant symmetric tensor and 𝑢𝑖

𝑝

is the periodic component of 𝑢𝑖. Let 〈𝑄〉 denote the volume average of any quantity 𝑄

in 𝑉. The effective material constitutive 𝐶𝑖𝑗𝑘𝑙
∗ tensor is defined as

〈𝜎𝑖𝑗〉 = 𝐶𝑖𝑗𝑘𝑙
∗ 〈𝜀𝑘𝑙〉. (16)

It can be shown that Eq. (15) results in 〈𝜖𝑘𝑙〉 = 𝜖𝑘𝑙
𝑜 . (Suquet, 1987). For 2D

orthotropic solids under the plane stress condition, Eq. (16) can be written in matrix

form as

𝛔𝑜 = 〈{

𝜎11
𝜎22
𝜎12
}〉 = [

𝑐11
∗ 𝑐12

∗ 0

𝑐22
∗ 0

𝑆𝑦𝑚 𝑐33
∗

] 〈{

𝜀11
𝜀22
2𝜀12

}〉 = 𝐂∗𝛆𝑜. (17)

The effective elastic constants can be expressed in terms of components of the

constitutive matrix as

𝐸1
∗ = [𝑐11

∗ 𝑐22
∗ − (𝑐12

∗)2]/𝑐22
∗ , 𝐸2

∗ = [𝑐11
∗ 𝑐22

∗ − (𝑐12
∗)2]/𝑐11

∗ , (18)

𝑣12
∗ = 𝑐12

∗ /𝑐22
∗ , 𝑣21

∗ = 𝑐12
∗ /𝑐11

∗ , 𝐺12
∗ = 𝑐33

∗ . (19)

It can be shown that (Suquet, 1987)

𝑈𝐶
𝑉𝐶
= 〈

1

2
𝜎𝑖𝑗𝜀𝑖𝑗〉 =

1

𝑉
∫
1

2
𝜎𝑖𝑗𝜀𝑖𝑗𝑑𝑉 =

1

𝑉𝐶
∫

1

2
𝜎𝑖𝑗𝜀𝑖𝑗𝑑𝑉

𝑉𝐶

=
1

2
〈𝜎𝑖𝑗〉〈𝜀𝑖𝑗〉

𝑉

=
1

2
𝐶𝑖𝑗𝑘𝑙
∗ 𝜀𝑘𝑙

𝑜 𝜀𝑖𝑗
𝑜 , (20)

where 𝑈𝐶 and 𝑉𝐶 denote the strain energy and the volume of the unit cell, respectively.

Note that the displacement field 𝑢𝑖 in Eq. (15) results in 𝜎𝑖𝑗 and 𝜀𝑖𝑗 that are periodic,

and an average of a periodic quantity over 𝑉 is the same as an average over 𝑉𝐶. By

prescribing different values of 𝜀𝑘𝑙
𝑜 to the unit cell via Eq. (15) and computing the

corresponding strain energy values by FEM, 𝐶𝑖𝑗𝑘𝑙
∗ can be obtained from Eq.(20).

The constitutive matrix of a 2D periodic cellular solid under the plane stress

condition can be obtained from its unit cell by using the following equations, i.e.

𝑐11
∗ =

2𝑈𝐶1
𝑉𝐶

, 𝑐22
∗ =

2𝑈𝐶2
𝑉𝐶

, 𝑐33
∗ =

2𝑈𝐶4
𝑉𝐶

, 𝑐12
∗ =

(𝑈𝐶3 − 𝑈𝐶1 − 𝑈𝐶2)

𝑉𝐶
, (21)

where 𝑈𝐶1, 𝑈𝐶2, 𝑈𝐶3, and 𝑈𝐶4 are the strain energy values of the unit cell under four

strain modes in which, respectively,

𝜀𝑜 = [1 0 0]𝑇 , [0 1 0]𝑇 , [1 1 0]𝑇, and [0 0 1]𝑇. (22)

8.3 Periodic boundary conditions

39

When periodic boundary conditions are prescribed to an FE domain, two types of

boundary prescription are necessary. The first type is the ordinary prescription of exact

values of degrees of freedom. The second type is the prescription of relative values

between degrees of freedom. The first type of boundary condition is used to prevent

rigid body displacements and these boundary conditions must not, by themselves,

create any strain. The second type of boundary condition is from the periodic

displacement 𝑢𝑖
𝑝
 in Eq. (15). If any two nodes have the same 𝑢𝑖

𝑝
 because of the

periodicity, the relative displacements between the two nodes can be obtained from Eq.

(15) for each prescribed strain mode. In addition, their rotational degrees of freedom

must be the same.

Fig. 8.1 shows the 2D frame-like periodic cellular solids considered in this study.

Fig. 8.2 shows the frame structures that represent the unit cells of the two cellular solids.

Note that cutting a strut of a frame-like periodic cellular solid in half longitudinally to

create its unit-cell structure results in a strut of the unit-cell structure that has only half

axial and bending rigidities of the original strut (Theerakittayakorn and Nanakorn,

2013). Write Eq. (15) in matrix form for 2D periodic cellular solids as

𝐮 = {
𝑢1
𝑢2
} = [

𝜀11
𝑜 𝜀12

𝑜

𝑆𝑦𝑚 𝜀22
𝑜] {

𝑥1
𝑥2
} + {

𝑢1
𝑝

𝑢2
𝑝} = 𝐄

𝑜𝐱 + 𝒖𝒑. (23)

(a) (b)

A, I

Fig. 8.1 Periodic cellular solids: (a) square unit cells, (b) triangular unit cells

(a) (b) 2

34

1

A , I
2 2

x

x

L

A, I

3

4

1

56

A , I
2 2

x

x

L
1

2 2

1

2

Fig. 8.2 Frame structures representing the square and triangular unit cells

40

In order to utilize Eq. (23) to create the required periodic boundary conditions, the

periodicity of the unit cell must be considered. As an example, consider the triangular

unit-cell structure in Fig. 8.2(b). This unit cell has the following periodicity conditions

𝐮𝑝(0, 0) = 𝐮𝑝(𝐿, 0) = 𝐮𝑝 (
𝐿

2
,
√3𝐿

2
), (24)

𝒖𝑝 (
𝐿

2
, 0) = 𝒖𝑝 (𝐿,

√3𝐿

2
) = 𝒖𝑝 (0,

√3𝐿

2
), (25)

𝛉𝑝(0, 0) = 𝛉𝑝(𝐿, 0) = 𝛉𝑝 (
𝐿

2
,
√3𝐿

2
), (26)

𝛉𝑝 (
𝐿

2
, 0) = 𝛉𝑝 (𝐿,

√3𝐿

2
) = 𝛉𝑝 (0,

√3𝐿

2
). (27)

In order to prevent the rigid body displacements, 𝐮(0, 0) can be selected to be fixed.

If, for example, 𝑈𝐶4 is to be determined, Eq. (23), Eq. (24) and Eq. (25) yield

For node 1:

{
𝑢1(0, 0)

𝑢2(0, 0)
} = [

0 1/2
1/2 0

] {
0
0
} + {

𝑢1
𝑝(0, 0)

𝑢2
𝑝(0, 0)

} = {
0
0
}, (28)

For node 2:

{
𝑢1 (

𝐿

2
, 0)

𝑢2 (
𝐿

2
, 0)

} = [
0 1/2
1/2 0

] {
𝐿

2
0

} + {
𝑢1
𝑝
(
𝐿

2
, 0)

𝑢2
𝑝
(
𝐿

2
, 0)

} = {
𝑢1
𝑝
(
𝐿

2
, 0)

𝐿

4
+ 𝑢2

𝑝
(
𝐿

2
, 0)

}, (29)

For node 3:

{
𝑢1(𝐿, 0)

𝑢2(𝐿, 0)
} = [

0 1/2
1/2 0

] {
𝐿
0
} + {

𝑢1
𝑝(𝐿, 0)

𝑢2
𝑝(𝐿, 0)

} = {
𝑢1
𝑝(0, 0)

𝐿

2
+ 𝑢2

𝑝(0, 0)
} = {

0
𝐿

2

}, (30)

For node 4:

{

 𝑢1 (

𝐿

2
,
√3𝐿

2
)

𝑢2 (
𝐿

2
,
√3𝐿

2
)
}

= [
0 1/2
1/2 0

]

{

𝐿

2

√3𝐿

2 }

+

{

 𝑢1

𝑝
(
𝐿

2
,
√3𝐿

2
)

𝑢2
𝑝
(
𝐿

2
,
√3𝐿

2
)
}

=

{

 √
3𝐿

4
𝐿

4 }

, (31)

41

For node 5:

{

 𝑢1 (𝐿,

√3𝐿

2
)

𝑢2 (𝐿,
√3𝐿

2
)
}

= [
0 1/2
1/2 0

] {

𝐿

√3𝐿

2

} +

{

 𝑢1

𝑝
(𝐿,

√3𝐿

2
)

𝑢2
𝑝
(𝐿,

√3𝐿

2
)
}

=

{

 √
3𝐿

4
+ 𝑢1

𝑝
(
𝐿

2
, 0)

𝐿

2
+ 𝑢2

𝑝
(
𝐿

2
, 0) }

, (32)

For node 6:

{

 𝑢1 (0,

√3𝐿

2
)

𝑢2 (0,
√3𝐿

2
)
}

= [
0 1/2
1/2 0

] {

0

√3𝐿

2

} +

{

 𝑢1

𝑝
(0,

√3𝐿

2
)

𝑢2
𝑝
(0,

√3𝐿

2
)
}

=

{

 √
3𝐿

4
+ 𝑢1

𝑝
(
𝐿

2
, 0)

𝑢2
𝑝
(
𝐿

2
, 0) }

. (33)

From Eq. (29) and Eq. (32), the multi-freedom constraints between nodes 2 and 5

can be obtained as

{

 𝑢1 (

𝐿

2
, 0) − 𝑢1 (𝐿,

√3𝐿

2
)

𝑢2 (
𝐿

2
, 0) − 𝑢2 (𝐿,

√3𝐿

2
)
}

=

{

 −
√3𝐿

4

−
𝐿

4 }

. (34)

From Eq. (29) and Eq. (33), the multi-freedom constraints between nodes 2 and 6

can be obtained as

{

 𝑢1 (

𝐿

2
, 0) − 𝑢1 (0,

√3𝐿

2
)

𝑢2 (
𝐿

2
, 0) − 𝑢2 (0,

√3𝐿

2
)
}

=

{

 −
√3𝐿

4
𝐿

4 }

. (35)

In addition to the four constraint equations from Eq. (34) and (35), the four

constraint equations from Eq. (26) and (27) have to be considered. It can be seen from

Eq. (30) and (31) that, for nodes 3 and 4, exact values of 𝑢1 and 𝑢2 are known and can

be directly prescribed. The multi-freedom constraints in the determination of 𝑈𝐶1, 𝑈𝐶2,

and 𝑈𝐶3 can be obtained in the same way.

8.4 FE formulation with Lagrange multipliers

The multi-freedom constraint equations are incorporated into FE analysis by means

of Lagrange multipliers. To begin with, consider the total potential energy 𝛱 of an FE

domain in Eq. (9). All multi-freedom constraint equations can be written together in

matrix form as

42

𝐀𝐐 − 𝐁 = 𝟎. (36)

Here, the sizes of the matrix 𝐀 and vector 𝐁 are 𝑛 ×𝑚 and 𝑛 × 1, respectively, where

𝑛 denotes the number of the multi-freedom constraint equations and 𝑚 denotes the

number of degrees of freedom in 𝐐. In order to consider Eq. (36), a Lagrange function

can be created with a Lagrange multiplier vector 𝛌 as

𝐿(𝐐, 𝛌) =
1

2
𝐐𝑇𝐊𝐐 − 𝐐𝑇𝐅 + 𝛌𝑇(𝐀𝐐 − 𝐁). (37)

By minimizing L with respect to Q and 𝛌, Eq. (37) yields

[𝐊 𝐀𝑇

𝐀 0
] {
𝐐
𝛌
} = {

𝐅
𝐁
}. (38)

The Eq. (38) is implemented in a function of the FESys class. the program will

determine the unknown displacement vector Q from this equation.

8.5 Symbolic FE computations

By using the obtained program, 𝑈𝐶1, 𝑈𝐶2, 𝑈𝐶3, and 𝑈𝐶4 can be symbolically

determined. Thereafter, the closed-form effective elastic constants can be obtained from

the following statements in MATLAB scripts,

c11 = 2*Uc1/Vc;

c22 = 2*Uc2/Vc;

c33 = 2*Uc4/Vc;

c12 = (Uc3-Uc1-Uc2)/Vc;

E1 = simplify((c11*c22-c12^2)/c22);

E2 = simplify((c11*c22-c12^2)/c11);

v12 = simplify(c12/c22);

v21 = simplify(c12/c11);

G12 = simplify(c33);

8.6 Results

Table 8.1 shows the obtained closed-form solutions of the effective elastic constants

of the square and triangular periodic cellular solids. All struts in each solid have the

same area 𝐴 and moment of inertia 𝐼. In the table, 𝐸 denotes Young’s modulus of the

base material. In order to assure that the obtained closed forms are correct, numerical

43

comparisons with a commercial FE program are done. In the numerical comparisons,

all struts are assumed to have the same square cross section of 𝑇 × 𝑇.

Table 8.2 shows the comparisons of the obtained closed forms with those from

MSC.Marc Mentat. It can be seen that the results from this study and MSC.Marc Mentat

are exactly the same.

Table 8.1 Closed-form solutions of effective elastic properties

Unit cell Effective Young’s modulus Effective shear modulus
Effective Poisson’s

ratio

Square 𝐸𝑖
∗ =

𝐸

𝑉𝐶
(𝐴𝐿)

𝐺12
∗ =

𝐸

𝑉𝐶
[6 (

𝐼

𝐿
)]

𝑣𝑖𝑗
∗ = 0

Triangle 𝐸𝑖
∗ =

𝐸

𝑉𝐶
[
(𝐴𝐿)2 + 12(𝐴𝐼)

𝐴𝐿 + 4 (
𝐼
𝐿
)

]

𝐺12
∗ =

𝐸

𝑉𝐶
[
3

8
(𝐴𝐿) +

36

8
(
𝐼

𝐿
)]

𝑣𝑖𝑗
∗ =

1
3
(𝐴𝐿) − 4 (

𝐼
𝐿
)

𝐴𝐿 + 4 (
𝐼
𝐿
)

Table 8.2 Numerical results of the obtained closed forms and MSC.Marc Mentat

Unit cell

Parameters
Effective Young’s

modulus

Effective shear

modulus

Effective Poisson’s

ratio

E L T
Closed

form

MSC.Marc

Mentat
Closed

form

MSC.Marc

Mentat
Closed

form

MSC.Marc

Mentat

Square 1.0 1.0 0.1 0.1000 0.1000 0.0005 0.0005 0.0000 0.0000

 1.0 1.0 0.2 0.2000 0.2000 0.0040 0.0040 0.0000 0.0000

Triangle 1.0 1.0 0.1 0.1162 0.1162 0.0437 0.0437 0.3289 0.3289

 1.0 1.0 0.2 0.2370 0.2370 0.0901 0.0901 0.3158 0.3158

8.7 Discussions

In this chapter, the obtained program is used to determine the effective elastic

constants of frame-like periodic cellular solids that can be modelled accurately by using

Euler beam elements. The program determines the closed-form solutions of strain

energy of unit cells of frame-like periodic cellular solids under various strain modes.

These closed-form strain energy expressions are then used to determine the closed-form

effective elastic constants. The program can successfully yield the closed forms of

effective elastic constants. The numerical results obtained from the closed forms

compare satisfactorily with those numerical results from commercial FE software.

44

Chapter 9

Conclusions

This study proposes a symbolic-numerical object-oriented FE program. The

program is completely developed in MATLAB programming language to handle both

symbolic and numerical computations. The obtained program can only be used to

perform FEA of linear elastic problems. The input of the program is in the text format.

The main output is also in the text format and the output in the graphical format can be

added as required. The program is designed using the OOP concept and employs the

OOP capability in MATLAB. The symbolic computations in the program rely on the

symbolic computing capability of MATLAB. The OOP concept allows the program to

be implemented efficiently, exactly in the same way as ordinary numerical FE

programs.

The obtained program can be used to determine the closed-form solutions of simple

structures such as trusses and frames. Examples of its advantages include those shown

below:

 The program can be used to determine the exact mathematical expressions or

formulas of some responses of simple structures when closed-form solutions

are required or preferred. The effects and relationships of parameters found in

closed-form solutions can facilitate better understanding of the behavior of

structures under loads. In addition, the obtained closed-form solutions can also

be used in other engineering tasks, such as structural design and optimization.

Consequently, the program can be a useful tool for researches in the fields of

computational mechanics and structural engineering.

 The program can help students and teachers better understand FEM by

investigating the FE derivation processes in the program and symbolic analysis

results from the symbolic computations.

In this study, the advantages of the obtained program are shown by using it to solve

several engineering problems analytically. The obtained results are found to be

satisfactory.

45

References

Yew, C. K., Boyle, J. T., and MacKenzie, D. (1995). "Closed form integration of

element stiffness matrices using a computer algebra system." Computers &

Structures, 56(4), 529-539.

Jiang, Y., and Wang, C. (2008). "On teaching finite element method in plasticity with

Mathematica." Computer Applications in Engineering Education, 16(3), 233-242.

Shiakolas, P. S., Lawrence, K. L., and Nambiar, R. V. (1994). "Closed-form

expressions for the linear and quadratic strain tetrahedral finite elements."

Computers & Structures, 50(6), 743-747.

Zhang, W., Dai, G., Wang, F., Sun, S., and Bassir, H. (2007). "Using strain energy-

based prediction of effective elastic properties in topology optimization of material

microstructures." Acta Mechanica Sinica, 23(1), 77-89.

Dai, G., and Zhang, W. (2009). "Cell size effect analysis of the effective Young’s

modulus of sandwich core." Computational Materials Science, 46(3), 744-748.

Wang, H., Zhang, W., Xu, Y., and Zeng, Q. (2008). "Numerical computing and

experimental validation of effective elastic properties of 2D multilayered C/SiC

composites." Materials Science and Technology, 24(11), 1385-1398.

Forde, B. W. R., Foschi, R. O., and Stiemer, S. F. (1990). "Object-oriented finite

element analysis." Comput Struct, 34(3), 355-374.

Abdalla, J. A., and Yoon, C. J. (1992). "Object-Oriented Finite Element and Graphics

Data-Translation Facility." Journal of Computing in Civil Engineering, 6(3), 302-

322.

Mackie, R. I. (1998). "An object-oriented approach to fully interactive finite element

software." Advances in Engineering Software, 29(2), 139-149.

Archer, G. C., Fenves, G., and Thewalt, C. (1999). "A new object-oriented finite

element analysis program architecture." Computers & Structures, 70(1), 63-75.

Mackie, R. I. (2002). "Using objects to handle calculation control in finite element

modelling." Computers & Structures, 80(27-30), 2001-2009.

Mackie, R. I. (2007). "Object oriented implementation of distributed finite element

analysis in .NET." Advances in Engineering Software, 38(11-12), 726-737.

46

Pavlovic, M. N. (2003). "Symbolic computation in structural engineering." Computers

& Structures, 81(22-23), 2121-2136.

Shiakolas, P. S., Lawrence, K. L., and Nambiar, R. V. (1993). "Closed-form error

estimators for the linear strain and quadratic strain tetrahedron finite elements."

Computers & Structures, 47(6), 907-915.

Mackerle, J. (2000). "Object-oriented techniques in FEM and BEM A bibliography

(1996–1999)." Finite Elements in Analysis and Design, 36(2), 189-196.

Kwon, Y. W., and Bang, H. (2000). The finite element method using MATLAB, CRC

press.

Patzák, B., and Bittnar, Z. (2001). "Design of object oriented finite element code."

Advances in Engineering Software, 32(10–11), 759-767.

Akin, J. E., and Singh, M. (2002). "Object-oriented Fortran 90 P-adaptive finite element

method." Advances in Engineering Software, 33(7–10), 461-468.

Martha, L. F., and Parente Jr, E. "An object-oriented framework for finite element

programming." Proc., The Fifth World Congress on Computational Mechanics, 1-

10.

Heng, B. C. P., and Mackie, R. I. (2009). "Using design patterns in object-oriented finite

element programming." Computers & Structures, 87(15–16), 952-961.

Piedade Neto, D., Ferreira, M. D. C., and Proença, S. P. B. (2013). "An object-oriented

class design for the generalized finite element method programming." Latin

American Journal of Solids and Structures, 10(6), 1267-1291.

Alves, P. D., Barros, F. c. B., and Pitangueira, R. L. S. (2013). "An object-oriented

approach to the Generalized Finite Element Method." Advances in Engineering

Software, 59(0), 1-18.

Rahman, T., and Valdman, J. (2013). "Fast MATLAB assembly of FEM matrices in

2D and 3D: Nodal elements." Applied Mathematics and Computation, 219(13),

7151-7158.

Zander, N., Bog, T., Elhaddad, M., Espinoza, R., Hu, H., Joly, A., Wu, C., Zerbe, P.,

Düster, A., Kollmannsberger, S., Parvizian, J., Ruess, M., Schillinger, D., and

Rank, E. (2014). "FCMLab: A finite cell research toolbox for MATLAB."

Advances in Engineering Software, 74(0), 49-63.

47

Zimmermann, T., and Eyheramendy, D. (1996). "Object-oriented finite elements I.

Principles of symbolic derivations and automatic programming." Computer

Methods in Applied Mechanics and Engineering, 132(3-4), 259-276.

Eyheramendy, D., and Zimmermann, T. (1996). "Object-oriented finite elements II. A

symbolic environment for automatic programming." Computer Methods in

Applied Mechanics and Engineering, 132(3-4), 277-304.

Eyheramendy, D., and Zimmermann, T. (1996). "Object-oriented finite element

programming: an interactive environment for symbolic derivations, application to

an initial boundary value problem." Advances in Engineering Software, 27(1–2),

3-10.

Eyheramendy, D., and Zimmermann, T. (1998). "Object-oriented finite elements III.

Theory and application of automatic programming." Computer Methods in

Applied Mechanics and Engineering, 154(1-2), 41-68.

Eyheramendy, D., and Zimmermann, T. (2001). "Object-oriented finite elements IV.

Symbolic derivations and automatic programming of nonlinear formulations."

Computer Methods in Applied Mechanics and Engineering, 190(22-23), 2729-

2751.

Cheng, K. J. (1991). "Symbolic finite element analysis using computer algebra: Heat

transfer in rectangular duct flow." Computers & Mathematics with Applications,

22(12), 15-22.

Tummarakota, S., and Lieh, J. (1996). "Symbolic Finite Element Modeling of

Structural Systems." Journal of Symbolic Computation, 22(1), 105-119.

Cameron, F. (1997). "Automatic generation of efficient routines for evaluating

multivariate polynomials arising in finite element computations." Advances in

Engineering Software, 28(4), 239-245.

Korelc, J. (1997). "Automatic generation of finite-element code by simultaneous

optimization of expressions." Theoretical Computer Science, 187(1-2), 231-248.

Lee, C. K., and Hobbs, R. E. (1998). "Closed form stiffness matrix solutions for some

commonly used hybrid finite elements." Computers & Structures, 67(6), 463-482.

Zimmermann, T., Bomme, P., Eyheramendy, D., Vernier, L., and Commend, S. (1998).

"Aspects of an object-oriented finite element environment." Computers &

Structures, 68(1–3), 1-16.

48

Eriksson, A., and Pacoste, C. (1999). "Symbolic software tools in the development of

finite elements." Computers & Structures, 72(4–5), 579-593.

Eyheramendy, D. (2000). "An object-oriented hybrid symbolic/numerical approach for

the development of finite element codes." Finite Elements in Analysis and Design,

36(3–4), 315-334.

McCaslin, S. E., Shiakolas, P. S., Dennis, B. H., and Lawrence, K. L. (2012). "Closed-

form stiffness matrices for higher order tetrahedral finite elements." Advances in

Engineering Software, 44(1), 75-79.

Glasser, M. (2009). "Fundamentals of Object-Oriented Programming." Open

Verification Methodology Cookbook, Springer New York, 27-48.

Rumbaugh, J., Jacobson, I., and Booch, G. (2004). Unified Modeling Language

Reference Manual, The, Pearson Higher Education.

Gibson, L. J., and Ashby, M. F. (1999). Cellular solids: structure and properties,

Cambridge university press.

Christensen, P. W., and Klarbring, A. (2008). An introduction to structural

optimization, Springer Science & Business Media.

Deb, K., and Gulati, S. (2001). "Design of truss-structures for minimum weight using

genetic algorithms." Finite Elements in Analysis and Design, 37(5), 447-465.

Luh, G.-C., and Lin, C.-Y. (2008). "Optimal design of truss structures using ant

algorithm." Struct Multidisc Optim, 36(4), 365-379.

Farshi, B., and Alinia-ziazi, A. (2010). "Sizing optimization of truss structures by

method of centers and force formulation." International Journal of Solids and

Structures, 47(18–19), 2508-2524.

Li, L. J., Huang, Z. B., Liu, F., and Wu, Q. H. (2007). "A heuristic particle swarm

optimizer for optimization of pin connected structures." Computers & Structures,

85(7–8), 340-349.

Suquet, P. M. (1987). "Elements of Homogenization for Inelastic Solid Mechanics."

Homogenization Techniques for Composite Media, Springer-Verlag, 193-278.

Theerakittayakorn, K., and Nanakorn, P. "Periodic boundary conditions for unit cells

of periodic cellular solids in the determination of effective properties using beam

elements." Proc., The 2013 World Congress on Advances in Structural Engineering

and Mechanics, 3738-3748.

49

 Appendices

50

Appendix A

Inputs of the Program

2DTruss_Input

51

3DTruss_Input

52

2DFrame_Input

53

3DFrame_Input

54

55

56

Appendix B

Outputs of the Program

2DTruss_Output

57

3DTruss_Output

58

59

60

2DFrame_Output

61

3DFrame_Output

62

63

64

65

66

67

68

Appendix C

Numerical Comparisons

For trusses, the numerical results are obtained by substituting the numerical values

of the variables 𝐴𝑖 = 0.006 𝑚2, 𝑃𝑖 = 2 𝑘𝑁, 𝐿 = 3 𝑚, 𝐻 = 3 𝑚, and 𝐸𝑒 = 2 x 108 𝑘𝑃𝑎. For

frames, the numerical results are obtained from these numerical variables 𝐴𝑖 =

0.04 𝑚2, 𝐼𝑖 = 10-4/7500 𝑚2, 𝐷𝑥 = 0.01 𝑚, 𝐿 = 3 𝑚, 𝐻 = 3 𝑚, and 𝐸𝑒 = 2 x 108 𝑘𝑃𝑎.

Structures Closed Forms MSC.Marc Mentat

Types Node Nodal Displacements [m]

2D Truss

1
𝑄𝑥 = 0 𝑄𝑥 = 0

𝑄𝑦 = 0 𝑄𝑦 = 0

2
𝑄𝑥 = -0.00001 𝑄𝑥 = -0.00001

𝑄𝑦 = -0.0000241421 𝑄𝑦 = -0.0000241421

3
𝑄𝑥 = -0.000015 𝑄𝑥 = -0.000015

𝑄𝑦 = -0.0000632843 𝑄𝑦 = -0.0000632843

4
𝑄𝑥 = 0.00001 𝑄𝑥 = 0.00001

𝑄𝑦 = -0.0000241421 𝑄𝑦 = -0.0000241421

5
𝑄𝑥 = 0 𝑄𝑥 = 0

𝑄𝑦 = 0 𝑄𝑦 = 0

Node Support Reactions [kN]

1
𝑅𝑥 = 6 𝑅𝑥 = 6

𝑅𝑦 = 2 𝑅𝑦 = 2

5
𝑅𝑥 = -6 𝑅𝑥 = -6

𝑅𝑦 = 2 𝑅𝑦 = 2

Element Total Strain Energy [kN.m]

All 𝑈 = 0.0000874264 𝑈 = 0.0000874264

 Element Strains [m/m]

 1 𝑒 = -0.00000333333 𝑒 = -0.00000333333

 2 𝑒 = -0.00000166667 𝑒 = -0.00000166667

69

 3 𝑒 = 0.00000235702 𝑒 = 0.00000235702

 4 𝑒 = 0.00000333333 𝑒 = 0.00000333333

 5 𝑒 = -0.00000235702 𝑒 = -0.00000235702

 6 𝑒 = 0.00000235702 𝑒 = 0.00000235702

 Element Stresses [kN/m2]

 1 𝑠 = -666.667 𝑠 = -666.667

 2 𝑠 = -333.333 𝑠 = -333.333

 3 𝑠 = 471.405 𝑠 = 471.405

 4 𝑠 = 666.667 𝑠 = 666.667

 5 𝑠 = -471.405 𝑠 = -471.405

 6 𝑠 = 471.405 𝑠 = 471.405

Types Node Nodal Displacements [m]

3D Truss

1

𝑄𝑥 = 0 𝑄𝑥 = 0

𝑄𝑦 = 0 𝑄𝑦 = 0

𝑄𝑧 = 0 𝑄𝑧 = 0

2

𝑄𝑥 = 0 𝑄𝑥 = 0

𝑄𝑦 = 0 𝑄𝑦 = 0

𝑄𝑧 = 0 𝑄𝑧 = 0

3

𝑄𝑥 = 0 𝑄𝑥 = 0

𝑄𝑦 = 0 𝑄𝑦 = 0

𝑄𝑧 = 0 𝑄𝑧 = 0

4

𝑄𝑥 = 0 𝑄𝑥 = 0

𝑄𝑦 = 0 𝑄𝑦 = 0

𝑄𝑧 = 0 𝑄𝑧 = 0

5

𝑄𝑥 = 0 𝑄𝑥 = 0

𝑄𝑦 = 0 𝑄𝑦 = 0

𝑄𝑧 = 0 𝑄𝑧 = 0

6

𝑄𝑥 = 0 𝑄𝑥 = 0

𝑄𝑦 = 0 𝑄𝑦 = 0

𝑄𝑧 = 0 𝑄𝑧 = 0

70

7

𝑄𝑥 = 0 𝑄𝑥 = 0

𝑄𝑦 = 0 𝑄𝑦 = 0

𝑄𝑧 = 0 𝑄𝑧 = 0

8

𝑄𝑥 = 0 𝑄𝑥 = 0

𝑄𝑦 = 0 𝑄𝑦 = 0

𝑄𝑧 = 0 𝑄𝑧 = 0

9

𝑄𝑥 = 0 𝑄𝑥 = 0

𝑄𝑦 = -0.000001628 𝑄𝑦 = -0.000001628

𝑄𝑧 = 0 𝑄𝑧 = 0

Node Support Reactions [kN]

1

𝑅𝑥 = 0.25 𝑅𝑥 = 0.25

𝑅𝑦 = 0.25 𝑅𝑦 = 0.25

𝑅𝑧 = -0.25 𝑅𝑧 = -0.25

2

𝑅𝑥 = -0.25 𝑅𝑥 = -0.25

𝑅𝑦 = 0.25 𝑅𝑦 = 0.25

𝑅𝑧 = -0.25 𝑅𝑧 = -0.25

3

𝑅𝑥 = -0.25 𝑅𝑥 = -0.25

𝑅𝑦 = 0.25 𝑅𝑦 = 0.25

𝑅𝑧 = 0.25 𝑅𝑧 = 0.25

4

𝑅𝑥 = 0.25 𝑅𝑥 = 0.25

𝑅𝑦 = 0.25 𝑅𝑦 = 0.25

𝑅𝑧 = 0.25 𝑅𝑧 = 0.25

5

𝑅𝑥 = -0.25 𝑅𝑥 = -0.25

𝑅𝑦 = 0.25 𝑅𝑦 = 0.25

𝑅𝑧 = 0.25 𝑅𝑧 = 0.25

6

𝑅𝑥 = 0.25 𝑅𝑥 = 0.25

𝑅𝑦 = 0.25 𝑅𝑦 = 0.25

𝑅𝑧 = 0.25 𝑅𝑧 = 0.25

7
𝑅𝑥 = 0.25 𝑅𝑥 = 0.25

𝑅𝑦 = 0.25 𝑅𝑦 = 0.25

71

𝑅𝑧 = -0.25 𝑅𝑧 = -0.25

8

𝑅𝑥 = -0.25 𝑅𝑥 = -0.25

𝑅𝑦 = 0.25 𝑅𝑦 = 0.25

𝑅𝑧 = -0.25 𝑅𝑧 = -0.25

Element Total Strain Energy [kN.m]

All 𝑈 = 0.0000016238 𝑈 = 0.0000016238

 Element Strains [m/m]

 1 𝑒 = -0.000000360844 𝑒 = -0.000000360844

 2 𝑒 = -0.000000360844 𝑒 = -0.000000360844

 3 𝑒 = -0.000000360844 𝑒 = -0.000000360844

 4 𝑒 = -0.000000360844 𝑒 = -0.000000360844

 5 𝑒 = 0.000000360844 𝑒 = 0.000000360844

 6 𝑒 = 0.000000360844 𝑒 = 0.000000360844

 7 𝑒 = 0.000000360844 𝑒 = 0.000000360844

 8 𝑒 = 0.000000360844 𝑒 = 0.000000360844

 Element Stresses [kN/m2]

 1 𝑠 = -72.1688 𝑠 = -72.1688

 2 𝑠 = -72.1688 𝑠 = -72.1688

 3 𝑠 = -72.1688 𝑠 = -72.1688

 4 𝑠 = -72.1688 𝑠 = -72.1688

 5 𝑠 = 72.1688 𝑠 = 72.1688

 6 𝑠 = 72.1688 𝑠 = 72.1688

 7 𝑠 = 72.1688 𝑠 = 72.1688

 8 𝑠 = 72.1688 𝑠 = 72.1688

Types Node Nodal Displacements [m]

2D Frame

1

𝑄𝑥 = 0 𝑄𝑥 = 0

𝑄𝑦 = 0 𝑄𝑦 = 0

𝑄𝑟 = 0 𝑄𝑟 = 0

2
𝑄𝑥 = 0.01 𝑄𝑥 = 0.01

𝑄𝑦 = 0 𝑄𝑦 = 0

72

𝑄𝑟 = 0 𝑄𝑟 = 0

3

𝑄𝑥 = 0.01 𝑄𝑥 = 0.01

𝑄𝑦 = 0 𝑄𝑦 = 0

𝑄𝑟 = 0 𝑄𝑟 = 0

4

𝑄𝑥 = 0 𝑄𝑥 = 0

𝑄𝑦 = 0 𝑄𝑦 = 0

𝑄𝑟 = 0 𝑄𝑟 = 0

Node Support Reactions [kN]

1

𝑅𝑥 = -26666.3 𝑅𝑥 = -26666.3

𝑅𝑦 = 0 𝑅𝑦 = 0

𝑅𝑟 = 0 𝑅𝑟 = 0

2

𝑅𝑥 = 26666.3 𝑅𝑥 = 26666.3

𝑅𝑦 = 0 𝑅𝑦 = 0

𝑅𝑟 = 0 𝑅𝑟 = 0

3

𝑅𝑥 = 26666.3 𝑅𝑥 = 26666.3

𝑅𝑦 = 0 𝑅𝑦 = 0

𝑅𝑟 = 0 𝑅𝑟 = 0

4

𝑅𝑥 = -26666.3 𝑅𝑥 = -26666.3

𝑅𝑦 = 0 𝑅𝑦 = 0

𝑅𝑟 = 0 𝑅𝑟 = 0

Element Total Strain Energy [kN.m]

All 𝑈 = 266.667 𝑈 = 266.667

Element Internal Forces [kN]

1

𝑁 = 26666.7 𝑁 = 26666.7

𝑉 = 0 𝑉 =

 𝑀 = 0 𝑀 =

2

𝑁 = 0 𝑁 = 0

 𝑉 = 0 𝑉 = 0

 𝑀 = 0 𝑀 = 0

 3 𝑁 = 26666.7 𝑁 = 26666.7

73

 𝑉 = 0 𝑉 = 0

 𝑀 = 0 𝑀 = 0

4

𝑁 = 0 𝑁 = 0

 𝑉 = 0 𝑉 = 0

 𝑀 = 0 𝑀 = 0

Types Node Nodal Displacements [m]

3D Frame

1

𝑄𝑥 = 0 𝑄𝑥 = 0

𝑄𝑟𝑥 = 0 𝑄𝑟𝑥 = 0

𝑄𝑦 = 0 𝑄𝑦 = 0

𝑄𝑟𝑦 = 0 𝑄𝑟𝑦 = 0

𝑄𝑧 = 0 𝑄𝑧 = 0

𝑄𝑟𝑧 = 0 𝑄𝑟𝑧 = 0

2

𝑄𝑥 = 0.01 𝑄𝑥 = 0.01

𝑄𝑟𝑥 = 0 𝑄𝑟𝑥 = 0

𝑄𝑦 = 0 𝑄𝑦 = 0

𝑄𝑟𝑦 = 0 𝑄𝑟𝑦 = 0

𝑄𝑧 = 0 𝑄𝑧 = 0

𝑄𝑟𝑧 = 0 𝑄𝑟𝑧 = 0

3

𝑄𝑥 = 0.01 𝑄𝑥 = 0.01

𝑄𝑟𝑥 = 0 𝑄𝑟𝑥 = 0

𝑄𝑦 = 0 𝑄𝑦 = 0

𝑄𝑟𝑦 = 0 𝑄𝑟𝑦 = 0

𝑄𝑧 = 0 𝑄𝑧 = 0

𝑄𝑟𝑧 = 0 𝑄𝑟𝑧 = 0

4

𝑄𝑥 = 0 𝑄𝑥 = 0

𝑄𝑟𝑥 = 0 𝑄𝑟𝑥 = 0

𝑄𝑦 = 0 𝑄𝑦 = 0

𝑄𝑟𝑦 = 0 𝑄𝑟𝑦 = 0

𝑄𝑧 = 0 𝑄𝑧 = 0

𝑄𝑟𝑧 = 0 𝑄𝑟𝑧 = 0

74

5

𝑄𝑥 = 0 𝑄𝑥 = 0

𝑄𝑟𝑥 = 0 𝑄𝑟𝑥 = 0

𝑄𝑦 = 0 𝑄𝑦 = 0

𝑄𝑟𝑦 = 0 𝑄𝑟𝑦 = 0

𝑄𝑧 = 0 𝑄𝑧 = 0

𝑄𝑟𝑧 = 0 𝑄𝑟𝑧 = 0

6

𝑄𝑥 = 0.01 𝑄𝑥 = 0.01

𝑄𝑟𝑥 = 0 𝑄𝑟𝑥 = 0

𝑄𝑦 = 0 𝑄𝑦 = 0

𝑄𝑟𝑦 = 0 𝑄𝑟𝑦 = 0

𝑄𝑧 = 0 𝑄𝑧 = 0

𝑄𝑟𝑧 = 0 𝑄𝑟𝑧 = 0

7

𝑄𝑥 = 0.01 𝑄𝑥 = 0.01

𝑄𝑟𝑥 = 0 𝑄𝑟𝑥 = 0

𝑄𝑦 = 0 𝑄𝑦 = 0

𝑄𝑟𝑦 = 0 𝑄𝑟𝑦 = 0

𝑄𝑧 = 0 𝑄𝑧 = 0

𝑄𝑟𝑧 = 0 𝑄𝑟𝑧 = 0

8

𝑄𝑥 = 0 𝑄𝑥 = 0

𝑄𝑟𝑥 = 0 𝑄𝑟𝑥 = 0

𝑄𝑦 = 0 𝑄𝑦 = 0

𝑄𝑟𝑦 = 0 𝑄𝑟𝑦 = 0

𝑄𝑧 = 0 𝑄𝑧 = 0

𝑄𝑟𝑧 = 0 𝑄𝑟𝑧 = 0

Node Support Reactions [kN]

1

𝑅𝑥 = -26666.7 𝑅𝑥 = -26666.7

𝑅𝑟𝑥 = 0 𝑅𝑟𝑥 = 0

𝑅𝑦 = 0 𝑅𝑦 = 0

𝑅𝑟𝑦 = 0 𝑅𝑟𝑦 = 0

𝑅𝑧 = 0 𝑅𝑧 = 0

75

𝑅𝑟𝑧 = 0 𝑅𝑟𝑧 = 0

2

𝑅𝑥 = 26666.7 𝑅𝑥 = 26666.7

𝑅𝑟𝑥 = 0 𝑅𝑟𝑥 = 0

𝑅𝑦 = 0 𝑅𝑦 = 0

𝑅𝑟𝑦 = 0 𝑅𝑟𝑦 = 0

𝑅𝑧 = 0 𝑅𝑧 = 0

𝑅𝑟𝑧 = 0 𝑅𝑟𝑧 = 0

3

𝑅𝑥 = 26666.7 𝑅𝑥 = 26666.7

𝑅𝑟𝑥 = 0 𝑅𝑟𝑥 = 0

𝑅𝑦 = 0 𝑅𝑦 = 0

𝑅𝑟𝑦 = 0 𝑅𝑟𝑦 = 0

𝑅𝑧 = 0 𝑅𝑧 = 0

𝑅𝑟𝑧 = 0 𝑅𝑟𝑧 = 0

4

𝑅𝑥 = -26666.7 𝑅𝑥 = -26666.7

𝑅𝑟𝑥 = 0 𝑅𝑟𝑥 = 0

𝑅𝑦 = 0 𝑅𝑦 = 0

𝑅𝑟𝑦 = 0 𝑅𝑟𝑦 = 0

𝑅𝑧 = 0 𝑅𝑧 = 0

𝑅𝑟𝑧 = 0 𝑅𝑟𝑧 = 0

5

𝑅𝑥 = -26666.7 𝑅𝑥 = -26666.7

𝑅𝑟𝑥 = 0 𝑅𝑟𝑥 = 0

𝑅𝑦 = 0 𝑅𝑦 = 0

𝑅𝑟𝑦 = 0 𝑅𝑟𝑦 = 0

𝑅𝑧 = 0 𝑅𝑧 = 0

𝑅𝑟𝑧 = 0 𝑅𝑟𝑧 = 0

6

𝑅𝑥 = 26666.7 𝑅𝑥 = 26666.7

𝑅𝑟𝑥 = 0 𝑅𝑟𝑥 = 0

𝑅𝑦 = 0 𝑅𝑦 = 0

𝑅𝑟𝑦 = 0 𝑅𝑟𝑦 = 0

𝑅𝑧 = 0 𝑅𝑧 = 0

76

𝑅𝑟𝑧 = 0 𝑅𝑟𝑧 = 0

7

𝑅𝑥 = 26666.7 𝑅𝑥 = 26666.7

𝑅𝑟𝑥 = 0 𝑅𝑟𝑥 = 0

𝑅𝑦 = 0 𝑅𝑦 = 0

𝑅𝑟𝑦 = 0 𝑅𝑟𝑦 = 0

𝑅𝑧 = 0 𝑅𝑧 = 0

𝑅𝑟𝑧 = 0 𝑅𝑟𝑧 = 0

8

𝑅𝑥 = -26666.7 𝑅𝑥 = -26666.7

𝑅𝑟𝑥 = 0 𝑅𝑟𝑥 = 0

𝑅𝑦 = 0 𝑅𝑦 = 0

𝑅𝑟𝑦 = 0 𝑅𝑟𝑦 = 0

𝑅𝑧 = 0 𝑅𝑧 = 0

𝑅𝑟𝑧 = 0 𝑅𝑟𝑧 = 0

Element Total Strain Energy [kN.m]

All 𝑈 = 533.3333 𝑈 = 533.3333

Element Internal Forces [kN]

1

𝑁𝑥 = 26666.6667 𝑁𝑥 = 26666.6667

𝑀𝑥 = 0 𝑀𝑥 = 0

 𝑁𝑦 = 0 𝑁𝑦 = 0

 𝑀𝑦 = 0 𝑀𝑦 = 0

 𝑁𝑧 = 0 𝑁𝑧 = 0

 𝑀𝑧 = 0 𝑀𝑧 = 0

2

𝑁𝑥 = 0 𝑁𝑥 = 0

 𝑀𝑥 = 0 𝑀𝑥 = 0

 𝑁𝑦 = 0 𝑁𝑦 = 0

 𝑀𝑦 = 0 𝑀𝑦 = 0

 𝑁𝑧 = 0 𝑁𝑧 = 0

 𝑀𝑧 = 0 𝑀𝑧 = 0

3

𝑁𝑥 = 26666.6667 𝑁𝑥 = 26666.6667

 𝑀𝑥 = 0 𝑀𝑥 = 0

77

 𝑁𝑦 = 0 𝑁𝑦 = 0

 𝑀𝑦 = 0 𝑀𝑦 = 0

 𝑁𝑧 = 0 𝑁𝑧 = 0

 𝑀𝑧 = 0 𝑀𝑧 = 0

4

𝑁𝑥 = 0 𝑁𝑥 = 0

 𝑀𝑥 = 0 𝑀𝑥 = 0

 𝑁𝑦 = 0 𝑁𝑦 = 0

 𝑀𝑦 = 0 𝑀𝑦 = 0

 𝑁𝑧 = 0 𝑁𝑧 = 0

 𝑀𝑧 = 0 𝑀𝑧 = 0

5

𝑁𝑥 = 26666.6667 𝑁𝑥 = 26666.6667

 𝑀𝑥 = 0 𝑀𝑥 = 0

 𝑁𝑦 = 0 𝑁𝑦 = 0

 𝑀𝑦 = 0 𝑀𝑦 = 0

 𝑁𝑧 = 0 𝑁𝑧 = 0

 𝑀𝑧 = 0 𝑀𝑧 = 0

6

𝑁𝑥 = 0 𝑁𝑥 = 0

 𝑀𝑥 = 0 𝑀𝑥 = 0

 𝑁𝑦 = 0 𝑁𝑦 = 0

 𝑀𝑦 = 0 𝑀𝑦 = 0

 𝑁𝑧 = 0 𝑁𝑧 = 0

 𝑀𝑧 = 0 𝑀𝑧 = 0

7

𝑁𝑥 = 26666.6667 𝑁𝑥 = 26666.6667

 𝑀𝑥 = 0 𝑀𝑥 = 0

 𝑁𝑦 = 0 𝑁𝑦 = 0

 𝑀𝑦 = 0 𝑀𝑦 = 0

 𝑁𝑧 = 0 𝑁𝑧 = 0

 𝑀𝑧 = 0 𝑀𝑧 = 0

8

𝑁𝑥 = 0 𝑁𝑥 = 0

 𝑀𝑥 = 0 𝑀𝑥 = 0

78

 𝑁𝑦 = 0 𝑁𝑦 = 0

 𝑀𝑦 = 0 𝑀𝑦 = 0

 𝑁𝑧 = 0 𝑁𝑧 = 0

 𝑀𝑧 = 0 𝑀𝑧 = 0

9

𝑁𝑥 = 0 𝑁𝑥 = 0

 𝑀𝑥 = 0 𝑀𝑥 = 0

 𝑁𝑦 = 0 𝑁𝑦 = 0

 𝑀𝑦 = 0 𝑀𝑦 = 0

 𝑁𝑧 = 0 𝑁𝑧 = 0

 𝑀𝑧 = 0 𝑀𝑧 = 0

10

𝑁𝑥 = 0 𝑁𝑥 = 0

 𝑀𝑥 = 0 𝑀𝑥 = 0

 𝑁𝑦 = 0 𝑁𝑦 = 0

 𝑀𝑦 = 0 𝑀𝑦 = 0

 𝑁𝑧 = 0 𝑁𝑧 = 0

 𝑀𝑧 = 0 𝑀𝑧 = 0

11

𝑁𝑥 = 0 𝑁𝑥 = 0

 𝑀𝑥 = 0 𝑀𝑥 = 0

 𝑁𝑦 = 0 𝑁𝑦 = 0

 𝑀𝑦 = 0 𝑀𝑦 = 0

 𝑁𝑧 = 0 𝑁𝑧 = 0

 𝑀𝑧 = 0 𝑀𝑧 = 0

12

𝑁𝑥 = 0 𝑁𝑥 = 0

 𝑀𝑥 = 0 𝑀𝑥 = 0

 𝑁𝑦 = 0 𝑁𝑦 = 0

 𝑀𝑦 = 0 𝑀𝑦 = 0

 𝑁𝑧 = 0 𝑁𝑧 = 0

 𝑀𝑧 = 0 𝑀𝑧 = 0

