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Abstract 

 

IMAGE-BASED THAI AMULET RECOGNITION 

 

by 

 

 

THANACHAI SAUTHANANUSUK 

 

 

Bachelor of Engineering (Electrical Engineering), Chulalongkorn University, 2011 

Master of Engineering (Information and Communication Technology for Embedded 

Systems), Sirindhorn International Institute of Technology, Thammasat University, 

2017  

 

 

This thesis presents a way to determine the kind of amulet from taken 

picture. The pre-processing and amulet segmentation are processed with the plain 

color background and segmentation method is based on grayscale conversion and 

edge detection to locate high contrast area in the image. The amulet kind 

determination makes use of two feature, first is edge feature from prewitt edge 

detection and second is texture feature called local ternary pattern (LTP) which 

indicate differrent in image intensities. The accuracy of template matching are 77% 

when using Canny edge feature and 99% when using LTP feature.  
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Chapter 1 

Introduction 

 

 

1.1 Background of study and Statement of problem 

Thai amulet is accessory with Buddha shape and named after local Buddhism priest in 

Thailand. There are many kinds and variations, which are difficult to distinguish. Thai 

amulet can be highly valuable asset especially classical ones which has limit number 

of its own kind. Many amulet clubs in Thailand trade the amulet fluently. For non-

specialist, knowing the kind of the amulet they are dealing with will help in price 

setting for trading in the market and estimating asset value for the investor who keeps 

it.  

 

However, it is not easy because prior knowledge about amulet characteristic 

require long time study to master. Sometimes, even the specialist who has been 

familiar with Buddhist amulets for a long time still does not know all of them. Some 

kinds of amulet have word carved on the shape but for the rest those there are not any 

word on the shape, all information for non-specialist people is what they see as shown 

in Figure 1.1 and that leads to study about amulet recognition from taken picture. 

 

 

Figure 1.1 Example of difficult to distinguish amulet for non-specialist 
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1.2 Purpose of study 

Because amulet has very similar to coin in size and there is not much recent work 

about actual amulet, the majority of this study is coin classification method and the 

rest is study about feature extraction then propose an image-based approach for 

determine the kind of amulet from taken picture to help people know more about the 

amulet. The list of publications written from this study by the author can be found in 

appendix A. 

 

1.3 Expected Outcome 

The expected outcome of this study is the amulet recognition system that is easy for 

the user with the unknown amulet to try and use it. Since the target group user is non-

specialist people, the author expect that the system can make more people to have 

interest and want to know more about amulet.  

.  

1.4 Scope and limitation 

This study consist 33 kinds of amulet. The focus distance of camera for image 

acquisition should be at most 10 cm. The procedures in this study cannot work with 

image with complex background.  

 

1.5 Structure of the thesis 

The organization of the thesis is as follow, Chapter 2 describes the related work to this 

thesis. Chapter 3 explains the detail of image preprocessing in amulet segmentation 

and feature extraction using in this research is also described. Chapter 4 shows 

experiment result and discussion. Chapter 5 demonstrates the amulet recognition 

system from proposed algorithm. Finally, Chapter 6 concludes the study of this thesis 

and suggestion for future improvement. 
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Chapter 2  

Literature Review 

 

 

Because Thai amulet is not well known outside Thailand, there are very few works 

related to the amulet. Nevertheless, there are many researches about coin recognition 

those can be adopted to apply with amulet recognition. Since coin and amulet are very 

similar in object size. 

 

 Minoru Fukumi et al. [1] used rotated image for neural network training to 

create rotation invariant coin pattern recognition system. The system consists of two 

parts, the slabs of preprocessor and rotation invariant network called a-CONE. Each 

slab of the preprocessor contains sigmoid neuron units, which produce single output 

to the trainable multilayer neural-network a-CONE. To determine the weight of 

neuron units in order to achieve rotation invariant, the circular coordinate system used 

by the preprocessor is represented by radius and corresponding angle. With 12 equal 

segments in one circumference area, slab outputs can be insensitive to every 30 

degrees rotation of an input pattern. The experiment was conducted with 500 Japanese 

yen coin and 500 Korean won coin. 

 

 Michael Nolle et al. [2] propose real-time system called Dagobert that can 

recognize 39 classes of coin and can reject unknown class, which is not recognized. 

There are mechanical parts, which can put the coin on and take the coin out from the 

conveyor belt. The system is equipped with two additional sensors measuring the 

thickness as well as the rough diameter of the current coin, which are used to trigger 

the image processing. For the coin detection, it is assumed that the conveyor belt used 

as background is homogenous and always darker (or brighter) than the coins. This 

makes a simple automatic threshold operation suffices for the segmentation. The 

center of gravity, perimeter and convex hull of the coin can be obtained easily. After 

applied edge detector, the system use binary string created from edge pixel as 

recognition feature.  

Seth McNeill et al. [3] use vector quantization of edge feature image and k-
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means algorithm to train machine learning system for classification. The data 

collection process was done using several background colors such as black, white, red 

and blue. The extensive segmentation testing show that red is the best background 

color for this step. The data set used in the experiment consists of approximately 400 

images with similar rotation, lighting and size. Once the segmentation and cropping 

are done, the segmented coin images go through vertical edge detection and 

thresholding. The histogram of the image is constructed using vector quantization 

centroids. Bayes classifier is used in coin classification.  

Marco Reisert et al. [4][5] used Hough transform to segment coin image, then 

shift coin center to origin position, scaling image so that coin radius is equal to 1 and 

use gradient image and fast Fourier transform to generate feature. The registration 

approach is to align two coins, which have maximal number of collinear gradient 

vectors. The gradient magnitude is completely neglected. The computation of the 

induced similarity measure can be done efficiently in the Fourier domain after the 

gradient directions are quantized. The classification is realized with a simple nearest 

neighbor classification method. The confidence value measurement is additional 

rejection criteria to meet the requirement of reducing false positive rate. The 

confidence value was computed from similarity scores, thickness, radius and angle 

pose differences.  

Chomtip Pornpanomchai et al. [6] work with actual amulet, not another class 

of coin like all the works mentioned before. The system use correlation value to 

determine the recognition result. The correlation value is computed from the 

difference of grayscale value of all pixels between two images. The images in this 

work were taken in controlled environment (black box and spotlight).  

Velu et al. [7] present Indian Coin counting system. The system can recognize 

the coins and sum up the total value in term of Indian National Rupee (INR). There 

are several assumptions in this system such as the coins should move on a conveyor 

belt like in Michael Nolle et al., there has to be proper lighting focused on the coin, 

both sides of the coin have to be collected and all parameter of the coin must be 

measured accurately.  
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Chapter 3 

Methodology 

 

This chapter presents the procedures for amulet segmentation using grayscale 

conversion and Prewitt edge detection then describes the feature extraction using in 

this research. The similarity measurement using edge feature and texture feature is 

computed separately. The system diagram is shown in Figure 3.1. 

 

 
(a)                                                           (b) 

Figure 3.1 System diagram (a) using edge feature (b) using texture feature 

 

3.1 Image acquisition 

 

For the image acquisition, the condition is amulet has to be placed on the plain color 

background. The background color should be contrast with the amulet color so that 

background can be easily wiped out in segmentation process. In this work, the author 

places the amulets on red color paper, green color paper, pink color paper, blue color 

paper, yellow color paper, orange color paper and white color paper. The pictures 

used as dataset in this work are taken by mobile phone camera and compact camera. 

Some of sample data are shown in Figure 3.2. 
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Figure 3.2 Initial condition of the amulet images 

3.2 Grayscale conversion 

 

To make luminance intensity of the images to be easy to distinguish, the amulet image 

is converted from RGB color to grayscale color using grayscale conversion formula in 

Eq. (3.1). 

 

Grayscale = 0.299 * R + 0.587 * G + 0.114 * B    (3.1)  

Where 

R is red color intensity in RGB image, 

G is green color intensity in RGB image, 

B is blue color intensity in RGB image. 

The result of grayscale conversion is shown in Figure 3.3.  
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Figure 3.3 Grayscale conversion 

 

3.3 Prewitt edge detection 

 

To indicate the high contrast area of the amulet image, Prewitt edge detection [8] is 

applied to grayscale image of the amulet. The binary image with only edge pixels 

remain is shown in Figure 3.4. 

 

 
 

Figure 3.4 Prewitt edge detection 
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3.4 Post processing 

 

From the ideal edge image, the exact location of the amulet can be shown by finding 

the leftmost, rightmost, topmost, lowermost white pixel but there still are some noise 

white pixels which make segmentation go wrong. As shown in the right subfigure of 

Figure 3.4, the leftmost, rightmost, topmost, lowermost white pixel is not the exact 

location of amulet. To fix this problem, 2-D linear FIR filters were applied before 

getting amulet location. The masks of the filters are shown in Figure 3.5. The images 

filtered by those masks are shown in Figure 3.6.  

               
           (a)             (b) 

Figure 3.5 7x7 Masks (a) horizontal (b) vertical 

  
     (a)     (b) 

Figure 3.6 Noise reduction of edge images  

(a) After apply vertical line filter (b) After apply horizontal line filter 
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After getting amulet position, the grayscale image is cropped like shown in 

Figure 3.7 before doing feature extraction.  

 

 

 
 

Figure 3.7 Cropped amulet image 

 

 

3.5 Edge feature retrieval 

 

Beside the grayscale image from section 3.2, the Prewitt edge detection image from 

section 3.3 is also cropped after getting amulet position from section 3.4. The cropped 

image is shown Figure 3.8.  

 

 
 

Figure 3.8 Cropped amulet edge image 
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3.6 Local binary pattern 

 

LBP [9] is texture feature derived from difference in the grayscale value between 

center pixel and neighborhood pixels. The area of neighbor system can be square with 

any odd number length but the greater distance, the correlation between center pixel 

and neighbor decrease. LBP feature can be deriving from the following formula. 

 

 (   )  {
   ( )   ( )   

   ( )   ( )   
   (3.2) 

 
 

Where  

T(n,c) is binary code value of neighbor pixel n compared to center pixel c, 

g(n) is grayscale value of neighbor pixel n, 

g(c) is grayscale value of center pixel c, 

 

For feature representation, if the grayscale value of neighbor pixel is not less than one 

of center pixel, the feature is represented by ‘1’ otherwise the feature is represented 

by ‘0’ like shown in Figure 3.9.  

 
 

Figure 3.9 LBP derivation 
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In Figure 3.9, the example LBP calculation gives 8 bits of binary which can be 

represented by binary number ‘10001111b’.  

With the larger neighborhood area, the more neighbor pixel stay in range. 

Figure 3.10 show example of 3x3 and 5x5 neighborhood area.  

 
 

Figure 3.10 3x3 and 5x5 neighbor area 

3.7 Local ternary pattern 

 

LTP [10] is the improved version of LBP, which has ‘-1’ feature representative in 

additional form LBP. LTP feature is designed to increase LBP reliability in difficult 

lighting condition. LTP feature can be deriving from the following formula. 

 (   )  {

   ( )   ( )   

  | ( )   ( )|   

    ( )   ( )   

   (3.3) 

 
Where  

T(n,c) is ternary code value of neighbor pixel n compared to center pixel c, 

g(n) is grayscale value of neighbor pixel n, 

g(c) is grayscale value of center pixel c, 

t is threshold value.  
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3.8 Texture feature retrieval 

 

The amulet segmented image from section 3.6 is resized to 54x54, 90x90, 126x126, 

162x162, 198x198 pixels depends on the grid size for collecting 3x3, 5x5, 7x7, 9x9, 

11x11 grid size LBP and LTP features respectively. The resized image is divided to 

18x18 areas. In each area, LBP and LTP feature were collected. The neighbor pixels 

to collect LBP and LTP features per one grid area are shown in Figure 3.11. 

 

 
(a)                                                         (b) 

Figure 3.11 Texture feature collection per one grid area  

(a) Show by radius distance from center (b) Show by actual pixel location 

 

The example of 3*3 grid size LBP derivation is shown in Figure 3.12 and 

Figure 3.13. 

 

Figure 3.12 3*3 grid size LBP derivation in one grid area 
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Figure 3.13 vector feature derivation from 54*54 pixel image  

 

3.9 Experiment Setup 

 

The experiments were done by using MATLAB on a laptop with 2.4GHz CPU 

and 4GB RAM. The template matching was conducted on 33 kinds of amulet with 

630 images per kind and using 5-fold cross validation technic with each fold has 126 

images per kind as shown in Figure 3.14. The 126 images of each kind in a fold 

consist of 18 images per each color background of 7 background colors used in this 

work. For the 18 images of each kind on the same color background, 9 images were 

collected in daylight and 9 images were collected in fluorescent light. The example 

image of amulet on each of background color is shown in Figure 3.15-3.21. 
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Figure 3.14 Experiment data setup 

 

 

Figure 3.15 Amulet on white background 
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Figure 3.16 Amulet on red background 

 

Figure 3.17 Amulet on blue background 

 

Figure 3.18 Amulet on green background 
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Fig. 3.19 Amulet on yellow background 

 

Figure 3.20 Amulet on pink background 

 

Figure 3.21 Amulet on orange background 
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For template matching using edge feature, the cropped amulet edge image 

from section 3.5 is resized to 200 pixels width and 200 pixels height, which is the size 

of all edge templates. The similarity between testing image and template image is 

computed from logical comparison of binary image. The formula is shown in equation 

Eq. (3.3). The template with highest similarity comparing with testing image is 

determined to be recognition result. 

  ∑ ∑ (         )
   
   

   
       (3.3) 

Where  

S is similarity value of two images A and B, 

Ai,j is grayscale value of binary image A at row I and column j, 

Bi,j is grayscale value of binary image B at row I and column j, 

 

 For template matching using texture feature, the feature collected from section 

3.8 is kept in form of 2592x1, 3888x1, 5184x1, 6480x1, 9072x1 size vector for 3x3, 

5x5, 7x7, 9x9, 11x11grid size LBP and LTP features respectively. The similarity 

between testing image and template image is calculated from dot product of texture 

feature from both images as shown in Figure 3.22. 

 

 

 

Figure 3.22 Similarity calculation 
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Chapter 4 

Result and Discussion 

 

This chapter begins with numerical result of every method. The criteria for deciding 

the result is k-nearest-neighbor (kNN) which is to choose the majority of k best 

matches to be the result when k is positive odd integer. The majority of 1, 3, 5, 7, 9 

best matches are the result for 1NN, 3NN, 5NN, 7NN, 9NN respectively. The next 

part of this chapter is comparison of computation time of all method used in this 

study. 

For the edge feature, segmentation process use only Prewitt edge detection but 

this chapter will also show matching result using 4 different kinds of edge feature 

such as Sobel edge[11], Canny edge[12], Laplacian edge[13]. Beside edge features 

and texture features, the author also compares computation time and result with 

famous general purpose feature called SIFT keypoint descriptor[14]. The SIFT 

keypoint descriptor is computed using opencv library version 2.4.13 binding with 

python language. The template with the most matched descriptor is chosen to be 

recognition result. 

The percentage accuracy of matching result is calculated from finding ratio 

between number of test image with correct recognition result and number of all test 

images and then multiply the ratio by 100. 

 Table 4.1 shows Percentage accuracy of matching result using Sobel edge 

feature. The average accuracy of 5 folds cross validation is about 33.79% at 1NN and 

the accuracy is decrease when increase k of kNN. 

 

Table 4.1 Percentage accuracy of matching result using Sobel edge feature 

 Fold1 Fold2 Fold3 Fold4 Fold5 Average 

1NN 28.2407 36.4198 26.5432 42.9012 34.8765 33.79628 

3NN 35.3395 32.2531 20.0617 31.4015 25.4630 28.90376 

5NN 25.6173 28.8580 20.0617 22.3765 22.5309 23.88888 

7NN 22.6852 25.0000 22.3765 18.0556 21.6049 21.94444 

9NN 18.6752 24.6914 20.9877 14.9691 18.5185 19.56838 
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Table 4.2 shows Percentage accuracy of matching result using Prewitt edge 

feature. The average accuracy of 5 folds cross validation is about 34.84% at 1NN and 

the accuracy is decrease when increase k of kNN but still is higher than accuracy 

using Sobel edge at every k of kNN.   

 

Table 4.2 Percentage accuracy of matching result using Prewitt edge feature 

  Fold1 Fold2 Fold3 Fold4 Fold5 Average 

1NN 29.4753 37.5000 27.7778 44.1358 35.3395 34.84568 

3NN 36.8827 33.4877 19.9074 32.4074 25.6173 29.66050 

5NN 26.8519 29.9383 20.679 23.3025 23.6111 24.87656 

7NN 23.1481 26.2346 22.2222 18.8272 22.0679 22.50000 

9NN 19.1358 25.3086 21.2963 15.7407 18.5185 19.99998 

 

Table 4.3 shows Percentage accuracy of matching result using Laplacian edge 

feature. The average accuracy of 5 folds cross validation is about 36.29% at 1NN and 

the accuracy is decrease when increase k of kNN. The accuracy using Laplacian edge 

is slightly higher than accuracy using Prewitt edge but Laplacian edge also requires 

computation time about 1.2 times compared to Prewitt edge. 

 

Table 4.3 Percentage accuracy of matching result using Laplacian edge feature 

  Fold1 Fold2 Fold3 Fold4 Fold5 Average 

1NN 33.6420 22.9938 31.7901 45.8333 47.2222 36.29628 

3NN 26.0802 37.0370 18.2099 32.2531 42.1296 31.14196 

5NN 19.1358 35.4938 13.5802 22.2272 34.4136 24.97012 

7NN 15.1235 27.9321 10.6481 20.1600 31.3272 21.03818 

9NN 23.1481 22.8395 8.79630 17.4383 26.6975 19.78394 

 

Table 4.4 shows Percentage accuracy of matching result using Canny edge 

feature. The average accuracy of 5 folds cross validation is about 77.77% at 1NN. The 

accuracy using Canny edge is highest compared with all three other edge features but 

Laplacian edge also requires computation time about 2 times compared to Prewitt 

edge which is longest computation time of all edge feature in this study. 
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Table 4.4 Percentage accuracy of matching result using Canny edge feature 

  Fold1 Fold2 Fold3 Fold4 Fold5 Average 

1NN 82.7160 73.4568 70.2160 82.5617 79.9383 77.77776 

3NN 72.6852 84.8765 65.2778 75.1543 72.9938 74.19752 

5NN 68.6728 79.4753 54.9383 68.5185 70.8333 68.48764 

7NN 64.8148 76.2346 46.9136 61.7284 66.0494 63.14816 

9NN 58.4877 70.2160 41.0494 55.7099 62.1914 57.53088 

 

Table 4.5 shows Percentage accuracy of matching result using 3*3 grid size 

LBP feature. The average accuracy of 5 folds cross validation is about 99.81% at 1NN 

and the accuracy is hardly decrease when increase k of kNN. 

 

Table 4.5 Percentage accuracy of matching result using 3*3 grid size LBP feature 

  Fold1 Fold2 Fold3 Fold4 Fold5 Average 

1NN 100 99.8457 99.8457 99.6914 99.6914 99.81484 

3NN 100 99.8457 99.8457 99.6914 99.6914 99.81484 

5NN 100 99.8457 99.8457 99.6914 99.6914 99.81484 

7NN 100 99.8457 99.8457 99.6914 99.6914 99.81484 

9NN 100 99.8457 99.8457 99.6914 99.6914 99.81484 

 

Table 4.6 shows Percentage accuracy of matching result using 3*3 grid size 

LTP feature. The average accuracy of 5 folds cross validation is about 99.81% at 1NN 

and the accuracy is slightly decrease when increase k of kNN. 

 

Table 4.6 Percentage accuracy of matching result using 3*3 grid size LTP feature 

  Fold1 Fold2 Fold3 Fold4 Fold5 Average 

1NN 99.8457 99.8457 99.6914 99.8457 99.8457 99.81484 

3NN 99.8457 99.8457 99.6914 99.8457 99.8457 99.81484 

5NN 99.6914 99.8457 99.6914 99.8457 99.6914 99.75312 

7NN 99.6914 99.8457 99.6914 99.8457 99.8457 99.78398 

9NN 99.6914 99.8457 99.5370 99.5370 99.6914 99.6605 

 

Table 4.7 shows Percentage accuracy of matching result using 5*5 grid size 

LBP feature. The average accuracy of 5 folds cross validation is about 99.87% at 1NN 

and the accuracy is slightly decrease when increase k of kNN.  
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Table 4.7 Percentage accuracy of matching result using 5*5 grid size LBP feature 

  Fold1 Fold2 Fold3 Fold4 Fold5 Average 

1NN 100 100.0000 99.8457 99.8457 99.6914 99.87656 

3NN 100 99.8457 99.8457 99.8457 99.6914 99.84570 

5NN 100 99.8457 99.8457 99.8457 99.6914 99.84570 

7NN 100 99.8457 99.8457 99.6914 99.6914 99.81484 

9NN 100 99.8457 99.8457 99.6914 99.6914 99.81484 

 

Table 4.8 shows Percentage accuracy of matching result using 5*5 grid size 

LTP feature. The average accuracy of 5 folds cross validation is about 99.84% at 1NN 

and the accuracy is slightly decrease when increase k of kNN.  

 

Table 4.8 Percentage accuracy of matching result using 5*5 grid size LTP feature 

  Fold1 Fold2 Fold3 Fold4 Fold5 Average 

1NN 99.8457 99.8457 99.6914 100.0000 99.8457 99.84570 

3NN 99.2284 99.8457 99.6914 99.8457 99.6914 99.66052 

5NN 99.2284 99.8457 99.6914 99.6914 99.5370 99.59878 

7NN 99.2284 99.8457 99.6914 99.5370 99.2284 99.50618 

9NN 99.2284 99.6914 99.3827 99.3827 99.9198 99.52100 

 

Table 4.9 shows Percentage accuracy of matching result using 7*7 grid size 

LBP feature. The average accuracy of 5 folds cross validation is about 99.81% at 1NN 

and the accuracy is hardly decrease when increase k of kNN. 

 

Table 4.9 Percentage accuracy of matching result using 7*7 grid size LBP feature 

  Fold1 Fold2 Fold3 Fold4 Fold5 Average 

1NN 100 99.8457 99.8457 99.6914 99.6914 99.81484 

3NN 100 99.8457 99.8457 99.6914 99.6914 99.81484 

5NN 100 99.8457 99.8457 99.6914 99.6914 99.81484 

7NN 100 99.8457 99.8457 99.6914 99.6914 99.81484 

9NN 100 99.8457 99.8457 99.6914 99.6914 99.81484 

 

Table 4.10 shows Percentage accuracy of matching result using 7*7 grid size 

LTP feature. The average accuracy of 5 folds cross validation is about 99.78% at 1NN 

and the accuracy is slightly decrease when increase k of kNN. 
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Table 4.10 Percentage accuracy of matching result using 7*7 grid size LTP feature 

  Fold1 Fold2 Fold3 Fold4 Fold5 Average 

1NN 99.6914 99.8457 99.6914 99.8457 99.8457 99.78398 

3NN 99.0741 99.8457 99.6914 99.6914 99.6914 99.59880 

5NN 99.0741 99.8457 99.6914 99.5370 99.5370 99.53704 

7NN 99.0741 99.8457 99.5370 99.3827 99.0741 99.38272 

9NN 99.0741 99.6914 99.5370 99.3827 98.7654 99.29012 

 

Table 4.11 shows Percentage accuracy of matching result using 9*9 grid size 

LBP feature. The average accuracy of 5 folds cross validation is about 99.81% at 1NN 

and the accuracy is hardly decrease when increase k of kNN. 

 

Table 4.11 Percentage accuracy of matching result using 9*9 grid size LBP feature 

  Fold1 Fold2 Fold3 Fold4 Fold5 Average 

1NN 100 99.8457 99.8457 99.6914 99.6914 99.81484 

3NN 100 99.8457 99.8457 99.6914 99.6914 99.81484 

5NN 100 99.8457 99.8457 99.6914 99.6914 99.81484 

7NN 100 99.8457 99.8457 99.6914 99.6914 99.81484 

9NN 100 99.8457 99.8457 99.6914 99.6914 99.81484 

 

Table 4.12 shows Percentage accuracy of matching result using 9*9 grid size 

LTP feature. The average accuracy of 5 folds cross validation is about 99.81% at 1NN 

and the accuracy is slightly decrease when increase k of kNN. 

 

Table 4.12 Percentage accuracy of matching result using 9*9 grid size LTP feature 

  Fold1 Fold2 Fold3 Fold4 Fold5 Average 

1NN 99.8457 99.8457 99.6914 99.8457 99.8457 99.81484 

3NN 99.0741 99.8457 99.6914 99.8457 99.5370 99.59878 

5NN 98.9198 99.6914 99.6914 99.6914 99.0741 99.41362 

7NN 99.0741 99.6914 99.5370 99.3827 98.9198 99.3210 

9NN 99.0741 99.3827 99.5370 99.2284 98.4568 99.1358 

 

Table 4.13 shows Percentage accuracy of matching result using 11*11 grid 

size LBP feature. The average accuracy of 5 folds cross validation is about 99.81% at 

1NN and the accuracy is slightly decrease when increase k of kNN. 
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Table 4.13 Percentage accuracy of matching result using 11*11 grid size LBP feature 

  Fold1 Fold2 Fold3 Fold4 Fold5 Average 

1NN 100 99.8457 99.8457 99.6914 99.6914 99.81484 

3NN 100 99.8457 99.8457 99.8457 99.6914 99.84570 

5NN 100 99.8457 99.8457 99.8457 99.6914 99.84570 

7NN 100 99.8457 99.8457 99.6914 99.6914 99.81484 

9NN 100 99.8457 99.8457 99.6914 99.6914 99.81484 

 

Table 4.14 shows Percentage accuracy of matching result using 11*11 grid 

size LTP feature. The average accuracy of 5 folds cross validation is about 99.81% at 

1NN and the accuracy is slightly decrease when increase k of kNN.  

 

Table 4.14 Percentage accuracy of matching result using 11*11 grid size LTP feature 

  Fold1 Fold2 Fold3 Fold4 Fold5 Average 

1NN 99.8457 99.8457 99.6914 99.8457 99.8457 99.81484 

3NN 99.3827 99.8457 99.6914 99.8457 99.6914 99.69138 

5NN 99.2284 99.6914 99.6914 99.6914 99.3827 99.53706 

7NN 99.2284 99.6914 99.6914 99.3827 99.0741 99.41360 

9NN 99.2284 99.5370 99.5370 99.2284 98.6111 99.22838 

 

Table 4.15 shows Percentage accuracy of matching result using SIFT keypoint 

descriptor. The accuracy of all 5 folds in 5 folds cross validation is 100% but also take 

tremendous computation time as much as 92 times compared with 3*3 grid size 

texture features. 

 

Table 4.15 Percentage accuracy of matching result using SIFT feature 

Fold1 Fold2 Fold3 Fold4 Fold5 Average 

100 100 100 100 100 100 

 

 

Table 4.16 shows computation time of every method used in this work. The 

time measurement starts when testing image is read and end when recognition result 

is known. Among the edge features, Sobel edge takes shortest computation time. 

Prewitt edge takes computation time slightly more than Sobel edge. Canny edge takes 

longest computation time among the edge features which is almost two times of 

Prewitt edge. For the texture features, LBP amd LTP take almost equal computation 
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time at the same grid size. The computation times of LBP and LTP are increasing 

when increase grid size but at 11*11 grid size, the computation time is still faster than 

Sobel edge. The SIFT keypoint descriptor takes long computation time more than all 

features in this study which is almost two hours. 

 

Table 4.16 Computation time in second 

 Fold1 Fold2 Fold3 Fold4 Fold5 Total 

Sobel 460.9781 451.3504 455.6027 452.739 456.7211 2277.391 

Prewitt 486.0912 485.7395 491.1928 486.0196 486.9185 2435.961 

Laplacian 622.4656 621.3507 622.7242 620.3942 628.7392 3115.674 

Canny 939.9226 959.9155 933.6992 948.0208 930.9655 4712.524 

LBP3*3 81.61101 82.09881 81.58735 82.1827 81.97508 409.4549 

LTP3*3 81.55889 81.69491 82.09307 81.86571 82.42746 409.6400 

LBP5*5 98.57156 97.49566 98.23928 97.54278 97.89867 489.7479 

LTP5*5 97.85553 97.61807 98.57082 98.49263 97.89867 490.4357 

LBP7*7 102.592 104.0623 100.7746 101.769 100.7897 509.9875 

LTP7*7 103.0894 102.9292 101.2395 102.0709 100.6193 509.9482 

LBP9*9 106.1316 105.435 104.7524 106.0734 105.2539 527.6462 

LTP9*9 105.6228 105.504 104.0907 103.9716 110.1446 529.3338 

LBP11*11 113.5277 113.5666 112.8898 112.4654 113.5911 566.0406 

LTP11*11 111.9601 114.0983 113.2247 112.3349 112.3882 564.0063 

SIFT 7418.299 7295.848 7042.497 7700.427 7639.149 37096.22 

 

Among the methods used in this study, 3*3 grid size LBP gives the second 

best performance in accuracy with not much different from SIFT keypoint descriptor 

which gives best accuracy. The 3*3 grid size LBP also gives best performance in 

computation time. Therefore, the author chooses 3*3 grid size LBP to develop 

MATLAB application which works with USB camera. 
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Chapter 5 

Amulet Recognition in a Nutshell System 

 

This chapter demonstrates the system called ‘Amulet Recognition in a Nutshell’ 

which is created to make user to be able to do amulet recognition with image from 

USB camera. The minimum focus distance of USB camera used with this system 

should not be longer than 10 cm. The system is developed on MATLAB platform. 

The system takes about 24 milliseconds computation time per one input image. The 

system screen when the user starts the system is shown in Figure 5.1.    

 

 

Figure 5.1 System screen 

 

The left side of system screen contains real time video input from USB 

camera. When user clicks ‘Capture and Analyze’ button, input image at the moment is 

captured and processed as mentioned in chapter 3. The user can see grayscale 

segmented image in the middle of system screen and result of amulet recognition can 

be seen in the right side of system screen as shown in Figure 5.2 and Figure 5.3. 
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Figure 5.2 Correct recognition with Phraya Pichai 

 

 

Figure 5.3 Correct recognition with Luang Por Parn 
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The system uses segmentation process mentioned in chapter 3 which requires 

the amulet to be placed on plain background to make background vanish when Prewitt 

edge detection is applied. The background color does not need to be white. The 

inappropriate lighting condition can cause shadow of camera and user’s body which 

makes wrong segmentation. The wrong segmentation can make recognition also 

wrong as shown in Figure 5.4.    

 

 

Figure 5.4 Wrong recognition 

 

The author conducts out-of-sample test experiment of the system with 5 users. 

For each user, the testing was conduct with 5 kinds of amulet which the users select 

themselves. The users use the system the chosen amulet 100 times for each of amulet 

kind. The test experiment result of the system is shown in Table 5.1-5.5.The out-of-

sample test result gives lower performance compared to the in-sample test result in 

chapter 4 because shadow of camera and user’s body affect not only segmentation but 

also the luminance of amulet in the image. 
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Table 5.1 Test experiment conducted with user #1 

Amulet Name Correct Incorrect Accuracy 

Phraya Pichai 91 9 91% 

Luang Por Thongyu 93 7 93% 

Luang Poo Van 95 5 95% 

Luang Por Pew 85 15 85% 

Luang Por Noi 88 12 88% 

 

Table 5.2 Test experiment conducted with user #2 

Amulet Name Correct Incorrect Accuracy 

Luang Por Daeng 90 10 90% 

Luang Poo Van 95 5 95% 

Luang Por Sothorn 92 8 92% 

Luang Por Su Kho 91 9 91% 

Luang Por Kaew 88 12 88% 

 

Table 5.3 Test experiment conducted with user #3 

Amulet Name Correct Incorrect Accuracy 

Luang Por Parn 86 14 86% 

Luang Por Thongyu 90 10 90% 

Luang Por Daeng 92 8 92% 

Luang Poo Sarm 94 6 94% 

Luang Poo Van 96 4 96% 

 

Table 5.4 Test experiment conducted with user #4 

Amulet Name Correct Incorrect Accuracy 

Luang Por Parn 88 12 88% 

Luang Por Si Kho 90 10 90% 

Luang Por Pew 86 14 86% 

Phraya Pichai 85 15 85% 

Luang Poo Van 90 10 90% 

 

Table 5.5 Test experiment conducted with user #5 

Amulet Name Correct Incorrect Accuracy 

Praputtha Chinnarad 88 12 88% 

Luang Por Daeng 95 5 95% 

Luang Por Thongyu 93 7 93% 

Luang Poo Sarm 90 10 90% 

Luang Poo Duad 87 13 87% 
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Chapter 6 

Conclusions and Recommendations 

 

In this thesis, the author presented image-based amulet recognition method. The 

process begins with amulet segmentation. Amulet segmentation process does require 

the amulet to be placed on the plain background. The next process is feature 

extraction and the last process is template matching. The features used in this work 

are edge feature, which indicate high contrast area in the image, and texture feature, 

which describe object surface image. From comparison, texture feature give better 

result than edge feature. For possible improvement, the computation in feature 

matching process may be able to be simplified using artificial neural network with 

hidden layer. Furthermore, applying machine learning to this work can make adding 

more kinds of amulet to the system more easy considering this work consists only 33 

kinds of amulet and there still are more many in the market.     
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Appendix B 

Amulet segmentation MATLAB source code 

 

h1=[0 0 0 0 0 0 0; 

    0 0 0 0 0 0 0; 

    0 0 0 0 0 0 0; 

    0.1 0.1 0.1 0.1 0.1 0.1 0.1; 

    0 0 0 0 0 0 0; 

    0 0 0 0 0 0 0; 

    0 0 0 0 0 0 0]; 

 

h2=[0 0 0 0.1 0 0 0; 

    0 0 0 0.1 0 0 0; 

    0 0 0 0.1 0 0 0; 

    0 0 0 0.1 0 0 0; 

    0 0 0 0.1 0 0 0; 

    0 0 0 0.1 0 0 0; 

    0 0 0 0.1 0 0 0]; 

 

im1=imread(['image directory']); 

im2=rgb2gray(im1); 

im3=imresize(im2,[720,540]); 

im4=edge(im3,'prewitt'); 

ver = im2bw(imfilter(im4,h2,'replicate')); 

hor = im2bw(imfilter(im4,h1,'replicate')); 

lr=sum(ver); 

ud=sum(transpose(hor)); 

 

for j = 1:540 

    if lr(j)>0 

        r=j; 

    end 

    if lr(541-j)>0 

        l=541-j; 

    end 

    if ud(j)>0 

        d=j; 

    end 

    if ud(721-j)>0 

        u=721-j; 

    end 

end 

for j = 541:720 

    if ud(j)>0 

        d=j; 
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    end 

    if ud(721-j)>0 

        u=721-j; 

    end 

end 

 

im3=im3(u:d,l:r); 

im3=imresize(im3,[720,540]); 
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Appendix C 

Feature extraction MATLAB source code 

 

im1=imread(['segmented image']); 

im2=imresize(im1,[90,90]); 

LBP=zeros(6480,1); 

LTP=zeros(6480,1); 

k=1; 

 

for i=3:5:88 

   for j=3:5:88 

      if im2(i,j)<im2(i-2,j-1) 

          LBP(k,1)=0; 

          if im2(i,j)+10<im2(i-2,j-1) 

              LTP(k,1)=-1; 

          else 

              LTP(k,1)=0; 

          end 

      else 

          LBP(k,1)=1; 

          if im2(i,j)-10>im2(i-2,j-1) 

              LTP(k,1)=1; 

          else 

              LTP(k,1)=0; 

          end 

      end 

      k=k+1; 

 

      if im2(i,j)<im2(i-2,j) 

          LBP(k,1)=0; 

          if im2(i,j)+10<im2(i-2,j) 

              LTP(k,1)=-1; 

          else 

              LTP(k,1)=0; 

          end 

      else 

          LBP(k,1)=1; 

          if im2(i,j)-10>im2(i-2,j) 

              LTP(k,1)=1; 

          else 

              LTP(k,1)=0; 

          end 

      end 

      k=k+1; 
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      if im2(i,j)<im2(i-2,j+1) 

          LBP(k,1)=0; 

          if im2(i,j)+10<im2(i-2,j+1) 

              LTP(k,1)=-1; 

          else 

              LTP(k,1)=0; 

          end 

      else 

          LBP(k,1)=1; 

          if im2(i,j)-10>im2(i-2,j+1) 

              LTP(k,1)=1; 

          else 

              LTP(k,1)=0; 

          end 

      end 

      k=k+1; 

 

      if im2(i,j)<im2(i-1,j-2) 

          LBP(k,1)=0; 

          if im2(i,j)+10<im2(i-1,j-2) 

              LTP(k,1)=-1; 

          else 

              LTP(k,1)=0; 

          end 

      else 

          LBP(k,1)=1; 

          if im2(i,j)-10>im2(i-1,j-2) 

              LTP(k,1)=1; 

          else 

              LTP(k,1)=0; 

          end 

      end 

      k=k+1; 

 

      if im2(i,j)<im2(i-1,j-1) 

          LBP(k,1)=0; 

          if im2(i,j)+10<im2(i-1,j-1) 

              LTP(k,1)=-1; 

          else 

              LTP(k,1)=0; 

          end 

      else 

          LBP(k,1)=1; 

          if im2(i,j)-10>im2(i-1,j-1) 

              LTP(k,1)=1; 

          else 

              LTP(k,1)=0; 
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          end 

      end 

      k=k+1; 

 

      if im2(i,j)<im2(i-1,j) 

          LBP(k,1)=0; 

          if im2(i,j)+10<im2(i-1,j) 

              LTP(k,1)=-1; 

          else 

              LTP(k,1)=0; 

          end 

      else 

          LBP(k,1)=1; 

          if im2(i,j)-10>im2(i-1,j) 

              LTP(k,1)=1; 

          else 

              LTP(k,1)=0; 

          end 

      end 

      k=k+1; 

 

      if im2(i,j)<im2(i-1,j+1) 

          LBP(k,1)=0; 

          if im2(i,j)+10<im2(i-1,j+1) 

              LTP(k,1)=-1; 

          else 

              LTP(k,1)=0; 

          end 

      else 

          LBP(k,1)=1; 

          if im2(i,j)-10>im2(i-1,j+1) 

              LTP(k,1)=1; 

          else 

              LTP(k,1)=0; 

          end 

      end 

      k=k+1; 

 

      if im2(i,j)<im2(i-1,j+2) 

          LBP(k,1)=0; 

          if im2(i,j)+10<im2(i-1,j+2) 

              LTP(k,1)=-1; 

          else 

              LTP(k,1)=0; 

          end 

      else 

          LBP(k,1)=1; 
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          if im2(i,j)-10>im2(i-1,j+2) 

              LTP(k,1)=1; 

          else 

              LTP(k,1)=0; 

          end 

      end 

      k=k+1; 

 

      if im2(i,j)<im2(i,j-2) 

          LBP(k,1)=0; 

          if im2(i,j)+10<im2(i,j-2) 

              LTP(k,1)=-1; 

          else 

              LTP(k,1)=0; 

          end 

      else 

          LBP(k,1)=1; 

          if im2(i,j)-10>im2(i,j-2) 

              LTP(k,1)=1; 

          else 

              LTP(k,1)=0; 

          end 

      end 

      k=k+1; 

 

      if im2(i,j)<im2(i,j-1) 

          LBP(k,1)=0; 

          if im2(i,j)+10<im2(i,j-1) 

              LTP(k,1)=-1; 

          else 

              LTP(k,1)=0; 

          end 

      else 

          LBP(k,1)=1; 

          if im2(i,j)-10>im2(i,j-1) 

              LTP(k,1)=1; 

          else 

              LTP(k,1)=0; 

          end 

      end 

      k=k+1; 

 

      if im2(i,j)<im2(i,j+1) 

          LBP(k,1)=0; 

          if im2(i,j)+10<im2(i,j+1) 

              LTP(k,1)=-1; 

          else 
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              LTP(k,1)=0; 

          end 

      else 

          LBP(k,1)=1; 

          if im2(i,j)-10>im2(i,j+1) 

              LTP(k,1)=1; 

          else 

              LTP(k,1)=0; 

          end 

      end 

      k=k+1; 

 

      if im2(i,j)<im2(i,j+2) 

          LBP(k,1)=0; 

          if im2(i,j)+10<im2(i,j+2) 

              LTP(k,1)=-1; 

          else 

              LTP(k,1)=0; 

          end 

      else 

          LBP(k,1)=1; 

          if im2(i,j)-10>im2(i,j+2) 

              LTP(k,1)=1; 

          else 

              LTP(k,1)=0; 

          end 

      end 

      k=k+1; 

 

      if im2(i,j)<im2(i+1,j-2) 

          LBP(k,1)=0; 

          if im2(i,j)+10<im2(i+1,j-2) 

              LTP(k,1)=-1; 

          else 

              LTP(k,1)=0; 

          end 

      else 

          LBP(k,1)=1; 

          if im2(i,j)-10>im2(i+1,j-2) 

              LTP(k,1)=1; 

          else 

              LTP(k,1)=0; 

          end 

      end 

      k=k+1; 

 

      if im2(i,j)<im2(i+1,j-1) 
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          LBP(k,1)=0; 

          if im2(i,j)+10<im2(i+1,j-1) 

              LTP(k,1)=-1; 

          else 

              LTP(k,1)=0; 

          end 

      else 

          LBP(k,1)=1; 

          if im2(i,j)-10>im2(i+1,j-1) 

              LTP(k,1)=1; 

          else 

              LTP(k,1)=0; 

          end 

      end 

      k=k+1; 

 

      if im2(i,j)<im2(i+1,j) 

          LBP(k,1)=0; 

          if im2(i,j)+10<im2(i+1,j) 

              LTP(k,1)=-1; 

          else 

              LTP(k,1)=0; 

          end 

      else 

          LBP(k,1)=1; 

          if im2(i,j)-10>im2(i+1,j) 

              LTP(k,1)=1; 

          else 

              LTP(k,1)=0; 

          end 

      end 

      k=k+1; 

 

      if im2(i,j)<im2(i+1,j+1) 

          LBP(k,1)=0; 

          if im2(i,j)+10<im2(i+1,j+1) 

              LTP(k,1)=-1; 

          else 

              LTP(k,1)=0; 

          end 

      else 

          LBP(k,1)=1; 

          if im2(i,j)-10>im2(i+1,j+1) 

              LTP(k,1)=1; 

          else 

              LTP(k,1)=0; 

          end 
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      end 

      k=k+1; 

 

      if im2(i,j)<im2(i+1,j+2) 

          LBP(k,1)=0; 

          if im2(i,j)+10<im2(i+1,j+2) 

              LTP(k,1)=-1; 

          else 

              LTP(k,1)=0; 

          end 

      else 

          LBP(k,1)=1; 

          if im2(i,j)-10>im2(i+1,j+2) 

              LTP(k,1)=1; 

          else 

              LTP(k,1)=0; 

          end 

      end 

      k=k+1; 

 

      if im2(i,j)<im2(i+2,j-1) 

          LBP(k,1)=0; 

          if im2(i,j)+10<im2(i+2,j-1) 

              LTP(k,1)=-1; 

          else 

              LTP(k,1)=0; 

          end 

      else 

          LBP(k,1)=1; 

          if im2(i,j)-10>im2(i+2,j-1) 

              LTP(k,1)=1; 

          else 

              LTP(k,1)=0; 

          end 

      end 

      k=k+1; 

 

      if im2(i,j)<im2(i+2,j) 

          LBP(k,1)=0; 

          if im2(i,j)+10<im2(i+2,j) 

              LTP(k,1)=-1; 

          else 

              LTP(k,1)=0; 

          end 

      else 

          LBP(k,1)=1; 

          if im2(i,j)-10>im2(i+2,j) 
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              LTP(k,1)=1; 

          else 

              LTP(k,1)=0; 

          end 

      end 

      k=k+1; 

 

      if im2(i,j)<im2(i+2,j+1) 

          LBP(k,1)=0; 

          if im2(i,j)+10<im2(i+2,j+1) 

              LTP(k,1)=-1; 

          else 

              LTP(k,1)=0; 

          end 

      else 

          LBP(k,1)=1; 

          if im2(i,j)-10>im2(i+2,j+1) 

              LTP(k,1)=1; 

          else 

              LTP(k,1)=0; 

          end 

      end 

      k=k+1; 

   end 

end 

 


