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ABSTRACT 

 

 Hypothesis testing for a normal mean when the coefficient of variation is 

known, is quite different from the situation when the variance is known. Mostly, the 

situation when the variance is known is only of theoretical interest. There are many 

practical situations when the coefficient of variation is known. This situation arises in 

medical, biological and environmental studies. In the theoretical part of the thesis, we 

proved that the considered estimates are unbiased estimator, minimum variance and 

asymptotically normal. Previously the considered estimates have not been considered 

as test statistics. In this thesis, we therefore construct statistical tests for the normal 

mean based on the best minimum variance unbiased estimators and the uniformly 

minimum risk estimators. Under the null hypothesis, the limiting distribution of the test 

statistic is derived. In the computational part, the simulation results show that all 

proposed test statistics perform better for a large sample and a small value of coefficient 

of variation. Moreover, the proposed test statistics based on the uniformly minimum 

risk estimators provide more efficient test procedures. 
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CHAPTER 1 

INTRODUCTION 

 

1.1 Statement of the Problem and Importance of the Study    

   

 A normal distribution is the most important distribution used in 

mathematical statistics and are often used for statistical applications in agricultural, 

biological, physical and medical studies. The main part of statistical study, the 

Statistical inference is the process of deducing inferences or conclusions about 

populations from the collection and interpretation of sample data. The population is 

assumed to be larger than the observed data set; in other words, the observed data are 

assumed to be sampled from a larger population. The main classes of inferential 

statistics are estimation of a parameter and testing the hypotheses about the value of a 

parameter.  

 The estimation consists of a point and interval estimation. The point 

estimation produces an estimate of the value of parameter by estimating a single value 

from sample data. The interval estimation derives an estimated interval or range of 

possible values of parameter from sample data.  

 The test of the hypothesis is a method for testing a hypothesis about a 

parameter in a population by using data measured in a sample. There are two types of 

statistical hypotheses: the null hypothesis and the alternative hypothesis. Thus we 

decide whether to retain or reject the null hypothesis using the value of the test statistic 

obtained from the sample data. We can decide to retain or reject the null hypothesis, 

and this decision can be correct or incorrect. Two types of errors in hypothesis testing 

are called type I and type II errors. 

 A problem of making an inference about a normal mean using a prior 

information about the coefficient of variation  /b
 
, where   and  are the mean 

and standard deviation of a population, is interesting and it has been approached by 

many researchers. This problem appears in many practical situations in medical, 

biological, environmental and chemical studies. For example, in chemical studies,  
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Bhat, & Rao (2007) asserted that “when batches of some substances (chemicals) are to 

be analyzed, if sufficient batches of the substances are analyzed, their coefficients of 

variation will be known”. In environmental studies, Niwitpong (2013) extended the 

work of  Bhat, &  Rao (2007) concerning that the standard deviation of the pollutant is 

related to the mean. In agricultural studies, Niwitpong, & Koonprasert (2012) illustrated 

the following phenomenon by conducting many trials to study. It appears that in a new 

study, the known coefficient of variation of the control group (treatment) is comparable 

with the coefficient of variation is this new study.                

 For many decades ago, there were several authors that have studied the 

estimation the mean of a normal distribution when the coefficient of variation is known. 

For the example, in the point estimation, Searls (1964) considered an improvement of 

the sample mean under the condition of a known coefficient of variation. Arnholt, & 

Hebert (1995) derived an optimal estimator from the estimator suggested by Searls 

(1964) when the coefficient of variation is known.                                                      

 Later, Khan (1968)  proposed the best unbiased estimator for estimating a 

mean with minimum variance. Furthermore, this estimator is asymptotically normal. 

Gleser, & Healy (1976) suggested that the estimator from Khan (1968) is inadmissible 

under a squared-error loss function, so the uniformly minimum risk estimator under a 

square error loss function is achieved. For the problem of having possible negative 

values from the estimators of Khan (1968) and Gleser, & Healy (1976), Khan (2013) 

reconsidered to modify these estimators in order to improve their efficiency. 

Srisodaphol, & Tongmol (2012) improved the estimators using the method of Khan 

(1968), Arnholt, & Hebert (1995), the jackknife technique (1974), and the Baysian 

estimator using the Jeffreys prior distribution.                                                                            

 For the interval estimation, Niwitpong (2013) proposed new confidence 

intervals for the normal population mean with a known coefficient of variation. The 

proposed confidence intervals are based on the best unbiased estimator suggested by 

Khan (1 9 6 8 ) , the best unbiased estimator suggested by Searls (1967), and using prior 

information  /b . Panichkitkosolkul (2015a) proposed an approximate confidence 

interval for the ratio of the normal means with a known coefficient of variation and 

compared this with the exact confidence interval constructed by Niwitpong, 
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Koonprasert, & Niwitpong (2011). This new confidence interval uses the 

approximation of the expectation and variance of the estimator. 

 For the hypothesis testing, to make an inference on the normal mean, the 

fact that the population variance is known, is important to derive the distribution of the 

estimators. This is a different situation from when a coefficient of variation is assumed 

to be known. There are many researches relating to the tests of hypotheses with a known 

coefficient of variation, such as, Bhat, & Rao (2007) derived the likelihood ratio test 

(LR) and the Wald tests for a normal mean with known coefficient of variation and 

extended the locally most powerful test (LMP) derived from Hinkley (1977). The 

results of simulation studies indicated the LMP test is the best test for the one-sided 

alternative while for the two-sided alternative, the LR or the Wald is the best test. Walid, 

Abu-Dayyeh, & Dorvlo (2013) constructed one-sided tests using pivotal method and 

compared their power functions. Banik, Kibria, & Sharma (2012) derived a test for the 

population coefficient of variation. The several methods existing for testing the 

population coefficient of variation were compared to a proposed bootstrap method. 

They compare the performance of test statistics in term of powers. Moreover, 

Panichkitkosolkul (2015b) obtained the two statistical tests for the reciprocal of a 

normal mean with a known coefficient of variation. The tests are developed based on 

the distribution of a sample mean. The first test was based on an asymptotic method. 

The second test was developed using the simple approximate expression in terms of 

expectation and variance.  

 This concludes our review on the work of the previous researchers on the 

making inferences the normal mean with a known coefficient of variation. In this thesis, 

we investigate the theoretical properties of the estimators, propose the test statistics for 

a normal mean, examine the performance of the test statistics to capacity in controlling 

of probability of type I error and compare the power of the test statistics.  Therefore, in 

this study, we propose the test statistics based on the best unbiased estimator suggested 

by Khan (1968), the uniformly minimum risk estimator suggested by Gleser, & Healy 

(1 9 7 6 ) , the modified estimator by Khan (1968), the modified estimator of Gleser, & 

Healy (1976), and the sample mean with a known coefficient of variation. For this 

research, we will perform the Monte Carlo method to evaluate the proposed tests using 

Program R version 2.3.1. 
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1.2 Research Objectives 

 

 The objectives of the research are as below: 

 1. To investigate theoretical properties of a point estimator for the normal 

mean with known coefficient of variation. 

  2. To propose the test statistics based on the best unbiased estimator for the 

mean with known coefficient of variation suggested by Khan (1968), the uniformly 

minimum risk estimator suggested by Gleser, & Healy (1976), the modified estimator 

by Khan (1968), the modified estimator of Gleser, & Healy (1976), and the sample 

mean and examine the capacity in controlling of the probability of type I error.  

 3. To compare powers of test statistics for each situation in order to 

recommend the best test statistics based on the sample size and the value of the 

coefficient of variation. 

 

1.3 Research Scope 

 

 The scope of this research consists of the following parts: 

 

 1.3.1 Theoretical part 

 

 The theoretical properties of point estimators for the normal mean with 

known coefficient of variation are investigated. Then, the new test statistics for a normal 

mean are constructed. 

 

 1.3.2 Computational Part 

 

 1. We perform a simulation study by generating random samples of size n

from a normal distribution with the mean   and variance 
22b , 0 . We fix the 

nominal significance level  . Next, we take 0  , where we choose  = 1.0 to 

estimate the probability of type I error and  = 0.85, 0.9, 0.95, 1.1, 1.2, 1.3, 1.4, 1.5 to 
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estimate the power of the test. Therefore, we will set the different values of n , b , 0

,  , and  . 

 

             We set sample sizes  n  to be 16, 25, 35,                                                                            

 fix the values of coefficient of variation  b at 0.7, 1.5, 2.0, 2.5, 3.0,         

 
fix the values of 0 at 2, 3, 4, 5, 

 fix the values of  at 0.85, 0.9, 0.95, 1.0, 1.1, 1.2, 1.3, 1.4, 1.5, 

 fix the values of  at 0.01, and 0.05. 

 

   Simulations are replicated 10,000 times for each situation. 

 

 2. The probability of type I error and power is estimated in each situation. 

 3. Graphs of power are plotted.  

 

1.4 Criteria    

 

 1. First, we will consider the ability in controlling the probability of type I 

error. We follow the following rule by Cochran (1954) which suggested that the 

probability of type I error is between [0.007, 0.015] at the 0.01 significance level and 

the probability of type I error is between [0.040, 0.060] at the 0.05 significance level. 

2. Then, we compare the power of test statistics. The test with highest 

power based on the coefficient of variation is recommended. 

 

1.5 Expected Benefits of the Research 

 

 The research aims is to investigate the efficiency of the test statistics of the 

normal mean with known coefficient of variation, to choose the appropriate test statistic 

in each situation. In addition, this can be applied to other test statistics to the normal 

mean with known coefficient of variation. 
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1.6 Basic Definitions      

                                                                                                       

 1.6.1 Type I error 

 A type I error, also known as an error of the first kind, occurs when the null 

hypothesis  0H  is true, but is rejected. The probability of type I error or significance 

level is the probability of rejecting the null hypothesis given that it is true. It is denoted 

by   and is also called the alpha level.  

 

 1.6.2 Type II error 

A type II error, also known as an error of the second kind, occurs when the 

null hypothesis  0H  is false, but erroneously fails to be rejected. The rate of the 

Type II error is denoted by    and related to the power of a test. 

 

1.6.3 Power  

A power in hypothesis testing is the probability of rejecting a null 

hypothesis when it is false and therefore should be rejected. The power of the test is 

calculated by subtracting of a rate of Type II error    from 1.0 denoted by 1 .   

(Vorapongsathorn, T., Taejaroenkul, S., & Viwatwongkasem, C., 2004) 

 

 1.6.4 Test statistic 

 A test statistic is a mathematical formula that allows researchers to 

determine the likelihood or probability of obtaining sample outcomes if the null 

hypothesis is true. The value of a test statistics can be used to make inferences 

concerning the value of population parameter stated in the null hypothesis.  

 

 1.6.5 Hypothesis testing  

 A hypothesis is a statement about a population parameter. The goal of a 

hypothesis is to decide, based on a sample from the population, which of two 

complementary hypotheses are true. 
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CHAPTER 2 

THEORETICAL BACKGROUND AND                                                  

REVIEW OF LITERATURE  

     

  In this chapter, the theoretical background on the notion of the coefficient 

of variation, of normal distribution, of hypothesis testing procedure (especially for 

testing of the normal population mean), estimating procedure, and asymptotic analysis 

is presented. Also a review of the related literature is provided. 

 

2.1 Theoretical Background on the Coefficient of Variation 

 

 A coefficient of variation measures the variability in a series of numbers 

independently of the unit of measurement used for the numbers. The coefficient of 

variation eliminates the unit of measurement from the standard deviation of a series of 

number by dividing it by the mean of this series of numbers. The coefficient of variation 

can be used to compare distributions obtained with different units such as the variability 

of the weights of newborns (measured in grams) with the size of adults (measured in 

centimeters). The coefficient of variation should be computed only for data measured 

on a ratio scale and the measurements that can only take non-negative values. The 

coefficient of variation may not have any meaning for data on an interval scale. For 

example, most temperature scales (e.g., Celsius, Fahrenheit etc.) are interval scales that 

can take both positive and negative values, whereas the Kelvin temperature can never 

be less than zero, which is the complete absence of thermal energy. Hence, the Kelvin 

scale is a ratio scale. While the standard deviation can be derived on both the Kelvin 

and the Celsius scale, the coefficient of variation is only relevant as a measure of 

relative variability for the Kelvin scale.  

 The coefficient of variation is defined as the ratio of the standard 

deviation  to the mean   (or its absolute value,  ) is given by 

                                                      

                                                        



b .                                                             (2.1) 

https://en.wikipedia.org/wiki/Ratio_scale
https://en.wikipedia.org/wiki/Interval_scale
https://en.wikipedia.org/wiki/Kelvin
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 When only a sample of data from a population is available, the population 

coefficient of variation can be estimated using the ratio of the sample standard 

deviation s  to the sample mean x (or its absolute value, x ).  

 Often the coefficient of variation is expressed as a percentage which 

corresponds to the following formula 

 

                                                  100ˆ 
x

s
b  .                                                          (2.2) 

(Abdi, 2010) 

 

2.2 Theoretical Background on Normal Distribution 

 

 The normal distribution (sometimes called the Gaussian distribution) plays 

a central role in a large body of statistics. There are three main reasons for this. First, 

the normal distribution and distributions associated with it are very tractable 

analytically. Second, the normal distribution has the familiar bell shape, whose 

symmetry makes it appealing choice for many population models. Although there are 

many other distributions that are also bell-shaped, most do not possess analytic 

tractability as normal. Third, there is the Central limit Theorem, which shows that, 

under mild conditions, the normal distribution can used to approximate a large variety 

of distributions for large samples.  

 The normal distribution has two parameters, denoted by  and 
2 , which 

are the mean and variance. The probability density function of the normal distribution 

with mean   and variance 
2 , denoted by  2,N   is given by  

 

  
 

0,,,
2

1
,|

2

2

22 






 



xexf

x

.     (2.3)    

       

The expectation and variance of the normal distribution are  

 

https://en.wikipedia.org/wiki/Standard_deviation#Estimation
https://en.wikipedia.org/wiki/Standard_deviation#Estimation
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  XE , and   2XVar . 

The case where  = 0 and 
2 = 1 is called the standard normal distribution. The 

probability density function is  

 

  



xexf

x

,
2

1
2

2


.                                                           (2.4) 

 

 

Figure 2.1: Standard normal density. 

 

(Cassella, & Berger, 2002, p. 102) 

  

 In case of known coefficient of variation b , Walid Abu-Dayyeh, & Atsu 

Dorvlo (2013) suggested that the probability density function of  22,  bN  where 

 /b  for 0b  and 0 ,  is defined by  

 

  
 

0,0,,
2

1
,|

22

2

222 



bxe
b

bxf b

x




 



.             (2.5) 

 

Then, the expectation and variance of this condition are as follows  

 

  XE , and   22bXVar  . 

  



10 

 

2.3 Theoretical Background on Hypothesis Testing 

 

 2.3.1 General Theory of Hypothesis Testing 

 

 The notion of a hypothesis is rather general, but the important point is that 

a hypothesis makes a statement about a population parameter. The goal of a hypothesis 

is to decide, based on a sample from the population, which of two complementary 

hypotheses is true. Random samples of size n  are represented by independent random 

variables nXXX ,...,, 21  having a common probability density or mass function  |xf

,  , where   is the parameter space (the set of all possible values of the parameter). 

We consider two competing hypotheses about possible values of  . 

 The formal procedure, due to J. Neyman and E.S. Pearson (1920’s) and 

extending earlier ideas of R.A. Fisher, is to identify a Null hypothesis, 00 : H , 

which is contrasted with an Alternative hypothesis, 
1: AH , where 0  and 

1  are 

disjoint subsets of the parameter space  . Call a hypothesis simple if it has the form 

'  , a known constant and composite otherwise. For example, if  2,N  then the 

hypothesis '

0 :  H is a simple one if  is known. However it is composite if  is 

unknown because it should be expressed as 0,'   .  

 

Definition 2.1. A test statistic, similarly to an estimator, is just some real-valued 

function  nn XXXTT ,...,, 21
 
of the data sample nXXX ,...,, 21 . Clearly, a test statistic 

is a random variable.  

 

 Deciding between the null and alternative hypotheses involves a test 

statistic  nn XXXTT ,...,, 21  taking values in a space which is partitioned into 

disjoint subsets A and R , called acceptance and rejection regions, and correspond to 

0  and 
1 , respectively. If an observed value of nT ,  nn XXXtt ,...,, 21 , then 0H  is 

rejected in favour of 
AH ,  and if Atn   then 0H  is  accepted. The latter term is usually 

taken to mean there is too little data evidence to opt decisively for 0H . 
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The law of nT  depends on the unknown value of  . A crucial role is played by 

the law of  nT  given that 0H  is true. This is well-defined only if 0H  is simple. If 

general, A and R  are chosen so that if 0H  is true, the event  RTn   occurs with a 

small probability. Specifically, a small number   is chosen by the statistician, and then 

R  such that   

    |RTP n  for all 0 , 

 

trying to get as close to   as possible. If Rtn   then we say that 0H  is rejected at the 

%100  level of significance. Call   the size of the test. With these choices, we expect 

that     |RTP n  if 
1 , i.e. the probability of rejection exceeds the chosen 

level of significance if 0H  is false. In fact, this property cannot be inferred from the 

above test structure. A test which has this property is said to be unbiased. We have the 

following rationale applicable to unbiased tests for making accept/reject decisions: If 

Rtn  ; then, 

(i)  Either 0H  is true and an event of small   probability has occurred:  

or 

 (ii) 0H is false, and an event has been observed whose probability exceeds

 . 

 

Option (ii) is the better explanation of the observed outcome; it is consistent 

with the intuition supporting the maximum likelihood concept. This procedure gives 

rise to two possible errors:  

 

 Type I error:  Reject 0H  when it is true, and  

 Type II error:  Accept 0H
 
when it is false. 
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Table 2.1:Two types of errors in hypothesis testing. 

 

Trust 
Decision 

Accept 0H  Reject 0H  

0H  Correct decision Type I Error 

AH  Type II Error Correct decision 

 

Type I error is held to be more serious, explaining why the test is designed 

to control its probability of occurrence:  

 

               
                      

     0| HRTPerrorITypeP n .
                             

(2.6) 

 

Computing the probability of a Type II error usually is possible only if 
AH  is simple. 

 

 

Definition 2.2. The power function of a hypothesis test with a rejection region R  is the 

function of   defined by  

 

                                    
       |RTPB nTn

 .                                    (2.7) 

 

In general, we define the power function     |RTPB nTn
  for all values  . 

Thus the test is designed so that    
nTB if 0 . Typically the power function is 

close to   if 
1  is close to its boundary, and increasing as   moves away from 

the boundary. The sensitivity of a test can be judged in terms of how quickly  
nTB  

increases above   as 
1  moves away from the boundary. 

 

Remarks: 1. This (Neyman-Pearson) testing procedure is a frequent concept: The 

operation meaning of the assertion ‘ 0H  is rejected at the %100  level if significance’ 

means that if this random experiment is independently replicated many times using the 

same population, then a type I error occurs in a proportion   of such replications. 
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 2. In ‘scientific’ contexts 0H  represents accepted wisdom or a status quo, 

and experimental data has the express purpose of refuting rather than confirming 0H . 

Refutation should be compelling, beyond a reasonable doubt, thus explaining the 

special status accorded to Type I errors, and why   is chosen to be small. It follows 

that 0H  and 
AH  are not inter-changeable. On the other hand, 0H  could represent 

model assumptions, such as ‘errors are normally distributed’. In quality control 

situations 0H  could be ‘the process is in control’, i.e. the probability p  that a 

manufactured item is faulty is less than some very small number. For these cases, 

finding Atn   gives weight to accepting 0H  as a viable working assumption, a 

desirable outcome. 

 3. There often is a difference between statistical and practical significance. 

Rejecting 0H  may lead to costly actions which may not be justifiable if the apparent 

deviation from 0H  is small. It is common to address this by quoting the probability-

value, or p-value, denoted by vp . If  nn XXXtt ,...,, 21  is observed, define tD  as that 

subset of RA  representing ‘a more extreme deviation’ from 0H  than the observed 

one. Then,  

   
 0|: HDTPp tnv  .                                    (2.8) 

 

The p-value is frequently interpreted as a measure of data evidence supporting 0H , 

although it lacks attributes one reasonably expects of such a measure. Thus 0H  is 

rejected if vp . Quoting a p-value is more informative than merely saying e.g., ‘ 0H  

was rejected at the 5% level’; it allows others to compare their analyses of your data. 

This is quite important if the data are discrete because in most cases a test cannot 

achieve the nominal level, e.g. 05.0 . 

 4. An important question is how to choose a test statistic? Often the choice 

is made on a ‘common sense’ basis. But there are general results which can give 

guidance. It seems fairly obvious that we want a test to be unbiased, and to have the 
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property that  
nTB  is as large as possible for all 

1 ,  i.e. maximum power under 

AH .  

 

Definition 2.3. A test statistic is uniformly most powerful (UMP) if, for any other test 

statistic *

nT , we have     *
nn TT BB   for all 

1 .  

 

 If 0H  and 
AH  are simple hypotheses, then a fundamental result named the 

Neyman-Pearson lemma implies the existence of a test with UMP statistic. If 0H
 
is 

simple and AH  is composite, then 
AH  can be considered as a union of simple 

hypotheses, and it may be that a test with UMP statistic can be forged from the UMP 

tests for each pair   '

0 , AHH , where the second component is, for each 1

'  , the 

assertion that '  . If 0H  also is composite, it’s not obvious how to proceed. Instead 

there is another route based on the ‘common sense’ approach which is applicable to 

most problems arising in practice, so-called likelihood ratio tests.  (Helio, Dani, & 

Francisco (2015), pp. 221-232). 

 

2.3.2 Hypothesis Testing of Mean for Normal distribution for Known 

Variance and for Known Coefficient of Variation 

 

 We note that there are two completely different situations in hypothesis 

testing for a mean   of normal distribution. First one is when variance 2  is known. 

We would like to mention that mostly this situation is only for theoretical interest. 

Usually in practice we do not need to make inference about mean when variance is 

known. Usually the fact that variance is known implies that the mean is known, too. 

The second situation is when the coefficient of variation is known. This is the situation 

considered in my thesis. Contrary to the first situation, there are many practical 

problems where the coefficient of variation is known, but we need to make inference 

about the mean.  
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2.4 Theoretical Background on Statistical Test for the Mean of Normal Population 

 

 A common method of constructing a test for a population mean of a normal 

distribution. Let nXXX ,...,, 21  be random samples from a normal distribution with mean 

  and standard deviation  . Suppose we wish to test the two-sided hypothesis 

00 :  H  versus 0:  AH , where 0  is a specified value. The common statistics 

are the sample mean X  and the minimum likelihood estimator of standard deviation 

S  where 



n

i

iXnX
1

1 and   
2

1

1




n

i

i XX
n

S .  If the data are abnormal (not from 

the normal population), in many cases we can apply the Central Limit Theorem which 

establishes the conditions to guaranty that the limit distribution is a normal distribution. 

But in our situation of the data from normal population, if 0H  is true, then the statistic 

   

                                                   

 
)1,0(~

/

0 N
n

X
Z




 .                                       (2.9) 

 

At the level  , the test rejects 0H  if 
2

zZ   or 
2

zZ  where z  is the upper 

percentile of the standard normal distribution. 

 

2.5 Theoretical Background on Estimation Procedure 

 

Definition 2.4.  A point estimator is any fixed function  nn XXXTT ,...,, 21  of a 

sample; that is, any statistic is a point estimator. (Cassella, & Berger, 2002, p. 311) 

 

Definition 2.5. The bias of a point estimator nT of a parameter   is the difference 

between the expected value of nT and  ; that is,      nn TETBias . An estimator 

whose bias is equal to 0 is called unbiased. (Cassella, & Berger, 2002, p. 330) 
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 2.5.1 Minimum Variance Estimators 

 

Theorem 2.1. (Cramer-Rao Inequality). Let nXXX ,...,, 21 be an independent and 

identically distributed (iid.) random variables from a distribution that has density 

function  |xf , where  |xf  has continuous second-order derivative by   . 

Suppose the set of x  for which   0| xf  does not depend on   . 

 An unbiased estimator nT  of parameter  is called a minimum variance 

unbiased estimator (MVUE) of   if  

    

                              




























2

)|(log

1
)(




XfnE

TVar n                                       (2.10) 

 

where E  denotes the expected value with respect to the probability density function 

 |Xf . 

 

It is possible to prove that in this case  

 

                    

 


















|log

1
)(

2

2

XfnE

TVar n ,                                (2.11) 

The value  

   

   


IXfE 

























2

|log                                          (2.12) 

 

is called the information number or the Fisher information of the sample.    

 

The famous Cramer-Rao Inequality states that the variance of any unbiased 

estimator nT  of   is then bounded by the reciprocal of the Fisher information  I  in 

(2.12), 

https://en.wikipedia.org/wiki/Variance
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 
 

I
TVar n

1
 .                                                 (2.13) 

 

 The Cramer-Rao Lower Bound (CRLB) sets a lower bound on the variance 

of any unbiased estimator. It is useful as follows: First, we find an estimator that 

achieves the CRLB, then we know that we have found a Minimum Variance Unbiased 

Estimator (MVUE). Second, the CRLB can provide a benchmark against which we can 

compare the performance of any unbiased estimator. Next, the CRLB can be used to 

rule-out impossible estimators. Finally, the theory behind the CRLB can tell us if an 

estimator exists that achieves the lower bound 

 

2.6 Theoretical Background on Asymptotic Analysis 

 

 2.6.1 Consistency 

 

Definition 2.6. A sequence of estimators  nn XXXTT ,...,, 21   is said to be consistent 

estimator of the parameter   if, for every 0  and every  , 

 

                                     1lim  nn TP .                                   (2.14) 

 

Informally, (2.11) says that as the sample size becomes infinite, the estimator will be 

arbitrarily close to the parameter with high probability, an eminently desirable 

probability. Or, turning things around, we can say that the probability that a consistent 

sequence of estimators misses the true value of the parameter is small. An equivalent 

statement to (2.11) is this: For every 0  and every  , a consistent sequence nT  

satisfies 

 

                                          0lim  nn TP .                                         (2.15) 

 

Recall that, for an estimator nT , Chebychev’s Inequality states 
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    

2

2







 n

n

TE
TP .  

 

So if, for every  ,    0lim
2
 nn TE , then, the sequence of estimators nT  is 

consistent. (Cassella, & Berger, 2002, p. 468) 

 

Theorem 2.2. If  nT  is a sequence of estimators of the parameter   satisfying 

 

                              (i.)   0lim  nn TVar ,  

                              (ii.)    nn TElim , for every  .   

 

 Then, nT  is a consistent sequence of estimators of  . (Cassella, & Berger, 2002, p. 

469) 

 

 2.6.2 Convergence in probability  

 

Definition 2.7 A sequence of random variables, ,..., 21 XX  converges in probability to 

a random variable X  if, for every 0 , 

 

  
               0lim  XXP nn

   
or, equivalently, 

                 1lim  XXP nn . 

 

Theorem 2.3. (Weak Law of Large Numbers (WLLN))  Let ,..., 21 XX  be independent 

and identically distributed random variables with   iXE
 
and    2iXVar . 

Then, for every 0 , 

 

                                          
  1lim  nn XP ;                               (2.16) 

that is, 
nX  converges in probability to  . 
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 The property summarized by the WLLN, that a sequence of the “same” 

sample quantities approaches a constant as n , is known as the consistency. 

(Cassella, & Berger, 2002, pp. 232-233) 

 

Theorem 2.4. If the sequence of random variables ,..., 21 XX  converges in probability 

to a random variable X , the sequence converges in distribution to X .  

(Cassella, & Berger, 2002, p. 236) 

 

 2.6.3 Convergence in Distribution 

 

Definition 2.8 A sequence of random variables, ,..., 21 XX  converges in distribution 

to a random variable X  if  

 

    XFxF XXn n
lim  at all point x  where  xF

nX
 is continuous. 

 

Theorem 2.5. (Central Limit Theorem). If the distribution of the independent and 

identical random sample nXXX ,...,, 21 is such that 
1X  has finite expectation and 

variance, i.e.   1XE  and   1XVar , then 

 

    2

11 ,0 NXEXn d , 

 

which means that for any interval  ba, , 

 

                  dxebaXEXnP

xb

a

2

2

2
11

2

1
, 





 .        

                             

In other words, the random variable   11 XEXn   will behave like a random 

variable from normal distribution when n  gets large. (Cassella, & Berger, 2002, pp. 

235-238) 
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2.6.4 Asymptotically Normal of Estimators 

 

Definition 2.9. A sequence of random variable nX  is asymptotically normally 

distributed as n  if there exist sequence of real constants n  and n   

(with 0n )  such that 

 1,0~ NZ
X d

n

nn 





. 

 

Theorem 2.6. (Slutsky’s Theorem)  If XX d

n   and aY p

n  , a  constant, then 

 

 (i.) .aXXY d

nn   

 (ii.) .aXYX d

nn   

(Cassella, & Berger, 2002, pp. 239-240) 

 

2.7 Review of the Related Literature 

 

In this part, we start briefly describing from many authors have made an 

inference about the normal mean with known coefficient of variation. 

 

2.7.1 Review of Point estimation for a Normal Mean with Known 

Coefficient of Variation 

  

 Khan (1968) considered a normal distribution with known coefficient of 

variation b  and examined that the estimator X  is inadmissible for estimating a mean 

  when the coefficient of variation is known. Therefore, he considered a class of 

unbiased estimators linear in a sample mean X , and a sample standard deviation S . 

The best estimator which has a minimum variance among these unbiased estimators has 

been found. The best estimator has the form   21 1 ddd    and 10  , where 





n

i

iXnXd
1

1

1
, Sncd 2

, 















 


22

1

2

1 nn

b
c  and S  is the minimum 
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likelihood estimator of standard deviation. Since we consider the sample from a normal 

population,  the estimators 
1d  and 

2d  are independent (and this is true only for samples 

from normal population). He also proved that the estimators 
1d  and 

2d  are unbiased 

estimators for normal mean  .   

 Furthermore, Khan (1968) examined the asymptotic behavior of the 

estimator d  for large n . The results are summarized as follows.  First, the estimator d  

is asymptotically normal. Next, its asymptotic efficiency is equal to the efficiency of 

the maximum likelihood estimator. Finally, the asymptotic variance or 

    12221 21
  bbndVar   is the Cramer-Rao bound. Additionally, he also showed 

that the estimator d  is more asymptotic efficiency than the estimator X  when the 

coefficient of variation is known.  

 

Gleser, & Healy (1976) suggested that the estimator d  is inadmissible under a 

squared error loss function,    2,   ddL and a uniformly minimum risk estimator 

LMMST  under a square error loss function is obtained. First of all, he considered the class 

of estimators that is a convex combination of  
1T  and  

2T  in a form of 
2211 TcTc  . Then, 

he compared the risks of the estimator LMMST  with the estimator d . According to Khan 

(1968), XT 1 , ScT n2  where,

 
















 


22

1

2

nn

b

n
cn .  The form of the 

estimators obtained are 2211 TcTcTLMMS   where, 
12

1

 nbv ,   11 212

2  

ncnnbv ,

  1

212121


 vvvvvc ,   1

212112


 vvvvvc . The corresponding minimum risk is, 

  21

212121 


 vvvvvv . The results are summarized as follows. First, the estimator 

LMMST is more efficient than the estimator d  in the terms of risk. Second, the estimator 

LMMST  is also asymptotically normal. However, the estimators LMMST  and d   have the 

flaw of being possibly negative with positive probability for estimating a positive 

parameter. 

 

Khan (2013) reconsidered the estimators  d   and  LMMST  to improve their 

efficiency. Furthermore, he also compared their risk with the maximum likelihood 
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estimator. Recall, that before we considered XT 1  and 
12

1

 nbv . Let XBT *

1  and 

  1222*

1 1  nBbBv  where,        11212
 B , n

b

1
 .  Therefore, 

the modified estimators for d  and LMMST  are   2

*

1

* 1 TccTd   and 

2

*

2

*

1

*

1

* TcTcTLMMS  where,   1

2

*

12


 vvvc ,   1

2

*

12

*

12

*

1


 vvvvvc , 

  1

2

*

12

*

1

*

1

*

2


 vvvvvc ,   is the cumulative distribution function of standard 

normal distribution, and    is the density function of the standard normal 

distribution. Next, he examined the asymptotic behavior of the modified estimators for 

B  and 
*

1v .  The theoretical results are summarized as follows. First, the modified 

estimators have smaller asymptotic variance. Second, the modified estimators are also 

asymptotically normal. Simulation studies indicate that the risks of the modified 

estimators are a little bit different. However, the estimators may be difficult to use due 

to their cumbersome form. Moreover, it is not even known how much does it reduces 

risk. 

 

2.7.2 Review of Literature on Statistical Tests for a Normal Mean with 

Known Coefficient of Variation 

 

 Bhat, &  Rao (2007) derived the likelihood ratio test (LR) and the Wald 

tests for a normal mean with the known coefficient of variation and extended the locally 

most powerful test (LMP) derived from Hinkley (1977). The LR and the Wald tests are 

derived for a one-sided alternative and two-sided alternative, and they are compared 

with the tests that do not use the information on the coefficient of variation (the classical 

t, sign and Wilcoxon singed rank tests). The results of simulation studies indicate that 

the LMP test is the best test for the one-sided alternative while for the two-sided 

alternative, the LR or the Wald are better. Moreover, when the values of coefficients of 

variation are quiet large, the power of the LMP, LR, and Wald tests are almost equal to 

one. On the contrary, the performances of the t, sign and Wilcoxon singed rank tests 

are poor. Moreover, they also examined the robustness of six tests for violations of the 

normality assumption. The simulation was generated under three abnormal 
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distributions to estimate type I error rates. These three abnormal distributions are 

uniform, lognormal and gamma distributions. The results indicate that the six tests are 

close to the nominal significance level ( 05.0 ) when values of the coefficient of 

variation are small. 

Walid, Abu-Dayyeh, & Dorvlo (2013) considered tests about the normal 

mean with the known coefficient of variation and constructed several tests (one-sided) 

using the pivotal method. They derived the power functions for each test. The 

simulation results indicate that the power of each test increases as the sample size 

increases. The power of each test starts to decrease when the sample size is small and 

the value of the coefficient of variation is large. 

Panichkitkosolkul (2015b) obtained two statistical tests for the reciprocal 

of a normal mean with the known coefficient of variation b . These two tests are 

developed based on the distribution of a sample mean. The first test is based on an 

asymptotic method. The second test was developed using the simple approximate 

expression in terms of expectation and variance. Type I errors and powers are estimated 

in simulation experiments. As expected, the powers of two tests decrease as the 

coefficient of variation increases and the powers increase as the sample size ( n ) 

increases, except for 10n , and 5.0b . In addition, it is also noticed that there is no 

difference in terms of their estimated power. Therefore, the approximate test performs 

as efficiently as the asymptotic test. It is suggested that although the efficiencies of the 

two tests are not different, the approximate test is easier to calculate.  

 

2.7.3 Review of Literature on Interval Estimation for a Normal Mean 

with Known Coefficient of Variation 

 

In 2013, Fu, Wang, & Wong extended the procedure of Bhat , &  Rao 

(2007) and proposed the modified signed log-likelihood ratio method *r  for a normal 

mean when the coefficient of variation is known. They compared accuracy of 

confidence intervals obtained from the Wald method and the likelihood ratio test 

method (LR) with the confidence interval obtained by the proposed method. The 

simulation results indicate that in terms of the coverage probability, the lower tail error 

rate, the upper tail error rate and the average bias, the LR test performs the best. In 
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addition, they compare the relative efficiency of ten point estimators of    obtained by 

Anis (2008) with their proposed estimator. The results indicate that their proposed 

estimator has the second rank efficiency in comparison with other estimators. 

Niwitpong & Niwitpong (2013) proposed new confidence intervals for the 

normal population mean  with the known coefficient of variation b . The proposed 

confidence intervals are based on: The confidence interval  sCL  based on the best 

unbiased estimator suggested by Khan (1968), the best unbiased estimator suggested 

by Searls (1967). The confidence interval  
pCL  based on the prior information about 

b . In simulation studies, the results are summarized as follows. First, coverage 

probabilities of three proposed confidence intervals are equal to a nominal level 1

. Next, when the value of coefficient of variation and sample size is small, the bCL
 
is 

preferred to others. Finally, the sCL performs better than bCL  and 
pCL when 

05.0b . In all other situations, 
pCL performs better. 

Panichkitkosolkul  (2015) proposed an approximate confidence interval for 

the ratio of the normal means with  known coefficient of variation. The new confidence 

interval is derived by the approximations of the expectation and variance of estimator 

for the ratio using Taylor series expansion. The new confidence interval is compared 

with the exact confidence interval constructed by Niwitpong  et al. (2011) in term of 

coverage probability and expected length. The simulation results indicate that the new 

confidence interval performs as efficient as the exact confidence interval, but the 

approximate confidence interval is easier to compute. 
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CHAPTER 3 

RESEARCH METHODOLOGY 

 

 The research methodology for theoretical part and computational part are 

discussed separately.  

 

3.1 Theoretical Part 

 

In this part, the objective is to investigate theoretical properties of the best 

unbiased estimator for the mean with known coefficient of variation suggested by Khan 

(1968). First, we prove the estimator is unbiased. Next, we find the Cramer-Rao Lower 

Bound that shows that the estimator has a minimum variance. Finally, we assert that 

the estimator is asymptotically normal and hence consistent. 

We propose test statistics for a normal mean are based on the best unbiased 

estimator suggested by Khan (1968), the uniformly minimum risk estimator suggested 

by Gleser, & Healy (1976), the modified estimator of Khan (1968), the modified 

estimator of Gleser, & Healy (1976), and the sample mean.  

 

3.2 Computational Part  

 

In this part, the objectives are to estimate probability of type I error and power 

of the test of proposed test statistics. For the simulation study, we use the Monte Carlo 

method for generating random samples of size n  from the normal distribution with 

mean   and variance 
22b , where  /b , 0  is the coefficient of variation. 

Therefore, we take 0  , where we choose  = 1.0 to estimate the probability of 

type I error and  = 0.85, 0.9, 0.95, 1.1, 1.2, 1.3, 1.4, 1.5 to estimate the power of the 

test.  We need to study for following combinations of n , b , 0 ,  , and   are as 

follows: 

  n  = 16, 25, 35, 

  b  = 0.7, 1.5, 2.0, 2.5, 3.0, 
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  0 = 2, 3, 4, 5, 

   = 0.85, 0.9, 0.95, 1.0, 1.1, 1.2, 1.3, 1.4, 1.5, 

   = 0.01, and 0.05.  

 

The simulations are repeated 10,000 times for each combination using R program 

version 3.1.1. 

 

The steps for estimating the probability of type I error and power are as follows:  

 

 Step 1: State the null hypothesis and alternative hypothesis 

00 :  H  

0:  AH  

 Step 2: Generate random samples of size n  from  22,  bN  for the given 

values of n , b , 0 ,  , and  . Estimate the probability of type I error by generating 

random samples that satisfies 0H  and estimate the powers by generating random 

samples that satisfies
AH  .  

 Step 3: Construct and calculate all test statistics.                                    

 Step 4: Set the decisive criterion for the test is to reject the null hypothesis

0H  if 
2

zZ   or 
2

zZ  at the given significance level  .  

 Step 5: Count the numbers of times the null hypothesis has been rejected. 

 Step 6: Repeat steps 2-5, 10,000 times for each combination.     

 Step 7: Compute probability of type I error and powers by counting the 

numbers of times the null hypothesis is rejected from step 5 divided the number of 

10,000 replications.  

 Step 8: Compare the estimated probability of type I error of each test 

statistic to the criterion of Cochran (1954).   

 Step 9: Compare the powers of the test statistic and recommend the best 

test statistics for this situation. 

 Step 10: Plot the graphs of powers to compare. 
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Figure 3.1: Programming Flowchart 
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CHAPTER 4 

THEORETICAL RESULTS 

 

4.1 Introduction 

 

In this thesis, after we investigate the theoretical properties of Khan’s 

(1 9 6 8 )  point estimate, we construct the novel test statistics for a mean of normal 

distribution. First of all, we consider a point estimator for the normal mean under the 

assumption of known coefficient of variation  /b . Hence, the probability density 

function, denoted by  22,  bN   can be written as 

  
 

22

2

222

2

1
,| 




 b

x

e
b

bxf



 ,                                                           (4.1) 

where 0,0,  bx  .   

 

 Let  22,~  bNX i
, ni ,...,2,1  be independent identically distributed 

normal random variables with mean  and variance 
22b . Khan (1968) suggested the 

point estimator d  of the mean with the known coefficient of variation b  as 

  21 1 ddd   , 10    

Where 



n

i

iXnXd
1

1

1
, Sncd 2

, 















 


22

1

2

1 nn

b
c , and S  is the 

minimum likelihood estimator of standard deviation. 

 

 We investigate the theoretical properties of this point estimator. Khan 

(1 9 6 8 )  stated that it is an unbiased estimator for the mean with minimum variance. 

Furthermore, this estimate is asymptotically normal.   

 

 Consequently, the structure of this chapter is organized as follows. In 

Section 4.2 it is shown that the estimator is unbiased. In Section 4.3 it is shown the 

estimator has minimum variance among all unbiased estimators. The important 

properties of asymptotically normal of the estimator and hence its consistency are 
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established in Section 4.4. In Section 4.5, the new test statistics for a normal mean are 

constructed.  

 

4.2 Unbiasedness of the Estimator 

 

 From definition 2.5 the estimator d  is unbiased if   dE  for all . We 

prove these properties for estimators 
1d  , 

2d , and d  separately.  

 

First, we take expected value to 
1d  and get 

 

      












n

i

n

i

i

n

i

i
n

XE
n

X
n

EXEdE
111

1

111
  (because   iXE ) 

                                               n
n

1
.  

Therefore,          

    1dE . 

 

Then, we find the expected value of 2d  in the indirect way.  Let  

 

 
2

1

2

2

2










n

i

i XX
nS

U , then 2

1~ nU   ,  

 

where 2

1n  denotes the chi-square distribution with 1n  degrees of freedom. Hence 

the probability density function of  U  is 

 0,

2
2

1
Γ

1
)( 2

1
2

1

2

1






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

 
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
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From this  
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n 













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


 
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






 
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2

2

1

0
2

2

1
Γ

1
)()( .                         (4.2) 
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In order to evaluate the last integral, we make a substitution tu 2 
2

u
t   and    

dtdu 2  
2

du
dt  . Hence  

 
22
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2
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2
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222 .       

From the definition of the Gamma function:   


 dxex x

0

1
 we derive that                       

 







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





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
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0

2
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2 n
dueu
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.                                                                     (4.3)                     

From (4.2) and (4.3),   we get                                            

 

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Thus,  
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This equation can be rewritten as 





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consideration that  b , we obtain  
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From the fact that 















 
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22

1

2

1 nn

b
c   and Sncd 2

. We conclude that 

  SncE .  

 

Therefore,    2dE . Consequently, we obtained     .21  dEdE

 
 

Finally, we find expected value of d  as 

 

            )1()1()1( 1212 dEdEddEdE . 

 

Therefore,   dE . 

 

The property that d  is an unbiased estimator is obtained. In the next section we 

prove that d  is a minimum variance unbiased estimator.  

 

4.3 Minimum Variance of the Estimator  

 

 From theorem 2.1, the estimator d  has minimum variance when its 

variance attains the Cramer-Rao Lower Bound or the reciprocal of the Fisher 

information  I . 

The Fisher information is given by 

 

    
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



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
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XfnEI .                                                        (4.5) 

 

The formula of Cramer-Rao Lower Bound is following 
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First, we find the variance of d  

 

      12 )1( dVardVardVar     (because 1d  and 2d  are independent)    

                          1

2

2

2 )1( dVardVar   .                                                 (4.7) 

  

From (4.7), we will find an optimum value of   by minimizing  dVar  in (4.7) with 

respected to . First, we find the first-order partial derivatives and set this partial is 

equal to 0 

 

 
 

 
 

       01 1

2

2
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d

d



.                        (4.8) 

 

From (4.8), we solve the solution to find the optimal value of   we obtain     

         

      0122 12  dVardVar  . 

 

Then, we get the optimum value of  , that is 
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From (4.9) we can get 
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Next, the optimum value of   has the asymptotic behavior for large n  as  
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we can show that    
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it is known fact that  
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From (4.11), (4.12) and (4.13) we get 
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Thus we obtain, 
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Recall again, the probability density function of the normal distribution with known 

coefficient of variation b , see (4.1) 
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We take the logarithm of the probability density function,  
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We take the first derivatives of this equation with respect to   and 
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The second derivative  is 
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Then, we take expected value of the second derivatives as 
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From the previous results, we have 

   XE , and   22bXVar  .                                                          (4.15)
        

 
 

After that, we need to find  2XE   from  

 
      22 XEXEXVar  .                                              (4.16) 

 

From (4.14) and (4.15)       
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        22222   bXEXVarXE .                                           (4.17) 

 

Substituting   XE  form (4.15) and     222 1  bXE  from (4.16) into













),;(ln 22

2

2




bXfE  we obtain  

 
 

22

2

222

22

2

2 1321
),;(ln




 b

b

b
bXfE















  

 
22

221

b

b
                      

  

 

 and the Fisher information is

 

 

 
 

 





I
b

nb
bXfnE 



















22

2
22

2

2 21
),;(ln

 

 

Thus, the Cramer-Rao Bound is   

 
   

.
21

),;(ln

11
2

22

22

2

2 nb

b

bxfnE
I 

























                                

(4.18) 

From (4.14) and (4.18), we can see that

 

 
   



Inb

b
dVar

1

21 2

22




 .             

 Since  dVar  attains the Cramer-Rao Lower Bound, d  is a minimum 

variance estimator of  . Hence, from theorem 2.1 conclude that d  is a minimum 

variance unbiased estimator (MVUE) of  .  

 

The next section, the asymptotically normal of d  is established. 
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4.4 Asymptotically Normal and Consistency 

 

 Based on theorem 2.3 and definition 2.7, we will show that the estimator 

d  converges in probability to  .  

 For every 0 , we get 

                      

     

 





































 )(d

2

21

2

2

22

21
2

1

2

de
b

nb
dP

d

nb

b

                       (4.19) 

 

If we let  dy then   dy dd  . Substituting in (4.19), we get 

 
   

dze
b

nb
dP

y

nb

b

2

2

22

21
2

1

2

2

21 


























 


 

Let  

 
  


















nb

b

y
z

221



,  then 

  

















nb

b

dy
dz

221



.                                   (4.20) 

 

Substituting (4.20), we obtain  

 

             
 

 

dzedP
z

b

nb

b

nb

2

2

2

2

1

21

21
2

1 

















  

                                 
   













 













b

nb
Z

b

nb
P

22 2121
 

Thus   1lim  dPn
. Therefore, d  converges in probability to  . From 

theorem 2.4 we can infer that d  also converges in distribution to  . 

 

Based on theorem 2.6 (Slutsky’s Theorem), we illustrate that asymptotic 

normality implies consistency. Suppose that  
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 

 1,0~

21 2

NZ

b

b

d
n d






















. 

 

By applying Slutsky’s Theorem we conclude   

 

               

 

 
.0

21
lim

21

21 2

1
2

2

1
2

2

1
2































































Z
n

bbu

bbu

d
n

n

bbu

n



 

 

 Therefore, 0 dd  . From theorem 2.4, we know that convergence 

in distribution to a point is equivalent to the convergence in probability, so d  is a 

consistent estimator of  . 

 

4.5 Tests for Normal Mean with Known Coefficient of Variation      

                                                                                        

When the coefficient of variation is known, for the hypothesis testing 

00 :  H  versus 0:  AH , we propose the following tests for a normal mean 

 

Test 1: kT -test is based on the best unbiased estimator proposed by Khan 

(1968),   21 1 ddd   . Under 0H , we apply the central limit theorem to find the 

limiting distribution of the test statistic:                                       

                                              
   

 1,0~

210

0
2

1

21 N
vv

dvv
Tk








.                            (4.21)  

Where, 
12

1

 nbv ,   11 212

2  

ncnnbv , and 















 


22

1

2

nn

b

n
cn .

  

 

Test 2:  
ghT -test is based on the uniformly minimum risk estimator proposed by 

Gleser, & Healy (1976), 2211 TcTcTLMMS  . Under 0H , we apply the central limit 

theorem central limit theorem to find the limiting distribution of the test statistic: 
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                                  1,0~

2

2

21

2

10

0

21
N

vcvc

cc

T

T

LMMS

gh



















.                                  (4.22) 

Where, XT 1 , ScT n2 ,   1

212121


 vvvvvc , and   1

212112


 vvvvvc . 

 

Test 3: kmT -test is based on the modified estimator of Khan (1968)

  2

*

1

* 1 TccTd  . Under 0H , we apply the central limit theorem to find the limiting 

distribution of the test statistic:  

                                                       
   

 1,0~

2

*

10

0

*
2

1

2

*

1 N
vv

dvv
Tkm








.                            (4.23) 

Where,  XBT *

1 ,   1222*

1 1  nBbBv ,   1

2

*

12


 vvvc ,

       11212
 B ,  and 

b

n
 .   

 

Test 4: 
ghmT -test is based on the modified estimator 

2

*

2

*

1

*

1

* TcTcTLMMS   of   

Gleser, & Healy (1976). Under 0H , we apply central limit theorem to find the limiting 

distribution of the test statistic: 

                                         1,0~

2

2*

2

*

1

2*

10

0*

2

*

1

*

N

vcvc

cc

T

T

LMMS

ghm

























.                      (4.24) 

Where,   1

2

*

12

*

12

*

1


 vvvvvc , and   1

2

*

12

*

1

*

1

*

2


 vvvvvc . 

 

Test 5: bT -test is based on the sample mean, 



n

i

iXX
1

.  Under 0H , we apply 

the central limit theorem to find the limiting distribution of the test statistic: 

                                         
 

 1,0~
0

0
2

1

N
b

Xn
Tb








.                              (4.25) 
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Table 4.1: The rejection criterion for testing 00 :  H  versus 0:  AH   at the 

significance level  .  

 

Test statistics Rejection criterion 

kT  
2

zTk   or 
2

zTk   

ghT  
2

zTgh   or 
2

zTgh   

kmT  
2

zTkm   or 
2

zTkm   

ghmT  
2

zTghm   or 
2

zTghm   

bT  
2

zTb   or 
2

zTb   

 

Where z  is the upper 
th quantile of the standard normal distribution. 
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CHAPTER 5 

COMPUTATIONAL RESULTS 

 

5.1 Introduction 

 

 In this chapter, a Monte Carlo simulation study is used to construct the 

procedure of the proposed test. In Section 5.2, we discuss the results of Monte Carlo 

simulations for calculating the probability of type I error and power performances of 

the proposed tests. We fix type I error rates and compare powers of previously discussed 

test statistics in order to recommend the best test statistics based on the coefficient of 

variation. In Section 5.4, we plot graphs of the powers of the tests in order to visualize 

the comparisons. The computational results are conducted in R program version 3.1.1.  

 

5.2 Results of Monte Carlo Simulations  

 

Monte Carlo simulations are performed to evaluate the performance of the 

proposed test statistics. First, we generate random samples of size n  from the normal 

distribution with mean   and variance 
22b ,  /b , 0 . We fix the nominal 

significance level  . Next, we take 0  , where we choose  = 1.0  to estimate 

the  probability of type I error and  = 0.85, 0.9, 0.95, 1.1, 1.2, 1.3, 1.4, 1.5  to estimate 

the power of the test. Then, we conduct the tests and count the numbers of times when 

the null hypotheses has been rejected.  

 For this, we need to study the following combinations of n , b , 0 ,  , and 

 . 

  n  = 16, 25, 35, 

  b  = 0.7, 1.5, 2.0, 2.5, 3.0, 

  0 = 2, 3, 4, 5, 

   = 0.85, 0.9, 0.95, 1.0, 1.1, 1.2, 1.3, 1.4, 1.5, 

   = 0.01, and 0.05. 

The simulation procedure repeats 10,000 times for each combination.  
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 After that, we estimate the probability of type I error and power for each 

test. Next, we consider the tests that are able control type I error (the probability of type 

I error should be close to the nominal ) with the criterion of Cochran (1954). Finally, 

we compare powers of test statistics for each situation in order to recommend the test 

statistics based on the sample size and the coefficient of variation. 

 In this section, we divide the performance of simulation results into 2 parts. 

Part 1 is titled as ability to controlling the probability of type I error. The results are 

reported in Tables 5.1-5.2. Part 2 is titled as power of the tests.  The results are reported 

in Tables 5.3- 5.18. 

 

 5.2.1 Ability to Control the Probability of type I error 

 

       5.2.1.1 Estimated probability of type I error at 01.0 . 

 

 From Tables 5.1, we see that the kT  procedure could control the probability 

of type I error for almost all values of 0  and b , except when 0 = 2, b = 2.0, n = 16, 

and 0 = 2, b = 3.0, n = 25.  

The 
ghT

 
procedures could not control the probability of type I error for a 

small sample size and large values of b .  For n = 25,  the 
ghT  procedure could control 

the probability of type I error for almost all cases, except when 0 = 2, b = 3.0; 0 = 4, 

b = 1.5, and 0 = 4, b = 2.0 while for n = 35,  the 
ghT

 
procedures also could not control 

the probability of type I error when 0 = 3, b = 2.5, and 0 = 3, b = 3.0.   

 The kmT  procedure could control the probability of type I error for almost 

all values of 0  and b ,  except when 0 = 2, b = 2.0 , n = 16 ; 0 = 2, b = 3.0, n = 16.   

 The 
ghmT  procedure could not control the probability of type I error for a 

small sample size and large values of b . Whereas in n = 25 and 35,  the 
ghmT  test could 

control the probability of type I error for almost all values of 0  and  b , except when 
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0 = 2, b = 3.0 ; 0 = 4, b = 1.5, and 0 = 4, b = 2.0. The results for 
ghmT  procedures 

are similar to the results for the procedure of 
ghT .  

For the bT  procedure, this test could control the probability of type I error 

for all combinations. 
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n  0  b  
Test statistics 

kT  ghT  
kmT  ghmT  

bT  

 

 

 

 

 

 

 

 

 

16 

 

 

2 

0.7 

1.5 

2.0 

2.5 

3.0 

0.0108 

0.0137 

0.0178 

0.0147 

0.015 

0.012 

0.0169 

0.0208 

0.017 

0.0188 

0.0108 

0.0136 

0.0178 

0.0149 

0.0157 

0.012 

0.017 

0.0205 

0.0169 

0.0187 

0.0097 

0.0092 

0.0092 

0.0098 

0.0108 

 

 

3 

0.7 

1.5 

2.0 

2.5 

3.0 

0.013 

0.0145 

0.0137 

0.0138 

0.015 

0.0147 

0.017 

0.0169 

0.0165 

0.0183 

0.013 

0.0144 

0.0134 

0.0144 

0.015 

0.0147 

0.0169 

0.0168 

0.0164 

0.0186 

0.0112 

0.0104 

0.0097 

0.0106 

0.0117 

 

 

4 

0.7 

1.5 

2.0 

2.5 

3.0 

0.0129 

0.0118 

0.0132 

0.013 

0.0146 

0.0144 

0.0142 

0.015 

0.0163 

0.0173 

0.0129 

0.0117 

0.0131 

0.0126 

0.0141 

0.0144 

0.0141 

0.015 

0.0163 

0.0166 

0.0082 

0.0083 

0.0104 

0.0081 

0.0088 

 

 

5 

0.7 

1.5 

2.0 

2.5 

3.0 

0.013 

0.0135 

0.0144 

0.015 

0.0145 

0.0145 

0.0161 

0.017 

0.0184 

0.0174 

0.013 

0.0134 

0.0147 

0.015 

0.0146 

0.0145 

0.015 

0.0169 

0.0179 

0.0171 

0.009 

0.0097 

0.0103 

0.0108 

0.01 

 

 

 

 

 

 

 

 

 

25 

 

 

2 

0.7 

1.5 

2.0 

2.5 

3.0 

0.0113 

0.0136 

0.0131 

0.0127 

0.0151 

0.0121 

0.015 

0.0149 

0.0142 

0.0168 

0.0113 

0.0135 

0.0132 

0.0129 

0.0148 

0.0121 

0.015 

0.015 

0.0142 

0.0163 

0.0079 

0.0096 

0.0111 

0.0119 

0.0109 

 

 

3 

0.7 

1.5 

2.0 

2.5 

3.0 

0.0122 

0.0118 

0.0112 

0.012 

0.0124 

0.013 

0.0133 

0.0129 

0.0143 

0.014 

0.0122 

0.0117 

0.0111 

0.0113 

0.0124 

0.013 

0.0133 

0.0129 

0.014 

0.0141 

0.0091 

0.0091 

0.0102 

0.0097 

0.01 

 

 

4 

0.7 

1.5 

2.0 

2.5 

3.0 

0.0115 

0.0149 

0.015 

0.0122 

0.0141 

0.012 

0.0173 

0.0178 

0.0143 

0.015 

0.0115 

0.0148 

0.015 

0.012 

0.0138 

0.012 

0.0173 

0.0179 

0.0141 

0.015 

0.0091 

0.0094 

0.0086 

0.0104 

0.0113 

 

 

5 

0.7 

1.5 

2.0 

2.5 

3.0 

0.0108 

0.0134 

0.0134 

0.0136 

0.0135 

0.0114 

0.0146 

0.015 

0.015 

0.015 

0.0108 

0.0134 

0.0135 

0.0136 

0.0137 

0.0114 

0.0145 

0.015 

0.015 

0.015 

0.0102 

0.0108 

0.0116 

0.0112 

0.0107 

 

 

 

Table 5.1: Estimated probability of type I error at 01.0 . 
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n  0  b  
Test statistics 

kT  ghT  
kmT  ghmT  

bT  

 

 

 

 

 

 

 

 

 

35 

 

 

2 

0.7 

1.5 

2.0 

2.5 

3.0 

0.0114 

0.0119 

0.0132 

0.0123 

0.0114 

0.0119 

0.0127 

0.0146 

0.0136 

0.0123 

0.0114 

0.0119 

0.0132 

0.0125 

0.0112 

0.0119 

0.0127 

0.0144 

0.0139 

0.0127 

0.0093 

0.0104 

0.0083 

0.0095 

0.01 

 

 

3 

0.7 

1.5 

2.0 

2.5 

3.0 

0.0073 

0.0125 

0.0107 

0.0146 

0.0148 

0.0078 

0.0132 

0.012 

0.0155 

0.0163 

0.0073 

0.0125 

0.0108 

0.0146 

0.0146 

0.0078 

0.0132 

0.012 

0.0155 

0.016 

0.0094 

0.0109 

0.0097 

0.0086 

0.0123 

 

 

4 

0.7 

1.5 

2.0 

2.5 

3.0 

0.0106 

0.0123 

0.0129 

0.0128 

0.0129 

0.0112 

0.013 

0.014 

0.014 

0.0143 

0.0106 

0.0123 

0.0129 

0.0128 

0.013 

0.0112 

0.013 

0.0141 

0.0139 

0.0141 

0.0101 

0.0099 

0.0117 

0.0098 

0.0101 

 

 

5 

0.7 

1.5 

2.0 

2.5 

3.0 

0.0096 

0.0121 

0.0124 

0.0123 

0.0107 

0.01 

0.0128 

0.0139 

0.0132 

0.012 

0.0096 

0.0121 

0.0124 

0.0119 

0.0107 

0.01 

0.0127 

0.014 

0.0131 

0.0117 

0.0084 

0.0097 

0.0097 

0.0117 

0.0106 

 

Table 5.1 (Continued): Estimated probability of type I error at 01.0 . 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

   The bold font is the tests that are able to control the probability of type I error. 
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     5.2.1.2 Estimated probability of type I error at 05.0 . 

 

 From Table 5.2, we see that the kT  procedure could control the probability 

of type I error for all values of 0  and  b  when n = 25, and 35. While n = 16, the kT  

test could control the probability of type I error, except when 0 = 2, b = 2.0; 0 = 2, 

b = 2.5; 0 = 3, b = 2.0; 0 = 3, b = 2.5; 0 = 4, b = 2.0; 0 = 5, b = 2.0,  and 0

= 5, b = 3.0.  

The 
ghT

 
procedure could not control the probability of type I error for a 

small sample size and large values of b . Whereas in n = 25, the 
ghT  procedure could 

control the probability of type I error, except when 0 = 3, b = 2.0; 0 = 3, b = 2.5; 

0 = 3, b = 3.0; 0 = 5, b = 1.5; 0 = 5, b = 2.0, and 0 = 5, b = 2.5. When n = 35, 

the 
ghT  procedure could control the probability of type I error for almost all values of 

0  and b ,  except when 0 = 2, b = 2.5.   

The kmT  procedure could control the probability of type I error for all values 

of 0  and  b  for n = 25 and 35, except when 0 = 5, b = 2.5. While n = 16, the kmT  

test could control the probability of type I error, except when 0 = 2, b = 2.5; 0 = 3, 

b = 2.0; 0 = 3, b = 2.5; 0 = 4, b = 2.0; 0 = 5, b = 2.0, and 0 = 5, b = 3.0. This 

shows that the kmT  procedure is similar to the procedure kT .  

For the procedure 
ghmT , the results are similar to the procedure 

ghmT .  

For the bT  procedure, this test still could control the probability of type I 

error for all combinations. 
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n  0  b  
Test statistics 

kT  ghT  
kmT  ghmT  

bT  

 

 

 

 

 

 

 

 

 

16 

 

 

2 

0.7 

1.5 

2.0 

2.5 

3.0 

0.0537 

0.0572 

0.0616 

0.062 

0.0583 

0.057 

0.0544 

0.069 

0.0697 

0.0568 

0.0537 

0.0571 

0.06 

0.0616 

0.0577 

0.057 

0.0542 

0.068 

0.0603 

0.0564 

0.05 

0.049 

0.0505 

0.0518 

0.0499 

 

 

3 

0.7 

1.5 

2.0 

2.5 

3.0 

0.0573 

0.0571 

0.0604 

0.0638 

0.0583 

0.0511 

0.0558 

0.0689 

0.0724 

0.0575 

0.0573 

0.0575 

0.0607 

0.0619 

0.0577 

0.0511 

0.0557 

0.0692 

0.0707 

0.057 

0.0508 

0.0504 

0.0505 

0.048 

0.0421 

 

 

4 

0.7 

1.5 

2.0 

2.5 

3.0 

0.0563 

0.0558 

0.0602 

0.0599 

0.0588 

0.0518 

0.0529 

0.0694 

0.0682 

0.0673 

0.0563 

0.0558 

0.0602 

0.0599 

0.0591 

0.0518 

0.0528 

0.0677 

0.0662 

0.0664 

0.0537 

0.0543 

0.0506 

0.0502 

0.0482 

 

 

5 

0.7 

1.5 

2.0 

2.5 

3.0 

0.056 

0.0591 

0.0616 

0.0571 

0.0643 

0.0589 

0.056 

0.0711 

0.0653 

0.0713 

0.056 

0.0594 

0.0614 

0.0569 

0.0614 

0.0589 

0.0559 

0.0697 

0.0648 

0.0701 

0.0483 

0.0494 

0.0498 

0.0516 

0.0498 

 

 

 

 

 

 

 

 

 

 

25 

 

 

2 

0.7 

1.5 

2.0 

2.5 

3.0 

0.0523 

0.0516 

0.052 

0.0534 

0.055 

0.0539 

0.0562 

0.0574 

0.0594 

0.06 

0.0523 

0.0517 

0.0521 

0.0546 

0.054 

0.0539 

0.0562 

0.0572 

0.0593 

0.0596 

0.0446 

0.0477 

0.0484 

0.047 

0.0515 

 

 

3 

0.7 

1.5 

2.0 

2.5 

3.0 

0.0523 

0.0537 

0.0597 

0.0577 

0.0592 

0.0553 

0.0585 

0.0642 

0.0617 

0.0649 

0.0523 

0.0538 

0.0594 

0.0577 

0.0598 

0.0553 

0.0587 

0.0639 

0.0614 

0.0655 

0.0524 

0.0529 

0.0474 

0.0481 

0.0464 

 

 

4 

0.7 

1.5 

2.0 

2.5 

3.0 

0.0505 

0.0549 

0.0565 

0.0509 

0.0531 

0.0524 

0.06 

0.06 

0.0555 

0.058 

0.0505 

0.0551 

0.0567 

0.0507 

0.0525 

0.0524 

0.06 

0.06 

0.0558 

0.0572 

0.0489 

0.049 

0.0508 

0.0519 

0.0508 

 

 

5 

0.7 

1.5 

2.0 

2.5 

3.0 

0.0523 

0.0578 

0.0581 

0.0596 

0.0519 

0.0544 

0.0621 

0.0625 

0.0647 

0.0572 

0.0523 

0.0578 

0.058 

0.0611 

0.0523 

0.0544 

0.0624 

0.0627 

0.0656 

0.0572 

0.0503 

0.0529 

0.0459 

0.0495 

0.0489 

 

Table 5.2: Estimated probability of type I error at 05.0 . 
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n  0  b  
Test statistics 

kT  ghT  
kmT  ghmT  

bT  

 

 

 

 

 

 

 

 

35 

 

 

2 

0.7 

1.5 

2.0 

2.5 

3.0 

0.0529 

0.0519 

0.0542 

0.0595 

0.0553 

0.0545 

0.0544 

0.0576 

0.0624 

0.0582 

0.0529 

0.0519 

0.0544 

0.0589 

0.0545 

0.0545 

0.0545 

0.0574 

0.0629 

0.0581 

0.047 

0.0512 

0.0538 

0.0536 

0.0517 

 

 

3 

0.7 

1.5 

2.0 

2.5 

3.0 

0.0556 

0.0485 

0.0563 

0.0516 

0.0506 

0.0579 

0.0509 

0.0599 

0.0554 

0.0547 

0.0556 

0.0485 

0.0561 

0.052 

0.0504 

0.0579 

0.0509 

0.0598 

0.0557 

0.0541 

0.051 

0.051 

0.0499 

0.0513 

0.0533 

 

 

4 

0.7 

1.5 

2.0 

2.5 

3.0 

0.0532 

0.0557 

0.0545 

0.0564 

0.0562 

0.0549 

0.059 

0.0587 

0.0589 

0.0591 

0.0532 

0.0558 

0.0548 

0.0564 

0.0566 

0.0549 

0.059 

0.0587 

0.0588 

0.0596 

0.0526 

0.0518 

0.0506 

0.0523 

0.056 

 

 

5 

0.7 

1.5 

2.0 

2.5 

3.0 

0.0531 

0.0536 

0.0515 

0.0529 

0.0542 

0.0545 

0.0566 

0.0552 

0.057 

0.0578 

0.0531 

0.0536 

0.0516 

0.0524 

0.055 

0.0545 

0.0566 

0.0553 

0.0561 

0.0578 

0.0467 

0.0478 

0.0474 

0.0512 

0.0528 

 

Table 5.2 (Continued): Estimated probability of type I error at 05.0 .  

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

   The bold font is the tests that are able to control the probability of type I error. 
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5.2.2 The power of the test  

     5.2.2.1 Estimated power at 01.0 . 

 

 The results are concluded in Tables 5.3-5.10. From the previous part we 

know which test statistics could control the probability of type I error, and hence we 

paid most of the attention to them. We found that the power of all tests tends to get 

higher when the sample size increases and the value of the coefficient of variation 

decreases.   

 The results from Tables 5.3-5.10 show that when n = 16, b  1.5, the 
ghT  

test has the same power as the 
ghmT test and the kT  test has the same power as the kmT  

test.   

 For n = 16, b  1.5, the kmT  procedure seems to be the most powerful and 

we see that when b  1.5 the power of all tests starts decreasing. For example, in Table 

5.10, for n = 35, 0 = 4,  = 1.5, the powers of kmT  are 0.9893, 0.9273, 0.9039, 0.8879 

and 0.8908 for the values of b = 0.7, 1.5, 2.0, 2.5 and 3.0, respectively.  

 When n = 25, b  1.5, the 
ghT  test the same power as the 

ghmT test and the 

kT
 
test has the same power as the kmT  test.  For n = 25, b  1.5, the 

ghmT procedure 

appears to be the most powerful when compared to others.   

For n = 35, b  1.5, the 
ghT  test has the same high power as the 

ghmT test 

and the kT  test has the same power as the kmT  test. For n = 35, b  1.5, the 
ghmT  

procedure appears to be the most powerful when compared to others. In addition, the 

power of all tests is close to 1 for b = 0.7,  = 1.5.   

For the bT  test, although this test could control the probability of type I 

error for all combinations, but in term of powers, this test has got the lowest power for 

all combinations. 
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n  0  b  
Test statistics 

kT  ghT  
kmT  ghmT  

bT  

 

 

 

 

 

 

 

 

 

16 

 

 

2 

0.7 

1.5 

2.0 

2.5 

3.0 

0.0405 

0.0158 

* 

0.0118 

0.013 

0.0448 

* 

* 

* 

* 

0.0405 

0.0157 

* 

0.0123 

* 

0.0448 

* 

* 

* 

* 

0.0205 

0.006 

0.0043 

0.0031 

0.0028 

 

 

3 

0.7 

1.5 

2.0 

2.5 

3.0 

0.0419 

0.0156 

0.0118 

0.011 

0.0136 

0.0461 

* 

* 

* 

* 

0.0419 

0.0154 

0.0114 

0.0102 

0.0139 

0.0461 

* 

* 

* 

* 

0.0203 

0.0051 

0.0037 

0.0032 

0.0039 

 

 

4 

0.7 

1.5 

2.0 

2.5 

3.0 

0.0369 

0.0159 

0.0134 

0.0116 

0.0095 

0.0412 

0.0203 

0.0171 

* 

* 

0.0369 

0.0154 

0.0135 

0.012 

0.0097 

0.0412 

0.0205 

0.0171 

* 

* 

0.0228 

0.0056 

0.0043 

0.0041 

0.0041 

 

 

5 

0.7 

1.5 

2.0 

2.5 

3.0 

0.0369 

0.0125 

0.013 

0.0122 

0.0112 

0.042 

* 

* 

* 

* 

0.0369 

0.0124 

0.0133 

0.0126 

0.0118 

0.042 

0.0162 

* 

* 

* 

0.0189 

0.0054 

0.0035 

0.0025 

0.0033 

 

 

 

 

 

 

 

 

 

25 

 

 

2 

0.7 

1.5 

2.0 

2.5 

3.0 

0.0853 

0.0354 

0.0306 

0.0281 

* 

0.0895 

0.0395 

0.0354 

0.0316 

* 

0.0853 

0.0355 

0.0307 

0.0282 

0.0271 

0.0895 

0.0395 

0.0353 

0.0319 

* 

0.0398 

0.0086 

0.0069 

0.0035 

0.0049 

 

 

3 

0.7 

1.5 

2.0 

2.5 

3.0 

0.0847 

0.0342 

0.0287 

0.0293 

0.0281 

0.0906 

0.0387 

0.0325 

0.0333 

0.0326 

0.0847 

0.0341 

0.0288 

0.0293 

0.028 

0.0906 

0.0388 

0.0325 

0.034 

0.0342 

0.0432 

0.007 

0.0059 

0.0028 

0.0032 

 

 

4 

0.7 

1.5 

2.0 

2.5 

3.0 

0.087 

0.0353 

0.0297 

0.0244 

0.0243 

0.0913 

* 

* 

0.0286 

0.0283 

0.087 

0.0354 

0.0297 

0.0242 

0.0256 

0.0913 

* 

* 

0.0278 

0.03 

0.0377 

0.0082 

0.0038 

0.0038 

0.004 

 

 

5 

0.7 

1.5 

2.0 

2.5 

3.0 

0.0832 

0.0354 

0.0274 

0.0272 

0.025 

0.0887 

0.0395 

0.0318 

0.0321 

0.0291 

0.0832 

0.0353 

0.0273 

0.0276 

0.0246 

0.0887 

0.0394 

0.0319 

0.0323 

0.0289 

0.0363 

0.0059 

0.0054 

0.0036 

0.0039 

 

Table 5.3: Estimated power for 85.0 and 01.0 . 
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n  0  b  
Test statistics 

kT  ghT  
kmT  ghmT  

bT  

 

 

 

 

 

 

2 

0.7 

1.5 

2.0 

2.5 

3.0 

0.1538 

0.0627 

0.0502 

0.0524 

0.0456 

0.1591 

0.0675 

0.0538 

0.0568 

0.0514 

0.1538 

0.0627 

0.0502 

0.0514 

0.0466 

0.1591 

0.0675 

0.0541 

0.0568 

0.051 

0.0583 

0.0111 

0.0066 

0.0054 

0.0041 

 

 

3 

0.7 

1.5 

2.0 

2.5 

3.0 

0.1527 

0.065 

0.0514 

0.0503 

0.0485 

0.1575 

0.0709 

0.0558 

* 

* 

0.1527 

0.065 

0.0513 

0.0509 

0.0487 

0.1575 

0.0709 

0.056 

* 

* 

0.0623 

0.0084 

0.0065 

0.0061 

0.0039 

 

 

4 

0.7 

1.5 

2.0 

2.5 

3.0 

0.1507 

0.0591 

0.0535 

0.0496 

0.0456 

0.1556 

0.0653 

0.0588 

0.0546 

0.0504 

0.1507 

0.0591 

0.0537 

0.0497 

0.0466 

0.1556 

0.0653 

0.0589 

0.0552 

0.0507 

0.0616 

0.0098 

0.0052 

0.006 

0.0049 

 

 

5 

0.7 

1.5 

2.0 

2.5 

3.0 

0.1526 

0.0641 

0.0492 

0.0534 

0.0468 

0.1593 

0.0679 

0.053 

0.059 

0.0519 

0.1526 

0.0641 

0.0494 

0.0538 

0.0477 

0.1593 

0.0679 

0.053 

0.06 

0.0518 

0.0629 

0.0105 

0.0066 

0.0044 

0.0041 

 

Table 5.3 (Continued): Estimated power for 85.0 and 01.0 . 

 

 

 

 

 

 

 

 

 

 

                          

 

 

 

 

                 * indicates that the test could not control the probability of type I error.  
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n  0  b  
Test statistics 

kT  ghT  
kmT  ghmT  

bT  

 

 

 

 

 

 

 

 

 

16 

 

 

2 

0.7 

1.5 

2.0 

2.5 

3.0 

0.0166 

0.01 

* 

0.0073 

0.0065 

0.0184 

* 

* 

* 

* 

0.0166 

0.0099 

* 

0.0067 

* 

0.0184 

* 

* 

* 

* 

0.0141 

0.0062 

0.0037 

0.0039 

0.0047 

 

 

3 

0.7 

1.5 

2.0 

2.5 

3.0 

0.0183 

0.0078 

0.0085 

0.0072 

0.0074 

0.0196 

* 

* 

* 

* 

0.0183 

0.0075 

0.0085 

0.0065 

0.0069 

0.0196 

* 

* 

* 

* 

0.0114 

0.0063 

0.0055 

0.0049 

0.0041 

 

 

4 

0.7 

1.5 

2.0 

2.5 

3.0 

0.0179 

0.0079 

0.0067 

0.0082 

0.0077 

0.0201 

0.0106 

0.0086 

* 

* 

0.0179 

0.0079 

0.0066 

0.0084 

0.0083 

0.0201 

0.0103 

0.0087 

* 

* 

0.0127 

0.0055 

0.007 

0.0053 

0.0055 

 

 

5 

0.7 

1.5 

2.0 

2.5 

3.0 

0.0178 

0.0085 

0.0084 

0.0079 

0.0076 

0.0194 

* 

* 

* 

* 

0.0178 

0.0084 

0.0082 

0.0079 

0.0085 

0.0194 

0.0101 

* 

* 

* 

0.0145 

0.0057 

0.0054 

0.0044 

0.0041 

 

 

 

 

 

 

 

 

 

25 

 

 

2 

0.7 

1.5 

2.0 

2.5 

3.0 

0.0342 

0.016 

0.0153 

0.011 

* 

0.0356 

0.0185 

0.0175 

0.0131 

* 

0.0342 

0.016 

0.015 

0.0109 

0.0124 

0.0356 

0.0185 

0.0171 

0.0133 

* 

0.0199 

0.0069 

0.0051 

0.0047 

0.0053 

 

 

3 

0.7 

1.5 

2.0 

2.5 

3.0 

0.0351 

0.0167 

0.0111 

0.0128 

0.0127 

0.0373 

0.0188 

0.0142 

0.0147 

0.0147 

0.0351 

0.0168 

0.0119 

0.0125 

0.0127 

0.0373 

0.0187 

0.0141 

0.0152 

0.0144 

0.0223 

0.0065 

0.0048 

0.0039 

0.0042 

 

 

4 

0.7 

1.5 

2.0 

2.5 

3.0 

0.031 

0.0167 

0.0142 

0.0136 

0.0111 

0.0332 

* 

* 

0.015 

0.014 

0.031 

0.0166 

0.0142 

0.0134 

0.0116 

0.0332 

* 

* 

0.0153 

0.0139 

0.0206 

0.0069 

0.006 

0.0041 

0.0053 

 

 

5 

0.7 

1.5 

2.0 

2.5 

3.0 

0.0327 

0.0156 

0.0149 

0.0127 

0.0117 

0.0347 

0.0173 

0.0175 

0.0153 

0.0132 

0.0327 

0.0156 

0.015 

0.0133 

0.012 

0.0347 

0.0173 

0.0178 

0.0151 

0.0141 

0.0204 

0.0064 

0.0046 

0.0056 

0.0042 

 

Table 5.4: Estimated power for 9.0  and 01.0 . 
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n  0  b  
Test statistics 

kT  ghT  
kmT  ghmT  

bT  

 

 

 

 

 

 

 

 

 

35 

 

 

2 

0.7 

1.5 

2.0 

2.5 

3.0 

0.0509 

0.0229 

0.0195 

0.0194 

0.0219 

0.0531 

0.0246 

0.0212 

0.0221 

0.0242 

0.0509 

0.0229 

0.0194 

0.0195 

0.0222 

0.0531 

0.0246 

0.0212 

0.0225 

0.0248 

0.0279 

0.0076 

0.0071 

0.0053 

0.0051 

 

 

3 

0.7 

1.5 

2.0 

2.5 

3.0 

0.0533 

0.0242 

0.0244 

0.0195 

0.0189 

0.0557 

0.0256 

0.0268 

* 

* 

0.0533 

0.0242 

0.0242 

0.0192 

0.02 

0.0557 

0.0256 

0.0266 

* 

* 

0.0262 

0.0081 

0.0065 

0.0048 

0.0052 

 

 

4 

0.7 

1.5 

2.0 

2.5 

3.0 

0.0483 

0.0242 

0.0205 

0.0204 

0.0195 

0.0509 

0.0263 

0.0219 

0.0221 

0.0213 

0.0483 

0.0242 

0.0205 

0.02 

0.0191 

0.0509 

0.0263 

0.022 

0.0218 

0.0203 

0.0269 

0.0073 

0.0063 

0.005 

0.0051 

 

 

5 

0.7 

1.5 

2.0 

2.5 

3.0 

0.0555 

0.0216 

0.0197 

0.0207 

0.019 

0.0573 

0.0234 

0.0219 

0.0226 

0.0218 

0.0555 

0.0215 

0.0196 

0.0205 

0.0194 

0.0573 

0.0233 

0.0218 

0.0225 

0.0224 

0.026 

0.0071 

0.0074 

0.0062 

0.0039 

 

Table 5.4 (Continued): Estimated power for 9.0  and 01.0 . 

 

 

 

 

 

 

 

 

 

 

        

 

 

 

 

                 * indicates that the test could not control the probability of type I error. 
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n  0  b  
Test statistics 

kT  ghT  
kmT  ghmT  

bT  

 

 

 

 

 

 

 

 

 

16 

 

 

2 

0.7 

1.5 

2.0 

2.5 

3.0 

0.0093 

0.0074 

* 

0.0097 

0.0081 

0.0107 

* 

* 

* 

* 

0.0093 

0.0074 

* 

0.0097 

* 

0.0107 

* 

* 

* 

* 

0.008 

0.0077 

0.0081 

0.0072 

0.0059 

 

 

3 

0.7 

1.5 

2.0 

2.5 

3.0 

0.0081 

0.0084 

0.0093 

0.0078 

0.0095 

0.0097 

* 

* 

* 

* 

0.0081 

0.008 

0.009 

0.0075 

0.0092 

0.0097 

* 

* 

* 

* 

0.0084 

0.0077 

0.0069 

0.0063 

0.0066 

 

 

4 

0.7 

1.5 

2.0 

2.5 

3.0 

0.0084 

0.0074 

0.0075 

0.0075 

0.0085 

0.0095 

0.0105 

0.0098 

* 

* 

0.0084 

0.0075 

0.0075 

0.0078 

0.012 

0.0095 

0.0106 

0.0099 

* 

* 

0.0088 

0.0074 

0.0067 

0.0075 

0.0078 

 

 

5 

0.7 

1.5 

2.0 

2.5 

3.0 

0.0094 

0.0071 

0.0092 

0.0067 

0.0086 

0.0108 

* 

* 

* 

* 

0.0094 

0.007 

0.0091 

0.0068 

0.0084 

0.0108 

0.0085 

* 

* 

* 

0.008 

0.0083 

0.0063 

0.0079 

0.0071 

 

 

 

 

 

 

 

 

 

25 

 

 

2 

0.7 

1.5 

2.0 

2.5 

3.0 

0.01 

0.009 

0.0081 

0.0085 

* 

0.0112 

0.0096 

0.0095 

0.01 

* 

0.01 

0.009 

0.0082 

0.0085 

0.009 

0.0112 

0.0096 

0.0094 

0.01 

* 

0.0114 

0.0072 

0.0076 

0.0072 

0.008 

 

 

3 

0.7 

1.5 

2.0 

2.5 

3.0 

0.012 

0.0072 

0.0089 

0.0082 

0.008 

0.0129 

0.0082 

0.0109 

0.0096 

0.0094 

0.012 

0.0072 

0.0092 

0.0084 

0.0083 

0.0129 

0.0082 

0.0107 

0.0097 

0.0096 

0.0113 

0.006 

0.0071 

0.0068 

0.0066 

 

 

4 

0.7 

1.5 

2.0 

2.5 

3.0 

0.0133 

0.0088 

0.0083 

0.01 

0.0084 

0.0141 

* 

* 

0.0112 

0.0101 

0.0133 

0.0087 

0.0079 

0.0099 

0.0081 

0.0141 

* 

* 

0.011 

0.0098 

0.0097 

0.0067 

0.0074 

0.006 

0.0076 

 

 

5 

0.7 

1.5 

2.0 

2.5 

3.0 

0.0114 

0.0099 

0.0086 

0.0075 

0.0078 

0.0124 

0.0111 

0.0092 

0.009 

0.0088 

0.0114 

0.01 

0.0084 

0.0077 

0.0079 

0.0124 

0.0111 

0.009 

0.0089 

0.0094 

0.0098 

0.0093 

0.0082 

0.0068 

0.0093 

 

Table 5.5: Estimated power for 95.0  and 01.0 . 
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n  0  b  
Test statistics 

kT  ghT  
kmT  ghmT  

bT  

 

 

 

 

 

 

 

 

 

35 

 

 

2 

0.7 

1.5 

2.0 

2.5 

3.0 

0.0158 

0.0095 

0.0083 

0.0091 

0.0093 

0.0167 

0.0104 

0.0089 

0.01 

0.0105 

0.0158 

0.0095 

0.0085 

0.0093 

0.0094 

0.0167 

0.0104 

0.009 

0.0103 

0.0103 

0.0128 

0.009 

0.006 

0.007 

0.0066 

 

 

3 

0.7 

1.5 

2.0 

2.5 

3.0 

0.0155 

0.0098 

0.0088 

0.0104 

0.0085 

0.0161 

0.0106 

0.01 

* 

* 

0.0155 

0.0098 

0.0088 

0.0104 

0.0085 

0.0161 

0.0106 

0.0099 

* 

* 

0.011 

0.0093 

0.0063 

0.0051 

0.0075 

 

 

4 

0.7 

1.5 

2.0 

2.5 

3.0 

0.0153 

0.0094 

0.009 

0.0091 

0.0108 

0.0158 

0.0101 

0.01 

0.01 

0.0115 

0.0153 

0.0094 

0.0089 

0.0091 

0.0104 

0.0158 

0.0101 

0.0099 

0.0099 

0.0108 

0.01 

0.0096 

0.0075 

0.0061 

0.0062 

 

 

5 

0.7 

1.5 

2.0 

2.5 

3.0 

0.0144 

0.0116 

0.0094 

0.0094 

0.0074 

0.0155 

0.0126 

0.0102 

0.0106 

0.0084 

0.0144 

0.0116 

0.0094 

0.0093 

0.0072 

0.0155 

0.0126 

0.0102 

0.0108 

0.0084 

0.0118 

0.0082 

0.0071 

0.0079 

0.0063 

 

Table 5.5 (Continued): Estimated power for 95.0  and 01.0 . 

 

 

 

 

 

 

 

 

 

 

                      

 

 

 

 

                * indicates that the test could not control the probability of type I error. 
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n  0  b  
Test statistics 

kT  ghT  
kmT  ghmT  

bT  

 

 

 

 

 

 

 

 

 

16 

 

 

2 

0.7 

1.5 

2.0 

2.5 

3.0 

0.0709 

0.0628 

* 

0.0627 

0.0628 

0.077 

* 

* 

* 

* 

0.0709 

0.0631 

* 

0.0645 

* 

0.077 

* 

* 

* 

* 

0.0354 

0.0231 

0.0181 

0.0213 

0.0209 

 

 

3 

0.7 

1.5 

2.0 

2.5 

3.0 

0.0647 

0.0611 

0.0619 

0.0584 

0.0616 

0.071 

* 

* 

* 

* 

0.0647 

0.0617 

0.0629 

0.0579 

0.06 

0.071 

* 

* 

* 

* 

0.0343 

0.0219 

0.0211 

0.0182 

0.021 

 

 

4 

0.7 

1.5 

2.0 

2.5 

3.0 

0.0699 

0.0629 

0.0598 

0.0612 

0.0566 

0.0751 

0.0704 

0.0675 

* 

* 

0.0699 

0.0631 

0.0602 

0.0626 

0.0576 

0.0751 

0.0702 

0.0671 

* 

* 

0.0369 

0.0222 

0.0222 

0.0219 

0.0212 

 

 

5 

0.7 

1.5 

2.0 

2.5 

3.0 

0.0726 

0.0606 

0.0581 

0.0611 

0.0623 

0.0774 

* 

* 

* 

* 

0.0726 

0.0607 

0.0582 

0.0608 

0.0618 

0.0774 

0.0664 

* 

* 

* 

0.0377 

0.022 

0.0205 

0.0213 

0.0174 

 

 

 

 

 

 

 

 

 

25 

 

 

2 

0.7 

1.5 

2.0 

2.5 

3.0 

0.0943 

0.0645 

0.0653 

0.0708 

* 

0.0989 

0.0694 

0.0704 

0.077 

* 

0.0943 

0.0645 

0.0654 

0.0709 

0.0732 

0.0989 

0.0694 

0.0707 

0.0771 

* 

0.0445 

0.0215 

0.0215 

0.0185 

0.0206 

 

 

3 

0.7 

1.5 

2.0 

2.5 

3.0 

0.0998 

0.0683 

0.0686 

0.0684 

0.0668 

0.104 

0.0745 

0.0746 

0.0734 

0.0711 

0.0998 

0.0684 

0.0693 

0.0683 

0.0672 

0.104 

0.0746 

0.0745 

0.0738 

0.0725 

0.0505 

0.023 

0.0244 

0.0198 

0.0221 

 

 

4 

0.7 

1.5 

2.0 

2.5 

3.0 

0.094 

0.0749 

0.0689 

0.0645 

0.0686 

0.0982 

* 

* 

0.0686 

0.0755 

0.094 

0.0749 

0.0693 

0.0641 

0.0686 

0.0982 

* 

* 

0.068 

0.0749 

0.0473 

0.0274 

0.0255 

0.0212 

0.0211 

 

 

5 

0.7 

1.5 

2.0 

2.5 

3.0 

0.0919 

0.0678 

0.0701 

0.0637 

0.0673 

0.096 

0.0725 

0.0757 

0.0697 

0.0722 

0.0919 

0.0678 

0.0707 

0.0645 

0.0661 

0.096 

0.0725 

0.0761 

0.0704 

0.0719 

0.0497 

0.0261 

0.023 

0.0244 

0.0193 

 

Table 5.6: Estimated power for 1.1  and 01.0 . 
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n  0  b  
Test statistics 

kT  ghT  
kmT  ghmT  

bT  

 

 

 

 

 

 

 

 

 

35 

 

 

2 

0.7 

1.5 

2.0 

2.5 

3.0 

0.1241 

0.0841 

0.0814 

0.0749 

0.0795 

0.1274 

0.0896 

0.0862 

0.0807 

0.084 

0.1241 

0.0841 

0.0814 

0.0757 

0.0797 

0.1274 

0.0896 

0.0863 

0.0808 

0.084 

0.0588 

0.0266 

0.0248 

0.0193 

0.0215 

 

 

3 

0.7 

1.5 

2.0 

2.5 

3.0 

0.1229 

0.0884 

0.0854 

0.0815 

0.0834 

0.1269 

0.0916 

0.0903 

* 

* 

0.1229 

0.0884 

0.0851 

0.0816 

0.0836 

0.1269 

0.0916 

0.0904 

* 

* 

0.0591 

0.0279 

0.023 

0.0237 

0.0222 

 

 

4 

0.7 

1.5 

2.0 

2.5 

3.0 

0.1178 

0.0827 

0.0841 

0.082 

0.0775 

0.1218 

0.0861 

0.0891 

0.0848 

0.0827 

0.1178 

0.0827 

0.0841 

0.0817 

0.0781 

0.1218 

0.0861 

0.0889 

0.0847 

0.0831 

0.0606 

0.0243 

0.0257 

0.0238 

0.0198 

 

 

5 

0.7 

1.5 

2.0 

2.5 

3.0 

0.1225 

0.086 

0.0794 

0.0812 

0.0861 

0.1256 

0.0897 

0.0857 

0.0853 

0.0909 

0.1225 

0.086 

0.0793 

0.0814 

0.0865 

0.1256 

0.0897 

0.0855 

0.0851 

0.0911 

0.0627 

0.0284 

0.0226 

0.0222 

0.0212 

 

Table 5.6 (Continued): Estimated power for 1.1  and 01.0 . 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

                   * indicates that the test could not control the probability of type I error. 
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n  0  b  
Test statistics 

kT  ghT  
kmT  ghmT  

bT  

 

 

 

 

 

 

 

 

 

16 

 

 

2 

0.7 

1.5 

2.0 

2.5 

3.0 

0.2394 

0.1677 

* 

0.1611 

0.1539 

0.2496 

* 

* 

* 

* 

0.2394 

0.1677 

* 

0.1632 

* 

0.2496 

* 

* 

* 

* 

0.1162 

0.0502 

0.0398 

0.0377 

0.034 

 

 

3 

0.7 

1.5 

2.0 

2.5 

3.0 

0.2387 

0.1682 

0.1661 

0.1642 

0.1589 

0.2483 

* 

* 

* 

* 

0.2387 

0.169 

0.1675 

0.167 

0.16 

0.2483 

* 

* 

* 

* 

0.1214 

0.0513 

0.0421 

0.041 

0.0383 

 

 

4 

0.7 

1.5 

2.0 

2.5 

3.0 

0.2411 

0.1724 

0.1586 

0.1526 

0.1625 

0.2531 

0.1857 

0.1747 

* 

* 

0.2411 

0.1723 

0.1607 

0.1553 

0.1647 

0.2531 

0.1853 

0.176 

* 

* 

0.117 

0.0512 

0.0393 

0.0371 

0.0384 

 

 

5 

0.7 

1.5 

2.0 

2.5 

3.0 

0.2411 

0.1647 

0.1648 

0.1589 

0.1509 

0.2528 

* 

* 

* 

* 

0.2411 

0.1651 

0.1659 

0.1607 

0.1515 

0.2528 

0.1787 

* 

* 

* 

0.1215 

0.0485 

0.0402 

0.0388 

0.0361 

 

 

 

 

 

 

 

 

 

25 

 

 

2 

0.7 

1.5 

2.0 

2.5 

3.0 

0.3479 

0.232 

0.2138 

0.2065 

* 

0.3562 

0.2422 

0.2248 

0.2177 

* 

0.3479 

0.2322 

0.2135 

0.2082 

0.2106 

0.3562 

0.2423 

0.2251 

0.2193 

* 

0.1763 

0.0583 

0.0493 

0.0377 

0.0412 

 

 

3 

0.7 

1.5 

2.0 

2.5 

3.0 

0.3516 

0.2367 

0.2109 

0.2139 

0.2154 

0.3603 

0.2474 

0.2215 

0.2243 

0.2265 

0.3516 

0.2368 

0.2112 

0.2163 

0.2166 

0.3603 

0.2474 

0.222 

0.2255 

0.2287 

0.1676 

0.0604 

0.0467 

0.0421 

0.0372 

 

 

4 

0.7 

1.5 

2.0 

2.5 

3.0 

0.3366 

0.2327 

0.2176 

0.2125 

0.2135 

0.3454 

* 

* 

0.2215 

0.2258 

0.3366 

0.2328 

0.2178 

0.213 

0.2158 

0.3454 

* 

* 

0.2233 

0.2276 

0.1667 

0.059 

0.0476 

0.0412 

0.0391 

 

 

5 

0.7 

1.5 

2.0 

2.5 

3.0 

0.3404 

0.2203 

0.2225 

0.2035 

0.2091 

0.3477 

0.2303 

0.2334 

0.2132 

0.2192 

0.3404 

0.2202 

0.2224 

0.2049 

0.2107 

0.3477 

0.2302 

0.234 

0.215 

0.2207 

0.1718 

0.061 

0.0496 

0.0465 

0.0369 

 

Table 5.7: Estimated power for 2.1  and 01.0 . 
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n  0  b  
Test statistics 

kT  ghT  
kmT  ghmT  

bT  

 

 

 

 

 

 

 

 

 

35 

 

 

2 

0.7 

1.5 

2.0 

2.5 

3.0 

0.4584 

0.2895 

0.2805 

0.2731 

0.2679 

0.4647 

0.2985 

0.2899 

0.2822 

0.2785 

0.4584 

0.2895 

0.2808 

0.2734 

0.2687 

0.4647 

0.2986 

0.2902 

0.2817 

0.2783 

0.2267 

0.0676 

0.0568 

0.0453 

0.0419 

 

 

3 

0.7 

1.5 

2.0 

2.5 

3.0 

0.4601 

0.2995 

0.2808 

0.2764 

0.2605 

0.4665 

0.3094 

0.2883 

* 

* 

0.4601 

0.2995 

0.2808 

0.2768 

0.2609 

0.4665 

0.3094 

0.2887 

* 

* 

0.2369 

0.0715 

0.0548 

0.0466 

0.0422 

 

 

4 

0.7 

1.5 

2.0 

2.5 

3.0 

0.4613 

0.2988 

0.284 

0.2727 

0.2641 

0.4672 

0.3075 

0.2933 

0.28 

0.2734 

0.4613 

0.2989 

0.2843 

0.2736 

0.2662 

0.4672 

0.3075 

0.2933 

0.2816 

0.2762 

0.2289 

0.0717 

0.0525 

0.0451 

0.0445 

 

 

5 

0.7 

1.5 

2.0 

2.5 

3.0 

0.4525 

0.296 

0.2836 

0.2688 

0.264 

0.4587 

0.3035 

0.2936 

0.2787 

0.2734 

0.4525 

0.296 

0.2835 

0.2697 

0.2653 

0.4587 

0.3035 

0.2937 

0.2788 

0.2742 

0.2267 

0.0735 

0.0538 

0.0434 

0.0392 

 

Table 5.7 (Continued): Estimated power for 2.1  and 01.0 . 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

                * indicates that the test could not control the probability of type I error. 
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n  0  b  
Test statistics 

kT  ghT  
kmT  ghmT  

bT  

 

 

 

 

 

 

 

 

 

16 

 

 

2 

0.7 

1.5 

2.0 

2.5 

3.0 

0.4829 

0.3409 

* 

0.3037 

0.3061 

0.4971 

* 

* 

* 

* 

0.4829 

0.341 

* 

0.308 

* 

0.4971 

* 

* 

* 

* 

0.2514 

0.0892 

0.0741 

0.0606 

0.0577 

 

 

3 

0.7 

1.5 

2.0 

2.5 

3.0 

0.4746 

0.3353 

0.3134 

0.315 

0.305 

0.4889 

* 

* 

* 

* 

0.4746 

0.3359 

0.3152 

0.3175 

0.3102 

0.4889 

* 

* 

* 

* 

0.2522 

0.0956 

0.0707 

0.062 

0.0547 

 

 

4 

0.7 

1.5 

2.0 

2.5 

3.0 

0.4875 

0.3284 

0.311 

0.3015 

0.2932 

0.4991 

0.3471 

0.331 

* 

* 

0.4875 

0.3288 

0.3111 

0.3049 

0.2978 

0.4991 

0.3479 

0.3316 

* 

* 

0.2605 

0.0916 

0.0665 

0.0611 

0.0612 

 

 

5 

0.7 

1.5 

2.0 

2.5 

3.0 

0.4847 

0.3368 

0.321 

0.3071 

0.3066 

0.4953 

* 

* 

* 

* 

0.4847 

0.3373 

0.3241 

0.3094 

0.3129 

0.4953 

0.3556 

* 

* 

* 

0.2622 

0.0912 

0.0722 

0.0588 

0.0573 

 

 

 

 

 

 

 

 

 

25 

 

 

2 

0.7 

1.5 

2.0 

2.5 

3.0 

0.6532 

0.4586 

0.4345 

0.427 

* 

0.6604 

0.4721 

0.4488 

0.4409 

* 

0.6532 

0.4587 

0.4362 

0.4288 

0.4167 

0.6604 

0.4721 

0.4497 

0.4437 

* 

0.3705 

0.1135 

0.087 

0.0716 

0.0653 

 

 

3 

0.7 

1.5 

2.0 

2.5 

3.0 

0.6497 

0.4659 

0.4344 

0.4263 

0.415 

0.6579 

0.4778 

0.4485 

0.4405 

0.4277 

0.6497 

0.4659 

0.435 

0.4298 

0.417 

0.6579 

0.478 

0.4493 

0.4429 

0.4292 

0.3673 

0.1188 

0.0862 

0.0687 

0.0639 

 

 

4 

0.7 

1.5 

2.0 

2.5 

3.0 

0.6552 

0.4606 

0.427 

0.4282 

0.3974 

0.6629 

* 

* 

0.4423 

0.4115 

0.6552 

0.4609 

0.4277 

0.4301 

0.3996 

0.6629 

* 

* 

0.4438 

0.4138 

0.3667 

0.1227 

0.086 

0.0691 

0.0605 

 

 

5 

0.7 

1.5 

2.0 

2.5 

3.0 

0.6508 

0.4615 

0.4285 

0.4131 

0.4111 

0.6605 

0.475 

0.444 

0.4268 

0.4257 

0.6508 

0.4616 

0.4296 

0.4154 

0.4159 

0.6605 

0.475 

0.4447 

0.4272 

0.4296 

0.3692 

0.1129 

0.0861 

0.0737 

0.0612 

 

Table 5.8: Estimated power for 3.1  and 01.0 . 
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n  0  b  
Test statistics 

kT  ghT  
kmT  ghmT  

bT  

 

 

 

 

 

 

 

 

 

35 

 

 

2 

0.7 

1.5 

2.0 

2.5 

3.0 

0.7907 

0.5775 

0.5578 

0.5332 

0.527 

0.7953 

0.5881 

0.5679 

0.5433 

0.5382 

0.7907 

0.5776 

0.5581 

0.5343 

0.528 

0.7953 

0.5881 

0.568 

0.5437 

0.5408 

0.4894 

0.1462 

0.1024 

0.0836 

0.07 

 

 

3 

0.7 

1.5 

2.0 

2.5 

3.0 

0.7933 

0.5916 

0.5594 

0.5237 

0.5294 

0.7979 

0.5998 

0.5707 

* 

* 

0.7933 

0.5917 

0.5599 

0.5248 

  0.5297 

0.7979 

0.5998 

0.5714 

* 

* 

0.4889 

0.1481 

0.0993 

0.0777 

0.0698 

 

 

4 

0.7 

1.5 

2.0 

2.5 

3.0 

0.7853 

0.5762 

0.541 

0.5348 

0.5196 

0.7889 

0.5855 

0.5538 

0.5453 

0.53 

0.7853 

0.5762 

0.5408 

0.5355 

0.52 

0.7889 

0.5855 

0.5542 

0.5463 

0.5311 

0.4901 

0.143 

0.0956 

0.0775 

0.0715 

 

 

5 

0.7 

1.5 

2.0 

2.5 

3.0 

0.7941 

0.5778 

0.5503 

0.5354 

0.5241 

0.7984 

0.5873 

0.5598 

0.5467 

0.5363 

0.7941 

0.5778 

0.5505 

0.5366 

0.5258 

0.7984 

0.5873 

0.5601 

0.5479 

0.538 

0.4819 

0.1439 

0.0975 

0.0811 

0.0684 

 

Table 5.8 (Continued): Estimated power for 3.1  and 01.0 . 

 

 

 

 

 

 

 

 

 

 

                         

 

 

 

 

                 * indicates that the test could not control the probability of type I error. 

 

 

   

 

 

 

 

 

 

 

 

 

 

 

 



61 

 

n  0  b  
Test statistics 

kT  ghT  
kmT  ghmT  

bT  

 

 

 

 

 

 

 

 

 

16 

 

 

2 

0.7 

1.5 

2.0 

2.5 

3.0 

0.7017 

0.5178 

* 

0.466 

0.4658 

0.7125 

* 

* 

* 

* 

0.7017 

0.5184 

* 

0.4708 

* 

0.7125 

* 

* 

* 

* 

0.4154 

0.1498 

0.1096 

0.0981 

0.0849 

 

 

3 

0.7 

1.5 

2.0 

2.5 

3.0 

0.6945 

0.5168 

0.4861 

0.4672 

0.4623 

0.7048 

* 

* 

* 

* 

0.6945 

0.517 

0.4896 

0.4735 

0.4683 

0.7048 

* 

* 

* 

* 

0.4163 

0.145 

0.1102 

0.0923 

0.0927 

 

 

4 

0.7 

1.5 

2.0 

2.5 

3.0 

0.7009 

0.5159 

0.4772 

0.4782 

0.478 

0.711 

0.5329 

0.499 

* 

* 

0.7009 

0.5165 

0.4789 

0.4831 

0.4836 

0.711 

0.5333 

0.5004 

* 

* 

0.4212 

0.1536 

0.1091 

0.096 

0.0841 

 

 

5 

0.7 

1.5 

2.0 

2.5 

3.0 

0.6946 

0.5083 

0.4829 

0.469 

0.4614 

0.7036 

* 

* 

* 

* 

0.6946 

0.5092 

0.4855 

0.4751 

0.4689 

0.7036 

0.5235 

* 

* 

* 

0.4168 

0.1406 

0.1108 

0.0961 

0.0836 

 

 

 

 

 

 

 

 

 

25 

 

 

2 

0.7 

1.5 

2.0 

2.5 

3.0 

0.8591 

0.673 

0.6411 

0.6269 

* 

0.8636 

0.6837 

0.6539 

0.6392 

* 

0.8591 

0.673 

0.6426 

0.6284 

0.6202 

0.8636 

0.6835 

0.6548 

0.6402 

* 

0.5781 

0.1905 

0.1383 

0.1117 

0.0943 

 

 

3 

0.7 

1.5 

2.0 

2.5 

3.0 

0.8594 

0.6746 

0.6407 

0.6239 

0.6154 

0.8639 

0.6863 

0.6528 

0.6378 

0.6288 

0.8594 

0.6746 

0.6411 

0.6273 

0.6189 

0.8639 

0.6863 

0.6539 

0.6394 

0.6332 

0.5735 

0.1797 

0.1397 

0.1042 

0.0959 

 

 

4 

0.7 

1.5 

2.0 

2.5 

3.0 

0.8592 

0.675 

0.6412 

0.6358 

0.6168 

0.863 

* 

* 

0.6474 

0.6306 

0.8592 

0.6751 

0.6413 

0.6379 

0.6188 

0.863 

* 

* 

0.6496 

0.6328 

0.574 

0.1867 

0.1353 

0.1146 

0.093 

 

 

5 

0.7 

1.5 

2.0 

2.5 

3.0 

0.851 

0.6762 

0.6441 

0.6181 

0.6101 

0.8554 

0.687 

0.6573 

0.6302 

0.6229 

0.851 

0.6763 

0.6451 

0.6204 

0.6128 

0.8554 

0.6871 

0.6571 

0.634 

0.6246 

0.5772 

0.1922 

0.1295 

0.1078 

0.0942 

 

Table 5.9: Estimated power for 4.1  and 01.0 . 
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n  0  b  
Test statistics 

kT  ghT  
kmT  ghmT  

bT  

 

 

 

 

 

 

 

 

 

35 

 

 

2 

0.7 

1.5 

2.0 

2.5 

3.0 

0.9467 

0.8013 

0.7777 

0.7592 

0.7514 

0.9484 

0.8093 

0.7853 

0.7681 

0.7591 

0.9467 

0.8013 

0.7779 

0.76 

0.7532 

0.9484 

0.8093 

0.7855 

0.7686 

0.761 

0.718 

0.2408 

0.1562 

0.121 

0.1061 

 

 

3 

0.7 

1.5 

2.0 

2.5 

3.0 

0.9472 

0.8067 

0.7703 

0.7571 

0.747 

0.9491 

0.813 

0.7762 

* 

* 

0.9472 

0.8067 

0.7705 

0.7583 

0.7494 

0.9491 

0.813 

0.7765 

* 

* 

0.7202 

0.2388 

0.1625 

0.1302 

0.1081 

 

 

4 

0.7 

1.5 

2.0 

2.5 

3.0 

0.9475 

0.8019 

0.77 

0.7591 

0.7499 

0.9485 

0.8085 

0.7762 

0.7686 

0.7573 

0.9475 

0.8019 

0.7701 

0.7602 

0.7514 

0.9485 

0.8085 

0.7763 

0.7688 

0.7595 

0.7227 

0.2442 

0.164 

0.1302 

0.114 

 

 

5 

0.7 

1.5 

2.0 

2.5 

3.0 

0.946 

0.8001 

0.7694 

0.7546 

0.7428 

0.9471 

0.8061 

0.7773 

0.7643 

0.7507 

0.946 

0.8001 

0.7693 

0.756 

0.7452 

0.9471 

0.8061 

0.7772 

0.7649 

0.752 

0.7137 

0.2417 

0.1603 

0.1358 

0.1111 

 

Table 5.9 (Continued): Estimated power for 4.1  and 01.0  . 

 

 

 

 

 

 

 

 

 

 

                                  

 

 

 

 

                    * indicates that the test could not control the probability of type I error. 
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n  0  b  
Test statistics 

kT  ghT  
kmT  ghmT  

bT  

 

 

 

 

 

 

 

 

 

16 

 

 

2 

0.7 

1.5 

2.0 

2.5 

3.0 

0.8448 

0.6644 

* 

0.6178 

0.6081 

0.8515 

* 

* 

* 

* 

0.8448 

0.6648 

* 

0.6229 

* 

0.8515 

* 

* 

* 

* 

0.5778 

0.2107 

0.1532 

0.1304 

0.1163 

 

 

3 

0.7 

1.5 

2.0 

2.5 

3.0 

0.8495 

0.6615 

0.6302 

0.6217 

0.6111 

0.8559 

* 

* 

* 

* 

0.8495 

0.6615 

0.6331 

0.6282 

0.63 

0.8559 

* 

* 

* 

* 

0.5731 

0.2038 

0.1579 

0.1325 

0.1144 

 

 

4 

0.7 

1.5 

2.0 

2.5 

3.0 

0.842 

0.6644 

0.6312 

0.623 

0.6135 

0.8485 

0.68 

0.6486 

* 

* 

0.842 

0.6644 

0.6338 

0.6286 

0.623 

0.8485 

0.6811 

0.6508 

* 

* 

0.5717 

0.2014 

0.1609 

0.1329 

0.1118 

 

 

5 

0.7 

1.5 

2.0 

2.5 

3.0 

0.8462 

0.6615 

0.6422 

0.6308 

0.6108 

0.8533 

* 

* 

* 

* 

0.8462 

0.662 

0.6462 

0.6358 

0.6177 

0.8533 

0.6781 

* 

* 

* 

0.5788 

0.2087 

0.1622 

0.1283 

0.1176 

 

 

 

 

 

 

 

 

 

25 

 

 

2 

0.7 

1.5 

2.0 

2.5 

3.0 

0.9561 

0.8231 

0.8057 

0.787 

* 

0.9577 

0.8315 

0.8145 

0.7971 

* 

0.9561 

0.8233 

0.8065 

0.7895 

0.7869 

0.9577 

0.8317 

0.8155 

0.7999 

* 

0.7502 

0.2725 

0.1836 

0.1549 

0.1354 

 

 

3 

0.7 

1.5 

2.0 

2.5 

3.0 

0.9531 

0.8242 

0.799 

0.7867 

0.7728 

0.9554 

0.8322 

0.8082 

0.7959 

0.783 

0.9531 

0.8241 

0.8006 

0.7886 

0.7774 

0.9554 

0.8323 

0.8087 

0.7977 

0.7878 

0.7462 

0.2754 

0.1923 

0.1585 

0.1367 

 

 

4 

0.7 

1.5 

2.0 

2.5 

3.0 

0.9573 

0.8266 

0.7994 

0.7883 

0.7721 

0.9583 

* 

* 

0.7984 

0.7835 

0.9573 

0.8266 

0.8003 

0.7904 

0.7747 

0.9583 

* 

* 

0.799 

0.7852 

0.7348 

0.2683 

0.1892 

0.151 

0.135 

 

 

5 

0.7 

1.5 

2.0 

2.5 

3.0 

0.9502 

0.8251 

0.7973 

0.7804 

0.7737 

0.9515 

0.8321 

0.8051 

0.7891 

0.7824 

0.9502 

0.8249 

0.7982 

0.7821 

0.7756 

0.9515 

0.8321 

0.8062 

0.7898 

0.7859 

0.7412 

0.2762 

0.1928 

0.1533 

0.1365 

 

Table 5.10: Estimated power for 5.1  and 01.0 . 
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n  0  b  
Test statistics 

kT  ghT  
kmT  ghmT  

bT  

 

 

 

 

 

 

 

 

 

35 

 

 

2 

0.7 

1.5 

2.0 

2.5 

3.0 

0.9902 

0.9238 

0.8994 

0.8917 

0.8848 

0.9906 

0.9269 

0.9039 

0.8974 

0.8899 

0.9902 

0.9238 

0.8995 

0.8934 

0.8873 

0.9906 

0.9269 

0.9041 

0.8977 

0.8915 

0.8654 

0.3478 

0.2302 

0.1819 

0.1545 

 

 

3 

0.7 

1.5 

2.0 

2.5 

3.0 

0.9877 

0.9232 

0.9023 

0.8928 

0.881 

0.9883 

0.9264 

0.9051 

* 

* 

0.9877 

0.9232 

0.9023 

0.8931 

0.8831 

0.9883 

0.9262 

0.905 

* 

* 

0.8604 

0.3548 

0.241 

0.1794 

0.1598 

 

 

4 

0.7 

1.5 

2.0 

2.5 

3.0 

0.9893 

0.9273 

0.9036 

0.8874 

0.8896 

0.9895 

0.9304 

0.9076 

0.8929 

0.8944 

0.9893 

0.9273 

0.9039 

0.8879 

0.8908 

0.9895 

0.9304 

0.9073 

0.8936 

0.8956 

0.861 

0.342 

0.2333 

0.1767 

0.1568 

 

 

5 

0.7 

1.5 

2.0 

2.5 

3.0 

0.9891 

0.921 

0.8967 

0.8877 

0.885 

0.9893 

0.9246 

0.9003 

0.8915 

0.8895 

0.9891 

0.921 

0.8966 

0.8879 

0.8865 

0.9893 

0.9246 

0.9002 

0.8917 

0.8922 

0.863 

0.3453 

0.2373 

0.1899 

0.1507 

 

Table 5.10 (Continued): Estimated power for 5.1  and 01.0 . 

 

 

 

 

 

 

 

 

 

 

                               

 

 

 

 

                  * indicates that the test could not control the probability of type I error. 

 

  From Table 5.3-5.7 we see that, the power increases with b , n  and   but 

not depended on the choices of 0 . There is a little difference in the powers of   

kT , kmT
 
tests and 

ghT , 
ghmT  tests when the values of the coefficient of variation are small. 

Otherwise, the 
ghmT   procedure appears to be most powerful.  
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     5.2.2.2 Estimated power at 05.0 . 

 

The results are concluded in Tables 5.11-5.18. From the previous part we 

know which test statistics could control the probability of type I error, and hence we 

paid most of the attention to them. We found that the power of all tests tends to get 

higher when the sample size increases and the value of the coefficient of variation 

decrease.  

The results from Tables 5.11-5.18 show that when n = 16, b  1.5, the 
ghT  

test has the same power as the 
ghmT  test and the kT  test has the same power as the kmT  

test.   

For n = 16, b  1.5, the kmT  procedure seems to be the most powerful and 

we see that when b  1.5 the power of all tests starts to decrease. For example, in Table 

5.18 for n = 35, 0 = 5,  = 1.5, the estimated powers of kmT  are 0.9975, 0.9669, 0.9587, 

0.9536 and 0.9493 for the values of b = 0.7, 1.5, 2.0, 2.5 and 3.0, respectively.  

When n = 25, b  1.5, the 
ghT  test has the same power as the 

ghmT  test and 

the kT test has the same power as the kmT  test. For n = 25, b  1.5, the 
ghmT  procedure 

appears to be the most powerful when compared to others.   

For n = 35, b  1.5, the 
ghT  test has the same power as the 

ghmT  test and the 

kT  test has the same power as the kmT  test. For n = 35, b  1.5, the 
ghmT  procedure 

appears to be the most powerful when compared to others. In addition, the power of all 

tests is close to 1 for b = 0.7,  = 1.5.  

Although the bT  test could control the probability of type I error for all 

combinations, but this test has the lowest power for all combinations. 
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n  0  b  
Test statistics 

kT  ghT  
kmT  ghmT  

bT  

 

 

 

 

 

 

 

 

 

16 

 

 

2 

0.7 

1.5 

2.0 

2.5 

3.0 

0.1568 

0.0863 

* 

* 

0.0665 

0.166 

0.096 

* 

* 

0.078 

0.1568 

0.0867 

0.0771 

* 

0.0687 

0.166 

0.0965 

* 

* 

0.0795 

0.0975 

0.0359 

0.0296 

0.0304 

0.024 

 

 

3 

0.7 

1.5 

2.0 

2.5 

3.0 

0.1505 

0.0809 

* 

* 

0.0713 

0.1606 

0.0911 

* 

* 

0.0821 

0.1505 

0.0811 

* 

* 

0.0734 

0.1606 

0.092 

* 

* 

0.0833 

0.1013 

0.0352 

0.0294 

0.0229 

0.0247 

 

 

4 

0.7 

1.5 

2.0 

2.5 

3.0 

0.153 

0.0826 

* 

0.0783 

0.0708 

0.1626 

0.0921 

* 

* 

* 

0.153 

0.0823 

* 

0.0797 

0.0732 

0.1626 

0.092 

* 

* 

* 

0.0953 

0.0369 

0.0314 

0.0282 

0.0254 

 

 

5 

0.7 

1.5 

2.0 

2.5 

3.0 

0.1484 

0.0808 

* 

0.0699 

* 

0.1577 

0.0912 

* 

* 

* 

0.1484 

0.0812 

* 

0.0711 

* 

0.1577 

0.0917 

* 

* 

* 

0.0966 

0.0342 

0.0278 

0.0261 

0.025 

 

 

 

 

 

 

 

 

 

25 

 

 

2 

0.7 

1.5 

2.0 

2.5 

3.0 

0.2653 

0.1431 

0.1343 

0.1286 

0.1219 

0.2739 

0.153 

0.1442 

0.1374 

0.1326 

0.2653 

0.1432 

0.1346 

0.1295 

0.1239 

0.2739 

0.153 

0.1444 

0.1382 

0.1341 

0.1502 

0.045 

0.0315 

0.0284 

0.0268 

 

 

3 

0.7 

1.5 

2.0 

2.5 

3.0 

0.2584 

0.1454 

0.1308 

0.1296 

0.1191 

0.2655 

0.1544 

* 

* 

* 

0.2584 

0.1455 

0.1303 

0.1315 

0.1202 

0.2655 

0.1545 

* 

* 

* 

0.1449 

0.0416 

0.0321 

0.0291 

0.0255 

 

 

4 

0.7 

1.5 

2.0 

2.5 

3.0 

0.2633 

0.149 

0.1301 

0.1239 

0.1193 

0.2701 

0.1585 

0.1404 

0.1328 

0.1301 

0.2633 

0.149 

0.1306 

0.1236 

0.1228 

0.2701 

0.1586 

0.1402 

0.1334 

0.132 

0.1575 

0.0447 

0.0356 

0.0303 

0.0273 

 

 

5 

0.7 

1.5 

2.0 

2.5 

3.0 

0.2618 

0.1438 

0.1263 

0.1199 

0.124 

0.2682 

* 

* 

* 

0.1329 

0.2618 

0.1439 

0.1267 

* 

0.1241 

0.2682 

* 

* 

* 

0.1339 

0.1519 

0.0454 

0.0321 

0.0283 

0.0288 

 

Table 5.11: Estimated power for 85.0 and 05.0 . 
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n  0  b  
Test statistics 

kT  ghT  
kmT  ghmT  

bT  

 

 

 

 

 

 

 

 

 

35 

 

 

2 

0.7 

1.5 

2.0 

2.5 

3.0 

0.3774 

0.2157 

0.1973 

0.1865 

0.1783 

0.383 

0.2248 

0.2062 

* 

0.1869 

0.3774 

0.2157 

0.1976 

0.1877 

0.1792 

0.383 

0.2248 

0.2063 

* 

0.1869 

0.2072 

0.0529 

0.0433 

0.0325 

0.0273 

 

 

3 

0.7 

1.5 

2.0 

2.5 

3.0 

0.3826 

0.2145 

0.1938 

0.1806 

0.1755 

0.3902 

0.2217 

0.2029 

0.1885 

0.1873 

0.3826 

0.2145 

0.1941 

0.1807 

0.177 

0.3902 

0.2217 

0.2027 

0.1883 

0.1878 

0.2042 

0.0526 

0.0421 

0.0325 

0.0286 

 

 

4 

0.7 

1.5 

2.0 

2.5 

3.0 

0.3859 

0.2159 

0.1976 

0.1838 

0.1822 

0.3911 

0.2248 

0.2071 

0.1935 

0.1915 

0.3859 

0.216 

0.1976 

0.1855 

0.1845 

0.3911 

0.2248 

0.2074 

0.1938 

0.1931 

0.2076 

0.0548 

0.0382 

0.0339 

0.0286 

 

 

5 

0.7 

1.5 

2.0 

2.5 

3.0 

0.383 

0.2136 

0.1981 

0.1801 

0.1813 

0.3896 

0.2222 

0.2061 

0.1887 

0.1888 

0.383 

0.2136 

0.1983 

0.1808 

0.1817 

0.3896 

0.2222 

0.2064 

0.1892 

0.1902 

0.2081 

0.0541 

0.0393 

0.03 

0.0295 

 

Table 5.11 (Continued): Estimated power for 85.0 and 05.0 . 

 

 

 

 

 

 

 

 

 

 

 

 

                            

 

 

                  * indicates that the test could not control the probability of type I error. 
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n  0  b  
Test statistics 

kT  ghT  
kmT  ghmT  

bT  

 

 

 

 

 

 

 

 

 

16 

 

 

2 

0.7 

1.5 

2.0 

2.5 

3.0 

0.0818 

0.0556 

* 

* 

0.0524 

0.0874 

0.0639 

* 

* 

0.0605 

0.0818 

0.0555 

0.0496 

* 

0.0524 

0.0874 

0.0636 

* 

* 

0.061 

0.062 

0.037 

0.0322 

0.0296 

0.0328 

 

 

3 

0.7 

1.5 

2.0 

2.5 

3.0 

0.0818 

0.0561 

* 

* 

0.0514 

0.0876 

0.0648 

* 

* 

0.0602 

0.0818 

0.0563 

* 

* 

0.0513 

0.0876 

0.0652 

* 

* 

0.0595 

0.065 

0.0365 

0.0352 

0.0329 

0.0336 

 

 

4 

0.7 

1.5 

2.0 

2.5 

3.0 

0.0822 

0.0548 

* 

0.0476 

0.0518 

0.0883 

0.0624 

* 

* 

* 

0.0822 

0.0549 

* 

0.0472 

0.0526 

0.0883 

0.0621 

* 

* 

* 

0.0638 

0.0398 

0.0348 

0.0288 

0.03 

 

 

5 

0.7 

1.5 

2.0 

2.5 

3.0 

0.0814 

0.05 

* 

0.05 

* 

0.0881 

0.0575 

* 

* 

* 

0.0814 

0.0503 

* 

0.0503 

* 

0.0881 

0.058 

* 

* 

* 

0.0662 

0.034 

0.0315 

0.0289 

0.03 

 

 

 

 

 

 

 

 

 

25 

 

 

2 

0.7 

1.5 

2.0 

2.5 

3.0 

0.1253 

0.0753 

0.0682 

0.0689 

0.0648 

0.1291 

0.0821 

0.0755 

0.0763 

0.071 

0.1253 

0.0753 

0.0688 

0.0694 

0.0671 

0.1291 

0.0821 

0.0756 

0.076 

0.0723 

0.0815 

0.0397 

0.0359 

0.0322 

0.0317 

 

 

3 

0.7 

1.5 

2.0 

2.5 

3.0 

0.1244 

0.0749 

0.0712 

0.066 

0.0646 

0.1302 

0.0812 

* 

* 

* 

0.1244 

0.075 

0.0712 

0.0659 

0.0644 

0.1302 

0.0814 

* 

* 

* 

0.0846 

0.0402 

0.0377 

0.0344 

0.0343 

 

 

4 

0.7 

1.5 

2.0 

2.5 

3.0 

0.1197 

0.0746 

0.0698 

0.0671 

0.0636 

0.1234 

0.079 

0.0746 

0.0723 

0.0703 

0.1197 

0.0746 

0.0695 

0.0669 

0.065 

0.1234 

0.079 

0.075 

0.0722 

0.0721 

0.0843 

0.0404 

0.0365 

0.0365 

0.0301 

 

 

5 

0.7 

1.5 

2.0 

2.5 

3.0 

0.1206 

0.0751 

0.0723 

0.0644 

0.0636 

0.1249 

* 

* 

* 

0.0711 

0.1206 

0.0752 

0.0727 

* 

0.0653 

0.1249 

* 

* 

* 

0.0718 

0.0874 

0.0425 

0.0361 

0.032 

0.0316 

 

Table 5.12: Estimated power for 9.0  and 05.0 . 
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n  0  b  
Test statistics 

kT  ghT  
kmT  ghmT  

bT  

 

 

 

 

 

 

 

 

 

35 

 

 

2 

0.7 

1.5 

2.0 

2.5 

3.0 

0.1761 

0.1073 

0.0942 

0.089 

0.0927 

0.1805 

0.1113 

0.0992 

* 

0.0981 

0.1761 

0.1074 

0.0944 

0.0895 

0.0922 

0.1805 

0.1113 

0.0993 

* 

0.0981 

0.1112 

0.0465 

0.0374 

0.0317 

0.0336 

 

 

3 

0.7 

1.5 

2.0 

2.5 

3.0 

0.1718 

0.1033 

0.0954 

0.0916 

0.084 

0.176 

0.1092 

0.1005 

0.0973 

0.0893 

0.1718 

0.1033 

0.0954 

0.092 

0.0844 

0.176 

0.1093 

0.1007 

0.0978 

0.0898 

0.1109 

0.0486 

0.0387 

0.0337 

0.0297 

 

 

4 

0.7 

1.5 

2.0 

2.5 

3.0 

0.1736 

0.1077 

0.0914 

0.0924 

0.0846 

0.1767 

0.1117 

0.0962 

0.0982 

0.0909 

0.1736 

0.1078 

0.0914 

0.0925 

0.0846 

0.1767 

0.1116 

0.0963 

0.0979 

0.0908 

0.1068 

0.0457 

0.0352 

0.0351 

0.0341 

 

 

5 

0.7 

1.5 

2.0 

2.5 

3.0 

0.1669 

0.1009 

0.0976 

0.093 

0.091 

0.17 

0.1065 

0.103 

0.0982 

0.0958 

0.1669 

0.1009 

0.0978 

0.0929 

0.0914 

0.17 

0.1065 

0.1031 

0.0981 

0.0964 

0.1063 

0.0444 

0.0398 

0.0352 

0.0323 

 

Table 5.12 (Continued): Estimated power for 9.0  and 05.0 . 

 

 

 

 

 

 

 

 

 

 

 

 

            

 

 

      * indicates that the test could not control the probability of type I error. 
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n  0  b  
Test statistics 

kT  ghT  
kmT  ghmT  

bT  

 

 

 

 

 

 

 

 

 

16 

 

 

2 

0.7 

1.5 

2.0 

2.5 

3.0 

0.0511 

0.0463 

* 

* 

0.0438 

0.0559 

0.0532 

* 

* 

0.0517 

0.0511 

0.0464 

0.0428 

* 

0.0436 

0.0559 

0.0529 

* 

* 

0.0497 

0.047 

0.0439 

0.0408 

0.0394 

0.0382 

 

 

3 

0.7 

1.5 

2.0 

2.5 

3.0 

0.0477 

0.0458 

* 

* 

0.0465 

0.0519 

0.0518 

* 

* 

0.0531 

0.0477 

0.0459 

* 

* 

0.0457 

0.0519 

0.0521 

* 

* 

0.0535 

0.0467 

0.0397 

0.0401 

0.0417 

0.0403 

 

 

4 

0.7 

1.5 

2.0 

2.5 

3.0 

0.0512 

0.0444 

* 

0.0442 

0.0506 

0.0551 

0.0499 

* 

* 

* 

0.0512 

0.0445 

* 

0.0446 

0.0499 

0.0551 

0.0496 

* 

* 

* 

0.0494 

0.0403 

0.0395 

0.0403 

0.0376 

 

 

5 

0.7 

1.5 

2.0 

2.5 

3.0 

0.048 

0.0448 

* 

0.0421 

* 

0.0517 

0.0506 

* 

* 

* 

0.048 

0.0449 

* 

0.0427 

* 

0.0517 

0.0505 

* 

* 

* 

0.0448 

0.0421 

0.048 

0.0404 

0.039 

 

 

 

 

 

 

 

 

 

25 

 

 

2 

0.7 

1.5 

2.0 

2.5 

3.0 

0.0616 

0.0526 

0.0467 

0.0487 

0.0487 

0.0647 

0.056 

0.0507 

0.0545 

0.0529 

0.0616 

0.0527 

0.047 

0.0485 

0.0489 

0.0647 

0.0559 

0.0511 

0.0543 

0.0536 

0.0501 

0.0419 

0.0421 

0.0403 

0.0379 

 

 

3 

0.7 

1.5 

2.0 

2.5 

3.0 

0.0555 

0.0524 

0.0474 

0.0473 

0.0464 

0.0584 

0.0563 

* 

* 

* 

0.0555 

0.0523 

0.0474 

0.0469 

0.0468 

0.0584 

0.0562 

* 

* 

* 

0.0532 

0.0404 

0.0418 

0.0392 

0.0387 

 

 

4 

0.7 

1.5 

2.0 

2.5 

3.0 

0.057 

0.0509 

0.0483 

0.0477 

0.0469 

0.0602 

0.0548 

0.052 

0.0526 

0.0539 

0.057 

0.0508 

0.0478 

0.0478 

0.0485 

0.0602 

0.055 

0.0518 

0.0523 

0.0531 

0.0542 

0.041 

0.0415 

0.0409 

0.0379 

 

 

5 

0.7 

1.5 

2.0 

2.5 

3.0 

0.0591 

0.0524 

0.047 

0.0436 

0.0485 

0.0615 

* 

* 

* 

0.0534 

0.0591 

0.0524 

0.047 

* 

0.0488 

0.0615 

* 

* 

* 

0.0528 

0.0562 

0.0396 

0.0455 

0.0376 

0.0416 

 

Table 5.13: Estimated power for 95.0  and 05.0 . 
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n  0  b  
Test statistics 

kT  ghT  
kmT  ghmT  

bT  

 

 

 

 

 

 

 

 

 

35 

 

 

2 

0.7 

1.5 

2.0 

2.5 

3.0 

0.0717 

0.0561 

0.0561 

0.0526 

0.051 

0.0738 

0.0594 

0.0593 

* 

0.0548 

0.0717 

0.0561 

0.0562 

0.0529 

0.0514 

0.0738 

0.0595 

0.0591 

* 

0.0554 

0.0582 

0.0466 

0.0402 

0.0391 

0.0387 

 

 

3 

0.7 

1.5 

2.0 

2.5 

3.0 

0.068 

0.0559 

0.0474 

0.0527 

0.0487 

0.0699 

0.0589 

0.0507 

0.0552 

0.0523 

0.068 

0.0559 

0.0476 

0.0525 

0.0479 

0.0699 

0.0589 

0.0508 

0.055 

0.0516 

0.0605 

0.0434 

0.0437 

0.0375 

0.039 

 

 

4 

0.7 

1.5 

2.0 

2.5 

3.0 

0.0701 

0.0543 

0.0509 

0.051 

0.0523 

0.0723 

0.0583 

0.0528 

0.0551 

0.0556 

0.0701 

0.0543 

0.0508 

0.0514 

0.0523 

0.0723 

0.0583 

0.0526 

0.0552 

0.0557 

0.0586 

0.0427 

0.0421 

0.0405 

0.0383 

 

 

5 

0.7 

1.5 

2.0 

2.5 

3.0 

0.0703 

0.0575 

0.0537 

0.0487 

0.0492 

0.0722 

0.059 

0.0575 

0.0526 

0.0529 

0.0703 

0.0575 

0.0538 

0.0499 

0.0492 

0.0722 

0.059 

0.0574 

0.0529 

0.0538 

0.0591 

0.0439 

0.0422 

0.0419 

0.0391 

 

Table 5.13 (Continued): Estimated power for 95.0  and 05.0 . 

 

 

 

 

 

 

 

 

 

 

 

 

                             

 

 

    * indicates that the test could not control the probability of type I error. 
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Table 5.14: Estimated power for 1.1  and 05.0 . 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

n  0  b  
Test statistics 

kT  ghT  
kmT  ghmT  

bT  

 

 

 

 

 

 

 

 

 

16 

 

 

2 

0.7 

1.5 

2.0 

2.5 

3.0 

0.1798 

0.1607 

* 

* 

0.1523 

0.1883 

0.172 

* 

* 

0.1645 

0.1798 

0.161 

0.134 

* 

0.1527 

0.1883 

0.1725 

* 

* 

0.1646 

0.1181 

0.0832 

0.0796 

0.0726 

0.0724 

 

 

3 

0.7 

1.5 

2.0 

2.5 

3.0 

0.1818 

0.1497 

* 

* 

0.1433 

0.1905 

0.1631 

* 

* 

0.1561 

0.1818 

0.15 

* 

* 

0.1431 

0.1905 

0.1629 

* 

* 

0.1554 

0.1135 

0.0875 

0.0821 

0.0744 

0.0777 

 

 

4 

0.7 

1.5 

2.0 

2.5 

3.0 

0.1791 

0.1556 

* 

0.1486 

0.151 

0.1855 

0.1672 

* 

* 

* 

0.1791 

0.1558 

* 

0.1504 

0.1516 

0.1855 

0.1672 

* 

* 

* 

0.1138 

0.0813 

0.083 

0.0747 

0.0795 

 

 

5 

0.7 

1.5 

2.0 

2.5 

3.0 

0.1828 

0.152 

* 

0.1535 

* 

0.1915 

0.1634 

* 

* 

* 

0.1828 

0.1511 

* 

0.1553 

* 

0.1915 

0.1626 

* 

* 

* 

0.1155 

0.0816 

0.0819 

0.0738 

0.0764 

 

 

 

 

 

 

 

 

 

25 

 

 

2 

0.7 

1.5 

2.0 

2.5 

3.0 

0.2214 

0.1787 

0.1701 

0.1689 

0.1626 

0.2261 

0.1868 

0.1769 

0.1778 

0.1707 

0.2214 

0.1789 

0.1696 

0.1684 

0.1623 

0.2261 

0.1869 

0.1768 

0.1778 

0.1696 

0.1335 

0.0892 

0.0794 

0.079 

0.0736 

 

 

3 

0.7 

1.5 

2.0 

2.5 

3.0 

0.228 

0.1765 

0.1668 

0.17 

0.1674 

0.2333 

0.185 

* 

* 

* 

0.228 

0.1766 

0.1671 

0.1702 

0.1681 

0.2333 

0.1849 

* 

* 

* 

0.1426 

0.0863 

0.0793 

0.0806 

0.0786 

 

 

4 

0.7 

1.5 

2.0 

2.5 

3.0 

0.2188 

0.1717 

0.1661 

0.1644 

0.1695 

0.2238 

0.1804 

0.1755 

0.1729 

0.179 

0.2188 

0.1718 

0.1661 

0.165 

0.1708 

0.2238 

0.1801 

0.1754 

0.1726 

0.1795 

0.1348 

0.0936 

0.0835 

0.087 

0.0806 

 

 

5 

0.7 

1.5 

2.0 

2.5 

3.0 

0.2221 

0.1757 

0.1716 

0.1658 

0.1716 

0.2273 

* 

* 

* 

0.1789 

0.2221 

0.1759 

0.1717 

* 

0.1715 

0.2273 

* 

* 

* 

0.1815 

0.1397 

0.0909 

0.0822 

0.0768 

0.0779 
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n  0  b  
Test statistics 

kT  ghT
 kmT  ghmT  

bT  

 

 

 

 

 

 

 

 

 

35 

 

 

2 

0.7 

1.5 

2.0 

2.5 

3.0 

0.2659 

0.1994 

0.1915 

0.1869 

0.1892 

0.2705 

0.2058 

0.1986 

* 

0.1962 

0.2659 

0.1995 

0.1917 

0.1877 

0.1896 

0.2705 

0.2058 

0.1987 

* 

0.1968 

0.1648 

0.0906 

0.0871 

0.0847 

0.0785 

 

 

3 

0.7 

1.5 

2.0 

2.5 

3.0 

0.2689 

0.2008 

0.1986 

0.19 

0.1882 

0.2729 

0.2067 

0.2052 

0.1949 

0.1948 

0.2689 

0.2008 

0.1987 

0.1903 

0.189 

0.2729 

0.2067 

0.2052 

0.1953 

0.1948 

0.166 

0.0942 

0.0913 

0.0864 

0.0811 

 

 

4 

0.7 

1.5 

2.0 

2.5 

3.0 

0.2654 

0.1979 

0.1888 

0.1899 

0.1772 

0.2685 

0.2037 

0.1954 

0.1958 

0.1847 

0.2654 

0.1978 

0.1888 

0.19 

0.1787 

0.2685 

0.2037 

0.1954 

0.1962 

0.1846 

0.15 

0.0933 

0.0868 

0.0771 

0.0792 

 

 

5 

0.7 

1.5 

2.0 

2.5 

3.0 

0.2726 

0.2065 

0.2019 

0.1924 

0.1904 

0.2778 

0.2116 

0.2083 

0.1987 

0.1962 

0.2726 

0.2065 

0.2018 

0.1923 

0.1901 

0.2778 

0.2116 

0.2086 

0.1986 

0.1975 

0.1649 

0.0935 

0.0835 

0.0868 

0.0794 

                                      * indicates that the test could not control the probability of type I error. 

 

Table 5.14 (Continued):  Estimated power for 1.1  and 05.0 . 
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Table 5.15: Estimated power for 2.1  and 05.0 . 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

n  0  b  
Test statistics 

kT  ghT  
kmT  ghmT  

bT  

 

 

 

 

 

 

 

 

 

16 

 

 

2 

0.7 

1.5 

2.0 

2.5 

3.0 

0.4198 

0.3252 

* 

* 

0.2898 

0.4302 

0.3393 

* 

* 

0.3061 

0.4198 

0.3256 

0.3092 

* 

0.2911 

0.4302 

0.3392 

* 

* 

0.3098 

0.2479 

0.1373 

0.1165 

0.1103 

0.1065 

 

 

3 

0.7 

1.5 

2.0 

2.5 

3.0 

0.4217 

0.3252 

* 

* 

0.2886 

0.4308 

0.3407 

* 

* 

0.3063 

0.4217 

0.3253 

* 

* 

0.2917 

0.4308 

0.3407 

* 

* 

0.3101 

0.2495 

0.1418 

0.1237 

0.1122 

0.1121 

 

 

4 

0.7 

1.5 

2.0 

2.5 

3.0 

0.4128 

0.3222 

* 

0.2951 

0.299 

0.4245 

0.3383 

* 

* 

* 

0.4128 

0.3227 

* 

0.2987 

0.302 

0.4245 

0.3381 

* 

* 

* 

0.2554 

0.1383 

0.1154 

0.1138 

0.1077 

 

 

5 

0.7 

1.5 

2.0 

2.5 

3.0 

0.4216 

0.3186 

* 

0.3002 

* 

0.4313 

0.3334 

* 

* 

* 

0.4216 

0.3184 

* 

0.3032 

* 

0.4313 

0.3336 

* 

* 

* 

0.2541 

0.1334 

0.12 

0.1135 

0.1089 

 

 

 

 

 

 

 

 

 

25 

 

 

2 

0.7 

1.5 

2.0 

2.5 

3.0 

0.5484 

0.4096 

0.3848 

0.3716 

0.3684 

0.5551 

0.4204 

0.398 

0.3848 

0.38 

0.5484 

0.4098 

0.386 

0.3735 

0.3697 

0.5551 

0.4203 

0.3982 

0.3854 

0.383 

0.3307 

0.1564 

0.133 

0.1171 

0.1117 

 

 

3 

0.7 

1.5 

2.0 

2.5 

3.0 

0.5406 

0.4012 

0.3802 

0.385 

0.3769 

0.548 

0.412 

* 

* 

* 

0.5406 

0.4014 

0.3804 

0.386 

0.3803 

0.548 

0.4121 

* 

* 

* 

0.3321 

0.1527 

0.1315 

0.1246 

0.1128 

 

 

4 

0.7 

1.5 

2.0 

2.5 

3.0 

0.545 

0.4062 

0.3913 

0.3817 

0.3668 

0.5519 

0.4182 

0.4015 

0.3904 

0.3784 

0.545 

0.4063 

0.3916 

0.3827 

0.3687 

0.5519 

0.4183 

0.4016 

0.3917 

0.3795 

0.3327 

0.1579 

0.1277 

0.1226 

0.1153 

 

 

5 

0.7 

1.5 

2.0 

2.5 

3.0 

0.5406 

0.4077 

0.3866 

0.3735 

0.3723 

0.5463 

* 

* 

* 

0.3829 

0.5406 

0.4078 

0.3868 

* 

0.3732 

0.5463 

* 

* 

* 

0.3846 

0.3337 

0.1537 

0.1351 

0.127 

0.1146 
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n  0  b  
Test statistics 

kT  ghT  
kmT  ghmT  

bT  

 

 

 

 

 

 

 

 

 

35 

 

 

2 

0.7 

1.5 

2.0 

2.5 

3.0 

0.6519 

0.4978 

0.4695 

0.4576 

0.4461 

0.6574 

0.5055 

0.4787 

* 

0.4555 

0.6519 

0.4978 

0.4697 

0.4579 

0.4469 

0.6574 

0.5055 

0.4789 

* 

0.4561 

0.4164 

0.1757 

0.141 

0.1297 

  0.1172 

 

 

3 

0.7 

1.5 

2.0 

2.5 

3.0 

0.6684 

0.496 

0.473 

0.4667 

0.4516 

0.673 

0.5022 

0.4809 

0.4768 

0.4615 

0.6684 

0.496 

0.4729 

0.4683 

0.4545 

0.673 

0.5023 

0.4812 

0.4773 

0.4627 

0.4144 

0.1745 

0.1441 

0.1327 

0.1224 

 

 

4 

0.7 

1.5 

2.0 

2.5 

3.0 

0.6508 

0.4866 

0.4665 

0.4569 

0.4561 

0.6553 

0.4947 

0.474 

0.4662 

0.4651 

0.6508 

0.4866 

0.4664 

0.4577 

0.4574 

0.6553 

0.4947 

0.474 

0.4666 

0.4659 

0.4104 

0.1718 

0.1387 

0.1259 

0.12 

 

 

5 

0.7 

1.5 

2.0 

2.5 

3.0 

0.6671 

0.4867 

0.4679 

0.4504 

0.4473 

0.671 

0.4938 

0.4766 

0.4588 

0.4557 

0.6671 

0.4867 

0.4679 

0.4504 

0.4501 

0.671 

0.4938 

0.477 

0.4589 

0.4578 

0.4216 

0.174 

0.1423 

0.1298 

0.1231 

 

Table 5.15 (Continued): Estimated power for 2.1  and 05.0 . 

 

 

 

 

 

 

 

 

 

 

 

                        

 

 

 

     * indicates that the test could not control the probability of type I error. 
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n  0  b  
Test statistics 

kT  ghT  
kmT  ghmT  

bT  

 

 

 

 

 

 

 

 

 

16 

 

 

2 

0.7 

1.5 

2.0 

2.5 

3.0 

0.6641 

0.5116 

* 

* 

0.4737 

0.6732 

0.5291 

* 

* 

0.4893 

0.6641 

0.5124 

0.49 

* 

0.4772 

0.6732 

0.5297 

* 

* 

0.4942 

0.4396 

0.2066 

0.1764 

0.152 

0.1471 

 

 

3 

0.7 

1.5 

2.0 

2.5 

3.0 

0.6693 

0.5051 

* 

* 

0.4656 

0.6784 

0.5204 

* 

* 

0.482 

0.6693 

0.5049 

* 

* 

0.4713 

0.6784 

0.5213 

* 

* 

0.488 

0.4297 

0.1978 

0.1654 

0.1605 

0.144 

 

 

4 

0.7 

1.5 

2.0 

2.5 

3.0 

0.6649 

0.5212 

* 

0.4726 

0.4709 

0.6724 

0.5359 

* 

* 

* 

0.6649 

0.5214 

* 

0.4759 

0.4788 

0.6724 

0.5362 

* 

* 

* 

0.4316 

0.2065 

0.1756 

0.1526 

0.1558 

 

 

5 

0.7 

1.5 

2.0 

2.5 

3.0 

0.6624 

0.5068 

* 

0.477 

* 

0.6717 

0.5208 

* 

* 

* 

0.6624 

0.5069 

* 

0.4813 

* 

0.6717 

0.5209 

* 

* 

* 

0.4213 

0.2043 

0.1718 

0.1587 

0.1457 

 

 

 

 

 

 

 

 

 

25 

 

 

2 

0.7 

1.5 

2.0 

2.5 

3.0 

0.8103 

0.6385 

0.6224 

0.6074 

0.5899 

0.8147 

0.6471 

0.6335 

0.6164 

0.6006 

0.8103 

0.6389 

0.6236 

0.6088 

0.5936 

0.8147 

0.6471 

0.6334 

0.6188 

0.6051 

0.5545 

0.2453 

0.2007 

0.1762 

0.1662 

 

 

3 

0.7 

1.5 

2.0 

2.5 

3.0 

0.8051 

0.6392 

0.6148 

0.5955 

0.5899 

0.8098 

0.6482 

* 

* 

* 

0.8051 

0.6395 

0.6156 

0.5988 

0.594 

0.8098 

0.6482 

* 

* 

* 

0.553 

0.2515 

0.1927 

0.1759 

0.1646 

 

 

4 

0.7 

1.5 

2.0 

2.5 

3.0 

0.8072 

0.6379 

0.6163 

0.6009 

0.6019 

0.8117 

0.6465 

0.626 

0.6125 

0.614 

0.8072 

0.6379 

0.6171 

0.6029 

0.605 

0.8117 

0.6464 

0.6261 

0.6139 

0.6159 

0.5636 

0.2442 

0.1996 

0.17 

0.163 

 

 

5 

0.7 

1.5 

2.0 

2.5 

3.0 

0.8037 

0.6463 

0.6153 

0.5984 

0.6008 

0.8093 

* 

* 

* 

0.612 

0.8037 

0.6465 

0.616 

* 

0.6065 

0.8093 

* 

* 

* 

0.6175 

0.5566 

0.2412 

0.1953 

0.1626 

0.1536 

 

Table 5.16: Estimated power for 3.1  and 05.0 . 
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n  0  b  
Test statistics 

kT  ghT  
kmT  ghmT  

bT  

 

 

 

 

 

 

 

 

 

35 

 

 

2 

0.7 

1.5 

2.0 

2.5 

3.0 

0.9018 

0.7513 

0.7293 

0.7132 

0.6979 

0.9035 

0.7576 

0.7363 

* 

0.7051 

0.9018 

0.7513 

0.7292 

0.7134 

0.7007 

0.9035 

0.7576 

0.7363 

* 

0.7066 

0.6727 

0.279 

0.2252 

0.1905 

0.1701 

 

 

3 

0.7 

1.5 

2.0 

2.5 

3.0 

0.9044 

0.7559 

0.7255 

0.7071 

0.6965 

0.9057 

0.7615 

0.7328 

0.715 

0.7032 

0.9044 

0.7559 

0.7259 

0.7086 

0.6979 

0.9057 

0.7615 

0.7326 

0.7159 

0.7056 

0.6736 

0.2861 

0.2225 

0.1875 

0.1705 

 

 

4 

0.7 

1.5 

2.0 

2.5 

3.0 

0.8977 

0.7508 

0.7248 

0.7163 

0.7137 

0.9002 

0.7568 

0.7325 

0.7224 

0.7195 

0.8977 

0.7508 

0.7251 

0.7163 

0.7142 

0.9002 

0.7568 

0.7328 

0.7235 

0.7206 

0.6743 

0.2919 

0.2211 

0.1814 

0.1707 

 

 

5 

0.7 

1.5 

2.0 

2.5 

3.0 

0.9022 

0.7547 

0.7171 

0.7037 

0.7027 

0.9042 

0.7583 

0.7235 

0.7116 

0.7102 

0.9022 

0.7547 

0.7175 

0.706 

0.7051 

0.9042 

0.7583 

0.724 

0.7122 

0.7108 

0.6727 

0.2825 

0.2161 

0.1932 

0.1707 

 

Table 5.16 (Continued): Estimated power for 3.1  and 05.0 . 

 

 

 

 

 

 

 

 

 

 

 

 

                            

 

 

                 * indicates that the test could not control the probability of type I error. 
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n  0  b  
Test statistics 

kT  ghT  
kmT  ghmT  

bT  

 

 

 

 

 

 

 

 

 

16 

 

 

2 

0.7 

1.5 

2.0 

2.5 

3.0 

0.8307 

0.6719 

* 

* 

0.6288 

0.8367 

0.683 

* 

* 

0.6456 

0.8307 

0.6724 

0.6492 

* 

0.6344 

0.8367 

0.684 

* 

* 

0.6508 

0.5858 

0.28 

0.2303 

0.2071 

0.1942 

 

 

3 

0.7 

1.5 

2.0 

2.5 

3.0 

0.8289 

0.6715 

* 

* 

0.6354 

0.835 

0.6842 

* 

* 

0.6523 

0.8289 

0.6726 

* 

* 

0.642 

0.835 

0.6851 

* 

* 

0.6555 

0.5978 

0.2782 

0.2291 

0.2074 

0.1968 

 

 

4 

0.7 

1.5 

2.0 

2.5 

3.0 

0.8311 

0.6736 

* 

0.6356 

0.6295 

0.8378 

0.688 

* 

* 

* 

0.8311 

0.6747 

* 

0.6431 

0.636 

0.8378 

0.6882 

* 

* 

* 

0.5946 

0.2752 

0.2267 

0.2053 

0.1885 

 

 

5 

0.7 

1.5 

2.0 

2.5 

3.0 

0.8246 

0.6711 

* 

0.6365 

* 

0.8304 

0.6841 

* 

* 

* 

0.8246 

0.6712 

* 

0.6403 

* 

0.8304 

0.6848 

* 

* 

* 

0.5882 

0.2731 

0.2282 

0.208 

0.1903 

 

 

 

 

 

 

 

 

 

25 

 

 

2 

0.7 

1.5 

2.0 

2.5 

3.0 

0.9382 

0.8216 

0.7964 

0.7829 

0.7619 

0.9402 

0.8286 

0.8024 

0.79 

0.7693 

0.9382 

0.8216 

0.7971 

0.784 

0.7638 

0.9402 

0.8286 

0.8031 

0.7923 

0.7706 

0.7438 

0.3335 

0.2709 

0.2297 

0.21 

 

 

3 

0.7 

1.5 

2.0 

2.5 

3.0 

0.9404 

0.8114 

0.7922 

0.775 

0.7668 

0.9422 

0.819 

* 

* 

* 

0.9404 

0.8115 

0.7922 

0.7779 

0.7682 

0.9422 

0.8191 

* 

* 

* 

0.7387 

0.3318 

0.2699 

0.2351 

0.2023 

 

 

4 

0.7 

1.5 

2.0 

2.5 

3.0 

0.9397 

0.8155 

0.7922 

0.7769 

0.7815 

0.9414 

0.8229 

0.7996 

0.7857 

0.7892 

0.9397 

0.8156 

0.7922 

0.7797 

0.7854 

0.9414 

0.8229 

0.7999 

0.7869 

0.792 

0.7406 

0.3375 

0.2642 

0.2278 

0.2105 

 

 

5 

0.7 

1.5 

2.0 

2.5 

3.0 

0.9413 

0.8106 

0.7875 

0.7766 

0.7681 

0.9429 

* 

* 

* 

0.7766 

0.9413 

0.8106 

0.7886 

* 

0.7731 

0.9429 

* 

* 

* 

0.78 

0.7392 

0.3444 

0.2595 

0.2247 

0.2068 

 

Table 5.17: Estimated power for 4.1  and 05.0 . 
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n  0  b  
Test statistics 

kT  ghT  
kmT  ghmT  

bT  

 

 

 

 

 

 

 

 

 

35 

 

 

2 

0.7 

1.5 

2.0 

2.5 

3.0 

0.9808 

0.9034 

0.8841 

0.8748 

0.866 

0.9813 

0.9064 

0.8875 

* 

0.8696 

0.9808 

0.9034 

0.8841 

0.8759 

0.867 

0.9813 

0.9064 

0.8877 

* 

0.8701 

0.8473 

0.4042 

0.2923 

0.2579 

0.225 

 

 

3 

0.7 

1.5 

2.0 

2.5 

3.0 

0.9836 

0.9067 

0.8857 

0.8789 

0.8685 

0.9837 

0.9097 

0.8894 

0.8825 

0.8723 

0.9836 

0.9067 

0.8856 

0.8793 

0.87 

0.9837 

0.9098 

0.8893 

0.8827 

0.8744 

0.8473 

0.4048 

0.3042 

0.2579 

0.2286 

 

 

4 

0.7 

1.5 

2.0 

2.5 

3.0 

0.9813 

0.9078 

0.8773 

0.8695 

0.8653 

0.9816 

0.9107 

0.8812 

0.8736 

0.8693 

0.9813 

0.908 

0.8775 

0.8702 

0.8664 

0.9816 

0.9107 

0.8812 

0.8747 

0.8703 

0.8448 

0.3948 

0.3004 

0.2461 

0.2296 

 

 

5 

0.7 

1.5 

2.0 

2.5 

3.0 

0.9814 

0.9063 

0.8899 

0.8813 

0.8699 

0.9815 

0.9108 

0.8929 

0.8845 

0.8743 

0.9814 

0.9063 

0.8902 

0.8821 

0.8723 

0.9815 

0.9108 

0.893 

0.8848 

0.8757 

0.8521 

0.3985 

0.3037 

0.2478 

0.2314 

 

Table 5.17 (Continued): Estimated power for 4.1  and 05.0 . 

 

 

 

 

 

 

 

 

 

 

                            

 

 

 

 

                  * indicates that the test could not control the probability of type I error. 
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Table 5.18: Estimated power for 5.1  and 05.0 . 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

n  0  b  
Test statistics 

kT  ghT  
kmT  ghmT  

bT  

 

 

 

 

 

 

 

 

 

16 

 

 

2 

0.7 

1.5 

2.0 

2.5 

3.0 

0.9208 

0.8014 

* 

* 

0.7579 

0.9232 

0.8097 

* 

* 

0.7702 

0.9208 

0.802 

0.7767 

* 

0.7632 

0.9232 

0.8105 

* 

* 

0.7785 

0.7245 

0.358 

0.2798 

0.2529 

0.233 

 

 

3 

0.7 

1.5 

2.0 

2.5 

3.0 

0.9268 

0.795 

* 

* 

0.7548 

0.9304 

0.8042 

* 

* 

0.7666 

0.9268 

0.7951 

* 

* 

0.7615 

0.9304 

0.8042 

* 

* 

0.7724 

0.7312 

0.3512 

0.2915 

0.256 

0.232 

 

 

4 

0.7 

1.5 

2.0 

2.5 

3.0 

0.9241 

0.7971 

* 

0.7653 

0.7486 

0.9265 

0.8072 

* 

* 

* 

0.9241 

0.798 

* 

0.7702 

0.757 

0.9265 

0.8076 

* 

* 

* 

0.7255 

0.3494 

0.2798 

0.2517 

0.2326 

 

 

5 

0.7 

1.5 

2.0 

2.5 

3.0 

0.9252 

0.7947 

* 

0.7584 

* 

0.9275 

0.8043 

* 

* 

* 

0.9252 

0.7953 

* 

0.7633 

* 

0.9275 

0.8045 

* 

* 

* 

0.7369 

0.3494 

0.2801 

0.2531 

0.2345 

 

 

 

 

 

 

 

 

 

25 

 

 

2 

0.7 

1.5 

2.0 

2.5 

3.0 

0.9803 

0.9091 

0.8969 

0.8889 

0.8823 

0.9809 

0.9115 

0.9009 

0.8928 

0.887 

0.9803 

0.9091 

0.8978 

0.8903 

0.8854 

0.9809 

0.9115 

0.9011 

0.8937 

0.8899 

0.8576 

0.4162 

0.3398 

0.283 

0.2534 

 

 

3 

0.7 

1.5 

2.0 

2.5 

3.0 

0.9828 

0.9204 

0.8979 

0.8827 

0.8781 

0.9834 

0.9235 

* 

* 

* 

0.9828 

0.9205 

0.8983 

0.8841 

0.881 

0.9834 

0.9236 

* 

* 

* 

0.8626 

0.428 

0.3271 

0.2901 

0.2585 

 

 

4 

0.7 

1.5 

2.0 

2.5 

3.0 

0.9829 

0.9181 

0.8924 

0.8906 

0.8788 

0.9836 

0.9215 

0.8982 

0.8964 

0.8839 

0.9829 

0.9181 

0.8933 

0.8923 

0.882 

0.9836 

0.9213 

0.8986 

0.897 

0.8871 

0.8566 

0.43 

0.3266 

0.2882 

0.2611 

 

 

5 

0.7 

1.5 

2.0 

2.5 

3.0 

0.9815 

0.9129 

0.8934 

0.8815 

0.8829 

0.9819 

* 

* 

* 

0.8886 

0.9815 

0.9131 

0.8942 

* 

0.8861 

0.9819 

* 

* 

* 

0.8903 

0.8597 

0.4304 

0.334 

0.277 

0.2563 

 



81 

 

n  0  b  
Test statistics 

kT  ghT  
kmT  ghmT  

bT  

 

 

 

 

 

 

 

 

 

35 

 

 

2 

0.7 

1.5 

2.0 

2.5 

3.0 

0.9973 

0.9675 

0.9584 

0.9542 

0.9486 

0.9974 

0.9689 

0.9601 

* 

0.9511 

0.9973 

0.9675 

0.9587 

0.9552 

0.9495 

0.9974 

0.9689 

0.9602 

* 

0.9522 

0.9329 

0.5125 

0.3854 

0.3218 

0.281 

 

 

3 

0.7 

1.5 

2.0 

2.5 

3.0 

0.997 

0.9694 

0.9593 

0.952 

0.9535 

0.997 

0.9702 

0.9605 

0.9537 

0.9553 

0.997 

0.9694 

0.9594 

0.9526 

0.9548 

0.997 

0.9702 

0.9604 

0.9544 

0.9564 

0.9335 

0.5073 

0.3829 

0.3169 

0.2834 

 

 

4 

0.7 

1.5 

2.0 

2.5 

3.0 

0.9959 

0.9705 

0.9594 

0.9501 

0.9523 

0.9959 

0.9713 

0.961 

0.952 

0.9539 

0.9959 

0.9705 

0.9594 

0.9506 

0.953 

0.9959 

0.9713 

0.9608 

0.9525 

0.9551 

0.9293 

0.5069 

0.378 

0.3186 

0.281 

 

 

5 

0.7 

1.5 

2.0 

2.5 

3.0 

0.9975 

0.9669 

0.9584 

0.9535 

0.9488 

0.9975 

0.9682 

0.9598 

0.9552 

0.9503 

0.9975 

0.9669 

0.9587 

0.9536 

0.9493 

0.9975 

0.9682 

0.9601 

0.9555 

0.9511 

0.9367 

0.5049 

0.3867 

0.3206 

0.2863 

 

Table 5.18 (Continued): Estimated power for 5.1  and 05.0 . 

 

 

 

 

 

 

 

 

 

 

                         

 

 

 

 

                  * indicates that the test could not control the probability of type I error. 

 

From Tables 5.11-5.18, we can see that the power increases with b , n  and 

 but it does not depended on the choices of 0 . There is a little difference in the 

powers of the kT , kmT  tests and 
ghT , 

ghmT  tests when the values of the coefficient of 

variation are small. Otherwise, the 
ghmT  procedure appears to be most powerful.  
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5.3 Graph of Power Comparison 

 

 The graphs of power comparisons are presented by the selected values of n , b , 

0 ,  , and  . 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.1: Estimated power comparison of the five tests when n = 35, 0 = 2,  = 1.5, and  

                   = 0.01. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.2: Estimated power comparison of the five tests when n = 35, 0 = 5,  = 1.5, and  

                   = 0.05. 
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Figure 5.3: Estimated power comparison of the five tests when n = 35, 0 = 4, b = 

 0.7, and  = 0.01. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.4: Estimated power comparison of the five tests when n = 35, 0 = 3, b =0.7, 

 and  = 0.05. 
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Figure 5.5: Estimated power comparison of the five tests when n = 35, 0 = 4, b = 

 3.0, and  = 0.01. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.6: Estimated power comparison of the five tests when n = 35, 0 = 3, b = 

 3.0, and  = 0.01. 
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CHAPTER 6 

CONCLUSIONS AND RECOMMENDATIONS 

 

6.1 Conclusions 

 

 The objectives of this research are to investigate theoretical properties of 

particular test statistics, propose a test statistic for normal mean using information on 

the coefficient of variation, estimate the probability of probability of type I error and 

the power of the tests.  

 For the theoretical part, we investigate Khan’s (1 9 6 8 )  test statistic. We 

consider the properties of the point estimator for normal mean when the coefficient of 

variation is known. First, we prove that this point estimator is unbiased. Second, we 

examined this point estimator has minimum variance among all unbiased estimators. 

Next, we argue that this estimator is asymptotically normal and hence consistent. Most 

importantly, we propose tests based on the best unbiased estimator suggested by Khan 

(1 9 6 8 ) , the uniformly minimum risk estimator suggested by Gleser, & Healy (1976), 

the modified estimator improved by Khan (1968), the modified estimator of Gleser, & 

Healy (1976), and the sample mean with known coefficient of variation.    

 In the computation part, we calculate the probability of type I error and the 

power performance of the proposed tests. We choose the criterion of Cochran (1954) 

to consider the capacity in controlling the probability of type I error of the proposed 

tests regarding the nominal level  . The powers of the tests that pass the criterion of 

Cochran (1954) are compared in each situation. The normal distribution random 

samples with known coefficient of variation b  are generated for the various values of 

sample size n , mean 0 ,   and the nominal significance level using Monte Carlo 

simulation.  

 By the Central Limit Theorem we know that the sampling distribution of 

the mean is approximately normal if the sample size is large enough ( 30n ). In this 

thesis, we study the efficiency of these test statistics when the sample is small and 

compare simulation results when the sample size is large ( 35n ).  
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 For the computational part, the results indicated that the proposed tests tend 

to be able to control the probability of type I error in a small value of b  and a large 

value of n . The power comparison indicates that when the sample size is small and the 

coefficient of variation is large, there is little different powers of kT , kmT
 
tests and 

ghT

, 
ghmT  tests. Otherwise, the 

ghmT  test becomes the most powerful. And the bT  test is not 

recommended in almost all situations except for n = 16, 0 = 5 and  = 0.05. 

 Furthermore, we notice that, the powers of all tests are affected by the 

values of n , b  and  .  Namely, the powers of all tests are higher when the values of 

n ,   increase and the value of  b  decrease. In contrast, the powers are lower when 

the values of  b  decrease, but the values of  n  and   increase. In addition, the powers 

of all tests are close to each other for a small value of b ( b = 0.7) and the large values 

of n  and   ( = 1.5, n = 35).  

 

6.2 Future Research 

 

 For the future research, we could mention the following ideas: 

 1. In this thesis, we studied test statistics only. For the future study, we 

suggest to construct confidence intervals for these proposed tests.  

 2. We can construct the other tests for a normal mean with the known 

coefficient of variation and use the alternative approach to construct the tests. 

 3. It is interesting to apply the bootstrap procedure for the estimation of the 

mean of a normal population with the known coefficient of variation.  
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APPENDIX A 

REFERENCE OF THEORITICAL PART 

 

Definition A.1 The expected value or mean of a random variable )(Xg , denoted by

 )(XgE , is  

   )(XgE 




dxxfxg )()( , if X  is continuous or               

   )(XgE  


Xx
xXPxg )()( , if X  is discrete,                                       

provided that the integral or sum exist. If )(XgE , we say that  )(XgE  does 

not exist. 

 

Theorem A.1 Let X  be a random variable and let a, b, and c be constants. Then for 

any functions )(1 xg  and )(2 xg  whose expectations exist, 

  cxgbExEgacxbgxagE  ))(())(()()( 2121 . 

 

Definition A.2 The variance of a random variable  X  is its second central moment,  

    2XEXEXVar  . The positive square root of  XVar  is the standard 

deviation of X . 

 

Theorem A.2 If X  is a random variable with finite variance, then for any constant a  

and b ,    XVarabaXVar 2 . It is sometimes easier to use an alternative formula 

for the variance, given by 

     22 XEXEXVar  . 

(Cassella, & Berger, 2002, pp. 57-61) 
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APPENDIX   B 

PROVING THE EXPECTATION AND VARIANCE 

 

Recall again, a point estimator 2211 TcTcTLMMS  ; then, we take the expected value to 

LMMST  , we get 

    2211 TcTcETE LMMS     2211 TEcTEc  . 

 

  We know that   1TE  and   2TE . Thus, 

    21 ccTE LMMS  .  

                                   

Therefore, we obtain 

    21 ccTE LMMS  .                                                                         (B.1)                

                 

Next, we take the variance to LMMST  , we get 

    2211 TcTcVarTVar LMMS     2

2

21

2

1 TVarcTVarc  . 

 

Since,  

   2

11 vTVar   and    2

22 vTVar  .  

 

Thus, 

   2

2

2

2

2

1

2

1  vcvcTVar LMMS  .   

 

Therefore,  

     2

2

2

21

2

1 vcvcTVar LMMS  .                                                        (B.2)   

                       

Similarity, we also obtain 

 
   *

2

*

1

* ccTE LMMS  ,                                                                          (B.3) 
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and  

     2

2

2*

2

*

1

2*

1 vcvcTVar LMMS  .                                                           (B.4) 
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APPENDIX C 

R RPOGRAM FOR SIMULATIONS 

 

R Code for generating random variables to estimate the probability of Type I 

errors and powers of the test statistics for a normal mean with known coefficient 

of variation. 

 

Results<-function (delta,alpha,M)  

{ 

n <- c(16,25,35) 

b <- c(0.7, 1.5, 2, 2.5, 3.0) 

mu0 <-c(2,3,4,5) 

a <- b^2 

 

temp1 <- rep(0,M) 

temp2 <- rep(0,M) 

temp3 <- rep(0,M) 

temp4 <- rep(0,M) 

temp5 <- rep(0,M) 

 

for (i in 1:length(n)){ 

for (j in 1:length(a)){ 

 

cn <- (gamma((n[i]-1)/2)/gamma(n[i]/2))*sqrt(n[i]/(2*a[j])) 

lambda<-sqrt(n[i]/a[j]) 

cum.lambda <-(2*pnorm(lambda)-1+(2/lambda)*dnorm(lambda)) 

beta <-1/cum.lambda 

 

v1 <- a[j]/n[i] 

v1.mod <-((beta^2)-1)+((beta^2)*v1)  

v2 <-((v1*(n[i]-1))*(cn^2))-1 
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alpha1 <-v2/(v1+v2) 

c <- v2/(v1.mod+v2) 

 

c1 <-v2/(v1+v2+(v1*v2)) 

c2<- v1/(v1+v2+(v1*v2)) 

 

c1.mod <- v2/(v1.mod+v2+(v1.mod*v2)) 

c2.mod <- v1.mod/(v1.mod+v2+(v1.mod*v2)) 

 

for (k in 1:length(mu0)){ 

   for (l in 1:M){ 

        mu.x <- delta* mu0[k] 

        x <- rnorm(n[i], mu.x, mu.x*sqrt(a[j])) 

        x.bar <- mean(x) 

        x.sd <- sd(x)  

 

        T1 <- x.bar  

        T1.mod <- beta*abs(x.bar) 

        T2 <- cn*x.sd 

 

  d <- (alpha1*T1)+(1-alpha1)*T2    

  TLMMS <- (c1*T1)+(c2*T2) 

  dstar <-(c*T1.mod)+(1-c)*T2 

  Tmod <- (c1.mod*T1.mod)+(c2.mod*T2) 

  xbar <- T1 

 

var.d <-((v1*v2)/(v1+v2))*(mu0[k]^2) 

var.TLMMS <-((c1^2)*v1+(c2^2)*v2)*(mu0[k]^2) 

var.dstar <- ((v1.mod*v2)/(v1.mod+v2))*(mu0[k]^2) 

var.Tmod<-(((c1.mod^2)*v1.mod)+(c2.mod^2)*v2)*(mu0[k]^2) 

var.xbar <-v1*(mu0[k]^2) 
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Tk <-(d-mu0[k])/sqrt(var.d) 

Tgh<-((TLMMS/(c1+c2))-mu0[k])/sqrt(var.TLMMS) 

Tkm<-(dstar-mu0[k])/sqrt(var.dstar) 

Tghm <-((Tmod/(c1.mod+c2.mod))-mu0[k])/sqrt(var.Tmod) 

Tb <- (xbar-mu0[k])/sqrt(var.xbar) 

 

if((Tk<=qnorm(alpha/2))||(Tk>=qnorm(1-alpha/2))){temp1[l]<-1} 

else{temp1[l]<-0} 

if((Tgh <=qnorm(alpha/2))||( Tgh >=qnorm(1-alpha/2))){temp2[l]<-1} 

else{temp2[l]<-0} 

if((Tkm <=qnorm(alpha/2))||( Tkm >=qnorm(1-alpha/2))){temp3[l]<-1} 

else{temp3[l]<-0} 

if((Tghm <=qnorm(alpha/2))||( Tghm >=qnorm(1-alpha/2))){temp4[l]<-1} 

else{temp4[l]<-0} 

if((Tb <=qnorm(alpha/2))||( Tb >=qnorm(1-alpha/2))){temp5[l]<-1} 

else{temp5[l]<-0} 

 

} #end loop l  

 

cat("n =",n[i],", a =",a[j],", mu0 =",mu0[k],"\n") 

  

if (delta ==1) {Label <- "Type I error of Tk = "} 

else {Label <- "Power of Tk = "} 

out1<- mean(temp1) 

cat(Label, out1) 

cat("\n") 

 

if (delta ==1) {Label <- "Type I error of Tgh = "} 

else {Label <- "Power of Tgh = "} 

out2<- mean(temp2) 

cat(Label,out2) 
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cat("\n") 

  

if (delta ==1) {Label <- "Type I error of Tkm = "} 

else {Label <- "Power of Tkm = "} 

out3<- mean(temp3) 

cat(Label, out3) 

cat("\n") 

 

if (delta ==1) {Label <- "Type I error of Tghm = "} 

else {Label <- "Power of Tghm = "} 

out4<- mean(temp4)  

cat(Label, out4) 

cat("\n") 

 

if (delta ==1) {Label <- "Type I error of Tb = "} 

else {Label <- "Power of Tb = "} 

out5<- mean(temp5)  

cat(Label, out5) 

cat("\n\n") 

 

} #end loop k 

} #end loop j 

} #end loop i 

} 

Results (delta,alpha,M)  
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