
Ref. code: 25595522040228JSV

VISION-BASED HAND GESTURE RECOGNITION FOR
REAL-TIME EMBEDDED SYSTEM PLATFORMS

BY

JAKKRIT DULAYATRAKUL

A THESIS SUBMITTED IN PARTIAL FULFILLMENT OF

THE REQUIREMENTS FOR THE DEGREE OF

MASTER OF ENGINEERING (INFORMATION AND

COMMUNICATION TECHNOLOGY FOR EMBEDDED SYSTEMS)

SIRINDHORN INTERNATIONAL INSTITUTE OF TECHNOLOGY

THAMMASAT UNIVERSITY

ACADEMIC YEAR 2016

Ref. code: 25595522040228JSV

VISION-BASED HAND GESTURE RECOGNITION FOR
REAL-TIME EMBEDDED SYSTEM PLATFORMS

BY

JAKKRIT DULAYATRAKUL

A THESIS SUBMITTED IN PARTIAL FULFILLMENT OF
THE REQUIREMENTS FOR THE DEGREE OF

MASTER OF ENGINEERING (INFORMATION AND COMMUNICATION
TECHNOLOGY FOR EMBEDDED SYSTEMS)

SIRINDHORN INTERNATIONAL INSTITUTE OF TECHNOLOGY
THAMMASAT UNIVERSITY

ACADEMIC YEAR 2016

Ref. code: 25595522040228JSV

Acknowledgments

The authors would like to thank Thailand Advance Institute of Science and

Technology (TAIST), Sirindhorn International Institute of Technology (SIIT),

Thammasat University, National Science and Technology Development Agency

(NSTDA), Tokyo Institute of Technology, and National Research University Project

(NRU), Thailand Office of Higher Education Commission for financial support.

ii

Ref. code: 25595522040228JSV

Abstract

VISION-BASED HAND GESTURE RECOGNITION FOR REAL-TIME

EMBEDDED SYSTEM PLATFORMS

by

Jakkrit Dulayatrakul

Bachelor of Engineering in Aviation Maintenance Engineering, Rangsit University,

2011

Master of Engineering (Information and Communication Technology for Embedded

Systems), Sirindhorn International Institute of Technology, 2017

The purpose of this thesis is to develop a real-time, vision-based hand gesture

recognition system on an embedded platform that can be used for accurate and

efficient human-machine interaction under dynamic lighting conditions. A monocular

camera will be employed to capture a human user situated 50-80 cm from the system

to control media playback of an MP3 player using six different hand gestures. The

application design is divided into three main parts, including image processing, control

interface, and MP3 playback. The image processing part includes camera interfacing,

hand segmentation, and finger detection. The control interface consists of a finite

machine to connect the output of hand gesture recognition with MP3 playback

commands. The real-world problem of changes in light intensity and illumination is

directly considered by using HSV color segmentation and UGV background

subtraction to provide accurate performance, sensitivity, and robustness in both dim

and bright conditions. This is then combined with top-hat transform to produce a

simple and precise algorithm for recognizing hand gestures, which includes open palm

(OP), forefinger (FF), forefinger and thumb (FT), fist (FS), leftward thumb (TL), and

rightward thumb (TR). In addition, the execution time of the algorithm is analyzed on

iii

Ref. code: 25595522040228JSV

an embedded system. By using parallel processing and multi-thread programming to

handle the recognition of both the left and right hand regions simultaneously, the

average processing time is found to be 545 ms or approximately 1.83 fps, which is

sufficient to ensure smooth operations.

Keywords: HMI, Hand gesture, Image processing, Embedded system.

iv

Ref. code: 25595522040228JSV

Table of Contents

Chapter Title Page

Signature Page i

Acknowledgments ii

Abstract iii

Table of Contents v

List of Figures viii

List of Tables x

List of Acronyms xi

1 Introduction 1

1.1 Hand Gesture Recognition 1

1.2 Real-Time System and Hand Gesture Recognition 3

1.3 Motivation 4

1.4 Problem Statement 5

1.5 Objectives 5

1.6 Scope and Limitation 5

1.7 Thesis Organization 6

1.8 Publication 6

2 Literature Review 8

2.1 Embedded Systems for Image Processing 8

2.1.1 Embedded System 8

2.1.1.1 Software-based Architecture 8

2.1.1.2 Hardware-based Architecture 9

2.1.2 Criteria of Image Processing 11

2.1.3 Real-time Image Processing on Embedded system 11

2.2 Image Processing for Hand Gesture Recognition 13

2.2.1 Hand Segmentation 14

v

Ref. code: 25595522040228JSV

2.2.1.1 Color Segmentation 14

2.2.1.2 Background Subtraction 16

2.2.2 Finger Detection 18

2.2.2.1 Convex Hull 19

2.2.2.2 K-Curvature 21

2.2.2.3 Center of Gravity Distance Measurement 22

2.2.2.4 Other Methods 23

3 System Design 26

3.1 Application Design 26

3.2 Hardware Design 27

3.2.1 Raspberry Pi2 Module B 28

3.2.2 Raspberry Pi camera 28

3.2.3 Expand memory of Raspberry Pi2 module B 29

3.3 Software Design 29

3.4 Acquiring an Image from Camera 30

3.5 Environment Setting 33

3.6 Multithreading Implementation 33

3.7 Controller Interface 34

3.8 MP3playback Application 35

4 Hand Segmentation 39

4.1 Overview of Hand Segmentation 39

4.1.1 Pre-Processing 39

4.1.2 Color Segmentation 41

4.1.3 Background Subtraction 43

4.1.4 AND Operation 47

4.1.5 Post-Processing 48

4.2 Discussion of the Hand Segmentation Output 49

5 Finger Detection and Gesture Recognition 50

vi

Ref. code: 25595522040228JSV

5.1 Finger Detection by Using Top-Hat Transform. 50

5.1.1 Top-Hat Transform 50

5.1.2 Distance Transformation 52

5.1.3 Center of Gravity 53

5.1.4 Distance Measurement 54

5.2 Hand Gesture Recognition 55

5.3 Discussion of Finger Detection and Hand Gesture Recognition 57

6 Experimental Results 58

6.1 Dynamic Lighting Condition 58

6.1.1 Light Intensity 58

6.1.2 Performance Analysis 59

6.1.2.1 Background Subtraction 61

6.1.2.2 Color Segmentation 62

6.2 Effect of Skin Color 65

6.3 Real-Time Implementation 66

6.3.1 Execution Time 66

6.3.2 Serial and Parallel Processing 67

7 Conclusion 69

References 70

vii

Ref. code: 25595522040228JSV

List of Figures

Figures Page

1.1 Human-machine interaction [35]. 1

1.2 Hand anatomy and gestures. 2

1.3 Glove-based and vision-based hand gesture recognition. 2

1.4 Comparison of PC vs embedded systems. 4

2.1 Architecture of software-based embedded system [40]. 9

2.2 Common architecture of hardware-based embedded systems [9]. 10

2.3 CLPD architecture [9]. 10

2.4 FPGA architecture [9]. 11

2.5 The image processing pyramid [9]. 12

2.6 The algorithm flow chart of [46] and [17]. 14

2.7 The RGB cube [23]. 15

2.8 The YCrCb cube[22] and HSV cone [23]. 16

2.9 Example of clockwise and counter-clockwise direction with three

reference points [41]. 19

2.10 Determining a simple convex polygon [41]. 20

2.11 The convex hull method for finger detection [20]. 21

2.12 Example error of convex hull method for finger detection [20]. 21

2.13 The K-curvature method for finger detection [20]. 22

2.14 The perimeter curvature method for finger detection [20]. 24

2.15 Circle detection with pixel grouping [16]. 24

2.16 Middle axis method [18]. 25

3.1 Hand gesture pattern for MP3 player. 27

3.2 Raspberry Pi2 Module B and Pi camera. 28

3.3 32 GB Micro SD card for Raspberry Pi2 module B 29

3.4 Software design flowchart. 31

3.5 Control finite state machine. 31

3.6 The image acquisition process by using Userland and OpenCV 32

viii

Ref. code: 25595522040228JSV

3.7 Region of interest and the distance between the user and the camera. 34

3.8 Controller interface software flow chart 36

3.9 The MP3player flow chart. 37

4.1 Hand segmentation flow chart 40

4.2 Pre-processing image. 41

4.3 Human skin color segmentation 43

4.4 5×5 custom Sobel operator mask 44

4.5 Background subtraction output image. 47

4.6 Output image from combination of color space segmentation and

background subtraction methods. 47

4.7 Post-processed output image from combination of color space

segmentation and background subtraction methods. 48

5.1 Finger detection flow chart 51

5.2 Finger detection using top-hat transform. 52

5.3 Euclidean distance transform 5×5 mask. 52

5.4 Comparison between palm region and distance transform of palm

region. 53

5.5 The example image of finger detection. 55

6.1 Three different light intensity levels. 59

6.2 Six different hand gestures under bright lighting conditions. 60

6.3 Six different hand gestures under dim lighting conditions. 60

6.4 RGB color segmentation under bright (a)-(c) and dim (d)-(f) conditions. 62

6.5 Comparison of sensitivity for each color space using UGV-based

background subtraction method. 63

6.6 YCrCb color segmentation under bright (a)-(c) and dim (d)-(f)

conditions. 64

6.7 HSV color segmentation under bright (a)-(c) and dim (d)-(f) conditions. 64

6.8 FF hand-gesture recognition of 5 users with different skin color. 65

6.9 Hue circle and threshold values for 5 users with different skin color. 65

6.10 The proposed method implemented using serial and parallel processing. 67

ix

Ref. code: 25595522040228JSV

List of Tables

Tables Page

2.1 Comparison of execution time between ARM and PC in [46]. 12

2.2 The comparison of execution time between FPGA and PC in [17]. 12

3.1 The setting parameter for capturing the image. 32

4.1 Human skin threshold color in three different color space 42

5.1 The relationship between number of finger and hand gesture 56

6.1 Light intensity 59

6.2 Sensitivity of RGB Color Space 61

6.3 Sensitivity of YCrCb Color Space 61

6.4 Sensitivity of HSV Color Space 61

6.5 Execution time of each process. 66

x

Ref. code: 25595522040228JSV

List of Acronyms

HMI Human-Machine Interaction (HMI)

ARM Advanced RISC Machines

OS Operating Systems

FPGA Field Programmable Gate Arrays

SAD Sum of Absolute Difference

API Application Programming Interface

MMAL Multi-Media Abstraction Layer

OP Open Palm

FF Forefinger

FS Fist

FT Forefinger and Thumb

TL Leftward Thumb

TR Rightward Thumb

MCU Main Controller Unit

CMOS Complementary Metal-Oxide-Semiconductor

UGV Unit Gradient Vector

SE Structure Element

TP True Positive

TN True Negative

FP False Positive

FN False Negative

GPIO General Port Input-Output

ms Millisecond

µs Microsecond

fps Frame Per Second

xi

Ref. code: 25595522040228JSV

Chapter 1

Introduction

Communication methods between humans and machines are often referred to as

human-machine interaction (HMI), which evolved into human-computer interaction

(HCI) with the rise of modern computer systems [2]. HMI is concerned with

ergonomics as it relates to human perception and action. Human perception includes

vision, hearing, touch, and movement, while human action refers to force, speech, and

gestures. Conventional methods for HMI usually take the form of plug-in devices,

such as a keyboard, mouse, joystick, and so forth. Fig. 1.1 illustrates the typical HMI

process in which the human user perceives information on a display and responds

using an actuator to send commands to the machine. The machine executes those

commands and outputs the results on to the display as feedback to the user. At present,

HMI has become an important part of our digital life. Currently, one of the most

popular and useful form of HMI is hand gesture recognition because of its capabilities

and usability that can be applied to various applications and platforms.

1.1 Hand Gesture Recognition

Hand gesture is a physical, non-verbal form of communication using visible hand

postures. The anatomical description of the human hand is shown in Fig. 1.2(a),

consisting of the palm in the center that supports five extension digits, which are the

thumb, index/fore, middle/long, ring, and small/little fingers. The movements and

Figure 1.1 Human-machine interaction [35].

1

Ref. code: 25595522040228JSV

(a) Anatomy of human hand
[5]

(b) Basic hand gestures [15]

Figure 1.2 Hand anatomy and gestures.

(a) Glove-based [21] (b) Vision-based [3]

Figure 1.3 Glove-based and vision-based hand gesture recognition.

relative positions of the fingers and palm are defined as hand gestures can be used as

sign language and communication tools, as shown in 1.2(b).

In computer science, hand gesture recognition is an important form of HMI. It can

be implemented in two different ways, which are 1) glove-based interface, such as the

“data glove”, and 2) vision-based using a camera, as shown in Fig. 1.3 [33]. The data

glove uses accelerometers and fiber optic bend-sensors to determine hand position,

movement, and finger bending. Vision-based systems employ cameras to capture

images of the hand and then recognize each hand gesture using image processing and

computer vision algorithms. Since there is no physical contact or limitations on the

user, vision-based hand gesture recognition is more natural and comfortable but offers

lower performance than glove-based interfaces. Furthermore, the accuracy is

dependent on environmental factors, such as illumination changes and background

clutter.

2

Ref. code: 25595522040228JSV

1.2 Real-Time System and Hand Gesture Recognition

An important goal in the development of HMI is the processing speed, which

should be executed in real-time while considering the average time for human

response. According to [30], a real-time system must satisfy bounded response-time

constraints or risk severe consequences, including failure. In addition, the logical

correctness of the system is based on both the correctness of the outputs and their

timeliness. A real-time system can be classified into three categories based on

consideration of the response time or deadline:

• Hard real-time: the system must respond within the deadline, otherwise the

system will fail.

• Soft real-time: the system should respond within the deadline, otherwise the

system performance will degrade but will not fail.

• Firm real-time: the system is tolerant of a small, fixed number of missed

deadlines, beyond which the system will fail.

Hand gesture recognition is a soft real-time system that is subjected to both hardware

and software performance constraints. The system speed depends greatly on hardware

specifications of camera sensors, CPU, system memory, and architecture.

Furthermore, hardware platforms can be classified as general-purpose computers

(PCs) or embedded systems. The main differences between PCs and embedded

systems include physical appearance, performance of the processor, memory

resources, and power consumption. In general, the PC will have a large physical size

with higher performing processor and memory units, as well as more power

consumption. Fig. 1.4 shows the comparative size of a PC and embedded system. The

challenge is therefore how to implement real-time gesture recognition on an embedded

system with limited physical resources and performance.

Software performance depends on the programming language, algorithm, and

execution time. Many programming languages support real-time system design, such

as Ada, C, C++, C#, and Java [30]. The choice will therefore depend on the hardware

platform, application, and open-source libraries. For HMI and similar systems, the

3

Ref. code: 25595522040228JSV

(a) General-purpose personal computer [19]

(b) Embedded system [44]

Figure 1.4 Comparison of PC vs embedded systems.

performance of the algorithm includes accuracy, robustness, and processing speed. In

order to ensure that real-time deadlines are met, software optimization is necessary to

improve the execution time.

1.3 Motivation

HMI applications using hand gesture recognition have been an active field of

research since 1980 to the present [33]. In particular, vision-based systems using only

one camera offers a low-cost alternative to glove-based interfaces that is more natural

and comfortable for the user. Due to the recent growth and widespread adoption of

low-cost embedded systems, such as Arduino and Raspberry Pi, that are compatible

with different camera sensors, this research is motivated to develop a real-time

vision-based hand gesture recognition system on an embedded platform for HMI

applications. This system should offer the portability and power consumption

advantages of embedded systems, while performing accurately in real-time and

maintain robustness to illumination changes.

4

Ref. code: 25595522040228JSV

1.4 Problem Statement

The main problem statement of this research is to develop an accurate vision-based

hand gesture recognition system that is robust to dynamic lighting conditions while

satisfying real-time requirements. Dynamic lighting refers to sudden changes in image

intensity that often occur in real-world image processing applications for various

reasons. This greatly effects the performance of conventional color segmentation and

background subtraction algorithms. Therefore, robustness to illumination changes is

an important part to ensure performance and accuracy of the hand gesture recognition

system. Moreover, the algorithm is to be implemented on an embedded system with

limited computing and memory resources. In order to ensure soft real-time

performance for smooth interfacing, software optimization will be necessary.

1.5 Objectives

The objectives of this research are as follows:

• Design a vision-based hand gesture recognition system to control an MP3 player

on an embedded platform.

• Implement a hand gesture recognition algorithm that is robust to dynamic lighting

conditions.

• Optimize the embedded software to satisfy soft real-time system requirements

and ensure smooth operations.

1.6 Scope and Limitation

This study will focus on developing a vision-based hand gesture recognition

system to be implemented on a stand-alone embedded platform to control media

playback of an MP3 player. The image will be captured by a monocular camera and

processed on Raspberry Pi2 Module B with a quad-core ARM processor.

Implementation of the image processing algorithms will utilize the OpenCV

open-source library and multi-threading programming using the OpenMP open-source

library. The distance between the human user and the camera set-up is specified as 50

5

Ref. code: 25595522040228JSV

to 80 cm, corresponding to a region-of-interest (ROI) for each hand of 120×120 when

the image resolution is 320×240. The pattern of hand gestures to be recognized in this

study consists of six hand postures, which are open palm (OP), forefinger (FF),

forefinger and thumb (FT), fist (FS), leftward thumb (TL), and rightward thumb (TR).

This will translate into six commands for the MP3 player as follows: initialization,

play, pause, stop, next track, and previous track. The user skin color is assume to be

typical for people with Asian ethnicity. The environment is a fluorescent-lit room with

complex, cluttered background that can be set to dark, dim, and bright conditions. The

soft real-time constraint is set to ensure smooth performance based on an average user

interaction response time of one command per second.

1.7 Thesis Organization

The structure of this thesis starts with Chapter 2 that contains the literature review

describing related methods used for this work. Chapter 3 describes the system design,

showing the concept and organization of both hardware and software components.

Chapter 4 discusses the hand segmentation used to robustly extract the hand region

under dynamic lighting condition. Chapter 5 presents the algorithm for finger

detection and gesture recognition, including classification of hand postures. Chapter 6

includes the experimental results and analysis. Lastly, Chapter 7 presents the

conclusion of this work.

1.8 Publication

The results of this research have been published in two international conference

proceedings and submitted to a national journal:

• Jakkrit Dulayatrakul, Itthisek Nilkhamhang, Wutthiphat Covanich and Nobuhigo

Sugino, “Adaptive combination board using ARM and FPGA for real-time

control and image processing of a quad-rotor platform”, 5th International

Conference on Information and Communication Technology for Embedded

System (IC-ICTES), 2014

6

Ref. code: 25595522040228JSV

• Jakkrit Dulayatrakul, Itthisek Nilkhamhang, Toshiaki Kondo and Pawin

Prasertsakul, “Robust implementation of hand gesture recognition for remote

human machine interaction”, 7th International Conference on Information

Technology and Electrical Engineering (ICITEE), 2015

• Pawin Prasertsakul, Jakkrit Dulayatrakul, Itthisek Nilkhamhang and Toshiaki

Kondo, “A real-time hand segmentation method using background subtraction

and color information”, Journal of the Songkalnakarin Journal of Science and

Technology (SJST), 2016 [submitted]

7

Ref. code: 25595522040228JSV

Chapter 2

Literature Review

This chapter provides the literature review concerning background knowledge and

information utilized by this thesis. It includes sections on embedded systems for image

processing, hand segmentation algorithms, and hand gesture recognition methods.

2.1 Embedded Systems for Image Processing

This thesis will implement hand gesture recognition on an embedded system using a

monocular camera. Therefore, it is necessary to understand the software and hardware

architecture of embedded systems and the requirements for real-time image processing.

2.1.1 Embedded System

An embedded system is essentially a computer with embedded components capable

of satisfying real-time constraint requirements [9]. It is always smaller and lighter than

a general purpose personal computer (PC), while consuming less power and containing

limited memory resources. The programmable embedded system can divided into two

categories, which are software-based and hardware-based.

2.1.1.1 Software-based Architecture

Software-based architecture usually includes a central processing unit (CPU) and

an arithmetic logic unit (ALU). The CPU operates to feed the required data to the

ALU by fetch/decode/execute cycle per system clock. The duty of the ALU is to

sequentially compute the data received from the CPU. An example of a software-based

processor is shown in Fig. 2.1 [40], where PC is a program counter register used to

hold the address of the current instruction. ACC is an accumulator that holds a data

value. The ALU performs some operation on the binary operands. IR is the instruction

register containing the current instruction to be executed, and memory is the stored

data. Although the software-based architecture is processed serially, it can provide

parallel processing for multi-core systems, which has separate ALU per core and

8

Ref. code: 25595522040228JSV

Figure 2.1 Architecture of software-based embedded system [40].

allows the developer to design parallel tasks. Examples of this architecture include

advanced RISC machines (ARM) and digital signal processors (DSP). Typically, the

software-based architecture is implemented directly by using computer languages such

as C/C++ and assembly. Recently, micro-controllers capable of running operating

systems (OS), such as Linux, allow for further compatibility with other languages,

such as Python.

2.1.1.2 Hardware-based Architecture

Hardware-based architecture employs programmable generic circuit that can be

reconfigured, and thus is not limited by the number of ALUs when compared to

software-based systems [9]. For this reason, hardware-based architecture supports

parallel processing. The most common systems consist of programmable logic arrays

containing AND-OR interconnections (PLA), programmable array logic (PAL), and

progammable read-only memory (PROM), as shown in Fig. 2.2. Other variations

include complex programmable logic devices (CPLD) based on PAL or

field-programmable gate arrays (FPGA) based on PROM, as shown in Fig. 2.3.

In general, FPGA is a more flexible structure than CPLD, making it the most

popular hardware-based architecture for embedded systems at the current time. The

basic architecture of FPGA is shown in Fig. 2.4, which includes logic blocks,

interconnects, I/O blocks, configuration control, and clock control. Each logic block

contains a logic cell, consisting of a look-up-table (LUT) and latches. The LUT is used

9

Ref. code: 25595522040228JSV

(a) Programable Array
Logic

(b) Programmable Logic
Array

(c) PROM

Figure 2.2 Common architecture of hardware-based embedded systems [9].

Figure 2.3 CLPD architecture [9].

to configure the function of the input between 3 to 6 inputs. The latch is used to

register the output. Interconnects are the programmable interconnection array between

different logic blocks. The I/O block acts as the input-output port with external

devices. The clock control is used to manage synchronization with other devices and

components. The configuration control stores the status of all switches, structures, and

options of the FPGA. Programming the hardware-based architecture can be done using

hardware languages, such as HDL, VHDL, and Verilog. Alternatively, mid- to

high-cost FPGAs are compatible with MATLAB Simulink.

10

Ref. code: 25595522040228JSV

Figure 2.4 FPGA architecture [9].

2.1.2 Criteria of Image Processing

In [9], the criteria for image processing is described as a pyramid, shown in Fig.

2.5, with three levels: low, intermediate, and high. The lowest level is pre-processing,

which is an image-to-image transformation to perform distortion corrections, contrast

enhancements, filtering, or edge detection. This level considers a high volume of pixel

array for calculation and thus requires more time to process than other levels. The

intermediate level corresponds to segmentation, which transforms an image into region-

on-interest or features. It involves less data volume than low level processing. Lastly,

high level image processing employs the feature data from the intermediate level to

classify and recognize objects. The data used at this level is no longer image-based.

2.1.3 Real-time Image Processing on Embedded system

From the previous discussion, embedded systems can be classified as either

software- or hardware-based architectures. Many works have implemented image

processing algorithm on both platforms in real-time. For example, You Lei et al. [46]

presented a real-time hand gesture recognition algorithm implemented on an ARM

Cortex-A9 quad core processor and compared the execution time to a personal

computer (Intel Core i3-500, 4GB DDR3 memory), as shown in Table 2.1. The

11

Ref. code: 25595522040228JSV

Figure 2.5 The image processing pyramid [9].

Table 2.1 Comparison of execution time between ARM and PC in [46].

ARM PC
Skin Model Building 12.03 sec 10.06 sec
Hand Segmentation 0.43 sec 0.38 sec

Hand Model Building 0.25 sec 0.19 sec
Hand Gesture Recognition 0.02 sec 0.02 sec

Table 2.2 The comparison of execution time between FPGA and PC in [17].

FPGAs PC
Skin Model Building 0.04 sec 0.289 sec

execution time performance of this software-based, serial embedded processor is

similar to a general-purpose PC with much higher specifications.

Similarly, G. Liu et al. [17] performed color segmentation to detect human skin

color using FPGAs. The FPGA utilized in the paper was a Cyclone 2 EP2C20F484C6

with video processor SAA7113H as an analog-to-digital converter (ADC), two 1 MB

SRAMs as image buffers, and a video interface. The frame rate when implemented

using FPGAs was compared to a PC (Pentium 4, 2.4 GHz, 1GB DDR memory) in

Table 2.2. It is noted that FPGAs can complete the image processing algorithm in 0.04

second or 25 frames per second (fps), which is faster than the PC at 0.289 second or

3.46 fps.

In comparing the two works, both use the same algorithm for color segmentation

based on Gaussian mixture model (GMM) with YCrCb. It is clear that FPGA, with its

parallel architecture, provides much faster performance than ARM or PC-based

12

Ref. code: 25595522040228JSV

systems. In fact, the limited number of ALUs available to ARM and PC systems

becomes a bottleneck for execution time, especially when dealing with large data size

or images. This is most prevalent for low or intermediate level image processing. The

flow chart for serial processing using ARM is compared to parallel processing using

FPGAs in Fig. 2.6. However, even though FPGAs can provide much higher frame

rates, it is harder to directly implement algorithms because of floating point value

conversions. This is shown by the example of converting from YCrCb to RGB using

ARM/PC, according to (2.1), and using FPGA, according to (2.2):

R = Y +1.402 · (Cr−128)

G = Y −0.344 · (Cb−128)−0.714 · (Cr−128)

B = Y +1.772 · (Cb−128) (2.1)

16 ·R = 16 ·Y +22 ·Cr−2871

16 ·G = 16 ·Y −6 ·Cb−11 ·Cr−2166

16 ·B = 16 ·Y +28 ·Cb−3629 (2.2)

Furthermore, implementation of complex, high level image processing algorithms

is more difficult on FPGAs, even using high-cost boards such as Vertex-5 XC5VLX50T

[38]. Therefore, it is concluded that both software- and hardware-based architectures,

represented by ARMs or FPGAs respectively, have different advantages depending on

the image processing task. ARM provides convenient programming tools and feedback

due to its single ALU implementation but suffers from execution time bottlenecking.

FPGA employs parallel processing to greatly reduce execution time and manage large

data sets but become harder to manage when dealing with complex algorithms.

2.2 Image Processing for Hand Gesture Recognition

Hand gesture recognition refers to a computer vision technique to determine and

classify hand postures from a stream of images captured by a camera. Thus, it requires

both low, intermediate, and high level image processing to achieve accurate and robust

13

Ref. code: 25595522040228JSV

(a) (b)

Figure 2.6 The algorithm flow chart of [46] and [17].

performance. Existing algorithms contain two main components for hand segmentation

and fingertip detection.

2.2.1 Hand Segmentation

Hand segmentation is a method for extracting the hand region from an image

frame. In general, there are two approaches based on color segmentation and

background subtraction. Furthermore, these two methods can be combined for hand

gesture recognition, as shown in [6], [43].

2.2.1.1 Color Segmentation

Color segmentation is commonly used to extract the hand from the input image by

detecting each pixel that has a color value within the range of human skin. Since 1931,

the International Commission on Illumination (CIE) specified the color space by

adapting the standard color curves to a set of three numbers from specific spectral

power distribution (SPD) [23]. RGB (red-green-blue) is the standard color space that

can be transformed to other color spaces, such as YCrCb, HSV, YUV, and vice versa

14

Ref. code: 25595522040228JSV

Figure 2.7 The RGB cube [23].

by mathematical conversion. Different color spaces have varying properties and

advantages for video transmutation and image processing. Each color space also have

different thresholds for human skin color segmentation. Normally, the standard color

spaces for hand gesture recognition are RGB, YCrCb, and HSV.

RGB is a simple color space based on the primary color of light (red-green-blue).

Video devices, such as a cathode ray tube (CRT), use this color space to reproduce the

color for each dot component. The mixture of RGB colors in different ratio produces

the cube in Fig. 2.7. The origin of the cube corresponds to black, where each RGB

value is equal to zero. The maximum value of RGB is white. Various researchers have

employed RGB for hand segmentation and skin color detection. In [34] and [47], the

RGB color space was implemented on FPGA platforms. Alternatively, [37] present the

combination of RGB and HSV for robust hand segmentation.

YCrCb color space was developed by the ITU-R BT.601-4 international standard

for digital video components [22]. Y refers to the luminance or grayscale color that

can be transformed from RGB. Cr and Cb represent the chroma components in red and

blue. Fig. 2.8(a) shows the compariosn of RGB and YCrCb cubes. Many researches

on human skin detection are based on the YCrCb color space, because it improves the

luminance effect by separating the brightness component from the color components

[7], [38], [46].

15

Ref. code: 25595522040228JSV

(a) YCrCb cube (b) HSV cone

Figure 2.8 The YCrCb cube[22] and HSV cone [23].

HSV color space is designed based on human perception and interpretation of

color [22]. It defines hue as a circle of colors, where each color is represented by a

degree of spectral composition. Saturation is used to refer to the proportion of light

and wavelength. Value corresponds to the intensity. The result is a cone-shaped color

space shown in Fig. 2.8(b). Several researches explore the use of HSV for hand

segmentation. Kook-Yeol Yoo [24] presents a hand segmentation method that is robust

to illumination by applying the HSV color space with Y or luma. An adaptive hand

segmentation method was proposed in [25] that combines HSV with TSL color space,

which gives an advantage because of the wide difference between skin and non-skin

color values. It improves the number of false positives by HSV color thresholding. In

[48], HSV was selected for hand gesture recognition because hue is a normalized color

and value can be used to distinguished between light and dark colors.

2.2.1.2 Background Subtraction

Background subtraction is a method for extracting a moving foreground object from

a stationary background. The concept is based on the difference between frames that

is measured by a distance function, such as sum-of-absolute-difference (SAD), sum-

16

Ref. code: 25595522040228JSV

of-squared-difference (SDD), and the Chebyshev distance according to (2.3)-(2.5). An

extensive discussion of background subtraction methods can be found in [4] and [27].

BSAD = |IBg− ICurr|> SADth (2.3)

BSSD = (IBg− ICurr)
2 > SSDth (2.4)

BChebyshev = max|IBg− ICurr|>Chebyshevth (2.5)

where BSAD, BSSD, and BChebyshev represent the difference in intensity values of each

pixels between the background image IBg and the current image ICurr as measured by

the SAD, SSD, and Chebyshev distance functions, respectively. If the difference is

greater than the threshold values specified by SADth, SSDth, or Chebyshevth, then the

pixel is considered a foreground object. This can be combined with color segmentation

to improve the result, as [1] showed by combining SAD with HSV to produce a hand

segmentation method that is robust under variable lighting conditions.

Alternatively, median or average background subtraction is an adaptive

background subtraction method that considers the average value of N previous frames

as the background image before applying subtraction:

IBg,avg =
1
N

N

∑
i=0

IPrev,i (2.6)

BMedian = |IBg,avg− ICurr|> Medianth (2.7)

where IBg,avg is the average intensity value of N previous frames and IPrev,i is the

intensity value of the previous frame at frame i. BMedian is the binary image output of

median background subtraction when the difference between IBg,avg and ICurr is greater

than a specific threshold Medianth. Due to the calculation of average intensity values

from N previous frames, this method requires more computational resources than

conventional background subtraction methods.

Lastly, [42] presents a background subtraction method using unit-gradient-vector

(UGV). UGV offers improved robustness and performance over conventional

background subtraction methods under illumination changes by using intensity

gradient normalization. Sobel edge detection is applied to both the background and

17

Ref. code: 25595522040228JSV

current frames to determine the intensity gradient vectors along the x- and y-axis:

Ix = I ·Sobel operation mask in x-axis (2.8)

Iy = I ·Sobel operation mask in y-axis (2.9)

The norm (nx and ny) of both the background and current frames are then calculated as

follows. It is sometimes necessary to avoid the divide-by-zero condition by setting a

minimum value for the denominator.

nx =
Ix√

(Ix)2 +(Iy)2
(2.10)

ny =
Iy√

(Ix)2 +(Iy)2
(2.11)

The difference between the norm of the background (nBg) and the current (nCurr) frames

is determined by background subtraction along both the x- and y-axis:

dx = nBg,x−nCurr,x (2.12)

dy = nBg,y−nCurr,y (2.13)

The Euclidian distance is used to calculate the resulting value of UGV background

subtraction. If the distance exceeds a certain threshold value, then the pixel is

classified as a foreground pixel. Furthermore, UGV can be combined with HSV hand

segmentation to improve robustness to dynamic lighting conditions [31].

dxy =
√
(dx)2 +(dy)2 (2.14)

2.2.2 Finger Detection

Finger detection involves the determination of the tip or center of each finger by

using mathematical models. This yields the position and number of fingers that can

then be used to classify hand gestures. Generally, the basic methods for finger detection

are convex hull, K-curvature, and center of gravity distance measurement.

18

Ref. code: 25595522040228JSV

(a) Clockwise (b) Counter-clockwise

Figure 2.9 Example of clockwise and counter-clockwise direction with three reference
points [41].

2.2.2.1 Convex Hull

The convex hull method was developed to determine the point or number of

polygonal contour images by counting the number of vertix and applying the cosine

law. The definition of a convex hull is the smallest convex polygon that encloses a set

of points [41]. The OpenCV library utilizes a convex hull algorithm based on

Graham’s method that scans in the counter-clockwise direction around three reference

points. From Fig. 2.9, the cross-product between
−−→
P0P1 and

−−→
P0P2 is obtained as:

−−→
P0P1×

−−→
P0P2 = (x1− x0)(y2− y0)− (x2− x0)(y1− y0) (2.15)

where
−−→
P0P1 is the direction vector of P0 to P1,

−−→
P0P2 is the direction vector or P0 to

P2, P0(x0,y0) is the common end point, P1(x1,y1) is the starting reference point, and

P2(x2,y2) is the new reference point. The cross-product of
−−→
P0P1 and

−−→
P0P2 determines the

clockwise or counter-clockwise direction by a positive or a negative value, respectively,

as shown in Fig. 2.9.

A counter-clockwise scan is started with the minimum coordinate along the y-axis

set as the starting point P0 to Pm with non-left turn, where m is the total number of

points of interest. If more than one point has the same angle, the farthest point from P0

is selected and the others are removed. This process is repeated until a convex hull as

formed, as shown in Fig. 2.10.

19

Ref. code: 25595522040228JSV

(a)

Figure 2.10 Determining a simple convex polygon [41].

Convex hull has been applied successfully for hand gesture recognition in [20] and

[32]. It provides the position of each finger tip, as shown in Fig. 2.11, which can then

be used to calculate the distance to the center of the palm for finger detection. However,

20

Ref. code: 25595522040228JSV

Figure 2.11 The convex hull method for finger detection [20].

Figure 2.12 Example error of convex hull method for finger detection [20].

convex hull cannot accurately determine certain hand gestures, such as a fist or when

multiple fingers have the same planar angle. For example, when convex hull is applied

to a fist, the knuckles are detected as multiple finger tips, as shown in Fig. 2.12.

2.2.2.2 K-Curvature

The K-curvature algorithm starts from searching for the corner point of a contour

and then computing the angle between two vectors that have a common end at Pi through

Pi+k and Pi−k. k is a constant value corresponding to a specific magnitude of Pi to Pi+k

and Pi−k, as show in Fig. 2.13. The angle is computed by the cosine law as:

21

Ref. code: 25595522040228JSV

Figure 2.13 The K-curvature method for finger detection [20].

a2 = b2 + c2−2bccos(α) (2.16)

m2
k = m2

i+k +m2
i−k−2mi+kmi−k cos(α)

m2
k = k2 + k2−2k2 cos(α) (2.17)

α = arccos
(

2k2−m2
k

2k2

)
(2.18)

where a, b, and c are the opposing sides of α , β , and γ angles. k is a constant value.

mi+k, mi−k are the magnitude of the vectors
−−−→
PiPi+k,

−−−→
PiPi−k and

−−−−−→
Pi+kPi−k. Setting the

specific value of k to tracking the common end point of two vector with k magnitude

will determine the peak of contour as finger and valley. Then using position classifier to

separate the finger and the valley as detected Pi. An example of K-curvature is shown

in Fig2.13 [20].

2.2.2.3 Center of Gravity Distance Measurement

The center of gravity method determines the center of each object by using the

geometric moments [26]:

Mpq =
∫∫

Ω

xpyqI(x,y)dxdy (2.19)

where I(x,y) is the intensity value of the image at position (x,y), Mpq is the (p,q)th

moment of I(x,y). In digital image processing, the double integration can be

22

Ref. code: 25595522040228JSV

approximated by a summation function as:

M̃pq = ∆
2

n

∑
i=0

n

∑
j=0

xp
i yq

jI(x,y) (2.20)

where M̃pq is the (p,q)th approximated geometric moment. ∆ is the sampling interval

as xi−xi−1 and y j−y j−1. The zero-order of the geometric moment gives the total mass

as M00. The first-order gives M10 and M01, which can be divided by M00 to obtain the

center of mass as x̃ and ỹ:

M̃00 = ∆
2

n

∑
i=0

n

∑
j=0

I(xi,y j) (2.21)

M̃10 = ∆
2

n

∑
i=0

n

∑
j=0

xiI(xi,y j) (2.22)

M̃01 = ∆
2

n

∑
i=0

n

∑
j=0

y jI(xi,y j) (2.23)

x̃ =
M̃10

M̃00
(2.24)

ỹ =
M̃01

M̃00
(2.25)

The center of gravity can be applied for finger detection by determining the center

of each finger and the center of the palm. The Euclidean distance and relative position

of each finger to the palm can then be used to classify each finger. This method was

shown in [32].

2.2.2.4 Other Methods

Other finger detection methods have also been developed, including perimeter

curvature, circle detection with pixel grouping, and middle axis method. A brief

discussion of each method is provided below.

The perimeter curvature method was developed in [20]. The concept of this

method is based on the eccentricity of the shape at the corner points. A low

eccentricity has a shape that is closer to a circle, which is similar to the fingertips. For

this reason, it can used to identify the location of each finger. This method starts by

23

Ref. code: 25595522040228JSV

Figure 2.14 The perimeter curvature method for finger detection [20].

(a) Open palm (b) One finger (c) Closed hand

Figure 2.15 Circle detection with pixel grouping [16].

eroding the image obtained from hand segmentation using distance transform, then

finding the perimeter of the hand. The position of the corner can be found by the

output of distance transform. The section of the detected corner is cropped to calculate

the perimeter and the eccentricity of the corner point, as shown in Fig. 2.14.

The circle detection with pixel grouping method identifies a finger by examining

groups of pixels that have a circular structured element. If the number of pixels in each

group is lower than a certain threshold, it is classified as a fingertip. This method is

sensitive to changes in distance between the user and the camera, as the distance

effects the size of the object pixel, leading to false detection error. The experiment

using this method was presented in [16] and shown in Fig. 2.15.

Lastly, the middle axis method scans the vertical position of the hand

segmentation image to determine the middle axis of each finger, as shown in Fig. 2.16.

24

Ref. code: 25595522040228JSV

(a) Hand with middle
axis

(b) Extracted
middle axis

(c)
Post-processed

image

(d) Final result

Figure 2.16 Middle axis method [18].

It then filters the image for specific row distances that corresponds to the finger width.

The mean value is determined and marked as the middle axis. Morphological erosion

and dilation is performed to obtain the final result. This method is a simple algorithm

for counting the number of fingers [18].

25

Ref. code: 25595522040228JSV

Chapter 3

System Design

This chapter discusses the design of the proposed remote control system for an

mp3 player using hand-gesture recognition. Firstly, application design and related

concepts are presented, including an explanation of system inputs and outputs. The

system hardware consists of an embedded controller and a camera module. The

required libraries and application-programming interface (API) are presented as part of

the software design. Finally, the environment setting is discussed, including the region

of interest used for image processing and the distance between the user and the system.

3.1 Application Design

According to the motivation discussed in Chapter 1, the main concept that will be

presented in this work is a real-time, stand-alone remote controller using robust

hand-gesture recognition as part of a man-machine interface that can operate in

dynamic lighting conditions. The system that will be controlled is an mp3 player or

other media playback device.

The application design starts with a user who can position their left or right hand in

various gestures, as shown in Fig. 3.1, which also describes the relationship between

each hand gesture and the corresponding media control command. The gestures that

are considered in the work are open palm (OP), forefinger (FF), fist (FS), forefinger

and thumb (FT), leftward thumb (TL), and rightward thumb (TR). The open palm is

used as an initialization/termination command to prompt media playback control. The

forefinger starts media playback, the fist stops playback and exits the track, and the

forefinger and thumb together pauses the media temporarily. The leftward and

rightward thumbs are used to skip to the next track or return to the previous track,

respectively.

The three main components of the system are the image processing hardware and

algorithm, controller interface, and media playback functionality. It is important to

design the software and hardware to achieve real-time operations.

26

Ref. code: 25595522040228JSV

(a) Open Palm. (b) Forefinger. (c) Fist.

(d) Forefinger&Thumb. (e) Leftward Thumb. (f) Rightward Thumb.

Figure 3.1 Hand gesture pattern for MP3 player.

3.2 Hardware Design

Hand-gesture recognition softwares are usually implemented on personal

computers with high-performance processors that support high-resolution images via a

camera. These computers are invariably of large size, heavy weight, and high power

consumption. Alternatively, this research requires a small, portable, and

power-efficient hardware. An embedded system would fulfill these requirements.

Currently, two types of cameras can be used for hand-gesture recognition:

monocular and stereo. Monocular cameras have a single lens that produces a

2-dimensional image. Stereo cameras have two lens that can be used to construct

3-dimensional images, containing depth information. As a 3-dimensional image would

contain more data than a 2-dimensional image, the resulting file size is also much

larger. The size of the image file has a significant effect on the computational time of

any image processing algorithm as it would require longer execution. Therefore, this

work chooses to employ a monocular camera, because the image size is more suitable

for processing on an embedded system in real-time.

The hand-gesture recognition algorithm will be implemented on an embedded

system with a main controller unit (MCU) that will handle all image processing tasks

and media playback functions. The MCU will also interface with a monocular camera

27

Ref. code: 25595522040228JSV

(a) Raspberry Pi2 Module B [13] (b) Raspberry Pi camera [12]

Figure 3.2 Raspberry Pi2 Module B and Pi camera.

to acquire the input image and display the results on an external monitor. The

hardware model used in this study is the Raspberry Pi2 Module B and its compatible

Raspberry Pi camera. More details and other specifications will be provided in the

following subsection.

3.2.1 Raspberry Pi2 Module B

Raspberry Pi is a popular, low-cost embedded platform running Debian LINUX

operating system. This work uses the Raspberry Pi2 Module B, shown in Fig. 3.2(a),

from the Raspberry Pi family because it was the newest module and highest

performance model at the time. This module includes a 900MHz, 32-bit quad-core

ARM Cortex-A7 processor and 1GB of RAM. Due to the quad-core processor, it is

possible to make use of the multi-core architecture for this application by multi-thread

parallel processing to decrease execution time. Other features of Raspberry Pi2

Module B are provided in [39].

3.2.2 Raspberry Pi camera

The Raspberry Pi camera, shown in Fig. 3.2(b), is a high-definition camera that

is compatible with all of the Raspberry Pi family. It uses an Omnivision 5647 CMOS

image sensor with fixed-focus lens and integrated IR filter, and has a resolution of 5-

megapixel. The maximum still-image resolution that it can capture is 2592×1944. For

video streaming, it can capture 1080p at 30 frames per second (fps), 720p at 60 fps, and

640×480p at 60 to 90 fps.

28

Ref. code: 25595522040228JSV

Figure 3.3 32 GB Micro SD card for Raspberry Pi2 module B

3.2.3 Expand memory of Raspberry Pi2 module B

The memory of Raspberry Pi2 module B is informed of the external 8 GB micro

SD card as the minimum requirement. The memory card used to support the OS, the

open-source library component and memory space. To prevent the memory run out,

the author has expanded the memory size to a 32 GB micro SD card. The compatible

memory card for Raspberry Pi can see in [14]. Thus using the 32 GB Kington micro

SDHC 10/32 GB 314336-016 A00LF Taiwan card for the implementation in this work

as shown in Fig 3.3.

After the installation of OS to the memory card, then going to Raspberry Pi

configuration then ”Expand File system” command and reboot. Then the OS will set

the memory space as 32 GB instead of the original memory size 8 GB.

3.3 Software Design

The software design section describes the program and system architecture of this

work. The program structure consists of the operating system, application

programming interface (API), and required libraries. The system architecture shows

the block diagram of this work and its synchronization. Both are shown in Fig. 3.4.

The operating system used in this work is Wheezy Debian LINUX that supports C

and C++ programming languages through the CMake compiler under MinGW. The

details of CMake and MinGW can be found in [8] and [28]. The API necessary for

interfacing between the MCU and camera is based on Userland library. This research

also employs OpenCV 3.0 beta library for basic image processing functions. Media

playback functionalities on the mp3 player are handled by LibAO and LibMPG123.

The last component is OpenMP library for multi-thread programming in C and C++.

29

Ref. code: 25595522040228JSV

The installation of Userland API and OpenCV follow the instruction in [36].

Although, this instruction is not compatible with the latest version OpenCV 3.0 beta

thus it requires to debug the protocol between them. Besides, video recoding and

reading with OpenCV need an additional library as FFMPEG and LibFAAC.

Furthermore, OpenCV allows OpenMP for multi-thread purpose. Thus it should be

reconfigured and reinstalled.

The system architecture is shown in Fig. 3.4. The three main components are the

image processor, control interface, and mp3 player. The image processor uses both

streaming and still images from the camera output for hand-gesture recognition. The

outputs of the image processor are the six recognizable hand postures. The control

interface acts as an intermediary between the image processor and the mp3 player, and

is constructed as a finite state machine shown in Fig. 3.5. This work defines two states

as idle and recognition. The system is initialized in the idle state and waits for the open

palm gesture to transition to the recognition state. While in the recognition state, the

algorithm will process the recognized hand posture to control the mp3 playback. The

machine will return back to the idle state when another open palm gesture is detected.

3.4 Acquiring an Image from Camera

As know, Raspberry Pi camera is compatible with Raspberry Pi2 module B and

can be accessed to capture the image directly from the command line function. The

command line function is not flexible to implement and convenient for image

processing. In this work, the implementation uses the specific library as Userland API

to corresponds with OpenCV library. The acquiring image from the camera by using

both library shows as a flow chart in 3.6.

First, the initialize step Multi-Media Abstraction Layer(MMAL) port to prepare

the camera connection which includes video and still image camera port. Setting the

capturing image that consists of resolution of the image, frame rate, bitrate and

capturing time as presents in Table 3.1. Camera setting for this implementation is set

as the default of Raspberry Pi camera. After that, Raspberry Pi camera capture and

sent the image data as YUV color space in three channels to the callback buffer then

30

Ref. code: 25595522040228JSV

Figure 3.4 Software design flowchart.

Figure 3.5 Control finite state machine.

convert the data to a matrix with OpenCV. Matrix format gives the comfortable to

work with the standard image processing function of OpenCV. Also, the image

processing can be implemented on this buffer as frame by frame computation and send

the output matrix image to the video port. At the end of capturing time, the port and

component will disable after video capture is finished.

31

Ref. code: 25595522040228JSV

Figure 3.6 The image acquisition process by using Userland and OpenCV

Table 3.1 The setting parameter for capturing the image.

Element Setting Value
Image width 320
Image height 240
Frame rate 30

Bitrate 17,000,000
Capturing time 36000 ms

32

Ref. code: 25595522040228JSV

3.5 Environment Setting

The experiment will be conducted under three lighting levels in a room with

fluorescent lamps that can be adjusted for bright, dim, and dark. This will be used to

study the robustness of the hand-gesture recognition algorithm under dynamic lighting

conditions. More details of the lighting conditions are given in Chapter 6. The image

resolution is limited to 320×240 in order to achieve real-time processing at 30 fps

using Raspberry Pi2 Module B with Userland API. Two regions of interest (ROIs) are

defined for both the left and right hands, where the left ROI is located between (200,0)

to (320,120) and the right ROI is located between (0,0) to (120,120). The left and right

ROIs are indicated by red and blue boxes in Fig. 3.7(a). Each region has a size of

120×120, which corresponds to an approximate distance between the hand and

camera of 50 to 80 centimeters. The distance between the user and the camera is

shown in Fig. 3.7(b). Furthermore, this resolution helps to ensure that the hand gesture

recognition can be completed faster and in real-time than higher resolution images.

3.6 Multithreading Implementation

From the software design present the benefit to using the multithreading

programming with OpenMP to process three module that including of image

processing, controller interface and MP3 player independently. To design, the

multithreading application should be concerned about the number of thread, shared

variable and global variable. The number of thread is the number of processors that

use to execute the program. Shared variable is usually used as the shared input data

that for each thread but the global variable can as both as input and output.

The implementation of multithreading in this work start from enabling the parallel

processing by develops under the“#pragma omp parallel”. Then allow the

multithreading with independent execution with “#pragma omp section nowait” after

that implement the image processing, controller interfaces and MP3 playback in a

different thread under each of “#pragma omp section”. Finally, three thread will join

back to process the serial processing again at the end of parallel processing section.

33

Ref. code: 25595522040228JSV

(a) Region of interest

(b) Distance between user and camera

Figure 3.7 Region of interest and the distance between the user and the camera.

When applying the multithreading to the image processor, its can perform to

recognize two hand gesture recognition simultaneously by parallel processing on two

threads. The process is starting at the acquiring the image and pre-image processing

with serial processing then folk two regions of hand image two thread and apply the

hand gesture recognition. Joining them together at the end of the algorithm then send

the output to the controller interface which locates in the second thread.

3.7 Controller Interface

Controller interface is the connector between the hand gesture recognition part and

MP3playback part as introducing in Chapter 3. The implementation of its is based

on the control finite state machine which consists of two states as an idle state and

recognition state and show in Fig3.8. IIn general, the finite state machine is always

implemented inform of a switch-case statement by setting state of finite state machine

34

Ref. code: 25595522040228JSV

as the condition.

At the idle state, it is starting with reset the hand posture input then giving the delay

in 1 second. Next is the OP classification to transmute the hand gesture input to enter

the state of machine. Then, the system will go to recheck the OP hand posture again

with additional delay as same as the concept of software debounce [10]. The software

debounces using to confirm the input is correct in specific time. If the input is not

always as OP until the recheck, the state will stay at idle state else the state will transit

to the recognition state.

When entering to the recognition state, the input should be reset to prompt the

new incoming input for MP3 The construct of the recognition state is more complex

when compared to the idle state. Because of this state decide to six hand postures

which are OP, FF, FT, FS, TL, and TR to response to six MP3player commands as

initialization/termination, play, pause, stop, FWD, and BWD. The construction of them

also using the software debounce but the state stays at recognition state instead except

the OP which goes back to the idle state.

3.8 MP3playback Application

This thesis has implemented the MP3 player which has six commands as

initialization/termination, play, pause, stop, forward track(FWD) and backward

track(BWD) to correspond to the designed six hand postures. The software flow chart

of the music player is presented in 3.9(a) to (c).

Following the flow chart has designed in three main loop as MP3player-loop,

play- loop, and pause-loop. Starting with the main loop as MP3player-loop, this loop

is the infinite loop to provide the MP3player independently run at all time on the third

thread. The main loop has initialized the MP3playback at first then checking play

command if play the system will go to play-loop else still at this loop respectively.

Furthermore, this loop allows the user to FWD or BWD the track during play

command does not activate.

In play-loop, it starts with the initialization of the music track before the

playingtrack-loop inside. The playingtrack-loop has a duty to play music track until

35

Ref. code: 25595522040228JSV

(a) The Idle state

(b) The recognition state

Figure 3.8 Controller interface software flow chart

the music has ended or has the interrupt of MP3 player command. If the music track

was ended, the author design the automatical next track as the general music playback.

Discussing of the interrupt command in the playingtrack-loop, it can be divided in two

36

Ref. code: 25595522040228JSV

(a) The main loop (b) The play loop

(c) The pause loop

Figure 3.9 The MP3player flow chart.

conditions as non-pause and pause command. Non-pause command is including of

FWD, BWD, and stop the music track. FWD and BWD will close the track first then

break the playingtrack-loop through the play-loop to initialize a new music track

which supports FWD or BWD command then play the track. On the others hand stop

command is different, stop command will close the track then go out the play-loop

back to the main loop. Pause command will jump to the pause-loop but this loop still

inside the playingtrack-loop then paused the music track at that time.

37

Ref. code: 25595522040228JSV

Last, the pause-loop is the loop which the music has temporary stop playing until

the first input command as play command to run the music track at that time again. If

the receiving command is not played such as pause, stop, FWD, and BWD. The

system does not react to the pause command during pause-loop is active. Also to the

playingtrack-loop, stop command will close the track then exit the pause-loop to the

main-loop. FWD and BWD will close the song as same as in playingtrack-loop, but it

is still in the pause loop thus the music can not play until the play command is

received.

38

Ref. code: 25595522040228JSV

Chapter 4

Hand Segmentation

Hand segmentation is an integral part of this research that allows the relevant hand

region to be extracted from the image. This begins with pre-processing of the raw,

intensity-based image obtained from the camera. Color segmentation is then used to

identify pixels with skin color information, and the performance for different color

spaces are compared under various lighting conditions. Background subtraction using

both conventional sum-of-absolute-difference (SAD) and proposed unit-gradient-vector

(UGV) is also used to isolate the hand region. The results from color segmentation and

background subtraction are then combined together using the AND operation to obtain

the complete hand image. In the final step, post-processing is used to filter out false

positives/negatives and smooth the image. Details of each procedure will be presented

in this chapter.

4.1 Overview of Hand Segmentation

The flowchart of hand segmentation is shown in Fig. 4.1 with the following

sequence: pre-processing, color segmentation, background subtraction, AND

operation, and post processing. It will be handled as part of the image processing

software described in Chapter 3. Both right- and left-hand gesture recognition is

supported, with each hand treated separately using multi-threading in OpenMP, such

that Thread 1 and Thread 2 correspond to the right- and left-hands, respectively.

4.1.1 Pre-Processing

Pre-processing is the initial step to prepare the image for color segmentation and

background subtraction. It involves acquiring the original image from the camera,

determining the region of interest (ROI), and conversion into an intensity-based image.

The original image is captured from the Pi camera using Userland API in YUV, at

a resolution of 320×240 and 30 FPS. YUV color space is widely used in cameras,

analog, and digital television because it gives more natural colors for human vision

39

Ref. code: 25595522040228JSV

Figure 4.1 Hand segmentation flow chart

than RGB color space [22] It consists of three channels for luma or intensity-based

image (Y), chrominance component (U), and color information (V). YUV color space

is sometimes called YPbPr in an analog component video and YCrCb in a digital

component video. UV are the deviations of gray in blue-yellow and red-cyan axes. It

is important to first convert YUV to RGB in order to be compatible with OpenCV.

Two ROIs are defined according to Chapter 3 for the right- and left-hands, as

shown in Fig. 4.2(a). Each ROI has a resolution of 120×120 in the RGB color space.

The hand segmentation and detection algorithm is similar for both regions, thus this

work will proceed to discuss the proposed method only for the right-hand.

40

Ref. code: 25595522040228JSV

(a) RGB image

(b) Current frame
image

(c) Reference
background image

(d) Intensity-based
image of current

frame image

(e) The
intensity-based

reference
background image

Figure 4.2 Pre-processing image.

The background and current RGB image frames are defined as FBg and FCurr,

respectively, as shown in Fig. 4.2 (b) and (c). It is also necessary to convert the RGB

images to intensity-based images ICurr and IBg using (4.1), which is referenced

from[45]:

I = 0.299 ·R+0.587 ·G+0.114 ·B (4.1)

where I is the intensity-based pixel value, R is the red-channel pixel value, G is the

green-channel pixel value, and the B is blue-channel pixel value of the image.

4.1.2 Color Segmentation

Color segmentation is used to extract the hand region from the frame by using

human skin color in any of the color spaces. This work examines three different color

spaces: RGB which is the most basic color space; YCrCb which is widely used for

human skin detection; and HSV which has strong robustness to dynamic lighting

41

Ref. code: 25595522040228JSV

Table 4.1 Human skin threshold color in three different color space

Color Space Channel Value
Min Max

Rth 45 255
RGB Gth 40 150

Bth 40 150
Yth 0 255

YCrCb Crth 77 127
Cbth 133 255
Hth 0 54

HSV Sth 10 255
Vth 0 255

conditions. Therefore, it is necessary to convert the RGB image into YCrCB and HSV

images before color segmentation is performed. The conversions are conducted using

(4.2) and (4.3), as referenced in [29]:

Y = 0.299 ·R+0.587 ·G+0.114 ·B

Cr = R−Y ·0.713+128

Cb = (B−Y) ·0.564+128

fYCrCb = f (Y,Cr,Cb) (4.2)

V = max(R,G,B)

S =

V −min(R,G,B
V) ,if V 6= 0

0 ,Otherwise

H =

60(G−B)

(V−min(R,G,B)) ,if V = R

120+60(B−R)
V−min(R,G,B) ,if V = G

240+60(R−G)
V−min(R,G,B) ,if V = B

fHSV = f (H,S,V) (4.3)

Each color space has different threshold values for human skin color segmentation.

These values are shown in Table 4.1. The range of threshold values for each channel

are represented as Rth, Gth, Bth, Yth, Crth, Cbth, Hth, Sth, and Vth. The output of color

segmentation is a binary image according to (4.4). If the values of a pixel are in the

42

Ref. code: 25595522040228JSV

(a) RGB (b) YCrCb (c) HSV

Figure 4.3 Human skin color segmentation

threshold range, the pixel will become white to indicate the detected pixel, otherwise it

will become black. The outputs of color segmentation are shown in Fig. 4.3 for RGB,

YCrCB, and HSV.

BRGB =

255 ,if R∈Rth , G∈Gth,and B∈Bth

0 ,Otherwise

BYCrCb =

255 ,if Y∈Yth, Cr∈Crth,and Cb∈Cbth

0 ,Otherwise

BHSV =

255 ,if H∈Hth, S∈Sth,and V∈Vth

0 Otherwise
(4.4)

where BRGB, BYCrCb, BHSV are binary images resulting from color segmentation using

RGB, YCrCb, and HSV, respectively.

From Fig. 4.3, it is observed that RGB yields the most false detections because of

its characteristic mixture of red, green, and blue that gives a wide range of threshold

values. YCrCB and HSV are both able to accurately detect the hand shape.

4.1.3 Background Subtraction

Background subtraction is an image processing method for classifying a moving

object from the background image. This research explores both the conventional

sum-of-absolute-difference (SAD) and unit-gradient-vector (UGV) algorithms for

background subtraction.

43

Ref. code: 25595522040228JSV

(a) horizontal mask (b) vertical mask

Figure 4.4 5×5 custom Sobel operator mask

SAD is a simple background subtraction algorithm that uses an intensity-based

image of the background as a reference and subtracts it with an intensity-based image

of the current frame according to (4.5):

BSAD =

255 ,if |IBg - ICurr| > SADth

0 ,Otherwise
(4.5)

where BSAD is the binary image output from SAD background subtraction, IBg is the

intensity-based reference background image pixel, ICurr is the intensity-based current

frame image pixel, and SADT h is the threshold value of SAD algorithm to classify

foreground pixel from background pixel. This work uses 15 as the threshold value. If

the SAD output is greater than SADT h, that pixel will become the foreground pixel,

otherwise it will become the background pixel.

UGV-based background subtraction is described in [42]and [31] for the purpose of

hand segmentation. This method starts by obtaining the partial derivative of IBg in both

the x- and y-axis using a 5×5 custom horizontal and vertical mask shown in Fig. 4.4.

The partial derivative equation is shown in (4.6) for the reference background image.

IBg,x = IBg · the 5×5 custom horizontal mask

IBg,y = IBg · the 5×5 custom vertical mask (4.6)

44

Ref. code: 25595522040228JSV

where IBg,x is the partial derivative of IBg in the x-axis and IBg,y is the partial derivative of

IBg in the y-axis. Note that the value of IBg,x and IBg,y should be divided by 4590 before

determining the norm because the intensity-based image in OpenCV has a maximum

value of 255 and minimum as 0, thus after the dot product the maximum value becomes

4590.

Next, the norms of IBg,x and IBg,y are calculated according to 4.7 and eq 4.8:

nBg,x =

(IBg,x)√

(IBg,x)2+(IBg,y)2
,if
√

(IBg,x)2 +(IBg,y)2 > 0.035

0 ,Otherwise
(4.7)

nBg,y =

(IBg,y)√

(IBg,x)2+(IBg,y)2
,if
√

(IBg,x)2 +(IBg,y)2 > 0.035

0 ,Otherwise
(4.8)

where nBg,x is the normalized UGV of IBg in the x-axis, and nBg,y is the normalized

UGV of IBg in the y-axis. The value of 0.035 prevents the denominator from becoming

zero. If the denominator value is lower than this threshold, the value of nBg,x and nBg,y

will be set to zero immediately.

This process is repeated for ICurr to obtain the partial derivative of ICurr in the x- and

y-axis, according to (4.9):

ICurr,x = ICurr · the 5×5 custom horizontal mask

ICurr,y = ICurr · the 5×5 custom vertical mask (4.9)

where ICurr,x is the partial derivative of ICurr in the x-axis and ICurr,y is the partial

derivative of ICurr in the y-axis. Similar to IBg,x and IBG,y, ICurr,x and ICurr,y should also

be divided by 4590.

Finding the UGV by using the norm calculation of ICurr,x and ICurr,y that shown in

eq 4.10 and 4.11.

nCurr,x =

(ICurr,x)√

(ICurr,x)2+(ICurr,y)2 ,if
√

(ICurr,x)2 +(ICurr,y)2 > 0.035

0 ,Otherwise
(4.10)

45

Ref. code: 25595522040228JSV

nCurr,y =

(ICurr,y)√

(ICurr,x)2+(ICurr,y)2 ,if
√

(ICurr,x)2 +(ICurr,y)2 > 0.035

0 ,Otherwise
(4.11)

where nCurr,x is the normalized UGV of ICurr in the x-axis,, and nBg,y is the normalized

UGV of ICurr in the y-axis. Likewise, a threshold value of 0.035 is specified for the

denominator to avoid the divide-by-zero condition.

The resulting images nBg,x and nBg,y are subtracted with nCurr,x and nCurr,y as shown

in (4.12) and (4.13):

dx = nBg,x−nCurr,x (4.12)

dy = nBg,y−nCurr,y (4.13)

where dx is the differential result of UGV-based background subtraction in the x-axis

and dy is the differential result of UGV-based background subtraction in the y-axis.

Furthermore, dx and dy are evaluated using Euclidian distance in (4.14). The result

is the differential UGV background subtraction image between x- and y-axis, dxy. The

final output is converted into a binary image representing UGV-based background

subtraction BUGV , where the threshold value is specified as 0.24 to correspond to 13.48

degree. If each pixel in BUGV is greater than the threshold value, then that pixel

becomes a foreground pixel, else is the background pixel, as shown in (4.15).

dxy =
√

d2
x +d2

y (4.14)

BUGV =

255 ,if dxy > 0.24

0 ,Otherwise
(4.15)

The output images of SAD and UGV background subtraction are shown in Fig.

4.5(a) and 4.5(b). It is noted that SAD produces many false detections when the

foreground and background images have the same intensity value. UGV consistently

produces better results for hand segmentation.

46

Ref. code: 25595522040228JSV

(a) SAD (b) UGV

Figure 4.5 Background subtraction output image.

(a) RGB + SAD (b) YCrCb + SAD (c) HSV + SAD

(d) RGB + UGV (e) YCrCb + UGV (f) HSV + UGV

Figure 4.6 Output image from combination of color space segmentation and
background subtraction methods.

4.1.4 AND Operation

The AND operation is used to integrate the results from color segmentation and

background subtraction by providing an intersection of pixels obtained from both

methods. The advantage of doing so is the removal of false positives and negative

pixels that often occur during experimentation. This operation is expressed as (4.16):

BAND = BColor∩BBgSubtraction (4.16)

where BAND is the binary image produced by the AND operation, BColor is the color

segmentation binary output image, BBgSubtraction is the background subtraction binary

output image of both SAD and UGV. Various combinations of color space and

47

Ref. code: 25595522040228JSV

(a) RGB + SAD (b) YCrCb + SAD (c) HSV + SAD

(d) RGB + UGV (e) YCrCb + UGV (f) HSV + UGV

Figure 4.7 Post-processed output image from combination of color space segmentation
and background subtraction methods.

background subtraction methods will be evaluated. The AND operation is shown in

Fig.4.6.

4.1.5 Post-Processing

As the output image from the AND operation often contain noise, post-processing is

applied as a final step to smoothen the image. This involves morphological operations

such as opening and closing. First, the opening operation is performed by using a

square 5×5 structure element to remove small noises from the background. The closing

operation is then conducted using a square 15×15 structure element to fill in the holes

of the foreground image. This is shown in (4.17):

BPost = (BAND ◦SE5×5)•SE15×15 (4.17)

where BPost is the binary output image after post-processing, BAND is the binary output

image of the AND operation, SE5×5 is the square 5×5 structure element, and SE15×15

is the square 5×5 structure element. The final output image for each combination of

color segmentation methods and background subtraction are shown in Fig.4.7.

48

Ref. code: 25595522040228JSV

4.2 Discussion of the Hand Segmentation Output

Analysis of the different combinations of color segmentations and background

subtraction methods for hand segmentation indicate that SAD yields poor results, such

as a hole in the foreground hand image. It can be concluded that UGV-based

background subtraction is better suited for hand segmentation. Furthermore, the

effects of lighting conditions and different skin colors will be explored in Chapter 6

using 7920 numerical results from experimentation.

49

Ref. code: 25595522040228JSV

Chapter 5

Finger Detection and Gesture Recognition

Chapter 5 describes the algorithm for finger detection and hand gesture

recognition. Finger detection is accomplished through top-hat transform, which is a

simple and effective method for determining finger positions. The hand gesture

recognition is capable of identifying six hand postures, consisting of open palm (OP),

forefinger (FF), forefinger and thumb (FT), fist (FS), leftward thumb (TL), and

rightward thumb (TR).

5.1 Finger Detection by Using Top-Hat Transform.

The flowchart for detecting the fingers and palm is shown in Figure 5.1. The

proposed method applies top-hat transform to extract the finger and palm regions from

the hand segmentation image. Processing for both the left and right hands can be

executed simultaneously using multi-thread programming. The procedures include: 1)

top-hat transform, 2) distance transformation, 3) center of gravity determination, and

4) distance measurement.

5.1.1 Top-Hat Transform

Top-hat transform is a morphological image processing algorithm to detect the

particle that has a smaller size than the structure element (SE) of the input image.

Therefore, this method is suitable for separating the finger regions from the palm

region of the hand segmentation image. The SE is defined as a circular structure with

approximately the same size of the average palm region. In this work, the size of SE

was determined experimentally as a circular shap with a radius value of 17 pixels. The

fingers and palm regions are then classified according to (5.1) and (5.2).

BPalm = BHand ◦SE (5.1)

BFinger = BHand−BPalm (5.2)

50

Ref. code: 25595522040228JSV

Figure 5.1 Finger detection flow chart

where BHand is a binary image from the hand segmentation input, SE is the circular

structure element of size 17, BPalm is a binary output image representing the palm

region, and BFinger is a binary output image of the finger regions.

The morphological opening operation is used to identify the palm region by

locating the element with a size bigger or equal to SE. Top-hat transform then

subtracts the palm region from the hand segmentation input image to obtain the finger

positions. An example of input and output images using top-hat transform is shown in

Figure 5.2.

51

Ref. code: 25595522040228JSV

(a) Hand
segmentation

(b) Palm region (c) Finger region

Figure 5.2 Finger detection using top-hat transform.

Figure 5.3 Euclidean distance transform 5×5 mask.

5.1.2 Distance Transformation

Distance transformation is used to determine the distance between each pixel in the

palm to the center of the region. It uses a custom 5×5 Euclidean distance transform

mask as a filter, as shown in Figure 5.3. The distance transform is expressed as (5.3).

BPalm,Dist = BPalm ·MEuc (5.3)

where BPalm is the binary input image containing the palm region, MEuc is the 5×5

Euclidean distance transform mask, and BPalm,Dist is the output image containing the

distance information. An example of distance transformation is illustrated in Figure

5.4. The input image is the palm region, shown in Figure 5.4(a). The output image

represents the distance between each pixel and the center of the palm, as shown in

Figure 5.4(b), where the closest distance is represented as a pure white pixel. The

distance transformation increases the accuracy of determining the center of the palm

region in the next procedure.

52

Ref. code: 25595522040228JSV

(a) Palm region (b) Distance
transform of palm

region

Figure 5.4 Comparison between palm region and distance transform of palm region.

5.1.3 Center of Gravity

To determine the positions of each finger and the palm, the center of gravity

method is applied to both BFinger and BPalm,Dist to determine the moments of each

region according to (5.4) and (5.5).

MM00 = ∑
x

∑
y

BFinger(x,y)

MM10 = ∑
x

∑
y

xBFinger(x,y)

MM01 = ∑
x

∑
y

yBFinger(x,y)

xc,Finger =
MM10

MM00

yc,Finger =
MM01

MM00
(5.4)

where BFinger is the binary image of the finger regions, (xc,Finger,yc,Finger) are the

coordinates of the center of mass for each finger.

MM00 = ∑
x

∑
y

BPalm,Dist(x,y)

MM10 = ∑
x

∑
y

xBPalm,Dist(x,y)

MM01 = ∑
x

∑
y

yBPalm,Dist(x,y)

xc,Palm =
MM10

MM00

yc,Palm =
MM01

MM00
(5.5)

53

Ref. code: 25595522040228JSV

where BPalm,Dist is the output from distance transformation of the palm, (xc,Palm,yc,Palm)

are the coordinates of the center of mass for the palm region. The centers of mass are

defined as the reference coordinates of the fingers and palms in 5.6 to 5.7 as:

Fingerc(x,y) = (xc,Finger,yc,Finger) (5.6)

Palmc(x,y) = (xc,Palm,yc,Palm) (5.7)

5.1.4 Distance Measurement

In order to identify the hand gestures, it is necessary to measure the distances

between each finger region Fingerc(x,y) and the palm Palmc(x,y). The Euclidean

distance is defined as:

dFinger⇔Palm =
√
(xc,Palm− xc,Finger)2 +(yc,Palm− yc,Finger)2 (5.8)

where dFinger⇔Palm is the distance between the center of each finger and the center of

the palm region.

From experimentation, the distance between the edge of the palm region and

Palmc (x,y) is approximately 30 pixels. This distance can be used as the threshold to

classify the finger regions. However, many false positives are observed in the case of

FS, TL, and TR. To solve this problem, an additional 7 pixels should be added to the

distance threshold. Furthermore, the accuracy of the algorithm can be improved by

using physical information of the human hand. When a hand is raised in the air, the

finger at the lowest position is the thumb, which is also usually lower than the center of

the palm region. From this reasoning, the center of mass of the palm should also be

compensated by an additional 17 pixels. This means that for a region to qualify as a

finger, the position must be higher than Palmc(x,y+17) and at a distance of at least 37

pixels or more.

Figures 5.5(a) and 5.5(b) shows the experimental results of finger detection for FS

and OP. The blue circle represents the detected center of the palm, the green circle is

the edge of the palm region, and the magenta circle is the distance threshold of the

palm. FS shows that the palm is detected without any finger regions. OP indicates each

54

Ref. code: 25595522040228JSV

(a) Fist (b) Open palm

Figure 5.5 The example image of finger detection.

finger by a red circle, which must also be outside of the distance threshold from the

center of the palm and situated higher than Palmc(x,y+17).

5.2 Hand Gesture Recognition

The hand gestures that will be recognized in this work includes open palm (OP),

forefinger (FF), forefinger and thumb (FT), fist (FS), leftward thumb (TL), and

rightward thumb (TR). This section describes the method used to classify each gesture.

The algorithm is based upon the assumption of an anatomically correct human hand

with five fingers. Each gesture is determined by counting the number of fingers and

their relative positions from the center of the palm region, as shown in Table 5.1.

According to Table 5.1, the detection of the palm can be used to classify a hand

gesture from non-hand images. The number of fingers can be used to recognize 4

groups of gestures, namely OP with more than two detected fingers, FT with exactly

two detected fingers, FS with no detected fingers, and either FF, TL, or TR with one

detected finger. As show in the related equation (5.9)

Handgesture =

OP ,if (number of finger > 2)

FT ,if (number of finger = 2)

FF ∨T L∨T R ,if (number of finger =1)

FS ,if (number of finger = 0)

(5.9)

Where Handgesture as a hand gesture recognition output, OP as the open palm, FT as

the forefinger and thumb, FF as the forefinger, T L as the leftward thumb, T R as the

55

Ref. code: 25595522040228JSV

Table 5.1 The relationship between number of finger and hand gesture

Hand Gesture Description

• OP is recognized when the hand has one palm region and more
than two detected fingers.

• FF is recognized when the hand has one palm region and exactly
one detected finger with a position above the specific y-axis
coordinate of the edge of palm.

• FT is recognized when the hand has exactly one palm and two
detected fingers.

• FS is recognized when the hand has one palm and no detected
fingers.

• TL is recognized when the hand has exactly one palm and one
detected finger that is not in the forefinger position, and its x-
axis coordinate is greater than the x-axis coordinate of the palm.

• TR is recognized when the hand has exactly one palm and one
detected finger that is not in the forefinger position, and its x-
axis coordinate is less than the x-axis coordinate of the palm.

• Non-hand is recognized when no palm and finger regions are
detected.

rightward thumb and FS as the fist.

To further differentiate between FF, TL, and TR, the position of the detected finger

must be considered. Firstly, the forefinger can be separated from the thumb using the

assumption that FF must have a position higher than 30 pixels above the palm along

the y-axis. Otherwise, the image contains a thumb in either TL or TR. TL and TR

can then be classified by examining the position along the x-axis, when TL is towards

the left (greater than) and TR is towards the right (less than) of the palm center. The

56

Ref. code: 25595522040228JSV

classification of one finger can present as the algorithm in (5.10)

Handgesture =

FF ,if (Fingerc,y < Palmc,y−30)

T L ,if (Fingerc,y > Palmc,y−30)

∧(Fingerc,x > Palmc,x)

T R ,if (Fingerc,y > Palmc,y−30)

∧(Fingerc,x < Palmc,x)

(5.10)

Where Handgesture as a hand gesture recognition output, FF as the forefinger, T L as

the leftward thumb, and T R as the rightward thumb.

5.3 Discussion of Finger Detection and Hand Gesture Recognition

The proposed method uses top-hat transform and center of gravity for finger

detection. Furthermore, the accuracy of the algorithm is improved by using distance

transformation. The center of gravity method also determines the position of each

finger and palm. A region is classified as a finger if it is located at least 37 pixels or

more away from the compensated center of the palm.

Hand gesture recognition is developed for 7 postures by counting the number of

detected fingers and the relative position to the palm. Finger count alone allows the

determination of OP, FT, FS, and non-hand. FF, TL, and TR, which all have only one

detected finger, are further classified according to the position of the finger when

compared to the palm center. Because of the algorithm using the position of finger and

palm thus it is suitable to the upward direction of hand only as related to the natural

hand gesture position.

Analysis of the hand gesture recognition will be described in Chapter 6 with

numerical results from 7920 experiments under dynamic lighting condition, using

different color spaces, background subtraction methods, and skin color.

57

Ref. code: 25595522040228JSV

Chapter 6

Experimental Results

This chapter presents experimental verification and analysis of the hand gesture

recognition algorithm described in Chapters 4 and 5. Performance, robustness, and

execution time of the proposed method are examined subjected to dynamic lighting

conditions and variation in user skin color.

6.1 Dynamic Lighting Condition

Dynamic lighting condition is a real-world problem for many color segmentation

and background subtraction methods. Changing levels of illumination can effect

perceived colors and cause false detections. Therefore, the experiments will be

conducted for varying light intensity and analyzed in terms of color space and

background subtraction methods.

6.1.1 Light Intensity

The perceived change in color under dynamic lighting conditions depends on the

intensity value. The mean image intensity value is given by (6.1):

Imean =
1
N ∑

x
∑
y

I(x,y) (6.1)

where Imean is the mean image intensity value, I(x,y) is the intensity value of the pixel

(x,y), and N is the total number of pixels of the intensity image.

The environment setting, as described in Chapter 3, consists of a room under

fluorescent lighting that can be adjusted to three levels (bright, dim, dark), as shown in

Figure 6.1. The mean intensity values were calculated from 5-10 seconds of video

captured under these three lighting conditions, and the maximum/minimum values are

presented in Table 6.1 with corresponds to the measured illuminance SI photometry

quantities value from a light meter. It is clear that the dark image shows a nearly black

scene with insufficient information for color segmentation or object detection.

58

Ref. code: 25595522040228JSV

(a) Bright (b) Dim (c) Dark

Figure 6.1 Three different light intensity levels.

Table 6.1 Light intensity

Level of light intensity Min Max Illuminance (lux)
Brightness 88 92 304

Dim 65 70 30
Darkness 33 34 0

Therefore, only bright and dim images will be considered in the remaining

experiments. Example images of the six hand gestures and recognition results are

shown in Figure 6.2 and Figure 6.3 for bright and dim conditions, respectively.

6.1.2 Performance Analysis

The performance analysis is conducted for various combinations of background

subtraction and color segmentation methods. Classification results are measured by

a confusion matrix, which is a performance classifier that is widely used in machine

learning to determine accuracy, sensitivity, specificity, and precision. The components

of the confusion matrix consists of true positive (TP), true negative (TN), false positive

(FP), and false negative (FN), defined in this work as:

• TP is the number of specified gesture that was correctly detected.

• TN is the number of other gestures that was correctly not detected.

• FP is the number of other gestures that was incorrectly detected as a specified

gesture.

• FN is the number of specified gestures that was not detected.

A total number of 1320 images were captured from the camera for the six hand

gestures under bright and dim lighting conditions (110 images per gesture per lighting

59

Ref. code: 25595522040228JSV

(a) OP at bright lighting
condition.

(b) FF at bright lighting
condition.

(c) FT at bright lighting
condition.

(d) FS at bright lighting
condition.

(e) TL at bright lighting
condition.

(f) TR at bright lighting
condition.

Figure 6.2 Six different hand gestures under bright lighting conditions.

(a) OP at dim lighting
condition.

(b) FF at dim lighting
condition.

(c) FT at dim lighting
condition.

(d) FS at dim lighting
condition.

(e) TL at dim lighting
condition.

(f) TR at dim lighting
condition.

Figure 6.3 Six different hand gestures under dim lighting conditions.

condition). The robustness of each algorithm is determined by the sensitivity, which is

calculated as:

Sensitivity =
TP

TP+FN
×100% (6.2)

60

Ref. code: 25595522040228JSV

Table 6.2 Sensitivity of RGB Color Space

Level of light intensity OP FF FT FS TL TR
RGBSADBright 82.72 19.09 21.81 30.9 30 1.81
RGBSADDim 57.27 28.18 0 1.81 0 59.09

RGBUGVBright 86.63 29.09 0 21.81 18.18 7.27
RGBUGVDim 60.9 60.9 4.54 3.63 0 0

Table 6.3 Sensitivity of YCrCb Color Space

Level of light intensity OP FF FT FS TL TR
YCrCbSADBright 55.45 54.54 100 35.45 7.27 0.9
YCrCbSADDim 7.27 13.63 19.09 0 8.18 0

YCrCbUGVBright 99.09 100 100 100 80.9 13.63
YCrCbUGVDim 65.45 97.27 99.09 42.72 21.81 31.81

Table 6.4 Sensitivity of HSV Color Space

Level of light intensity OP FF FT FS TL TR
HSV SADBright 80.9 82.72 68.18 53.63 84.54 10
HSV SADDim 21.81 80 88.18 90.9 62.72 10

HSVUGVBright 100 100 100 97.27 87.27 51
HSVUGVDim 100 98.18 100 97.27 75.45 85.45

The sensitivity results are presented for the three color spaces (RGB, YCrCb,

HSV) in Tables 6.2, 6.3, and 6.4, using either the sum-of-absolute-difference (SAD) or

unit-gradient-vector (UGV) methods for background subtraction.

6.1.2.1 Background Subtraction

First, the performance of each background subtraction method is compared under

bright lighting conditions. By examining the sensitivity values presented in Tables 6.2,

6.3, and 6.4, it is noted that UGV-based background subtraction performs significantly

better than SAD, except in the RGB color space. This is because UGV considers the

intensity vector of the image whenever a new object is introduced into the frame,

whereas SAD uses the intensity values directly to determine foreground objects. The

disadvantage of SAD is the false negatives that occur when the foreground object has

the same intensity value as the background. The strength of UGV is clearly seen when

the lighting intensity is reduced from bright to dim. The sensitivity of SAD drops

drastically when compared to UGV, because the lighting condition changes greatly

61

Ref. code: 25595522040228JSV

(a) (b) (c)

(d) (e) (f)

Figure 6.4 RGB color segmentation under bright (a)-(c) and dim (d)-(f) conditions.

effect the intensity values of all pixels. For these reasons, UGV-based background

subtraction is utilized in the proposed method.

6.1.2.2 Color Segmentation

The next section analyzes the robustness of each color space against dynamic

lighting conditions. The sensitivity result for the three color spaces (RGB, YCrCb,

HSV) are shown in Tables 6.2, 6.3 and 6.4. Considering only UGV background

subtraction, a comparison between RGB, YCrCB, and HSV is shown by the column

graph in Figure 6.5 for both bright and dim conditions.

Under bright conditions, RGB demonstrate poor sensitivity for all hand gestures,

except for OP. This is because the RGB color space does not directly support color

illumination, leading to a wider color threshold range and many false detections. An

example of incorrect detection is shown in Figure 6.4, where the TL gesture was

wrongly recognized as FT. The result of RGB color segmentation shows that all hand

pixels were correctly identify. However, the wide color threshold of RGB meant that a

significant portion of the background was falsely detected as well. Post-processing and

UGV background subtraction were not able to completely eliminate some background

regions, leading to incorrect classification. YCrCb achieved higher than 80%

sensitivity for all hand gestures, except for TR (13%). HSV also produced good results

62

Ref. code: 25595522040228JSV

(a) Bright

(b) Dim

Figure 6.5 Comparison of sensitivity for each color space using UGV-based
background subtraction method.

that were higher than 87% for all hand gestures, again except for TR (51%). The

reason for the poor performance of TR is because it mainly shows the back of the

hand, rather than the front, which has the different twist angle of hand posture image

to give the error in the distance measurement. Nevertheless, it can be concluded that

both YCrCb and HSV color segmentation yield higher sensitive than RGB under

bright conditions.

The performance of YCrCb color segmentation decreases drastically when the

lighting intensity changes. This is demonstrated using the OP hand gesture for both

bright and dim conditions in Figure 6.6. When the image is sufficiently bright, YCrCb

correctly determines OP with a sensitivity of 99.09%, as shown in Figure 6.6(a)-(c).

By examining the segmented images, it is clear that the outline information of the

palm and all fingers was preserved. However, Figure 6.6(d)-(f) shows that with dim

lighting, some of the fingers were not correctly detected. Following post-processing,

63

Ref. code: 25595522040228JSV

(a) (b) (c)

(d) (e) (f)

Figure 6.6 YCrCb color segmentation under bright (a)-(c) and dim (d)-(f) conditions.

(a) (b) (c)

(d) (e) (f)

Figure 6.7 HSV color segmentation under bright (a)-(c) and dim (d)-(f) conditions.

the middle, ring, and little fingers disappeared, leading to a false classification as FT.

In comparison, HSV color segmentation maintains good detection performance

under dim conditions, with sensitivity values of greater than 75.45%. This is because

of the inherent robustness of HSV to changes in illumination, as the saturation and

value is capable of describing the brightness/darkness of a color without effecting the

color range or hue. This can be seen in Figure 6.7(a)-(c) and (d)-(f). HSV correctly

detects the forefinger and thumb for both situations.

64

Ref. code: 25595522040228JSV

(a) (b) (c)

(d) (e)

Figure 6.8 FF hand-gesture recognition of 5 users with different skin color.

(a) (b) (c)

(d) (e) (f)

Figure 6.9 Hue circle and threshold values for 5 users with different skin color.

6.2 Effect of Skin Color

This section discusses the variation of user skin color on the proposed method.

From the previous sections, the experimental results will focus only on HSV color

segmentation with UGV background subtraction. Sample images were captured from

five users of Asian ethnicity but with varying skin color, as shown in Figure 6.8.

The hue threshold values were determined experimentally for each user and

compared to range used by the proposed method in Figure 6.9. The threshold

minimum value was 40 for User B with the palest skin color, 44 for user C, and 50 for

65

Ref. code: 25595522040228JSV

Table 6.5 Execution time of each process.

Execution Time Min (µs) Max (µs)
Color Segmenatation 1,469 3,173
UGV-based Background Subtraction 31,481 33,232
AND Operation 100 124
Post-Processing 9,724 9,952
Palm Detection with Opening 242,753 243,135
Finger Detection with Top-Hat Transform 241,275 248,502
Hand-Gesture Recognition 6,338 7,080
Total 533,278 545,198

the others, corresponding to a reddish hue. For all users, the maximum threshold value

was 64 that indicates yellow hue. From this analysis, the proposed method used the

hue range shown in Figure 6.9(a), which was shown to perform well for users of Asian

ethnicity. So this Hue circle has related to the H threshold range between 0 to 50 is

support to all skin detection but the more yellow skin, H should be 0 to 60 in [11].

6.3 Real-Time Implementation

To implement the proposed hand-gesture recognition algorithm on an embedded

system for human-machine interfacing, it is important to consider real-time

responsiveness. According to the software design presented in Chapter 3, there are

three main components: image processor, control interface, and mp3 player.

Experimental results indicate that the image processor requires the most computation

time due to the complexity of image processing algorithms. Therefore, this section

will analyze the computation cost and verify real-time implementation.

6.3.1 Execution Time

Execution time is the amount of time that the program requires per one processor

cycle. Thus, a low execution time implies that the processor is faster. The proposed

hand-gesture recognition algorithm will be implemented on Raspberry Pi2 Module B

using C/C++, which contains a library to measure execution time in milli- or

microseconds (time.h). Alternatively, processing time can be evaluated by using an

oscilloscope to monitor high and low voltage signals from the general port

66

Ref. code: 25595522040228JSV

(a) Serial processing (b) Parallel processing

Figure 6.10 The proposed method implemented using serial and parallel processing.

input-output (GPIO). The GPIO issues an high signal at the start of the algorithm and a

low signal upon completion. The execution can be obtained by measuring the duration

of the high signal. This research employs both methods to determine the execution

time of the proposed algorithm.

The execution time results are presented in Table 6.5. It is noted that finger

detection using top-hat transform requires the most execution time, followed by palm

detection. Both processes present large computational load due to the large filter sizes.

The total processing time of the proposed method is between 533.278 and 545.198 ms

per frame.

6.3.2 Serial and Parallel Processing

Simple applications are usually implemented using serial processing, where each

component of the software is executed in sequence. Figure 6.10(a) shows the proposed

method if run using a single thread with a serial structure. Since both left and right

67

Ref. code: 25595522040228JSV

hand-gesture recognitions require approximately 545 ms each, there is a bottleneck of

1090 ms during the processor cycle.

Alternatively, multi-thread programming can be used to execute parallel processing

of the algorithm, as presented in Figure 6.10(b). This allows both left and right hand-

gesture recognitions to be performed simultaneously, reducing the execution time back

to 545 ms. The resulting fps of 1.83 fps satisfies the soft real-time condition that was

specified as 1 command per second.

68

Ref. code: 25595522040228JSV

Chapter 7

Conclusion

The purpose of this thesis was to develop a real-time, vision-based hand gesture

recognition system on an embedded platform that can be used for accurate and

efficient human-machine interaction under dynamic lighting conditions. A monocular

camera was employed to capture a human user situated 50-80 cm from the system to

control media playback of an MP3 player using six different hand gestures. The

application design was divided into three main parts, including image processing,

control interface, and MP3 playback. The image processing part includes camera

interfacing, hand segmentation, and finger detection. The control interface consists of

a finite state machine to connect the output of hand gesture recognition with MP3

playback commands.

The real-world problem of changes in light intensity was directly considered in the

design of the algorithm. This work analyzed the use of different color segmentation

and background subtraction methods to overcome this problem. It was determined

that the use of HSV color segmentation and UGV background subtraction provided the

best performance, sensitivity, and robustness in both dim and bright conditions. This

was then combined with top-hat transform to produce a simple and precise algorithm

for recognizing hand gestures within the limit scope distance for the scaling metering

effect, which included open palm (OP), forefinger (FF), forefinger and thumb (FT),

fist (FS), leftward thumb (TL), and rightward thumb (TR). Experimental results and

comparison with conventional methods were shown, along with an examination of the

effects of user skin color.

This thesis considered the execution time of the algorithm when implemented on an

embedded system, chosen as the Raspberry Pi2 Module B. By using parallel processing

and multi-thread programming to handle the recognition of both the left and right hand

regions simultaneously, the average processing time was 545 ms or approximately 1.83

fps. This satisfied the soft real-time deadline of 1 command per second as specified by

the scope of this work to ensure smooth operations.

69

Ref. code: 25595522040228JSV

References

[1] A. Choudhury, A. K. Talukdar and K. K. Sarma (2014). A novel hand

segmentation method for multiple-hand gesture recognition system under

complex background. Proc. of International Conference on Signal Processing

and Integrated Networks (SPIN), pages 136–140.

[2] A. Dix, J. Finlay, G. D. Abowd, R. Beale (2004). Human Computer Interaction.

Pearson Education Limited, Edinburg Gate, Harlow, Essex CM20 2JE, England.

[3] A. Li. A method of detecting and recognizing hand gestures using opencv.

https://www.andol.me/1661/a-method-of-detecting-

and-recognising-hand-gestures-using-opencv/. Accessed on 6-

March-2017.

[4] A. Shahbaz, J. Hariyono, K. Jo (2015). Evaluation of background subtraction

algorithms for video surveillance. Proc. of Frontiers of Computer Vision (FCV),

pages 1–4.

[5] American Society for Surgery of the Hand (1990). The Hand Examination and

Diagnosis 3rd edition. Churchill Livingstone, New York.

[6] B. Hong, Z. Xinggui (2010). Study on hand gesture segmentation. Proc. of

International Conference on Multimedia Technology (ICMT), pages 1–4.

[7] C. Aiping, P. Lian, T. Yaobin, N. Ning (2010). Face detection technology based on

skin color segmentation and template matching. Proc. of second International

Workshop on Education Technology and Computer Science, pages 708–711.

[8] CMake.org. About cmake and origin. https://cmake.org/overview/.

Accessed on 6-March-2017.

[9] D G. Bailey (2011). Design for Embedded Image Processing on FPGAs. John

Wiley & Sons (Asia) Pte Ltd., 1 Fusionopolis Walk, # 07-01 Solaris South

Tower, Singapore 138628.

70

Ref. code: 25595522040228JSV

[10] Dr Andrew Greensted. Switch debouncing. http://www.labbookpages.co.

uk/electronics/debounce.html. Accessed on 17-July-2017.

[11] E. Kondela, H. D. Jun (2011). A power law transformation predicting

lightness conditions based on skin color space detection. Proc. of

International Conference on Trust, Security and Privacy in Computing and

Communications(TrustCom), pages 1472–1476.

[12] E. Upton. New 8-megapixel camera board on sale now at $25. https://www.

raspberrypi.org/blog/new-8-megapixel-camera-board-sale-25/.

Accessed on 6-March-2017.

[13] E. Upton. Raspberry pi 2 on sale now at $35. https://www.raspberrypi.org/

blog/raspberry-pi-2-on-sale/. Accessed on 6-March-2017.

[14] elinux.org. Rpi sd cards. http://elinux.org/RPi_SD_cards. Accessed on

16-July-2017.

[15] freegreatpicture. Basic hand gesture. http://www.freegreatpicture.com/

gestures-album/hand-gesture-30690. Accessed on 6-March-2017.

[16] G. B. Narejo, S. P. Bharucha (2013). Real time finger counting and virtual

drawing using color detection and shape recognition. Proc. of 5th International

Conference on Information & Communication Technologies (ICICT), pages 1–

6.

[17] G. Liu and Z. Shi (2011). Embedded implementation of real-time skin detection

system. Proc. of International Conference on Transportation, Mechanical, and

Electrical Engineering (TMEE), pages 2463–2466.

[18] G. Simion, V. Gui, M. Otesteanu (2011). Finger detection based on hand

contour and colour information. Proc. International Symposium on Applied

Computational intelligence and Informatics (SACI), pages 97–100.

71

Ref. code: 25595522040228JSV

[19] Guest Post. The desktop pc might finally be making a comeback.

http://www.valuewalk.com/2017/03/desktop-pc-might-

finally-making-comback/. Accessed on 23-July-2017.

[20] J. Farooq, M. B. Ali (2014). Real time hand gesture recognition for computer

interaction. International Conference on Robotics and Emerging Allied

Technologies in Engineering(iCREATE), pages 73–77.

[21] K. Grifantini. Intelligent machines open-source data glove: Acceleglove can be

progammed for many application. https://www.technologyreview.com/

s/414021/open-source-data-glove/. Accessed on 23-July-2017.

[22] K. Jack (2005). Video Demystified. Elsevier, 200 Wheeler Road, Burlington, MA

01803, USA.

[23] K. N. Plataniotis, A. N. Venetsanopoulos (2000). Color Image Processing and

Applications. Springer-Verlag Berlin Heidelberg.

[24] Kook-Yeol Yoo (2014). Robust hand segmentation and tracking to illumination

variation. Proc. of International Conference on Consumer Electronics (ICCE),

pages 286–287.

[25] L. Gu, X. Yuan, T. Ikenaga (2012). Hand gesture interface based on improved

adaptive hand area detection. Proc. of International Symposium on Intelligent

Signal Processing and Communication Systems(ISPACS), pages 463–468.

[26] M. Pawlak (2006). Image Analysis by Moments: Reconstruction and Computation

Aspects. Oficyna Wydawnicza Politechniki Wroclawskiej, 50-370 Wroclaw,

Wybrzeze Wyspainskiego 27.

[27] M. Piccardi (2004). Background subtraction techniques: a review. Proc. of

international conference on Systems, Man and Cybernetics, pages 3099–3104.

[28] mingw.org. Mingw. http://www.mingw.org. Accessed on 6-March-2017.

72

Ref. code: 25595522040228JSV

[29] OpenCV.org. Miscellaneous image transformations. http://docs.

opencv.org/3.0-beta/modules/imgproc/doc/miscellaneous_

transformations.html. Accessed on 6-March-2017.

[30] P. A. Laplante, S. J. Ovaska (2012). Real-Time System Design and Analysis: Tools

for the practioner. John Wiley & Sons, Inc, Hoboken, New Jersey.

[31] P. Prasertsakul and T. Kondo (2014). A robust hand segmentation method base on

color and background subtraction. Proc. of International Conf. ICICTES.

[32] P. Prasertsakul, T. Kondo (2014). A fingertip detection method based on the top-

hat transform. Proc. of International Conference ECTI-CON, pages 1–5.

[33] P. Premaratne (2014). Human Computer Interaction Using Hand Gestures.

Springer.

[34] P. R. V. Chowdary, M. N. Babu, T. V. Subbareddy, B. M. Reddy (2014).

Image processing algorithms for gesture recognition using matlab. Proc. of

International Conference on Advanced Communication Control and Computing

Technology (ICACCCT), pages 1511–1514.

[35] P. Shah. Introduction to human machine interface (hmi).

http://www.doyouknow.in/Articles/Technology/Introduction-To-

Human-Machine-Interface-HMI-Human-Machine-Interface-

Design-Human-Machine-Interface-Software.aspx. Accessed on 6-

March-2017.

[36] Pierre. Opencv&pi cam. https://thinkrpi.wordpress.com/2013/05/22/

opencvpi-cam-step-2-compilation/l. Accessed on 17-july-2017.

[37] R. M. Jusoh, N. Hamzah, M. H. Marhaban, N. M. A. Alias (2010). Skin detection

based on thresholding in rgb and hue component. Proc. of Symposium on

Industrial Electronics and Applications (ISIEA 2010), pages 515–517.

[38] R. Wang, Z. Yu, M. Liu, Y. Wang, and Y. Change (2014). Real-time visual static

hand gesture recognition system and its fpga-based hardware implementation.

73

Ref. code: 25595522040228JSV

Proc. of 12th International Conference on Signal Processing (ICSP), pages

434–439.

[39] Raspberry Pi Foundation. Raspberry pi 2 model b. https://www.raspberrypi.

org/products/raspberry-pi-2-model-b/. Accessed on 6-March-2017.

[40] S. Furber (2000). ARM System-On-Chip Architecture second edition. Pearson

Education Limited 2000.

[41] T. H. Cormen, C. E Leiserson, R. L. Rivest, C. Stein (2009). Introduction to

Algorithms. Massachusetts Institute of Tecnology, Cambridge, Massachusetts

London, England.

[42] T.Kondo (2011). An image sequence segmentation method using gradient

orientation information. SICE Annual Conference, pages 34–36.

[43] W. Wang J. Pan (2012). Hand segmentation using skin color and background

information. Proc. of the International Conference on Machine Learning and

Cybernetics, pages 1487–1492.

[44] Wikipedia. Embedded system. https://en.wikipedia.org/wiki/Embedded_

system. Accessed on 6-March-2017.

[45] Wikipedia. Yuv. https://en.wikipedia.org/wiki/YUV. Accessed on 6-

March-2017.

[46] Y. Lei, W. Hongpeng, T. Dianxiong, and Wangjue (2014). A real-time hand

gesture recognition algorithm for an embedded system. Proc. of International

Conference on Mechatronics and Automation.(ICMA), pages 901–905.

[47] Y. Shi, R. Taib, S. Lichman (2006). Gesturecam: A smart camera for gesture

recognition and gesture-controlled web navigation. Proc. of International

Conference on Control, Automation, Robotics and Vision (ICARCV 06), pages

1–6.

74

Ref. code: 25595522040228JSV

[48] Y. V. Parkale (2012). Gesture based operating system control. Proc.

of International Conference on Advanced Computing & Communication

Technologies), pages 318–323.

75

