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ABSTRACT

In this thesis, we propose new termination criteria for Wang-Landau

sampling in multidimensional numerical integration. Instead of completing the

simulations as in conventional Wang-Landau sampling, the process can be ter-

minated earlier using the new criteria. The appropriate termination criteria are

derived by checking absolute errors and the behavior of estimated integrals ob-

tained from the Wang-Landau sampling. An algorithm with the new termination

criteria was applied to approximate multidimensional integrals of up to six dimen-

sions.

In addition, the new termination criteria were applied to the estimation

of corner-peak integrals in 5, 8, and 10 dimensions. The corner-peak integrand

is one of six test integrand families designed by Genz [10] and can be used to

compare the efficiency of algorithms. We investigated the number of correct digits

instead of the estimated integrals.

The accuracy, the errors of the numerical estimates obtained, and the

CPU time of the conventional termination criterion and the new criteria were in-

vestigated. The results showed a significant reduction of the CPU time while the

accuracy remained within acceptable limits.
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CHAPTER 1

INTRODUCTION

1.1 Introduction

Integration is an important mathematical technique that can be ap-

plied to solve problems in many fields such as physics, biophysics, economics, and

engineering. Definite integrals arise in such problems as finding the total area

under a curve, finding the volume and surface area of a solid, finding the length

of a plane curve, calculating the work done by a force, finding the center of grav-

ity of a planar region, and finding the pressure and force exerted by a fluid on a

submerged object [1]. Since there are many situations in which the evaluation of

a definite integral cannot use analytical methods directly, numerical integration

formulas are required in such situations.

A general principle for developing numerical integration rules is to

replace the function f with simpler functions coinciding with f at selected grid

points, such as polynomial interpolants, and then define the numerical integral as

the exact integral of the interpolant function [2]. Simple numerical methods such

as Riemann sums and the trapezoidal rule use a first-order polynomial (a line) to

interpolate the function f . In order to obtain more accurate values, Simpson’s

rules use a higher-order polynomial for interpolation.

Although these numerical methods are efficient for approximating inte-

grals in low dimensions, they lack efficiency in high dimensions. Therefore, Monte

Carlo methods such as simple sampling, importance sampling and the Metropolis

algorithm have been proposed for use in multidimensional integrals. However,

these methods have limitations. For example, simple sampling fails to estimate

ill-behaved integrands. It also suffers from slow convergence requiring a large

amount of sampling to reduce the statistical error, and convergence is not always

assured. Importance sampling may even converge to incorrect values if a bad

weighting function is chosen, and such errors are not readily detected [3].
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In 2001, Wang and Landau [4] presented a new Monte Carlo method

called Wang-Landau sampling, and applied it to a discrete system in statistical

physics, i.e. the Ising model. This algorithm is used to estimate the density of

states g(E). Some thermodynamic quantities in the Ising model can be more eas-

ily derived when the density of states is known. In 2007, Li et al. [3] applied the

Wang-Landau algorithm to a continuous system in mathematics, i.e. the numer-

ical integration. The algorithm is efficient for approximating multidimensional

integrals and ill-behaved integrands. However, Wang-Landau sampling has the

same limitation for both discrete and continuous systems: the saturation of error.

In order to obviate the restriction of the Wang-Landau algorithm,

a new procedure (called the 1/t algorithm) was proposed by Belardinelli and

Pereyra, and used to eliminate the saturation of error in the Ising model [5].

The 1/t algorithm was applied to numerical integration in 2008 by Belardinelli,

Manzi, and Pereyra [6]. They found that the error saturation of the 1/t algo-

rithm arises from the effect of discretization in the y space (the bin width effect),

and results are close to the exact value at only small bin widths. Atisattapong

and Maruphanton [7] improved the 1/t algorithm for approximating multidimen-

sional integrations by introducing a new approximation of integration for large

bin widths. Instead of using a fixed value of y to evaluate the integrals, they

used the average of y values, which varies as the number of Monte Carlo trials

changes. They applied the proposed method to multidimensional integrals up to

six dimensions and ill-behaved integrals up to three dimensions. The numerical

results suggested that the estimated integrals obtained by the proposed method

always converge to the exact value and do not display error saturation at any bin

width.

As well as improving the accuracy of the methods, attempts have been

made to reduce the CPU time. In 2012, Caparica and Cunha-Netto [8] proposed

a new termination criterion for Wang-Landau sampling in the Ising model. They

found that the behavior of the microcanonical and canonical averages of some ther-

modynamic quantities in the Ising model stabilizes at some value before the process



3

completes. It is not therefore necessary to perform the simulation to completion.

Instead, a new termination criterion (or final modification factor) is determined.

In 2014, Caparica [9] introduced another termination criterion for Wang-Landau

sampling in Ising models. Instead of determining the new termination criterion in

advance, as in Caparica and Cunha-Netto, he derived the appropriate termination

criterion by checking absolute errors. As well as reducing the CPU time, this new

termination criterion had the additional advantage that it is no longer necessary to

define a final modification factor in advance, as different runs can stop at different

values of the final modification.

No research has investigated the use of these two criteria in numerical

integration. Therefore, this thesis will study Wang-Landau sampling for numerical

integration in multidimensions using these two termination criteria to reduce the

CPU time.

1.2 Motivation and Objectives

In this thesis, we study the behavior of estimated integrals obtained

from Wang-Landau sampling using the termination criteria from Caparica and

Cunha-Netto [8] and Caparica [9]. Instead of completing the simulations as in

conventional Wang-Landau sampling, the process can be terminated earlier using

the new criteria. To compare the efficiency of these criteria and of the conventional

method, we apply the new criteria to multidimensional integrals (as in the works

of Li et al.[3] and Belardinelli et al.[5]) up to six dimensions. In addition, we use

the approximation proposed by Atisattapong and Maruphanton [7] to calculate

the integrals. This is applied to a corner-peak integral in 5, 8, and 10 dimensions

[10, 11, 12, 13, 14, 15, 16, 17, 18] to investigate the efficiency of the new termination

criteria.

The objectives of this thesis are as follows:

1. To study the Wang-Landau algorithm for numerical integration in

multidimensions with two termination criteria.

2. To code and implement a program for approximating multidimen-
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sional integrals up to six dimensions and a corner-peak integral in

high dimensions.

3. To compare the accuracy, the errors of the numerical estimates ob-

tained, and the CPU time of the conventional termination criterion

and the new criteria.

4. To derive an appropriate termination criterion of the Wang-Landau

algorithm for approximating the integral in each dimension.

Our expectation of this work is a significant reduction of the CPU time

while keeping the accuracy within acceptable limits.

1.3 Outline of the thesis

This thesis consists of five chapters. The first chapter provides an

overview of the work and introduces our motivation and objectives. The second

chapter introduces the background to the thesis and reviews the previous liter-

ature. The method is presented in Chapter 3. Chapter 4 gives the numerical

results and compares the accuracy of the algorithms. Finally, a summary is given

in Chapter 5.
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CHAPTER 2

BACKGROUND AND LITERATURE REVIEWS

2.1 Background

In this section, we introduce some background information. The sec-

tion introduces two topics: numerical methods for integration and a definition of

the density of states.

2.1.1 Numerical methods for integration

Riemann sums

Riemann sums are the simplest approximation of definite integrals.

The concept of the Riemann sum is to divide the region under a curve f(x) into

rectangles of area f(x)∆x. The area under the curve f(x) is then approximated

by the sum of all areas
∑

f(x)∆x.

The procedures are as follows:

1. The interval [a, b] is divided into n subintervals [xi, xi+1] of equal

length ∆x = b−a
n

.

2. The function f(xi) is evaluated.

3. The integral, or the area under the curve f(x), is calculated by

I =
n−1∑
i=0

f(xi)∆x. (2.1)

For this approximation, the left endpoint xi of each subinterval is used to evaluate

the function f(x). This method is called the left-hand Riemann sum (Figure

2.1(a)). In addition, there are two more Riemann sums: the right-hand Riemann

sum and the midpoint Riemann sum.

The right-hand Riemann sum (Figure 2.1(b)) uses the right endpoint

xi+1 of each subinterval to evaluate the function f(x). Then the integral is ap-
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proximated by

I =
n−1∑
i=0

f(xi+1)∆x. (2.2)

The midpoint Riemann sum (Figure 2.1(c)) uses the midpoint xi+xi+1

2
of

each subinterval to evaluate the function f(x). Then, the integral is approximated

by

I =
n−1∑
i=0

f(xi+xi+1

2
)∆x. (2.3)

Figure 2.1: Three types of Riemann sum: (a) the left-hand Riemann sum, (b) the

right-hand Riemann sum, and (c) the midpoint Riemann sum.

Next, we consider the error of numerical estimates for one-dimensional

integrals using the Riemann sum. This depends on the number of subintervals

and the degree of the interpolation polynomial. The error of the left-hand and

right-hand approximations [19] with n subdivisions is in the order of O(∆x) =

1
2
(b−a)2

n
f

′
(ξ), where f

′ is the first derivative of f(x) and ξ lies somewhere in the

interval [a, b]. The error of the midpoint Riemann sum approximation [19] with n

subdivisions is in the order of O((∆x)2) = 1
24

(b−a)3

n2 f
′′
(ξ), where f

′′ is the second

derivative of f(x) at some ξ ∈ [a, b].



7

Trapezoidal rule

The concept of the trapezoidal rule for approximating one-dimensional

integrals is similar to that of the Riemann sum but the region under the curve f(x)

is divided into trapezoids instead of rectangles whose area is given by 1
2
[f(xi+1) +

f(xi)]∆x. The integral can then be approximated by summing the areas (Figure

2.2), as follows:

I =
n−1∑
i=0

1
2
[f(xi+1) + f(xi)]∆x = [1

2
f(x0) +

n−1∑
i=1

f(xi) +
1
2
f(xn)]∆x. (2.4)

Figure 2.2: The trapezoidal rule

The error of the trapezoidal approximation [20] for one-dimensional

integrals is in the order of O((∆x)2) = − 1
12

(b−a)3

n2 f
′′
(ξ).

Simpson’s rule

Simpson’s rule is another numerical method for approximating defi-

nite integrals. Both the Riemann sum and trapezoid rule approximate the curve

f(x) by a straight line while Simpson’s rule approximates it using a higher order

polynomial. Simpson’s rule can be separated into two methods depending on the

degree of interpolating polynomials: Simpson’s 1/3 and Simpson’s 3/8 methods.
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Simpson’s 1/3 rule

For Simpson’s 1/3 rule, the interpolating polynomial is quadratic.

Since this polynomial connecting three points (xi−1, xi and xi+1) always covers two

subintervals, it requires the number of subintervals (n) to be even. In particular,

the region under the curve f(x) is divided into the area ∆x
3
[f(xi−1) + 4f(xi) +

f(xi+1)] for each pair of subintervals [xi−1, xi] and [xi, xi+1]. If the number of

subintervals is odd, we cannot use Simpson’s 1/3 rule to estimate the integral.

Figure 2.3: Simpson’s 1/3 rule

For example, Figure 2.3 shows the region under the curve f(x) divided

by Simpson’s 1/3 rule. The green, yellow, and blue areas are equal to ∆x
3
[f(x0) +

4f(x1) + f(x2)], ∆x
3
[f(x2) + 4f(x3) + f(x4)] and ∆x

3
[f(x4) + 4f(x5) + f(x6)], re-

spectively. The integral can then be calculated by the sum of these areas:

I = ∆x
3
[f(x0)+4f(x1)+f(x2)]+

∆x
3
[f(x2)+4f(x3)+f(x4)]+

∆x
3
[f(x4)+4f(x5)+f(x6)].

(2.5)

In general, the composite Simpson’s 1/3 rule for n subintervals is

I = ∆x
3
[f(x0) + 4f(x1) + f(x2)] +

∆x
3
[f(x2) + 4f(x3) + f(x4)]

+ · · ·+ ∆x
3
[f(xn−2) + 4f(xn−1) + f(xn)]

=
∆x

3

n−1∑
i=1

[f(xi−1) + 4f(xi) + f(xi+1)] (2.6)

The error of the composite Simpson’s 1/3 rule [20] is in the order of O((∆x)4) =

− 1
180

(b−a)5

n4 f (4)(ξ), where f (4) is the fourth derivative of f(x) at some ξ ∈ [a, b].
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Simpson’s 3/8 rule

Figure 2.4: Simpson’s 3/8 rule

For Simpson’s 3/8 rule, the interpolating polynomial is cubic. Since

this polynomial connecting four points (xi−1, xi, xi+1 and xi+2) always covers three

subintervals, it requires the number of subintervals (n) to be a multiple of three. In

particular, the region under the curve f(x) is divided into the area 3(∆x)
8

[f(xi−1)+

3f(xi) + 3f(xi+1) + f(xi+2)] for each of the three subintervals [xi−1, xi], [xi, xi+1],

and [xi+1, xi+2], as shown in Figure 2.4.

In general, the composite Simpson’s 3/8 rule for n subintervals is

I = 3(∆x)
8

n−2∑
i=1

[f(xi−1) + 3f(xi) + 3f(xi+1) + f(xi+2)]. (2.7)

The error of Simpson’s 3/8 rule [20] with n subdivisions is in the order of O((∆x)4) =

− 1
80

(b−a)5

n4 f (4)(ξ), where f (4) is the fourth derivative of f(x) at some ξ ∈ [a, b].

Numerical integration of multidimensional integrals

The methods mentioned above can approximate not only one-dimensional

integrals, but also multidimensional integrals. For example, the two-dimensional

integral is defined by

I =

∫ d

c

∫ b

a

f(x, y)dxdy. (2.8)
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Since the order of the integration is not important, the integral can be computed

as iterated integrals by

I =

∫ d

c

(∫ b

a

f(x, y)dx

)
dy

=

∫ b

a

(∫ d

c

f(x, y)dy

)
dx. (2.9)

First, we evaluate the integral in one dimension (only the integral in the bracket)

using the methods mentioned above. Then, the result of this first integration

becomes the integrand in the second dimension. For example, the integral can be

estimated using the right-hand Riemann sum as follows:

I =

∫ d

c

(∫ b

a

f(x, y)dx

)
dy

=

ny∑
j=1

( nx∑
i=1

f(xi, yj)∆x

)
∆y, (2.10)

where nx and ny are the number of subintervals along the x-axis and y-axis.

Integration in high dimensions is carried out in the same way.

Next, we consider the error of numerical estimates for multidimensional

integrals. In one dimension, the errors of the Riemann sum, trapezoidal rule, and

Simpson’s rule are proportional to n−1, n−2, and n−4. In two dimensions, these

errors are proportional to n−1/2, n−1, and n−2, respectively [20]. Generally, the

errors in d dimensions are proportional to n−a/d, where a = 1, 2, and 4 for the

Riemann sum, trapezoidal rule, and Simpson’s rule, respectively [20]. We can ob-

serve that the errors of these numerical integrations depend on the dimensionality,

making it difficult to estimate the multidimensional integral using these methods.

However, the Monte Carlo method is a numerical method for solving this problem

which is efficient for higher-dimensional integrals and makes the error independent

of the dimensionality of the integral.

Monte Carlo integration

Monte Carlo integration [21] is a simple numerical method for ap-

proximating integrals using random numbers, which is very useful for higher-
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dimensional and complex integrals. The Monte Carlo method uses randomly cho-

sen points at which the integrand is evaluated. The main difference between Monte

Carlo integration and the numerical methods discussed above is that the former

uses probabilistic techniques, but the latter use deterministic processes. We will

introduce three main Monte Carlo integration methods: simple sampling, impor-

tance sampling, and the Metropolis algorithm.

Simple sampling

Simple sampling [21] is a conventional Monte Carlo method which is

the simplest and most effective approach to estimating definite integrals. In one

dimension, the integral can be approximated by the average of the rectangular

areas ((b− a)f(xi), for i = 1 . . . N) as follows:

IN =
(b− a)

N

N∑
i=1

f(xi), (2.11)

where xi is randomly chosen with the uniform probability density distribution on

the interval [a, b], N is the number of trials (called the Monte Carlo trials or Monte

Carlo sweeps), and IN is the numerical integration at N MC trials.

For example, Figure 2.5 shows the numerical integration of the function

y = f(x) using three Monte Carlo trials. The integral can be estimated by the

average of the area of rectangles (b − a)f(x1), (b − a)f(x2), and (b − a)f(x3),

where x1, x2, and x3 are randomly chosen with the uniform probability density

distribution on the interval [a, b]. Therefore, the value of the integral in Figure 2.5

is equal to I3 =
(b−a)

3
[f(x1) + f(x2) + f(x3)].

Next, we consider the simple sampling Monte Carlo method for the

d-dimensional integration defined by

ID =

∫ ∫
· · ·

∫
Ω

f(x1, x2, ..., xd)dx1dx2...dxd, (2.12)

where Ω is the integration domain. The simple sampling Monte Carlo method

for the d-dimensional integration use the same concept as the one-dimensional

integration. The n-tuple (x1, x2, ..., xd) is randomly chosen from the integration
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Figure 2.5: Simple sampling

domain Ω. Then, the d-dimensional integral can be approximated by

IDN
=

V

N

N∑
i=1

f(x1, x2, ..., xd), (2.13)

where V is the hypercube d-dimensional volume of the domain Ω.

The error of the simple sampling integration decreases as 1/
√
N [22]

and is independent of the dimensionality of the integral. This demonstrates that

the simple sampling integration is efficient in high dimensions. A variation on

this method arises from the way of sampling the values of x which are randomly

chosen with a uniform distribution. The advantages of this approach are ease of

implementation and suitability for situations where little information is available.

However, this method converges quite slowly for a function with very substantial

variations over the range of interest. For example, it fails to apply on a sharply

peaked integrand in very small regions (called the ill-behaved integrand). Ways of

improving simple sampling are either to increase the number of trials or to reduce

the variance of the integrand [23].
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Importance sampling

Importance sampling [21, 23] is a method for improving simple sam-

pling by reducing the variance of the integrand. In this method, instead of all

points been randomly chosen with equal probability as in simple sampling, they

are sampled according to a probability weighting function p(x) where p(x) is se-

lected to be as close as possible to f(x). Therefore, importance sampling increases

the density of points in regions of interest. In this approach, the integral can be

approximated by

I =

∫ b

a

[
f(x)

p(x)

]
p(x)dx =

1

N

N∑
i=1

f(xi)

p(xi)
, (2.14)

where p(x) is a positive function. The benefit of this method is that the error is in

terms of the variance V ar(f(x)/p(x)). This means that if f(x) and p(x) are close,

the variance of f(x)/p(x) is much smaller than the variance of f(x). However,

importance sampling can increase variance if a poorly weighting function p(x) is

selected. Moreover, there are limitations, i.e. p(x) must be positive and normal-

ized to unity in the integration domain [24].

The Metropolis algorithm

The Metropolis algorithm [25] is a subprocedure of importance sam-

pling. This algorithm generates a random walk of points according to a desired

probability distribution p(x). The random walk is defined by determining a transi-

tion probability T (xi → xj) from point xi to another point xj. For the existence of

the desired probability distribution p(x), a sufficient (but not necessary) condition

is the detailed balance:

p(xi)T (xi → xj) = p(xj)T (xj → xi). (2.15)

The move is either accepted or rejected according to the Metropolis algorithm.

The algorithm corresponds to choosing

T (xi → xj) = min

[
1,

p(xj)

p(xi)

]
. (2.16)

The procedures of the Metropolis algorithm applied to the integration are as fol-

lows:
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1. xi is chosen randomly from the interval [a, b].

2. xj is also chosen randomly from the interval [a, b] and then p(xj)/p(xi)

is calculated.

3. If T (xi → xj) = 1, the move is accepted. Then, let xi+1 = xj.

4. If T (xi → xj) < 1, a random number r is generated on [0, 1].

• If r ≤ T (xi → xj), the move is accepted. Then, let xi+1 = xj.

• If r > T (xi → xj), the move is rejected. Then, let xi+1 = xi.

However, the Metropolis algorithm cannot be applied to ill-behaved

integrals. The random walk can be trapped on the peak because the transition

probability at the peak is very low [24].

2.1.2 The Density of States

The density of states g(E) is the number of states in each interval of

energy of a system. For understanding the definition, we illustrate the density of

states using a discrete system known as the Ising model. The Ising model, invented

by the physicists Wilhelm Lenz and Ernst Ising [26], is a simple mathematical

model in statistical physics that describes ferromagnetism. The model is based

on the concept of interacting spins on an unchanging lattice L. For the two-

dimensional Ising model, the arrangement of the spin i in each lattice site is either

up or down. The values of the spin arrangements are denoted by δi. Let δi = 1

if spin i is up and δi = −1 if spin i is down. The Hamiltonian H (or the total

energy of the system) is given by

H = −J
∑
⟨ij⟩

δiδj, (2.17)

where J is called the exchange energy and ⟨ij⟩ is all nearest neighbor spins.

The density of states g(E) in the Ising model represents the number

of all possible states or configurations for an energy level E. For example, in the

2 × 2 square lattice Ising model (Figure 2.6), all possible configurations of spins
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Figure 2.6: 2× 2 square lattice Ising model

Table 2.1: (Left column) All possible configurations of spins for the 2× 2 square lattice

Ising model. (Right column) The total energy H of each configuration.

Configuration∗ H

↑↑↑↑, ↓↓↓↓ −4J

↓↑↑↑, ↑↓↑↑, ↑↑↓↑, ↑↑↑↓, ↑↓↓↓, ↓↑↓↓, ↓↓↑↓, ↓↓↓↑, ↑↑↓↓, ↓↓↑↑, ↑↓↓↑, ↓↑↑↓ 0

↓↑↓↑, ↑↓↑↓ 4J

∗ ↑ denotes a spin up and ↓ denotes a spin down for 1st to 4th spin, respectively.

and the total energy H of each configuration are as in Table 2.1.

From Table 2.1, there are three possible energy levels: E1 = −4J,E2 =

0, and E3 = 4J and their densities of states are g(E1) = 2, g(E2) = 12, and

g(E3) = 2, respectively. The great advantage of the density of states is that the

thermodynamic quantities can be calculated more easily and quickly.

Next, we introduce the partition function Z, which represents the sta-

tistical properties of a system in thermodynamic equilibrium, defined by

Z =
∑

configurations

e−E/kBT =
∑
E

g(E)e−E/kBT . (2.18)

where T is the temperature and kBT is the Boltzmann constant. If the density of

states is not defined, the partition function is calculated by the first summation,

which sums over all possible configurations. If the density of states is already

known, the partition function can be calculated by the second summation, which

sums only over all possible energy levels. In fact, the number of all possible energy

levels is always less than the number of configurations.

Many important thermodynamic quantities [27] in statistical physics
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can be derived using the partition function. For example, the internal energy U(T )

(which is equivalent to the canonical average of the energy ⟨E⟩T ), heat capacity

C(T ), free energy F (T ), and entropy S(T ) at temperature T are given by

U(T ) =

∑
E Eg(E)e−βE∑
E g(E)e−βE

=

∑
E Eg(E)e−βE

Z
≡ ⟨E⟩T , (2.19)

C(T ) =
∂U(T )

∂T
=

⟨E2⟩T − ⟨E⟩2T
T 2

, (2.20)

F (T ) = −kBT log(Z), (2.21)

S(T ) =
U(T )− F (T )

T
, (2.22)

where β = 1/kBT .

For understanding the definition of the density of states in a continuous

system, we take the numerical integration as an example. The one-dimensional

definite integral can be calculated by

I =

∫ b

a

f(x)dx, (2.23)

where f(x) is a continuous function on the closed interval [a, b]. The geometrical

interpretation of the definite integral is the area between the graph of the function

f(x) and the x-axis over a closed interval [a, b].

Since the definite integral is hard to calculate directly, even for one

dimension, numerical methods are needed. For calculating the area under the

curve of the function f(x) using the density of states g(y), grid discretization is

required. Therefore, it is necessary to define the upper bound ymax and lower

bound ymin of the integral in advance. The interval [ymin, ymax] is divided into n

subintervals of equal length dy. The density of states of integrals is the proportion

of the integral domain that lies within an interval [y, y + dy], which is given by

g(y) ≡ {x|x ∈ [a, b], y 6 f(x) 6 y + dy}, (2.24)
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where dy is the bin width of y. Then, the integral can be approximated by

I =

∫ b

a

f(x)dx ≈
ymax∑
ymin

g(y)y∗, (2.25)

where y∗ is the midpoint of the interval [y, y + dy] defined by y∗ = y+(y+dy)
2

.

Figure 2.7: An example of the determination of the proportion of the integral

domain

For example, we approximate the area under the curve f(x), as shown

in Figure 2.7. The upper bound ymax and lower bound ymin of the integral are

defined in advance. The interval [ymin, ymax] is divided into three subintervals of

equal length dy.

Then, we can find the value of x by using the inverse function x =

f−1(y). This is the reason that the integrand must be invertible. From the defini-

tion of the density of states of integrals as in Eq. (2.24), we can obtain the exact

g(y0), g(y1), and g(y2). Therefore, the area under the curve in Figure 2.7 can be

approximated by∫ b

a

f(x)dx ≈
2∑

i=0

g(yi)y
∗
i = g(y0)y

∗
0 + g(y1)y

∗
1 + g(y2)y

∗
2, (2.26)

where y∗i is the midpoint of the interval [yi, yi + dy] defined by y∗i = yi+(yi+dy)
2

for

i = 0, 1, 2. From Figure 2.7, we observe that the sum of all green areas is g(y0)y
∗
0,

the sum of all blue areas is g(y1)y
∗
1, and the sum of all red areas is g(y2)y

∗
2.
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The concept of the approximation of the definite d-dimensional integral

given by Eq. (2.12) is the same as that in one dimension. The integration using

the density of states requires the upper bound ymax and lower bound ymin of the

integral in advance. The interval [ymin, ymax] is divided into subintervals of equal

length dy and then the value of x is evaluated using the inverse function. The

density of states of the d-dimensional integrals is expressed as

g(y) ≡ {(x1, x2, ..., xd)|(x1, x2, ..., xd) ∈ Ω, y 6 f(x1, x2, ..., xd) 6 y + dy}. (2.27)

This method is very useful for integration in high dimensions. We only divide the

one-dimensional range of the integral, instead of dividing the multidimensional

domain of the integral which is hard to calculate.

2.2 Literature reviews

Wang and Landau [4] introduced a new procedure for the Monte Carlo

algorithm, called Wang-Landau sampling. The algorithm can estimate the density

of states g(E) for calculating some thermodynamic quantities in the Ising model.

The great advantage of the algorithm is that the free energy and the entropy can

be obtained at any temperature, instead of by direct approximation using con-

ventional Monte Carlo methods at a given temperature. This new method is also

efficient for finding the 1st order and 2nd order phase transitions, and is conve-

nient for complicated systems with rough energy landscapes.

The Wang-Landau algorithm is as follows:

1. The density of states is a priori unknown. We set g(E) = 1 and

H(E) = 0 for all energy levels E, where g(E) is the density of states

and H(E) is the histogram at energy level E.

2. A random walk starts at any energy level E defined by Eold. Af-

ter that, random walks are performed in energy space by choosing

a random spin-flip. After flipping the spin, the new energy level

defined by Enew is calculated.
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3. The transition probability from the old energy level (Eold) to the

new energy level (Enew) is

p(Eold → Enew) = min ( g(Eold)
g(Enew)

, 1). (2.28)

4. If the random walk is accepted, the density of states and the his-

togram at the new energy level (Enew) are updated by g(Enew) →

g(Enew)×f and H(Enew) → H(Enew)+1, where f is a modification

factor. The initial modification factor is f0 = e1 w 2.71828 . . .

Otherwise, the density of states and the histogram at the old energy

level (Eold) are updated by g(Eold) → g(Eold) × f and H(Eold) →

H(Eold) + 1.

5. The random walks are performed repeatedly until the accumulated

histogram H(E) is flat. This means that for a given flatness crite-

rion p, H(E) > p×⟨H(E)⟩ where ⟨H(E)⟩ is the average histogram

of all energy levels. After that, the modification factor is refined

by f →
√
f and the histogram is reset to H(E) = 0 for all energy

levels.

6. The simulation continues until f reaches the final modification fac-

tor ffinal = exp (10−8) w 1.00000001.

Moreover, Wang and Landau suggested that the algorithm can be used

to study complex systems such as spin glass models [28, 29, 30] and protein folding

problems [31] that present challenges when using other optimization algorithms,

because the energy landscapes are very rough. The Wang-Landau algorithm has

been successfully applied in many fields including statistical physics [32, 33], bio-

physics [34], and mathematics [35].

Tröster and Dellago [35] presented Wang-Landau sampling with a self-

adaptive range. This method is useful for estimating the density of states in

systems in which the boundary of energy is unknown in advance. They applied the

method to the two-dimensional Ising model to provide upper and lower bounds
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of energy. This allows the number of energy levels and values at each energy

level during simulation to be calculated. Moreover, it is efficient for calculating

the integrals of sharply peaked functions in high dimensions. However, in their

approach, the integrand f(x) was expressed in terms of a Boltzmann factor e−ϕ(x)

with ϕ(x) = − ln[f(x)]. The method has the restriction that the integrand f(x)

must be positive.

Li et al. [3] proposed a new application of Wang-Landau sampling to

numerical integration. They illustrated the numerical results for the two following

integrals:

I1D =

∫ 2

−2

(x5 − 4x3 + x2 − x) sin (4x)dx, (2.29)

I2D =

∫ 1

−1

∫ 1

−1

(x6
1 − x1x

3
2 + x2

1x2 + 2x1) sin (4x1 + 1) cos (4x2)dx1dx2. (2.30)

These functions are exactly integrable and feature multiple maxima and minima

in one- and two-dimensions. Li et al. compared the estimated values of integrals

with those derived by the simple sampling method. The results indicated that

both methods provide the same convergence behavior in low dimensions. The self-

adaptive method cannot estimate negative integrands, but Wang-Landau sampling

does not have this restriction.

Furthermore, the method can be applied to estimate the ground state

energy in the lattice Anderson model, which can be decomposed into a non-

interacting value E0 plus correction term (E2, E4, . . .). Each correction term is

in terms of multidimensional integrals of the summation of the products of the

Green’s function. The results show that the estimated value converges to the ex-

act value for smaller bin widths dy and larger flatness criteria p. Therefore, the

accuracy of the numerical estimate depends on the two adjustable parameters: the

flatness criterion p and the bin width dy.

Belardinelli and Pereyra [5] proposed a new procedure, called the 1/t

algorithm, to avoid the restrictions of the Wang-Landau algorithm. They found

that the main problem of Wang-Landau sampling arises from the saturation of the

error. This is caused by the way of refining the modification factor and the con-
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dition for the histogram flatness. The relations S(E) = ln [g(E)] and F = ln (f)

are used for fitting all values of g(E) into double precision numbers.

The 1/t algorithm is as follows:

1. Initially, set S(E) = ln[g(E)] = 0 and set H(E) = 0 for all energy

levels E.

2. Set F0 = ln(f0) = 1 and Ffinal = ln(ffinal) = ln[exp(10−8)] = 10−8.

3. A random walk starts at any energy level E defined by Eold. Ran-

dom walks are performed in energy space by randomly choosing a

spin-flip. A new energy value defined by Enew is then calculated.

4. The transition probability from the old energy level Eold to the new

energy level Enew is

p(Eold → Enew) = min {1, exp[S(Eold)− S(Enew)]}.

5. If the random walk is accepted, the density of states and the his-

togram at the new energy level (Enew) are updated by S(Enew) →

S(Enew) + Fk and H(Enew) → H(Enew) + 1. Otherwise, the den-

sity of states and the histogram at the old energy level (Eold) are

updated by S(Eold) → S(Eold) + Fk and H(Eold) → H(Eold) + 1.

6. The histogram is checked after some Monte Carlo sweeps (e.g. 1000)

with the condition H(E) ̸= 0 for all energy levels E.

7. When all the energy levels E have been visited by the random

walker at least once, the modification factor is refined using the

following condition:

Fk+1 =

 Fk/2, Fk > 1/t;

1/t, Fk 6 1/t
(2.31)

and the histogram is reset to H(E) = 0 for all energy levels E.
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8. The process is repeated up to Fk+1 = Ffinal.

In this new procedure, a flatness criterion is not necessary for the

simulation. Refining the modification factor is now based on the number of Monte

Carlo trials, not on the number of iterations (k). Belardinelli and Pereyra used this

method to calculate the density of states of the Ising model in a two-dimensional

square lattice. The results converge to the exact value without the saturation of

error, and are more accurate than the Wang-Landau algorithm.

Belardinelli, Manzi, and Pereyra [6] reported the application of the 1/t

and Wang-Landau algorithms to multidimensional integrations. Both algorithms

were compared with the simple sampling algorithm. They found that the error

of the simple sampling algorithm decreases as N−1/2, where N is the number

of Monte Carlo trials, while the error of the Wang-Landau algorithm saturates.

Although the error of the 1/t algorithm also saturates and does not converge to

Iexact, it converges to I(dy)ex =
∫ b

a
f(x)dx ≈

ymax∑
ymin

gex(y)y
∗, where gex(y) ≡ {x|x ∈

[a, b], y 6 f(x) 6 y+dy} for a given bin width dy, and y∗ denotes the midpoint of

the interval [y, y + dy]. The results show that the 1/t algorithm is more accurate

than the Wang-Landau algorithm in all dimensions. The accuracy of the 1/t

algorithm is worse than the simple sampling algorithm in some low dimensions,

but is significantly more accurate in high dimensions.

Caparica and Cunha-Netto [8] studied the behavior of the microcanoni-

cal and canonical averages of some thermodynamic quantities of the two-dimensional

Ising model using Wang-Landau simulation. They found that the averages con-

verge to their exact values before the process completes (fk ≤ ffinal). This makes

it unnecessary to perform the simulation to the end. They then determined a

criterion for terminating the simulation ffinal and a criterion for ceasing accumu-

lation of the microcanonical averages fmicro from the behavior of the canonical

and microcanonical averages during the simulation.

As an example, they studied the behavior of the temperature of the

extremum of the specific heat Tc(C). They found that the evolution of Tc(C) in

eight independent runs stabilized at some value before the end of the simulation
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(see Figure 2.8) [8].

Figure 2.8: Behavior of Tc(C) during Wang-Landau sampling for eight independent

runs using the 80%-flatness criterion and beginning at f17. The dots show where the

modification factors were updated and the straight line is the exact value from [36].

In Figure 2.8, Tc(C) converged to the exact value at f23 and the process

should be stopped. To improve the accuracy of Wang-Landau sampling, they also

proposed a new way of updating the density of states. Instead of updating after

every spin-flip trial, updating is done after some number (p) of Monte Carlo sweeps.

Using ln ffinal = 10−4 and updating the density of states only after L2 trial moves

produced more accurate results than other p trial moves, as shown in Figure 2.9

[8]. Note that p = 1 is equivalent to the conventional Wang-Landau algorithm.

Caparica and Cunha-Netto also studied the evolution of the micro-

canonical average of the magnetization ⟨m⟩E at E = −1024 and E = −536.

Figure 2.10 [8] shows that ⟨m⟩E converged to a constant at f7 for both energy lev-

els making it unnecessary to accumulate ⟨m⟩E through the end of simulation, and

allowing the CPU time to be reduced. After ⟨m⟩E is obtained, the temperature

of the extremum of the susceptibility (Tc(χ)) can be calculated by

χ = L2⟨(m− ⟨|m|⟩)2⟩/T. (2.32)
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Figure 2.9: Best-fit Gaussians for the histograms of Tc(C) during Wang-Landau sam-

pling up to ln f = 10−4, using the 80%-flatness criterion, each for 100, 000 independent

runs with the density of states being updated every p spin-flip trial. The central line is

the exact value from [36].

Figure 2.10: Evolution of the microcanonical average of the magnetization for the 2D

Ising model for L = 32 at E = −1024 and −536 during the simulations over 1, 000

independent runs for each flatness stage.

Figs. 2.11(a) and 2.11(b) show that neither Tc(χ) obtained by the con-

ventional Wang-Landau algorithm nor Tc(χ) obtained by the improved method

(using p = L2 and fmicro = f7) flowed to steady values. However, Tc(χ) cal-
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(a) (b)

Figure 2.11: Behavior of Tc(χ) during the WLS for eight independent runs using a

flatness criterion of 80% and beginning at f9. The dots show where the modification

factor was updated and the straight line is the result obtained using the exact data from

Ref. [36]. The density of states was updated after (a) every spin-flip and (b) every L2

trial move with the microcanonical average accumulated from ln f = ln f7.

culated using the mean values of ⟨m⟩E in 24 independent runs flowed to steady

values, as shown in Figure 2.12 [8]. For calculating Tc(χ), the simulation should

be terminated at ffinal = f13.

In brief, they proposed a new procedure for the Wang-Landau simu-

lation which improved accuracy and reduced the CPU time. The new procedure

involves the following steps:

1. Updating the density of states only after each Monte Carlo sweep

instead of updating it after every spin-flip.

2. Performing the simulation until fk = ffinal, where ffinal is deter-

mined by the behavior of the canonical averages during the simu-

lation.

3. Accumulating the microcanonical average until fk = fmicro, where

fmicro is determined by the behavior of the microcanonical averages

during the simulation.

Caparica and Cunha-Netto plotted the histogram of Tc (H(Tc)) in order
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Figure 2.12: Behavior of Tc(χ) during the WLS, beginning from f9, for eight indepen-

dent runs using a flatness criterion of 80% and a common microcanonical average in

24 independent runs. The density of states was updated after every L2 trial move.

The dots show where the modification factor was updated and the straight line is the

result obtained using the exact data from Ref. [36] with the microcanonical average

accumulated from ln f = ln f7.

to observe the peak of the histogram. Figure 2.13 shows that within the same CPU

time, the peaks of H(Tc) of the improved Wang-Landau method (WL.f13) using

80%- and 90%-flatness criteria were lower than those of the 1/t algorithm using

the same flatness criteria. Nevertheless, the centers of peaks of the 1/t algorithm

were farther apart from the exact value than those of the WL.f13 algorithm. This

reveals a biased approximation effect in the 1/t algorithm.

Caparica and Cunha-Netto also calculated the relative errors of the

simulated mean values with respect to the result using Ref. [36], as shown in

Table 2.2. It is obvious that the relative errors of the improved method are less

than those of the 1/t algorithm. The improved Wang-Landau method is therefore

more efficient than the 1/t algorithm.

They then applied this idea to a self-avoiding homopolymer to calculate

the energy and the mean-square end-to-end distance at some temperature. They
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Figure 2.13: Best-fit Gaussians for the histograms of the temperatures of the peak of

the specific heat for the 2D Ising model during the WLS up to ffinal = f13, using the

80%- and 90%-flatness criteria, each for 100, 000 independent runs. The 1/t simulations

were carried out within the same CPU time. The central line corresponds to the exact

temperature obtained with data from Ref. [36].

Table 2.2: The relative error of the simulated mean values with respect to the exact

values

Simulation Relative error

WL. ln .f13.80% 0.00041

WL. ln .f13.90% 0.00036

1/t80% 0.00170

1/t90% 0.00081

defined the proper fmicro and ffinal of this model in the same way as the 2D Ising

model.

Caparica [9] proposed a new halting criterion for Wang-Landau sam-

pling in the two- and three-dimensional Ising models. The behavior of the critical

temperature of the specific heat Tc(C) and the susceptibility Tc(χ) were investi-

gated during the Wang-Landau simulations. He suggested that the simulations

should be terminated when Tc(C) and Tc(χ) vary below a given threshold limit.
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He also defined the checking parameter which is calculated by

ε = |Tc(t)− Tc(0)|, (2.33)

where Tc(0) is the last value obtained in the previous modification factor and Tc(t)

is the value obtained in the current Monte Carlo step. If ε during the interval

[fk, fk+1] is less than a predefined threshold limit value, then the simulation can

be terminated at fk. The proper threshold limits (e.g. limit = 10−4, 10−5, and

10−6) are derived for ceasing the simulation in each model.

Figure 2.14: (Upper panel) Evolution of the temperature of the maximum of the spe-

cific heat during the WLS, beginning from f5 for a single run. The dots show where

the modification factor was updated. (Lower panel) Evolution of the logarithm of the

checking parameter ε during the same simulation.

For example, the upper panel in Figure 2.14 shows the behavior of

Tc(C) in a single run for L = 80 and the lower panel shows its evolution in terms

of log10(ε). Since the value of ε during the interval [f8, f9] (the red line) is less than

limit = 10−2, the simulation can be terminated at f8. Similarly, the simulation

can be terminated at f13 (the green line), f15 (the blue line), and f19 (the purple

line) for limit = 10−3, 10−4, and 10−5, respectively.

In order to obtain a suitable limit for the Ising model, he performed

manifold finite-size scaling simulations. According to finite-size scaling theory

[37, 38, 39], the zero field scaling expressions for the magnetization and the sus-
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ceptibility are given by

m ≈ L−β/νM(tL1/ν), (2.34)

χ ≈ Lγ/νχ(tL1/ν). (2.35)

The locations of the maxima of these functions scale asymptotically as

Tc(L) ≈ Tc + aqL
−1/ν , (2.36)

where aq is a quantity-dependent constant, allowing then the determination of Tc.

Using these scaling functions and assuming ν = 1, the critical tem-

perature Tc and the critical exponents β and γ can be calculated. He found

that two independent finite-size scaling simulations provided very different re-

sults for the critical temperature. Then, he performed 10 independent Wang-

Landau simulations for L = 32, 36, 40, 44, 48, 52, 56, 64, 72, and 80 with N =

24, 24, 20, 20, 20, 16, 16, 16, 12, and 12 independent runs for each size.

He compared the averages of 10 finite-size results for Tc, γ, and β by

halting the simulations at ffinal = f13 (from Ref. [9]) and by halting the simula-

tions at the given limit = 10−3, 10−4, and 10−5. He found that the results were

close to the exact value even for limit = 10−3.

In the case of systems that exhibit more than one peak or behave

unexpectedly, an alternative quantity, the heat transfer per unit Q, could be used.

This value is defined by

Q =
1

N

∫ Tf

Ti

C(T )dT, (2.37)

where C(T ) is the specific heat and N is the number of units in the system (the

number of spins, monomers, etc.).

Therefore, instead of checking the value of ε by Eq. (2.33), another

checking parameter is used, defined by

ε = |Q(t)−Q(0)|, (2.38)

where Q(0) is the last value obtained in the previous modification factor and Q(t)

is the value obtained in the current Monte Carlo step.
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Figure 2.15: (Upper panel) Evolution of the temperature of the heat transfer per unit

Q during the WLS, beginning from f5 for a single run. The dots show where the mod-

ification factor was updated. (Lower panel) Evolution of the logarithm of the checking

parameter ε calculated by using Q during the same simulation.

For example, the upper panel in Figure 2.15 shows the behavior of Q

in a single run for L = 80 and the lower panel shows its evolution in terms of

log10(ε). After f12, the value of Q flows to a steady value and the value of error

is also less than limit = 10−4, 10−5, and 10−6. Thus, the halting criteria (Eq.

(2.38)): ε < 10−4, ε < 10−5, and ε < 10−6 are surveyed.

Next, Caparica considered the mean final orders of the modification

factor (ifinal) using the checking parameter defined by Tc(C) (upper panel in Figure

2.16) and Q (lower panel in Figure 2.16). He found that ifinal using Eq. (2.33)

for limit = 10−3, 10−4, and 10−5 were roughly size independent while ifinal using

Eq. (2.38) for limit = 10−4, 10−5, and 10−6 decreased slightly as the lattice size

increased.

Caparica then performed 50 finite-size scaling simulations to calculate

Tc, γ, and β in order to find the proper limit for the two-dimensional Ising model.

Table 2.3 shows the mean of 10 finite-size scaling extrapolations. The values in

the left side use the checking parameter defined by Tc(C) for ffinal = f13 and

limit = 10−3, 10−4, and 10−5. The results stabilized at limit = 10−4 and the

proper threshold limit was limit = 10−4. The values in the right side in Table 2.3
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Figure 2.16: (Upper panel) Mean final order of the modification factor for three levels

of demand for the checking parameter, using Tc(C) as a reference. (Lower panel) The

same using the quantity Q for calculating the checking parameter.

use the checking parameter defined by Q for ffinal = f13 and limit = 10−4, 10−5,

and 10−6. The results stabilized at limit = 10−5 and the appropriate threshold

limit was limit = 10−5.

The advantages of the new halting criterion are that the CPU time is

reduced, different runs can stop at different values of the final modification (ffinal),

and it is not necessary to define ffinal in advance. The appropriate limit can be

determined for all simulations and all sample sizes for the two-dimensional Ising

model.

Caparica also applied new criterion for halting the simulations to the

three-dimensional Ising model. The upper panel in Figure 2.17 shows the behavior

of Tc(C) beginning from f8 in a single run for L = 20 and the lower panel shows

its evolution in terms of log10(ε). Caparica suggested that the simulation could

be halted at f10, f13, and f18 for limit = 10−3, 10−4, and 10−5, respectively.

He applied this criterion for ceasing the Wang-Landau simulation to
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Table 2.3: (Left table) Five independent runs using the checking parameter defined by

Tc(C). (Right table) Five independent runs using the checking parameter defined by Q.

Each procedure is the result of 10 finite-size scaling extrapolations for Tc, γ, and β for

outputs at the end of f13 and for decreasing ε, using the 80% flatness criterion.

Tc(C) Q

f13 ε < 10−3 ε < 10−4 ε < 10−5 f13 ε < 10−4 ε < 10−5 ε < 10−6

Tc = 2.2691853... Tc = 2.2691853...

a. 2.26917(15) 2.26925(18) 2.26916(10) 2.26910(10) a. 2.26917(15) 2.26942(25) 2.26917(12) 2.26911(10)

b. 2.26914(18) 2.26929(19) 2.26915(14) 2.26911(14) b. 2.26914(18) 2.26944(27) 2.26913(17) 2.26911(14)

c. 2.26915(11) 2.26909(16) 2.26913(10) 2.26912(10) c. 2.26915(11) 2.26921(16) 2.26918(11) 2.26914(11)

d. 2.26930(14) 2.26921(17) 2.26928(12) 2.26927(10) d. 2.26930(14) 2.26936(21) 2.26928(13) 2.26927(11)

e. 2.26925(15) 2.26916(16) 2.26928(15) 2.26926(12) e. 2.26925(15) 2.26959(20) 2.26926(15) 2.26925(13)

γ = 1.75 γ = 1.75

a. 1.7609(12) 1.7600(11) 1.7605(10) 1.7605(10) a. 1.7609(12) 1.7631(12) 1.7610(10) 1.7605(10)

b. 1.7586(15) 1.7579(19) 1.7587(11) 1.7589(10) b. 1.7586(15) 1.7590(21) 1.7582(12) 1.7593(10)

c. 1.7597(15) 1.7601(18) 1.7584(11) 1.7580(10) c. 1.7597(15) 1.7615(14) 1.7590(11) 1.7587(11)

d. 1.7568(16) 1.7576(18) 1.7571(13) 1.7573(10) d. 1.7568(16) 1.7568(16) 1.7568(16) 1.7571(10)

e. 1.7590(11) 1.7590(15) 1.7577(10) 1.7576(10) e. 1.7590(11) 1.7588(11) 1.7589(11) 1.7577(10)

β = 0.125 β = 0.125

a. 0.12520(63) 0.12541(72) 0.12514(44) 0.12491(32) a. 0.12520(63) 0.12570(12) 0.12517(49) 0.12496(36)

b. 0.12526(72) 0.12540(79) 0.12529(65) 0.12523(60) b. 0.12526(72) 0.12560(97) 0.12525(68) 0.12520(60)

c. 0.12560(56) 0.12561(56) 0.12548(48) 0.12516(45) c. 0.12559(56) 0.12588(79) 0.12550(52) 0.12522(45)

d. 0.12572(74) 0.12528(84) 0.12554(65) 0.12547(52) d. 0.12572(74) 0.12619(85) 0.12565(67) 0.12543(57)

e. 0.12559(52) 0.12559(56) 0.12554(46) 0.12554(34) e. 0.12559(52) 0.12655(71) 0.12557(50) 0.12549(40)

Figure 2.17: (Upper panel) Evolution of the temperature of Tc(C) during the WLS of

the three-dimensional Ising model, beginning from f8 for a single run. The dots show

where the modification factor was updated. (Lower panel) Evolution of the logarithm

of the checking parameter ε during the same simulation.

the self-avoiding homopolymer for L = 90. He estimated Tc(C) by performing

10 independent runs for each size N = 50, 70, . . . , 150 and using the finishing
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Figure 2.18: Mean order of the final modification factor for each simulated size of

homopolymers using the 80% flatness criterion.

condition |Tc(t)− Tc(0)| < 10−4. Figure 2.18 shows that ifinal increased when the

polymer size increased.

Atisattapong and Maruphanton [7] improved the 1/t algorithm for cal-

culation of multidimensional integrations. The problem of the 1/t algorithm is the

effect of discretization in the y space (the bin width effect). The result of the con-

ventional 1/t algorithm is close to the exact value only for small bin widths. For

large bin widths, the numerical estimates do not converge to the exact value and

the errors saturate as a function of dy. To improve the method for large bin

widths, they introduced a new approximation to estimate integrals using averages

of y values in the subinterval [y, y+dy] instead of using the midpoint y∗ = y+(y+dy)
2

.

Then, Eq. (??) becomes

I =

∫ b

a

f(x)dx ≈
ymax∑
ymin

g(y)ȳ, (2.39)

where ȳ =
∑

y∗∈[y,y+dy]
y∗

ny
, and ny is the number of sampling points y∗ in an interval

[y, y + dy] for which
∑

y ny = N , where N is the number of Monte Carlo trials.

They proved the convergence of the new method and the non-convergence of the

conventional method by theoretical analysis. This new approximation provides

more accurate results. The bin width effect and the saturation of error for large

bin widths are eliminated.
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CHAPTER 3

METHODS

This chapter consists of two parts: the Wang-Landau algorithm for

numerical integration and the termination criteria for numerical integration.

3.1 The Wang-Landau algorithm for numerical integration

The Wang-Landau algorithm is used in numerical integration to cal-

culate the density of states g(y). The density of states g(y) is a direct analogy

to the density of states g(E) in a physical system. To understand the definition

of g(y), we take the numerical integration in one dimension as an example. The

one-dimensional definite integral can be calculated by

I =

∫ b

a

f(x)dx, (3.1)

where f(x) is a continuous function on the closed interval [a, b].

Figure 3.1: An example of the density of states g(y) of the integral

Since the definite integral is hard to calculate directly, even for one

dimension, numerical methods are needed. For calculating the area under the

curve of the function f(x) using the density of states g(y), grid discretization is

required. Therefore, it is necessary to define the upper bound ymax and lower

bound ymin of the integral in advance. The interval [ymin, ymax] is divided into
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n subintervals of equal length dy. The density of states of integrals [3] is the

proportion of the integral domain that lies within an interval [y, y + dy] (Figure

3.1), which is given by

g(y) ≡ {x|x ∈ [a, b], y 6 f(x) 6 y + dy}, (3.2)

where dy is the bin width of y. Then, the integral can be approximated by

I =

∫ b

a

f(x)dx ≈
ymax∑
ymin

g(y)y =
n−1∑
i=0

g(yi)yi, (3.3)

where yi =
∑

y∗∈[yi,yi+dy]
y∗

ny
and ny is the number of sampling points y∗ in an

interval [yi, yi + dy] for which
∑

y ny = N where N is the number of Monte Carlo

trials [7].

To better understand the definition of the density of states of integrals

g(y), we illustrate the approximation of the simple integral (Iπ) by

Iπ = 4

∫ 1

0

√
1− x2dx. (3.4)

where the integrand is the function of one-quarter of a circle, as shown in Figure

3.1. Thus, the integral multiplied by four is equal to the area of a unit circle.

Therefore, the exact value of the integral Iπ is π = 3.14159265358979...

Figure 3.2: The exact density of states g(y) of the integral Iπ

Given the integration domain x ∈ [0, 1], the integrand f(x) in Eq.

(3.4) ranges from ymin = 0 to ymax = 1. Suppose that we divide the interval

[ymin, ymax] = [0, 1] into four subintervals of equal length dy = 0.25. Since y =
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f(x) =
√
1− x2 is bijective, f(x) is invertible. Then, we can find the inverse

function as follows:

y = f(x) =
√
1− x2

y2 = 1− x2

x2 = 1− y2

x =
√

1− y2

From the definition of the density of states of integrals defined in Eq. (3.2),

we can obtain the exact g(yi) given by gex(yi) =
√

1− y2i −
√

1− (yi + dy)2,

which represents the width of the interval of x, as shown in Figure 3.2. The exact

gex(y0), gex(y1), gex(y2), and gex(y3) are equal to 0.031754 (purple), 0.102220 (blue),

0.204588 (green), and 0.661438 (red). Then, the integral can be approximated by∫ 1

0

√
1− x2dx ≈

3∑
i=0

gex(yi)yi

= gex(y0)y0 + gex(y1)y1 + gex(y2)y2 + gex(y3)y3

= 0.031754y0 + 0.102220y1 + 0.204588y2 + 0.661438y3,

where yi =
∑

y∗∈[yi,yi+1]
y∗

ny
and ny is the number of sampling points y∗ in an interval

[yi, yi+1] for which
∑

y ny = N where y0 = 0, y1 = 0.25, y2 = 0.5, and y3 = 1.

To generate the distribution g(y) using the Wang-Landau algorithm,

the interval [ymin, ymax] is divided into n segments. The Wang-Landau algorithm

is then used to calculate the numerical integration as follows.

1. At the beginning of the simulation, g(y) is a priori unknown. We

set g(y) = 1 and histogram H(y) = 0 for all values of y.

Note that, since the density of states produces huge numbers, the

relation S(y) = ln [g(y)] is used for fitting all values of g(y) into

double precision numbers; that is S(y) = 0.

2. A random walk starts at any point x in the integration domain

defined by xold, then yold = f(xold) is calculated.
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3. After that, random walks are performed in y-space by randomly

choosing another x and setting it to xnew. ynew = f(xnew) is then

calculated.

4. The transition probability from yold to ynew is accepted when

p(yold → ynew) = min {1, exp[S(yold)− S(ynew)]}.

If the random walk is accepted, the density of states and the his-

togram at ynew are updated by S(ynew) → S(ynew)+F and H(ynew) →

H(ynew) + 1, where F = ln(f) is a modification factor. The initial

modification factor is f0 = e1 w 2.71828 . . ..

Otherwise, the density of states and the histogram at yold are up-

dated by S(yold) → S(yold) + F and H(yold) → H(yold) + 1.

5. The random walks are performed repeatedly until the accumulated

histogram H(y) is flat. This means that for a given flatness criterion

p, H(y) > p×⟨H(y)⟩, where ⟨H(y)⟩ is the average histogram of all

values of y.

6. The modification factor is refined by F → F/2 and the histogram

is reset to H(y) = 0 for all values of y.

7. The distribution function must be normalized by

gnorm(y) =
(b− a)g(y)∑ymax

ymin
g(y)

. (3.5)

8. The simulation continues until f reaches the final modification fac-

tor ffinal = exp (10−8) w 1.00000001. Therefore, ffinal of the con-

ventional Wang-Landau simulation is f27.

3.2 Termination criteria for numerical integration

In this section, we explain how two termination criteria can be applied

to the Wang-Landau algorithm for numerical integration.
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3.2.1 The first termination criterion

We adapted the termination criterion from Ref. [8] by investigating

the behavior of integrals. We selected a new termination criterion (or ffinal) at

which the estimated integrals stabilized. To demonstrate how the criterion works,

we consider the termination criterion of Wang-Landau sampling for the integral

Iπ.

Figure 3.3: Behavior of the estimated integral Iπ during Wang-Landau sampling for

eight independent runs using the 80%-flatness criterion, dy = 0.05, and beginning at

f10. The dots show where the modification factors were updated and the straight line

is the exact value.

Figure 3.3 shows the evolution of the estimated integral Iπ for eight

independent runs using the 80%-flatness criterion and dy = 0.05. We can ob-

serve that around f18 (triangle points), all the curves stabilized at some value.

This makes it unnecessary to perform the simulation to the end. Therefore, the

appropriate termination criterion for Iπ is ffinal = f18, which reduces the CPU

time.

Since a single independent run of WLS is completed very quickly, it is

difficult to demonstrate the efficiency of this termination criterion. We therefore

performed 10000 independent runs using the same ffinal = f18.

In order to compare the accuracy of the integral, we computed the
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relative error in each run by

af =

∣∣∣∣IMC(N)− Iexact
Iexact

∣∣∣∣, (3.6)

where IMC(N) denotes the numerical estimate from the Monte Carlo method in

the Nth Monte Carlo trial and Iexact denotes the exact value of the integral. After

completing all independent runs, we compared the accuracy by considering the

mean value āf , defined by

āf =
1

n

n∑
i=1

afi , (3.7)

where afi is the relative error of the integral from the ith run and n is the number

of all independent runs. The standard deviation of the numerical estimates is

given by

σ =

√√√√ 1

n− 1

n∑
i=1

(IMCi
(N)− Ī)2, (3.8)

where Ī is the average of all numerical estimates. The standard error of mean is

defined by

σerror =
σ√
n
. (3.9)

Table 3.1: The mean final order of the modification factor, the average CPU time per

run (seconds), the average of the numerical estimates, and the relative error obtained

using the conventional termination criterion and the first new termination criterion for

Iπ.

Conventional criterion First new criterion

ffinal 27 18

CPU time 0.177(±0.223) 0.088(±0.057)

Estimates 3.14206(±5.672× 10−5) 3.14209(±5.805× 10−5)

Relative error āf 1.49877× 10−4 1.57813× 10−4

Table 3.1 compares the mean final order of the modification factor, the

average CPU time per run (seconds), the average of the numerical estimates, and

the relative error obtained using the conventional termination criterion and the

first new termination criterion for Iπ. Note that the error of the average CPU
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time per run (values in brackets) is the standard deviation, and the error of the

numerical estimates is the standard error of mean calculated by Eq. (3.9).

As a result, the average CPU time per run of the conventional termi-

nation criterion was 0.177 seconds while that of the new criterion was only 0.088

seconds, a reduction of 50.28 percent. The relative error of the simulated mean val-

ues of the conventional criterion with respect to the exact value was 1.49877×10−4

while that of the new termination criterion was 1.57813×10−4, an increase of only

0.00079 percent. This indicates that the new criterion can save significant CPU

time while keeping the accuracy of the estimated value within acceptable limits.

3.2.2 The second termination criterion

We adapted the termination criterion from Ref. [9] by checking the

relative errors given by

ε =

∣∣∣∣I(t)− I(0)

I(0)

∣∣∣∣, (3.10)

where I(0) is the value obtained from the previous modification factor and I(t) is

the value obtained in the current Monte Carlo step. The value of the estimated

integral I(0) can be preserved when the histogram is flat. If ε during the interval

[fk, fk+1] is less than a predefined threshold limit value (limit) then the simulation

can be terminated at fk, where k is the final order of the modification factor.

The upper panel in Figure 3.4 shows only the worst case (the uppermost

line) of the evolution of the estimated integral Iπ from Figure 3.3, beginning from

f10 using the 80%-flatness criterion and dy = 0.05. The lower panel in Figure 3.4

shows the evolution of the checking relative error ε during the same simulation.

We can observe that, after the estimated integral stabilizes (at f18), all values of

ε are less than 10−4. Therefore, limit = 10−4 can be selected as the appropriate

threshold limit for halting the simulation of Iπ. In this case, ffinal = f18, though

different runs will terminate at different ffinal values.

We then performed 10000 independent runs under the same conditions

using the second termination criterion. Table 3.2 compares the mean final order

of the modification factor, the average CPU time per run (seconds), the average

of the numerical estimates, and the relative error obtained using the conventional



41

Figure 3.4: (Upper panel) Evolution of the estimated integral Iπ during the WLS,

beginning from f10 for a single run. The dots show where the modification factor

was updated. (Lower panel) Evolution of the checking parameter ε during the same

simulation.

termination criterion and the second new termination criterion for Iπ.

As shown in Table 3.2, the mean final order of the modification factor

(k) for Iπ dropped slightly to 17.0723. The average CPU time per run of the

second termination criterion was 0.079 seconds, shorter than the first termination

criterion by 10.23 percent. The relative error of the simulated mean values of

the second termination criterion with respect to the exact value was 1.61863 ×

10−4, greater than the first termination criterion by 0.00041 percent. In brief, the

Table 3.2: The mean final order of the modification factor, the average CPU time per

run (seconds), the average of the numerical estimates, and the relative error obtained

using the conventional termination criterion and the second new termination criterion

for Iπ.

Conventional criterion Second new criterion

ffinal 27 17.0723

CPU time 0.177(±0.223) 0.079(±0.047)

Estimates 3.14206(±5.672× 10−5) 3.14210(±5.901× 10−5)

Relative error āf 1.49877× 10−4 1.61863× 10−4
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second termination criterion eliminated unnecessary iterations, while maintaining

the accuracy of the estimated value within acceptable limits. The additional

advantage of this termination criterion is that it does not require ffinal to be

specified in advance because it is determined in the course of the simulation.

Figure 3.5: Best-fit Gaussians for the histograms of the estimated integral Iπ obtained

using the conventional and two new termination criteria, using the 80%-flatness criterion,

for 10000 independent runs. The central line is the exact value.

To investigate how the termination criteria affect the final results, we

observed the Gaussian best fits for the histograms of the estimated integrals, as

shown in Figure 3.5. The vertical line indicates the exact value Iπ. The colors

(blue, green, and red) represent the results using the first, second, and conventional

criteria, respectively. We can observe that there was no significantly difference

between the heights of the histograms and that peaks were centered at the exact

value. This demonstrates that the new termination criteria do not decrease the

accuracy of the numerical results.

In the next chapter, we show the behavior of estimated integrals up to

six dimensions and a corner-peak integral in high dimensions. We then derive the

two new criteria for each dimension, give the numerical results, and compare the

accuracy and the CPU time of the algorithms.
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CHAPTER 4

NUMERICAL RESULTS

In this chapter, we compare the accuracy, the errors of the numerical

estimates obtained, and the CPU time of the conventional termination criterion

and the two new criteria. We discuss two applications: the multidimensional

integrals and a corner-peak integral.

4.1 Multidimensional integrals

To compare the efficiency of the conventional termination criterion and

the two new criteria, we used integrals of up to six dimensions from Refs. [3, 6, 7].

The one- and two-dimensional integrals were defined by

I1D =

∫ 2

−2

(x5 − 4x3 + x2 − x) sin (4x)dx, (4.1)

I2D =

∫ 1

−1

∫ 1

−1

(x6
1 − x1x

3
2 + x2

1x2 + 2x1) sin (4x1 + 1) cos (4x2)dx1dx2. (4.2)

Unlike that in Iπ, the integrands in I1D and I2D are not bijective functions, so it is

difficult to determine gex(y) precisely. The exact values of the integrals obtained

by the analytical method in Ref. [3] are I1D = 1.63564436296 . . . and I2D =

−0.017979927 . . ..

The multidimensional integrals (for n = 3, 4, 5, and 6) were defined by

InD =

∫ 1

0

∫ 1

0

· · ·
∫ 1

0

n

Π
i=1

cos (ixi)dx1dx2 · · · dxn (4.3)

and their exact values were given by

InD =
n

Π
i=1

( sin (ixi)
i

). (4.4)

That is, I3D = 0.017996268 . . . , I4D = −0.003404905 . . . , I5D = 0.000653009 . . . ,

and I6D = −0.000030410 . . .. These integrals have no specific mathematical signif-

icance but are useful for comparing the accuracy of the three termination criteria
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used in this work. Note that the characteristics of the integrand function of I3D−6D

were the same, whereas those of I1D and I2D were different. Thus, these integrals

could not be directly compared.

Next, we determined the first and second termination criteria for InD, n =

1, 2, . . . , 6, by investigating the behavior of the integrals, as shown in Figure 4.1.

4.1.1 The first termination criterion

We determined the new ffinal by investigating the behavior of the

integrals, as shown in Figure 4.1. It can be observed that the behavior of integrals

I1D−6D stabilized at some value before completion of the simulation, making it

unnecessary to perform the simulation to the end.

In one dimension (Figure 4.1a), all the curves stabilized at f19 (trian-

gle points). Thus, the new suitable termination criterion for I1D was ffinal = f19.

Similarly, in two dimensions (Figure 4.1b), all the curves stabilized at f20. There-

fore, the new ffinal for I2D was f20. By investigating the behavior of the integrals

for I3D−6D, as shown in Figure 4.1, the new ffinal (triangle points) of the integrals

InD for n = 3, . . . , 6 were determined as f17, f18, f20, and f22, respectively.

Next, we compare the accuracy, the average CPU time per run, and the

mean final order of the modification factor (ffinal) of the conventional termination

criterion and the first new termination criterion. We performed 10000 independent

WLS runs with dy = 0.05 for I1D−5D, and 1000 independent WLS runs with

dy = 0.1 for I6D. In both cases, an 80%-flatness criterion was used.

Table 4.1 shows the average CPU time per run, the standard deviation

of CPU time, and the mean final order of the modification factor (ffinal) obtained

from all independent runs. It was demonstrated that the first new termination

criterion required a significantly lower mean final order of the modification factor

and a shorter CPU time for all dimensions.

Table 4.2 shows the average of the numerical estimates, the standard

error of mean, and the relative error with respect to the exact value of all inde-

pendent runs obtained using the conventional and the first termination criteria.

The standard error of mean σerror is defined by Eq. (3.9). We can observe that,
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(a) I1D (b) I2D

(c) I3D (d) I4D

(e) I5D (f) I6D

Figure 4.1: Behavior of the estimated integral during Wang-Landau sampling for eight

independent runs using the 80%-flatness criterion, dy = 0.05 for I1D−5D and dy = 0.1

for I6D. The dots show where the modification factors were updated and the straight

line is the exact value.

although the conventional criterion performed the simulation through to the end

(ffinal = f27), the relative errors of the integrals did not guarantee the lowest error,
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Table 4.1: The average CPU time per run (seconds) and mean final order of the modifica-

tion factor of the conventional termination criterion and first new termination criterion

for I1D−6D.

Integral
Conventional criterion First new criterion

CPU time ffinal CPU time ffinal

I1D 7.789(±0.712)
27

4.219(±0.410) 19

I2D 19.547(±6.308) 12.378(±5.033) 20

I3D 0.361(±0.163)

27

0.160(±0.069) 17

I4D 1.917(±0.934) 0.820(±0.345) 18

I5D 15.167(±4.905) 7.847(±2.748) 20

I6D 17.287(±5.148) 11.415(±3.894) 22

Table 4.2: Numerical estimates of integrals obtained using the conventional and the first

termination criteria.

Integral Exact
Conventional criterion First new criterion

Estimate Relative error Estimate Relative error

I1D 16.35646 16.35563(±1.045 × 10−4) 0.000498 16.35558(±1.058 × 10−4) 0.000529

I2D -17.97993 -18.00034(±1.750 × 10−5) 1.13520 -17.99900(±1.803 × 10−5) 1.06098

I3D 17.99627 17.99795(±1.016 × 10−5) 0.09335 17.99793(±1.188 × 10−5) 0.09227

I4D -3.40491 -3.39329(±4.837 × 10−6) 3.41018 -3.39319(±5.066 × 10−6) 3.44088

I5D 0.65301 0.65193(±1.316 × 10−6) 1.65760 0.65167(±1.433 × 10−6) 2.05553

I6D -0.000304 -0.000341(±2.979 × 10−6) 1.22248 -0.000338(±3.113 × 10−6) 1.12510

Values as follows: I2D−5D multiplied by 10−3, and I1D and I6D multiplied by 10−1.

as better precision could arise from the first criterion. This is because the esti-

mated integrals fluctuated slightly in high-digit precision after stabilizing. Thus,

the increment of the order of the modification factor is unnecessary. We can see

that the relative errors of I2D, I3D, and I6D obtained from the first termination

criterion were lower than those from the conventional criterion while the results

in other dimensions were higher.

4.1.2 The second termination criterion

We determined the appropriate limits for InD, n = 1, 2, . . . , 6, by con-

sidering the behavior of the estimated integrals after stabilizing.

For I1D, Figure 4.2 shows that after the new ffinal was reached, the

variance in the relative error ε was less than 10−4. Therefore, the appropriate
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limit of the integral I1D was 10−4. Similarly, for I2D−4D, we can observe that

after the new ffinal was reached, the variance in the relative error ε was less than

10−3. Therefore, the appropriate limit of the integrals I2D−4D was 10−3. For I5D

and I6D, after the new ffinal was reached the variance in the relative error ε was

less than 10−2 and 10−1, respectively. These values were therefore shown to be

the suitable limits of the integrals I5D and I6D. Note that the increment of the

value of limit does not depend on the dimensions, but on the exact values. For

example, for the integral I1D, after the estimated integral stabilized, the absolute

errors |I(t)−I(0)| changed in the fifth decimal place while the estimates I(0) were

around 1.6356 . . .. The change in the relative error was therefore also in the fifth

decimal place. For this reason, we determined that the appropriate limit of the

integral I1D was 10−4. For the integral I6D, we found that after the estimated

integral stabilized, the absolute errors |I(t)−I(0)| changed in the seventh decimal

place while the estimates I(0) were around −0.0000304 . . ., and the change in the

relative error was in the second decimal place. Therefore, the appropriate limit

of the integral I6D was 10−1.

To compare the accuracy, the average CPU time per run, and the

mean final order of the modification factor (ffinal) of the conventional termination

criterion and the second new termination criterion, we performed all independent

runs under the same conditions as the first criterion.

Table 4.3: The average CPU time per run (seconds) and mean final order of the mod-

ification factor of the conventional termination criterion and the second termination

criterion for I1D−6D.

Integral
Conventional criterion Second new criterion

CPU time ffinal CPU time ffinal

I1D 7.789(±0.712)
27

5.238(±0.641) 20.41

I2D 19.547(±6.308) 15.234(±5.702) 22.76

I3D 0.361(±0.163)

27

0.197(±0.099) 18.79

I4D 1.917(±0.934) 1.508(±0.770) 23.45

I5D 15.167(±4.905) 10.001(±3.942) 21.93

I6D 17.287(±5.148) 12.446(±5.228) 22.93
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Figure 4.2: (Upper panel) Evolution of the estimated integrals I1D−6D during WLS for

a single run. The dots show where the modification factor was updated. (Lower panel)

Evolution of the checking parameter ε during the same simulation.

Table 4.3 shows the average CPU time per run, the standard devia-

tion of CPU time, and the mean final order of the modification factor (ffinal)
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obtained from all independent runs. The results indicate that the second new

termination criterion required significantly lower mean final orders of the modifi-

cation factor than the conventional criterion. The average CPU times per run of

I1D−6D obtained using the second termination criteria were shorter than that of

the conventional termination criterion.

Table 4.4: Numerical estimates of integrals obtained using the conventional and the

second termination criteria.

Integral Exact
Conventional criterion Second new criterion

Estimate Relative error Estimate Relative error

I1D 16.35646 16.35563(±1.045 × 10−4) 0.000498 16.35560(±1.050 × 10−4) 0.000513

I2D -17.97993 -18.00034(±1.750 × 10−5) 1.13520 -17.99839(±1.759 × 10−5) 1.02708

I3D 17.99627 17.99795(±1.016 × 10−5) 0.09335 17.99894(±1.171 × 10−5) 0.14848

I4D -3.40491 -3.39329(±4.837 × 10−6) 3.41018 -3.39352(±4.846 × 10−6) 3.34506

I5D 0.65301 0.65193(±1.316 × 10−6) 1.65760 0.65302(±1.356 × 10−6) 0.01340

I6D -0.000304 -0.000341(±2.979 × 10−6) 1.22248 -0.000361(±3.651 × 10−6) 1.88501

Values as follows: I2D−5D multiplied by 10−3, and I1D and I6D multiplied by 10−1.

Table 4.4 shows the average of the numerical estimates, the standard

error of mean, and the relative error with respect to the exact value of all indepen-

dent runs obtained using the conventional and the second termination criteria. We

can observe that the estimated integrals of I2D, I4D, and I5D were more accurate

than those of the conventional criterion but those of other dimensions were less

accurate. As in the case of the first termination criterion, the increment of the

order of the modification factor did not guarantee the lowest error. The second

termination criterion can also lead to better accuracy.

Finally, we compared the relative error and the average CPU time per

run of the conventional and the both new criteria. Table 4.5 shows as percentages

the change in relative error and reduction in CPU time when applying the new

criteria instead of the conventional criterion. The percentage of relative error

represents the comparative performance of the new and the conventional criteria

in approximating the exact value. If the sign is negative, the new criterion was

more accurate. Even when the relative error obtained using the new criterion was

greater than that produced by the conventional criterion, the level of precision
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Table 4.5: The percentage of the change in relative error and the percentage of reduction

in CPU time for I1D−6D using the new criteria compared with the conventional criterion.

Integral
Percentage of the change in relative error Percentage of reduction in CPU time

First new criterion Second new criterion First new criterion Second new criterion

I1D +0.00031 +0.00015 45.83 32.75

I2D −0.00742 −0.01081 36.68 22.06

I3D −0.00011 +0.00551 55.68 45.43

I4D +0.00307 −0.00651 57.22 21.34

I5D +0.03979 −0.16442 48.26 34.06

I6D −0.97374 +6.62528 33.97 28.01

Average 46.27 30.61

remained acceptable. For example, in I6D, although the percentage of the relative

error increased when using the second criterion, the change in the relative error was

in the sixth decimal place. The numerical results suggest that the first criterion is

more appropriate for reducing the CPU time, while the second criterion is more

suitable if the estimation of the integrals needs to be within specified limits.

As well as being applicable to integrals up to six dimensions, the new

criteria can also be applied to other functions of integral without any limitations

such as polynomial functions, rational functions, and exponential functions. In

the next section, to show the efficiency of the new termination criteria for other

integrals, we will apply the new criteria to the corner-peak integral.

4.2 The corner-peak integral

The corner-peak integral is a one of six test integrand families designed

by Genz [10]. The six test integrand families have properties that allow them to

be used to compare the efficiency of algorithms. They are analytically computable

to high precision and easy to estimate in a short time. The Genz testing package

has been used in many studies [10, 11, 12, 13, 14, 15, 16, 17, 18], and was derived

by theoretical analysis in [14]. The corner-peak integrand is defined by

f(x) =
1

(1 + c · x)s+1
, (4.5)
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where the integration domain is on [0, 1]s, and s is the number of dimensions.

The parameter c = (c1, . . . , cs) is generated as a uniform random vector in [0, 1].

Different tests can be obtained by varying the parameter c. The change in the

parameter c affects the difficulty of the integration, such as the height and position

of the peak. Figure 4.3 shows the graphs of the corner-peak integrand in one

dimension with the following values of c: 0.10 (red), 0.25 (blue), 0.50 (green),

0.75 (pink), and 1 (sky blue). When c increases, the lower bound of the integrand

decreases and the curve is more concave.

Figure 4.3: Plots of the corner-peak integrand in one dimension for a given c.

Figure 4.4 shows the graphs of the corner-peak integrand in two dimen-

sions with c = (c1, c2): (0.1, 0.9) and (0.9, 0.1), where c1 and c2 are the coefficients

of x1 and x2. The position of one corner is fixed at the point (x1, x2, f(x)) =

(0, 0, 1) while that of the other corners depends on the value of c. If ci increases,

the corner on the xi-axis will slide down.

The exact value of the integral in s dimensions can be derived by the

analytical method and is defined by∫ ts

rs

· · ·
∫ t1

r1

(
1 +

s∑
i=1

cixi

)−(s+1)

dx1 · · · dxs

=
1

s!
∏s

i=1 ai

∑
w∈{0,1}s

(−1)∥w∥1

1 + v1,wc1 + · · ·+ vs,wcs
(4.6)
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(a) c = (0.1, 0.9) (b) c = (0.9, 0.1)

Figure 4.4: A plot of the corner-peak integrand in two dimensions for a given

c = (c1, c2).

with vi,w defined as

vi,w =

ri wi = 0

ti wi = 1,

where wi is used to represent the lower or upper boundaries of the integrand in

the summation term in Eq. (4.6). The number of terms in the summation is 2s.

For example, in one dimension, the exact value of the integral is defined by∫ 1

0

(
1 + c1x1

)−2

dx1 =
1

2! · c1

∑
w∈{0,1}s

(
(−1)∥w∥1

1 + v1,wc1

)
.

The summation is over 2s = 21 = 2 terms, and w = 0 for the first term and w = 1

for the second term. Then, the exact value of the integral is∫ 1

0

(
1 + c1x1

)−2

dx1 =
1

2! · c1

(
(−1)∥0∥1

1 + v1,0c1
+

(−1)∥1∥1

1 + v1,1c1

)
=

1

2! · c1

(
1

1 + 0 · c1
+

(−1)

1 + 1 · c1

)
.

In two dimensions, the exact value of the integral is defined by∫ 1

0

∫ 1

0

(
1 + c1x1 + c2x2

)−3

dx1dx2 =
1

3!(c1 · c2)
∑

w∈{0,1}s

(
(−1)∥w∥1

1 + v1,wc1 + v2,wc2

)
.

There are four possible values of w: (0, 0), (0, 1), (1, 0), and (1, 1). The order of

values in w corresponds to the terms in the summation. Then, the exact value of
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the integral is∫ 1

0

∫ 1

0

(
1 + c1x1 + c2x2

)−3

dx1dx2

=
1

3!(c1 · c2)

(
(−1)∥(0,0)∥1

1 + v1,0c1 + v2,0c2
+

(−1)∥(0,1)∥1

1 + v1,0c1 + v2,1c2
+

(−1)∥(1,0)∥1

1 + v1,1c1 + v2,0c2

+
(−1)∥(1,1)∥1

1 + v1,1c1 + v2,1c2

)
=

1

3!(c1 · c2)

(
1

1 + 0 · c1 + 0 · c2
+

(−1)

1 + 0 · c1 + 1 · c2
+

(−1)

1 + 1 · c1 + 0 · c2

+
1

1 + 1 · c1 + 1 · c2

)
.

In this work, the two new termination criteria were applied to the

approximation of the corner-peak integrals in 5, 8, and 10 dimensions. In order to

obtain the estimated result in each dimension, the 20 different sets of the parameter

c were substituted into Eq. (4.5), as in Refs. [10, 13, 15, 16, 18]. There are two

main differences from the previous section.

1. The behavior of the corner-peak integrand has a sharp peak and is

narrow only at the corner. If an equal bin width is used, satisfying

the flatness criterion will require a very large number of MCSs.

This means that some g(y) cannot be normalized. In order to solve

this problem, the width of each bin should be fixed to a different

length. The interval of f(x) needs to be divided into unequal-length

subintervals.

2. Since the different values of c provide a different exact integral, in

order to compare the accuracy, we use the number of correct digits

instead of the relative errors of the estimated integrals. The number

of correct digits d [14] is given by

dk = − log10

(
1

n

n∑
i=1

|Ii|
)
− log10 |Ik −Qk|, k = 1, . . . , n, (4.7)

where Ik is the exact value, Qk is the estimated result, and n is

the number of sets of parameter c. The number of correct digits

represents the digit precision after the last zero.
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Note that the parameter c is normalized to satisfy ∥c∥ = 0.925 for

s = 5, ∥c∥ = 1.48 for s = 8, and ∥c∥ = 1.85 for s = 10, as in Refs. [11, 13, 18]. It

is fixed to make the integrand have equal boundaries in all independent runs for

each dimension. The exact values of the integral are 0.123282405 . . . (±0.00374)

for 5 dimensions, 0.010987099 . . . (±0.00069) for 8 dimensions, and 0.001544904 . . .

(±0.00013) for 10 dimensions, where values in brackets are the standard deviation.

The upper bounds of the integrands are 1 for all dimensions. The lower bounds are

0.019652 for 5 dimensions, 0.281796× 10−3 for 8 dimensions, and 0.992445× 10−5

for 10 dimensions. In this work, for each value of c, we performed 100 independent

runs for 5 and 8 dimensions, and 20 independent runs for 10 dimensions.

Next, we will discuss the numerical results obtained by the first and

second new termination criteria. First, we determined the first new termination

criterion by investigating the mean of the number of correct digits given by

d̄ =
1

n

n∑
i=1

di. (4.8)

The standard deviation σ is defined by

σ =

√√√√ 1

(n− 1)

n∑
i=1

(d̄− di)2. (4.9)

Figs. 4.5, 4.6, and 4.7 shows the behavior of d̄ in 5, 8, and 10 dimen-

sions. The error bars along the vertical axis are the values of σ while the error

bars along the horizontal axis are the standard deviations of the number of Monte

Carlo trials. In 5 dimensions, d̄ stabilized at f15. In 8 and 10 dimensions, d̄ stabi-

lized at f16. Note that the points of d̄ after stabilizing are represented by the red

points. The green line is the average of all red points and the blue lines are the

bounds of error bar after stabilizing. Therefore, the first new termination criterion

was ffinal = f15 for 5 dimensions and ffinal = f16 for 8 and 10 dimensions.

Second, we determined the termination criterion (the appropriate limit)

by considering the behavior of the estimated integrals after stabilizing. In 5 di-

mensions, the absolute errors |I(t)− I(0)| changed in the fifth decimal place while

the estimates I(0) were around 0.1 . . ., and the change in the relative error was
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Figure 4.5: d̄ of the corner-peak integral in 5 dimensions.

in the fourth decimal place. Therefore, the appropriate limit of the corner-peak

integral in 5 dimensions was 10−3. In 8 dimensions, the absolute errors |I(t)−I(0)|

changed in the sixth decimal place while the estimates I(0) were around 0.01 . . .,

and the change in the relative error was in the fourth decimal place. In 10 dimen-

sions, the absolute errors |I(t)− I(0)| changed in the seventh decimal place while

the estimates I(0) were around 0.001 . . ., and the change in the relative error was

in the fourth decimal place. Thus, the suitable limit for 8 and 10 dimensions were

10−3.

Next, we compared the accuracy and the CPU time of the conventional

criterion and the new criteria. Table 4.6 shows the mean final order of the modifi-

cation factor, the average CPU time per run (seconds), the mean of the number of

correct digits, and the standard deviation obtained using the conventional termi-

nation criterion and the two new termination criterion for the corner-peak integral

in 5, 8, and 10 dimensions. Each value was obtained by performing the simulations

under the same conditions as in the first criterion. The results, as shown in Table

4.6, indicated that the two new termination criteria required significantly lower

mean final orders of the modification factor and that the first criterion required

less than the second.

In 5 dimensions, the average CPU times per run obtained using the
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Figure 4.6: d̄ of the corner-peak integral in 8 dimensions.

Figure 4.7: d̄ of the corner-peak integral in 10 dimensions.
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Table 4.6: The mean final order of the modification factor, the average CPU time per run

(seconds), the mean of the number of correct digits, and the standard deviation obtained

using the conventional termination criterion and the two new termination criteria for

the corner-peak integral.

5 dimensions

Conventional criterion First new criterion Second new criterion

ffinal 27 15 16.49

CPU time 0.3770 0.0971 0.1273

d̄ 3.8913 3.8164 3.8267

σ 0.5649 0.6253 0.5797

8 dimensions

Conventional criterion First new criterion Second new criterion

ffinal 27 16 18.19

CPU time 1.0956 0.3083 0.4641

d̄ 3.5699 3.5479 3.5085

σ 0.4320 0.5303 0.3669

10 dimensions

Conventional criterion First new criterion Second new criterion

ffinal 27 16 19.42

CPU time 0.5229 0.1427 0.2502

d̄ 2.8527 2.8048 2.9170

σ 0.3469 0.5967 0.8495
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first and the second termination criteria were shorter than that of the conventional

termination criterion by 74.24 and 66.23 percent while the values of d̄ using the

first and the second termination criteria were less than that of the conventional

termination criterion by only 1.92 and 1.66 percent. Since the exact value of the

integral was 0.1232824046 . . ., three correct digits means that the estimated values

had an accuracy of three decimal points.

In 8 dimensions, the average CPU times per run obtained using the

first and the second termination criteria were shorter than that of the conven-

tional termination criterion by 71.86 and 57.64 percent. The values of d̄ using the

first and the second termination criteria were less than that of the conventional

termination criterion by only 0.62 and 1.72 percent. Since the exact value of the

integral was 0.010987099 . . ., three correct digit means that the estimated values

had an accuracy of four decimal points.

In 10 dimensions, the average CPU times per run obtained using the

first and the second termination criteria were shorter than that of the conven-

tional termination criterion by 72.71 and 52.15 percent. The value of d̄ using the

first termination criterion was lower than that using the conventional termination

criterion by 1.68 percent, while the value of the second was greater than that of

the conventional criterion by 2.25 percent. This indicated that the increment of

the order of the modification factor did not guarantee better accuracy as was the

case for the integrals discussed in the previous section. Since the exact value of

the integral was 0.001492143 . . ., two correct digit means that the estimated values

had an accuracy of four decimal points.

This demonstrated that the two new criteria can reduce the CPU time.

Although the new criteria provide less precision than the conventional criterion in

most dimensions, the precision of the estimated value was within acceptable limits

and the second new criterion gave better precision than the conventional criterion

in 10 dimensions.
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CHAPTER 5

CONCLUSIONS

In this work, we presented two new termination criteria from Ca-

parica and Cunha-Netto [8] and Caparica [9] for Wang-Landau sampling in high-

dimensional numerical integration. Our main objective was to reduce the CPU

time while keeping the accuracy within an acceptable range. An investigation of

the behavior of estimated integrals showed them to stabilize before the simulation

completed, making it unnecessary to perform the simulation to the end. The new

criteria suggest the use of a new order of modification factor (ffinal) to terminate

the simulation, instead of the fixed order of the modification factor used in the

conventional Wang-Landau algorithm. In addition, we used the approximation

proposed by Atisattapong and Maruphanton [7] to calculate the integrals. This

approximation eliminates the bin width effect and the saturation of error for large

bin widths.

The procedures and findings of the two new termination criteria applied

to numerical integration were as follows:

1. The first termination criterion from Caparica and Cunha-

Netto [8]

We investigated the evolution of integrals for some independent

runs. We found that the estimated integrals or the mean of the

number of correct digits stabilized at some value before the process

completed. Therefore, we chose a new termination criterion (or

ffinal) at which point the estimated integrals stabilized.

2. The second termination criterion from Caparica [9]

We checked the relative error defined by Eq. (3.10) during the

simulation. We determined the appropriate limit for halting the

simulations by investigating the relative error throughout a single

run. We found that after the estimated integral stabilized, all val-
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ues of relative error were less than a threshold limit value. Then,

we determined this value to be the appropriate limit for all WLS

independent runs. The procedure of the second termination crite-

rion was that when the relative error during the interval [fk, fk+1]

was less than the appropriate limit, then the simulation terminated

at fk. The second termination criterion has the additional benefit

that it is no longer necessary to determine an ffinal in advance, as

different runs can terminate at different ffinal values.

The proposed criteria were applied to the estimation of integrals up to

six dimensions. The numerical results showed that either the first or the second

criterion yielded more accurate results than the conventional criterion. Both new

termination criteria also required significantly shorter CPU time, with the first

criterion requiring less than the second. Although the relative errors obtained

using the new criteria were greater than those from the conventional criterion in

some dimensions, the integrals were always estimated within acceptable limits. In

short, the first criterion was more appropriate for reducing the CPU time, while

the second criterion was more suitable if the estimation of the integrals needs to

be within specified limits.

We also applied the two new termination criteria to the corner-peak

integral in 5, 8, and 10 dimensions. The corner-peak integrand is a one of six

test integrand families designed by Genz [10] which can be used to compare the

efficiency of algorithms. We compared the accuracy and CPU time of the con-

ventional and the two new criteria by investigating the evolution of the mean of

the number of correct digits. The results showed that both new criteria could

reduce significantly the CPU time, and could provide more accurate results. Even

when the new criteria provided less precision than the conventional criterion, the

accuracy was within acceptance criteria.

To conclude, the great advantage of the new criteria is a reduction of

the CPU time. The conventional criterion of the Wang-Landau algorithm does not

always provide more accurate results than the first and second new termination
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criteria, which always achieve acceptable precision, and in some cases outperform

the conventional criterion. This suggests that, after the estimated integral has

stabilized, an increment of the number of Monte Carlo trials does not affect the

convergence of the estimated integral. The new criteria can be easily coded and

implemented in programming, by adding or changing a few lines of the Wang-

Landau algorithm.

The new termination criteria can be applied to other multidimensional

integrals such as ill-behaved integrals. They are also straightforward to implement

in the 1/t algorithm when approximating integrals in high dimensions.
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