

EXPLOITING SPARSITY FOR LARGE-SCALE

QUADRATIC PROGRAMMING

BY

DUANGPEN JETPIPATTANAPONG

A DISSERTATION SUBMITTED IN PARTIAL FULFILLMENT OF

THE REQUIREMENTS FOR THE DEGREE OF DOCTOR OF

PHILOSOPHY (TECHNOLOGY)

SIRINDHORN INTERNATIONAL INSTITUTE OF TECHNOLOGY

THAMMASAT UNIVERSITY

ACADEMIC YEAR 2016

EXPLOITING SPARSITY FOR LARGE-SCALE

QUADRATIC PROGRAMMING

BY

DUANGPEN JETPIPATTANAPONG

A DISSERTATION SUBMITTED IN PARTIAL FULFILLMENT OF

THE REQUIREMENTS FOR THE DEGREE OF DOCTOR OF

PHILOSOPHY (TECHNOLOGY)

SIRINDHORN INTERNATIONAL INSTITUTE OF TECHNOLOGY

THAMMASAT UNIVERSITY

ACADEMIC YEAR 2016

ii

Abstract

EXPLOITING SPARSITY FOR LARGE SCALE QUADRATIC PROGRAMMING

by

DUANGPEN JETPIPATTANAPONG

Bachelor of Engineering (Computer Engineering), King Mongkut's University of

Technology Thonburi, 1998

Master of Engineering (Computer Engineering), Kasetsart University, 2002

Doctor of Philosophy (Technology), Sirindhorn International Institute of Technology

Thammasat Univesity, 2017

Quadratic programming is a class of constrained optimization problems

with quadratic objective function and linear constraints. It is an important

optimization problem with applications in many areas and is also used to solve

nonlinear optimization problems. Quadratic programs arisen in practice are often

large, but sparse, and have a special Hessian structure which we can exploit. They

usually cannot be solved efficiently without exploiting their structures.

This thesis proposes methods for solving several classes of quadratic

programming with structure. We show a heuristic method for the large-scale quadratic

programs with block diagonal Hessian matrices and dense constraint matrices. Our

method separates the problem into smaller problems, computes optimal solutions for

the smaller problems, and uses them to construct the solution to the original problem.

Computational results show that our method is highly efficient at computing

approximate solutions for large-scale problems. The other method is an efficient

method to compute the search directions for the primal-dual path-following interior-

point method for the similar class of Hessian matrix structure and dense constraint

matrices. The time complexity of the method is significantly smaller than that of using

a sparse linear solver. The computational results also show that the proposed method

is faster.

iii

This thesis also proposes a pivot selection algorithm for the factorization

of the Karush-Kuhn-Tucker (KKT) matrix for the equality constrained quadratic

programs whose constraint matrices are block diagonal. Such factorization should

maintain both sparsity and numerical stability of the factors, both of which depend

solely on the choices of the pivots. The proposed method maintains the sparsity and

stability of the problem. The experiments show that the pivot selection algorithm

appears to produce no fill-ins in the factorization of such matrices. In addition, we

compare the method with MA57 and find that the factors produced by our method are

sparser. Finally, we propose a pivot selection technique for symmetric indefinite

factorization of sparse matrices. Our method is based on the minimum degree

algorithm and also considers the stability of the factors at the same time. The

experiments show that our method produces factors that are sparser than the factors

computed by MA57 and are stable.

Keywords: Large-scale Quadratic programming, Block diagonal constraint, Heuristic

Algorithm, Separable Quadratic Optimization, Interior-point method, Primal-dual

path following, Symmetric indefinite factorization

iv

Acknowledgements

Firstly, I would like to express my sincere gratitude to my advisor, Asst.

Prof. Dr. Gun Srijuntongsiri for the continuous support of my Ph.D study and

research, for his patience, motivation, and immense knowledge. His guidance helped

me in all the time of research and writing of this thesis. I could not have imagined

having a better advisor and mentor for my Ph.D study.

Besides my advisor, I would like to thank the rest of my co-advisor Prof.

Dr. Stanislav S. Makhanov and thesis committee: Asst. Prof. Dr. Cholwich Nattee,

Asst. Prof. Dr. Pakinee Aimmanee, and Asst. Prof. Dr. Weerachai Anotaipaiboon for

their insightful comments and encouragement, but also for the hard question which

incited me to widen my research from various perspectives.

Last but not the least, I would like to thank my parents, for giving birth to

me in the first place and supporting me spiritually throughout my life.

Duangpen Jetpipattanapong

v

Table of Contents

Chapter Title Page

Signature Page i

Abstract ii

Acknowledgements iv

Table of Contents v

List of Tables viii

1 Introduction 1

1.1 Quadratic programming 1

1.2 Quadratic programming with applications 1

1.3 Overview of methods for solving quadratic programming 1

1.4 Pivot selection in direct solution methods 2

1.5 Large-scale quadratic programming 3

1.6 Our objectives 4

2 An Efficient Heuristic Method for Large-Scale Block Diagonal 6

 Quadratic Programs

2.1 Block diagonal quadratic with nonnegative linearly constraints 6

problem

2.2 Separable structure 6

2.3 The heuristic algorithm 7

2.4 Computational results 8

vi

3 An Efficient Method to Compute Search Directions of an Infeasible 10

 Primal-Dual Path-Following Interior-Point Method for Large-Scale

 Block Diagonal Quadratic Programming

3.1 Block diagonal quadratic programs and primal-dual 10

path-following interior-point method

3.2 Derivation of the method 11

3.3 Computational results 13

4 A New Pivot Selection Algorithm for Symmetric Indefinite 17

 Factorization Arising in Quadratic Programming with Block

 Constraint Matrices

4.1 Quadratic programs with block diagonal constraint matrices 17

4.2 Symmetric Indefinite Factorization 18

4.3 A new pivot selection for block constraint quadratic programming 20

4.3.1 Candidate Pivots Identification 20

4.3.2 Pivot Selection 23

4.3.3 The algorithm 24

4.4 Experiment and results 26

5 New Pivot Selection for Sparse Symmetric Indefinite Factorization 29

5.1 Pivot selection with minimum degree 29

5.2 Our pivot selection algorithm 30

5.3 Experiments and results 32

vii

6 Conclusions and Recommendations 34

References 35

viii

List of Tables

Tables Page

2.1 Average time of interior-point method and heuristic method and relative 8

error for 100 variables problem with different number of constraints

2.2 Average time of interior-point method and heuristic method and relative 9

error for 400 variables problem with different number of constraints

2.3 Average time of interior-point method and heuristic method and relative 9

 error for 900 variables problem with different number of constraints

3.1 Average number of iterates and average time per iterate of interior-point, 14

interior-point with sparse matrix and our method for 100 variable problems

with different number of constraints

3.2 Average number of iterates and average time per iterate of interior-point, 14

interior-point with sparse matrix and our method for 500 variable problems

 with different number of constraints

3.3 Average number of iterates and average time per iterate of interior-point, 14

interior-point with sparse matrix and our method for 1000 variable problems

with different number of constraints

3.4 Average number of iterates and average time per iterate of interior-point, 15

interior-point with sparse matrix and our method for 1500 variable problems

with different number of constraints

3.5 Average number of iterates and average time per iterate of interior-point, 15

interior-point with sparse matrix and our method for 2000 variable problems

with different number of constraints

3.6 Average number of iterates and average time per iterate of interior-point, 16

interior-point with sparse matrix and our method for 2500 variable problems

with different number of constraints

3.7 Average number of iterates and average time per iterate of interior-point, 16

interior-point with sparse matrix and our method for 4000 variable problems

with different number of constraints

ix

4.1 Average numbers of nonzeros in factor L, average solving time, and average 27

residual of MA57 and the algorithm for problems with 500, 1000, and 1500

variables and constraint matrices with equal-sized blocks

4.2 Average numbers of nonzeros in L of MA57 algorithm and the algorithm 28

for problems with 1000 variables with 30, 50, and 70% of nonzeros in

Hessian matrix and constraint matrices with equal-sized blocks

4.3 Average numbers of nonzeros in factor L, average solving time, and 28

average residual of MA57 and the proposed algorithm for problems with

500, 1000, and 1500 variables constraint matrices with unequal-sized blocks

5.1 Average percentage of nonzeros in the factor L produced by MA57 32

and our algorithm for problems with 100, 300, 500, 1000, 3000, and 5000

dimensions and 30, 20, 10, and 5 percent of nonzeros in the matrix. The

percentage of nonzeros in L is computed by dividing the number of

nonzeros in L by n2 and then multiplying the result by 100.

5.2 Average residuals of the factorization produced by MA57 and our 33

algorithm for problems with 300, 500, 1000, and 2000 dimensions and 30,

20,10 and 5 percent of nonzeros in the matrix.

1

Chapter 1

Introduction

1.1 Quadratic programming

Nonlinear programming problems arise in the mathematical modeling of the

real world problem. Quadratic programming is an important class of nonlinear

programming. This kind of problem has a quadratic objective function and linear

constraints. The general form of the quadratic programming problem is as follows

 min
𝑥∈ℝ𝑛

1

2
𝑥𝑇𝐻𝑥 + 𝑐𝑇𝑥,

 subject to 𝐴𝑥 ≥ 𝑏

where 𝑥 ∈ ℝ𝑛, 𝐻 ∈ ℝ𝑛×𝑛, 𝑐 ∈ ℝ𝑛, 𝐴 ∈ ℝ𝑚×𝑛, 𝑏 ∈ ℝ𝑚, and 𝑚 < 𝑛.

The objective function can be either convex or non-convex depending on the

Hessian matrix H. When the Hessian matrix is positive or semidefinite, the objective

function is convex. For the convex case, the local optimum is also the global

optimum. If H is not positive semidefinite, the objective function is non-convex. Non-

convex objective functions may have many local optimal solutions. Solving the

indefinite quadratic function is difficult and required global optimization methods.

1.2 Quadratic programming with applications

Quadratic programming arises in many areas such as prediction, control,

modeling, finance, engineering, and management [1-10]. Moreover, quadratic

programming is used as a part of Sequential Quadratic Programming (SQP)

approaches to solve nonlinear programming problems. The basic idea of SQP is to

model nonlinear programs at a given approximate solution by a quadratic

programming subproblem, and then use the solution of this subproblem to construct a

better approximation in the next iteration [11,12].

1.3 Overview of methods for solving quadratic programming

There are many methods for solving quadratic programs; they can be

classified as either direct or iterative methods. The direct methods attempt to find the

solution by directly solving the resulting linear systems with a finite number of

operations, usually by using matrix factorization depending on the type of the matrix.

As an example, symmetric positive matrices are factorized by Cholesky factorization.

Iterative methods, on the other hand, start with an initial guess and successively

generate better approximate solutions at each iteration. The running time of an

iterative method depends directly on the required accuracy of the solution. Iterative

2

methods have two well-known classes of methods: active set and interior-point

methods. The active set methods begin by guessing the optimal active set of

constraints, which are constraints that hold with equality at the current point. The

methods repeatedly drop one index from the current active set and add new one until

the optimal set is detected [13, 14]. The interior-point methods are developed from the

Karmarkar’s algorithm for linear programming [15]. They approach a solution by

traversing the interior of the feasible region [16-18]. Unlike direct methods, the

running time of iterative methods depends on the required accuracy of the solutions.

1.4 Pivot selection in direct solution methods

Direct solution methods for solving quadratic programming typically involves

symmetric indefinite factorization of the Karush-Kuhn-Tucker (KKT) matrix [19].

Symmetric indefinite factorization (SIF) is not unique as the resulting factors depend

on the choices of the pivots during the factorization. Pivots should be chosen such that

the resulting factors are stable and do not have many fill-ins−the entries that are zeros

in the original matrix but are nonzeros in the factors.

There are many heuristic techniques for selecting pivots to minimize the

number of fill-ins for the related problem of Cholesky factorization, which is the most

suitable factorization for symmetric positive definite matrices, in literature. We briefly

discuss a few such well-known techniques here since some of their ideas are also

applicable to SIF. These ordering algorithms can be classified into three classes: local,

global, and hybrid approaches. Local approach such as the minimum degree and the

minimum fill algorithms [20-24] selects the pivot that is expected to minimize the

number of fill-ins at each factorization step in a greedy fashion. Global approach such

as Cuthill-McKee and nested dissection methods [25-27] selects pivots by considering

the overall structure of the matrix. Hybrid approach, on the other hand, combines the

ideas from both local and global approaches.

The well-known minimum degree algorithm [20] chooses the column that has

the minimum off-diagonal nonzero elements in the remaining matrix as the pivot for

the current step. Different improvements of the minimum degree algorithm have been

proposed [23] such as multiple minimum degree [28] and approximate minimum

degree algorithms [29] and become the practical standard in the implementations.

Another famous pivot selection algorithm is the nested dissection [26]. By

defining a graph whose vertices represent each column of the matrix and whose edges

represent nonzero entries in the matrix, nested dissection recursively find a

separator−a set of vertices that partitions the graph into two disconnected

subgraphs−and ordering the pivots recursively with the two subgraphs first followed

by the separator vertices. Cuthill-McKee [25] propose another pivot selection

algorithm that aims to reduce the bandwidth of the matrix based on a breadth first

search of the structure graph.

The main difference between Cholesky factorization and SIF is in the size of

pivots. For SIF, each pivot can be either a scalar or a 2-by-2 matrix while pivots in

Cholesky factorization are all scalars. Moreover, unlike Cholesky factorization, the

choice of pivots in SIF also affects the stability of the resulting factors [30].

3

There are many pivot selection algorithms proposed specifically for SIF such

as Bunch-Parlett [31], Bunch-Kaufman [32], and bounded Bunch Kaufman (BBK)

[33] algorithms. Bunch-Parlett method searches the whole remaining submatrix at

each stage for the largest-magnitude diagonal and the largest-magnitude off-diagonal.

It chooses the largest-magnitude diagonal as the 1-by-1 pivot if the resulting growth

rate is acceptable. Otherwise, it selects the largest-magnitude off-diagonal and its

relative diagonal elements as the 2-by-2 pivot block. This method requires O(𝑛3)

comparisons and yields a matrix 𝐿 whose maximum element is bounded by 2.781.

Bunch-Kaufman pivoting strategy searches for the largest-magnitude off-diagonal

elements of at most two columns for each iteration. It requires O(𝑛2) comparisons,

but the elements in 𝐿 are unbounded. BBK combines the two above strategies. By

monitoring the size of the elements in 𝐿, BBK uses the Bunch-Kaufman strategy

when it yields modest element growth. Otherwise, it repeatedly searches for an

acceptable pivot. In average cases, the total cost of BBK is the same as Bunch-

Kaufman, but in the worst cases its cost can be the same as that of the Bunch-Parlett

strategy.

Moreover, when the KKT matrix is sparse, the choice of pivots also affects the

sparsity of the resulting factors, which in turn affects the time needed to solve the

linear system. Hence, choosing suitable pivots that both maintain stability and

preserve sparsity is not trivial.

Additionally, there are other types of techniques for solving sparse symmetric

indefinite linear systems. Paige and Saunders [34] propose two algorithms, SYMMLQ

and MINRES, for solving such systems. The algorithms apply orthogonal

factorization together with the conjugate gradient method to solve the system. Duff et

al. [35] propose a pivotal strategy for decomposing sparse symmetric indefinite

matrices. They use relative pivot tolerance by limits the magnitude of the element in

the factors for stability and generalization of the criterion of Markowitz [20] to

consider a 2-by-2 pivot for the sparsity. Olaf and Klaus [36] propose Supernode-

Bunch-Kaufman pivoting method, which applies the Bunch-Kaufman pivot selection

algorithm for the sparse case, supplemented by pivot perturbation techniques. Duff

and Reid [37] propose a multifrontal method to solve indefinite sparse symmetric

linear systems based on minimum degree ordering. The multifrontal approach is

widely used in many sparse direct solvers such as MA57 and MUMPS [38, 39].

1.5 Large-scale quadratic programming

There are many problems that have to optimize large-scale quadratic problem.

For large-scale quadratic programs, the numbers of variables are so large that they

cannot be solved straightforwardly in a reasonable amount of time. Moreover, storing

such large amount of data is impractical. Fortunately the large-scale problems are

always sparse and have special structure such as separable or block-diagonal. For

these reasons, many methods are proposed that exploit sparsity in the problems to

reduce the computational time. For example, Rosen and Pardalos [40] propose a

method for large-scale constrained concave quadratic programming problems, which

reduces a problem to an equivalent separable quadratic program. Then solves a

multiple-cost-row linear program with 2n cost rows, where n is the dimension of the

4

variable. If the solution is not a satisfactory approximation, a guaranteed 𝜖-

approximate solution is obtained by solving a single linear zero-one mixed integer

programming problem. [41] decompose the large-scale quadratic problem into a series

of small problems and then solve these small problems serially to approximate the

solution. Gill et al. [42] propose a method based on the Schur complement. Their

method is suitable for the problem with specialized factorization. Gould and Toint

[43] propose a method to solve large-scale nonconvex quadratic programming

problems by using working-set method. It is a two-level iterative method. The first

level is to select the working set of constraints. The second level uses the

preconditioned conjugate gradient method to solve the problem with the selected

working set.

1.6 Our objectives

This thesis focuses on two classes of quadratic programming, quadratic

programs whose Hessian matrix is block diagonal with dense linearly constraint

matrices and equality-constrained quadratic programs whose constraint matrices are

block diagonal.

For the quadratic programs whose Hessian matrix is block diagonal, we

propose two subclasses for this kind of structure. First subclass is the quadratic

programs whose Hessian is a block diagonal structure with dense nonnegative linear

constraint and lower bounds. We separate the problem into many smaller problems.

For the first subproblem, we use the lower bounds of the other subproblems to

calculate its optimal sub-solution. For the other subproblems, we use the optimal sub-

solution and the lower bounds of the other subproblems to find their optimal sub-

solutions. We repeat this step until all of the subproblems are solved. Then, we

construct the approximate solution with these optimal sub-solutions. Our experiment

shows the comparison between our heuristic method and an interior-point method.

The result shows that our method can efficiently approximate solutions when there are

not too many numbers of subproblems. The second subclass is the quadratic programs

whose Hessian matrix in the objective function is block diagonal with dense linear

inequality constraint matrices. We propose a way to efficiently compute the search

directions of an interior-point method for such quadratic programs without

compromising the optimality of the method.

The second class of quadratic programs, equality-constrained quadratic

programs whose constraint matrices are block diagonal, often arises in practice when

different groups of variables are independent but variables in the same group must

satisfy some constraints. Using a direct method, we propose a pivot selection

algorithm for this type of quadratic programs. By exploiting the known structure of

the quadratic program, the algorithm can efficiently identify the pivot candidates that

can maintain the sparsity of the factors. This work uses the condition number of each

pivot candidates as part of the information for pivot selection in order to also maintain

stability.

5

Finally, we propose a new pivot selection algorithm for sparse SIF. Our

algorithm applies the idea of minimum degree ordering to consider both 1-by-1 and 2-

by-2 pivots while also considers the stability of the resulting factors. Our experiments

show that our algorithm produces stable factors that are sparser than the factors

produced by MA57.

6

Chapter 2

An Efficient Heuristic Method for Large-Scale Block Diagonal

Quadratic Programs

2.1 Block diagonal quadratic with nonnegative linearly constraints problem

This chapter considers how to compute an approximate solution for large-scale

block diagonal quadratic programs with nonnegative inequality linear constraints and

lower bounds, which has the following form:

 min
𝑥∈ℝ𝑛

𝑓(𝑥) =
1

2
𝑥𝑇𝐻𝑥 + 𝑐𝑇𝑥

 subject to 𝐴𝑥 ≥ 𝑏 (2.1)
 𝑙 ≤ 𝑥

where 𝑥 ∈ ℝ𝑛, 𝐻 ∈ ℝ𝑛×𝑛, 𝑐 ∈ ℝ𝑛, 𝐴 ∈ ℝ+
𝑚×𝑛, 𝑏 ∈ ℝ𝑚 and 𝑙 ∈ ℝ𝑛. Here, ℝ+

𝑚×𝑛

denotes the set of 𝑚 × 𝑛 matrices whose entries are nonnegative real numbers. The

Hessian matrix H is in the following form

 𝐻 = [

𝐻1 0 ⋯ 0
0 𝐻2 ⋯ 0
⋮ ⋮ ⋱ ⋮
0 0 ⋯ 𝐻𝑁

],

where 𝐻𝑖 ∈ ℝ𝑛𝑖×𝑛𝑖 (i = 1, 2, ..., N). Note that ∑ 𝑛𝑖
𝑁
𝑖=1 = 𝑛. Recall H is positive

semidefinite if and only if all 𝐻𝑖’s are positive semidefinite.

2.2 Separable structure

With the block diagonal quadratic structure, we also write x, g, A, and l as

 𝑥 = [𝑥1
𝑇 𝑥2

𝑇 ⋯ 𝑥𝑁
𝑇]𝑇 ,

 𝑐 = [𝑐1
𝑇 𝑐2

𝑇 ⋯ 𝑐𝑁
𝑇]𝑇,

 𝐴 = [𝐴1
𝑇 𝐴2

𝑇 ⋯ 𝐴𝑁
𝑇]𝑇,

 𝑙 = [𝑙1
𝑇 𝑙2

𝑇 ⋯ 𝑙𝑁
𝑇]𝑇,

where 𝑥𝑖 ∈ ℝ𝑛𝑖, 𝑐𝑖 ∈ ℝ𝑛𝑖 , 𝐴𝑖 ∈ ℝ𝑚×𝑛𝑖, and 𝑙𝑖 ∈ ℝ𝑛𝑖. The problem can be separated

to the summation of N quadratic subproblems as follows:

 min
𝑥∈ℝ𝑛

 𝑓(𝑥) = ∑ 𝑓𝑖(𝑥𝑖)
𝑁
𝑖=1

 subject to ∑ 𝐴𝑖𝑥𝑖
𝑁
𝑖=1 ≥ 𝑏 (2.2)

 𝑙 ≤ 𝑥

7

where

 𝑓𝑖(𝑥𝑖) =
1

2
𝑥𝑖

𝑇𝐻𝑖𝑥𝑖 + 𝑐𝑖
𝑇𝑥𝑖 (2.3)

2.3 The heuristic algorithm

Our algorithm finds the optimal solution to each subproblem 𝑓𝑖(𝑥𝑖), which we

apply the new constraint as in (2.4)

 min
𝑥𝑖∈ℝ𝑛𝑖

𝑓𝑖(𝑥𝑖) =
1

2
𝑥𝑖

𝑇𝐻𝑖𝑥𝑖 + 𝑐𝑖
𝑇𝑥𝑖

 subject to 𝐴𝑖𝑥𝑖 ≥ 𝑏 − ∑ 𝐴𝑗𝑧𝑗𝑗:(1≤𝑗≤𝑁)

and(𝑖≠𝑗)

 (2.4)

 𝑙𝑖 ≤ 𝑥𝑖

where 𝑧𝑗 ∈ ℝ𝑛𝑗. If the jth subproblem was already computed and its optimal solution

is 𝑥𝑗
∗, it becomes the variable 𝑧𝑗 for the remaining subproblems (i.e., 𝑧𝑗 = 𝑥𝑗

∗).

Otherwise, we set 𝑧𝑗 to be the lower bound of 𝑥𝑗. In other words,

 𝑧𝑗 = 𝑓(𝑥) = {
𝑥𝑗

∗; if there exists xj
∗,

𝑙𝑗 ; otherwise.
 (2.5)

After we optimize all of the subproblems, 𝑥∗ = [𝑥1
∗𝑇 𝑥2

∗𝑇 𝑥3
∗𝑇 … 𝑥𝑁

∗ 𝑇]
𝑇
 is an

approximate solution.

Our algorithm can be described as follows.

Algorithm 2.1

while all subproblems are not yet solved do

Choose an unsolved subproblem ith

for j = 1, 2, …, N do

if 𝑗 ≠ 𝑖 then
if the jth subproblem is unsolved then

set 𝑧𝑗 = 𝑙𝑗

else

set 𝑧𝑗 = 𝑥𝑗
∗

end if

end if

end for

Solve (2.4) for 𝑥𝑖
∗

end while

Construct the solution 𝑥∗ from 𝑥𝑖
∗

Note that the subproblems can be solved in any order. Also, any algorithm can be

used to solve the subproblems.

8

2.4 Computational results

In our experiment, we compare our algorithm with interior-point method using

MATLAB R2009b. The experiments were performed in 100, 400, and 900 variables

with different numbers of equally-sized diagonal block and different number of

constraint. The test problems are randomly generated in the following way: Let 𝐻�̂� ∈
ℝ𝑛𝑖×𝑛𝑖. Each element of 𝐻�̂� , 𝑐, 𝑏, and 𝑙, and each nonzero element of 𝐴 is randomly

generated between zero and one according to the uniform distribution. Then, let 𝐻𝑖 =
�̂�𝑖�̂�𝑖

𝑇. For each problem, we experiment with ten different instances. In this

experiment, we use an interior-point method to solve each subproblem. We show

average computation time for interior-point method (𝑡1) and our heuristic method (𝑡2).

We also show relative errors (𝑟𝑒𝑙.) between the two methods. The relative errors are

calculated by

 𝑟𝑒𝑙. = |
𝑣𝑎𝑙1−𝑣𝑎𝑙2

𝑣𝑎𝑙1
| , (2.6)

where 𝑣𝑎𝑙1 is the optimal value found by the interior-point method and 𝑣𝑎𝑙2 is the

approximate value of our heuristic method. The results are shown in Tables 2.1-2.3.

The results show that our heuristic method is faster than the interior-point

method especially in the large-scale problems. It is also more efficient for problems

with smaller N and many constraints. Finally, when comparing relative errors, our

heuristic method is very accurate when the number of variables for each subproblem

is larger than the number of diagonal blocks.

Table 2.1 Average time of interior-point method and heuristic method and relative

error for 100 variables problem with different number of constraints

𝑁 𝑛𝑖 𝑚 𝑡1(s) 𝑡2(s) 𝑟𝑒𝑙.
2 50 20 0.26 0.10 0.00000015

2 50 50 0.41 0.17 0.00000020

2 50 80 1.32 0.28 0.00000017

10 10 20 0.17 0.08 0.00000083

10 10 50 0.48 0.19 0.00000056

10 10 80 1.12 0.37 0.00000093

50 2 20 0.23 0.26 0.18553561

50 2 50 0.78 0.65 0.28241298

50 2 80 1.71 1.26 0.13400407

9

Table 2.2 Average time of interior-point method and heuristic method and relative

error for 400 variables problem with different number of constraints

𝑁 𝑛𝑖 𝑚 𝑡1(s) 𝑡2(s) 𝑟𝑒𝑙.
2 200 80 9.67 4.17 0.00000003

2 200 200 23.02 10.86 0.00000004

2 200 320 220.72 22.28 0.00000004

20 20 80 4.89 1.34 0.00000028

20 20 200 63.62 9.67 0.00000027

20 20 320 169.59 43.69 0.00000038

200 2 80 8.53 8.49 0.30711597

200 2 200 91.76 48.14 0.85615394

200 2 320 222.32 212.76 0.83945318

Table 2.3 Average time of interior-point method and heuristic method and relative

error for 900 variables problem with different number of constraints

𝑁 𝑛𝑖 𝑚 𝑡1(s) 𝑡2(s) 𝑟𝑒𝑙.
2 450 180 143.25 58.14 0.00000002

2 450 450 283.71 155.44 0.00000002

2 450 720 4392.90 327.42 0.00000002

30 30 180 283.56 15.68 0.00000027

30 30 450 1496.65 217.44 0.00000021

30 30 720 3427.95 761.30 0.00000022

450 2 180 446.50 107.73 0.87042419

450 2 450 2135.86 1118.29 1.00916398

450 2 720 4701.08 3720.97 1.03955722

10

Chapter 3

An Efficient Method to Compute Search Directions of an

Infeasible Primal-Dual Path-Following Interior-Point Method for

Large-Scale Block Diagonal Quadratic Programming

3.1 Block diagonal quadratic programs and primal-dual path-following interior-

point method

Consider a block diagonal quadratic program with linear inequality constraints

 min
𝑥∈ℝ𝑛

1

2
𝑥𝑇𝐻𝑥 + 𝑐𝑇𝑥, (3.1)

 subject to 𝐴𝑥 ≥ 𝑏

where 𝑥 ∈ ℝ𝑛, 𝐻 ∈ ℝ𝑛×𝑛, 𝑐 ∈ ℝ𝑛, 𝐴 ∈ ℝ𝑚×𝑛, and 𝑏 ∈ ℝ𝑚, 𝑚 < 𝑛. The Hessian

matrix 𝐻 is in the form

 𝐻 = [

𝐻1 0
0 𝐻2

⋯ 0
⋯ 0

⋮ ⋮
0 0

⋱ ⋮
⋯ 𝐻𝑁

],

where 𝐻𝑖 ∈ ℝ𝑛𝑖×𝑛𝑖 (i = 1, 2, ..., N) and N is the number of diagonal blocks in H. Note

that H is symmetric positive semidefinite if and only if 𝐻𝑖’s are symmetric positive

semidefinite. Recall that ∑ 𝑛𝑖 = 𝑛𝑁
𝑖=1 . This Hessian structure is called block diagonal

matrix.

Primal-dual path-following interior-point methods for quadratic programming

use perturbed KKT conditions

 𝑓(𝑥, 𝑦, 𝜆; 𝜎, 𝜇) = [
𝐻𝑥 − 𝐴𝑇𝜆 + 𝑐
𝐴𝑥 − 𝑦 − 𝑏
𝑌𝛬𝑒 − 𝜎𝜇𝑒

] = 0, (3.2)

Where 𝜇 =
𝑦𝑇𝜆

𝑚
, 𝑌 = Diag(𝑦1, 𝑦2, … , 𝑦𝑚), 𝛬 = Diag(𝜆1, 𝜆2, … , 𝜆𝑚), 𝑒 = [1,1, … ,1]𝑇

and 𝜎 ∈ [0,1). Note that the variables y and 𝜆 are dual variables of (3.1).

Let (𝑥0, 𝑦0, 𝜆0) be a starting point, not necessarily feasible, such that

(𝑦0, 𝜆0) > 0. A primal-dual path-following interior-point method iterates by solving

 [
𝐻 0 −𝐴𝑇

𝐴 −𝐼 0
0 𝛬 𝑌

] [
∆𝑥
∆𝑦
∆𝜆

] = [
−𝑤
−𝑧
𝑣

] (3.3)

11

for the search direction (∆𝑥, ∆𝑦, ∆𝜆), where 𝑤 = 𝐻𝑥 − 𝐴𝑇𝜆 + 𝑐, 𝑧 = 𝐴𝑥 − 𝑦 − 𝑏,

and 𝑣 = −Λ𝑌𝑒 + 𝜎𝜇𝑒, setting the next point to be

 (𝑥𝑘+1, 𝑦𝑘+1, 𝜆𝑘+1) = (𝑥𝑘 , 𝑦𝑘, 𝜆𝑘) + 𝛼(∆𝑥, ∆𝑦, ∆𝜆), (3.4)

where 𝛼 ∈ (0,1) is the step length, and repeating until 𝜇 is close to 0 [44]. The step

length is typically chosen as the largest number to obtain (𝑦𝑘+1, 𝜆𝑘+1) ≥ 0. Note that

the “normal equations” form of (3.3) is

 (𝐻 + 𝐴𝑇𝑌−1𝛬𝐴)∆𝑥 = −𝑤 + 𝐴𝑇𝑌−1𝛬[−𝑧 − 𝑦 + 𝜎𝜇𝛬−1𝑒], (3.5)

which can be solved by means of a modified Cholesky algorithm. Solving (3.5) for ∆𝑥

is efficient if the term 𝐴𝑇𝑌−1ΛA is not too dense compared with 𝐻. In the case of 𝐻

being block diagonal, 𝐻 + 𝐴𝑇𝑌−1ΛA is generally dense therefore we cannot take

advantage of sparsity when solving (3.5).

3.2 Derivation of our method

To take advantage of block diagonal Hessian, write 𝑥, 𝑐, 𝐴, and 𝑤 as

 𝑥 = [𝑥1
𝑇 𝑥2

𝑇 … 𝑥𝑁
𝑇]𝑇,

 𝑐 = [𝑐1
𝑇 𝑐2

𝑇 … 𝑐𝑁
𝑇]𝑇,

 𝐴 = [𝐴1
𝑇 𝐴2

𝑇 … 𝐴𝑁
𝑇],

 𝑤 = [𝑤1
𝑇 𝑤2

𝑇 … 𝑤𝑁
𝑇]𝑇,

where 𝑥𝑖 ∈ ℝ𝑛𝑖 , 𝑐𝑖 ∈ ℝ𝑛𝑖 , 𝐴𝑖 ∈ ℝ𝑚×𝑛𝑖, and 𝑤𝑖 ∈ ℝ𝑛𝑖. Rewrite (3.3) as

 𝐻𝑖∆𝑥𝑖 − 𝐴𝑖
𝑇∆𝜆 = −𝑤𝑖(𝑖 = 1,… , 𝑛), (3.6)

 ∑ 𝐴𝑖∆𝑥𝑖 − ∆𝑦 = −𝑧,𝑚
𝑖=1 (3.7)

 𝛬∆𝑦 + 𝑌∆𝜆 = 𝑣, (3.8)

where

 𝑤𝑖 = 𝐻𝑖𝑥𝑖 − 𝐴𝑖
𝑇𝜆 + 𝑐𝑖(𝑖 = 1,… , 𝑛). (3.9)

Next, we rewrite (3.6) and (3.8) as

 ∆𝑥𝑖 = 𝐻𝑖
−1(𝐴𝑖

𝑇∆𝜆 − 𝑤𝑖)(𝑖 = 1,… , 𝑛), (3.10)

 ∆𝑦 = 𝛬−1(𝑣 − 𝑌∆𝜆). (3.11)

Finally, substituting (3.10) and (3.11) into (3.7) yields

 ∑ 𝐴𝑖𝐻𝑖
−1(𝐴𝑖

𝑇∆𝜆 − 𝑤𝑖) − 𝛬−1(𝑣 − 𝑌∆𝜆) = −𝑧,𝑚
𝑖=1

or, equivalently,

 (∑ 𝐴𝑖𝐻𝑖
−1𝐴𝑖

𝑇 + 𝛬−1𝑌𝑚
𝑖=1)∆𝜆 = −𝑧 + 𝛬−1𝑣 + ∑ 𝐴𝑖𝐻𝑖

−1𝑤𝑖.
𝑚
𝑖=1 (3.12)

12

Therefore, the search direction can be computed by solving (3.12) for ∆𝜆 and

obtain ∆𝑥𝑖 and ∆𝑦 from (3.10) and (3.11), respectively. Algorithm 3.1 below

describes the path-following interior-point method that uses the proposed method to

compute the search direction.

Remarks for the above algorithm

• We do not explicitly compute 𝐻𝑖
−1’s. Instead, we precompute the Cholesky factors

of 𝐻𝑖
−1’s once and reuse them to compute 𝑆, 𝑡, and ∆𝑥𝑖.

• The direction ∆𝑦 can be computed efficiently because 𝛬 is diagonal.

• The parameter 𝜏 ∈ (0,1) controls how far we back off from the maximum step.

• Instead of computing w directly, we compute each wi from (3.9).

Our algorithm requires O(𝑚2𝑁 + ∑ (𝑛𝑖
3 + 𝑚𝑛𝑖

2)𝑁
𝑖=1) operations for the

preprocessing and O(𝑚3 + ∑ (𝑛𝑖
2 + 𝑚𝑛𝑖)

𝑁
𝑖=1) operations per iterate. As comparison,

note that the conventional interior-point method that solves (3.5) for search directions

requires O(𝑛3) per iterate.

Algorithm 3.1

Set 𝑆 = 0

Let (𝑥0, 𝑦0, 𝜆0) be a point with 𝑦0, 𝜆0 ≥ 0

𝜇 =
𝑦0

𝑇𝜆0

𝑚

for i= 1,2,3, … ,N do

 𝑆 = 𝑆 + 𝐴𝑖𝐻𝑖
−1𝐴𝑖

𝑇

end for

for k = 0, 1, 2, . . . do

 Set 𝑥, 𝑦, 𝜆 = 𝑥𝑘 , 𝑦𝑘, 𝜆𝑘

 Compute 𝑧 = 𝐴𝑥 − 𝑦 − 𝑏

 Compute 𝑣 = −Λ𝑌𝑒 + 𝜎𝜇𝑒

 Set t= 0

 for i= 1, 2, 3, …, N do

 Compute 𝑤𝑖 from (3.9)

 𝑡 = 𝑡 + 𝐴𝑖𝐻𝑖
−1𝑤𝑖

 end for

 Solve (𝑆 + 𝛬−1𝑌)∆𝜆 = −𝑧 + 𝛬−1𝑣 + 𝑡 for ∆𝜆

 ∆𝑦 = 𝛬−1(𝑣 − 𝑌∆𝜆)
 for i= 1, 2, 3, …, N do

 Solve 𝐻𝑖∆𝑥𝑖 = −𝑤𝑖 + 𝐴𝑖
𝑇∆𝜆 for ∆𝑥𝑖

 end for

 𝛼𝑘
𝑝𝑟𝑖 = max{𝛼 ∈ (0,1]: 𝑦 + 𝛼∆𝑦 ≥ (1 − 𝜏)𝑦}

 𝛼𝑘
𝑑𝑢𝑎𝑙 = max{𝛼 ∈ (0,1]: 𝜆 + 𝛼∆𝜆 ≥ (1 − 𝜏)𝜆}

 Select 𝛼 = min(𝛼𝑘
𝑝𝑟𝑖 , 𝛼𝑘

𝑑𝑢𝑎𝑙)

 Set 𝑥𝑘+1, 𝑦𝑘+1, 𝜆𝑘+1 = (𝑥𝑘, 𝑦𝑘𝜆𝑘) + 𝛼(∆𝑥, ∆𝑦, ∆𝜆)

 𝜇 =
𝑦𝑘+1

𝑇 𝜆𝑘+1

𝑚

end for

13

3.3 Computational results

In this section we compare the computational time of the following three

methods for computing search directions for block diagonal quadratic programs in

MATLAB R2011a: (i) solving (3.5) for ∆𝑥 and then substituting it to compute ∆𝑦 and

∆𝜆, (ii) solving (3.3) using the sparse linear solver in MATLAB R2011a, and (iii) our

method as described in Section 3.2. The experiment was performed on different

problem sizes varying from 100 to 2500 variables. The test problems are randomly

generated in the following way: Let �̂� ∈ ℝ𝑛×𝑛. Each element of �̂� , 𝑐, 𝐴, and 𝑏 is

randomly generated between zero and one according to the uniform distribution.

Then, let 𝐻 = �̂��̂�𝑇. Now that 𝐻 is dense, we zero out all of its entries outside the

block diagonal to make it a block diagonal matrix.

For each problem size, we compare average computation time per iterate of

problems with different numbers of equally-sized diagonal blocks. We also vary the

number of constraints for 20, 50 and 80 percent of the number of variables. For each

case, we test with ten different instances. The results are shown in Tables 3.1-3.7. We

show average number of iterates (iter.) for each problems. Columns 𝑡1, 𝑡2, and 𝑡3

show average time per iterate for methods (i), (ii), and (iii), respectively. Note that

average time per iterate in our experiment also includes preprocessing time.

The results of experiment show that, for problems with the same number of

variables, average time per iterate of method (i) does not depend on the number of

diagonal blocks. Method (ii), on the other hand, is more efficient for problems with

many smaller diagonal blocks than for problems with few larger diagonal blocks. This

is because a problem with few larger diagonal blocks has more nonzero elements

compared to a problem with many smaller diagonal blocks. Finally, method (iii)

performs best when the number of diagonal blocks is neither too large nor too small.

In other words, it performs best when the number of groups is about the same as the

number of variables in each group.

In our experiment, the constraint matrices are dense. When the number of

constraints is very high, method (ii) is the slowest among the three methods. For large

problems, such as those with 500 variables or more, method (iii) is the fastest among

the three.

Note that we do not have results of the method (ii) for problems with 4000

variables and 2,000 or more constraints. This is because the matrix in (3.3) that is

used by the method (ii) is too large and too dense to store in the main memory of our

system. However, the method (i) and method (iii) do not have this problem and can

compute the search directions normally.

14

Table 3.1 Average number of iterates and average time per iterate of interior-point,

interior-point with sparse matrix and our method for 100 variable problems with

different number of constraints

N ni

m=20 m=50 m=80

iter.
t1

(ms)

t2

(ms)

t3

(ms)
iter.

t1

(ms)

t2

(ms)

t3

(ms)
iter.

t1

(ms)

t2

(ms)

t3

(ms)

2 50 19.8 0.983 3.783 0.457 20.2 1.595 11.021 0.705 21.5 2.195 12.746 1.130

5 20 19.7 1.016 2.710 0.619 20.7 1.521 6.555 0.874 21.8 2.135 11.115 1.288

10 10 19.7 0.983 2.501 0.990 20.7 1.523 5.335 1.240 21.8 2.075 9.718 1.684

20 5 19.5 0.988 2.077 1.707 21.0 1.570 5.094 1.969 21.6 2.140 9.472 2.396

50 2 19.5 0.984 2.087 3.917 20.6 1.527 4.820 4.205 21.7 2.054 9.459 4.693

Table 3.2 Average number of iterates and average time per iterate of interior-point,

interior-point with sparse matrix and our method for 500 variable problems with

different number of constraints

N ni

m=100 m=250 m=400

iter.
t1

(ms)

t2

(ms)

t3

(ms)
iter.

t1

(ms)

t2

(ms)

t3

(ms)
iter.

t1

(ms)

t2

(ms)

t3

(ms)

2 250 20.0 32.24 88.61 9.86 21.6 54.94 174.4 19.43 23.0 97.63 494.15 52.52

5 100 20.3 32.24 56.93 4.17 21.7 54.98 185.82 14.19 23.2 97.71 389.89 43.78

10 50 20.6 32.47 52.57 4.23 21.9 55.02 149.12 14.01 23.1 97.68 338.65 42.24

20 25 20.2 32.90 47.16 4.63 21.6 55.02 141.52 14.46 23.4 97.70 311.20 43.55

25 20 20.2 33.57 39.74 4.89 21.3 55.05 137.02 15.01 23.3 97.79 315.73 44.14

50 10 20.4 33.65 39.10 6.81 21.8 54.86 138.17 17.26 23.4 97.67 313.92 48.28

100 5 20.5 33.78 37.86 10.62 21.6 55.04 134.2 21.16 22.8 97.72 309.68 56.39

250 2 20.4 33.05 38.24 22.28 21.6 55.05 132.01 34.17 23.3 97.65 307.25 80.44

Table 3.3 Average number of iterates and average time per iterate of interior-point,

interior-point with sparse matrix and our method for 1000 variable problems with

different number of constraints

N ni

m=200 m=500 m=800

iter.
t1

(s)

t2

(s)

t3

(s)
iter.

t1

(s)

t2

(s)

t3

(s)
iter.

t1

(s)

t2

(s)

t3

(s)

2 500 20.5 0.183 0.408 0.067 21.8 0.339 0.804 0.140 23.3 0.647 2.592 0.310

5 200 20.6 0.183 0.262 0.019 22.1 0.340 0.879 0.095 23.7 0.652 1.946 0.263

10 100 20.8 0.184 0.242 0.015 22.0 0.338 0.745 0.082 24.0 0.653 1.723 0.256

20 50 21.0 0.183 0.219 0.014 22.0 0.337 0.689 0.081 23.8 0.652 1.624 0.242

25 40 20.9 0.183 0.188 0.014 22.0 0.337 0.680 0.081 23.9 0.651 1.572 0.243

40 25 21.0 0.183 0.185 0.016 22.0 0.338 0.682 0.084 23.7 0.652 1.562 0.249

50 20 20.5 0.182 0.180 0.016 21.9 0.337 0.660 0.086 24.0 0.652 1.581 0.254

100 10 20.9 0.183 0.176 0.020 22.2 0.339 0.706 0.099 24.3 0.653 1.606 0.283

200 5 20.5 0.183 0.177 0.029 22.0 0.341 0.638 0.123 23.8 0.652 1.569 0.342

500 2 20.6 0.183 0.179 0.054 22.4 0.347 0.649 0.193 24.0 0.652 1.579 0.508

15

Table 3.4 Average number of iterates and average time per iterate of interior-point,

interior-point with sparse matrix and our method for 1500 variable problems with

different number of constraints

N ni

m=300 m=750 m=1200

iter.
t1

(s)

t2

(s)

t3

(s)
iter.

t1

(s)

t2

(s)

t3

(s)
iter.

t1

(s)

t2

(s)

t3

(s)

2 750 20.5 0.502 0.983 0.157 22.1 0.996 1.974 0.361 23.8 2.010 7.208 0.887

5 300 20.8 0.503 0.632 0.082 22.2 1.001 2.264 0.281 24.4 2.005 5.406 0.819

10 150 20.8 0.503 0.585 0.037 22.5 1.002 1.818 0.243 24.0 2.013 4.740 0.784

20 75 20.9 0.503 0.516 0.039 22.2 1.001 1.696 0.224 24.2 2.015 4.308 0.782

25 60 21.0 0.503 0.446 0.035 22.3 1.002 1.724 0.217 24.3 2.015 4.257 0.783

30 50 21.0 0.502 0.438 0.036 22.4 1.001 1.684 0.219 24.1 2.016 4.295 0.745

50 30 20.9 0.503 0.432 0.038 22.1 1.003 1.656 0.226 24.3 2.017 4.264 0.763

60 25 20.9 0.503 0.428 0.039 22.4 1.003 1.671 0.231 24.1 2.016 4.253 0.777

75 20 21.1 0.504 0.423 0.040 22.5 1.003 1.644 0.238 24.4 2.016 4.154 0.792

150 10 20.9 0.503 0.416 0.050 22.5 1.002 1.644 0.278 24.1 2.016 4.117 0.880

300 5 20.8 0.503 0.418 0.069 22.2 1.003 1.619 0.362 24.2 2.015 4.188 1.061

750 2 20.7 0.503 0.423 0.124 22.5 1.001 1.599 0.601 24.2 2.001 4.227 1.587

Table 3.5 Average number of iterates and average time per iterate of interior-point,

interior-point with sparse matrix and our method for 2000 variable problems with

different number of constraints

N ni

m=400 m=1000 m=1600

iter.
t1

(s)

t2

(s)

t3

(s)
iter.

t1

(s)

t2

(s)

t3

(s)
iter.

t1

(s)

t2

(s)

t3

(s)

2 1000 20.6 1.107 1.835 0.318 22.0 2.724 3.865 0.779 24.1 5.804 17.512 1.939

5 400 21.0 1.110 1.173 0.162 22.7 2.724 4.522 0.626 24.4 5.805 11.573 1.786

10 200 20.9 1.112 1.080 0.096 22.5 2.734 3.597 0.559 24.5 5.805 10.088 1.733

20 100 21.1 1.110 0.976 0.080 22.9 2.737 3.401 0.544 24.4 5.808 9.469 1.725

25 80 21.0 1.111 0.842 0.073 22.5 2.734 3.376 0.542 24.3 5.809 9.157 1.725

40 50 21.0 1.108 0.814 0.067 22.5 2.740 3.326 0.505 24.5 5.815 8.901 1.737

50 40 21.1 1.109 0.794 0.068 22.4 2.736 3.239 0.512 24.3 5.813 9.067 1.696

80 25 21.2 1.110 0.801 0.073 22.5 2.737 3.333 0.536 24.2 5.813 8.923 1.751

100 20 20.9 1.105 0.779 0.077 22.4 2.734 3.686 0.553 24.6 5.816 9.291 1.788

200 10 21.0 1.110 0.779 0.094 22.7 2.734 3.195 0.646 24.5 5.817 9.113 1.983

400 5 21.0 1.109 0.780 0.129 22.5 2.734 3.089 0.830 24.7 5.810 9.086 2.375

1000 2 21.0 1.109 0.798 0.234 22.6 2.723 3.211 1.365 24.6 5.805 9.290 3.553

16

Table 3.6 Average number of iterates and average time per iterate of interior-point,

interior-point with sparse matrix and our method for 2500 variable problems with

different number of constraints

N ni

m=500 m=1250 m=2000

iter.
t1

(s)

t2

(s)

t3

(s)
iter.

t1

(s)

t2

(s)

t3

(s)
iter.

t1

(s)

t2

(s)

t3

(s)

2 1250 21.0 1.948 3.002 0.486 22.4 4.743 6.394 1.249 24.5 11.202 34.712 3.539

5 500 21.1 1.982 1.903 0.275 22.7 4.655 7.647 1.034 24.4 11.403 21.441 3.326

10 250 21.0 2.014 1.777 0.177 22.3 4.693 6.078 0.941 24.6 11.384 19.382 3.242

20 125 21.0 2.016 1.649 0.115 22.7 4.680 6.012 0.916 24.7 11.363 17.280 3.240

25 100 21.1 2.040 1.346 0.119 22.6 4.711 5.826 0.915 24.2 11.353 16.855 3.242

50 50 21.2 2.032 1.283 0.116 22.5 4.751 5.579 0.860 24.6 11.354 17.106 3.280

100 25 21.0 2.021 1.259 0.125 22.6 4.743 5.531 0.922 24.7 11.245 16.598 3.297

125 20 20.9 2.028 1.246 0.130 22.7 4.743 5.642 0.955 24.6 10.861 16.112 3.377

250 10 21.0 2.033 1.340 0.163 22.7 4.792 5.480 1.117 24.8 11.017 15.959 3.758

500 5 21.1 2.040 1.255 0.228 22.8 4.772 5.565 1.444 24.9 11.157 16.481 4.520

1250 2 21.1 2.021 1.276 0.432 22.6 4.790 5.398 2.458 24.8 11.289 16.293 6.773

Table 3.7 Average number of iterates and average time per iterate of interior-point,

interior-point with sparse matrix and our method for 4000 variable problems with

different number of constraints

N ni

m=800 m=2000 m=3200

iter.
t1

(s)

t2

(s)

t3

(s)
iter.

t1

(s)

t2

(s)

t3

(s)
iter.

t1

(s)

t2

(s)

t3

(s)

2 2000 21.0 7.093 9.173 1.547 22.7 16.780 - 4.207 24.9 40.524 - 11.873

5 800 21.1 7.050 5.691 0.825 22.9 17.068 - 3.435 25.3 40.825 - 11.121

10 400 21.2 7.047 5.139 0.594 22.8 16.856 - 3.252 25.0 41.462 - 10.837

20 200 21.1 7.032 4.568 0.450 23.0 16.538 - 3.155 25.0 41.965 - 10.780

25 160 21.1 7.029 3.903 0.444 23.1 16.670 - 3.137 25.2 41.406 - 10.793

50 80 21.2 7.025 3.737 0.353 23.0 16.701 - 3.151 25.1 40.909 - 10.930

80 50 21.3 7.020 3.758 0.363 23.0 16.684 - 3.205 25.1 40.563 - 11.096

160 25 21.4 7.016 3.615 0.401 23.0 16.639 - 3.250 25.2 40.657 - 11.571

200 20 21.0 7.019 3.620 0.478 23.0 16.646 - 3.424 25.5 40.993 - 11.549

400 10 21.0 7.024 3.616 0.623 23.0 16.618 - 4.197 25.1 40.821 - 13.035

800 5 21.4 7.023 3.623 0.838 23.0 16.559 - 5.526 25.2 41.137 - 16.017

2000 2 21.3 7.021 3.758 1.610 23.0 16.453 - 9.285 25.1 40.840 - 24.824

17

Chapter 4

A New Pivot Selection Algorithm for Symmetric Indefinite

Factorization Arising in Quadratic Programming

with Block Constraint Matrices

4.1 Quadratic programs with block diagonal constraint matrices

We considers equality constraint quadratic programs whose constraint

matrices are block diagonal. The problem is as follows:

 min
𝑥∈ℝ𝑛

1

2
𝑥𝑇𝐻𝑥 + 𝑐𝑇𝑥 (4.1)

 subject to 𝐴𝑥 = 𝑒

where 𝑥 ∈ ℝ𝑛, 𝐻 ∈ ℝ𝑛×𝑛, 𝑐 ∈ ℝ𝑛, 𝐴 ∈ ℝ𝑚×𝑛, 𝑒 ∈ ℝ𝑚, 𝑚 < 𝑛, and the constraint

matrix A is of the form

 𝐴 = [

𝐴1 0 ⋯ 0
0 𝐴2 ⋯ 0
⋮ ⋮ ⋱ ⋮
0 0 ⋯ 𝐴𝑁

],

where 𝐴𝑖 ∈ ℝ𝑚𝑖×𝑛𝑖 (𝑖 = 1, 2,..., 𝑁), 𝑚𝑖 < 𝑛𝑖, and 𝑁 is the number of diagonal blocks

in A. Note that ∑ 𝑚𝑖
𝑁
𝑖=1 = 𝑚 and ∑ 𝑛𝑖

𝑁
𝑖=1 = 𝑛. Assume that A has full row rank.

Recall from the first-order necessary conditions that, for 𝑥∗ to be a solution of (4.1),

there must be 𝑥∗ and 𝜆∗ satisfying

 [𝐻 −𝐴𝑇

𝐴 0
] [

𝑥∗

𝜆∗] = [
−𝑐
𝑒

] (4.2)

[19]. The above system of equations can be rewritten to a more useful form of

Karush-Kuhn-Tucker (KKT) system

 [𝐻 𝐴𝑇

𝐴 0
] [

−𝑝
𝜆∗] = [

𝑔
ℎ
], (4.3)

where = 𝑥∗ − 𝑥, 𝑔 = 𝑐 + 𝐻𝑥, and ℎ = 𝐴𝑥 − 𝑒. The matrix in (4.3) is known as the

KKT matrix.

18

4.2 Symmetric indefinite factorization

To solve the KKT system in (4.3), note that since the KKT matrix is

symmetric indefinite, we cannot use Cholesky factorization to factorize it. Instead, we

can perform symmetric indefinite factorization [45]. Let K be the KKT matrix, a

symmetric indefinite factorization of K is in the following form

 𝑃𝑇𝐾𝑃 = 𝐿𝐵𝐿𝑇 , (4.4)

where L is a unit lower triangular matrix, B is a block diagonal matrix with block

dimension equal to 1 or 2, and P is a permutation matrix. The permutation matrix P is

chosen to maintain numerical stability of the computation. In case K is large and

sparse, P is chosen to also maintain the sparsity in 𝐿 in addition to maintaining the

stability. After factorization, back and forward substitutions are used to compute the

solution of (4.3) by the following steps:

(i) Solve 𝑧 ∶ 𝐿𝑧 = 𝑃𝑇 [
𝑔
ℎ
].

(ii) Solve �̂� ∶ 𝐵�̂� = 𝑧.

(iii) Solve 𝑧̅ ∶ 𝐿𝑇𝑧̅ = �̂�.

(iv) Set ∶ [
−𝑝
𝜆∗] = 𝑃𝑧̅.

Recall that multiplication with a permutation matrix (P and 𝑃𝑇) is done by arranging

the elements in the vector. Matrix B is 1 or 2 dimensional block diagonal, therefore

computing �̂� is inexpensive. Cost of triangular substitutions with 𝐿 and 𝐿𝑇 depends on

the sparsity of 𝐿. Normally, the significant cost of solving the system comes from the

cost of performing factorization and triangular substitution, the latter of which

depends on the sparsity of L. Observe that B is a block diagonal matrix

 𝐵 = [

𝐵(1) 0
0 𝐵(2)

⋯
⋯

0
0

⋮ ⋮ ⋱ ⋮

0 0 ⋯ 𝐵(𝑇)

],

where blocks 𝐵(𝑡) are either 1-by-1 or 2-by-2 matrix and nonsingular. To perform

symmetric indefinite factorization, let 𝐾(𝑡) be the matrix that remains to be factorized

in the tth iteration. The algorithm starts with 𝐾(1) = 𝐾. For each iteration, we first

identify a submatrix 𝐵(𝑡) from elements of 𝐾(𝑡) that are suitable to be used as a pivot

block (There are many methods for selecting a suitable pivot 𝐵(𝑡). Our method is

described in Section 4.3). The submatrix 𝐵(𝑡) is either a single diagonal element of

𝐾(𝑡) ([𝑘𝑙𝑙
(𝑡)

]) or a 2-by-2 block with two diagonal elements of 𝐾(𝑡) ([
𝑘𝑙𝑙

(𝑡)
𝑘𝑙𝑟

(𝑡)

𝑘𝑟𝑙
(𝑡)

𝑘𝑟𝑟
(𝑡)

]).

Next, we find the permutation matrix 𝑃(𝑡) satisfying

 (𝑃(𝑡))
𝑇
𝐾(𝑡)𝑃(𝑡) = [𝐵

(𝑡) (𝐶(𝑡))
𝑇

𝐶(𝑡) 𝑍(𝑡)
]. (4.5)

19

The right-hand side of (4.5) can be factorized as

(𝑃(𝑡))
𝑇
𝐾(𝑡)𝑃(𝑡) = [

𝐼 0

𝐶(𝑡)(𝐵(𝑡))
−1

𝐼
] ⋅ [

𝐵(𝑡) 0

0 𝑍(𝑡) − 𝐶(𝑡)(𝐵(𝑡))
−1

(𝐶(𝑡))
𝑇] ⋅

 [𝐼 (𝐵(𝑡))
−1

(𝐶(𝑡))
𝑇

0 𝐼
]. (4.6)

Let 𝐿(𝑡) = 𝐶(𝑡)(𝐵(𝑡))
−1

and 𝐾(𝑡+1) = 𝑍(𝑡) − 𝐶(𝑡)(𝐵(𝑡))
−1

(𝐶(𝑡))
𝑇
. The above can be

rewritten as

 (𝑃(𝑡))
𝑇
𝐾(𝑡)𝑃(𝑡) = [

𝐼 0
𝐿(𝑡) 𝐼

] ⋅ [𝐵
(𝑡) 0
0 𝐾(𝑡+1)

] ⋅ [𝐼 (𝐿(𝑡))
𝑇

0 𝐼
] (4.7)

The same process can be repeated recursively on the matrix 𝐾(𝑡+1). Note that the

dimension of 𝐾(𝑡+1) is less than the dimension of 𝐾(𝑡) by either one or two depending

on the dimension of 𝐵(𝑡). Choosing pivot at each step should be inexpensive, lead to

at most modest growth in the elements of the remaining matrix, and 𝐿 should not be

too much denser than the original matrix. There are various methods to identify pivot

block 𝐵(𝑡) for dense matrices. Bunch and Parlett searches the whole submatrix at each

stage for the largest-magnitude diagonal 𝑘𝑞𝑞
(𝑡)

 and the largest-magnitude off-diagonal

𝑘𝑟𝑙
(𝑡). It identifies 𝑘𝑞𝑞

(𝑡)
 as the 1-by-1 pivot block if the resulting growth rate is

acceptable. Otherwise, it selects [
𝑘𝑙𝑙

(𝑡)
𝑘𝑙𝑟

(𝑡)

𝑘𝑟𝑙
(𝑡)

𝑘𝑟𝑟
(𝑡)

] as the 2-by-2 pivot block. This method

requires O(𝑛3) comparisons and yields a matrix L whose maximum element is

bounded by 2.781. Bunch-Kaufman pivoting strategy searches for the largest-

magnitude off-diagonal elements of at most two columns for each iteration. It requires

O(𝑛2) comparisons but the elements in 𝐿 are unbounded. BBK combines the two

above strategies and is widely used to select pivot blocks. By monitoring the size of

the elements in L, BBK uses the Bunch-Kaufman strategy when it yields modest

element growth. Otherwise, it repeatedly searches for an acceptable pivot [33]. BBK

algorithm is shown in Algorithm 4.1 below. In average cases, the total cost of BBK is

the same as Bunch-Kaufman, but in the worst case it can be the same as the cost of

the Bunch-Parlett strategy.

20

Algorithm 4.1 The BBK algorithm

Set 𝛼 = (1 + √17)/8

Set 𝛾1 = maximum magnitude of any subdiagonal entry in column 1

if |𝑘11| ≥ 𝛼𝛾1 then

 Use 𝑘11 as a 1×1 pivot

else

 Set 𝑙 = 1; 𝛾𝑙 = 𝛾1 ;

 repeat

 Set r = row index of first (subdiagonal) entry of maximum magnitude in

 column l

 Set 𝛾𝑟 = maximum magnitude of any off-diagonal entry in column r

 If |𝑘𝑟𝑟| ≥ 𝛼𝛾𝑟then

 Use 𝑘𝑟𝑟 as a 1×1 pivot

 else if 𝛾𝑙 = 𝛾𝑟 then

 Use [
𝑘𝑙𝑙 𝑘𝑙𝑟

𝑘𝑟𝑙 𝑘𝑟𝑟
]as 2×2 pivot

 else

 Set 𝑙 = 𝑟; 𝛾𝑙 = 𝛾𝑟

 end if

 until A pivot is chosen

end if

4.3 A new pivot selection for block constraint quadratic programming

This section describes our proposed pivot selection method for the quadratic

programs with block diagonal constraint matrices. The goals of our method are to

maintain sparsity and stability in the factors. First, we identify candidate pivots that

can maintain sparsity of L. Second, we select among these candidates to maintain

stability of the factors. The last subsection describes the overall algorithm for

factoring the KKT matrix.

4.3.1 Candidate pivots identification

Consider the structure of the KKT matrix of our quadratic program

with a block diagonal constraint matrix. Elements of the KKT matrix K can be

classified into three types: the elements of the Hessian matrix ℎ𝑖𝑗, the nonzero

elements of the constraint matrix 𝑎𝑖𝑗, and the zero submatrices. For better readability,

we use a 6-by-6 Hessian matrix with two blocks of constraints as an example in our

explanation. The structure of a sample KKT matrix is as follows:

21

 𝐾 =

[

ℎ11 ℎ12 ℎ13 ℎ14 ℎ15 ℎ16 𝑎11 𝑎21 0 0
ℎ21 ℎ22 ℎ23 ℎ24 ℎ25 ℎ26 𝑎12 𝑎22 0 0
ℎ31 ℎ32 ℎ33 ℎ34 ℎ35 ℎ36 𝑎13 𝑎23 0 0
ℎ41 ℎ42 ℎ43 ℎ44 ℎ45 ℎ46 0 0 𝑎34 𝑎44

ℎ51 ℎ52 ℎ53 ℎ54 ℎ55 ℎ56 0 0 𝑎35 𝑎45

ℎ61 ℎ62 ℎ63 ℎ64 ℎ65 ℎ66 0 0 𝑎36 𝑎46

𝑎11 𝑎12 𝑎13 0 0 0 0 0 0 0
𝑎21 𝑎22 𝑎23 0 0 0 0 0 0 0
0 0 0 𝑎34 𝑎35 𝑎36 0 0 0 0
0 0 0 𝑎44 𝑎45 𝑎46 0 0 0 0]

. (4.8)

Note that ℎ𝑖𝑗 = ℎ𝑗𝑖 due to H being symmetric. For our KKT matrix, there are three

possible cases for pivot 𝐵(𝑡). The first case is a 1-by-1 matrix selected from one of the

nonzero diagonal elements in matrix 𝐾(𝑡) (i.e., ℎ𝑙𝑙
(𝑡)

). The second case is a 2-by-2

matrix where both diagonal elements are nonzero (i.e.,[
ℎ𝑙𝑙

(𝑡) ℎ𝑙𝑟
(𝑡)

ℎ𝑟𝑙
(𝑡) ℎ𝑟𝑟

(𝑡)
]). In this case, the

off-diagonal elements are the elements of the Hessian matrix ℎ𝑖𝑗, where 𝑖 ≠ 𝑗. The

last possible case is a 2-by-2 matrix where one diagonal element is zero and the other

three elements are nonzero (i.e.,[
ℎ𝑙𝑙

(𝑡) 𝑎𝑟𝑙
(𝑡)

𝑎𝑟𝑙
(𝑡) 0

]). In other words, the off-diagonal

elements are the nonzero elements of the constraint matrix 𝑎𝑖𝑗. Selecting a pivot in

any other ways besides the three mentioned above is not possible as they all lead to

singular 𝐵(𝑡). Each form of pivot 𝐵(𝑡) directly affects the sparsity of the factor 𝐿(𝑡)

and also the sparsity and the stability of the remaining matrix 𝐾(𝑡+1). Note that the

sparsity of 𝐾(𝑡+1) affects the sparsity of 𝐿(𝑡+1), too (Recall that 𝐿(𝑡) =

𝐶(𝑡)(𝐵(𝑡))
−1

and 𝐾(𝑡+1) = 𝑍(𝑡) − 𝐶(𝑡)(𝐵(𝑡))
−1

(𝐶(𝑡))
𝑇
). Now we consider the three

cases of pivot in more details, for the first case, where 𝐵(𝑡) is a 1-by-1 matrix, the

number of zeros in 𝐿(𝑡) is equal to the number of zeros in 𝐶(𝑡)but many zeros in 𝐾(𝑡)

become nonzeros (fill-ins) in the remaining matrix 𝐾(𝑡+1). Selecting pivot of this form

generally cannot maintain the sparsity of the factors. For example, let 𝐵(1) = [ℎ55]
be the pivot for the matrix in (4.8). After permutation, we have

(𝑃(1))
𝑇
𝐾(1)𝑃(1) =

[

ℎ55 ℎ52 ℎ53 ℎ54 ℎ51 ℎ56 0 0 𝑎35 𝑎45

ℎ25 ℎ22 ℎ23 ℎ24 ℎ21 ℎ26 𝑎12 𝑎22 0 0
ℎ35 ℎ32 ℎ33 ℎ34 ℎ31 ℎ36 𝑎13 𝑎23 0 0
ℎ45 ℎ42 ℎ43 ℎ44 ℎ41 ℎ46 0 0 𝑎34 𝑎44

ℎ15 ℎ12 ℎ13 ℎ14 ℎ11 ℎ16 𝑎11 𝑎21 0 0
ℎ65 ℎ62 ℎ63 ℎ64 ℎ61 ℎ66 0 0 𝑎36 𝑎46

0 𝑎12 𝑎13 0 𝑎11 0 0 0 0 0
0 𝑎22 𝑎23 0 𝑎21 0 0 0 0 0

𝑎35 0 0 𝑎34 0 𝑎36 0 0 0 0
𝑎45 0 0 𝑎44 0 𝑎46 0 0 0 0]

,

22

𝐶(1) =

[

ℎ25

ℎ35

ℎ45

ℎ15

ℎ65

0
0

𝑎35

𝑎45]

, 𝐿(1) =

[

×
×
×
×
×
0
0
×
×]

, and 𝐾(2) =

[

× × × × × × × • •
× × × × × × × • •
× × × × × 0 0 × ×
× × × × × × × • •
× × × × × 0 0 × ×
× × 0 × 0 0 0 • •
× × 0 × 0 0 0 • •
• • × • × • • • •
• • × • × • • • •]

.

Note that × denotes the nonzero elements in 𝐿(1) and 𝐾(2)in which the elements of

matrix 𝐶(1)and 𝑍(1)(in the same positions) are also nonzero and • denotes the fill-in

elements compared to 𝐶(1)and 𝑍(1), respectively. For the second case where the pivot

is a 2-by-2 matrix with no zero elements, the number of nonzeros in 𝐿(𝑡) may be equal

to or greater than that of 𝐶(𝑡). It also results in a large number of fill-ins in the

remaining matrix 𝐾(𝑡+1). For example, suppose 𝐵(1) = [
ℎ55 ℎ56

ℎ65 ℎ66
]. We have

(𝑃(1))
𝑇
𝐾(1)𝑃(1) =

[

ℎ55 ℎ56 ℎ53 ℎ54 ℎ51 ℎ52 0 0 𝑎35 𝑎45

ℎ65 ℎ66 ℎ63 ℎ64 ℎ61 ℎ62 0 0 𝑎36 𝑎46

ℎ35 ℎ36 ℎ33 ℎ34 ℎ31 ℎ32 𝑎13 𝑎23 0 0
ℎ45 ℎ46 ℎ43 ℎ44 ℎ41 ℎ42 0 0 𝑎34 𝑎44

ℎ15 ℎ16 ℎ13 ℎ14 ℎ11 ℎ12 𝑎11 𝑎21 0 0
ℎ25 ℎ26 ℎ23 ℎ24 ℎ21 ℎ22 𝑎12 𝑎22 0 0
0 0 𝑎13 0 𝑎11 𝑎12 0 0 0 0
0 0 𝑎23 0 𝑎21 𝑎22 0 0 0 0

𝑎35 𝑎36 0 𝑎34 0 0 0 0 0 0
𝑎45 𝑎46 0 𝑎44 0 0 0 0 0 0]

,

𝐶(1) =

[

ℎ35 ℎ36

ℎ45 ℎ46

ℎ15 ℎ16

ℎ25 ℎ26

0 0
0 0

𝑎35 𝑎36

𝑎45 𝑎46]

, 𝐿(1) =

[

× ×
× ×
× ×
× ×
0 0
0 0
× ×
× ×]

, and 𝐾(2) =

[

× × × × × × • •
× × × × 0 0 × ×
× × × × × × • •
× × × × × × • •
× 0 × × 0 0 0 0
× 0 × × 0 0 0 0
• × • • 0 0 • •
• × • • 0 0 • •]

.

Note that 𝐾(t+1) can be denser than in the above example for some other pivots such

as 𝐵(1) = [
ℎ33 ℎ36

ℎ63 ℎ66
]. Lastly, consider the case where the pivot is a 2-by-2 matrix

with one diagonal element being zero. In this case, the number of zeros in 𝐿(𝑡) is equal

to the number of zeros in 𝐶(t) and there is no fill-in in the remaining matrix 𝐾(𝑡+1).

For example, suppose 𝐵(1) = [
ℎ55 𝑎35

𝑎35 0
]. We have

23

(𝑃(1))
𝑇
𝐾(1)𝑃(1) =

[

ℎ55 𝑎35 ℎ53 ℎ54 ℎ51 ℎ65 0 0 ℎ52 𝑎45

𝑎35 0 0 𝑎34 0 𝑎36 0 0 0 0
ℎ53 0 ℎ33 ℎ43 ℎ31 ℎ63 𝑎13 𝑎23 ℎ32 0
ℎ54 𝑎34 ℎ43 ℎ44 ℎ41 ℎ64 0 0 ℎ42 𝑎44

ℎ51 0 ℎ31 ℎ41 ℎ11 ℎ61 𝑎11 𝑎21 ℎ21 0
ℎ65 𝑎36 ℎ63 ℎ64 ℎ61 ℎ66 0 0 ℎ62 𝑎46

0 0 𝑎13 0 𝑎11 0 0 0 𝑎12 0
0 0 𝑎23 0 𝑎21 0 0 0 𝑎22 0

ℎ52 0 ℎ32 ℎ42 ℎ21 ℎ62 𝑎12 𝑎22 ℎ22 0
𝑎45 0 0 𝑎44 0 𝑎46 0 0 0 0]

,

𝐶(1) =

[

ℎ53 0
ℎ54 𝑎34

ℎ51 0
ℎ65 𝑎36

0 0
0 0

ℎ52 0
𝑎45 0]

, 𝐿(1) =

[

0 ×
× ×
0 ×
× ×
0 0
0 0
0 ×
0 ×]

, and 𝐾(2) =

[

× × × × × × × 0
× × × × 0 0 × ×
× × × × × × × 0
× × × × 0 0 × ×
× 0 × 0 0 0 × 0
× 0 × 0 0 0 × 0
× × × × × × × 0
0 × 0 × 0 0 0 0]

.

We see that the first and second types of pivots generate fill-in in remaining matrix

𝐾(𝑡+1). The third type yields sparser 𝐿(𝑡) than the other two and generally produces no

fill-ins in the remaining matrix 𝐾(𝑡+1). Therefore, our algorithm first identifies all

candidate pivots that are of the form [
ℎ𝑖𝑖 𝑎𝑗𝑖

𝑎𝑗𝑖 0
]. By choosing this form of pivots, the

factor 𝐿 is as sparse as possible and there are no fill-ins in the remaining matrix

𝐾(𝑡+1).

4.3.2 Pivot selection

There are generally many pivot candidates of the form that we are

interested in. We compare the condition numbers of these candidate pivots and then

choose the one with the smallest condition number. Recall that the condition number

of a 2-by-2 matrix is defined as

 cond(𝐵) = ‖𝐵‖ ⋅ ‖𝐵−1‖. (4.9)

When the candidate pivot 𝐵 is of the form [
𝑏𝑖𝑖 𝑏𝑖𝑗

𝑏𝑖𝑗 0
] , 𝐵−1 becomes

(−
1

𝑏𝑖𝑗
2 ⋅ [

0 −𝑏𝑖𝑗

−𝑏𝑖𝑗 𝑏𝑖𝑖
]). Using infinity norm, we see that

 ‖𝐵‖∞ = max{|𝑏𝑖𝑖| + |𝑏𝑖𝑗|, |𝑏𝑖𝑗|}

 = |𝑏𝑖𝑖| + |𝑏𝑖𝑗|

 ‖𝐵−1‖∞ = (
1

𝑏𝑖𝑗
2) max{|𝑏𝑖𝑗|, |𝑏𝑖𝑗| + |𝑏𝑖𝑖|}

 =
|𝑏𝑖𝑗|+|𝑏𝑖𝑖|

𝑏𝑖𝑗
2

24

 cond∞(𝐵) =
(|𝑏𝑖𝑖|+|𝑏𝑖𝑗|)∙(|𝑏𝑖𝑗|+|𝑏𝑖𝑖|)

𝑏𝑖𝑗
2

 = (1 +
|𝑏𝑖𝑖|

|𝑏𝑖𝑗|
)
2

 (4.10)

Therefore, we need only to compare |𝑏𝑖𝑖|/|𝑏𝑖𝑗| to find the pivot candidate with the

minimum condition number. We do so and select the candidate with the smallest

condition number as the pivot. Note that, when 𝑎𝑖𝑗 is zero, the condition numbers of

the candidates containing this 𝑎𝑖𝑗 are infinity. In this case, such candidates are not

chosen by our algorithm.

4.3.3 The algorithm

This subsection gives the complete picture of our algorithm. First, we

choose the pivot that maintains the sparsity of the factors. We select a 2-by-2 pivot

matrix with one of the diagonal elements being zero as described previously. These

pivots yield no fill-ins and we can choose this type of pivots for the first 𝑚 iterations,

where 𝑚 is the number of constraints in the quadratic program. Afterward, 𝐾(𝑚+1) is

completely dense therefore we switch to use a general (non-sparse) symmetric

indefinite factorization at this point.

Our method keeps track of the current and original positions of

elements 𝑎𝑖𝑗 (as the elements may change in the permutation step). These positions

are used to efficiently produce the pivot candidates of the third form. We consider

only the candidates with the off-diagonal entries from the same block 𝐴𝑖, where 𝑖 is

chosen arbitrarily. (The pivot candidates are identified from the elements from each

block by block.) Among them, we select the candidate with the smallest condition

number. Note that, according to (4.10), we need to compute only the condition

numbers of the candidates with the largest |𝑏𝑖𝑗| for each column 𝑗 and selecting the

one with the smallest condition number. If pivot [
𝑘𝑙𝑙

(𝑡) 𝑘𝑙𝑟
(𝑡)

𝑘𝑟𝑙
(𝑡) 0

] is selected as the pivot,

we remove row 𝑟 and column 𝑙 from the lists of available row and column. If row 𝑟 is

the last row in a block, we remove the block containing row 𝑟 from the available

block list, too. Then we continue to the pivot candidates from the next block. Note

that our pivot selection method requires O(∑ 𝑚𝑖
2𝑛𝑖

𝑁
𝑖=1) operations. Our method is

shown in Algorithm 4.2.

25

Algorithm 4.2 Symmetric indefinite factorization for QP block constraint KKT

matrix

Set 𝐾 = KKT matrix of QP with block constraints

Set 𝑁 = number of blocks in constraints, 𝑛 = number of all constraints

Set 𝑚 = number of variables, 𝑠 = 𝑛 + 𝑚 // size of matrix 𝐾

Set 𝐿 = 𝑠-by-𝑠 identity matrix, 𝐵 = 𝑠-by-𝑠 zero matrix

Set 𝑎𝐵 = {1, 2, ..., } // list of available block

Set 𝑎𝐶 = {1, 2, ..., 𝑛} // list of available column

Set 𝑎𝑅 = {𝑛 + 1, 𝑛 + 2, ..., 𝑛 + 𝑚} // list of available row

Set 𝑃 = [1 2… 𝑠]// list of columns (1 to 𝑛) and rows (𝑛 + 1 to 𝑠) position in matrix

Set 𝑠𝑅 = [𝑠𝑅1, 𝑠𝑅2, … , 𝑠𝑅𝑁] // 𝑠𝑅𝑖is the first row of 𝐴𝑖

Set 𝑒𝑅 = [𝑒𝑅1, 𝑒𝑅2, … , 𝑒𝑅𝑁] // 𝑒𝑅𝑖is the last row of 𝐴𝑖

Set 𝑠𝐶 = [𝑠𝐶1, 𝑠𝐶2, … , 𝑠𝐶𝑁] // 𝑠𝐶𝑖is the first column of 𝐴𝑖

Set 𝑒𝐶 = [𝑒𝐶1, 𝑒𝐶2, … , 𝑒𝐶𝑁]// 𝑒𝐶𝑖is the last column of 𝐴𝑖

Set 𝑝 = 1

while 𝑝 < 𝑚 × 2 do

Set 𝑚𝑖𝑛𝑐𝑜𝑛𝑑 = ∞, 𝑟𝑒𝑚𝑜𝑣𝑒𝐵𝑙 = 0

Randomly select 𝑡 from 𝑎𝐵

Set 𝑎𝑣𝑎𝑖𝑅𝑜𝑤𝐼𝑛𝐵𝑙 = {𝑥: 𝑥 ∈ 𝑎𝑅; 𝑠𝑅𝑡 ≤ 𝑥 ≤ 𝑒𝑅𝑡}
Set 𝑎𝑣𝑎𝑖𝐶𝑜𝑙𝐼𝑛𝐵𝑙 = {𝑥: 𝑥 ∈ 𝑎𝐶; 𝑠𝐶𝑡 ≤ 𝑥 ≤ 𝑒𝐶𝑡}
Set 𝑝𝑜𝑠𝑅𝑜𝑤𝐼𝑛𝐵𝑙 = {𝑥: 𝑥 = 𝑃𝑖; 𝑖 ∈ 𝑎𝑣𝑎𝑖𝑅𝑜𝑤𝐼𝑛𝐵𝑙}
Set 𝑝𝑜𝑠𝐶𝑜𝑙𝐼𝑛𝐵𝑙 = {𝑥: 𝑥 = 𝑃𝑖; 𝑖 ∈ 𝑎𝑣𝑎𝑖𝐶𝑜𝑙𝐼𝑛𝐵𝑙}

Set 𝑚𝑖𝑛𝑐𝑜𝑛𝑑 = min {(|
𝐾𝑗𝑗

𝐾𝑖𝑗
|) : 𝑖 ∈ 𝑝𝑜𝑠𝑅𝑜𝑤𝐼𝑛𝐵𝑙, 𝑗 ∈ 𝑝𝑜𝑠𝐶𝑜𝑙𝐼𝑛𝐵𝑙}

Set 𝑙 = column of 𝑚𝑖𝑛𝑐𝑜𝑛𝑑

Set 𝑟 = row of 𝑚𝑖𝑛𝑐𝑜𝑛𝑑

if |𝑎𝑣𝑎𝑖𝑅𝑜𝑤𝐼𝑛𝐵𝑙| = 1 then

Remove 𝑡 from 𝑎𝐵

end if

Use [
𝑘𝑙𝑙 𝑘𝑙𝑟

𝑘𝑙𝑟 𝑘𝑟𝑟
] as the 2-by-2 pivot

Remove elements {𝑥: 𝑥 = 𝑃𝑟or 𝑥 = 𝑃𝑙} from 𝑎𝑅 and 𝑎𝐶

Swap 𝑃𝑙 and 𝑃𝑟 to 𝑃𝑝 and 𝑃𝑝 + 1, respectively

 𝑝 = 𝑝 + 2

end while

Factorize the remaining matrix with a general (non-sparse) symmetric indefinite

factorization method

26

4.4 Experiment and results

In this section, we compare the efficiency between the following two methods:

(i) MA57 and (ii) our method. The experiment was performed in Matlab 2012a on

problems with 500, 1000, and 1500 variables. For each problem size, we test with 10,

50, and 100 blocks in the constraint matrix, where each block is of equal size. The

numbers of constraints are 40 and 80 percent of the number of variables. The test

problems are randomly generated in the following way: Let �̂� ∈ ℝ𝑛×𝑛. Each element

of �̂� , 𝑐, and 𝑒, and each nonzero element of 𝐴 is randomly generated between zero

and one according to the uniform distribution. Then, let 𝐻 = �̂��̂�𝑇/(max𝑖,𝑗ℎ̂𝑖,𝑗). For

each problem, we experiment with 10 different instances. We compare the average

numbers of nonzeros in factor 𝐿. The results of this experiment, which are shown in

Table 4.1, show that our method yields sparser 𝐿 when computing the symmetric

indefinite factorization than the MA57 algorithm. After the factorization, we use the

factors from the two methods to compute the solution of the quadratic program

following Steps (i) - (iv) in Section 4.2. Table 4.1 also shows the solving time and the

accuracy of our algorithm. The results show that using the factors 𝐿, 𝐵, and 𝑃 from

our method reduces the time needed to solve the KKT system compares to using the

factors from MA57. Our method also yields accurate solutions with small residuals.

Normally, the Hessian matrix may not be dense. We therefore also experiment

on the problems with sparse Hessian matrices having 30, 50, and 70 percent of their

entries being nonzeros. We test with the constraint matrices having 10, 50, and 100

blocks, where each block is of equal size. The numbers of constraints are 40 and 80

percent of the number of variables. For each problem, we experiment with 10

different instances. We compare the average numbers of nonzeros in the factor 𝐿. The

results of this experiment are shown in Table 4.2. We see that even when the Hessian

matrix is sparse, our method still maintains more sparsity in 𝐿 than MA57 can.

Finally, we compare both methods on problems where each blocks in the

constraint matrices are of different sizes. The results are shown in Table 4.3. For these

problems, our method also produces sparser factors and requires less solving time

than MA57.

27

Table 4.1 Average numbers of nonzeros in factor 𝐿, average solving time, and

average residual of MA57 and our algorithm for problems with 500, 1000, and 1500

variables and constraint matrices with equal-sized blocks.

𝑛 𝑁 × (𝑛𝑖 × 𝑚𝑖)

Ave. num. of

nonzeros in 𝐿

Ave. solving

time (ms)

Ave. residual

(× 10−10)

MA57
Our

Method
MA57

Our

Method
MA57

Our

Method

500 10×(50×10) 162210.0 130250.0 3.81 2.39 0.046 0.028

500 10×(50×40) 333090.0 145250.0 6.58 4.37 0.190 0.033

500 20×(25×5) 158829.4 127750.0 3.43 2.33 0.042 0.032

500 20×(25×20) 319564.8 135250.0 6.70 4.31 0.208 0.033

500 50×(10×2) 156691.3 126250.0 3.65 2.32 0.037 0.030

500 50×(10×8) 311022.7 129250.0 6.41 4.35 0.302 0.032

1000 10×(100×20) 648420.0 520500.0 15.15 7.81 0.169 0.113

1000 10×(100×80) 1332180.0 580500.0 32.12 15.89 0.620 0.138

1000 20×(50×10) 634909.3 510500.0 15.64 7.84 0.146 0.113

1000 20×(50×40) 1278127.7 540500.0 31.38 15.78 0.560 0.132

1000 50×(20×4) 626351.3 504500.0 15.16 7.80 0.128 0.109

1000 50×(20×16) 1243965.5 516500.0 30.59 16.00 0.478 0.131

1500 10×(150×30) 1458630.0 1170750.0 37.23 16.65 0.336 0.260

1500 10×(150×120) 2997261.7 1305750.0 83.14 35.26 1.104 0.295

1500 20×(75×15) 1428238.8 1148250.0 36.45 16.54 0.300 0.227

1500 20×(75×60) 2875679.8 1215750.0 80.21 34.67 1.019 0.276

1500 50×(30×6) 1408997.6 1134750.0 35.58 16.43 0.286 0.231

1500 50×(30×24) 2798788.2 1161750.0 75.85 34.52 1.105 0.268
Column 𝑛 is the number of variables. Column 𝑁 × (𝑛𝑖 × 𝑚𝑖) indicates the dimensions of each

diagonal block in the constraint matrix. Columns Ave. num. of nonzeros in 𝐿 show the number of

nonzeros in 𝐿 from MA57 algorithm and our method, respectively. Columns Ave. solving time shows

the solving time of the two methods. Columns Ave. residual represent the residuals of the results of

both methods. The residual is ‖𝐾𝑥 − 𝑣‖2 , where 𝐾 is our KKT matrix, 𝑥 is the computed solution, and

𝑣 is the vector [
𝑔
ℎ
] in (4.3).

28

Table 4.2 Average numbers of nonzeros in 𝐿 of MA57 algorithm and our algorithm

for problems with 1000 variables with 30, 50, and 70% of nonzeros in Hessian matrix

and constraint matrices with equal-sized blocks.

𝑛 𝑁 × (𝑛𝑖 × 𝑚𝑖)

Ave. num. of nonzeros in 𝐿

30% nonzeros in 𝐻 50% nonzeros in 𝐻 70% nonzeros in 𝐻

MA57
Our

Method
MA57

Our

Method
MA57

Our

Method

1000 10×(100×20) 631400 507800 643900 514800 640900 518000

1000 10×(100×80) 1509800 567900 1524700 575000 1441600 578100

1000 20×(50×10) 612900 486700 622400 499900 632300 505800

1000 20×(50×40) 1295700 516300 1296600 530100 1273900 536000

1000 50×(20×4) 593800 455200 614300 479900 620900 493500

1000 50×(20×16) 1320100 458100 1301300 491300 1279600 505600
Column 𝑛 is the number of variables. 𝑁(𝑛𝑖 × 𝑚𝑖) indicates the dimensions of each diagonal blocks in

the constraint matrix. Columns Ave. num. of nonzeros in 𝐿 show the number of nonzeros in 𝐿 from

MA57 algorithm and our method, respectively.

Table 4.3 Average numbers of nonzeros in factor 𝐿, average solving time, and

average residual of MA57 and our algorithm for problems with 500, 1000, and 1500

variables constraint matrices with unequal-sized blocks.

𝑛 𝑁 × (𝑛𝑖 × 𝑚𝑖)

Ave. num.

of nonzeros in 𝐿

Ave. solving

time (ms)

Ave. residual

(× 10−10)

MA57
Our

Method
MA57

Our

Method
MA57

Our

Method

500 5× (50×10,

75×15,100×20,

125×25,150×30)

160937.0

136500.0

3.55

2.34

0.053

0.033

500

5× (50×40,75×60,

100×80,125×100,

150×120)

328058.0

170250.0

6.59

4.74

0.221

0.035

1000

5×(100×20,

150×30,200×40,

250×50,300×60)

643154.0

545500.0

14.98

7.85

0.186

0.142

1000

5×(100×80,

150×120,200×160,

250×200,300×240)

1311324.0

680500.0

31.48

16.05

0.824

0.155

1500

5×(150×30,

225×45,300×60,

375×75,450×90)

1446635.9

1227000.0

37.45

16.52

0.468

0.420

1500 5×(150×120,

225×180,300×240,

375×300,450×360)

2949798.0 1530750.0 81.45 35.07 1.283 0.610

Column 𝑛 is the number of variables. Column 𝑁 × (𝑛𝑖 × 𝑚𝑖) indicates the dimensions of each

diagonal blocks in the constraint matrix. Columns Ave. num. of nonzeros in 𝐿 show the number of

nonzeros in 𝐿 from MA57 algorithm and our method, respectively. Columns Ave. solving time shows

the solving time of the two methods. Columns Ave. residual represent the residuals of the results of

both methods. The residual is ‖𝐾𝑥 − 𝑣‖2, where 𝐾 is our KKTmatrix, 𝑥 is the computed solution, and

𝑣 is the vector [
𝑔
ℎ
] in (4.3).

29

Chapter 5

New Pivot Selection for Sparse Symmetric Indefinite Factorization

This chapter proposes a pivot selection method for solving linear system

 𝐴𝑥 = 𝑏,

where A ∈ ℝn×n is sparse symmetric indefinite without any known sparsity pattern.

Solving a symmetric indefinite linear system is generally done by first obtaining the

symmetric indefinite factorization as shown in Section 4.2. The computational time

for solving the linear system depends solely on the factorization and back and forward

substitutions, which in turn depend on the sparsity of factor L. The pivot selection

during the factorization directly affects the sparsity and stability of factors.

5.1 Pivot selection with minimum degree

Finding the optimal ordering that minimizes fill-in is NP-hard [24] therefore a

heuristic is often used for pivot selection. Choosing pivot at each step should be

inexpensive, lead to at most modest growth in the elements of the remaining matrix,

and not cause L to be too much denser than the original matrix. One of the well-

known and efficient pivot selection techniques is the minimum degree algorithm [20-

22]. The algorithm considers the pivot based on the following graph model. Define an

undirected graph 𝐺 = (𝑉, 𝐸), where 𝑉 = {1,… , 𝑛} and 𝐸 = {{𝑖, 𝑗}: 𝑖 ≠ 𝑗 and 𝑎𝑖𝑗 ≠

0}. Observe that the degree of 𝑣 (deg(𝑣)), where 𝑣 ∈ 𝑉, is the number of nonzero

off-diagonal elements on the vth row. The vertex v with minimum deg(𝑣) is chosen

as the pivot.

Define the elimination graph 𝐺𝑣 = (𝑉\ {𝑣}, 𝐸’), where 𝐸’ = 𝐸 ∪

{{𝑖, 𝑗}: {𝑖, 𝑣} ∈ 𝐸 and {𝑣, 𝑗} ∈ 𝐸}\{{𝑣, 𝑖}: 𝑖 = 1, 2, … , 𝑛}. Graph 𝐺𝑣 is used to choose

the next pivot, and so on. That is, the minimum degree algorithm is as follows.

30

Algorithm 5.1 Minimum Degree Algorithm

Define 𝐺 as described above.

while 𝐺 ≠ ∅ do

v = the vertex with minimum deg(𝑣)

 𝐺 = 𝐺𝑣

end while

Note that the minimum degree algorithm identifies the pivot at each step without any

numerical calculation. For this reason, it can be used as the ordering step before

factorizing the matrix. Many improvements of the minimum degree algorithm and its

implementation have been proposed [23] such as decreasing the computation time for

the degree update by considering the indistinguishable nodes [46] or minimum degree

independent nodes [28], reducing the computation cost by using an approximate

minimum degree [29], and saving space by using the quotient graph model [47].

 5.2 Our pivot selection algorithm

Unlike in Cholesky factorization, pivots in symmetric indefinite factorization

can be either a scalar or a 2-by-2 matrix therefore the minimum degree algorithm

cannot be used as is in this case.

The stability condition that our algorithm uses is proposed by Duff et al. [48]

and also used as a thresholding test for 1-by-1 and 2-by-2 pivots in MA57 [39]. We

consider a 1-by-1 pivot 𝑎𝑖𝑖 to be acceptably stable if

 |𝑎𝑖𝑖| ≥ 𝛼 max
𝑟≠𝑖

|𝑎𝑟𝑖|. (5.1)

Similarly, a 2-by-2 pivot [
𝑎𝑖𝑖 𝑎𝑖𝑗

𝑎𝑗𝑖 𝑎𝑗𝑗
] is considered to be acceptably stable if

 |[
𝑎𝑖𝑖 𝑎𝑖𝑗

𝑎𝑗𝑖 𝑎𝑗𝑗
]
−1

| ⋅ [

max
𝑟≠𝑖,𝑟≠𝑗

|𝑎𝑟𝑖|

max
𝑟≠𝑖,𝑟≠𝑗

|𝑎𝑟𝑗|
] ≤ [𝛼

−1

𝛼−1]. (5.2)

Conditions (5.1) and (5.2) limit the magnitudes of the entries of L to 1/𝛼 at most. The

appropriate value of 𝛼 is 0 < 𝛼 ≤ 0.5. The default value of 𝛼 in MA57 is 0.01 [39].

Let us call the column with the fewest number of off-diagonal nonzeros the

minimum degree column. Let i be the minimum degree column of the matrix A. We

accept 𝑎𝑖𝑖 as the 1-by-1 pivot (𝐵(𝑘)) if 𝑎𝑖𝑖 satisfies (5.1). Otherwise, we proceed to

search for a suitable 2-by-2 pivot [
𝑎𝑖𝑖 𝑎𝑖𝑗

𝑎𝑗𝑖 𝑎𝑗𝑗
] that satisfies (5.2) as follows. Let

 𝑍𝑖 = {𝑧|𝑎𝑖𝑧 ≠ 0 and 𝑧 ≠ 𝑖}. (5.3)

31

Consider all submatrices [
𝑎𝑖𝑖 𝑎𝑖𝑧

𝑎𝑧𝑖 𝑎𝑧𝑧
], where 𝑧 ∈ 𝑍𝑖, as the candidates for a 2-by-2

pivot. The degree of each candidate deg(𝑖, 𝑧) is the number of rows l where 𝑙 ≠ 𝑖, z

and at least one of 𝑎𝑙𝑖 and 𝑎𝑙𝑧 is nonzero. To compute deg(𝑖, 𝑧), define

 𝑑(𝑖, 𝑧, 𝑙) = {
0, if 𝑎𝑙𝑖 = 0 and 𝑎𝑙𝑧 = 0,
1, otherwise.

 (5.4)

Hence,

 deg(𝑖, 𝑧) = ∑ 𝑑(𝑖, 𝑧, 𝑙)𝑙≠𝑖,𝑧 . (5.5)

Our algorithm then considers all of the candidates with the minimum out-degree.

Specifically, [
𝑎𝑖𝑖 𝑎𝑖𝑗

𝑎𝑗𝑖 𝑎𝑗𝑗
] is qualified if

 deg(𝑖, 𝑗) = min
𝑧∈𝑍𝑖

deg (𝑖, 𝑧). (5.6)

If a qualified candidate also satisfies (5.2), it is chosen as a pivot. Otherwise, we

remove j from the 𝑍𝑖 and repeat the process of selecting a 2-by-2 pivot until we either

find a qualified candidate that also satisfies (5.3) or 𝑍𝑖 becomes empty. In the latter

case, we set i to be the next minimum degree column and repeat the process from the

beginning (from testing whether 𝑎𝑖𝑖 is a suitable 1-by-1 pivot). The algorithm is as

shown in Algorithm 5.2 below. Lastly, when the remaining matrix is fully dense, we

continue with a conventional pivot selection algorithm such as BBK instead.

Algorithm 5.2 Our Pivot Selection Algorithm

// 𝐴 is a 𝑛-by-𝑛 symmetric indefinite matrix

Let 𝑀 = {1, 2, … , 𝑛}
while a suitable pivot is not yet found and 𝑀 is not empty do

Let 𝑖 be the minimum degree column among all column indices in 𝑀

if 𝑎𝑖𝑖 is accepted then

Use 𝑎𝑖𝑖 as the 1-by-1 pivot

else

Let 𝑍𝑖 = {𝑧|𝑎𝑖𝑧 ≠ 0 and 𝑧 ≠ 𝑖}
while a suitable pivot is not yet found and 𝑍𝑖 is not empty do

Let j be such that [
𝑎𝑖𝑖 𝑎𝑖𝑗

𝑎𝑗𝑖 𝑎𝑗𝑗
] has the minimum out-degree and 𝑗 ∈ 𝑍𝑖

if [
𝑎𝑖𝑖 𝑎𝑖𝑗

𝑎𝑗𝑖 𝑎𝑗𝑗
] satisfies (5.7) then

Use [
𝑎𝑖𝑖 𝑎𝑖𝑗

𝑎𝑗𝑖 𝑎𝑗𝑗
] as the 2-by-2 pivot

else

Remove 𝑗 from 𝑍𝑖
end if

end while

Remove 𝑖 from 𝑀

end if

end while

32

5.3 Experiments and results

This section compares the efficiency of our algorithm with MA57, which is

based on the multifrontal method. The experiments are performed in Matlab 2011a on

matrices of varying dimensions from 100 to 5000. For each dimension, we vary the

percentage of nonzeros in the matrices from 5 to 30 percent. The test problems are

randomly generated in the following way: Let �̂� ∈ ℝ𝑛×𝑛. Each element of �̂� and 𝑏 is

randomly generated between zero and one according to the uniform distribution.

Then, let 𝐴 = �̂��̂�𝑇/(max𝑖,𝑗�̂�𝑖,𝑗). We then randomly zero out some of its entries in the

lower triangular part and its corresponding entries in the upper triangular part until we

reach the desired sparsity of 𝐴 while retaining its symmetry. We test with 20 different

instances for problems with 100, 300, and 500 dimensions and 10 different instances

for problems with 1000, 3000, and 5000 dimensions. We show the percentage of

nonzeros in the factor L of the two methods in Table 5.1, which shows that our

method produces sparser factors than MA57 in all cases. Note that the small

percentage improvement for large matrices are not insignificant as small decrease in

nonzeros does lead to significantly faster factorization time. Finally, Table 5.2 shows

the residuals ‖𝑃𝑇𝐴𝑃 − 𝐿𝐵𝐿𝑇‖ of the results of both methods. The result shows that

our method produces more accurate factors than MA57.

Table 5.1 Average percentage of nonzeros in the factor 𝐿 produced by MA57 and our

algorithm for problems with 100, 300, 500, 1000, 3000, and 5000 dimensions and 30,

20, 10, and 5 percent of nonzeros in the matrix. The percentage of nonzeros in 𝐿 is

computed by dividing the number of nonzeros in 𝐿 by 𝑛2 and then multiplying the

result by 100.

𝑛

Percentage of nonzeros in 𝐿

30 20 10 5

MA57
Our

method
MA57

Our

method
MA57

Our

method
MA57

Our

method

100 46.20 45.54 40.90 39.24 22.68 18.73 11.02 6.60

300 46.07 45.39 43.03 41.89 35.76 33.15 25.17 21.23

500 47.37 46.98 45.26 44.52 39.98 38.17 17.42 12.04

1000 48.53 48.35 47.39 47.00 44.01 43.02 38.46 36.36

3000 49.46 49.37 49.00 48.84 47.56 47.21 45.11 44.19

5000 49.64 49.61 49.36 49.26 48.47 48.22 46.86 46.23

33

Table 5.2 Average residuals of the factorization produced by MA57 and our

algorithm for problems with 300, 500, 1000, and 2000 dimensions and 30, 20,10 and

5 percent of nonzeros in the matrix.

𝑛

Residual (× 10−10)

30 20 10 5

MA57
Our

method
MA57

Our

method
MA57

Our

method
MA57

Our

method

100 0.00339 0.00018 0.00410 0.00022 0.00190 0.00016 0.00045 0.00006

300 0.03072 0.00077 0.02634 0.00083 0.02378 0.00083 0.01039 0.00059

500 0.08489 0.00128 0.06665 0.00161 0.04665 0.00169 0.02199 0.00076

1000 0.20679 0.00342 0.21691 0.00374 0.17399 0.00333 0.10509 0.00355

3000 1.63656 0.01312 1.80491 0.01281 1.32961 0.02150 1.13003 0.02160

5000 4.45974 0.02488 3.49949 0.02361 2.51524 0.03264 2.20916 0.03152

34

Chapter 6

Conclusions and Recommendations

Quadratic programming comes in many structures, which can be exploited to

solve quadratic programs more efficiently. This thesis investigates a few efficient

methods for solving block constraint quadratic programs and block diagonal quadratic

programs.

In the first problem structure, we propose two methods for two kinds of the

problem. First, we propose a heuristic method to find approximate solution for block

diagonal quadratic programs. We focus on only dense and nonnegative constraints

with lower bounds. Our method separates the original problem to subproblems and

optimizes each subproblem. Then, we use the optimal solution of each subproblem to

construct the approximate solution for the original problem. The results of the

experiment show that our heuristic method is highly efficient for large scale problems

especially when the problem does not have too many diagonal blocks. The second

method is to solve quadratic programs with block diagonal Hessian and dense linear

inequality constraint matrices. Our method is based on a direct method using

symmetric indefinite factorization. This method exploits the known structure of the

quadratic problem to efficiently compute the factors that are stable and retain the

sparsity of the problem. The results of the experiments show that the proposed method

is better at maintaining sparsity of the factors than the MA57 algorithm.

Consequently, using the factors from this method to solve the KKT system is faster

than using the factors from MA57 while yielding the solution that is as accurate. Note

that, the steps in this pivot selection algorithm are easily parallelizable and therefore

can be made more efficient with parallel computing.

To solve block constraint quadratic programs using a primal-dual interior-

point method, the search directions must be computed. During search direction

computation, the variables are separated according to the diagonal blocks of the

Hessian matrix. The result of the experiment shows that the proposed method has

better time complexity and uses less computational time than conventional methods

for computing search directions.

Finally, we propose a new pivot selection algorithm for sparse symmetric

indefinite factorization. Our method is based on the minimum degree algorithm but is

able to select both 1-by-1 and 2-by-2 pivots that are stable. Our experimental results

show that our algorithm produces factors that are stable and also sparser than MA57.

35

References

1. Zhang, H. W., Xu, W. L., Di, S. L., and Thomson, P. F. (2002). Quadratic

programming method in numerical simulation of metal forming process. Computer

Methods in Applied Mechanics and Engineering, 191 (49-50), 5555–5578.

2. Aboudolas, K., Papageorgiou, M., Kouvelas, A., and Kosmatopoulos, E.

(2010). A rolling-horizon quadratic-programming approach to the signal control

problem in large-scale congested urban road networks. Transportation Research Part

C: Emerging Technologies, 18(5), 680–694.

3. Best, M. J. and Hlouskova, J. (2008). Quadratic programming with transaction

costs. Computers & Operations Research, 35(1), 18–33.

4. Meng, C., Tuqan, J., and Ding, Z. (2009). A quadratic programming approach

to blind equalization and signal separation. IEEE Transactions on Signal Processing,

57 (6), 2232–2244.

5. Nordebo S., Claesson, I., and Nordholm, S. (1994). Weighted Chebyshev

approximation for the design of broadband beamformers using

quadraticprogramming. IEEE Signal Processing Letters, 1(7), 103–105.

6. Bartlett, R. A., Biegler, L. T., Backstrom, J., and Gopal, V. (2002). Quadratic

programming algorithms for large-scale model predictive control. Journal of Process

Control, 13 (7), 775–795.

7. Zhang, H., Zhong, W., Wu, C., and Liao, A. (2006). Some advances and

applications in quadratic programming method for numerical modeling of

elastoplastic contact problems. International Journal of Mechanical Sciences, 48 (2),

176–189.

8. Mitsui, K. and Tabata, Y. (2008). A stochastic linear–quadratic problem with

L´evy processes and its application to finance. Stochastic Processes and their

Applications, 118 (1), 120–152.

9. Kim, H. and Rassias, J. M. (2007). Generalization of Ulam stability problem

for Euler-Lagrange quadratic mappings. Journal of Mathematical Analysis and

Applications, 336(1), 277–296.

36

10. Liu, X., Wang, D., and Rong, J. (2009). Quadratic prediction and quadratic

sufficiency in finite populations. Journal of Mathematical Analysis and Applications,

100 (9), 1979–1988.

11. Boyd, S. and Vandenberghe, L. (2004). Convex optimization. UK: Cambridge

University Press.

12. Boggs, P. T. and Tolle, J. W. (1995). Sequential Quadratic Programming. Acta

Numerica, 4, 1–51.

13. Hüeber, S., Mair, M., and Wohlmuth, B. I. (2005). A priori error estimates and

an inexact primal-dual active set strategy for linear and quadratic finite elements

applied to multibody contact problems. Applied Numerical Mathematics, 54(3-4),

555–576.

14. Yu, M. T., Lin, T. Y., and Hung, C. (2009). Active-set sequential quadratic

programming method with compact neighbourhood algorithm for the multi-polygon

mass production cutting-stock problem with rotatable polygons. International Journal

of Production Economics, 121(1), 148–161.

15. Karmarkar, N. (1984). A new polynomial-time algorithm for linear

programming. Combinatorica, 4(4), 373–395.

16. Ternet, D. J. and Biegler, L.T. (1999). Interior-point methods for reduced

hessian successive quadratic programming. Computers and Chemical Engineering,

23(7), 859–873.

17. Wang, G. Q. and Bai, Y. Q. (2009). Primal-dual interior-point algorithm for

convex quadratic semi-definite optimization. Nonlinear Analysis: Theory, Methods &

Applications, 71(7–8), 3389–3402.

18. Wright, M. H. (1992). Interior methods for constrained optimization. Acta

Numerica, 1, 341–407.

19. Nocedal, J. and Wright, S. J. (2006). Numerical optimization.2nd Edn. New

York: Springer.

20. Markowitz, H. M. (1957). The elimination form of the inverse and its

application to linear programming. Management Science, 3(3),255–269.

21. Tinney, W. F. and Walker, J. W. (1967). Direct Solution of Sparse Network

Equations by Optimally Ordered Triangular Factorization. Proceedings of the IEEE,

55(11), 1801–1809.

https://www.researchgate.net/journal/0925-5273_International_Journal_of_Production_Economics
https://www.researchgate.net/journal/0925-5273_International_Journal_of_Production_Economics
http://ieeexplore.ieee.org/xpl/RecentIssue.jsp?punumber=5

37

22. Rose, D. J. (1972). A graph−theoretic study of the numerical solution of

sparse positive definite systems of linear equations. In Reed, R. C. (Ed.). Graph

Theory and Computing. New York: Academic Press.

23. George A. and Liu J. W. H. (1989). The evolution of the minimum degree

ordering algorithm. SIAM Rev., 31 (1), 1–19.

24. Yannakakis, M. (1981). Computing the Minimum Fill-In is NP-Complete.

SIAM Journal on Algebraic Discrete Methods, 2(1), 77-79.

25. Cuthill, E. and McKee, J. (1969). Reducing the Bandwidth of Sparse

Symmetric Matrices. ACM '69 Proceedings of the 1969 24th national conference,

157-172.

26. George, A. (1973). Nested Dissection of a Regular Finite Element Mesh.

SIAM Journal on Numerical Analysis, 10(2), 345-363.

27. Lipton, R, J., Rose, D. J., and Tarjan, R. E. (1979). Generalized nested

dissection. SIAM Journal on Numerial Analysis, 16(2), 346-358.

28. Liu, J. W. H. (1985). Modification of the minimum-degree algorithm by

multiple elimination. ACM Transactions on Mathematical Software, 11(2), 141-153.

29. Amestoy, P. R., Davis, T. A., and Duff, I. S. (1996). An approximate

minimum degree ordering algorithm. SIAM Journal Matrix Analysis and

Applications, 17(4), 886-905.

30. Gill, P. E., Murray, W., and Wright, M. H.(1991). Numerical Linear Algebra

and Optimization; Vol. 1. CA: Addison-Wesley.

31. Bunch, J. R. and Parlett, B. N. (1971). Direct Methods for Solving Symmetric

Indefinite Systems of Linear Equations. SIAM Journal on Numerical Analysis, 8(4),

639-655.

32. Bunch, J. R. and Kaufman, L. (1977). Some Stable Methods for Calculating

Inertia and Solving Symmetric Linear Systems. Mathematics of Computation, 31

(137), 163-179.

33. Ashcraft C., Grimes R. G., and Lewis J. G. (1995). Accurate Symmetric

Indefinite Linear Equation Solvers. SIAM J. Matrix Anal. Appl., 20 (2), 513–561.

34. Paige, C. C. and Saunders, M. A. (1974). Solution of Sparse Indefinite

Systems of Linear Equations. SIAM Journal on Numerial Analysis, 12(4), 617-629.

38

35. Duff I. S., Reid J. K., Munksgaard, N., and Nielsen, H. B. (1979). Direct

Solution of Sets of Linear Equations whose Matrix is Sparse, Symmetric and

Indefinite. IMA Journal of Applied Mathematics, 23(2), 235–250.

36. Schenk, O. and Gärtner, K. (2006), On fast factorization pivoting methods for

sparse symmetric indefinite systems. Electronic Transactions on Numerical Analysis,

23, 158–179.

37. Duff I. S. and Reid J. K. (1983). The Multifrontal Solution of Indefinite Sparse

Symmetric Linear Equations. ACM Trans. Math.Softw, 9(3), 302-325.

38. Gould, N. I. M., Scott, J. A., and Hu, Y., A (2007). numerical evaluation of

sparse direct solvers for the solution of large sparse symmetric linear systems of

equations. ACM Transactions on Mathematical Software, 33(2) 118–144.

39. Duff I. S. (2004). MA57 – a code for the solution of sparse symmetric definite

and indefinite systems. ACM Transactions on Mathematical Software, 30 (2), 118-

144.

40. Rosen, J. B. and Pardalos, P. M. (1986). Global minimization of large-scale

constrained concave quadratic problems by separable programming. Applied

Mathematics and Computation, 34(2), 163–174.

41. Li, H. and Zhang, K. (2006). A decomposition algorithm for solving large-

scale quadratic programming problems. Applied Mathematics and Computation,

173(1), 394–403.

42. Gill, P., Murray, W., Saunders, M., and Wright, M. (1987, October). A Schur-

complement method for sparse quadratic programming. (Report No. SOL 87-12).

Retrieved December 25, 2015, from

http://www.ccom.ucsd.edu/~peg/papers/schurQP.pdf

43. Gould, N. I. M. and Toint, P. L. (2002). An iterative working-set method for

large-scale nonconvex quadratic programming. Applied Numerical Mathematics,

43(1-2), 109–128.

44. Nocedal, J. and Wright, S. J. (2006). Numerical Optimization. USA: Springer.

45. Golub, G. H. and Loan, C. F. V. (2012). Matrix computations, 4th Edn. USA:

The Johns Hopkins University Press.

39

46. George, A. and McIntyre, D. R. (1978). On the application of the minimum

degree algorithm to finite element systems. SIAM Journal on Numerical Analysis,

15(1), 90-112.

47. George, A. and Liu, J. W. H. (1980). A Fast Implementation of the Minimum

Degree Algorithm Using Quotient Graphs. ACM Transactions on Mathematical

Software, 6(3), 337-358.

48. Duff, I. S., Gould, N. I. M., Reid, J. K., and Scott, J.A. (1991). The

factorization of sparse symmetric indefinite matrices. IMA Journal of Numerical

Analysis, 11(2), 181-204.

