
Ref. code: 25595522040293TOJ

IMAGE-BASED THAI AMULET RECOGNITION

BY

THANACHAI SAUTHANANUSUK

A THESIS SUBMITTED IN PARTIAL FULFILLMENT OF

THE REQUIREMENTS FOR THE DEGREE OF MASTER OF

ENGINEERING (INFORMATION AND COMMUNICATION

TECHNOLOGY FOR EMBEDDED SYSTEMS)

SIRINDHORN INTERNATIONAL INSTITUTE OF TECHNOLOGY

THAMMASAT UNIVERSITY

ACADEMIC YEAR 2016

Ref. code: 25595522040293TOJ

IMAGE-BASED THAI AMULET RECOGNITION

BY

 THANACHAI SAUTHANANUSUK

A THESIS SUBMITTED IN PARTIAL FULFILLMENT OF

THE REQUIREMENTS FOR THE DEGREE OF MASTER OF

ENGINEERING (INFORMATION AND COMMUNICATION

TECHNOLOGY FOR EMBEDDED SYSTEMS)

SIRINDHORN INTERNATIONAL INSTITUTE OF TECHNOLOGY

THAMMASAT UNIVERSITY

ACADEMIC YEAR 2016

Ref. code: 25595522040293TOJ

ii

Abstract

IMAGE-BASED THAI AMULET RECOGNITION

by

THANACHAI SAUTHANANUSUK

Bachelor of Engineering (Electrical Engineering), Chulalongkorn University, 2011

Master of Engineering (Information and Communication Technology for Embedded

Systems), Sirindhorn International Institute of Technology, Thammasat University,

2017

This thesis presents a way to determine the kind of amulet from taken

picture. The pre-processing and amulet segmentation are processed with the plain

color background and segmentation method is based on grayscale conversion and

edge detection to locate high contrast area in the image. The amulet kind

determination makes use of two feature, first is edge feature from prewitt edge

detection and second is texture feature called local ternary pattern (LTP) which

indicate differrent in image intensities. The accuracy of template matching are 77%

when using Canny edge feature and 99% when using LTP feature.

Keywords: Image Processing, Template Matching, Amulet Recognition

Ref. code: 25595522040293TOJ

iii

Acknowledgements

Firstly, the author would like to express his deepest sincere gratitude to

Assoc. Prof. Chalie Charoenlarpnopparut, the author’s thesis advisor for his

continuous support of the author’s study. His patience, motivation, and guidance

helped the author all the time of research and thesis writing.

Beside his advisor, the author would like to thank the rest of his thesis

committee: Assoc. Prof. Toshiaki Kondo, Prof. Kaneko Hirohiko, Dr. Pished Bunnun

for their comment and useful suggestion.

Finally, the author would like to thank Thailand Advanced Institute of

Science and Technology (TAIST), National Science and Technology Development

Agency (NSTDA), Tokyo Institute of Technology, and Sirindhorn International

Institute of Technology (SIIT), Thammasat University (TU) for financial support this

thesis research.

Ref. code: 25595522040293TOJ

iv

Table of Contents

Chapter Title Page

Signature Page i

Abstract ii

Acknowledgements iii

Table of Contents iv

List of Tables vi

List of Figures vii

 1 Introduction 1

 1.1 Background of study and statement of problem 1

 1.2 Purpose of study 2

 1.3 Expected Outcome 2

 1.4 Scope and Limitation 2

 1.5 Structure of the thesis 2

2 Literature Review 3

3 Methodology 5

3.1 Image aquisition 5

3.2 Grayscale conversion 6

3.3 Prewitt edge detection 7

3.4 Post processing 8

3.5 Edge feature retrieval 9

3.6 Local Binary Pattern 10

Ref. code: 25595522040293TOJ

v

3.7 Local Ternary Pattern 11

3.8 Texture feature retrieval 12

3.9 Experiment Setup 13

4 Result and Discussion 18

5 Amulet Recognition in a Nutshell System 25

6 Conclusions and Recommendations 29

References 30

Appendices 32

Appendix A 33

Appendix B 34

Appendix C 36

Ref. code: 25595522040293TOJ

vi

List of Tables

Tables Page

 4.1 Percentage accuracy of matching result using Sobel edge feature 18

 4.2 Percentage accuracy of matching result using Prewitt edge feature 19

 4.3 Percentage accuracy of matching result using Laplacian edge feature 19

 4.4 Percentage accuracy of matching result using Canny edge feature 20

 4.5 Percentage accuracy of matching result using 3*3 grid size LBP feature 20

 4.6 Percentage accuracy of matching result using 3*3 grid size LTP feature 20

 4.7 Percentage accuracy of matching result using 5*5 grid size LBP feature 21

 4.8 Percentage accuracy of matching result using 5*5 grid size LTP feature 21

 4.9 Percentage accuracy of matching result using 7*7 grid size LBP feature 21

 4.10 Percentage accuracy of matching result using 7*7 grid size LTP feature 22

 4.11 Percentage accuracy of matching result using 9*9 grid size LBP feature 22

 4.12 Percentage accuracy of matching result using 9*9 grid size LTP feature 22

 4.13 Percentage accuracy of matching result using 11*11 grid size LBP feature 23

 4.14 Percentage accuracy of matching result using 11*11 grid size LTP feature 23

 4.15 Percentage accuracy of matching result using SIFT feature 23

 4.16 Computation time in second 24

 5.1 Test experiment conducted with user #1 28

 5.2 Test experiment conducted with user #2 28

 5.3 Test experiment conducted with user #3 28

 5.4 Test experiment conducted with user #4 28

 5.5 Test experiment conducted with user #5 28

Ref. code: 25595522040293TOJ

vii

List of Figures

Figures Page

 1.1 Example of difficult to distinguish amulet for non-specialist 1

 3.1 System diagram 5

 3.2 Initial condition of the amulet images 6

 3.3 Grayscale conversion 7

 3.4 Prewitt edge detection 7

 3.5 7x7 Masks 8

 3.6 Noise reduction of edge images 8

 3.7 Cropped amulet image 9

 3.8 Cropped amulet edge image 9

 3.9 LBP derivation 10

 3.10 3x3 and 5x5 neighbor area 11

 3.11 Texture feature collection per one grid area 12

 3.12 3*3 grid size LBP derivation in one grid area 12

 3.13 vector feature derivation from 54*54 pixel image 13

 3.14 Experiment data setup 14

 3.15 Amulet on white background 14

 3.16 Amulet on red background 15

 3.17 Amulet on blue background 15

 3.18 Amulet on green background 15

 3.19 Amulet on yellow background 16

 3.20 Amulet on pink background 16

 3.21 Amulet on orange background 16

 3.22 Similarity calculation 17

 5.1 System screen 25

 5.2 Correct recognition with Phraya Pichai 26

 5.3 Correct recognition with Luang Por Parn 26

 5.4 Wrong recognition 27

Ref. code: 25595522040293TOJ

1

Chapter 1

Introduction

1.1 Background of study and Statement of problem

Thai amulet is accessory with Buddha shape and named after local Buddhism priest in

Thailand. There are many kinds and variations, which are difficult to distinguish. Thai

amulet can be highly valuable asset especially classical ones which has limit number

of its own kind. Many amulet clubs in Thailand trade the amulet fluently. For non-

specialist, knowing the kind of the amulet they are dealing with will help in price

setting for trading in the market and estimating asset value for the investor who keeps

it.

However, it is not easy because prior knowledge about amulet characteristic

require long time study to master. Sometimes, even the specialist who has been

familiar with Buddhist amulets for a long time still does not know all of them. Some

kinds of amulet have word carved on the shape but for the rest those there are not any

word on the shape, all information for non-specialist people is what they see as shown

in Figure 1.1 and that leads to study about amulet recognition from taken picture.

Figure 1.1 Example of difficult to distinguish amulet for non-specialist

Ref. code: 25595522040293TOJ

2

1.2 Purpose of study

Because amulet has very similar to coin in size and there is not much recent work

about actual amulet, the majority of this study is coin classification method and the

rest is study about feature extraction then propose an image-based approach for

determine the kind of amulet from taken picture to help people know more about the

amulet. The list of publications written from this study by the author can be found in

appendix A.

1.3 Expected Outcome

The expected outcome of this study is the amulet recognition system that is easy for

the user with the unknown amulet to try and use it. Since the target group user is non-

specialist people, the author expect that the system can make more people to have

interest and want to know more about amulet.

.

1.4 Scope and limitation

This study consist 33 kinds of amulet. The focus distance of camera for image

acquisition should be at most 10 cm. The procedures in this study cannot work with

image with complex background.

1.5 Structure of the thesis

The organization of the thesis is as follow, Chapter 2 describes the related work to this

thesis. Chapter 3 explains the detail of image preprocessing in amulet segmentation

and feature extraction using in this research is also described. Chapter 4 shows

experiment result and discussion. Chapter 5 demonstrates the amulet recognition

system from proposed algorithm. Finally, Chapter 6 concludes the study of this thesis

and suggestion for future improvement.

Ref. code: 25595522040293TOJ

3

Chapter 2

Literature Review

Because Thai amulet is not well known outside Thailand, there are very few works

related to the amulet. Nevertheless, there are many researches about coin recognition

those can be adopted to apply with amulet recognition. Since coin and amulet are very

similar in object size.

 Minoru Fukumi et al. [1] used rotated image for neural network training to

create rotation invariant coin pattern recognition system. The system consists of two

parts, the slabs of preprocessor and rotation invariant network called a-CONE. Each

slab of the preprocessor contains sigmoid neuron units, which produce single output

to the trainable multilayer neural-network a-CONE. To determine the weight of

neuron units in order to achieve rotation invariant, the circular coordinate system used

by the preprocessor is represented by radius and corresponding angle. With 12 equal

segments in one circumference area, slab outputs can be insensitive to every 30

degrees rotation of an input pattern. The experiment was conducted with 500 Japanese

yen coin and 500 Korean won coin.

 Michael Nolle et al. [2] propose real-time system called Dagobert that can

recognize 39 classes of coin and can reject unknown class, which is not recognized.

There are mechanical parts, which can put the coin on and take the coin out from the

conveyor belt. The system is equipped with two additional sensors measuring the

thickness as well as the rough diameter of the current coin, which are used to trigger

the image processing. For the coin detection, it is assumed that the conveyor belt used

as background is homogenous and always darker (or brighter) than the coins. This

makes a simple automatic threshold operation suffices for the segmentation. The

center of gravity, perimeter and convex hull of the coin can be obtained easily. After

applied edge detector, the system use binary string created from edge pixel as

recognition feature.

Seth McNeill et al. [3] use vector quantization of edge feature image and k-

Ref. code: 25595522040293TOJ

4

means algorithm to train machine learning system for classification. The data

collection process was done using several background colors such as black, white, red

and blue. The extensive segmentation testing show that red is the best background

color for this step. The data set used in the experiment consists of approximately 400

images with similar rotation, lighting and size. Once the segmentation and cropping

are done, the segmented coin images go through vertical edge detection and

thresholding. The histogram of the image is constructed using vector quantization

centroids. Bayes classifier is used in coin classification.

Marco Reisert et al. [4][5] used Hough transform to segment coin image, then

shift coin center to origin position, scaling image so that coin radius is equal to 1 and

use gradient image and fast Fourier transform to generate feature. The registration

approach is to align two coins, which have maximal number of collinear gradient

vectors. The gradient magnitude is completely neglected. The computation of the

induced similarity measure can be done efficiently in the Fourier domain after the

gradient directions are quantized. The classification is realized with a simple nearest

neighbor classification method. The confidence value measurement is additional

rejection criteria to meet the requirement of reducing false positive rate. The

confidence value was computed from similarity scores, thickness, radius and angle

pose differences.

Chomtip Pornpanomchai et al. [6] work with actual amulet, not another class

of coin like all the works mentioned before. The system use correlation value to

determine the recognition result. The correlation value is computed from the

difference of grayscale value of all pixels between two images. The images in this

work were taken in controlled environment (black box and spotlight).

Velu et al. [7] present Indian Coin counting system. The system can recognize

the coins and sum up the total value in term of Indian National Rupee (INR). There

are several assumptions in this system such as the coins should move on a conveyor

belt like in Michael Nolle et al., there has to be proper lighting focused on the coin,

both sides of the coin have to be collected and all parameter of the coin must be

measured accurately.

Ref. code: 25595522040293TOJ

5

Chapter 3

Methodology

This chapter presents the procedures for amulet segmentation using grayscale

conversion and Prewitt edge detection then describes the feature extraction using in

this research. The similarity measurement using edge feature and texture feature is

computed separately. The system diagram is shown in Figure 3.1.

(a) (b)

Figure 3.1 System diagram (a) using edge feature (b) using texture feature

3.1 Image acquisition

For the image acquisition, the condition is amulet has to be placed on the plain color

background. The background color should be contrast with the amulet color so that

background can be easily wiped out in segmentation process. In this work, the author

places the amulets on red color paper, green color paper, pink color paper, blue color

paper, yellow color paper, orange color paper and white color paper. The pictures

used as dataset in this work are taken by mobile phone camera and compact camera.

Some of sample data are shown in Figure 3.2.

Ref. code: 25595522040293TOJ

6

Figure 3.2 Initial condition of the amulet images

3.2 Grayscale conversion

To make luminance intensity of the images to be easy to distinguish, the amulet image

is converted from RGB color to grayscale color using grayscale conversion formula in

Eq. (3.1).

Grayscale = 0.299 * R + 0.587 * G + 0.114 * B (3.1)

Where

R is red color intensity in RGB image,

G is green color intensity in RGB image,

B is blue color intensity in RGB image.

The result of grayscale conversion is shown in Figure 3.3.

Ref. code: 25595522040293TOJ

7

Figure 3.3 Grayscale conversion

3.3 Prewitt edge detection

To indicate the high contrast area of the amulet image, Prewitt edge detection [8] is

applied to grayscale image of the amulet. The binary image with only edge pixels

remain is shown in Figure 3.4.

Figure 3.4 Prewitt edge detection

Ref. code: 25595522040293TOJ

8

3.4 Post processing

From the ideal edge image, the exact location of the amulet can be shown by finding

the leftmost, rightmost, topmost, lowermost white pixel but there still are some noise

white pixels which make segmentation go wrong. As shown in the right subfigure of

Figure 3.4, the leftmost, rightmost, topmost, lowermost white pixel is not the exact

location of amulet. To fix this problem, 2-D linear FIR filters were applied before

getting amulet location. The masks of the filters are shown in Figure 3.5. The images

filtered by those masks are shown in Figure 3.6.

 (a) (b)

Figure 3.5 7x7 Masks (a) horizontal (b) vertical

 (a) (b)

Figure 3.6 Noise reduction of edge images

(a) After apply vertical line filter (b) After apply horizontal line filter

Ref. code: 25595522040293TOJ

9

After getting amulet position, the grayscale image is cropped like shown in

Figure 3.7 before doing feature extraction.

Figure 3.7 Cropped amulet image

3.5 Edge feature retrieval

Beside the grayscale image from section 3.2, the Prewitt edge detection image from

section 3.3 is also cropped after getting amulet position from section 3.4. The cropped

image is shown Figure 3.8.

Figure 3.8 Cropped amulet edge image

Ref. code: 25595522040293TOJ

10

3.6 Local binary pattern

LBP [9] is texture feature derived from difference in the grayscale value between

center pixel and neighborhood pixels. The area of neighbor system can be square with

any odd number length but the greater distance, the correlation between center pixel

and neighbor decrease. LBP feature can be deriving from the following formula.

 () {
 () ()

 () ()
 (3.2)

Where

T(n,c) is binary code value of neighbor pixel n compared to center pixel c,

g(n) is grayscale value of neighbor pixel n,

g(c) is grayscale value of center pixel c,

For feature representation, if the grayscale value of neighbor pixel is not less than one

of center pixel, the feature is represented by ‘1’ otherwise the feature is represented

by ‘0’ like shown in Figure 3.9.

Figure 3.9 LBP derivation

Ref. code: 25595522040293TOJ

11

In Figure 3.9, the example LBP calculation gives 8 bits of binary which can be

represented by binary number ‘10001111b’.

With the larger neighborhood area, the more neighbor pixel stay in range.

Figure 3.10 show example of 3x3 and 5x5 neighborhood area.

Figure 3.10 3x3 and 5x5 neighbor area

3.7 Local ternary pattern

LTP [10] is the improved version of LBP, which has ‘-1’ feature representative in

additional form LBP. LTP feature is designed to increase LBP reliability in difficult

lighting condition. LTP feature can be deriving from the following formula.

 () {

 () ()

 | () ()|

 () ()

 (3.3)

Where

T(n,c) is ternary code value of neighbor pixel n compared to center pixel c,

g(n) is grayscale value of neighbor pixel n,

g(c) is grayscale value of center pixel c,

t is threshold value.

Ref. code: 25595522040293TOJ

12

3.8 Texture feature retrieval

The amulet segmented image from section 3.6 is resized to 54x54, 90x90, 126x126,

162x162, 198x198 pixels depends on the grid size for collecting 3x3, 5x5, 7x7, 9x9,

11x11 grid size LBP and LTP features respectively. The resized image is divided to

18x18 areas. In each area, LBP and LTP feature were collected. The neighbor pixels

to collect LBP and LTP features per one grid area are shown in Figure 3.11.

(a) (b)

Figure 3.11 Texture feature collection per one grid area

(a) Show by radius distance from center (b) Show by actual pixel location

The example of 3*3 grid size LBP derivation is shown in Figure 3.12 and

Figure 3.13.

Figure 3.12 3*3 grid size LBP derivation in one grid area

Ref. code: 25595522040293TOJ

13

Figure 3.13 vector feature derivation from 54*54 pixel image

3.9 Experiment Setup

The experiments were done by using MATLAB on a laptop with 2.4GHz CPU

and 4GB RAM. The template matching was conducted on 33 kinds of amulet with

630 images per kind and using 5-fold cross validation technic with each fold has 126

images per kind as shown in Figure 3.14. The 126 images of each kind in a fold

consist of 18 images per each color background of 7 background colors used in this

work. For the 18 images of each kind on the same color background, 9 images were

collected in daylight and 9 images were collected in fluorescent light. The example

image of amulet on each of background color is shown in Figure 3.15-3.21.

Ref. code: 25595522040293TOJ

14

Figure 3.14 Experiment data setup

Figure 3.15 Amulet on white background

Ref. code: 25595522040293TOJ

15

Figure 3.16 Amulet on red background

Figure 3.17 Amulet on blue background

Figure 3.18 Amulet on green background

Ref. code: 25595522040293TOJ

16

Fig. 3.19 Amulet on yellow background

Figure 3.20 Amulet on pink background

Figure 3.21 Amulet on orange background

Ref. code: 25595522040293TOJ

17

For template matching using edge feature, the cropped amulet edge image

from section 3.5 is resized to 200 pixels width and 200 pixels height, which is the size

of all edge templates. The similarity between testing image and template image is

computed from logical comparison of binary image. The formula is shown in equation

Eq. (3.3). The template with highest similarity comparing with testing image is

determined to be recognition result.

 ∑ ∑ ()

 (3.3)

Where

S is similarity value of two images A and B,

Ai,j is grayscale value of binary image A at row I and column j,

Bi,j is grayscale value of binary image B at row I and column j,

 For template matching using texture feature, the feature collected from section

3.8 is kept in form of 2592x1, 3888x1, 5184x1, 6480x1, 9072x1 size vector for 3x3,

5x5, 7x7, 9x9, 11x11grid size LBP and LTP features respectively. The similarity

between testing image and template image is calculated from dot product of texture

feature from both images as shown in Figure 3.22.

Figure 3.22 Similarity calculation

Ref. code: 25595522040293TOJ

18

Chapter 4

Result and Discussion

This chapter begins with numerical result of every method. The criteria for deciding

the result is k-nearest-neighbor (kNN) which is to choose the majority of k best

matches to be the result when k is positive odd integer. The majority of 1, 3, 5, 7, 9

best matches are the result for 1NN, 3NN, 5NN, 7NN, 9NN respectively. The next

part of this chapter is comparison of computation time of all method used in this

study.

For the edge feature, segmentation process use only Prewitt edge detection but

this chapter will also show matching result using 4 different kinds of edge feature

such as Sobel edge[11], Canny edge[12], Laplacian edge[13]. Beside edge features

and texture features, the author also compares computation time and result with

famous general purpose feature called SIFT keypoint descriptor[14]. The SIFT

keypoint descriptor is computed using opencv library version 2.4.13 binding with

python language. The template with the most matched descriptor is chosen to be

recognition result.

The percentage accuracy of matching result is calculated from finding ratio

between number of test image with correct recognition result and number of all test

images and then multiply the ratio by 100.

 Table 4.1 shows Percentage accuracy of matching result using Sobel edge

feature. The average accuracy of 5 folds cross validation is about 33.79% at 1NN and

the accuracy is decrease when increase k of kNN.

Table 4.1 Percentage accuracy of matching result using Sobel edge feature

 Fold1 Fold2 Fold3 Fold4 Fold5 Average

1NN 28.2407 36.4198 26.5432 42.9012 34.8765 33.79628

3NN 35.3395 32.2531 20.0617 31.4015 25.4630 28.90376

5NN 25.6173 28.8580 20.0617 22.3765 22.5309 23.88888

7NN 22.6852 25.0000 22.3765 18.0556 21.6049 21.94444

9NN 18.6752 24.6914 20.9877 14.9691 18.5185 19.56838

Ref. code: 25595522040293TOJ

19

Table 4.2 shows Percentage accuracy of matching result using Prewitt edge

feature. The average accuracy of 5 folds cross validation is about 34.84% at 1NN and

the accuracy is decrease when increase k of kNN but still is higher than accuracy

using Sobel edge at every k of kNN.

Table 4.2 Percentage accuracy of matching result using Prewitt edge feature

 Fold1 Fold2 Fold3 Fold4 Fold5 Average

1NN 29.4753 37.5000 27.7778 44.1358 35.3395 34.84568

3NN 36.8827 33.4877 19.9074 32.4074 25.6173 29.66050

5NN 26.8519 29.9383 20.679 23.3025 23.6111 24.87656

7NN 23.1481 26.2346 22.2222 18.8272 22.0679 22.50000

9NN 19.1358 25.3086 21.2963 15.7407 18.5185 19.99998

Table 4.3 shows Percentage accuracy of matching result using Laplacian edge

feature. The average accuracy of 5 folds cross validation is about 36.29% at 1NN and

the accuracy is decrease when increase k of kNN. The accuracy using Laplacian edge

is slightly higher than accuracy using Prewitt edge but Laplacian edge also requires

computation time about 1.2 times compared to Prewitt edge.

Table 4.3 Percentage accuracy of matching result using Laplacian edge feature

 Fold1 Fold2 Fold3 Fold4 Fold5 Average

1NN 33.6420 22.9938 31.7901 45.8333 47.2222 36.29628

3NN 26.0802 37.0370 18.2099 32.2531 42.1296 31.14196

5NN 19.1358 35.4938 13.5802 22.2272 34.4136 24.97012

7NN 15.1235 27.9321 10.6481 20.1600 31.3272 21.03818

9NN 23.1481 22.8395 8.79630 17.4383 26.6975 19.78394

Table 4.4 shows Percentage accuracy of matching result using Canny edge

feature. The average accuracy of 5 folds cross validation is about 77.77% at 1NN. The

accuracy using Canny edge is highest compared with all three other edge features but

Laplacian edge also requires computation time about 2 times compared to Prewitt

edge which is longest computation time of all edge feature in this study.

Ref. code: 25595522040293TOJ

20

Table 4.4 Percentage accuracy of matching result using Canny edge feature

 Fold1 Fold2 Fold3 Fold4 Fold5 Average

1NN 82.7160 73.4568 70.2160 82.5617 79.9383 77.77776

3NN 72.6852 84.8765 65.2778 75.1543 72.9938 74.19752

5NN 68.6728 79.4753 54.9383 68.5185 70.8333 68.48764

7NN 64.8148 76.2346 46.9136 61.7284 66.0494 63.14816

9NN 58.4877 70.2160 41.0494 55.7099 62.1914 57.53088

Table 4.5 shows Percentage accuracy of matching result using 3*3 grid size

LBP feature. The average accuracy of 5 folds cross validation is about 99.81% at 1NN

and the accuracy is hardly decrease when increase k of kNN.

Table 4.5 Percentage accuracy of matching result using 3*3 grid size LBP feature

 Fold1 Fold2 Fold3 Fold4 Fold5 Average

1NN 100 99.8457 99.8457 99.6914 99.6914 99.81484

3NN 100 99.8457 99.8457 99.6914 99.6914 99.81484

5NN 100 99.8457 99.8457 99.6914 99.6914 99.81484

7NN 100 99.8457 99.8457 99.6914 99.6914 99.81484

9NN 100 99.8457 99.8457 99.6914 99.6914 99.81484

Table 4.6 shows Percentage accuracy of matching result using 3*3 grid size

LTP feature. The average accuracy of 5 folds cross validation is about 99.81% at 1NN

and the accuracy is slightly decrease when increase k of kNN.

Table 4.6 Percentage accuracy of matching result using 3*3 grid size LTP feature

 Fold1 Fold2 Fold3 Fold4 Fold5 Average

1NN 99.8457 99.8457 99.6914 99.8457 99.8457 99.81484

3NN 99.8457 99.8457 99.6914 99.8457 99.8457 99.81484

5NN 99.6914 99.8457 99.6914 99.8457 99.6914 99.75312

7NN 99.6914 99.8457 99.6914 99.8457 99.8457 99.78398

9NN 99.6914 99.8457 99.5370 99.5370 99.6914 99.6605

Table 4.7 shows Percentage accuracy of matching result using 5*5 grid size

LBP feature. The average accuracy of 5 folds cross validation is about 99.87% at 1NN

and the accuracy is slightly decrease when increase k of kNN.

Ref. code: 25595522040293TOJ

21

Table 4.7 Percentage accuracy of matching result using 5*5 grid size LBP feature

 Fold1 Fold2 Fold3 Fold4 Fold5 Average

1NN 100 100.0000 99.8457 99.8457 99.6914 99.87656

3NN 100 99.8457 99.8457 99.8457 99.6914 99.84570

5NN 100 99.8457 99.8457 99.8457 99.6914 99.84570

7NN 100 99.8457 99.8457 99.6914 99.6914 99.81484

9NN 100 99.8457 99.8457 99.6914 99.6914 99.81484

Table 4.8 shows Percentage accuracy of matching result using 5*5 grid size

LTP feature. The average accuracy of 5 folds cross validation is about 99.84% at 1NN

and the accuracy is slightly decrease when increase k of kNN.

Table 4.8 Percentage accuracy of matching result using 5*5 grid size LTP feature

 Fold1 Fold2 Fold3 Fold4 Fold5 Average

1NN 99.8457 99.8457 99.6914 100.0000 99.8457 99.84570

3NN 99.2284 99.8457 99.6914 99.8457 99.6914 99.66052

5NN 99.2284 99.8457 99.6914 99.6914 99.5370 99.59878

7NN 99.2284 99.8457 99.6914 99.5370 99.2284 99.50618

9NN 99.2284 99.6914 99.3827 99.3827 99.9198 99.52100

Table 4.9 shows Percentage accuracy of matching result using 7*7 grid size

LBP feature. The average accuracy of 5 folds cross validation is about 99.81% at 1NN

and the accuracy is hardly decrease when increase k of kNN.

Table 4.9 Percentage accuracy of matching result using 7*7 grid size LBP feature

 Fold1 Fold2 Fold3 Fold4 Fold5 Average

1NN 100 99.8457 99.8457 99.6914 99.6914 99.81484

3NN 100 99.8457 99.8457 99.6914 99.6914 99.81484

5NN 100 99.8457 99.8457 99.6914 99.6914 99.81484

7NN 100 99.8457 99.8457 99.6914 99.6914 99.81484

9NN 100 99.8457 99.8457 99.6914 99.6914 99.81484

Table 4.10 shows Percentage accuracy of matching result using 7*7 grid size

LTP feature. The average accuracy of 5 folds cross validation is about 99.78% at 1NN

and the accuracy is slightly decrease when increase k of kNN.

Ref. code: 25595522040293TOJ

22

Table 4.10 Percentage accuracy of matching result using 7*7 grid size LTP feature

 Fold1 Fold2 Fold3 Fold4 Fold5 Average

1NN 99.6914 99.8457 99.6914 99.8457 99.8457 99.78398

3NN 99.0741 99.8457 99.6914 99.6914 99.6914 99.59880

5NN 99.0741 99.8457 99.6914 99.5370 99.5370 99.53704

7NN 99.0741 99.8457 99.5370 99.3827 99.0741 99.38272

9NN 99.0741 99.6914 99.5370 99.3827 98.7654 99.29012

Table 4.11 shows Percentage accuracy of matching result using 9*9 grid size

LBP feature. The average accuracy of 5 folds cross validation is about 99.81% at 1NN

and the accuracy is hardly decrease when increase k of kNN.

Table 4.11 Percentage accuracy of matching result using 9*9 grid size LBP feature

 Fold1 Fold2 Fold3 Fold4 Fold5 Average

1NN 100 99.8457 99.8457 99.6914 99.6914 99.81484

3NN 100 99.8457 99.8457 99.6914 99.6914 99.81484

5NN 100 99.8457 99.8457 99.6914 99.6914 99.81484

7NN 100 99.8457 99.8457 99.6914 99.6914 99.81484

9NN 100 99.8457 99.8457 99.6914 99.6914 99.81484

Table 4.12 shows Percentage accuracy of matching result using 9*9 grid size

LTP feature. The average accuracy of 5 folds cross validation is about 99.81% at 1NN

and the accuracy is slightly decrease when increase k of kNN.

Table 4.12 Percentage accuracy of matching result using 9*9 grid size LTP feature

 Fold1 Fold2 Fold3 Fold4 Fold5 Average

1NN 99.8457 99.8457 99.6914 99.8457 99.8457 99.81484

3NN 99.0741 99.8457 99.6914 99.8457 99.5370 99.59878

5NN 98.9198 99.6914 99.6914 99.6914 99.0741 99.41362

7NN 99.0741 99.6914 99.5370 99.3827 98.9198 99.3210

9NN 99.0741 99.3827 99.5370 99.2284 98.4568 99.1358

Table 4.13 shows Percentage accuracy of matching result using 11*11 grid

size LBP feature. The average accuracy of 5 folds cross validation is about 99.81% at

1NN and the accuracy is slightly decrease when increase k of kNN.

Ref. code: 25595522040293TOJ

23

Table 4.13 Percentage accuracy of matching result using 11*11 grid size LBP feature

 Fold1 Fold2 Fold3 Fold4 Fold5 Average

1NN 100 99.8457 99.8457 99.6914 99.6914 99.81484

3NN 100 99.8457 99.8457 99.8457 99.6914 99.84570

5NN 100 99.8457 99.8457 99.8457 99.6914 99.84570

7NN 100 99.8457 99.8457 99.6914 99.6914 99.81484

9NN 100 99.8457 99.8457 99.6914 99.6914 99.81484

Table 4.14 shows Percentage accuracy of matching result using 11*11 grid

size LTP feature. The average accuracy of 5 folds cross validation is about 99.81% at

1NN and the accuracy is slightly decrease when increase k of kNN.

Table 4.14 Percentage accuracy of matching result using 11*11 grid size LTP feature

 Fold1 Fold2 Fold3 Fold4 Fold5 Average

1NN 99.8457 99.8457 99.6914 99.8457 99.8457 99.81484

3NN 99.3827 99.8457 99.6914 99.8457 99.6914 99.69138

5NN 99.2284 99.6914 99.6914 99.6914 99.3827 99.53706

7NN 99.2284 99.6914 99.6914 99.3827 99.0741 99.41360

9NN 99.2284 99.5370 99.5370 99.2284 98.6111 99.22838

Table 4.15 shows Percentage accuracy of matching result using SIFT keypoint

descriptor. The accuracy of all 5 folds in 5 folds cross validation is 100% but also take

tremendous computation time as much as 92 times compared with 3*3 grid size

texture features.

Table 4.15 Percentage accuracy of matching result using SIFT feature

Fold1 Fold2 Fold3 Fold4 Fold5 Average

100 100 100 100 100 100

Table 4.16 shows computation time of every method used in this work. The

time measurement starts when testing image is read and end when recognition result

is known. Among the edge features, Sobel edge takes shortest computation time.

Prewitt edge takes computation time slightly more than Sobel edge. Canny edge takes

longest computation time among the edge features which is almost two times of

Prewitt edge. For the texture features, LBP amd LTP take almost equal computation

Ref. code: 25595522040293TOJ

24

time at the same grid size. The computation times of LBP and LTP are increasing

when increase grid size but at 11*11 grid size, the computation time is still faster than

Sobel edge. The SIFT keypoint descriptor takes long computation time more than all

features in this study which is almost two hours.

Table 4.16 Computation time in second

 Fold1 Fold2 Fold3 Fold4 Fold5 Total

Sobel 460.9781 451.3504 455.6027 452.739 456.7211 2277.391

Prewitt 486.0912 485.7395 491.1928 486.0196 486.9185 2435.961

Laplacian 622.4656 621.3507 622.7242 620.3942 628.7392 3115.674

Canny 939.9226 959.9155 933.6992 948.0208 930.9655 4712.524

LBP3*3 81.61101 82.09881 81.58735 82.1827 81.97508 409.4549

LTP3*3 81.55889 81.69491 82.09307 81.86571 82.42746 409.6400

LBP5*5 98.57156 97.49566 98.23928 97.54278 97.89867 489.7479

LTP5*5 97.85553 97.61807 98.57082 98.49263 97.89867 490.4357

LBP7*7 102.592 104.0623 100.7746 101.769 100.7897 509.9875

LTP7*7 103.0894 102.9292 101.2395 102.0709 100.6193 509.9482

LBP9*9 106.1316 105.435 104.7524 106.0734 105.2539 527.6462

LTP9*9 105.6228 105.504 104.0907 103.9716 110.1446 529.3338

LBP11*11 113.5277 113.5666 112.8898 112.4654 113.5911 566.0406

LTP11*11 111.9601 114.0983 113.2247 112.3349 112.3882 564.0063

SIFT 7418.299 7295.848 7042.497 7700.427 7639.149 37096.22

Among the methods used in this study, 3*3 grid size LBP gives the second

best performance in accuracy with not much different from SIFT keypoint descriptor

which gives best accuracy. The 3*3 grid size LBP also gives best performance in

computation time. Therefore, the author chooses 3*3 grid size LBP to develop

MATLAB application which works with USB camera.

Ref. code: 25595522040293TOJ

25

Chapter 5

Amulet Recognition in a Nutshell System

This chapter demonstrates the system called ‘Amulet Recognition in a Nutshell’

which is created to make user to be able to do amulet recognition with image from

USB camera. The minimum focus distance of USB camera used with this system

should not be longer than 10 cm. The system is developed on MATLAB platform.

The system takes about 24 milliseconds computation time per one input image. The

system screen when the user starts the system is shown in Figure 5.1.

Figure 5.1 System screen

The left side of system screen contains real time video input from USB

camera. When user clicks ‘Capture and Analyze’ button, input image at the moment is

captured and processed as mentioned in chapter 3. The user can see grayscale

segmented image in the middle of system screen and result of amulet recognition can

be seen in the right side of system screen as shown in Figure 5.2 and Figure 5.3.

Ref. code: 25595522040293TOJ

26

Figure 5.2 Correct recognition with Phraya Pichai

Figure 5.3 Correct recognition with Luang Por Parn

Ref. code: 25595522040293TOJ

27

The system uses segmentation process mentioned in chapter 3 which requires

the amulet to be placed on plain background to make background vanish when Prewitt

edge detection is applied. The background color does not need to be white. The

inappropriate lighting condition can cause shadow of camera and user’s body which

makes wrong segmentation. The wrong segmentation can make recognition also

wrong as shown in Figure 5.4.

Figure 5.4 Wrong recognition

The author conducts out-of-sample test experiment of the system with 5 users.

For each user, the testing was conduct with 5 kinds of amulet which the users select

themselves. The users use the system the chosen amulet 100 times for each of amulet

kind. The test experiment result of the system is shown in Table 5.1-5.5.The out-of-

sample test result gives lower performance compared to the in-sample test result in

chapter 4 because shadow of camera and user’s body affect not only segmentation but

also the luminance of amulet in the image.

Ref. code: 25595522040293TOJ

28

Table 5.1 Test experiment conducted with user #1

Amulet Name Correct Incorrect Accuracy

Phraya Pichai 91 9 91%

Luang Por Thongyu 93 7 93%

Luang Poo Van 95 5 95%

Luang Por Pew 85 15 85%

Luang Por Noi 88 12 88%

Table 5.2 Test experiment conducted with user #2

Amulet Name Correct Incorrect Accuracy

Luang Por Daeng 90 10 90%

Luang Poo Van 95 5 95%

Luang Por Sothorn 92 8 92%

Luang Por Su Kho 91 9 91%

Luang Por Kaew 88 12 88%

Table 5.3 Test experiment conducted with user #3

Amulet Name Correct Incorrect Accuracy

Luang Por Parn 86 14 86%

Luang Por Thongyu 90 10 90%

Luang Por Daeng 92 8 92%

Luang Poo Sarm 94 6 94%

Luang Poo Van 96 4 96%

Table 5.4 Test experiment conducted with user #4

Amulet Name Correct Incorrect Accuracy

Luang Por Parn 88 12 88%

Luang Por Si Kho 90 10 90%

Luang Por Pew 86 14 86%

Phraya Pichai 85 15 85%

Luang Poo Van 90 10 90%

Table 5.5 Test experiment conducted with user #5

Amulet Name Correct Incorrect Accuracy

Praputtha Chinnarad 88 12 88%

Luang Por Daeng 95 5 95%

Luang Por Thongyu 93 7 93%

Luang Poo Sarm 90 10 90%

Luang Poo Duad 87 13 87%

Ref. code: 25595522040293TOJ

29

Chapter 6

Conclusions and Recommendations

In this thesis, the author presented image-based amulet recognition method. The

process begins with amulet segmentation. Amulet segmentation process does require

the amulet to be placed on the plain background. The next process is feature

extraction and the last process is template matching. The features used in this work

are edge feature, which indicate high contrast area in the image, and texture feature,

which describe object surface image. From comparison, texture feature give better

result than edge feature. For possible improvement, the computation in feature

matching process may be able to be simplified using artificial neural network with

hidden layer. Furthermore, applying machine learning to this work can make adding

more kinds of amulet to the system more easy considering this work consists only 33

kinds of amulet and there still are more many in the market.

Ref. code: 25595522040293TOJ

30

References

[1] Fukumi, M., Omatu, S., Takeda, F., and Kosaka, T. (1992). Rotation-invariant

neural pattern recognition system with application to coin recognition.

Neural Networks, IEEE Transactions on, 3(2), 272-279.

[2] Nölle, M., Penz, H., Rubik, M., Mayer, K., Holländer, I., and Granec, R. (2003,

December). Dagobert-a new coin recognition and sorting system. In

Proceedings of the 7th Internation Conference on Digital Image

Computing-Techniques and Applications (DICTA’03), Syndney, Australia.

[3] McNeill, S., Schipper, J., Sellers, T., and Nechyba, M. C. (2004). Coin

Recognition using Vector Quantization and Histogram Modeling. In 2004

Florida Conference on Recent Advances in Robotics (FCRAR).

[4] Reisert, M., Ronneberger, O., and Burkhardt, H. (2006, September). An efficient

gradient based registration technique for coin recognition. In Proc. of the

Muscle CIS Coin Competition Workshop, Berlin, Germany (pp. 19-31).

[5] Reisert, M., Ronneberger, O., and Burkhardt, H. (2007). A fast and reliable coin

recognition system. In Pattern Recognition (pp. 415-424). Springer Berlin

Heidelberg.

[6] Pornpanomchai, C., Wongkorsub, J., Pornaudomdaj, T., and Vessawasdi, P.

(2010, April). Buddhist amulet recognition system (BARS). In Computer

and Network Technology (ICCNT), 2010 Second International Conference

on (pp. 495-499). IEEE.

[7] Velu, C. M., Vivekanadan, P., and Kashwan, K. R. (2011). Indian coin recognition

and sum counting system of image data mining using Artificial Neural

Networks. International Journal of Advanced Science and Technology, 31,

67-80.

Ref. code: 25595522040293TOJ

31

[8] Prewitt, J. M. (1970). Object enhancement and extraction. Picture processing and

Psychopictorics, 10(1), 15-19.

[9] Mäenpää, T., and Pietikäinen, M. (2005). Texture analysis with local binary

patterns. Handbook of Pattern Recognition and Computer Vision, 3, 197-

216.

[10] Tan, X., and Triggs, B. (2010). Enhanced local texture feature sets for face

recognition under difficult lighting conditions. Image Processing, IEEE

Transactions on, 19(6), 1635-1650.

[11] Vincent, O. R., & Folorunso, O. (2009, June). A descriptive algorithm for sobel

image edge detection. In Proceedings of Informing Science & IT Education

Conference (InSITE)(Vol. 40, pp. 97-107).

[12] Canny, J. (1986). A computational approach to edge detection. IEEE

Transactions on pattern analysis and machine intelligence, (6), 679-698.

[13] Mlsna, P. A., & Rodriguez, J. J. (2005). Gradient and laplacian edge detection. In

Handbook of image and video processing, Elsevier Inc..

 [14] Lowe, D. G. (2004). Distinctive image features from scale-invariant keypoints.

International journal of computer vision, 60(2), 91-110.

Ref. code: 25595522040293TOJ

32

Appendices

Ref. code: 25595522040293TOJ

33

Appendix A

List of Publications

1. Sauthananusuk, T., Charoenlarpnopparut, C., Kondo, T., Bunnun, P., and Hirohiko,

K. (2014). Thai Amulet Recognition Using Simple Feature. In Information

and Communication Technology for Embedded Systems (ICICTES2014),

The International Conference on, Ayutthaya, Thailand.

2. Sauthananusuk, T., Charoenlarpnopparut, C., Kondo, T., Bunnun, P., and Hirohiko,

K. (2014). Thai amulet recognition based-on texture feature analysis.

Proceedings of Annual Conference on Engineering and Technology

(ACEAT 2014). Osaka, Japan (pp. 61-70).

Ref. code: 25595522040293TOJ

34

Appendix B

Amulet segmentation MATLAB source code

h1=[0 0 0 0 0 0 0;

 0 0 0 0 0 0 0;

 0 0 0 0 0 0 0;

 0.1 0.1 0.1 0.1 0.1 0.1 0.1;

 0 0 0 0 0 0 0;

 0 0 0 0 0 0 0;

 0 0 0 0 0 0 0];

h2=[0 0 0 0.1 0 0 0;

 0 0 0 0.1 0 0 0;

 0 0 0 0.1 0 0 0;

 0 0 0 0.1 0 0 0;

 0 0 0 0.1 0 0 0;

 0 0 0 0.1 0 0 0;

 0 0 0 0.1 0 0 0];

im1=imread(['image directory']);

im2=rgb2gray(im1);

im3=imresize(im2,[720,540]);

im4=edge(im3,'prewitt');

ver = im2bw(imfilter(im4,h2,'replicate'));

hor = im2bw(imfilter(im4,h1,'replicate'));

lr=sum(ver);

ud=sum(transpose(hor));

for j = 1:540

 if lr(j)>0

 r=j;

 end

 if lr(541-j)>0

 l=541-j;

 end

 if ud(j)>0

 d=j;

 end

 if ud(721-j)>0

 u=721-j;

 end

end

for j = 541:720

 if ud(j)>0

 d=j;

Ref. code: 25595522040293TOJ

35

 end

 if ud(721-j)>0

 u=721-j;

 end

end

im3=im3(u:d,l:r);

im3=imresize(im3,[720,540]);

Ref. code: 25595522040293TOJ

36

Appendix C

Feature extraction MATLAB source code

im1=imread(['segmented image']);

im2=imresize(im1,[90,90]);

LBP=zeros(6480,1);

LTP=zeros(6480,1);

k=1;

for i=3:5:88

 for j=3:5:88

 if im2(i,j)<im2(i-2,j-1)

 LBP(k,1)=0;

 if im2(i,j)+10<im2(i-2,j-1)

 LTP(k,1)=-1;

 else

 LTP(k,1)=0;

 end

 else

 LBP(k,1)=1;

 if im2(i,j)-10>im2(i-2,j-1)

 LTP(k,1)=1;

 else

 LTP(k,1)=0;

 end

 end

 k=k+1;

 if im2(i,j)<im2(i-2,j)

 LBP(k,1)=0;

 if im2(i,j)+10<im2(i-2,j)

 LTP(k,1)=-1;

 else

 LTP(k,1)=0;

 end

 else

 LBP(k,1)=1;

 if im2(i,j)-10>im2(i-2,j)

 LTP(k,1)=1;

 else

 LTP(k,1)=0;

 end

 end

 k=k+1;

Ref. code: 25595522040293TOJ

37

 if im2(i,j)<im2(i-2,j+1)

 LBP(k,1)=0;

 if im2(i,j)+10<im2(i-2,j+1)

 LTP(k,1)=-1;

 else

 LTP(k,1)=0;

 end

 else

 LBP(k,1)=1;

 if im2(i,j)-10>im2(i-2,j+1)

 LTP(k,1)=1;

 else

 LTP(k,1)=0;

 end

 end

 k=k+1;

 if im2(i,j)<im2(i-1,j-2)

 LBP(k,1)=0;

 if im2(i,j)+10<im2(i-1,j-2)

 LTP(k,1)=-1;

 else

 LTP(k,1)=0;

 end

 else

 LBP(k,1)=1;

 if im2(i,j)-10>im2(i-1,j-2)

 LTP(k,1)=1;

 else

 LTP(k,1)=0;

 end

 end

 k=k+1;

 if im2(i,j)<im2(i-1,j-1)

 LBP(k,1)=0;

 if im2(i,j)+10<im2(i-1,j-1)

 LTP(k,1)=-1;

 else

 LTP(k,1)=0;

 end

 else

 LBP(k,1)=1;

 if im2(i,j)-10>im2(i-1,j-1)

 LTP(k,1)=1;

 else

 LTP(k,1)=0;

Ref. code: 25595522040293TOJ

38

 end

 end

 k=k+1;

 if im2(i,j)<im2(i-1,j)

 LBP(k,1)=0;

 if im2(i,j)+10<im2(i-1,j)

 LTP(k,1)=-1;

 else

 LTP(k,1)=0;

 end

 else

 LBP(k,1)=1;

 if im2(i,j)-10>im2(i-1,j)

 LTP(k,1)=1;

 else

 LTP(k,1)=0;

 end

 end

 k=k+1;

 if im2(i,j)<im2(i-1,j+1)

 LBP(k,1)=0;

 if im2(i,j)+10<im2(i-1,j+1)

 LTP(k,1)=-1;

 else

 LTP(k,1)=0;

 end

 else

 LBP(k,1)=1;

 if im2(i,j)-10>im2(i-1,j+1)

 LTP(k,1)=1;

 else

 LTP(k,1)=0;

 end

 end

 k=k+1;

 if im2(i,j)<im2(i-1,j+2)

 LBP(k,1)=0;

 if im2(i,j)+10<im2(i-1,j+2)

 LTP(k,1)=-1;

 else

 LTP(k,1)=0;

 end

 else

 LBP(k,1)=1;

Ref. code: 25595522040293TOJ

39

 if im2(i,j)-10>im2(i-1,j+2)

 LTP(k,1)=1;

 else

 LTP(k,1)=0;

 end

 end

 k=k+1;

 if im2(i,j)<im2(i,j-2)

 LBP(k,1)=0;

 if im2(i,j)+10<im2(i,j-2)

 LTP(k,1)=-1;

 else

 LTP(k,1)=0;

 end

 else

 LBP(k,1)=1;

 if im2(i,j)-10>im2(i,j-2)

 LTP(k,1)=1;

 else

 LTP(k,1)=0;

 end

 end

 k=k+1;

 if im2(i,j)<im2(i,j-1)

 LBP(k,1)=0;

 if im2(i,j)+10<im2(i,j-1)

 LTP(k,1)=-1;

 else

 LTP(k,1)=0;

 end

 else

 LBP(k,1)=1;

 if im2(i,j)-10>im2(i,j-1)

 LTP(k,1)=1;

 else

 LTP(k,1)=0;

 end

 end

 k=k+1;

 if im2(i,j)<im2(i,j+1)

 LBP(k,1)=0;

 if im2(i,j)+10<im2(i,j+1)

 LTP(k,1)=-1;

 else

Ref. code: 25595522040293TOJ

40

 LTP(k,1)=0;

 end

 else

 LBP(k,1)=1;

 if im2(i,j)-10>im2(i,j+1)

 LTP(k,1)=1;

 else

 LTP(k,1)=0;

 end

 end

 k=k+1;

 if im2(i,j)<im2(i,j+2)

 LBP(k,1)=0;

 if im2(i,j)+10<im2(i,j+2)

 LTP(k,1)=-1;

 else

 LTP(k,1)=0;

 end

 else

 LBP(k,1)=1;

 if im2(i,j)-10>im2(i,j+2)

 LTP(k,1)=1;

 else

 LTP(k,1)=0;

 end

 end

 k=k+1;

 if im2(i,j)<im2(i+1,j-2)

 LBP(k,1)=0;

 if im2(i,j)+10<im2(i+1,j-2)

 LTP(k,1)=-1;

 else

 LTP(k,1)=0;

 end

 else

 LBP(k,1)=1;

 if im2(i,j)-10>im2(i+1,j-2)

 LTP(k,1)=1;

 else

 LTP(k,1)=0;

 end

 end

 k=k+1;

 if im2(i,j)<im2(i+1,j-1)

Ref. code: 25595522040293TOJ

41

 LBP(k,1)=0;

 if im2(i,j)+10<im2(i+1,j-1)

 LTP(k,1)=-1;

 else

 LTP(k,1)=0;

 end

 else

 LBP(k,1)=1;

 if im2(i,j)-10>im2(i+1,j-1)

 LTP(k,1)=1;

 else

 LTP(k,1)=0;

 end

 end

 k=k+1;

 if im2(i,j)<im2(i+1,j)

 LBP(k,1)=0;

 if im2(i,j)+10<im2(i+1,j)

 LTP(k,1)=-1;

 else

 LTP(k,1)=0;

 end

 else

 LBP(k,1)=1;

 if im2(i,j)-10>im2(i+1,j)

 LTP(k,1)=1;

 else

 LTP(k,1)=0;

 end

 end

 k=k+1;

 if im2(i,j)<im2(i+1,j+1)

 LBP(k,1)=0;

 if im2(i,j)+10<im2(i+1,j+1)

 LTP(k,1)=-1;

 else

 LTP(k,1)=0;

 end

 else

 LBP(k,1)=1;

 if im2(i,j)-10>im2(i+1,j+1)

 LTP(k,1)=1;

 else

 LTP(k,1)=0;

 end

Ref. code: 25595522040293TOJ

42

 end

 k=k+1;

 if im2(i,j)<im2(i+1,j+2)

 LBP(k,1)=0;

 if im2(i,j)+10<im2(i+1,j+2)

 LTP(k,1)=-1;

 else

 LTP(k,1)=0;

 end

 else

 LBP(k,1)=1;

 if im2(i,j)-10>im2(i+1,j+2)

 LTP(k,1)=1;

 else

 LTP(k,1)=0;

 end

 end

 k=k+1;

 if im2(i,j)<im2(i+2,j-1)

 LBP(k,1)=0;

 if im2(i,j)+10<im2(i+2,j-1)

 LTP(k,1)=-1;

 else

 LTP(k,1)=0;

 end

 else

 LBP(k,1)=1;

 if im2(i,j)-10>im2(i+2,j-1)

 LTP(k,1)=1;

 else

 LTP(k,1)=0;

 end

 end

 k=k+1;

 if im2(i,j)<im2(i+2,j)

 LBP(k,1)=0;

 if im2(i,j)+10<im2(i+2,j)

 LTP(k,1)=-1;

 else

 LTP(k,1)=0;

 end

 else

 LBP(k,1)=1;

 if im2(i,j)-10>im2(i+2,j)

Ref. code: 25595522040293TOJ

43

 LTP(k,1)=1;

 else

 LTP(k,1)=0;

 end

 end

 k=k+1;

 if im2(i,j)<im2(i+2,j+1)

 LBP(k,1)=0;

 if im2(i,j)+10<im2(i+2,j+1)

 LTP(k,1)=-1;

 else

 LTP(k,1)=0;

 end

 else

 LBP(k,1)=1;

 if im2(i,j)-10>im2(i+2,j+1)

 LTP(k,1)=1;

 else

 LTP(k,1)=0;

 end

 end

 k=k+1;

 end

end

