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Abstract 
 

OPTIC DISK DETECTION AND SEGMENTATION APPROACHES BASED ON 

VESSEL NETWORK 
 

by 

 

NITTAYA MUANGNAK  

 

 

B.S. (Computer Science), Mahasarakham University, 2001 

M.S. (Computer Science), Chiang Mai University, 2004 

 

 

Precise localization of the optic disk (OD) in retinal images is one of the challenges in 

ophthalmic image processing. Although many efforts have been made towards finding 

automated numerical solutions, they often fail on retinal images characterized by poor 

quality. Therefore, we introduce three novel methods namely, Vessel Transform (VT), 

Vessel Vector based Phase Portrait Analysis (VVPPA), and Hybrid Approach (HA) 

for automatic detection of the OD based primarily on retinal blood vessels. To 

localize OD, VT finds a set of solution in an image space that yields the smallest sum 

of distance from a solution point to clusters of vessels. VVPPA uses convergence 

points obtained from Phase Portrait Analysis (PPA) operated on vectors derived from 

vessels to get the location of OD.  The HA uses a set of rules obtained from a decision 

tree to alternate using VT and VVPPA. These three methods are integrated with the 

scale space approach (SS) to obtain the OD boundary. The integration of VT, 

VVPPA, and HA with SS is defined by SSVT, SSVVPPA, and SSHA, respectively. 

The new algorithms have been tested against the existing methods: fuzzy convergence 

and circular transform. The numerical experiments demonstrate that our proposed 

algorithm outperforms the existing methods, especially on poor quality images.  For 

localization of the OD, the HA gets the highest accuracy of 98% regardless of poor 

image quality and satisfactorily comparable with the existing method for the fair ones. 

For OD segmentation, all approaches are generally better than the existing methods. 
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Specifically, SSVT obtains the highest positive predictive value (PPV) of 79.22% 

while SSHA gets the highest sensitivity of 53.05%, respectively for poor quality 

images.  

 

Keywords: Optic disk detection, optic disk localization, optic disk segmentation, 

vessel network, vessel transform, vessel vector based phase portrait analysis, hybrid 

approach
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Chapter 1  

Introduction 

 

1.1 Importance 

The Thai Health Promotion Foundation revealed in 2014 that Thailand faces the 

problem of a severe lack of ophthalmologists. Nationwide, Thailand has only 1,080 

registered ophthalmologists as of 2014 [1]. Seventy five percents of these 

ophthalmologists work at big hospitals in Bangkok and nearby provinces, or in the 

main cities of the larger provinces. In comparison, the eye patients within the age 

ranges of over 35 and under 70 years that are recorded by the Ministry of Public 

Health (MOPH) are 19% and 40%, respectively.  

Unfortunately, 88% of these patients live in rural areas. Since the number of eye 

patients is currently increasing by around 7% per year [2], the lack of 

ophthalmologists, particularly in rural areas, is an ever increasing problem. 

One instance of an eye disease that can be prevented by early diagnosis and treatment 

is diabetic retinopathy (DR). According to the statistics of the patients having diabetes 

aging between 15-34 years old across the country provided by the MOPH, the number 

of diabetics is as high as 49.73% and one tenth of this number is very likely to have 

DR [3]. Due to the small number of trained ophthalmologists and the poor provision 

of services and costly equipment in rural areas, the ability of doctors to diagnose and 

manage DR in the population is being severely impacted. 

The OD is one of the crucial points in a retina. It is also important for establishing a 

frame of reference to detect regions of clinical importance inside a retinal image, such 

as the fovea or macula, and also to diagnose abnormalities of eye diseases. The OD 

usually appears in healthy retinal images as a bright, yellowish, circular, or oval 

object. The relative size of the OD in a fundus image depends on the field of view of 

the fundus camera or image, which the OD itself is partly entered by optic nerves. For 

example, the size of the OD in fundus images on a specific 35 degree fieid of view 

appears roughly one-sixth the width of the images in diameter [4] relative to the 
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images in healthy eyes. Any irregularity in the appearance of the OD is a sign of 

abnormalities or diseases such as glaucoma, DR or hypertensive retinopathy [5]. 

One in ten people are advised for annual retinal screening because of a variety of 

medical conditions [6]. However, annual retinal screening is nearly impossible in 

many developing countries due to the lack of trained specialists compared to the size 

of the diabetic population. This implies the necessity of automatic screening systems 

to assist ophthalmologists in diagnosing an early stage of diseases such as glaucoma 

and DR using computer-based identification. Since fundus imaging is a frequent 

clinical procedure, retinal fundus images are commonly used for a preliminary 

diagnosis and detecting suspicious cases. 

The existing OD detection algorithms have typically been tested primarily on good 

quality retina images obtained from standard lab equipment that is achieving high 

accuracy.  In this work, we develop three novel OD detection algorithms based on the 

information of vascular network rather than that of OD itself.  These algorithms have 

been shown to detect OD with high accuracy in both fair and poor quality scenarios. 

 

1.2 Retinal Images 

The human visual system is mainly separated into three principal parts: the globe (see 

Figure 1.1), visual pathways (e.g. cornea, iris, lens, retina, optic nerve), and the visual 

cortex, which is the part of the brain dedicated to visual processing [7]. The outer part 

of the eye that provides protection for the globe and optical surface distortion is  the 

eyelid. The refraction of the lens and the cornea act in unison to adjust the focal 

length to focus incoming light from objects clearly on the retina at any range. 

The retina is the interior surface of the eye. The central field of vision, macula, is the 

focal point (see Figure 1.2) with regard to acuity of vision and its center is the fovea. 

The optic nerve transmits neuronal signals to the brain where the retinal ganglion cell 

axons are arisen. The axons stretch out through the convergence notch inside the OD 

alongside main retinal blood vessels found in the conjunctive vicinity of the OD [8]. 
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Figure 1.1: The structure of an eye  

(Image obtained from http://www.human-anatomy99.info/internal-structure-of-the-

eye/. Accessed date: 7 December 2014.) 

 

Figure 1.2: A normal fundus image 

Early vision loss monitoring begins with an ocular fundus photograph taken by a 

fundus camera, documenting the appearance of the retina, retinal vessels, macula, 

fovea and OD. Ophthalmologists examine these digital fundus images for 

abnormalities, and assess their severity. Figure 1.2 and Figure 1.3 show the fundus 

images of normal and abnormal cases, respectively. 

http://www.human-anatomy99.info/internal-structure-of-the-eye/
http://www.human-anatomy99.info/internal-structure-of-the-eye/
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Figure 1.3: An abnormal fundus image (OD swelling and hard exudates) 

The abnormal physical appearance of OD, fovea, macula, and blood vessels as well as 

the appearance of unusual components such as cotton wool, hemorrhages, exudates 

are often signs of abnormalities in the patients. They can be used to diagnose eye 

diseases, for instance, DR, hypertension (caused glaucoma), macular degeneration, 

and papilloedema [9]. 

 

1.3 Problem Statement 

Many automatic optic disk detection techniques have been proposed [10][11][12][13] 

[14][15]. Most of these techniques utilized features of OD such as size, shape, 

brightness, grey level, and contrast with background. The existing approaches can 

often do very well in detecting OD in good quality images of healthy patients, in some 

cases reporting accuracies of up to 100%. However, the major limitations of these 

approaches are that they typically only work well with good quality images, where the 

OD is clearly visible and contains the expected features. Poor quality images, or those 

taken from patients with retinal disease which causes abnormal changes to the 

appearance of the OD, often cause these methods to fail.  Figure 1.4 shows examples 

of images in which the existing methods fail to find OD. 
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Two important facts about the vascular network that can be used to localize OD are 

firstly that OD is the convergence of the vascular network; the vascular networks are 

usually present and traceable even poor quality images, or images with abnormal 

ODs. Poor quality fundus images originates from various factors such as poor focus, 

small pupil size, and media opacity.  

Some previously proposed OD detection techniques have used vascular structure 

analysis, but without considering the hierarchical structure of the vessels. Thus, there 

are still improvements needed in these approaches in order to precisely locate the OD 

in these difficult cases. 

 

 

 

Figure 1.4: Example of poor quality images. Poor focus and clarity due to dimness 

(upper left). Poor optic disk visibility due to uneven illumination over it (upper right). 

Edge haze (lower left and right). 
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1.4 Purpose of Study 

The purposes of this work can be summarized as follows. First is to present three 

novel approaches for automatically localizing the OD in fundus images, namely 

vessel transform (VT), vessel vector based phase portrait analysis (VVPPA), and the 

hybrid approach (HA). Second is to integrate the proposed OD localization methods 

with the scale space approach (SS) to segment the boundary of the OD. Last is to 

compare and discuss the results of the proposed methods with other existing methods 

for two different quality image collections: fair and poor. 

 

1.5 Thesis Arrangement 

This thesis is arranged into eight chapters as follows. This chapter provides 

background, retinal image characteristics in human eyes, problem statement, and 

purpose of the study. Chapter 2 provides literature reviews on automatic optic disk 

localization, segmentation approaches, and related background. Chapter 3 describes 

our first approach to localize optic disk using the vessel transform (VT) technique. 

Chapter 4 describes our second approach which detects optic disk based on vectors 

derived from vessels. The novel hybrid approach (HA) derived from these two 

techniques is discussed in Chapter 5. Chapter 6 describes the image collection as well 

as evaluation schemes used in our experiment. Corresponding experimental results 

including discussions of the study are stated in Chapter 7. Chapter 8 which is the last 

chapter summarizes the whole thesis work and provides plans of the future work 

including other perspectives. 
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Chapter 2  

Related Works  

In this chapter we review the current methods of OD detection in the literature. First 

we review the two main OD detection approaches in Section 2.1, which can be 

categorized into feature-based and vascular-based methods. Section 2.2 then reviews 

the theory behind the Phase Portrait Analysis and the Scale Space algorithm, which 

are employed in our proposed novel approaches. 

 

2.1 Literature Review of Optic Disk Detection 

2.1.1 OD Feature-based Approach 

The main assumptions of conventional OD detection techniques are typically that it is 

roughly central in the image, appears as a bright circular region with high grey level 

variation (entropy), and whose size falls within a limited range. Typically the OD is 

defined in the literature as the largest bright pixel cluster present in retinal images, 

therefore the previously mentioned features are often used in conventional OD 

detection approaches. 

Lalonde et al. [10] and Jelinek et al. [11] proposed template matching and Haar 

transform to localize the OD. Multi-resolution image decomposition [10] was 

investigated to provide aggregated pyramidal candidate regions. A circular-like object 

was determined using the Canny edge detection [11] and prior information was then 

defined as the OD tracking template. The candidate region possessing the optimum 

distance to the template was selected as the OD segmentation result. Niemeijer et al. 

[12] presented an automatic system to detect the location of the OD and fovea in color 

retinal images. To locate OD, a k-Nearest Neighbor regression and a circular template 

were applied to estimate the distance to the object of interest at any given location in 

the image based on a set of features measured at that location. Another robust method 

for localizing the OD center in presence of pathological regions was proposed by 

Dehghani et al. [13]. Histograms of each color component were used as templates for 

OD localization. Histogram matching by correlation was used to obtain the binary 
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image containing the attracting force field of vessel density which converges as the 

OD. 

Cox and Wood proposed an edge detection technique to obtain points on the OD 

boundary which were then automatically connected by a tracing procedure [14]. 

Morris et al. [15] presented a similar method which traces points characterized by 

large gradients. 

A recent literature survey of Winder et al. [16] cited 38 papers on localization of the 

OD and identification of its boundary. The localization was most frequently achieved 

by PCA, active contour models (snakes) and watershed transforms. Several popular 

citations from the survey combined PCA and snakes. However, these segmentation 

techniques required well-validated algorithms to define the proposal component. This 

is why the conventional OD identification methods and an adaptive thresholding are 

still applicable. 

Active contour models (snakes) were also applied to detect the OD in fundus images. 

The initial contour was initiated roughly to the optic nerve head location [17][18][19]. 

These models were reported to be successful in the images with high resolution and 

contrast. The main drawback of these algorithms was that it returns false boundary 

convergence caused by the noise and missing edges, most commonly seen in the 

infant images used for the detection of Retinopathy of Prematurity [20]. PCA and 

active contours were often combined to detect the OD center and to approximate the 

OD [21][22]. Lowell et al. [23] also simply performed a specialized correlated 

template matching by considering the reliable circular-bright object to localize the 

OD. The modified deformable models (active contour) were then applied to calculate 

the entire OD contour. The initial components of these active contour models were 

defined roughly by considering the object’s brightest area, which was assumed to be 

the approximated OD center. 

Akram and Kham [24] employed two basic features - intensity variation and grey 

level – to identify the OD and/or the presence of leisons. The OD rim was detected 

using the Hough transform, with a fuzzy hybrid neural network model proposed to 
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classify between the OD and lesions. Accuracies of up to 98 percent were 

demonstrated for various retinal image datasets. Despite the method being shown to 

be fast, simple and reasonably accurate, misidentified OD based on ideal features is 

still problematic when the OD rim is obscured due to high contrast retinal vessels, or 

image artefacts (blurring, shadows, noise, etc.). Besides, the precise OD identification 

based on the above-mentioned features could be highly delicate to pathological 

regions such as yellow/white lesions, exudates, or bright artifacts appearing on the 

retinal photographs [25][26]. Sinthanayothin et al. [27] used the specific intensity 

variation between the dark vessels and the bright nerve fibers to locate the OD. This 

procedure also located the fovea, and retinal blood vessels. However, the algorithm 

often failed to detect the OD in fundus images where a large number of white lesions 

were present. 

Curvelet transforms have also been explored for solving the OD segmentation 

problem in [28][29]. The OD candidates were determined on bright circular objects 

that obtained large curvelet coefficients. Retinal vessel information was applied to 

validate the corresponding region with the strongest convergence as detected OD. A 

variational level set deformable model was then applied to segment the OD boundary. 

Shahbeig and Hossein [30] also combined the curvelet transform with the PCA and 

morphological operators based on geodesic conversions to obtain the OD region. 

Contrast enhancement of the image was performed using the adaptive curvelet 

coefficient to improve the algorithm’s performance. The reconstructed image 

containing the OD region considered the maximum intensity of the circular regions 

obtained from adaptive correction function as the final OD. It was reported that these 

techniques failed in images where the OD appeared darker than the surrounding 

background. 

Pereira et al. [31] analyzed the brightness of a series of images which were smoothed 

by an anisotropic diffusion filter, applying an “ant colony optimization” procedure to 

determine the OD contour from edge information. Local intensity variations were then 

used to initiate the iterative “ant pheromone” matrix, which is the same size as the 

retinal image, to search for feasible OD edges. This method was mostly concerned 

with finding the largest components revealed by the artificial ant colonies, without 
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considering morphological structure. This would cause unsuccessful reports in 

pathological images when the presence of large bright lesions, poor contrast, and 

other artifact is common. Morales et al. [32] also used PCA, stochastic watershed, and 

region discrimination. The preprocessed retinal image was manipulated by PCA to 

separate different object compositions. Blood vessels were suppressed by the 

inpainting technique and the desired OD edge was calculated by stochastic watershed 

transformation. It was found that the algorithm only performed well in cases where 

OD contrast was sufficiently high compared to the surrounding background, and also 

performed poorly in the images containing uneven shape and brightness in the OD.  

Hsiao et al. [33] localized the OD by an illumination correction algorithm, with a 

supervised deformable model (GVF snake) and Circular Hough Transform being 

applied to segment OD boundary. Ramakanth and Babu [34] proposed OD 

localization based on an approximate nearest neighbor field. An initial single optic 

disk image was used as a reference dictionary to detect the OD. Feature Matching was 

then applied to find similarity of two patches: source and target. The location with the 

maximum likelihood was indicated to verify particular criteria and return OD center. 

This approach was parameter free and could handle any unseen database. 

Giachetti et al. [35] proposed optic disk detection using the fast radial symmetry 

transform to determine circular bright objects with a particular radius. The bright 

symmetrical region corresponding to approximation correlations was taken as the 

candidate OD. The candidate with the highest vessel density feature had multiscale 

vessel inpainting applied, yielding the approximate OD location. Snake-based local 

refinement contour and ellipse contour refitting were integrated to obtain OD contour 

in this algorithm. The snake evolution was terminated when oscillations were 

detected. Nevertheless, the algorithm required a potential pre-processing step to 

provide well-defined and strong edge. 

Kavitha et al. [36] used morphological operations and multilevel thresholding to 

extract the brighter regions that included the OD and exudates. Automatic detection of 

the optic nerve using digital red-free fundus photography was presented by Tobin et 

al. [37]. The location of the OD is depicted by a two-class Bayesian classifier. 
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Mathematical morphology techniques have been extensively applied for extracting 

feature components relevant to the OD thanks to their speed, as discussed in [38].  Li 

and Chutatape [5][21] used a combination of PCA and a point distribution model [39] 

tailored for active shape model (ASM) segmentation, with PCA being used to localize 

the OD and initialize the ASM. The OD boundary was detected using an iterative 

searching procedure called the modified ASM. We found that this algorithm was not 

applicable for the retinal images with either are an absence of visible vessels in the 

OD or a faint, poor contrast OD boundary edge. A well-known method so-called the 

Circular Hough Transform was proposed in [40][41][42][43] to localize the OD. 

Sekhar et al. [40], Azuara-Blanco et al. [42], and Sagar et al. [43] detected the OD by 

finding the brightest region within the image. The size of the OD was calculated using 

morphological operations. The Circular Hough Transform was then applied to the 

gradient image to detect the contour and center of the OD. However, Zhu and 

Rangayyan [41] showed unacceptable performance of the Circular Hough Transform 

when the OD manifested slightly non-circular shape. 

One of the most successful works tested against many existing algorithms is proposed 

by Lu [44]. Their modification of the circular transform combined with evaluation of 

the brightness was claimed to be more efficient, more accurate and faster than other 

state-of-the-art techniques such as the morphological approach proposed by Welfer et 

al. [45], a vessel’s direction matched filter proposed by Youssif et al. [46], 

localization using dimensionality reduction of the search space proposed by Mahfouz 

and Fahmy [47], and genetic algorithms by Carmona et al. [48]. 

In general, the major drawback of the feature-based approaches is that they often 

incorrectly localize the OD when the OD’s physical appearances such as shape, color, 

brightness or size become abnormal. The OD obscured by blood vessels or only 

partially visible (blur, shadows and noise) could be also misclassified. In addition, 

feature-based methods can be highly sensitive to other variable anatomical and 

pathological features often present in the retinal images [23]. 
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2.1.2 Vessel-based Approach 

Another well-explored subclass of OD detection algorithms are based on exploting 

information from the vascular network directly. Many vessel-based OD localization 

techniques have quoted high accuracies in the literature [4][12][36][45][46][49][50] 

[51][52][53][54][55][56][57][58][59]. Akita and Kuga [51] traced the parent-child 

relationship between blood vessels segments, tracking back to the center of the OD. In 

addition to brightness and shape features of the OD, Chaudhuri et al. [59] checked the 

area where vertically oriented vessels converged. To check the convergence, the 

vessels were treated as a single line of an infinite length. Consequently, the detection 

of the convergence area was reduced to a line intersection problem. 

Automatic detection of OD and exudates in retinal images had been proposed by 

Kavitha and Devi [36] using a least square polynomial curve fitting algorithm to 

detect the OD through the convergence point of blood vessels. A multilevel 

thresholding technique was then applied to extract the bright regions. The point 

corresponding to the strongest vessel convergence region was examined as the OD 

center, otherwise exudates. As a matter of fact that retinal vascular network originates 

from the optic nerve head and their paths follow a parabolic shape. To describe the 

general direction of retinal vessels at any given position in the image, a geometrical 

parametric model was proposed by Foracchia et al. [49], where the directional 

vascular pattern in the retinal fundus images was unchanged and the model 

parameters was the OD coordinate center. Ravishankar et al. [50] also showed the 

approximate location of the OD where all major blood vessels intersect. The high 

intensity features of disk regions was combined to improve the robustness of the OD 

detection. The OD boundary was approximated as a circular mask, obtained using the 

Circular Hough Transform. 

Chrastek et al. [52] determined the OD where the vertically oriented vessels 

converged together by the circular bright features. Dehghani et al. [53] identified the 

OD by finding the region containing the highest density of vessels, corners, and 

bifurcation points. This algorithm is rotationally invariant, but still required the 

presence of pathological regions to be distinguished, and needed sufficiently high 
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contrast between the OD and surrounding background to perform well. Youssif et al. 

[46] and Zhang and Zhao [54] introduced the directional vasculature based method to 

obtain the approximate OD location. Both works used the assumption about the 

horizontal alignment of the vascular network in the retinal images to extract high-

priority identifying OD features. The vascular network was checked for the 

interception point between its centroid and the main vessels arcade fragments using 

sliding horizontal line [46]. The vessel distribution and global direction characteristics 

were combined to find the horizontal and vertical position of the OD. The general 

Hough Transform was then applied to obtain alternative parabolas and one fitting 

most of vessel pixels was identified as the OD center [54]. However, the limitations of 

these approaches are that they require complete vessel structures and/or they 

are not rotational invariant on retinal images. The entropy of the vascular directions 

was introduced in Mendonca et al. [55] approach to examine the incidents and the 

diversity of gradient orientations of vessel pixels. The idea of a multi-resolution 

sliding band filter was also extended in Dashtbozorg et al. work [56]. 

A number of effective tracing contour algorithms have been developed. Semashko et 

al. [58] employed the positions of the vessels to correct the pressure force of the 

active contour (snake) to improve the convergence to the OD. The Circular Hough 

Transform was used to initialize the circular contour approximation of the OD inside 

the edge map. The OD boundary was then utilized by the gradient vector flow (GVF) 

snake to generate the final OD edge map. 

Although the vessel-based methods require a robust and accurate segmentation of the 

vascular tree, they perform well in the presence of poorly defined OD features (such 

as poor contrast boundaries, and pathological regions in or around the OD). The 

motivation of finding the vessel convergence area presents a considerable challenge. 

Consider the simplest case when the blood vessel segments are represented by line 

segments and the adjacency of those lines have been clustered. The focal point of the 

major clusters could point to the OD. However, in some cases, this assumption can 

lead to extremely inaccurate results. Many adjacent groups could be located far from 

the OD. Therefore, these vessel-based methods work out by partitioning the data set 
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into decisive (inliers) and indecisive (outliers) classes and require at least 50% of 

inliers [4][46]. 

The best performing vessel convergence technique was introduced by Hoover and 

Goldbaum [4]. The so-called “fuzzy convergence” (FC) method [60] created a fuzzy 

segment of which an area provided voting scores to corresponding pixels indicated the 

fuzzy score of each vessel. The voting score took place on the integer grid of the 

original image. An image map representing the strong point of the convergence of 

each pixel was calculated through the summation of votes at each corresponding 

pixel. The image map was then smoothed and the strongest convergence points 

obtained by thresholding. The FC technique was combined with a feature-based 

approach which employs illumination equalization to minimize the large intensity 

variation at different scales. The method verification on STructured Analysis of the 

REtina (STARE) database showed acceptable performance overall (89%), and 100 % 

success on the healthy images.  

Phase portrait analysis (PPA) was modified to detect the OD in the retinal fundus 

images proposed by Rangayyan et al. [61]. This method decomposed trajectory 

patterns in term of parametric representation to classify the convergence 

configuration. The phase portrait modeled the oriented texture by means of 

eigenvalues into node and saddle maps along texture produced by Gabor filters. The 

condition on corresponding analysis windows was configured such as to characterize 

the node map, and label all possible peaks (ordered by magnitude) that could indicate 

a convergence of the blood vessels. The center of OD was then selected from the 

possible ranked peaks based on circular shape and corresponding intensity selection 

obtained from pre-processing of images. The OD detection using Gabor filters and 

PPA methods has been successfully applied to poor quality images. It was observed 

that the impact of blood vessel bifurcations leads to high responses in the node phase 

portrait map. However, this is not applicable for all cases because the structural blood 

vessels in pathological images converge at non-OD positions. The method is also 

computationally intensive, with computation times highly sensitive to the size of the 

convolution window. Despite the above methods reporting high success rates, there is 

still room for improvement in term of insufficient vessel information or asymmetrical 
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orientation. Nevertheless, the hierarchical structure of the retinal vessels and their 

importance were not considered whereas the vessel network consists of both primary 

and secondary structure of retinal blood vessels. Consequently, we improve this by 

providing the novel numerical models by means of the characteristics of hierarchical 

vascular structure. 

 

2.2 Background 

In this section we provide background of two methods that play important roles to our 

proposed method.  The first is the Phase Portrait Analysis (PPA). It is the method that 

we employ to find the convergence of the vectors obtained from the vessel. The 

second is the base method for finding the region of the OD. 

 

2.2.1 Phase Portrait Analysis (PPA) 

The Phase Portrait Analysis (PPA) concept is commonly applied to model natural and 

physical phenomena by means of a vector field, or so-called “gradient vector field”. 

Its representative set of trajectories is a phase portrait. The use of this method is for 

characterizing eigenvalues of the corresponding linear flow matrix obtained from the 

first-derivative of specific function (the least square method). The PPA contributes the 

analysis of the possible trajectories or the phase portrait orientation force field by 

measuring parametric representation of strong flow patterns [62][63]. The flow 

patterns represent the series of oriented vector field. The following formula (2.1) is 

defined a phase plane of the oriented vector field in linear flow system by 

x ' = ax + by  

y ' = cx + dy  
   

dv

dt
= Av (2.1) 

where x '  and y '  indicates phase plane of vector field v , velocity 
dv

dt
 is specified by 

the differential equation, and 𝐴 = (
𝑎 𝑏
𝑐 𝑑

) obtained from a linear least square method. 

The linear flow matrix A  is applied in the sampling window to convolve the entire 

phase plane and return two characterized eigenvalues: 𝜆1, 𝜆2.  
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The flow pattern is characterized by the real and imaginary parts of the eigenvalues 

defined by 𝑅𝑖 = 𝑅𝑒𝜆𝑖, 𝐼𝑖 = 𝐼𝑚𝜆𝑖, respectively. 

The measurement of the parametric representation determined by PPA defines the 

similarity of the vector field to match the particular pattern to the entire trajectory 

patterns [62][63]. The corresponding phase portrait linear flow patterns are 

demonstrated in Figure 2.1 and the basic linear trajectory patterns characterized by the 

flow matrix eigenvalues [64] is provided in Table 2.1. 

 

Figure 2.1: Phase portrait flow patterns [62], [63] 

Table 2.1: Configuration types of 2-D critical points 

 

Pattern Eigenvalues after convoluting matrix A 
Center R1 = R2 = 0 I1 = -I2 ≠ 0 

Attracting Focus R1 = R2 < 0 I1 = -I2 ≠ 0 

Repelling Focus R1 = R2 > 0 I1 = -I2 ≠ 0 

Attracting Node R1 ≠ R2 < 0 I1 = I2  = 0 

Attracting Star R1 = R2 < 0 I1 = I2  = 0 

Repelling Node R1 ≠ R2 > 0 I1 = I2  = 0 

Repelling Star R1 = R2 > 0 I1 = I2  = 0 

Saddle Point R1 > 0, R2 < 0 I1 = I2  = 0 

Node-Saddle 1 R1 > 0, R2 = 0 I1 = I2  = 0 

Node-Saddle 2 R1 < 0, R2 = 0 I1 = I2  = 0 

Pure Shear R1 = R2 = 0 I1 = I2  = 0 
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Chucherd and Makhanov [65] proposed the trajectory pattern classifier to classify the 

sampling window into three areas of interest: noise, boundary, and regular points, 

given by,   

𝐶(𝑊) =

{
 
 

 
 𝑛𝑜𝑖𝑠𝑒,

min(|𝜆1|, |𝜆2|)

max(|𝜆1|, |𝜆2|)
> ∆1, |𝜆1| > ∆2𝑜𝑟|𝜆2| > ∆2

𝑏𝑜𝑢𝑛𝑑𝑎𝑟𝑦,
min(|𝜆1|, |𝜆2|)

max(|𝜆1|, |𝜆2|)
< ∆1, |𝜆1| > ∆2𝑜𝑟|𝜆2| > ∆2

𝑟𝑒𝑔𝑢𝑙𝑎𝑟𝑝𝑜𝑖𝑛𝑡, |𝜆1| ≤ ∆2𝑜𝑟|𝜆2| ≤ ∆2

  

(2.2) 

where W is the sampling window around considered pixels and ∆1, ∆2 are the 

thresholds evaluated by feature selection method. 

 

2.2.2 Scale Space Approach (SS) 

The scale space theory was originally proposed by Witkin [66] to create a multiscale 

representation of signals in 1-D. Lindeberg [67] developed the SS to detect local 

maxima in 2-D intensity images at multiple scales into grey-level blobs. Identical 

blobs over all scales can be linked and represented into a scale-space blob tree. 

Relevant attributes such as lifetime, grey-level intensity, color, or contrast can be 

considered to obtain selected blobs by means of significant blob structure. The 

method is able to detect real-world objects at different observation scales. 

A multi-scale representation of a two-dimensional images is defined by the scale-

space method using the Gaussian smoothing kernel characterized by different 

variance (σ) value. Duanggate et al. proposed an OD segmentation approach using 

Scale Space (SS) [68]. In their work, the blobs that exist over scales were linked and 

represented as a scale-space blob tree. The merging processes are applied to merge 

together the blobs that meet criteria of blob adjacency and also stability measured by 

relevant attributes. The merging process is repeated until the entire image contained 

stable number of significant blobs.  Four attributes: size, brightness, intensity, and 

grey scale value were used as the relevant attributes in their work. 
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Figure 2.2: Scale-space OD detection. Left are original images after blurring with 

different scales and right are blobs obtained from that corresponding scales. 

Figure 2.2 shows blobs that survive after the image was repeatedly scaled and the 

corresponding significant blobs over multiple scales in one plane are displayed in 

Figure 2.3. At a coarse level, all significant blobs which include an object of interest 

are kept. A subsequent classification method can be applied to all candidate blobs, 

giving the final desired blob. 

 

Figure 2.3: The combination of all significant blobs over multi scales 
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Chapter 3  

Vessel Transform  

This chapter introduces our first proposed approach, vessel transform (VT). We 

employed VT to localize the OD and used it as one of the features in the SS to obtain 

the rim of the OD. Figure 3.1 shows the overall process of the OD localization and 

segmentation using VT. 

In this chapter, we define the vessel clustering algorithm to cluster vessels in section 

3.1. The transformation of the vessel clusters to the distance space is defined in 

section 3.2. How VT is used in the SS algorithm for the OD segmentation is described 

in section 3.3. Section 3.4 and 3.5 provide advantages and disadvantages of the VT 

approach. 

 

 

Figure 3.1: Vessel transform combined with the scale-space segmentation 
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3.1 Vessel Clustering 

The vessels in the original images are first detected and extracted. The input of the 

clustering algorithm is a collection of vessels of size m 
  
(v

1
,v

2
,...v

m
) , where m is an 

arbitrary integer. Each vessel, vi, is represented by Cartesian coordinates of size Ni: 

  
v

i
= ((x, y)

i,1
,(x, y)

i,2
,...,(x, y)

i,N
i

) . The collection of vessels can be obtained by a vessel 

segmentation algorithms, such as those defined by [69], [70], and [71]. To obtain the 

clusters, we applied the following algorithm. 

The first three steps of our algorithm Remove_Thin_Vessels(Tt), 

Remove_Short_Vessels(Tl), and Remove_Faint_Vessels(Tf) are pre-processing 

designed to remove the outliers or unwanted vessels: thin, short, and faint vessels. It 

requires the following thresholds: - the thickness threshold, - the length 

threshold, - the threshold on the gray level intensity of the vessel relative to the 

background. The fourth step merges the vessels into clusters and removes the isolated 

vessels. The merging step employs a threshold  on the maximum distance between 

clusters which can be merged into a new cluster. We apply a classical hierarchical 

bottom-up clustering. Initially the algorithm treats each vessel as a singleton . 

Next, it successively merges clusters  and  if  until they have 

been merged into several well separated sets. The final step, the post processing 

procedure detects and removes the outliers (small clusters) by checking the total 

thickness relied on vessel length as the cluster size. The condition , where  

denotes the size of the cluster  and  the corresponding threshold is exerted in this 

step. 

The clustering step is based on the bottom up hierarchical approach. Initially the 

algorithm treats each vessel as a singleton cluster and then successively merges 

vessels until they have been merged into several well separated sets. Note that this 

type of clustering does not include time consuming of tracing procedures designed to 

detect the tree-like structure of the vessels. However, if trained, the algorithm returns 
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well separated clusters sufficient to generate a VT which localizes the convergence 

region and consequently the OD. Figure 3.2 illustrates the proposed clustering 

method. 

Input: 

Vessel network: 

 𝑉 = {𝑣1, 𝑣2, … , 𝑣𝑚}  a collection of vessels 

𝑣𝑖 = {(𝑥, 𝑦)𝑖,1, (𝑥, 𝑦)i,2, … , (𝑥, 𝑦)𝑖,𝑁𝑖}  points belonging to vessel vi 

Thresholds: 

 
T

t
- the minimal thickness,   

 
T

l
-the minimal length,  

 
T

f
-the maximum intensity of the vessel relative to the background, 

 
T

d
- the maximum distance threshold used to join the vessels into clusters 

 
N

c
i

- the size of the cluster (the total thickness relied on length of the vessels) 

 
T

L
- the minimum size of the cluster based on summation of thickness. 

Output:  

𝐶 = {𝑐1, 𝑐2, … , 𝑐𝑁}  the collection of clusters 

Algorithm:   

Remove_Thin_Vessels(
 
T

t
) 

Remove_Short_Vessels(
 
T

l
) 

Remove_Faint_Vessels(
 
T

f
) 

#Initialize_Clusters 

Ci = Vi{ }
 

#Cluster the vessels 

for i = 1:|𝐶| 
      for j = i+1:|𝐶| 

         if  𝑐𝑖 or 𝑐𝑗 is not empty and 
  
dist(c

i
,c

j
) < T

d
 

             𝑐𝑖 = 𝑐𝑖 ∪ 𝑐𝑗  

             𝑐𝑗 = ∅ 

         endif 

      endfor 

endfor 

#Compute_Cluster_Size  

for i = 1:|𝐶| 

      
 
N

c
i

 = 0 

      for j=1:|Vci| 

       
 
N

c
i

 = 
 
N

c
i

+ thickness(Vci[j]); 

      endfor 

endfor 

Remove_Small_Clusters(
 
T

L
) 
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Figure 3.2: The original image (top left), extracted vessels (top right), segmented 

vessels (middle left), removing short, thin or faint vessels (middle right), clustering 

(bottom left),  removing small clusters (bottom right). 
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The VT based OD localization requires that the resulting clusters converge to the OD. 

Therefore, for the images merged into three or more clusters, we verify the quality of 

convergence as follows. First, we evaluate the convergence region Ω = argmin𝑝 𝑉(𝑃)  

and its centroid. Next, the clusters are withdrawn one by one from the collection of 

clusters and re-evaluated the convergence regions Ω′ corresponding to these new 

collections. If the minimum distance between the centroid of Ω and the new 

convergence regions Ω′ is greater than the corresponding threshold TΩ, the clustering 

is discarded. 

The annotation of this condition is defined as following: dist(OΩ,OΩ’)>TΩ, where OΩ 
 

is the centroid of Ω, OΩ’ the centroid of Ω′ and TΩ the corresponding threshold. Our 

assumption is that if the vessels strongly converge to Ω, the system without one 

cluster converges approximately to the same region (see Figure 3.3). The second step 

is the evaluation of the convergence by min𝑐𝑖(𝑑𝑖𝑠𝑡(𝑐𝑖, Ω)), where 
 
c

i
 is the i

th
 cluster. 

  

 

Figure 3.3: Convergence test 

If min𝑐𝑖(𝑑𝑖𝑠𝑡(𝑐𝑖, Ω))< , where 
 
T

VT
 is the corresponding threshold, the clusters are 

close enough to the convergence region Ω and the clustering is considered successful. 

In this case, the VT is included in the prescribed set of features for a further 

evaluation. 

 
T

VT
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In a few cases the clustering algorithm returns an unacceptable result which consists 

of only one or two clusters. For such cases, we could not reliably test the convergence 

by excluding clusters (the first step). Technically, one can modify the thresholds and 

merge the vessels into a new set of clusters. However, testing an algorithm based on 

this idea is still an open problem. Therefore, following [68] we discard the VT feature 

and apply the scale space algorithm in its original version [66] (see also our 

forthcoming section 3.3). The numerical experiments show that the number of the 

discarded images is usually small and does not exceed 10%.  Besides, the location of 

the OD in these images can still be correctly evaluated. 
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Figure 3.4: Quadratic regression for the threshold selection for the ROP data set 
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Figure 3.5: Quadratic regression for the threshold selection for the STARE data set 

 

As mentioned above, the following thresholds: 
 
T

l
- the minimal acceptable length of 

the vessel for a particular image (shorter vessels will be eliminated), 
 
T

t
- the minimal 

acceptable thickness, 
 
T

f
- the maximum acceptable intensity of the vessel relative to 

the background, 
 
T

d
- the maximum distance between the clusters which can be merged 
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into a new cluster, 
 
T

L
- the minimum acceptable size of the cluster, TΩ 

 and 
 
T

VT
  the 

thresholds used in the convergence test are required. The algorithm is trained using 

the bivariate quadratic approximation given by 

𝑇(𝜇, 𝜎) = 𝑎1𝜇
2 + 𝑎2𝜎

2 + 𝑎3𝜇 + 𝑎4𝜎 + 𝑎4𝜇𝜎 + 𝑎6 (3.1) 

where 𝜇 and 𝜎 are mean value and standard deviation of the corresponding parameter 

evaluated for a particular image. For instance, 𝑇𝑙 ≡ 𝑇𝑙(𝜇𝑙, 𝜎𝑙) is the threshold on the 

minimal acceptable length of the vessel, whereas 𝜇𝑙 is the mean length of a vessel in a 

particular image and 𝜎𝑙 is the standard deviation.  

Our two collections of test images have been obtained by different devices with 

different lighting conditions. Therefore, they require different sets of thresholds which 

are obtained by the quadratic regression function (3.1). Figure 3.4 and Figure 3.5 

illustrate the threshold selection applied to the ROP and the STARE set, respectively.  

We train the method using the classic 70-30% ratio between the training and the 

testing data. The resulting thresholds are given in Table 3.1. 

 

Table 3.1: Threshold values used in vessel clustering 

 

Data Coef. Tl Tt Tf Td TL T TVT 

R
O

P
 

a1 

a2 

a3 

a4 

a5 

a6 

0.13e-02 

0.88e-02 

0.81e+00 

-0.13e+00 

-0.13e-01 

2.09e+00 

-0.76e-01 

0.31e-01 

1.07e+00 

-0.47e+00 

0.19e-01 

0.22e+00 

1.29e-02 

0.38e-01 

0.48e+00 

-0.30e+00 

-0.44e-01 

2.14e+00 

-0.18e-02 

-0.15e-02 

2.04e-01 

-0.18e+00 

0.35e-02 

9.08e+00 

0.18e-03 

0.43e-03 

0.73e+00 

-0.46e+00 

-0.66e-03 

2.85e+01 

0.24e-01 

0.31e-01 

1.11e+00 

0.25e-01 

-0.55e-01 

-0.71e-01 

3.92e-05 

1.93e-06 

1.00e+00 

-1.06e-04 

-3.66e-05 

0.55e-01 

S
T

A
R

E
 

a1 

a2 

a3 

a4 

a5 

a6 

-0.19e-02 

-0.86e-02 

-0.41e+00 

0.99e+00 

0.84e-02 

1.01e+01 

0.19e+00 

0.35e+00 

-0.86e+00 

0.82e+00 

-0.45e+00 

4.85e+00 

-0.66e-02 

-0.43e-01 

0.48e+00 

0.81e-01 

0.15e-01 

0.70e+00 

-0.88e-03 

0.73e-03 

1.15e-01 

-0.36e+00 

0.15e-02 

2.64e+01 

9.72e-05 

0.16e-03 

0.18e+00 

-0.59e+00 

-0.21e-03 

1.61e+03 

0.65e-03 

-0.18e-01 

-0.21e-01 

1.73e+00 

0.93e-02 

1.32e+00 

-2.17e-18 

2.80e-17 

1.00e+00 

4.40e-15 

-1.03e-16 

-6.99e-16 
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3.2 Vessel Transform 

Given a collection of the vessel clusters using an algorithm defined in the earlier 

section, we apply VT to find the approximate location of OD. 

The VT is given by 

𝑉(𝑝) =
1

𝑁
∑𝑑𝑖𝑠𝑡(𝑝, 𝑐𝑖),

𝑁

𝑖=1

 (3.2) 

where 
 
c

i
  is the i

th
 cluster of vessels, N is the number of clusters, p = (x,y) is an 

arbitrary point in the image and 𝑑𝑖𝑠𝑡(𝑝, 𝑐) = min𝑝′∈𝑐‖𝑝 − 𝑝
′‖. 

Figure 3.6 illustrates how VT is calculated at a point. The shortest distances from P1 

to each cluster are shown in red whereas the shortest distances from P2 to each cluster 

are shown in green.  V(P1) is the average of the red distances and V(P2) is the average 

of the green distances. Ideally, the points in the neighborhood of OD obtains low 

values of V. To display this function within the range between 0 and 255 to better 

illustrate the distance in a grayscale, we normalized the V(p) as follow. 

𝑉 ∗ (𝑝) = 255 −
255

𝑉𝑚𝑎𝑥
𝑉(𝑝), 

(3.3) 

where p is a point in the image, Vmax is the maximum value of V(p) for all points in the 

image. In the vessel transformed space, the darkest area shows the location of the 

image that obtains the minimum value of VT. An introductory example in Figure 3.7 

displays the sample retinal images and their corresponding VTs. Figure 3.7 illustrates 

how the minimum values are given by vessel transform. 
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Figure 3.6: Illustration of Vessel Transform Calculation at two sample points P1 and 

P2 on the 5 isolated clusters. Clearly, VT(P2) < VT(P1). 

 

  

  

Figure 3.7: The original retinal images (left) and their corresponding VTs (right). 
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3.3 Scale Space Algorithm with VT for OD Segmentation 

The VT alone generates only an approximated location of the OD. To obtain an exact 

boundary of the OD, we employ the OD segmentation method so-called SS [68] by 

integrating with the VT. 

Duanggate et al. [68] used a scale space method to obtain and detect the OD in the 

retinal images. The method creates a set of blobs generated by successive blurring of 

the image and collecting the most uniform objects (blobs). The blobs from different 

blurring levels are linked. For each blob, the number of survival steps over scales 

before disappearing or merging so called a blob’s lifetime are calculated. The blob’s 

lifetime implies the significance of a blob. Blobs with the largest lifetime are 

nominated as the OD candidates. Then a feature-based technique is applied to define 

the OD from the multiple candidates. The decision tree is constructed based on four 

features: blob size, blob compactness (roundness), blob entropy, and blob intensity. 

The blob entropy represents intensity variation of an image feature, in our study, to 

indicate the strong presence of blood vessels converging to the OD center. The 

entropy of a blob is defined as the probability distribution of a blob grey level in  

(3.4). 

𝑒𝑛𝑡𝑟𝑜𝑝𝑦 = −∑(𝑝𝑖 ∗ log2 𝑝𝑖)

𝑖

 
(3.4) 

where pi is the i
th

 grey level the histogram obtained from a blob. 

Our OD classification is performed using a decision tree which includes the above 

mentioned features along with the VT-feature. As stated in [68], the conventional SS 

decision tree in Figure 3.8 requires the compactness, entropy, and intensity for the OD 

classification. The corresponding thresholds are denoted by Tc, Te, and Ti, 

respectively. 
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Figure 3.8: The conventional SS decision tree 

The modified decision trees has been proposed by considering the productive VT-

feature. The corresponding thresholds for the modified decision tree are the VT score, 

size, and compactness denoted by Tv, Ts, and Tc, respectively. The entropy and 

intensity denoted respectively by Te and Ti have been excluded. The modified 

algorithm is called the scale space algorithm with the vessel transform (SSVT) and its 

illustration is shown in Figure 3.9. The corresponding features of each significant 

blobs over scales are utilized and taken into account of the decision tree for OD 

classification to return a selected blob as the OD. 

 

            

Figure 3.9: The SSVT decision tree 
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3.4 Advantage of the VT Approach 

The main advantage of VT approach is that its concept is simple and easy to visual. 

The method does not require any OD feature, so it works well even in the images of 

which OD’s appearance turns out insufficient feature information. 

 

3.5 Disadvantages of the VT Approach 

The VT mainly relies on a number of vessel collections. In some cases, the VT 

doesn’t work well when the clustering algorithm returns less than three clusters which 

make it impossible to find convergence points.  When such a case occurs, we simply 

discard the VT feature and apply the SS in its original version [68] to detect OD. 

Another disadvantage of this algorithm is that it requires as many as seven thresholds 

that are used for construction of the decision model for vessel selections. The last 

disadvantage, the VT approach depends heavily on the vessel segmentation algorithm 

and the clustering algorithm. Bad vessel segmentation algorithm and the clustering 

algorithm can cause a poor performance of the VT algorithm. 
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Chapter 4  

Vessel Vector based Phase Portrait Analysis  

In this chapter we present our second proposed approach namely Vessel Vector based 

Phase Portrait Analysis (VVPPA) to approximate the location of the OD. Figure 4.1 

shows the overall process of the OD localization and segmentation using VVPPA and 

the modification of the SS. The structure of this chapter is organized as follows. 

Section 4.1 describes the vectors used in this approach. Section 4.2 describes the 

VVPPA algorithm to approximate the location of the OD. Section 4.3 describes how 

VVPPA is combined with the SS to obtain the OD region. The advantages and 

disadvantages of the VVPPA approach are discussed in section 4.4 and 4.5, 

respectively. 

 

 

Figure 4.1: VVPPA combined with the scale-space segmentation  
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4.1 Vectors involved in this Approach 

In this work, five types of vectors are prepared for VVPPA approach. The 

constructions of these vectors are described as follows.         

4.1.1 Shifted Leading Vectors 

To construct the shifted leading vectors, we considered the bifurcation junctions that 

associate with three vessel segments. The illustration of the considered vessels is 

shown in Error! Reference source not found.. 

 

Figure 4.2: An example of bifurcation vessels 

To construct main leading vectors obtained from bifurcations, for each junction, a 

circle centered at a junction with a radius r is drawn and the intersections of the circle 

with the vessel segments are marked. Vectors starting from a junction to the 

intersection points are then plotted and normalized to make three unit vectors called 

the bifurcation vectors (BifV), as illustrated in Figure 4.3. From this point, to 

determine the main leading vectors from the BifV obtained in the previous process, 

the following features of the vessels are extracted: an opposite angle, a tortuosity, a 

thickness, and a contrast. The opposite angle of a vector is an angle between the other 

two vectors originated from the same bifurcation point. A tortuosity is a ratio of the 

distance to the displacement of two end points of the vessel segment. A thickness is 

an average width of the vessel segment considered only from the bifurcation point to 

the intersection point. A contrast is the difference of cumulative intensity between the 

vessel segments and surrounding background of the vessel segments from the 

bifurcation point to the intersection points. The values of tortuosity, thickness, and 

contrast are normalized with its maximum in the collection. For the case of degree, 
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the angle is normalized with 360. For all images in the collection, we find the BifV, 

collected their features, and used them for constructing a training model to classifiy a 

leading vessel vector. We divided BifV into two groups which are training and testing 

sets with proportion 70:30. Vectors in the training set are trained by providing 

answers of which vectors are leading and which are not along with the feature 

information. The rules are obtained from the training set and are applied to the testing 

set. 

Once the leading vector is obtained, we take the vessel segment that the leading 

vector belongs to and then construct another unit vector that has the same direction as 

the leading vector which has the ending point at the non-bifurcation end point. This 

vector is called shifted leading vectors (SLV) illustrated in Figure 4.3. The SLV is 

used rather than the leading vectors because it is closer in location to OD much more 

than the ordinary leading vector.  

 

Figure 4.3: An illustration of a leading vector (red) and a shifted leading vector 

(black) 

 

4.1.2 Sole Vessel Vectors 

The sole vessels are also taken into our consideration as they are usually main vessels 

which contribute useful information about OD location. To generate sole vessel 

vectors (SVV), we selected sole vessels which were obtained well-defined crucial 
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information in length, thickness, and, contrast using a threshold selection technique 

similar to the VT. For each sole vessel, we randomly picked one end as a starting 

point and another end as an ending point, constructed a vector from these two points, 

and normalized it to get a unit vector. Error! Reference source not found. illustrates 

how the SSV is constructed. Remark that the directions of the sole vectors are going 

to be corrected in the VVPPA algorithm. 

 

 

Figure 4.4: Illustration of how to construct a sole vessel vector 

4.1.3 Mahfouz Vectors 

The Mahfouz’s probabilistic OD approximation proposed by Mahfouz et al. [47] is 

also taken into our consideration. Mahfouz’s approach is based on the simple 

observation that the central retinal artery and vein emerge from the OD mainly in the 

vertical direction and then progressively branch into main horizontal vessels. From 

the vascular structure of the retina, a vertical bar with an image height and a proper 

width would always be dominated by vertical edges (vertical vessels) when centered 

at the OD. Thus, the x-location that yields the highest variation between vertical edge 

and horizontal edge is the vertical location of the OD. Once the vertical location is 

obtained, the y-location is determined by considering a square window with the length 

equals to the average diameter of the OD slid through this horizontal location to find a 

location that has the highest number of bright pixels. 

Four unit vectors are created at the top and bottom of the retina edge and at the left 

and right of the retina edge, according to the vertical and horizontal directions 

obtained by the Mahfouz’s approach. The directions of these four vectors are pointing 

toward inside of the retina image. Figure 4.5 shows OD XY-location using the 

Mahfouz’s approach. 
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The Mahfouz’s approach was experimentally proven to be fairly accurate for up to 

92.6% [47]. It usually works well when the vessel structure is complete and shown 

high variation compared to surrounding background inside the OD. We thus 

employed the vectors derived from Mahfouz’s approach as a part of our VVPPA 

algorithm. However, the Mahfouz’s approach may not yield a good accuracy in 

images having poor quality. Figure 4.6 shows a case of anomalies on inhomogeneous 

illumination causing Mahfouz’s vectors incorrectly locate OD. In this work we also 

aimed to enhance the accuracy of Mahfouz’s approach by using the guiding directions 

of the vectors from the vessels as well as sub-vessels rather than the shape and 

orientation of the vascular network. 

 

(a) (b) 

 

(c) (d) 

Figure 4.5: Illustration of how vectors from the probabilistic OD approach of 

Mahfouz are obtained. (a) original image (b) the greatest difference of number of 

pixels in vertical edge and horizontal edge. (c) y-location vs the maximum number of 

bright pixels in a reference square at x-location. (d) the Mahfouz vectors. 
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Figure 4.6: A false XY-location obtained the Mahfouz’s approach 

4.1.4 Bouncing Vectors 

To control the convergence area of PPA to be within the retina, bouncing vectors 

(BV) are included. BV of a vector V are unit vectors starting at the edge of retinal 

image and pointing in the opposite direction to V. Figure 4.7 illustrates BV of two 

original vectors. In this work, the BV are applied onto the SLV, and the SVV. 

 

  

Figure 4.7: Illustration of bouncing vectors of two original vectors 

 

 

 

 

 

 

red arrows: bouncing vectors 

blue arrows: vector V 
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4.1.5 Interpolation Vectors 

At a grid point in the retina image, we interpolated a vector from its three nearest 

vectors obtained from the SLV, SVV, the Mahfouz’s vector, and the bouncing 

vectors. The interpolation vectors are obtained by solving the system of linear 

equations described as follows.  For each vector, suppose a triplet (a, b, c) represents 

the starting point (a, b) and its directional vector c. At a grid point (x, y), we take three 

nearest vectors: 𝑣1 = (x1, y1, w1), 𝑣2 = (x2, y2, w2), and 𝑣3 = (x3, y3, w3), and 

solve the following system of equations for vectors A, B, and C, 

 

𝑤1 = 𝐴𝑥1 + 𝐵𝑦1 + 𝐶 

𝑤2 = 𝐴𝑥2 + 𝐵𝑦2 + 𝐶 

𝑤3 = 𝐴𝑥3 + 𝐵𝑦3 + 𝐶 

 

(4.1) 

Then at a grid point (x, y), its directional vector can simply be expressed as           

𝑤 = 𝐴𝑥 + 𝐵𝑦 + 𝐶. 

 

4.2 Vessel Vector based PPA Algorithm 

The vessel vector based PPA algorithm (VVPPA) requires all vectors except SVV 

described in section 4.1 and it returns the convergence location which is the centroid 

of PPA. The VVPPA algorithm is presented below. 

In this algorithm, Make_InterpolationVectors(V) takes the collection of input vectors 

V to generate interpolation vectors, IV, at all grid points in the retina image. The 

function Find_HighPPAScore_Region(IV) finds and returns the convergent region 

(CovReg) of pixels having the high PPA scores obtained from PPA using the input 

collection of IV. As there can be many regions with high PPA scores, we select the 

convergent region by using the maximum likelihood estimation based on four features 

derived from the regions: the mean thickness of segmented vessels, contrast of 

segmented vessels compared to surrounding background, density of segmented 

vessels, and original PPA scores. Find_Centroid(CovReg) returns the centroid of the 
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convergence region CovReg. Is_Pointing_outward(v,c) is another function that takes a 

vector v and a point c as inputs, returns true if v’s direction is toward c, otherwise 

false. To determine whether or not a vector v points toward a point c, we considered 

the end points of the vector, if the endpoint of v is closer to c than from its starting 

point to c, we stated that v was moving toward c. Figure 4.8 shows VVPPA steps in 

the algorithm. 

 

Input: 

SLV: A collection of shifted leading vectors 

MV: A collection of Mahfouz vectors 

BV: A collection of bouncing vectors 

SV: the collection of sole vessels sv1,sv2 ,..., sv
sv{ }  

 

Output: centroid of PPA convergence region  

 

VVPPA Algorithm: 

V = {SLV, MV, BV} 

IV=Make_InterpolationVectors(V) 

#Determine the convergence region from PPA numerical scores 

CovReg = Find_HighPPAScore_Region(IV) 

c = Find_Centroid(CovReg) 

for i = 1:|𝑺𝑽| 
      #Validate the direction of sole vessel vectors 

      if Is_Pointing_outward(svi, c) is true 

             𝑠𝑣𝑖 = −𝑠𝑣𝑖  
      endif 

      #Correct the location of convergence region 

     𝑉 = 𝑉 ∪ 𝑠𝑣𝑖  
      IV=Make_InterpolationVectors(V) 

      CovReg = Find_HighPPAScore_Region(IV) 

      c = Find_Centroid(CovReg) 

endfor 
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(a) Original image  (b) SLVs (black), MVs (gray), and BV 

(white)  

  
(c) IVs and the initial CovReg (d) IVs and CovReg after including the 1

st
 

sole vessel vector 

  
(e) IVs and CovReg after including the 2

nd
 

sole vessel vector 

(f) IVs and CovReg after including the 3
rd

 

sole vessel vector 

 
(g) Centroid (green rectangle) of CovReg boundary (blue line) and the ground truth 

boundary (black line) 

Figure 4.8: Illustration of steps in VVPPA algorithm 
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4.3  Scale Space Algorithm with VVPPA for OD Segmentation 

Similar to SSVT defined in the earlier chapter, we employed our new information 

PPA score obtained from VVPPA with existing blob features: size, compactness 

(roundness), entropy, and intensity to construct a decision model for OD selection. 

Intensity variation so called blob entropy, in our study, represents an alternative image 

feature to indicate the strong presence of blood vessels converging to the OD center. 

The corresponding decision trees requires thresholds the PPA score, size, entropy, and 

compactness denoted by Tp, Ts, Te, and Tc, respectively, for the SSVVPPA decision 

tree. The intensity denoted by Ti has been excluded after pruning the SSVVPPA 

decision tree. The modified OD segmentation algorithm is called scale space 

algorithm with vessel vector based phase portrait analysis (SSVVPPA) and its 

illustration is shown in Figure 4.9. The corresponding features of the significant blobs 

over scales are utilized and taken into account of the OD classification model to return 

a selected blob as the OD. 

 

     

Figure 4.9: The SSVVPPA decision tree 

Instead of using standard features such as size, compactness, entropy, and intensity as 

in the work of Duanggate et al. [68] to segment the OD boundary using SS, 

SSVVPPA uses a PPA score obtained from VVPPA detection algorithm as an 
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additional feature to the existing features to enhance the performance of the SS OD 

segmentation algorithm. Figure 4.10 demonstrates the OD rims obtained from SS and 

SSVVPPA compared with ground truths. The results show that SSVVPPA yields a 

more accurate OD region than SS. 

 

  

  

  

Figure 4.10: Examples of OD rims obtained from SS (red solid) and SSVVPPA (blue 

solid) compared with ground truths (black solid) of six images 
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4.4 Advantages of the VVPPA Approach 

The VVPPA relies on sufficient vessel junctions and branch points inside the retinal 

image to construct vessel vectors beyond finding the convergent OD regions using 

PPA. The approach is effective and accurate on OD detection even blood vessels are 

obscured by the pathological regions and the pathological regions present the similar 

features of the OD. This is because the entire vascular structure forms the meaningful 

branches and adequate vessel junctions. The additional vectors are also generated to 

bind the vector flow particularly inside the retina edges and strengthen the vector 

trajectory pattern of the convergence. Furthermore, this approach is robust to 

rotational variation when the OD position is roughly shifted away from the center of 

retina. 

 

4.5 Disadvantages of the VVPPA Approach 

The VVPPA depends on the number of vessel junctions and branches in the image.  

For some images that have very few vessel junctions and branch points, VVPPA may 

yields incorrect results. Figure 4.11 below shows examples of such a case. 

 

  

Figure 4.11: Examples of images that VVPPA fails due to insufficient information 

from the vessels. Green rectangle shows OD location obtained from VVPPA. 
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For such a case, the user needs to use other approaches which depend on OD features 

instead. Another limitation is that VVPPA depends heavily on the vessel 

segmentation algorithm. When the vessel segmentation algorithm is poor, it may 

result in low accuracy. 
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Chapter 5  

Hybrid Approach for OD Detection  

In this chapter, our third approach for OD detection is described. This approach 

basically aims to carry out the best accuracy of the other two proposed approaches 

which VT and VVPPA are combined. We name this approach the Hybrid Approach 

(HA). The overall process of the OD localization and segmentation using HA is 

illustrated in Figure 5.1. The algorithm is provided in section 5.1 including 

advantages and disadvantages of the approach are stated in section 5.2 and 5.3, 

respectively. 

 

Figure 5.1: The OD localization and segmentation using HA 

 

5.1 Hybrid Approach 

To localize the OD, the HA creates the decision model for selecting an appropriate 

approach between VT and VVPPA to be employed in each particular case. The 

selected features mainly obtained from VVPPA approach. These features are the 

number of BifV, the number of SVV, and PPA score. 
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The HA can be summarized into an algorithm as follows. 

 
Algorithm Hybrid Approach(C, I): 

Input:  

C = A collection of images of size N 

I = An image in C that the user would like to determine the OD location 

T = input training set of images of size Nt where Nt < N 

F(T) = {F1(T), F2(T) …, FM(T)} where Fi (T) is the i
th
 feature vector of T. The 

component of vector Fi (T) is the feature values of the corresponding image in T 

ANS(T) = a binary answer set vector (0 for VT and 1 for VVPPA) of T of size Nt 

Output: 

algV = a binary vector contains answers   

Hybrid Approach Algorithm: 

% generate the decision model  

DModel=  Calculate_Decision_Model(F(T), ANS(T)) 

% Determine the answers for the input image 

            FI = {F1(I), F2(I) …, FM(I)} 

            algV = Select_Algorithm(DModel, FI) 

The Calculate_Decision_Model(F(T), ANS(T)) generates the decision model using 

the feature vector F(T) and the solution from the training set ANS(T). The function 

Select_Algorithm(DModel, FI) returns the algorithm that should be used for the 

image I using the DModel obtained from the Calculate_Decision_Model(F(T), 

ANS(T)) and FI is the feature vector (1 X M dimension) of I. 

For OD segmentation, either SSVT or SSVVPPA is selected according to the 

localization algorithm (VT and VVPPA) resulted from the hybrid algorithm namely 

SSHA.  The choices of features and the decision models used in the experiments are 

provided in the experimental settings. The corresponding evaluation results and 

discussion are provided in Chapter 7. 
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5.2 Advantages of the HA 

The HA takes good results from both approaches, so its performance is usually better 

than VT and VVPPA. The HA can reduce the computational time twice instead of 

using individual approach. 

 

5.3 Disadvantages of the HA 

As the HA uses results from VT and VVPPA, thus it derives the disadvantages of VT 

and VVPPA as well. The performance of HA depends mainly on both approaches 

inevitably. 
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Chapter 6  

Experimental Setup and Evaluation Schemes  

This chapter describes the image collections as well as the evaluation schemes used in 

our experiments. The details about the retinal fundus image collections used in the 

experiments, the vessel segmentation algorithm, the ground truth data, the 

experimental setup, and the evaluation schemes are described in sections 6.1, 6.2, 6.3, 

6.4, and 6.5, respectively. 

 

6.1 Retinal Fundus Image Collections 

For our experiments, we used two collections of the retinal fundus images: the 

STructured Analysis of the REtina (STARE) [72] which is a standard database 

available on the internet. The fundus photographs from STARE were captured by a 

TopCon TRV-50 fundus camera with 35 degree field of view. Each image was 

digitized to create a    605 x 700 pixels at 24 bits per pixel. Another collection is a 

dataset originally collected to detect the signs of retinopathy of prematurity (ROP) by 

Dr. Sarah Barman with Kingston University of UK. All digital images from ROP 

were taken from patients with non-dilated pupils using a KOWA-7 non-mydriatic 

retinal fundus camera with a 45 degree field of view. The images were stored in JPEG 

format 640 x 480 pixels at 24 bits per pixel. 

As our approaches proposed to improve OD localization and segmentation 

emphasized on imperfect retinal images, so in this work we classify images into two 

categories. The bright, elliptic, and clear edge images of the ODs were classified 

visually as “fair”, the rest is considered ‘poor’. The number of the retinal images 

grouped by image quality and their average diameters of ODs’ ground truth are shown 

in Table 6.1. The examples of “fair” and “poor” retinal fundus images are displayed in 

Figure 6.1 and Figure 6.2 for ROP and STARE collections, respectively. 
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Table 6.1: Classification of the images into fair and poor  
 

Collections Image quality Number of images 
Average diameter of  

ODs’ ground truth (pixels) 

ROP 
Fair 60 49.03 

Poor 31 46.73 

STARE 

 

Fair 31 102.16 

Poor 50 105.61 

 

   
(a) Fair images  

   
 (b) Poor images 

Figure 6.1: Examples of “fair” and “poor” images from ROP 

   
(a) Fair images  

   
 (b) Poor images 

Figure 6.2: Examples of “fair” and “poor” images from STARE 
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6.2 Retina Vessel Extraction Software 

The vessel extraction algorithm namely Automated Retinal Image Analyser (ARIA) 

[73][74] developed by the Center for Vision and Vascular Science of Queen’s 

University of Belfast were applied to both image collections. The software can be 

downloaded from http://sourceforge.net/p/aria-vessels. The method is based on 

thresholding of wavelet coefficients over different spatial scales and vessel location 

refinement using a centerline spline fitting to point out the vessel edges in the image 

profile. The method is unsupervised and does not require masks or filters since they 

often must be tailored for a particular type or resolution of the image and require 

modifications to be applied to others. As opposed to that the choice of wavelet levels 

and thresholds does not need to be changed for similar images, following [73][74], we 

set the wavelet coefficient threshold to identify the lowest 20% of coefficients as 

vessels. Although this typically produces an oversegmented image, small isolated 

objects and holes inside the vessels can be easily removed and filled by the post-

processing, morphological operations. Figure 6.3 shows the example of final extracted 

retinal vessels where the outer pink lines are the vessel edges and each segment is 

labeled by the numbering system. 

 

 

Figure 6.3: Extracted retinal vessels using ARIA 
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6.3  Ground Truth 

To evaluate the numerical experiment of the proposed method, hand-drawn ground 

truth (GT) images were obtained from human experts. To minimize human expert 

discrimination, the ground truth was obtained from three ophthalmologists from 

Thammasat University Hospital, Thailand. Each ophthalmologist was asked to hand-

draw the OD contours on each retina image from two collections three times. The 

variability of the experts is taken into account in term of reliability. The voting 

overlapping score is defined as the ratio of an area in the GT images that at least two 

GTs agree on a part of OD to the area obtained from the union of the three GT 

contours. The inter-observer variability is determined as the score from the three GT 

contours obtained by three experts. The inter-observer variability values of the experts 

are 0.86 and 0.91 for the ROP and STARE collections, respectively. Figure 6.4 shows 

the area where at least two experts agree. The intra-observer variability is determined 

as the score from the three GT contours obtained by the same expert. The intra-

observer variabilities of each expert are 0.92 and 0.93 on average for the ROP and 

STARE collections, respectively. 

 

Figure 6.4: Illustration of finding the voting overlapping score from GT contours 

(blue, red, and green circles are given GT contours obtained by the first, second, and 

third experts, respectively) 
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6.4 Settings 

6.4.1 For VT Approach 

Our two collections of the test images have been obtained from different devices with 

different lighting conditions. Therefore, they require different sets of thresholds which 

are obtained by the quadratic regression. We trained the method using the classic 70-

30% ratio between the training and the testing data.  The thresholds used for vessel 

selection of the vessel clustering algorithm were obtained by using quadratic 

regression on the training set of each collection.  Following thresholds are computed: 

 
T

l
- the minimal acceptable length of the vessel for a particular image (shorter vessels 

will be eliminated), 
 
T

t
- the minimal acceptable thickness, 

 
T

f
- the maximum 

acceptable intensity of the vessel relative to the background, 
 
T

d
- the maximum 

distance between the clusters which can be merged into a new cluster, 
 
T

L
- the 

minimum acceptable size of the cluster, TΩ and 
 
T

VT
  the thresholds used in the 

convergence test are required. Figure 3.4 and Figure 3.5 in Chapter 3 illustrate the 

threshold selections applied to the ROP and the STARE set, respectively. 

 

6.4.2 For VVPPA Approach 

To obtain the decision model of leading vector classification, we employed Gaussian 

Radial Basis Function kernel (RBF) of Support Vector Machine (SVM) applied onto 

the training set of collection of vessel features. The decision models for leading vector 

classification are shown in Figure 6.5 and Figure 6.6 where red and blue markers 

represent the feature values of the leading and non-leading vectors, respectively. The 

X, Y, Z-axes represents the normalized values of 3 features-opposite angle, the 

tortuosity, and the intensity, respectively. The black line indicates the decision 

boundary of the classifications after applying feature selection method. Accuracies of 

classification models on testing set are 96.61% and 94.11% for ROP and STARE, 

respectively. 
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Figure 6.5: Decision model of leading vector classification for ROP, red – data of the 

leading vectors and blue – data of the nonleading vectors 

 

 

Figure 6.6: Decision model of leading vector classification for STARE, red – data of 

the leading vectors and blue – data of the nonleading vectors 

 

6.4.3 For SSVT Approach 

To identify OD blob using SS, the decision tree as shown in Figure 6.7 is applied on 

to set of blobs’ features: blob size (s), compactness (c), and VT-score (v). 
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Figure 6.7: SSVT decision trees for test collections: (left) ROP collection and (right) 

STARE collection 

 

6.4.4 For SSVVPPA Approach 

Seventy-percent of all feature records are then trained to define the competent 

decision tree model and the rest of feature records is for the testing set. The 

corresponding decision model requires thresholds for the PPA score, size, entropy, 

compactness, and intensity denoted by p, s, e, c, and i, respectively as shown in Figure 

6.8. The intensity has been excluded. The modified algorithm is called the space scale 

algorithm with the vessel vector based phase portrait analysis (SSVVPPA). The 

following decision tree is used for classification of OD and nonOD. 

 

Figure 6.8: SSVVPPA decision trees for test collections: (left) ROP collection and 

(right) STARE collection 
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6.4.5 For Hybrid Approach 

The both image collections were trained to obtain a rule for OD localization. The 

features of vectors derived from VVPPA was considered mainly as the basis model 

rather than those of VT due to the fact that features obtained from VT take 

considerably long computational time. 

The feature selection for training set mainly relies on VVPPA approach which are the 

number of BifV, the number of SVV, and PPA score obtained from VVPPA. One 

decision system model applied for both ROP and STARE collections is represented in 

Figure 6.9. 

  

Figure 6.9: Decision system model of hybrid approach for OD localization 

 

6.5 Evaluation 

Two evaluations were used for OD localization and segmentation.  The evaluation 

scheme for OD localization is as follows.  If the approximate OD location is 

contained entirely inside the ground truth’s contour, it is considered a correct location 

of the OD.  The ratio of the correct cases to the total number of images yields the 

average accuracy. We evaluated the performance of all methods for OD localization 

by average accuracy. 
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We evaluated the performance of the OD segmentation using two standard schemes: 

sensitivity and positive predictive value (PPV). The first one reveals the correctness 

while the second on reflects completeness of the obtained solution. The sensitivity is 

defined to be the ratio of the number of pixels detected correctly as the OD to the total 

number of pixels detected as the OD. The PPV is the ratio of number of pixels 

detected correctly as the OD to the total number of pixels of the OD from the ground 

truth. These two measurements can be calculated based on four values, namely: 

 The true positive (TP) rate: the number of OD pixels correctly detected 

 The false positive (FP) rate: the number of non-OD pixels wrongly detected as 

OD pixels 

 The false negative (FN) rate: the number of OD pixels not detected 

 The true negative (TN) rate: the number of non-OD pixels correctly identified 

as non-OD pixels 

and its demonstration are defined in Figure 6.10. 

 

 

Figure 6.10: The four values demonstration as set 

 

6.6  Experiment 

We compared our proposed OD localization approaches: VT, VVPPA, and HA with 

the Lu’s circular transformation method (CTM) [44] and Fuzzy Convergence (FC) 

method [4]. To evaluate the efficiency of OD localization, the proposed approaches 

   Segmented 

image 

Ground truth 

image 

TP FN FP 

TN 



58 

 

were applied on one hundred seventy-two retinal images from the ROP and STARE 

collections.  

Three variations of the SS which included information of scores VT, VVPPA, and 

HA, so-called respectively, SSVT, SSVVPPA, and SSHA are also tested against the 

SS without these information and also against the CTM OD segmentation algorithms.  

The results of the experiments are provided in the next chapter. 
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Chapter 7  

Experimental Results and Discussion 

In this chapter, we report and analyze results of our proposed approaches to the 

collections of the retinal images. For OD localization, we compared results of our 

three proposed approaches (VT, VVPPA, and HA) to find an approximate location of 

the OD against the Fuzzy Convergence (FC) method [4] and a recent modification of 

the circular transform proposed in [44] (LU).  For OD segmentation, we compared the 

results of those approaches combined with the SS (SSVT, SSVVPPA, SSHA) against 

the SS. The numerical results of the OD localization and segmentation approaches are 

provided in section 7.1 and 7.2, respectively. The discussions about the results are 

given in section 7.3. 

 

7.1 Numerical Experiments of the Approaches in Locating the OD 

Figure 7.1 shows samples of qualitative results of five approaches applied to eight 

selected images. Our proposed approaches: VT, VVPPA, and HA generally perform 

better than the existing methods (FC and CTM). The numerical accuracies of 5 

different OD localization approaches for all images classified by the fair and poor 

qualities are shown in Table 7.1. 

The results shows that in terms of accuracy, the proposed approaches VT, VVPPA, 

and HA noticeably outperform FC by 6.22, 8.84, and 9.84 in absolute improvement 

respectively for both fair and poor sets on STARE database. Both VVPPA and HA 

reach the same highest accuracy as CTM of 100% for the fair case of STARE 

collection. As we assert that our proposed approaches work better than CTM on both 

test collections, the absolute improvement shows outperformance in accuracy for fair 

quality images by 1.72, 5.84, 5.84, and for poor quality images by 14.12, 8.67, 16.12 

through VT, VVPPA, and HA approaches, respectively. 

For the poor quality images of the STARE collection, VT and VVPPA slightly 

underperform CTM respectively by 4.00 and 2.00 whereas HA has the equivalent 

performance to CTM. When compared to FC, the accuracy results show slightly 



60 

 

higher number of absolute improvement by 6.00, 8.00, and 10.00 using VT, VVPPA, 

and HA, respectively. For the ROP collection, since there is no information about the 

accuracy of FC, we cannot compare the performances of our proposed approaches 

with it.  For the poor quality images of the ROP collection, VT, VVPPA, and HA 

outperform CTM considerably on absolute improvement by 32.25, 19.35, and 32.25, 

respectively. 

For the fair quality images of STARE collection, VT shows degradation against CTM 

by 3.23 whereas VVPPA and HA are shown equivalence in numerical results. In 

contrast to the results obtained from the ROP collection, the absolute improvement 

are reported the performances against CTM by 6.67, 11.67, and 11.67 for VT, 

VVPPA, and HA, respectively. VT, VVPPA, and HA are reported better 

performances on STARE fair quality images against FC by 6.45, 9.68, and 9.68 of 

absolute improvement respectively. Remark that the comparisons of our approaches 

against FC on ROP are unable to verify due to the unavailable information.   

VVPPA generally works better than VT on STARE, and fair set of ROP. VT 

outperforms VVPPA only for the poor quality images of ROP’s collection. As the HA 

selectively uses results of VT and VVPPA, it improves the accuracy, the highest 

average accuracy of up to 98.00 for poor images and as high as 100.00 for fair 

images.  

For all image collection, the absolute improvements of VT, VVPPA, and HA show 

noticeably better than CTM by 14.12, 8.67, and 16.12, respectively for the poor sets, 

and 1.72, 5.84, and 5.84, respectively for the fair sets. 

Furthermore, all three proposed approaches (VT, VVPPA, and HA) significantly 

outperform CTM with the absolute improvement 19.46, 15.51, and 21.96, respectively 

on the ROP collection. The numerical experiments show the degradation 3.62 and 

1.00 through VT and VVPPA, respectively while HA works equally against CTM for 

the STARE collection. 
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Figure 7.1: Examples of OD locations obtained from different approaches on eight 

images, Ground truth –black solid line, FC – green circle, CTM – blue square, VT – 

red triangle, VVPPA – pink diamond, and HA –white hexagon. 
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Table 7.1: Accuracy of the OD location using FC, CTM, VT, VVPPA, and HA 
 

Collections ROP STARE Overall 

average 

for ROP   

Overall 

average 

for STARE 

Overall 

average 

for Fair  

Overall 

average 

for Poor 
Image Quality Fair Poor Fair Poor 

FC N/A N/A 90.32 88.00 N/A 89.16 N/A N/A 

CTM 88.33 64.52 100.00 98.00 76.42 99.00  94.16 81.26 

VT 95.00 96.77 96.77 94.00 95.88 95.38 95.88 95.38 

VVPPA 100.00 83.87 100.00 96.00 91.93 98.00 100 89.93 

HA 100.00 96.77 100.00 98.00 98.38 99.00 100 97.38 

 

7.2 Numerical Experiments of the Approaches in Detecting the OD Region 

In this section, we provide the results of the OD segmentation from our OD 

localization approaches combined with the Scale Space (SS) algorithm proposed by 

Duanggate et al. [68]. SSVT, SSVVPPA, and SSHA are compared with the existing 

conventional OD segmentation approaches: CTM and SS.   

The numerical results between the comparison-based methods and the proposed 

methods of two major evaluations: sensitivity and positive predictive value (PPV) are 

presented in Table 7.2. The bold values represent the best result in a particular 

category. 

Table 7.2: Accuracy of the OD segmentation using CTM, SS, SSVT, SSVVPPA, and 

SSHA 
 

Evaluation Methods ROP STARE Average 

on all 

collection 

Average 

for  

Fair sets 

Average 

for  

Poor sets 

Fair Poor Fair Poor 

Average 

Sensitivity 

CTM 74.29 61.28 72.59 41.23 62.35 73.44 51.25 

SS 80.39 45.51 57.95 43.27 62.20 69.17 44.39 

SSVT 82.47 58.18 62.40 45.76 64.26 72.43 51.97 

SSVVPPA 82.47 55.39 64.84 47.91 62.65 73.65 51.65 

SSHA 82.47 58.18 64.84 47.93 63.35 73.65 53.05 

Average 

PPV 

CTM 66.42 46.39 84.66 69.89 66.84 75.54 58.14 

SS 86.08 53.01 67.09 59.18 66.34 76.58 56.09 

SSVT 87.41 83.85 74.14 74.59 80.00 80.77 79.22 

SSVVPPA 87.41 74.71 76.12 72.39 77.66 81.76 73.55 

SSHA 87.41 83.85 76.12 74.39 80.44 81.76 79.12 
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Figure 7.2: Examples of OD regions: 1-ground truth, 2-SSVT, 3-SS, 4-CTM, and 5- 

SSVVPPA, or 6-SSHA 

From the results in the Table 7.2, our proposed approaches perform better than the 

comparison-based methods for fair quality set of ROP collection, for both sensitivity 

and PPV evaluation schemes. The absolute improvements of SSVT, SSVVPPA, and 

SSHA over CTM are all equal 8.18 for sensitivity and all equal 20.99 for PPV. In 

comparison, the absolute improvements of SSVT, SSVVPPA, and SSHA over SS’s 

are all the same 2.08 for sensitivity and all the same 1.33 for PPV.  

It has been shown that the sensitivity in ROP poor collection of SSVT, SSVVPPA, 

and SSHA against CTM shows degradation slightly in OD detecting by 3.1, 5.89, and 
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3.1, respectively. While SSVT, SSVVPPA, and SSHA noticeably outperform SS with 

the absolute improvement 12.67, 9.88, and 12.67, respectively.   

For the fair set of STARE, the approaches carry out noticeably sensitivity degradation 

against CTM by 10.19, 7.75, and 7.75 for SSVT, SSVVPPA, and SSHA, respectively 

but bring the slight absolute improvement against SS by 4.45, 6.89, and 6.89, 

respectively.  For the poor sets, our proposed approaches improve sensitivity slightly 

on SS and report the absolute improvement in average by 2.49, 4.64, and 4.66, for 

SSVT, SSVVPPA, and SSHA, respectively.    

For PPV, the performances of our proposed methods compared against CTM and SS 

are as follows. For the fair set of ROP, the absolute improvements of SSVT, 

SSVVPPA, and SSHA over CTM are all equal to 20.99 and over SS are also equal to 

1.33. While the poor set reports the absolute improvement of SSVT, SSVVPPA, and 

SSHA against CTM significantly by 37.46, 28.32, 37.46, respectively and against SS 

by 30.84, 21.7, and 30.84, respectively. 

For STARE collection, SSVT, SSVVPPA, and SSHA turn out the PPV degradation 

against CTM in fair set by 10.52, 8.54, and 8.54, respectively and yield the absolute 

improvement against SS by 7.05, 9.03, and 9.03, respectively. In poor collection, our 

proposed approaches improve PPV over both CTM and SS considerably. The 

improvements over CTM are 4.7, 2.5, 4.5, and over SS are 15.41, 13.21, 15.21, 

respectively for SSVT, SSVVPPA, and SSHA. 

Furthermore, the general performance of average sensitivity for both collections 

delineates SSVT that produces the largest absolute improvement on a small scale by 

1.91 and 2.06 against CTM and SS respectively whereas SSHA returns the highest 

absolute improvement of average PPV against CTM and SS substantially by 13.6 and 

14.1, respectively. 

Alternatively, SSVVPPA and SSHA approaches show the largest absolute 

improvement in the general performance of average sensitivity and PPV for the fair 

set of both collections by 0.21 and 6.22 against CTM and 4.48 and 5.18 against SS, 

respectively. For the poor set of both collections, SSHA is reported to show the 
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largest average sensitivity by absolute improvement 1.80 and 8.66 against CTM and 

SS respectively while SSVT yields the greatest average PPV in 21.08 of the absolute 

improvement against CTM and SSHA produces the maximum average PPA 

considerably by absolute improvement 23.03 against SS. 

Generally the proposed approaches outperform SS and CTM regardless of the quality 

of the images and for each collection of data. In particular, when the image quality is 

poor, the proposed approaches outperform the other two approaches in terms of PPV 

considerably. 

It should be noted that in [68] SS was found to be superior with regard to the OD 

segmentations based on the morphological operations [38] and the Circular Hough 

Transform applied to ROP [40]. Moreover, in [44] Lu has been claimed to outperform 

methods [48][49][50][75]. Therefore, the proposed approaches outperform the above-

mentioned methods as well with a greater advantage. 

It is worth noting that the SSHA is the integration on improvement among our 

proposed approaches (VVPPA and VT) to produce the optimal accuracy. The average 

absolute improvement on all collection by SSVT, SSVVPPA, and SSHA against 

CTM is respectively 1.93, 0.3, and 1.00 for the sensitivity and 13.16, 10.82, and 13.6 

for the PPV. In addition, the average absolute improvement on all collection by 

SSVT, SSVVPPA, and SSHA against SS is respectively 2.06, 0.45, and 1.15 for the 

sensitivity and 13.66, 11.32, and 14.1 for the PPV. 

Although CTM is claimed to be the fastest, its performance sturdily requires the 

optimum threshold on the gray level to select possible candidates for the center of the 

OD and the number of radial segments used to verify the circularity of the object 

boundary. Lu also claimed that the OD center nearly always lies within the first 20% 

brightest pixels within the probability map of the OD. However, there are a number of 

pathology images for which it is not always correct. In turn, the more this threshold is 

increased, the more computational time is produced. For instance, changing the 

percentage of the brightest pixel threshold from 20 to 60% double it. In addition, 

changing the angular step between the required radial segments from 6° to 2° increase 
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the computational time of CTM by a factor of 10. Our methods have been 

programmed in MATLAB and require in average about 3 minutes processing a 

standard database image 600x750 on a Dell computer with 3.30 GHz Intel Core i3 

Processor and 4GB of random access memory. Table 7.3 shows the computational 

time in average of SSVT, SSVVPPA, and SSHA against CTM. 

 

Table 7.3: The computational time CTM vs. our proposed approaches 
 

Percentage of 

test pixels 

(%) 

No. of radial 

line segments 

Average time: 

CTM (mins) 

Average Time (mins) 

SSVT SSVVPPA SSHA 

20 40 1.57 

4.85 2.55 2.85 
20 180 6.63 

60 40 4.29 

60 180 18.84 

 

Furthermore, the HA processes faster than the VT approach approximately twice, 

which is about 2 minutes for each image. 

 

7.3 Discussions 

In this section, we explain the cases that our proposed methods do not work. 

 

 

Figure 7.3: Inconclusive cases by VT (red triangle) and SSVT (blue circle) 

approaches 
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There are images where VT and SSVT fail as illustrated in Figure 7.3 and Figure 7.5 

(right). Those images are usually characterized by unclear vascular networks or with 

noise and shadows of which its shape is  similar to the vessels. 

Figure 7.4 illustrates two failure cases of OD detection and segmentation using 

respectively the VVPPA and the SSVVPPA approaches. Even though the vessel 

network is distinguishable partially, there is a part of the image with uneven contrast 

between vessels and surroundings. As shown in Figure 7.4 (left), the extracted vessels 

are formed asymmetric structure. On the other hand, non-uniform illumination (bright 

refraction along retina edges) and the wider area of small lesoins presence in Figure 

7.4 (right) can sensitively affect vessel segmentation resulting the false OD 

segmentation. 

 

  

Figure 7.4: Inconclusive cases by SSVVPPA approach 

As illustrated in Figure 7.5, two inconclusive cases in OD detection using the 

proposed approaches show the retinal images from poor collection in ROP and 

STARE. Retinal vessels are almost indistinguishable from background in Figure 7.5 

(left) and the presence of vessel-like refraction, undesired illumination of too bright 

light, and deformed vessels are in Figure 7.5 (right) due to inadequate patient 

cooperation such as poor fixation or inability to stay still during the procedure. Even 

though, OD locating and detecting on these two cases can be success by CTM and SS. 
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Figure 7.5: Inconclusive cases by HA (both VT and VVPPA): Green square - HA and 

black line - GT 
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Chapter 8  

Conclusions and Recommendation for Future Work 

In this chapter we summarize the main findings of our research, and recommend some 

areas for future work in section 8.1 and 8.2, respectively. Finally, in section 8.3 we 

discuss some other perspectives relating to this dissertation. 

 

8.1 Thesis Summary 

A number of automatic optic disk (OD) detection techniques have been proposed and 

some of these techniques reported a success rate of up to one hundred percent. Most  

OD detection techniques rely on features such as the size, shape, brightness, grey 

level, and contrast level of the OD. Such techniques generally only perform well with 

good quality images, showing a clear OD which is free from pathological 

abnormalities. However, they often fail to localize the OD in images of retinas with 

pathological features or in images of poor quality in which some of the expected 

features of the OD are absent. Due to the fact that the OD is the convergence points of 

the vessel networks and the vessel networks are usually present and traceable to 

localize the OD even in poor quality retinal images, we propose three methods for 

automatic OD localization and segmentation in retinal images based on the retinal 

vascular networks.  

To localize the OD, three novel approaches have been proposed; the so-called Vessel 

Transform (VT), Vessel Vector based Phase Portrait Analysis (VVPPA), and Hybrid 

Approach (HA). VT approximates the location of the OD by finding the centroid of a 

collection of points of which the total sum of the distances from each point in this 

collection to all vessel clusters is minimum. VVPPA overcomes the OD localization 

problem by exploiting the fact that branch vessels are typically thinner and of low 

contrast than the main vessels, forming acute angles to the main vessels that typically 

lead to the center of the OD. To get the OD, the vessels are represented with vectors. 

The directions of vectors are determined based on the vessel features: the opposite 

angle, thickness, and contrast. Vectors adopted from the Mahfouz’s approach for 

localization of the OD and the synthesized bouncing vectors which are specially 
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created to ensure the inside convergence are also included in the base vessel vectors to 

enhance the performance. These vectors are used to interpolate vectors at the grid 

points in the image. The region where these interpolated vectors converge is assumed 

to be the location of the OD. To analyze the convergence region, Phase Portrait 

Analysis is formulated. The HA selects when to use VT or VVPPA based on a set of 

image features, which are used to train a decision tree. 

To obtain the OD boundary, our VT, VVPPA, and Hybrid methods are integrated 

with the OD segmentation algorithm proposed by Duanggate et al. [68] based on SS. 

The integration generates three new segmentation methods namely SSVT, SSVVPPA, 

SSHA. The numerical VT and PPA scores contained from the VT and VVPPA, 

respectively, are used as additional features in the OD selection process of the SS 

[68]. To manipulate OD segmentation for our HA, either SSVT or SSVVPPA is 

selected according to the VT and VVPPA localization algorithms resulting from the 

hybrid algorithm. 

We have tested the proposed approaches on two retinal fundus image databases: 

public (STARE) and local (ROP). There are a total of one hundred seventy-two 

images for these databases. Each database is divided into two sets by image quality, 

fair and poor, to test the performance of the algorithm in each group. We have 

demonstrated that all proposed OD localization methods considerably outperform the 

existing methods in terms of average accuracy across the whole collection of images. 

When comparing only the proposed approaches, the HA yields the highest results 

with 100% accuracy for the fair set of both databases, and 97.38 % for the poor set. 

For the segmentation algorithms, we evaluated the performance using Positive 

Predictive value (PPV) and sensitivity. The baseline methods we used as a 

comparison are CTM [44] and SS [68]. Results show that generally our proposed 

approaches’ performances are satisfactorily comparable to the base line methods. 

Specifically, the proposed approaches considerably outperform the baseline methods 

for the poor sets of images, and show slightly improved performance on the fair set. 

Among the proposed methods, SSVVPPA and SSHA yield the highest PPV and 

sensitivity. SSHA and SSVVPPA achieve the same values of 81.76% for PPV and 
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73.65% for sensitivity on the fair set of images. SSVT obtains the highest PPV of 

79.12% while HA obtains the highest sensitivity of 53.05% for the poor set of images. 

Precise OD identification is essential for computer-assisted diagnosis from retinal 

fundus images. The OD is a crucial component of the retina that can itself be used to 

detect many abnormalities in the eye, as well as being a key reference point for many 

other components in the retinal image analysis. The state-of-art results obtained in this 

work shows the wide applicability of our proposed techniques, which enable 

improved OD detection and segmentation accuracies in both fair and poor quality 

images. These findings can be used to improve computer-aided diagnosis in the field 

of ophthalmology, particularly when dealing with images of poor quality. 

 

8.2 Recommendation for Future work 

The following areas are proposed for future work, building on the successes 

demonstrated in this project. 

 Instead of SS, another effective segmentation method such as circular 

transform by Lu et al. [44], watershed algorithm by Welfer et al. [75], or GVF 

snake [35] could be adapted to trace the OD contour.  

 Applying a nature-inspired optimization algorithm such as particle swarm 

optimization or the firefly algorithms to trace randomly along blood vessels 

until they converge in the OD may also improve performance further. 

 

8.3 Other perspectives 

The methods proposed in this work still leave some gaps behind that could be 

mentioned on other perspectives as following. 

 As an alternative to leading vector construction from a bifurcation, the vectors 

can be formulated differently to enhance the performance. Figure 8.1 shows 

another ways to turn vessels into vectors. 
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Figure 8.1: Illustration of an alternative way to construct vectors 

 

The alternative vector construction could consider to construct three vectors 

pointing to the corresponding junction. A vector which is found the smallest 

opposite angle would be pointed outward from the corresponding junction. 

This concept could strengthen vector flow patterns in particular convergence 

pattern configuration. 

 Further optimization of our methods is still required to improve running times. 

 Our proposed approaches have thus far only been tested on retinal fundus 

images with a 35 and 45 degree field of view. Validating these results on 

larger images with a greater field of view would further enhance their utility. 

 Finally, integrating unsupervised techniques, such as a genetic algorithm, for 

determining the optimum parameters for our methods for a given dataset 

would also make them more generally applicable to new unseen databases. 
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