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Abstract 
 

MULTI-WORKDAY ERGONOMIC WORKFORCE SCHEDULING WITH 
PERSONAL AND TASK CONSTRAINT 

 
by 
 
 

TARIT RATTANAMANEE 

 
 

Bachelor of Industrial Engineering, King Mongkut’s University of Technology North 

Bangkok, 2010 

Master of Industrial Engineering, King Mongkut’s University of Technology North 

Bangkok, 2012 

Doctor of Philosophy (Engineering and Technology), Sirindhorn International 

Institute of Technology, Thammasat University, 2017 

 

This dissertation deals with the Workforce Scheduling Problem (WSP) 

with a planning period that covers several workdays which is a multi-workday 

workforce scheduling problem (MW-WSP). An occupational ergonomic hazard in a 

workplace or workstation is considered. The safety law of industry states that workers 

must not be exposed to hazards beyond a daily permissible level. There are three 

commons approach to prevent or reduce occupational ergonomic hazards (e.g., 

engineering approach, administrative approach, personal protection equipment). The 

administrative approach is a popular tool which job rotation can be managed to 

increase the safety and decrease risk of exposure to excessive hazards. The complex 

personal and task constraints are considered. Workers are heterogeneous in terms of 

personal skill, ability, and preference. Workstations might have a multiple task and 

specific operation schedule in each workday. Multi-objectives are considered, the 

combination of three objectives; hazard exposure balancing, productivity, and 

satisfaction of workers; is introduced. Productivity, it is common-that management 

seeks a workforce scheduling solution with high productivity. When assigning a 

worker to a job that he/she can perform effectively, it is reasonable to expect high 
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performance from such worker-job assignment. In other words, the productivity 

directly relates to the person-job fit score. Workers with an unequal person-job fit 

score prefer a different task/team. When applying job rotation, a work schedule can 

affect the systems productivity and satisfaction of workers. Moreover, a multi-

workday schedule can reduce fluctuation in the amount of hazard exposure among 

workers. Considering all the objectives, this research aim to provide not only more 

hazard protection to workers but also keep productivity and satisfaction high. 

The mathematical models of the problem formulate are in the form of a 

mixed integer programming (MIP). The multi-objective approach called the LP-

metric method is used to navigate to solutions are compatible to the decision maker’s 

opinion. The optimal values from each aspect are set as target goal values for the LP-

metric model. The optimization software IBM ILOG CPLEX V12.4.0 is used to solve 

the problem optimality. The WSP is a NP-hard problem, thus MW-WSP is more 

complex. When problem size increases, it is very difficult to find optimal solution 

with CPLEX. So, a genetic algorithm (GA) is employed to solve this problem. The 

permutation encoding is presented as the problem solution. The GA operation such as 

crossover is proposed with revised specific for the problem. The GA tool procedure is 

coded on the MATLAB script file (m-file). 

From the numerical example, the LP-metric method return of a solution 

with respect to pre-set weigh and satisfied problem constraint. From the computation 

experiment, it is confirm that CPLEX could only guarantee the optimal solution for 

small size problems. The proposed GA could reach near optimal solution within 

reasonable computation time.  Moreover, the application of multi-workday workforce 

scheduling was applied to vehicle routing and workers scheduling problems with 

manual material handling. An optimization and heuristic methods are proposed for 

problem solution approach. 

 

Keywords: Multi-workday workforce scheduling, Ergonomics, LP-metric method, 

Multi-objective optimization, Genetic algorithm
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Chapter 1 

Introduction 
 

1.1 Multi-workday Workforce Scheduling Problem 

Workforce scheduling problem (WSP) is a famous combinatorial 

problem, dealing with the assigning of workers to perform a set of tasks over working 

time periods. Unlike the assignment problem, WSP assigns a worker or employee to 

perform any task under “time duration”. Workers are usually rotated among a set of 

tasks in each area. WSP is a complex problem due to a great number of constraints 

which need to be fulfilled. A few examples of constraints are industrial regulations, 

relevant workplace agreements, work condition rules, and personal preferences.    

WSPs have benefited from extensive attention for many decades. 

Recently, they have extensively played an important role in many areas such as 

industrial or manufacturing factories, transportation systems, health care systems, 

service systems, emergency services, or even in universities. Depending upon each 

application, this sort of problem is denoted by the various names in the literatures and 

focuses on different objective considerations. The common objectives are found to be: 

(1) obtaining feasible work timetable under complex constraints, (2) minimizing the 

number of utilized workers, (3) minimizing the total cost, (4) maximizing total system 

productivity and performance, and (5) maximizing job satisfaction satisfying 

employee’ preferences. The general terms of workforce scheduling are: workforce 

scheduling, manpower scheduling, staff scheduling, labor scheduling, personal 

scheduling, employee timetabling, crew scheduling or rostering for transportation 

systems, nurse scheduling for health care systems, tour scheduling or agent 

scheduling for various service systems etc. 

To obtain an efficient work schedule solution, a lot of factors need to be 

consider. A good work schedule solution should contribute advantages to both 

organization and employees. For the organization, total system productivity can be 

increased by suitable assignments. Employees trend to perform tasks with full 

capabilities particularly in their preferred tasks and/or partners with high morale. 

Employee turnover rate can be reduced resulting in decreased manpower management 
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costs which gains more profits for the organization. The operation schedule, day-off 

or weekend-off constraint, and complex operator-task pairing are also the main 

restrictions. Due to those complex constraints, WSP is a difficult problem which can 

interface with real world problems. 

WSP is complex because of the many restriction constraints and solution 

alternatives. The critical features of WSP are its computation behavior and flexibility 

to solve a wide range of problems that appear in practice. According to the 

complexity theory, in many cases, WSPs have been verified as an NP-hard problem. 

Thus, the computation time to solve problems grows exponentially when the problem 

size (decision variables) increases. Thus, WSP is definitely complicated when 

searching for the optimal solution within a reasonable computation time. 

WSP is a combinatorial optimization problem. Various efficient solution 

approaches have been suggested in previous literatures. In summary, solution 

approaches in dealing with WSPs can be classified into 3 categories: optimization 

approach, heuristic approach, and metaheuristic approach. 

WSPs are usually formulated as an integer programming model (IP), 

according mathematical programming in optimization approach. Set covering or 

partitioning model and its variations are alternative formulations. They can be solved 

by using an exact algorithm such as the branch-and-bound method, branch-and-price, 

branch-and-cut, and Lagrangian heuristic. Moreover, WSP can be solved by other 

efficient methods in the optimization approach such as goal programming, network 

model, multi-commodity network flow, dynamic programming, matching model, 

decomposition model, or combinatorial models among those methods. 

The heuristic algorithm or approximation techniques are an alternative 

solution approach. The strategy is to determine a good solution or near optimal 

solutions for larger size problems by consuming reasonable calculation time. 

However, the step by step process of each algorithm needs to be clarified and well 

designed for each particular problem. Heuristic procedures generally do not work well 

if the problem is highly complex constrained. The solution may fall into a local 

optimal solution and may not find the near optimal solution. Examples of heuristic 

methods applied to workforce scheduling are the swap and interchange based 

neighborhood search heuristics which are commonly utilized in airline crew rostering 
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problems, local search methods utilized in bus driver scheduling problems, and other 

proposed algorithms. Unlike the exact algorithm, heuristics alogirthm cannot 

guarantee the optmality of solution.  

The metaheuristic approach has attracted attention from researchers for 

over the last few decades. Typically, metaheuristic is used to solve problems that 

cannot be solved by traditional heuristics. This approach can escape from local 

optimal to find global optimal by a specific mechanism (natural or non-natural 

inspire). On the other hand, they can classify as evolutionary or non-evolutionary 

mechanism. Modern metaheuristics have been applied to scheduling problems such as 

simulated annealing (SA), ant colony optimization (ACO), tabu search (TS), particle 

swarm optimization (PSO), and genetic algorithm (GA). SA is usually founded in 

airline crew scheduling, train crew rostering, and cyclic staff scheduling problems; TS 

in nurse rostering, air crew scheduling, audit scheduling, and bus driver scheduling; 

and GA in industrial workforce scheduling, nurse scheduling, and bus driver 

scheduling. Among those metaheuristics, GA is found to be most utilized in solving 

scheduling problems. Only a few combinatorial algorithms among those 

metaheuristics are founded.  

Three main considerations of workforce scheduling problem are addressed 

for effective work schedule solutions. They are: (1) ergonomic-based workforce 

scheduling, (2) productivity-based workforce scheduling, and (3) job satisfaction-

based workforce scheduling. Moreover, workforce scheduling problems are addressed 

for work schedule duration. They are: (1) single-working day workforce scheduling, 

(2) multi-working day workforce scheduling.  

Occupation injuries can occur in many workplaces environment because 

of exposure to ergonomics hazard or other factors. Ergonomic consideration is one 

essential factor which needs to be covered. There are many types of tasks that are 

unavoidable for workers to receive hazard exposure when they perform tasks. For 

example, the task that involves lifting heavy workloads, workload with energy 

expenditure, doing repetitive work, and performing in hazardous environments i.e., 

loud noise, high temperature, and radiation or chemical zone. Excessive hazard 

exposure beyond the permissible limit can cause many injuries or illnesses. For 

example, musculoskeletal disorder, cumulative trauma disorder, permanent hearing 
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loss, heat stress, chemical burn, radiation burn, which can lead to death. Thus, 

ergonomic-based workforce scheduling becomes an important issue which has lead to 

many researches paying attention in this aspect. According to the safety regulation 

issued by the U.S. Occupational Safety and Health Administration (OSHA), daily 

hazard exposure of workers must not exceed the permissible limit. OSHA 

recommended three hierarchical approaches to prevent occupation ergonomics 

hazard, namely, engineering approach, administrative approach, and the use of 

personal protection equipment. However, they are not cost effective and many times 

seem to be limited in practice. An administrative control strategy, job rotation could 

be practically implemented to solve this problem.  

Total system productivity is one of definitions of effective workforce 

schedule solutions. Productivity-based workforce scheduling benefits an organization 

by obtaining higher profits via efficient resource management. Achieving high total 

system productivity can be done by either increasing production rate or decreasing 

various losses. With no significance on addition cost, many organizations select this 

way to reduce many types of loss. Utilizing manpower in effective ways is mostly 

considered. For example, minimum workforce size, person-job fit strategy. However, 

there are only a few previous literatures focusing on the high total productivity in the 

area of workforce scheduling. As an effect of job rotation, the total system 

productivity can be reduced because a few workers might be rotated who are 

incompetent or do not fit the tasks. 

Worker job satisfaction provides advantages to both workers and 

organization. It is the fact that workers who perform their preferred tasks and/or with 

preferred partners tend to do spotless work. Satisfaction in the workplace environment 

can lead to reduced turnover rate, high morale, resulting in a lower human resourcing 

management cost. Nowadays, employee’s preference becomes a factor when 

constructing a work schedule. They include the terms of workers’ preferred days-off, 

shift-start and/or shift-end period, or priority job preference. 

For work schedule duration, a single-workday workforce scheduling is a 

multi-period schedule which focuses on assigning workers to tasks or shifts in one 

day. This can be separated into multiple periods for assigning or job rotation. For a 

multi-workday workforce scheduling problem, this problem setting is applied in 
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various fields, the problem focuses on assigning employees to the shift or task in a 

multiple workday planning horizon (e.g. weekly, monthly). 

 

1.2 Problem Statement 

To construct an effective WSP solution, three main considerations are 

required to determine the combination, e.g., ergonomic issue, productivity aspect 

(e.g., person-job fit), and workers’ satisfaction. By considering these three aspects, 

many contributions go to both workers and organization. Workers’ hazard exposures 

are controlled resulting in less occupation injury problems. Turnover rate is 

significantly reduced due to the workers’ job satisfactions in both task and co-worker 

preferences. An organization can reduce much workforce management cost i.e., 

expense for medical treatment and training tuition fee for new coming workers, 

compensation payment, and indemnity. 

Because of conflictions among those approaches, multi criteria analysis 

(MCA) is required for suitable benefit tradeoff with multi-objective optimization 

tools. To protect manpower from exceeding hazard exposure permissible limit, a few 

workers might be assigned to the tasks that they are incompetent or do not fit for a 

few work periods. As a result, total system productivity can be reduced. Worker 

preferences of tasks and partners, in the same fashion, sometime have to be violated 

as soft constraint. However, it should be satisfied as much as possible. Unfortunately, 

there are only a few researches that include those three aspects in a combination. 

For ergonomics hazard exposure reduction, an effective way to overcome 

this serious problem is by implementing the “job rotation”. Job rotation is an 

administrative approach suggested by the U.S. Occupational Safety and Health 

Administration (OSHA). It can help to reduce the amount of hazard to the worker by 

rotating the workers among the tasks periodically. So, the physiological effect from 

the hazardous jobs can be shared by many workers instead of being accumulated by 

only one worker. It’s obvious that job rotation can be suitably implemented when 

constructing work-schedules. Therefore, the concept of job rotation is taken into 

account when combining the ergonomic consideration with workforce scheduling. It 

is important that the total hazard exposure must to be kept under the permissible limit 

along working time in every workday. Thus, the job rotation should be considered in 

5 
 



Ref. code: 25595522300028GBWRef. code: 25595522300028GBW

 
 

more details such as dividing a workday into work periods (i.e., 2 hours/periods) so 

that worker can be assigned to different tasks (preferred in different location) in each 

work period within a day. Moreover, the total hazard exposures of each worker need 

to be determined in quantitative amounts so as to be obvious in evaluating, 

monitoring, and controlling.  

However, effective job rotation is known to be difficult in implementation 

because there are many complex constraints and limitations which are not included in 

previous research models. In real workplaces in any workstation, hazard exposure can 

be classified as uniform or non-uniform hazard types from the different sources of 

hazard. The uniform hazard exposure can affect all workers with equal hazard level, 

i.e., industrial noise. For the non-uniform hazard exposure, each worker performs a 

different task in the workstation which might receive an unequal hazard exposure 

level and capacities to withstand those hazard. This comes from the fact that workers 

are non-identical. Apart from the different preferred tasks and partners, they have 

different skill levels even when performing the same tasks based on training and back 

ground experience. In the point of workstation’ characteristics, numerous workstation 

require more than one task for operation. Both single and multiple task operation 

should be included. And the last main constraint is that the workstation could be 

halted in a few work periods of any workday according to its operation schedule. It’s 

necessary to consider those worker and task constraints when constructing efficient 

and realistic approached dealing with WSP.  

In summary, previous workforce scheduling research still misses out on a 

few essential considerations. The limitations of previous research can be classified 

into 4 main points which are: 

1. Lacking consideration of ergonomic issues, productivity aspect, and 

workers’ job satisfaction: Even though WSPs have been extensively studied for a long 

time, there are just a few numbers of researches focusing on these important aspects. 

2. Focusing on only one objective: Most of the previous researches pay 

attention to only one particular objective, do not consider problem in combination. 

The system can be improved by taking more than one aspect into consideration e.g., 

ergonomic issue, productivity aspect, and workers’ satisfaction. Simultaneous 

achievement is needed in real circumstances. 
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3. Rotating tasks on workday horizon: Job rotation consideration of 

previous works was mostly done under a workday shift change. Workers’ hazard 

exposure cannot be effectively managed. It may occurred that workers’ hazard 

exposure in a workday are over the limit resulting in health problems. Moreover, the 

total hazard exposure of workers has not been evaluated in quantitative amounts. 

4. Focusing on a single workday planning horizon: Past research of 

workforce scheduling considered ergonomic hazard exposure studies were only 

concerned with finding either optimal or near-optimal solutions for one day. This is 

perhaps based on an assumption that the workers’ work schedules will be the same as 

long as job requirement do not change. These fixed work schedules can lead to unfair 

worker-task assignments for a few workers since they could be assigned to more 

hazardous tasks than other workers. 

 

1.3 Research Objectives 

This research is conducted to deal with multi-workday workforce 

scheduling problem in a more effective way. The limitations of previous studies will 

be resolved focusing on five main points. In conclusion, the new model of workforce 

scheduling in this research includes: 

 1. Ergonomic, productivity, and workers’ satisfaction considerations: To 

fulfill the research area in WSP, the ergonomic, productivity, and workers’ 

satisfaction are taken into account. This research could be an early WS model that 

covers all of those 3 aspects together.  

 2. Multi-objective multi-workday workforce scheduling consideration:  

Those three aspects are considered in combination. The best suitable tradeoff 

solutions are determined instead of achieving only one objective. The objectives are 

set in three priority goals which are: 

 minimizing the ergonomics hazard exposure variation (among worker), 

 maximizing the total system productivity by maximize of person-job fit score, 

and  

 maximizing workers’ satisfactions in both task and team assignment preferences. 

 3. Daily job rotation under quantitative approach: A workday is divided 

into equal work periods. Workers’ hazard exposure can be effectively controlled 
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under the permissible limit by rotating workers to other suitable tasks in the end of 

work period within a day. The total hazard exposures of workers are evaluated in 

quantitative amounts so as to be obvious in monitoring and controlling. 

 4. Realistic constraints in hazard exposure and worker-task requirements: 

two types of single-limit hazard are considered. Complex worker and task constraints 

are covered. Worker constraints are: limited work ability, different person-job fit 

level, and team preference and task preference. Task constraints are: single or 

multiple task operation in a workstation and workstation operation schedule. 

 5. Multi-workday planning period: Unlike previous studies that focused 

on finding solution for one day. A Multi-work day planning period intends to assign 

worker to tasks in multi-day schedule simultaneously so workers can be assigned 

fairly to a one day planning period work schedule. 

The multi-workday workforce scheduling problem in this research is 

conducted with three objectives: 

 1. To develop a mathematical model for multi-objective multi-workday 

workforce scheduling problems with person-job fit, job preference and team 

assignment consideration under one single-limit hazards and complex worker-task 

constraints. 

 2. To propose a genetic algorithm approach for multi-objective multi-

workday workforce scheduling problems with person-job fit, job preference and team 

assignment consideration under one single-limit hazards and complex worker-task 

constraints. 

 3. To conduct a computation experiment for multi-objective multi-

workday workforce scheduling problems.  

 

1.4 Dissertation Overview 

This dissertation consists of seven chapters which are organized as 

follows: 

Chapter 1 provides an introduction of the multi-workday workforce 

scheduling problem along with its solution approaches. The workforce scheduling 

problem generally is classified as an NP-hard problem. The problem statement is 

stated. The ergonomic consideration in form of job rotation is taken into account. The 
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conflict objectives needed to be resolved. The multi-workday planning period is 

considered. Realistic assumptions in both worker and workstation factors are 

included. The research objectives are then summarized.  

Chapter 2 contains the literature review. Related articles are reviewed and 

categorized into four main topics, namely, the multi-workday workforce scheduling 

problem and its variants, quantitative approaches to multi-workday workforce 

scheduling, focus of multi-workday workforce scheduling. 

Chapter 3 presents a mathematical model to optimize the multi-objective 

multi-workday workforce scheduling problem. Firstly, the problem description is 

stated. Six assumptions and five conditions are defined. A mathematical model is 

presented and explained in detail. 

Chapter 4 presents a genetic algorithm (GA) for the proposed problem. 

The concepts of GA used in this research are provided.  Chromosomes are represented 

using the integer permutation. The operation of GA is also presented.  

Chapter 5 provides a numerical example to determine optimization, and 

GA approaches. First, the problem description is clarified. Then, two mentioned 

approaches are implemented. Results are shown for comparison.  

In Chapter 6, a computation experiment is conducted with six test 

problems. The solutions of each problem in each approach are determined and 

compared. 

Chapter 7 is the conclusion of the research. This chapter includes a 

summary and the key contributions of the research. The recommendations for further 

studies are also given. 

Appendix A presents application of multi-workday workforce scheduling 

problems in vehicle routing problem with manual materials handling (VRPMMH). 

The new problem called multi-workday VRP (MW-VRP). First, the problem 

description is clarified. Then, the mathematical model and heuristic procedure 

approaches are implemented. Numerical Results are shown for comparison. The 

computation experiment is examined. 
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Chapter 2  

Literature Review 
 

This chapter introduces multi-workday workforce scheduling problems 

and its variants in related application areas, namely, transportation system, health care 

system, and service system. Complex and difficulties of workforce scheduling 

problem are stated. Quantitative approaches included three categories e.g., 

optimization, heuristic, and metaheuristic approach are reviewed. Focus of multi-

workday workforce scheduling in ergonomics, productivity, and job satisfactions are 

presented. 

 

2.1 Multi-workday Workforce Scheduling Problem and Its Variants 

Assigning resources to a set of tasks over given time periods is a 

scheduling problem (SP). SP is a common problem faced in organizations. However, 

the resources and tasks can be in many different forms. The resources might be 

machines in a workshop, runways at an airport, crews at a construction site, 

processing units in a computing environment, operating rooms in a hospital, and 

vehicles in transportation agency; whereas, the tasks might be operations in a 

production process, take-offs and landings at an airport, stages in a construction 

project, executions of computer programs etc. (Michael Pinedo, 2008). At the 

beginning of SP study, only applications in machine scheduling and project planning 

attracted attentions were researched. In machine scheduling, a large number of 

specific scheduling situations depending on the machine environment and the job 

characteristics have been considered. In project planning, focus is on the investigation 

scheduling situations with precedence constraints between activities assuming that 

sufficient resources are available to perform the activities. But later on, scarce 

resources were taken into account leading to so-called resource-constrained project 

scheduling problems (RCPSP). 

Workforce scheduling problem (WSP), as oppose to RCPSP, determined 

how to assign workers to perform tasks over a set of working periods. Resources in 

this case are defined as the manpower. Unlike the assignment problem, WSP assigns 

workers or operator to attend any task under “time duration”. Workers usually are 
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found to be rotated to other tasks in each day (not constantly assigned as in 

assignment problem). WSP is a complex problem due to a great number of constraints 

needing to be fulfilled. The examples of constraints are industrial regulations, relevant 

workplace agreements, and personal preferences.    

Researchers have been interested in WSP for over half a century. The 

trendsetter of workforce scheduling can be traced back to Edie’s work on traffic 

delays at toll booths (Edie, 1954). Nowadays, workforce scheduling extensively plays 

an important role in many areas such as industrial factories, transportation systems, 

health care systems, service systems, emergency services, and universities. Depending 

on the application areas, WSP is called by various names and focuses on different 

objective considerations. The common objectives are found to be: obtaining feasible 

work timetable under complex constraints, minimizing the number of utilized workers 

(finding a set of assignments that required the smallest number of workers to 

complete entire tasks), minimizing the total operation cost or investment (finding a set 

of assignments that leads to the lowest cost while all tasks can be accomplished), 

maximizing total system productivity or performance (focusing on the highest 

productivity performance), and maximizing job satisfaction (satisfying operators’ 

preferences).  

WSP is sometimes called as manpower or a labor scheduling problem in 

industry. The number of utilized workers is mostly the consideration to be minimized. 

Hung (1994) dealt with a multiple-shift workforce scheduling problem. This research 

aimed to minimize workforce size subject to satisfying staffing requirements on 

weekdays and weekends, and work rules relating to shift changes, off-days, and off-

weekends. Other examples are: Alfares (2003) and Lagodimos and Leopoulos (2000). 

The total cost (Billionnet, 1999), labor cost (Elshafei & Alfares, 2008), productivity 

(Arroyo & Armentano, 2005; Chang et al., 2008; Chang et al., 2007; Ip et al., 2000; 

Sha & Lin, 2010; Yagmahan & Yenisey, 2010), and job satisfaction (Jaturanonda & 

Nanthavanij, 2005; Peters & Zelewski, 2007) are also determined. Transportation 

system (i.e., bus and rail transit, truck and rail freight transport, and freight and 

passenger air transportation) is a large application of WSP. Usually, it is called as 

crew scheduling or rostering. In this area, the objective is mainly focused on the total 

cost (dos Santos & Mateus, 2009; Souai & Teghem, 2009; Stolletz, 2010), and 
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productivity. The high total productivity can be determined in many forms such as 

minimum idle shifts (Chu, 2007), maximum number of assigned tasks (Dohn et al., 

2009), and maximum service levels (Ho & Leung, 2010). The minimum number of 

workers was found to be an objective in only a few researches in this area, for 

example, research of Yang et al. (2003) and Yang et al. (2004). Since airline 

scheduling usually consists of two sequential sub-problems: airline crew pairing 

problem (CPP) and airline crew assignment/rostering problem (CAP/ CRP), a few 

researches determined feasible schedule solutions via integrated approaches. The 

examples are research by Guo et al. (2006) and Mesquita and Paias (2008).  

In the health care system, the problem is defined in term of nurse 

scheduling. The problems basically restricted under a large number of constraints and 

involves many aspect considerations (Azaiez & Al Sharif, 2005; Maenhout & 

Vanhoucke, 2013; Mobasher et al., 2011; Purnomo & Bard, 2007). Multi-objectives 

are usually considered, especially combining factors in productivity aspect. The multi-

objective consideration under many restricted constraints proposed in many literatures 

(Aickelin & Dowsland, 2004; Berrada, Ferland, & Michelon, 1996; Millar & Kiragu, 

1998; Trivedi, 1981; Tsai & Li, 2009; Valouxis & Housos, 2000). The total cost is 

another objective focused in this application (Abrahams & Ragsdale, 2012; Brunner 

& Edenharter, 2011; Maenhout & Vanhoucke, 2010). Tour scheduling or agent 

scheduling is normally called WSP in application of service systems (i.e., center, 

hotels, restaurants, police, ambulance, fire brigade, retail sector (Kabak et al., 2008), 

and postal service (Bard et al., 2003). Minimizing the total cost is the most popular 

objective in this application (Alfares, 1998; Avramidis et al., 2010; Bard et al., 2003; 

Kabak et al., 2008; Topaloglu & Ozkarahan, 2003). Ezik at al. (2001) formulated the 

integer programming model to determine a set of tours to meet the demand of agent 

service while minimizing the combination of labor cost and unsatisfied demand. 

Another objective is to maximize total productivity, for example, in terms of 

minimizing the number of startups and the number of machines used per operation 

(Zhang & Bard, 2006). 

The WSP has a different schedule duration or planning period. A multi-

period workforce scheduling, which intends to assign workers to tasks or shifts in 

single day planning horizon separated into multiple periods. According to Sabar et al. 
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(2008) studied a multi-period scheduling of worker in large assembly line, the 

mathematical model was developed, competencies and preference of workers were 

considered. A work period was set equal to the line’s preset takt time between two 

product units. The objective is to satisfied personnel requirements at each station in 

each period during the planning horizon while minimizing cost and dissatisfaction. 

The commercial optimization software ILOG CPLEX is used to find optimal solution.  

Bhadury and Radovilsky (2006) proposed an assignment model with a multi-period 

setting. The periods of assignment can be defined arbitrary. The bi-objective 

optimization models are formulated for two objectives, the usual objective of 

minimizing the total cost of assignment. Additionally, the objective are also 

considered to minimize boredom felt by employees due to continued repetition of the 

same task over consecutive periods.  

A multi-workday workforce scheduling problem is applied in various 

fields, the problem focuses on assigning employees to the shift or task in multiple 

workday planning horizon (e.g., weekly, monthly). The manpower scheduling in an 

manufacturing environment was studied by Pan et al. (2010). The planning horizon 

defined as multi-day schedule. The objective is to minimize total payment on 

employees. The mathematical formulation was developed as mixed integer 

programming, a two stage heuristic algorithm was proposed. Musliu et al. (2002) 

proposed an algorithm for cyclic or rotating general workforce schedules for multiple 

days. Workers will start at different beginning periods. An integer programming 

model and a two-stage solution method for flexible 4-day workweek scheduling 

problem with weekend work frequency constraints was proposed by Alfares (2003). 

The employees were given 3 days off per week, out of which either 2 or 3 must be 

consecutive. The objective is to determine the minimum workforce size. Additionally, 

he also developed workforce scheduling under the (14, 21) days-off timetable. In 

planning horizon, each worker is given 14 successive workdays and 7 successive off 

days. Demand of manpower required varying on each day of the week. The primary 

goal was to minimize number of workers (Alfares, 2002). The monthly tour 

scheduling models considered mixed skills and weekend off requirements were 

studied by Rong (2010). Bard et al. (2014)  studied the monthly scheduling of 

residents in primary care clinics with the objective of maximizing the number of 
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interns and residents for healthcare service management. A weekly schedules for 

therapists who treat patients with fixed appointment times at various healthcare 

facilities was proposed by Bard et al. (2014). 

For the general WSP in other application areas, they might be called as 

staff scheduling, personal scheduling, or employee timetabling. A few research 

studies were conducted focusing on feasible work schedule under complex 

constraints. For example, Lau (1996) set a main objective to construct an assignment 

of shifts to workers subject to manpower demands and shift-change constraints, while 

Kim et al. (2004) attempted to assign operators to time slots of equipment usage under 

a number of constraints, which are: restrictions on the minimum workforce 

assignment to each time slot, the maximum total operating time per operator per shift, 

the minimum and maximum consecutive operating times for an operator, types of 

equipment that can be assigned to each operator, and the available time slots for each 

operator or piece of equipment. Nowadays, ergonomic consideration has become 

more interesting to researchers. According to the U.S. Occupational Safety and Health 

Administration (OSHA), ergonomics is the science of fitting workplace conditions 

and job demands to the capabilities of the working population. Indeed, the effective 

ergonomics implementations assure the high productivity, avoidance of illness and 

injury risks, and increased satisfaction among the workforce. Through regulation and 

its own obvious advantages, ergonomics has gained visibility in much of industry and 

other areas in recent years. For details about ergonomic consideration in workforce 

scheduling, see section 2.3.1.  

  

2.2 Quantitative Approach to Multi-workday Workforce Scheduling 

WSP is a combinatorial optimization problem which is known as a 

complex and difficult problem. For more than five decades, considerable effort has 

been devoted to tackling the problem. Various efficient solution approaches have been 

suggested in previous literatures. In general, the unique characteristics of different 

organizations means that specific mathematical models and algorithms must be 

developed in different areas of application (Ernst et al., 2004). However, main 

solution approaches in dealing with WSPs can be classified into 3 categories: 

optimization approach, heuristic approach, and metaheuristic approach. 
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2.2.1 Optimization approach 

Mathematical Optimization, so called as Numerical Optimization or 

Mathematical Programming, is defined as the science of determining the “best” 

solutions from lots of schemes to certain mathematically defined problems, which are 

often models of physical reality. The history of the optimization started at the end of 

the 1940s, when the simplex method to solve the special class of linear programming 

problems was developed by George Bernard Dantzig (Diwekar, 2008). 

In the optimization approach, WSPs are generally formulated as 

(binary/mixed) integer linear programing (Bard et al., 2003; Billionnet, 1999; Gomar 

et al., 2002; Yang et al., 2003). The comparisons among those methods are also 

determined. Rong (2010) dealt with the monthly tour scheduling problem with mixed 

skills considering the weekend off requirements. The objective was to obtain the most 

economical mix of types of workers satisfying the patterns of demands for the 

workers and desired work characteristics. Two model formulations are developed 

based on implicit programming techniques – general integer programming (GIP) with 

assigning lunch break hours to the workers based on the worker types and binary 

integer programming (BIP) with assigning lunch break hours explicitly to the 

individual workers. Based on the numerical tests and the results, it is shown that even 

though the problem size of the BIP formulation is larger, the BIP formulation 

performs better than the GIP formulation in terms of lunch break assignment, solution 

quality, and solution efficiency. The model structure, instead of the problem size, is 

stated to become a dominant factor to affect the solution efficiency. 

Algorithms based on an optimization approach generally achieve the 

lowest cost solutions. However, it is more limiting in what constraints and objectives 

can be expressed easily. Characteristics of WSP can be formulated as a set 

covering/partitioning model or its variations which can be solved by using an exact or 

heuristic algorithm such as branch-and-bound method, branch-and-price, branch-and-

cut, and Lagrangian heuristics. Topaloglu and Ozkarahan (2003) considered weekly 

tour schedules with fluctuating customer demand. They stated that tour-scheduling 

problem has been traditionally formulated by the set-covering approach. However, 

when problem becomes larger with many decision variables (due to different work 

days and different shift and break start times in a workweek), set-covering 
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formulation might be impractical to formulate problems. Thus, they proposed an 

implicit integer-programming approach to facilitate the formulation of optimal tour-

scheduling problem compared to the set-covering approach. The results indicated that 

the implicit form of the model is outstanding in requiring fewer integer variables than 

the set-covering approach. 

Moreover, WSP can be solved by other efficient methods in the 

optimization approach such as goal programming (Chu, 2007; Jaturanonda & 

Nanthavanij, 2005; Li et al., 2012; Topaloglu, 2006; Trivedi, 1981), stochastic 

programming (in case of stochastic demand), network model (Millar & Kiragu, 1998) 

multi-commodity network flow, dynamic programming, matching model, 

decomposition model, or combinatorial models among those methods (Ernst et al., 

2004). Peters and Zelewski (2007) and Mathirajan and Ramanathan (2007) utilized 

goal programming (GP) to solve their problems in both preemptive and non-

preemptive considerations. Mathirajan and Ramanathan (2007) studied the problem of 

scheduling the tour of a marketing executive to visit a number of customers in a given 

period. The restrictions are formulated as soft and hard constraints to GP. Three 

objectives are set to minimize the sum of deviational variables corresponding to three 

sets of soft constraints. The results indicated that non-preemptive version is 

outstanding in comsuming less computation time (with the same solution quality); 

however, an appropiate weighting scheme needs to be assigned. Peters and Zelewski 

(2007) developed a model for the assignment of employees to workplaces, in which 

determining in worker competences and preferences. In this research, relative 

importances of three objectives are employed by using the relative measurement 

mode of the analytic hierarchy process (AHP). Mesquita and Paias (2008) dealt with 

integrated vehicle and crew scheduling problem (VCSP). The problem is described as 

an integer linear programming formulation combining a multi-commodity network 

flow model with a set partitioning/covering model. Two different mathematical 

models were proposed, namely, SP-VCSP (an original partitioning model) and SPC-

VCSP (a mixed covering/partitioning model). The methodology to handle models is 

divided to 4 main steps: (1) defining the set of tasks, (2) constructing an initial set of 

duties, (3) solving the linear programming relaxation of the models using a column 
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generation scheme, and (4) using branch-and-bound techniques to guarantee the 

integer optimal solution. 

The optimization takes advantage of achieving the guaranteed highest or 

lowest particular aspects but for the large-sized problem it seems to be limited. Since 

WSP is classified as an NP-hard problem, the number of variables grows 

exponentially when the problem size increases (Gartner et al., 2001; Lau, 1996b). In 

recent years, column generation is brought to this issue especially to resolve such a 

situation. Briefly, problems are decomposed to a master problem and one or more 

subproblems. Using dual prices provided by the master problem, the subproblems 

generate new columns to be added into the master problem. Then, instead of solving 

the problem with the whole set of columns, it is solved incrementally each time with 

new columns added. The problem can be solved without enumerating all the columns, 

and the optimality may be proved even without knowing the non-generated columns. 

Each part of formulation can be modified by combining other techniques such as 

heuristic or genetic algorithm so as to improve the efficiency of algorithm. dos Santos 

and Mateus (2009) dealt with crew scheduling problems by formulating the problem 

as set partitioning (SPP) and solving using the column generation technique. 

Interestingly, a genetic algorithm can be implemented to speed up the generation of 

new columns while the last column is generated by an exact method (e.g., ILP) to 

ensure the optimality. Brunner and Edenharter (2011) implemented column 

generation-based heuristic to a mixed-integer problem of staff scheduling with 

different experience levels. Unlike traditional column generation, final LP solution is 

transformed to an IP solution by solving the master problem as IP after column 

generation terminate. Later, the IP problem is solved to optimality. For another 

example, see (Dohn et al., 2009). 

2.2.2 Heuristic approach 

Heuristic procedures/methods are any technique that do not guarantee or 

promise the optimal solutions but attempt to provide a ‘good’ and sometimes ‘near 

optimal’ solution in a minimal amount of time (Bazargan, 2010; Sinnen, 2007). As a 

logical consequence of the NP-completeness of scheduling, the scientific community 

has been eager to investigate efficient scheduling algorithms based on heuristics or 

approximation techniques to produce near optimal solutions in larger size problems. 
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Step by step process of each algorithm needs to be clarified and well designed for a 

particular problem. Heuristic procedures generally don’t work well if the problem is 

highly constrained unless the constraints can be built directly into the heuristic 

(Rayward-Smith et al., 1996). However, many heuristic algorithms are found to be 

efficient in both solution time and solution quality.  

Examples of heuristic methods applied to workforce scheduling are the 

swap and interchange based neighborhood search heuristics which are commonly 

utilized in airline crew rostering problems, and local search methods utilized in bus 

driver scheduling problems. Lagodimos and Leopoulos (2000) determined a 

manpower shift planning problem to minimize workforce size in each workday shift. 

Two greedy heuristic algorithms are introduced for tackling single and multi-shift 

problems. The algorithms are implemented in VBA and compared to the results of 

solving ILP from LINGO. See details in the paper by (Musliu et al., 2002). For other 

examples, see Hung (1994), Narasimhan (1997), and Castillo et al., (2009). Yan et al. 

(2004) utilized both optimization and heuristic method to deal with airline short-term 

maintenance manpower supply planning. The manpower is considered as unequal-

work skills. Technicians are divided by multiple types of aircraft maintenance 

certificates. Three flexible management strategies and the related operating 

constraints are included in the models. Eight different flexible strategic models 

(associated with different strategy combinations) are evaluated. At first, the models 

are formulated as mixed integer programs and solved by using CPLEX. Due to the 

huge problem size in real applications, solution algorithm procedure was proposed 

which included 6 steps. A case study was implemented using the operating data from 

a leading Taiwan airline.  

The combinatorial approach among optimization and heuristic procedure 

was also founded. Lau (1996a) proposed combinatorial algorithms for the change shift 

assignment problem (CSAP). His model was formed as a fixed-charge network. A 

feasible schedule can be obtained by finding disjoint paths in the network. He stated 

that if the schedule is tableau-shaped, the disjoint paths can be derived from an 

optimal path cover, which can be found by a polynomial-time algorithm and, if all 

constraints are monotonic, CSAP may be solved by a pseudo-polynomial 

backtracking algorithm. Musliu et al. (2002) proposed a framework to solve the 
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problem of assigning days-off and shifts to employees. The combination of constraint 

satisfaction and problem-oriented intelligent backtracking algorithms were presented. 

Constraint satisfaction is split up into four steps so that the search space is reduced for 

each step, which provided the possibility of using backtracking algorithms. The four 

steps were: (1) choosing a set of lengths of work blocks, (2) choosing a particular 

sequence of work and blocks of days-off, (3) enumerating possible shift sequences for 

the chosen work blocks subject to shift change constraints and bounds on sequences 

of shifts, and (4) assignment of sequences of shifts to blocks of work while fulfilling 

staffing requirements. The presented method was implemented to addresses the 

previous research problems and compared results. The results showed that solutions 

can be found much faster than the previous one. 

2.2.3 Metaheuristic approach 

Metaheuristic is a set of concepts developed from heuristic methods. As a 

general algorithmic framework, it can be adapted to any specific problem by 

relatively few modifications. However, an effective metaheuristic needs to provide a 

balance between the exploitation of the accumulated search experience and the 

exploration of the search space to identify regions with high quality solution (Osman 

& Laporte, 1996; Stützle, 1998). Since a heuristic procedure is especially proposed 

for a particular problem, a new algorithm needs to be developed or at least modified 

to apply to other applications. The metaheuristic approach has attracted attention from 

researchers over last few decades. Typically, metaheuristic is used to solve problems 

that cannot be solved by traditional heuristics. The problems are either difficult in 

their own right or practical real-world instances making them intractable for solution 

–combinatorial optimization problem i.e., WSP. 
Modern metaheuristics have been applied to scheduling problems for over 

a decade, examples are, simulated annealing (SA) (Loukil et al., 2005; Seçkiner & 

Kurt, 2007), ant colony optimization (ACO) (Seçkiner & Kurt, 2008;Yagmahan & 

Yenisey, 2010), tabu search (TS) (Musliu, 2006), particle swarm optimization (PSO) 

(Lian, 2010), and genetic algorithm (GA). The metaheuristics applied to areas of 

workforce scheduling problem. For example, SA is usually applied to airline crew 

scheduling, train crew rostering, and cyclic staff scheduling problems. TS is applied 

to nurse rostering, air crew scheduling, audit scheduling, and bus driver scheduling. 
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GA is applied to industrial workforce scheduling, nurse scheduling, and bus driver 

scheduling. Among those metaheurstics, GA is found to be the most utilized when 

solving scheduling problems i.e., Chang et al. (2007), Morz and Musliu (2004) and 

Cai and Li (2000). Tsai and Li (2009) developed a two-stage mathematical model for 

nurse scheduling problems. The nurse work and vacation schedules are arranged in 

the first stage. After that, the nurse roster schedule are arranged in the next step. GA is 

utilized after each stage in order to solve the optimal schedules and check for any 

constraint violations e.g., government regulations, hospital management requirements, 

and the scheduling fairness. Ho and Leung (2010) compared two model formulations 

– tabu search heuristic and a simulated annealing heuristic approach in solving a 

manpower scheduling problem for airline catering. From the computational 

experiment, the tabu search approach outperforms the simulated annealing approach 

for the research problem. Aickelin and Dowsland (2004) solved a manpower 

scheduling problem in a hospital using GA with an indirect coding based on 

permutations and a heuristic decoder. The proposed method was called an indirect 

GA. The individuals in the population do not represent direct encodings of solutions. 

Instead, solutions are obtained via separate decoder heuristics that build solutions 

from permutations of the list of available nurses using the constraints as guides. 

Penalty functions might still be required if the decoder fails to find a feasible solution. 

Three different decoders with varying levels of intelligence and four well-known 

crossover operators are determined. Results indicated that indirect GA can find high 

quality solutions in both faster and more flexibly than tabu search approach published 

in that period of time. Only a few combinatorial algorithms among those methods in 

metaheuristic approach are founded such as hybrid TS algorithm, which combines SA 

and GA (Ernst et al., 2004) and hybrid GA combining local searches with genetic 

population management techniques (Valls et al., 2009). Xia and Wu (2005) proposed 

hybridization approach of PSO and SA for multi-objective flexible job-shop 

scheduling problems. The objectives were to minimize the makespan, total workload 

of machines, and workload of the critical machine. PSO is the main part of hybrid 

search process. It is utilized to assign operations on machines to be initial solution to 

SA. While SA acts as a sub-algorithm to schedule operations on each machine and 
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compute particle’s fitness value for PSO. Then, PSO uses the solutions evaluated by 

SA to continue evolution. 
The combinatorial methods among optimization, heuristic and 

metaheuristic approach were also considered. Valouxis and Housos (2000) considered 

monthly work shift and rest assignment of hospital nursing personnel problems. A 

hybrid method that combined integer linear programming and tabu search were 

presented. Köksalan and Burak Keha (2003) used GA to improve the solution 

obtained from a prior heuristic procedure.  Initial heuristics were utilized to include 

good solutions into the initial population of GA. They developed an efficient 

procedure that uses the probability of each chromosome for being a parent. Local 

searches were utilized in their GA. Remde et al., (2007) studied a complex real-world 

workforce scheduling problem. They split the problem into smaller parts and solved 

each part using an exhaustive search. Reduced variable neighbourhood search (rVNS) 

and hyperheuristic approaches are utilized to decide which sub problems are tackled 

in order at each stage of solution process. Parallelization was used to perform nearly 

one CPU-year of experiments. The results showed that the new methods could 

produce results with better fit than the genetic algorithm in less time and they were far 

superior to any of their component techniques. Chitra et al. (2011) solved task 

scheduling problems by minimizing the makespan and maximizing the reliability 

using hybrid evolutionary multiobjective optimization algorithms.  Li et al. (2012) 

presented a hybrid approach comprising goal programming and meta-heuristic 

methods for the multi-objective optimization of nurse scheduling. The algorithm was 

called the falling tide algorithm. Goal programming model is employed to produce an 

ideal objective-value vector and an initial solution as its inputs. The ideal objective-

value vector acts as a reference point in a compromise programming based function to 

evaluate the quality of result solutions more efficiently, while the initial solution acts 

as a good seed for the falling tide algorithm to speed up the convergence. 
The variants of other techniques implemented to WSP are illustrated. 

Constraint satisfaction technique is utilized in formulation a problem of port container 

terminals by Kim et al. (2004). The schedule must satisfy constraints on operating 

time, rest time, and operator preferences. Avramidis et al. (2010) proposed 

simulation-based algorithms combining simulation with integer or linear 
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programming to solve the agent scheduling problem in a multi-skill call center. The 

objective was to minimize the total costs of agents under constraints on the expected 

service level per call type, per period, and aggregated. Bagatourova and Mallya 

(2004) presented a simulation model and a heuristic algorithm using simulation to 

estimate objective function for workforce scheduling in a highly variable 

environment. The two stage model/algorithm is used in Alfares (1998) and Kabak et 

al. (2008). Topaloglu and Seyda (2006) studied a multi-objective programming model 

for scheduling emergency medicine residents. The problem underlies on a large 

number of rules related to various aspects i.e., limits on the number of consecutive 

work hours, number of day and night shifts that should be worked by each resident, 

resident staffing requirements according to seniority levels for the day and night 

shifts, restrictions on the number of consecutive day and night shifts assigned, 

vacation periods, weekend off requests, and fair distribution of responsibilities among 

the residents. Goal programming (GP) model is formulated with both hard and soft 

constraints for a monthly planning horizon. Unlike most researches, analytical 

hierarchy process (AHP) can compute relative importance values of the soft 

constraints which can be used as coefficients of the deviations from the soft 

constraints in the objective function. 
 

2.3 Focuses of Multi-workday Workforce Scheduling 

In this dissertation, three main considerations of workforce scheduling 

problem are addressed: (1) ergonomics and safety, (2) productivity, and (3) other 

considerations. Details and literature reviews in each topic are provided as follows. 

2.3.1 Ergonomics and safety 

Many assigned tasks involve occupational hazards. It is unavoidable for 

workers to receive hazard exposure from their workplaces when performing routine 

tasks. The hazard can be emitted from many different ways: for example, lifting too 

much workload, doing repetitive tasks in improper postures, receiving a loud noise 

level from machine operations and vibrations, working in high temperature 

environment for long periods, and exposing to chemical or radiation without suitable 

protection equipment. Exposing to hazards over the permissible limit can cause 

injuries or illness such as musculoskeletal disorder, cumulative trauma disorder, 
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permanent hearing loss, heat stress, chemical burn, radiation burn, or even lead to 

death. Workers with occupational problems cost organizations a lot in health support 

service, health care treatment cost, and high turnover rate. Workers with full 

experiences could be lost resulting in a reduction of the total system productivity. 

In order to protect manpower, workers’ hazard exposure must be taken 

care of. The safety regulation was issued by the U.S. Occupational Safety and Health 

Administration (OSHA). OSHA was created by the Congress of the United States 

under the Occupational Safety and Health Act since in 1970. Their mission is to 

prevent work-related injuries, illnesses, and occupational fatality. They issue and 

enforce standards for workplace safety and health. OSHA federal regulations covers 

most private sector workplaces. According to the safety regulations, daily hazard 

exposure of workers must not exceed the permissible limit which depends on the type 

of hazards – single limit hazards and variable limit hazards. Hierarchical approaches 

are suggested, namely, engineering approach, administrative approach, and the use of 

personal protection equipment. Unfortunately, most strategies are not cost effective 

and many times seems to be limited in practice. As a good compromised strategy 

between cost and effectiveness, job rotation is practically implemented.  

Job rotation is one a well know tool for workforce management which can 

lead to contributions for employees and companies. Workers are rotated among the 

tasks periodically within each day. The total hazard exposure can be alleviated among 

a group of workers, thus none of them are exposed to hazards over a permissible limit. 

Job rotation can prevent injuries, reduce employee boredom, balance workload, and 

improve work skill. Moreover, it’s affects employee morale and productivity. 

However, the periods of rotation should not be too short (i.e., less than 2 hours) 

because of the effects to learning ability of workers. Job rotation is found to be most 

suitable to cover construction work schedules. Including job rotation in workforce 

scheduling is not new. These are common in general health care systems; however, 

the schedule is not drawn in detail. Only workday or shift-change horizons are usually 

of consideration in early research studies. Bartholdi et al. (1979) considered cyclic 

staffing problems. The aim was to schedule a minimum cost workforce so that 

sufficient workers are on duty during each time period. The problem was transformed 

to the integer linear program to a bounded series of network flow problems. They 
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presented a round-off algorithm allowing the problem to be solved as a continuous 

linear program. The solution techniques are shown to extend to more general cyclic 

staffing problems such as cyclic staffing with overtime, days-off scheduling, cyclic 

staffing with part-time workers, and cyclic staffing with linear penalties for 

understaffing and overstaffing. Alfares (1998) developed an efficient two-phase 

algorithm for cyclic (5, 7) days-off scheduling. Over a given workweek, each worker 

is provided 5 successive workdays and 2 consecutive days-off. Briefly, a simple 

expression is used in computing the minimum workforce size to be included as a 

constraint in a linear programming (LP) model. The results shown to be more efficient 

than the integer linear programming and the continuous LP procedure (Bartholdi et 

al., 1979). Alfares (2002) presented an efficient optimum solution is for a real-life 

employee (14, 21) days-off scheduling problem with a three-week cycle. The solution 

technique utilizes the dual LP solution to determine the minimum number of workers 

and feasible days-off assignments, without using linear or integer programming. 

Later, he developed a new integer programming model and a two-stage solution 

method was for the flexible 4-day workweek scheduling problem with weekend work 

frequency constraints (Alfares, 2003). Musliu et al. (2002) constructed a new 

framework that includes four main steps with backtracking algorithm to rotate 

workforce schedules. They indicated that rotating workforce schedules have a 

profound impact on the health and satisfaction of employees as well as on their 

performance. For large-sized problems, Musliu (2003) appiled tabu search based 

algorithm, heuristic method based on min-conflicts heuristic, and their combinatorial 

and variations. Later, Morz and Musliu (2004) presented a genetic algorithm to solve 

the cyclic rotating workforce scheduling problem.  

Job rotation in workforce scheduling problem or job rotation scheduling is 

known to be difficult in implementation. It is complex due to the numbers of 

constraints needed to be satisfied. Moreover, at most realistic constraints need to be 

included. The simplified models of workforce scheduling problem might be even 

useless in practices. Job rotation involves two main factors, namely, workers and 

tasks. These two factors are required to be considered as close to the real situations as 

possible. Seçkiner and Kurt (2007) used job rotation scheduling to balance workload 

cost by reducing exposure to strenuous jobs. The objective tries to minimize the 
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workload cost among workers in which each worker must receive constant number of 

day-off each week. The job rotation for workload balancing in human based assembly 

systems was proposed by Michalos et al. (2010) and job rotation considered employee 

boredom and skill variation was studied by Azizi et al. (2010). Raina and Dickerson 

(2009) investigated two tasks that involved the deltoid muscle and found that the 

effectiveness of rotating between different tasks can reduce muscular fatigue or 

exposure. 

Those previous researches, mostly did not determined hazard exposure in 

quantitative amounts. Workers are assumed to be safe when performing tasks 

according to the number of workdays or shift assignment. Determining off-days in 

each workweek is not enough to prevent workers from exposure to hazards over 

permissible limits. Seriously, the total amount of hazard exposure in each task are not 

equal. Since workers are assigned to do one task all day in a workday, workers who 

perform high hazardous tasks might get the total hazard exposure much more than 

others (even they get 2 off-days in the end of workweek). The hazard exposure is 

accumulated in them resulting in health problems in this group of workers. Cyclic 

work schedule are required to be determined in more detail i.e., rotating tasks within a 

workday. 

To ensure the protection from hazard exposure of workers are under the 

permissible limit, a few previous literatures conducted job rotation for periods in a 

workday. The amounts of hazard exposures were evaluated in quantitative numbers. 

Nanthavanij and Yenradee (1999) developed a mathematical model for the problem 

with equal numbers of workers and tasks.  Their solution described the rotating work 

schedules such that the maximum noise hazard exposure is minimized. Nanthavanij 

and Yenradee (2000a) investigated the effect of work period length on the noise 

hazard reduction. Later, they developed a mathematical model to determine the 

minimum number of workers for job rotation when operating noisy machines 

(Nanthavanij & Yenradee, 2000b). Workers’ exposures must not exceed the 

permissible noise exposure level. For the complex safety-based job rotation problem, 

the swap heuristic was proposed (Yaoyuenyong & Nanthavanij, 2003). A genetic 

algorithm (GA) (Nanthavanij & Kullpattaranirun, 2001) and a heuristic GA 

(Kullpattaranirun & Nanthavanij, 2005) were applied to solve large minimax work 
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assignment problem. A heuristic genetic algorithm for minimax assignment problem 

was presented considering both the balanced and unbalanced number of worker and 

workstation. Otto and Scholl (2013) presented the ergonomic job rotation scheduling 

problem (EJRSP) in the automobile industry, this EJRSP is aimed at smoothing 

ergonomic risks between workers by minimizing the ergonomic load for the worker 

most exposed to ergonomic risks. The objective function contributes to balancing the 

risks of all workers in the schedule. The results show that EJRSP is NP-hard in the 

strong sense. Wongwien and Nanthavanij (2012) proposed ergonomic workforce 

scheduling with complex worker limitation and task requirement, the problem 

considers realistic worker limitation and task requirements that include heterogeneous 

workforce with limited task flexibility, varying number of workers for each tasks, and 

pre-defined task operation schedules. The objective is to find the minimum number of 

workers in a single workday planning period. An occupation noise exposure in a 

sawmill operation was proposed by Tharmmaphornphilas et al. (2003). The 

mathematical model was developed and intended to minimize the maximum daily 

noise exposure encountered among the workers. The results suggest that a 

mathematical modeling approach can reduce worker exposure to occupational noise. 

Carnahan et al. (2000) introduced job rotation scheduling that reduces the potential 

for back injury. The objective aims at balancing a Job Severity Index (JSI) that was 

used to assess the potential for back injury, between workers by minimizing the JSI of 

most exposed worker. Employees are classified by gender and lifting capacity of 

employees that effect to exposure of JSI. Aryanezhad et al. (2009) proposed a safe 

skill-based job rotation scheduling (SSJRS) for multi-working day schedule duration 

in the manufacturing system that noise exposure and low back injury are 

simultaneously considered. The first objective function aims to minimize maximum 

occupational noise exposure, and the second one is designed to minimize the potential 

of worker’s low back injuries. Noise exposure and low back injuries are assessed by 

JSI and daily noise dosage (DND), respectively. LP-metric method is used to trade-off 

solution between DND and JSI, and solving by LINGO. 

When the minimum number of workers for job rotation is to be 

determined, the WSP is proved to be a variant of the classic bin packing problem 

which is a well-known NP-hard problem (Yaoyuenyong, 2006). Thus, the optimal 
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rotating work schedule solution is obtainable only when the problem size is relatively 

small. For large problems, a heuristic approach is usually suggested. Yaoyuenyong 

and Nanthavanij (2006) developed four solution algorithms and a hybrid procedure to 

determine an optimal workforce without being exposed to excessive noise hazard in 

the manufacturing environment. Additionally, they developed heuristic job rotation 

procedures for workers who are exposed to single-limit and multiple-limit 

occupational hazards (Yaoyuenyong & Nanthavanij, 2008). 

2.3.2 Productivity 

System productivity is an important factors when construct effective 

workforce schedule. Good resource management are needed especially when the 

resources (i.e., manpower or machine hours) are limited. It helps to eliminate losses; 

as a result, leading to higher profits without any investment. Achieving high total 

system productivity can be done by either increasing production rate or decreasing 

various losses. Since a few extra investments are always required to improve 

productivity rate, many organizations choose to reduce many types of loss instead. 

Utilizing manpower in ineffective ways can be classified as a type of loss. 

Productivity, it is regular for management to seek a workforce scheduling solution 

with high productivity. When assigning a worker to a job that he/she can perform the 

most effectively, it is reasonable to expect high performance from such worker-job 

assignment especially in the workforce scheduling problem. 

High productivity aspect often included in various machine scheduling. 

Arroyo and Armentano, (2005) and Chang et al., (2008) used a genetic algorithm to 

investigate multiobjective flowshop scheduling problem. Makespan and maximum 

tardiness are considered to be minimized. Details of algorithms in each part are 

clarified in the literatures. Yagmahan and Yenisey, (2010) treated the problem by 

using multi-objective ant colony system algorithm, which combines the ant colony 

optimization approach and a local search strategy. The objective is formulated as 

minimizing the weighted combination of makespan and total flowtime. For other 

related literatures, see the research by Sha and Lin, (2010), Chang et al. (2007) and Ip 

et al. (2000). 

In the area of workforce scheduling, there are only small numbers of 

research focusing on the high total productivity. Chu and Sydney, (2007) studied real 
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applications in the Hong Kong International Airport. Goal programming models were 

utilized for an integrated problem of crew duties assignment which were decomposed 

into its duties generating, scheduling, and rostering phases. They proposed both GP 

based model and extended version in minimizing idle shifts. Dohn et al. (2009) 

focused on maximizing the total number of assigned tasks by presenting an integer 

programming model using Dantzig–Wolfe decomposition. The problem was divided 

into a generalized set-covering the master problem and an elementary shortest path 

pricing problem. Then, the models were solved by column generation in a branch-

and-price framework. 

As an effect of job rotation, total system productivity might be reduced. A 

few workers who are proficient in different tasks might be rotated to other tasks due 

to safety constraints. Thus, instead of reaching in one objective as previous research, 

hybrid consideration between the total system productivity and workers’ safety should 

be determined. Nanthavanij et al. (2010) included the productivity issue in their 

rotating workforce study. A safety-productivity workforce scheduling model and a 

heuristic approach were presented to find appropriate work schedules such that 

workers are assigned to the tasks that they can perform competently and workers’ 

hazard exposure are of consideration at the same time. This research provided broader 

view to combination of ergonomics and workforce scheduling. Indeed, the number of 

work-task changeover also affect to the total system productivity. It is obvious that 

workers need at least a short period of time to travel to another workplace or setting 

the new workstation before starting up a new assigned task. This consuming time 

practically can lead to a major loss. Thus, the number of work-task changeovers 

should be kept at minimum when implementing job rotation. 

2.3.3 Others (satisfaction, worker and task factors) 

It is a fact that workers who perform their preferable tasks and/or with 

preferred partners usually tend to conduct spotless work. Happiness in the workplace 

environment helps to reduce turnover rate, resulting in a lower human resourcing 

management cost. Currently, employee’s preferences have become an important issue 

when constructing a work schedule. Stolletz, (2010) studied hierarchical workforce 

staffing for check-in systems at airports. Individual employee preferences were 

included in their extended model. The preferences were provided in terms of preferred 
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days-off, period of earliest shift-start, and period latest shift-end. A few additional 

constraints were added to avoid such large differences in starting periods of 

consecutive shifts as well. A binary linear programming with a reduced set-covering 

formulation was developed for the underlying problem. The model was tested with 

real-world demand data. Maenhout and Vanhoucke (2010) presented a hybrid scatter 

search algorithm for the airline crew rostering problem. The objective was to assign a 

personalized roster to each crew member minimizing the overall operational costs, 

ensuring impartiality and fairness of crew members, and satisfying crews’ preferences 

for certain roster attributes. Crew members consisted of 3 types (e.g., regular, extra, 

and freelance) depending on their work skills. The problem was broke up into a 

master rostering problem and a subproblem based on the Dantzig–Wolfe 

decomposition. The master problem was modeled as a generalized set partitioning 

problem while the subproblem was modeled as a network problem. Jaturanonda and 

Nanthavanij (2005) considered the employee’s preferences, but unlike the other 

researches, the point of competency was also taken into account. In the same fashion, 

see Peters and Zelewski (2007). Akbari et al. (2013) considered part-time and mixed-

skilled workers scheduling problem. Unlike any other research, variable workers’ 

productivity during a day is of consideration. Workers’ fatigue is stated to influence 

worker performance and, consequently, rate of production. Thus, ratio of output 

decreased along consecutive work shifts. The objective was set to maximize workers’ 

satisfaction while regarding workers’ availability, productivity, priority preference, 

seniority level, and number of workers required. Simulated annealing (SA) and 

variable neighborhood search (VNS) were introduced to the problem. The results 

indicated that performance of VNS was better than that of SA in terms of both 

solution quality and computation time. Although, modern research trends to cover 

more worker preference aspects, workers’ preferred partners cannot be found in any 

of them. 

As one can see from the literature reviews, differences in work skills of 

employees are obvious and nowadays has become one of the most important factors 

which needs to be covered. It is the fact that workers are heterogeneous. Even when 

performing the same tasks, they provide different work skills. Sometimes workers are 

assigned to tasks that they are not competent in which leads to the total system 
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productivity decreasing. Hence, it is essential to “put the right man in the right job”. 

Many literatures from the past have considered heterogeneous workers. Previously, 

workers were considered to be heterogeneous in terms of different work skills, for 

example, reseach of Narasimhan (1997).  Billionnet (1999) determined hierarchical 

workforce scheduling problem. Workers are classified into categories arranging their 

capabilities hierarchically. Workers who have a higher qualification could substitute 

for a lower qualification one, but not vice versa. The labor requirements might vary 

from one category to the others, however, the numbers of workers in each category 

have to satisfy the labor and off-days requirements. Thompson and Goodale (2006) 

considered the problem of developing workforce schedules using groups of 

employees having different productivity. They divided workers into two main groups 

– higher and lower than mean productivity. 

Later, multiskill workers and limited ability were included. A few workers 

might be cross-trained, so they can perform more than only one type of tasks. Cai and 

Li (2000) presented a genetic algorithm to schedule staff of mixed skills under multi-

criteria. Workers’ limited ability was taken into account. There are three types of 

workers: type-1 worker can do only type-1 task; type-2 worker can do only type-2 

task; and type-3 worker can do both type-1 and type-2 task. However, type-3 workers 

consume more staff cost. Researchers extended to cover more realistic case that a few 

workers might have no skill level due to new employed or unqualified certificate. 

Fowler et al. (2008) presented two linear programming (LP) based to heuristics, a 

solution space partition approach, and GA to consider the optimal number of workers 

in each skill level in each period so as to achieve the minimum total cost. Skill of 

workers refers to machine groups that they can operate. New hired workers are 

included by representing as an empty skill. Hojati and Patil (2011) applied integer 

programming (IP) in conjunction with the heuristic approach to schedule 

heterogeneous, part-time service employees with limited availability.  Employees 

have different availability and skills, and work different total work hours in a 

workweek. The objectives are to minimize over staffing and to meet the target total 

work hours for each employee during the planning period. The problem is 

decomposed into two sub problems and solved by integer linear programs. Other 

examples of work skill consideration are in terms of: different work skill workers 
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(Billionnet, 1999; Ho & Leung, 2010; Remde et al., 2007),  mixed skill workers 

(Rong, 2010), and mutiskill workers (Avramidis et al., 2010; Gomar et al., 2002; 

Heimerl & Kolisch, 2010; Kuo et al., 2014; Yan et al., 2004). 

For the task constraints, many types of tasks require more than one worker 

to operate at a time. It is called a worker team. Ho and Leung (2010) studied a 

manpower scheduling problem with job time windows and job-skills compatibility 

constraints. In this research, each driver/loader had skills to service a few, but not all, 

of the airline/aircraft/configuration of the jobs – multiskill. Worker had to be formed 

as a worker team with the appropriate skills in order to service a certain flight. Other 

research claimed the worker team as assigning a set of workers to a set of tasks (Dohn 

et al., 2009), not scheduling workers to become a worker team. Apart from single or 

multiple worker operation, task operation schedule should be considered. It is the fact 

that each task has its operation schedule indicating when the machines or operation 

should be off, for example, shutting down in order to do daily corrective maintenance. 

Assigning workers to perform a set of tasks must be depending upon these task 

factors. From previous literatures, there has been no research which combined worker 

and task constraints simultaneously. 
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Chapter 3 

Multi-workday Ergonomic Workforce Scheduling (MW-EWSP) 
 
 Based on the optimization approach, a mathematical model is developed 

to optimize three-conflict objectives simultaneously under the worker and task 

constraints. The multi-objectives solved as LP-metric method addressed here are: (1) 

minimum fluctuate hazard exposure of workers’ group (Objective 1:OB1), (2) 

maximum total productivity scores (Objective 2:OB2), and (3) minimum number of 

dissatisfies pair both task and partner (Objective 3:OB3). A heterogeneous workforce 

is considered. They are different in their ability to perform a tasks. However, hazard 

exposure of every worker is limited under the permissible limit. Each task or 

workstation is varied in number of required worker to perform together and its 

operation schedule on multi-workday planning period. 

 

3.1 Problem Description  

 The problem emphasis on construct schedules for multi-workday in the 

workplace environment when workers or employees are exposed to ergonomic 

hazards. According to the safety laws, workers must not be exposed to a given 

occupational hazard beyond permissible daily limits. A worker limitation and 

workstation operation schedule are considered, the workers are heterogeneous that 

each worker can do a specific job or task upon his/her qualification. The operation 

schedule of workstation is predetermined for all days in the planning period. If the 

workstation off schedule, all tasks in this station must off operation. The workday can 

be divided into multiple work periods, workers are rotated to perform several tasks or 

workstation during the workday to reduce their hazard exposures. The objective of 

this problem is to determine three inconsistent objectives solution for multi-workday 

scheduling by considering a single-limit hazard at the workstation. 

A single-limit ergonomic hazard exposure at the workstation is studied 

with permissible exposure limits which are the same for every person. This single 

hazard exposure can be classified into 2 types, a uniform hazard exposure and a non-

uniform hazard exposure. Firstly, a uniform hazard exposure at the workstation. For 

this hazard type, a worker performing each task at workstation is exposed to the same 
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hazard level if the workstation has more than one task to perform. Based on each task 

has a short distance among tasks in the workstation. The examples of this hazard type 

are noise, heart, cold, radiation, and toxic chemicals. Secondly, a non-uniform hazard 

exposure at the workstation. Unlike its previous hazard type, each task in the 

workstation has a different hazard exposure level. The hazard exposure level at each 

task in workstation is up to physical qualification of workers, a worker who is 

stronger than other workers is exposed to less hazard level at the same task. The 

examples of this hazard type are lifting injuries access by JSI, mental stress, etc. 

 In this research, three criteria are considered when generating safe multi-

workday rotation work schedules for industrial workers. 

  1) Hazard exposure balancing, past research studies were only concerned 

with finding either optimal or near-optimal solutions for one day. This is perhaps 

based on an assumption that the workers’ work schedules will be the same as long as 

job requirement do not change. These fixed work schedules can lead to unfair worker-

task assignments for a few workers since they could be assigned to more hazardous 

tasks than other workers. A multi-workday planning period could be used to avoid 

uneven hazard exposure among worker on multi-workday operation. Moreover, even 

hazard exposure can reduce dangerous and indirectly boost employee safety and 

satisfaction. 

 2) Productivity, it is regular for management to seek a workforce 

scheduling solution with high productivity. When assigning a worker to job that 

he/she can perform effectively, it is reasonable to expect high performance from such 

worker-job assignment. In other words, the productivity directly relates to the person-

job fit score. When solving EWSP based on this aspect, workers are likely to be 

assigned to jobs that match the high person-job fit score. 

 3) Satisfaction, it has been known that satisfied workers are efficient 

workers. As far as the worker-job assignment is concerned, each worker has his/her 

own preferred job(s) and/or work partner(s) (when being assigned to a team). It is 

clear that when the worker is assigned to the preferred job or paired with preferred 

partner(s), he/she is well satisfied with such assignment. Job satisfaction is normally 

associated with high productivity and low turnover rate. When generating safe multi-
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workday rotating work schedules, it is advisable to consider the preference lists of 

involved workers regarding their preferred jobs and partners. 

  When the MW-EWSP is independently solved according to one of the 

above three criteria at a time, it is expected that the results (i.e., safe daily rotating 

work schedule) are different in terms of the hazard exposure balancing, productivity, 

and satisfaction. Thus, when the MW-EWSP is considered as a single objective 

optimization problem, its solution depends on the criterion that a decision maker 

chooses as the problem goal. Certainly, when considered each objective as a single 

objective optimization problem, the results might be sacrificed with other objectives. 

The MW-EWSP becomes more complex when two or more criteria are considered. 

The problem can be solved by considering the concerned criteria sequentially or all at 

once simultaneously. 

  

3.2 Assumptions and Conditions 

 The formulation of MW-EWSP mathematical model requires the 

following assumptions and conditions.  

3.2.1 Assumptions 

 1. A workday is divided into equal work periods. Job rotation occurs only 

at the end of the work period. There are a group of workers which are sufficient for 

the schedules and do not violated permissible limit within each workday. 

 2. In any given work period in each day, a workstation may or may not to 

be performed depending on its operation schedule. 

 3. The number of workers required to perform at a different workstation 

do not have to be equal up to the number of task at workstation. 

 4. The numbers of tasks that the workers can perform are known and do 

not have to be equal. 

 5. The hazard exposures per period at each task or workstation and the 

permissible daily limit of hazard exposure are known and constant. 

 6. The person-job fit score and preferred tasks/partner(s) are known. 

3.2.2 Conditions 

 1. Each worker must not be exposed to a given hazard exposure beyond a 

permissible limit within each workday. 
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 2. Predetermined suitable of the number of workers for job rotation. All 

workers must be utilized on each workday. 

 3. In each work period, each worker can be assigned to only one task. 

 4. If a workstation is in operation, all tasks at the workstation must be 

operated and it must be satisfied by assigning a worker to each task. If a workstation 

is in the off operation (shutdown), all tasks at the workstation must not be operated 

and none assigned to the worker. 

 5. Constraints on the work station operation schedule, worker limitation, 

must not be violated. 

 

3.3 Mathematical Model 

 Before solving the multi-objective consideration, the desired goal value 

for each objective of MW-EWSP model must be obtained. The single-objective MW-

EWSP model for hazard exposure balancing, productivity and satisfaction are 

formulated as Mixed Integer Linear Programming (MILP). Then, solving each 

objective and set as the desired goal value in multi-objective model is conducted. The 

multi-objective MW-EWSP model are also formulated as MILP, the problem is 

considered as multi-objective MW-EWSP with LP-metric method that solves multi-

objective solution simultaneously which are the important weights defined for each 

considered aspect. 

 

 3.3.1 Single-objective MW-EWSP model 

 The notations are shown as follows: 

Parameters: 

aijl 1 if worker i can perform task l in work station j; 0 otherwise 

hjl hazard exposure per work period of task l in work station j 

I number of utilized workers; i ∈ {1,…,I}  

J number of work station; j ∈ {1,…,J} 

K number of work period per workday; k ∈ {1,…,K} 

L daily permissible limit of hazard exposure  

Nj number of task in work station j; l ∈ { 1,…,Nj} 
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t
jkp  1 if work station j has to perform in work period k on day t; 0 otherwise  

ppin 1 if worker i chooses worker n as his/her preferred team to perform a work 

station ; 0 otherwise 

ptijl 1 if worker i chooses task l of work station j as his/her preferred task;  

0 otherwise 

sijl person-job fit score of worker i perform task l of work station j 

T number of workday in planning period; t ∈{1,…,T} 

Decision variables: 

TD total number of dissatisfied worker– task and worker-team assignment 

TSC total person-job fit score 
t

injkUSP 1 if worker i is teamed up with non-preferred worker n to perform workstation 

j in work period k of day t  

0 otherwise 
t

kUST  total number of dissatisfied  worker – task paring in work period k of day t 

t
ijlkX   1 if worker i is assigned to preform task l of workstation j in work period k on 

workday t 

0 otherwise 

Z maximum average hazard exposure among workers 

 

 1. Sub-model Z (OB1) 

 The single-objective MW-EWSP model for hazard exposure balancing 

can be described as follows. 

 Minimize Z (3.1) 

Subject to 

1 1 1

jNJ K
t

ijl ijlk
j l k

h X L
= = =

≤∑∑∑  i ∈ I, t ∈ T (3.2) 

1 1 1 1

jNT J K
t

ijl ijlk
t j l k

h X
Z

T
= = = = ≤
∑∑∑∑

 i ∈ I (3.3) 

1 1
1

jNJ
t
ijlk

j l
X

= =

≤∑∑  i ∈ I, k ∈ K, t ∈ T (3.4) 
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i
X p

=

=∑  j ∈ J, l ∈ Nj, k ∈ K, t ∈ T (3.5) 

1 1 1
1

jNJ K
t
ijlk

j l k
X

= = =

≥∑∑∑  i ∈ I, t ∈ T (3.6) 

t t
ijlk jkX p≤  i ∈ I, l ∈ Nj,  j ∈ J, k ∈ K, t ∈ T (3.7) 

t
ijlk ijlX a≤  i ∈ I, l ∈ Nj,  j ∈ J, k ∈ K, t ∈ T (3.8) 

{0,1}t
ijlkX ∈  i ∈ I, l ∈ Nj,  j ∈ J, k ∈ K, t ∈T (3.9) 

 Objective (3.1) tries to balance hazard exposure by minimizing maximum 

average of hazard exposure among workers of planning period. Constraint (3.2) states 

that for any worker, the sum of hazard exposure amounts that a worker receives 

during the workday does not exceed the daily permissible limit L. Constraint (3.3) 

ensures that average hazard exposure of a worker must not excessive maximum 

average hazard exposure. Constraint (3.4) specifies that a worker can be assigned to 

perform at most one task per period. Constraint (3.5) states all workstation operations 

in each period must have the required worker to perform all tasks in that workstation. 

Constraint (3.6) states that all workers must be utilized in each workday. Constraint 

(3.7) specifies that workers can only be assigned to workstations that operate in that 

period. Constraint (3.8) prevents workers performing tasks that he/she has no skill to 

perform. Constraint (3.9) defines binary decision variables. 

 

 2. Sub-model TSC (OB2) 

 The single-objective MW-EWSP model for productivity can be described 

as follows. 

 Maximize TSC (3.10) 

Subject to 

1 1 1

jNJ K
t

ijl ijlk
j l k

h X L
= = =

≤∑∑∑  i ∈ I, t ∈ T (3.11) 

1 1 1 1 1

jNT I J K
t

ijl ijlk
t i j l k

s X TSC
= = = = =

=∑∑∑∑∑   (3.12) 
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t
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j l
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= =

≤∑∑  i ∈ I, k ∈ K, t ∈ T (3.13) 

1

I
t t
ijlk jk

i
X p

=

=∑  j ∈ J, l ∈ Nj, k ∈ K, t ∈ T (3.14) 

1 1 1
1

jNJ K
t
ijlk

j l k
X

= = =

≥∑∑∑  i ∈ I, t ∈ T (3.15) 

t t
ijlk jkX p≤  i ∈ I, l ∈ Nj,  j ∈ J, k ∈ K, t ∈ T (3.16) 

t
ijlk ijlX a≤  i ∈ I, l ∈ Nj,  j ∈ J, k ∈ K, t ∈ T (3.17) 

{0,1}t
ijlkX ∈  i ∈ I, l ∈ Nj,  j ∈ J, k ∈ K, t ∈T (3.18) 

 Objective (3.10) is to maximize the total person-job fit score. Constraint 

(3.12) sums up the total person-job fit score. 

 

 3. Sub-model TD (OB3) 

 The single-objective MW-EWSP model for satisfaction can be described 

as follows. 

 Minimize TD (3.19) 

Subject to 

1 1 1

jNJ K
t

ijl ijlk
j l k

h X L
= = =

≤∑∑∑  i ∈ I, t ∈ T (3.20) 

1 1 1 1 1 1

j jN NI J I J
t t t
ijlk ijl ijlk k

i j l i j l
X pt X UST

= = = = = =

− =∑∑∑ ∑∑∑  k ∈ K, t ∈ T (3.21) 

1 1
1

j jN N
t t t
ijlk njlk in injk

l l
X X pp USP

= =

  
+ − − ≤      

∑ ∑  i ∈ I, n ∈ I,i≠n; j ∈ J  k ∈ K, t ∈ T (3.22) 

1 1 1 1 1 1 1

T K I I T J K
t t

k injk
t k i n t j k

UST USP TD
= = = = = = =

+ =∑∑ ∑∑∑∑∑  (3.23) 

1 1
1

jNJ
t
ijlk

j l
X

= =

≤∑∑  i ∈ I, k ∈ K, t ∈ T (3.24) 

1

I
t t
ijlk jk

i
X p

=

=∑  j ∈ J, l ∈ Nj, k ∈ K, t ∈ T (3.25) 
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1 1 1
1

jNJ K
t
ijlk

j l k
X

= = =

≥∑∑∑  i ∈ I, t ∈ T (3.26) 

t t
ijlk jkX p≤  i ∈ I, l ∈ Nj,  j ∈ J, k ∈ K, t ∈ T (3.27) 

t
ijlk ijlX a≤  i ∈ I, l ∈ Nj,  j ∈ J, k ∈ K, t ∈ T (3.28) 

{0,1}t
ijlkX ∈  i ∈ I, l ∈ Nj,  j ∈ J, k ∈ K, t ∈T (3.29) 

 Objective (3.19) is to minimize sum up the total dissatisfied worker-task 

and worker-partner assignment from all utilized workers. Constraint (3.21) counts the 

number of dissatisfied worker-task. Constraint (3.22) counts the number of 

dissatisfied worker-partner assignments. For the job with two workers (say, worker a 

and b), the satisfied worker-partner assignment is counted when worker a is satisfied 

with begin paired with worker b, or when worker b is satisfied with paired with 

worker a. If both workers are satisfied, then there are 2 satisfied worker-partner 

assignments. Constraint (3.23) sums up the total number of dissatisfied from total 

number of dissatisfied worker-task assignment plus total number of dissatisfied 

worker-partner assignment. 

 

 3.3.2 Multi-objective MW-EWSP model 

 For multi-objective MW-EWSP model, the solution from sub-model Z, 

TSC and TD in section 3.3.1 are defined as Z*, TSC* and TD* respectively. The 

addition notations are shown as follows: 

Parameters: 

MS total number of all possible satisfaction (both task and team assignment) 

TD* desired goal value of total number of dissatisfied worker– task and worker-

team assignment 

TSC* desired goal value of total person-job fit score 

TSF* desired goal value of total number of satisfaction equal MS minus TD* 

w1 important weights of LP-metric objective function for objective 1 (OB1) 

w2 important weights of LP-metric objective function for objective 2 (OB2) 

w3 important weights of LP-metric objective function for objective 3 (OB3) 

Z* desired goal value of maximum average hazard exposure among worker 
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Decision variables: 

TD total number of dissatisfied worker– task and worker-team assignment 

TSC total person-job fit score 

TSF total number of satisfaction 
t

injkUSP 1 if worker i is teamed up with non-preferred worker n to perform workstation 

j in work period k of day t  

0 otherwise 
t

kUST  total number of dissatisfied  worker – task paring in work period k of day t 

t
ijlkX   1 if worker i is assigned to preform task l of workstation j in work period k on 

workday t 

0 otherwise 

Z maximum average hazard exposure among workers 

 

Objective function: 

 Minimize 
* * *

1 2 3* * *
Z Z TSC TSC TSF TSFw w w

Z TSC TSF
 − − −

+ + 
 

 (3.30) 

Model constraints: 

1 1 1

jNJ K
t

ijl ijlk
j l k

h X L
= = =

≤∑∑∑  i ∈ I, t ∈ T (3.31) 

1 1 1 1

jNT J K
t

ijl ijlk
t j l k

h X
Z

T
= = = = ≤
∑∑∑∑

 i ∈ I (3.32) 

1 1 1 1 1

jNT I J K
t

ijl ijlk
t i j l k

s X TSC
= = = = =

=∑∑∑∑∑   (3.33) 

1 1 1 1 1 1

j jN NI J I J
t t t
ijlk ijl ijlk k

i j l i j l
X pt X UST

= = = = = =

− =∑∑∑ ∑∑∑  k ∈ K, t ∈ T (3.34) 

1 1
1

j jN N
t t t
ijlk njlk in injk

l l
X X pp USP

= =

  
+ − − ≤      

∑ ∑  i ∈ I, n ∈ I,i≠n; j ∈ J  k ∈ K, t ∈ T (3.35) 

1 1 1 1 1 1 1

T K I I T J K
t t

k injk
t k i n t j k

UST USP TD
= = = = = = =

+ =∑∑ ∑∑∑∑∑  (3.36) 
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TSF=MS-TD (3.37) 

1 1
1

jNJ
t
ijlk

j l
X

= =

≤∑∑  i ∈ I, k ∈ K, t ∈ T (3.38) 

1

I
t t
ijlk jk

i
X p

=

=∑  j ∈ J, l ∈ Nj, k ∈ K, t ∈ T (3.39) 

1 1 1
1

jNJ K
t
ijlk

j l k
X

= = =

≥∑∑∑  i ∈ I, t ∈ T (3.40) 

t t
ijlk jkX p≤  i ∈ I, l ∈ Nj,  j ∈ J, k ∈ K, t ∈ T (3.41) 

t
ijlk ijlX a≤  i ∈ I, l ∈ Nj,  j ∈ J, k ∈ K, t ∈ T (3.42) 

{0,1}t
ijlkX ∈  i ∈ I, l ∈ Nj,  j ∈ J, k ∈ K, t ∈T (3.43) 

 Objective (3.30) tries to minimize deviation of the LP-metric objective 

function. Constraint (3.37) computes total number of satisfied. 
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Chapter 4  

Genetic Algorithm Approach for MW-EWSP 
 

 This chapter explains the genetic algorithm (GA) in detail. Mainly, this 

chapter is divided into 3 sections. Section 4.1 presents the concept of the GA 

procedure. The GA operation is clarified in section 4.2. Chromosome representation, 

creation of the initial population, fitness scaling, penalty value and fitness function, 

selection and reproduction, GA parameters, and termination condition are discussed. 

 

4.1 GA Procedure 

The genetic algorithm is one of the most popular metaheuristic for 

combinatorial optimization. Firstly introduce by Holland (1992), the algorithm tries to 

emulate the process of natural selection of evolutionary in search procedure. The GA 

procedure based on MATLAB genetic algorithm tool is presented in figure 4.1. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.1  The GA procedure 

Input  : Problem data, GA parameters 
Output : Best solution 
Begin 

 t ← 0; 
 Generate initial population P(t) by encoding routine; 

While (not terminating condition) do 
 evaluate P(t) by decoding routine; 
 select R(t) from P(t) by selection routine; 
 create C(t) from R(t) by crossover routine; 
 create C(t) from R(t) by mutation routine; 

elitism best solution to P(t + 1) 
 add remain P(t + 1) from entire C(t); 
 t ← t + 1; 
End 
Output the best solution 
End 
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The procedure in figure 4.1, P(t) represents the population in generation t , 

R(t) represents the parent chromosome in generation t , and C(t) represents the 

offspring chromosome in generation t , beginning with the encoding part, a set of 

initial population is created. Then, it is sent to the evaluation part to decode 

chromosomes and compute their fitness values by decoding routine. The step of 

selection is used to select parents chromosome and reproduction as offspring by 

crossover and mutation routine. For the reproduction, order crossover, swap mutation, 

and elitism are employed to produce the next generation population. After that, a new 

generation of population will be sent to the evaluation step. The loop will be 

continued until GA reaches the termination condition and return best solution.  

 

4.2 GA Operations 

4.2.1 Chromosome representation 

 Asawarungsaengkul and Nanthavanij (2008) proposed permutation 

encoding for multi-period of single workday job rotation.  From their encoding, the 

adaption extends to encode multi-workday assignment solution as single chromosome 

by adding the next workday chromosome to right hand side of previous workday 

chromosome until end of planning period. Figure 4.2 shows a chromosome 

representation of the work assignment problem in one workday and four work period 

as a string. The chromosome string is divided into k segments, where each segment 

represents a work period. In each segment, there are i genes, where each gene 

represents a task. This chromosome representation each worker to attend only one 

task in one work period vice versa each task has only one worker to attend in one 

work period. 

 Example of chromosome encoding from Figure 4.2, the chromosome of 

one workday consists of four segments, with seven genes in each segment. There are 

three workstations, five tasks, and seven workers. The first seven genes show the 

work assignments for the seven workers (W1 to W7) in work period1, the next four 

genes for the assignment in work period2, and so on. It should be noted that in each 

period, the order of assignment is T1 – T5. If the number of task less than the number 

of workers, the assignment in gene that beyond to the number of task (T6, T7) will be 

represented an idle work period for this assigned worker. For workstation off 
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schedule, the task assignment in gene represents an idle work period too. The other 

workday chromosome segments are used in the same scheme as presented. 

 
 

Figure 4.2  Chromosome representation 

 

It is also observed that the length of chromosome string is equal K× I× T. 

There are a constant number of chromosomes in the population as denoted by 

population size. 

4.2.2 Initial population 

 Random permutation is applied for the initial population for each single 

objective problem (sub-model Z, TSC, TD). Exclusively, for the main-model LP 

metric, initial population combine of the best solution from sub-model Z (OB1) 34%, 

sub-model TSC (OB2) 33%, and sub-model TD (OB3) 33% respectively. 

4.2.3 Fitness scaling, fitness function, and penalty function 

4.2.3.1 Fitness scaling 

A fitness scaled value is used to evaluate the quality of chromosomes in 

each generation. The chromosome receiving a high scaled value will potentially be 

selected as parents to produce offspring which are included in next generation 

population. A selection routine is used to select chromosomes to produce offspring. A 

large scaled value chromosome has a high change to be selected for selection routines. 

In this procedure, the chromosome with lower fitness evaluation value with more 

fitness scaled value. 

4.2.3.2 Fitness evaluation function 

For the sub-model 1 hazard exposure balancing objective (OB1), a fitness 

value of model with hazard exposure balancing (described by sub-model Z) is defined 

as the maximum average hazard exposure among workers. A fitness evaluation 

function of chromosome k can be written as 

F1(k) = Z  (4.1) 
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For the sub-model 2 productivity objective (OB2), a fitness value of 

model of productivity (described by sub-model TCS) is defined as the total person-job 

fit score. This GA procedure tries to minimize fitness value. Thus, strong 

chromosomes are those chromosomes with low fitness values. A fitness function of 

chromosome k can be written as 

F2(k) = 1
TSC

  (4.2) 

For the sub-model 3 satisfaction objective (OB3), a fitness value of model 

of satisfaction (described by sub-model TD) is defined as the total number of 

dissatisfied. A fitness function of chromosome k can be written as 

F3(k) = TD  (4.3) 

For the multi-objective model, a fitness value of LP-metric method model 

is defined as the summation of normalized differences between each objective and the 

optimal values of them. 

F4(k) = 
* * *

1 2 3* * *
Z Z TSC TSC TSF TSFw w w

Z TSC TSF
 − − −

+ + 
 

      (4.4) 

4.2.3.3 Penalty function 

Since this problem has an upper bound constraint, i.e., each sum of hazard 

exposure per workday of each worker must not exceed permissible limit, and both 

conditions constraint i.e., forbid assignment, and utilizing of workers, a penalty term 

is added to the fitness value so that any chromosome that falls in infeasible solution 

will have lesser chance to be selected as parent than others. The penalty functions of 

chromosome k using the following function. 

1. Excessive hazard exposure beyond permissible L 

1 1 1 1 1 1
( ) γ for 0

T I J K J K
t t
ijk j ijk j

t i j k j k
X h L X h Lθ

= = = = = =

− × = − >∑∑∑∑ ∑∑   (4.5) 

2. Assignment to the task which cannot operate; Penalty = α (4.6) 

3. If not utilizing any worker on each workdays; Penalty = β (4.7) 

θ , α, β, = a positive integer value 

Penalty value = γ+α+β (4.8) 
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4.2.4 Selection and reproduction 

Selection is the process of choosing two parents from the population for 

crossing. The purpose of selection is to emphasize better chromosomes in the 

population with the hope that their offspring have better fitness. In this research, the 

tournament selection is used to select parents from the population. In tournament 

selection, T chromosomes are chosen randomly and the chromosome that has the 

largest scaled value becomes the parent. The next generation population will contain 

offspring from the crossover, mutation and elitism chromosomes.  

4.2.5 Crossover 

 The main genetic operator is crossover, this stimulates the reproduction 

between two parents. Crossover is a genetic operation that attempts to create a new 

chromosome that might be stronger than the old ones. The offspring share a few 

characteristics of the parents and passed this onto the future generation also. In this 

operation, order crossover (OX) (see figure 4.3) proposed by Davis (1985) is 

employed as crossover operator with modified repair forbid assignment. It can be 

viewed as a kind of variation PMX crossover with a difference repairing procedure. 

For this problem’s chromosome, the OX operates as follows: 

Input: two parent chromosomes 

Output: one offspring 

Step1: select a workday t from one parent 

Step2: select work period k from one parent at random   

Step3: select a substring from one parent at random 

Step4: produce a proto-child by copying the substring into corresponding positions of 

selected chromosome. 

Step5: swap a miss assignment node (assign worker to his/her incapable task) with a 

correct node within substring (both exchange must be correct assignment node) do 

until try to all combinations. 

Step6: delete the nodes which already in the substring from second parent. 

Step7:  Place the nodes into the unfixed positions of the proto-child from left to right 

according to the order of the sequence to produce an offspring. 

Step8: swap a miss assignment node with a correct node outside substring (both 

exchange must be correct assignment node) do until try to all combinations. 
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 A number of offspring which are produced by crossover is up to the 

crossover fraction. For example, if the Population size is 20, the elitism is 2, and the 

crossover fraction is 0.8, the numbers of each type of children in the next generation 

are as follows: There are two elite children. There are 18 individuals other than elite 

children, so the algorithm rounds 0.8*18 = 14.4 to 14 to get the number of crossover 

children. The remaining four individuals are mutation children. For prevent stuck in 

local optimal and allow GA to through all search space include infeasible space, the 

repair assignment in step5 and step8 will be applied to only the first 500 generations. 

This method can help to find feasible results faster than conventional method. 

 
Figure 4.3  Illustration of the OX operator 

 

4.2.6 Mutation 

 The other genetic operator is mutation which makes random alterations to 

various chromosomes. The mutation operator makes a small random change in the 

solution which can prevent to stump in local optimal. In this operation, swap mutation 

(see figure 4.4) with the additional check limited worker skill is used for the mutation 

operator. For this problem’s chromosome, the swap mutation works as follows: 

Input: one selected parent chromosome 

Output: offspring  

Step1: select a workday t from parent 
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Step2: select work period k from parent at random 

Step3: selects two elements at random and checks if swaps these two nodes are not 

violated limited skill, then swaps the elements on theses position. Otherwise a random 

new element is generated and repeated. Number of random is set as number of 

workers in the problem. 

 
Figure 4.4  Illustration of swap mutation operator 

 

4.2.7 Termination conditions 

 The GA procedure is terminated when the iteration hits the maximum 

generation. In addition, the stopping criteria may use both maximum generation and 

termination time when the problem size is increased. 
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Chapter 5  

Numerical Example 
 

 In this chapter, a numerical example is presented in order to determine 

and compare among the optimization and GA approach. The problem description is 

descripted and two approaches are implemented for the same numerical example. 

 

5.1 Problem description 

 Consider hypothetical workplace with a certain ergonomic non-uniform 

hazard where three workstations (W1 to W3), five tasks (T1 to T5) and six utilized 

workers (M1 to M6). The planning period was 5 days (D1 to D5). A workday is 

divided into four equal work periods (P1 to P4). The hazard exposure amount per 

periods was known and where not time-dependent. For conveniently, it is assumed 

that permissible daily hazard exposure limit L is 1.000. Table 5.1 shows the hazard 

exposure amounts per work period of task in each workstation. The six utilized 

workers were flexible and can be assigned to several tasks but with different person-

job fit score ranging from 1 (low) to 5 (high). Table 5.2 lists the person-job fit score 

and preferred task of six workers (The score 0 means that the worker is incapable of 

performing that task). The preferred partners/teams of all workers are listed in Table 

5.3. The operation schedule of workstations is presented in table 5.4. 

Table 5.1  Work station and task data 
Workstation-task W1-T1 W2-T2 W2-T3 W3-T4 W3-T5 

Hazard amount per work period 0.2607 0.2219 0.1706 0.4423 0.3215 

 

Table 5.2  Person-job fit score matrix/ limit work skill and list of preferred task 
(a) person-job fit scores  (b) preferred tasks (P=preferred) 

Worker Task Worker Task 
T1 T2 T3 T4 T5 T1 T2 T3 T4 T5 

M1 3 0 3 5 2 M1 P - - P P 
M2 0 5 3 0 5 M2 - P P - - 
M3 5 0 4 2 0 M3 P - - P - 
M4 3 5 0 4 2 M4 - P - - P 
M5 5 4 0 2 4 M5 P - - P - 
M6 3 0 4 0 3 M6 - - P - P 
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Table 5.3  Preferred partners/teams of the workers 

Worker 
Partner 

M1 M2 M3 M4 M5 M6 

M1 - P P - P P 

M2 P - - P - - 

M3 - P - - P - 

M4 P P - - - P 

M5 P - - - - P 

M6 - P - - P - 

 

Table 5.4  Workstation operation schedule 

Workstation 
D1 D2 D3 D4 D5 

P1 P2 P3 P4 P1 P2 P3 P4 P1 P2 P3 P4 P1 P2 P3 P4 P1 P2 P3 P4 

W1 Y Y Y N N Y Y Y Y Y Y N Y Y Y Y Y Y Y N 

W2 Y Y Y Y Y N N Y Y N Y Y N N Y Y Y Y Y N 

W3 Y N Y N Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y 

Note: “Y” = workstation will be performed, “N”= workstation will not be performed 

  

 The example of calculation of total number of all possible satisfaction 

(MS) for D1 MS is 27 from the pairs of workers – task preference 1

1 1

J K

j jk
j k

N P
= =

×∑∑  = 15 

and from pairs of team preference 1

1 1
( 1) ;for 2

J K

j j jk j
j k

N N p N
= =

× − × ≥∑∑  = 12. 

 

5.2 Optimization solution 

The optimization software program called ILOG CPLEX V.12.4 was used 

to solve the optimal solution for the problems. Frist step, each sub-model was solved 

separately by CPLEX to determine the desired goal values. The optimal solution of 

each objective was guaranteed as following (see detail of solution in Appendix B). 

The max average hazard exposure was 0.7811 using computation time 8,163 seconds. 

The total person-job fit score was 366 with a computation time of 2.2 seconds. The 

total number of dissatisfied was 9 convert to number of satisfaction is 135, total 
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number of all possible satisfaction was 144 (80 from task-worker pair and 64 from 

partner preference pair), with a computation time of 3.3 seconds. These three values 

(0.7811, 366, 135) were set as Z*, TSC*, and TSF* respectively in LP-metric 

objective function of multi-objective model for both optimization and GA. The 

decision weight for each objective is 1 (all equal important weight). 

 Second step, the LP-metric method was solved for multi-objective 

consideration. CPLEX yielded an optimal solution with a computation time of 149 

seconds. The objective value was 0.1636, the max average hazard was 0.7961, the 

total person-job fit score was 324, and the number of satisfaction was 131. The work 

schedule result is shown in table 5.5. An amount of hazard exposure is shown in table 

5.6. 

 

Table 5.5  Work schedule from LP-metric CPLEX 

Worker 
D1 D2 D3 

P1 P2 P3 P4 P1 P2 P3 P4 P1 P2 P3 P4 

M1 - - T4 - - T4 T4 - T4 T4 - - 

M2 T3 T3 T3 T3 T3 T5 T5 T3 T5 - T3 T3 

M3 T1 T1 T1 - - T1 T1 T1 T1 T1 T1 - 

M4 T2 T2 T2 T2 T2 - - T2 T2 T5 T2 T2 

M5 T4 - - - T4 - - T4 - - T4 T4 

M6 T5 - T5 - T5 - - T5 T3 - T5 T5 

Worker 
D4 D5  

P1 P2 P3 P4 P1 P2 P3 P4     

M1 - - T4 T4 - - T4 T4     

M2 T5 - T3 T3 T3 T3 T5 T5     

M3 T1 T1 T1 - T1 T1 T1 -     

M4 T4 - T2 T2 T2 T2 T2 -     

M5 - T4 - T1 T4 T4 - -     

M6 - T5 T5 T5 T5 T5 T3 -     
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Table 5.6  Daily hazard exposures of the six workers from LP-metric CPLEX 

Worker D1 D2 D3 D4 D5 Average SD 

M1 0.4423 0.8846 0.8846 0.8846 0.8846 0.7961 0.1978 

M2 0.6824 0.9842 0.6627 0.6627 0.9842 0.7952 0.1727 

M3 0.7821 0.7821 0.7821 0.7821 0.7821 0.7821 0.0000 

M4 0.8876 0.4438 0.9872 0.8861 0.6657 0.7741 0.2189 

M5 0.4423 0.8846 0.8846 0.7030 0.8846 0.7598 0.1941 

M6 0.6430 0.6430 0.8136 0.9645 0.8136 0.7755 0.1358 
Note: The bold face values are the maximum average hazard exposure 
  

 Table 5.6 shows daily hazard exposure of the 6 workers for all five 

workdays (from the LP-metric method). It is clear to see that for each worker, the 

hazard exposure that one has to endure in each workday is not the same except for 

M3. For example, worker M4 has to receive rather a large amount in workday D3 

(daily hazard exposure = 0.9872) but receive moderately less in workday D2 (daily 

hazard exposure = 0.4438). The average hazard exposure during the planning period 

of worker M4 is 0.7741, with a standard deviation of 0.21. Among the 6 workers, 

worker M1 has the maximum average hazard exposure of 0.7961. Worker M5 has the 

minimum average hazard exposure of 0.7598. The difference from sub-model optimal 

solution Z*, TSC*, and TSF* are 1.96%, 11.48%, and 2.96% respectively. 

 

5.3 Genetic algorithm solution 

Next, the genetic algorithm approach was employed to determine the 

solution of each sub-problem. The procedure described in chapter 4 is coded in a 

MATLAB m-file program based on the GA tool box procedure. GA termination 

conditions are set according to chapter 4.2.7. It is important to determine suitable GA 

parameters. From experiment, the optimal control parameters were determined as 

follows: 

1) The population size (Popsize) = 150 chromosomes, 

2) The crossover fraction = 0.5, and 

3) A maximum number of generation (Max_gen) = 3,000 generations. 
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To protect from more surplus search in upcoming later generations, the 

crossover and mutation were not necessary performed in every workday segment of 

the chromosome. This might help to find a better local solution. The genetic operator 

will perform all workday segments until reaching 1,000 generations after that only 

perform for 50% of the workday chosen randomly for the next 1,000 generations. 

Remaining generations are only performed once workday, chosen randomly. 

The termination time was set at 1,000 seconds for all the test problems. 

Each problem was solved 5 times. The best value for each objective (goal/target value 

for multi-objective) was determined by optimization software IBM ILOG CPLEX 

V12.4 and set computation time limit to 12 hours if optimality cannot guarantee. 

The best solution from GA of each sub-model was set as the initial 

solution of LP-metric GA. The GA gave the solution that objective value = 0.1703 

(Z=0.7961, TSC=327, and TSF=129). The work schedule result is shown in table 5.7. 

The amount of hazard exposure is shown in table 5.8. 

Table 5.7  Work schedule from LP-metric GA 

Worker 
D1 D2 D3 

P1 P2 P3 P4 P1 P2 P3 P4 P1 P2 P3 P4 

M1 T4 - - - - - T4 T4 - T4 - T4 

M2 T3 T3 T3 T3 T3 - T5 T3 T3 T5 T5 T3 

M3 T1 T1 T1 - - T1 T1 T1 T1 T1 T1 - 

M4 T2 T2 T2 T2 T2 - - T2 T2 - T4 T2 

M5 T5 - T4 - T4 T4 - - T4 - T2 - 

M6 - - T5 - T5 T5 - T5 T5 - T3 T5 

Worker 
D4 D5  

P1 P2 P3 P4 P1 P2 P3 P4     

M1 - - T4 T4 T4 - - T4     

M2 - T5 T5 T3 T3 T3 T3 T5     

M3 T1 T1 - T1 T1 T1 T1 -     

M4 - T4 T2 T2 T2 T2 T2 -     

M5 T4 - T1 - - T4 T4 -     

M6 T5 - T3 T5 T5 T5 T5 -     
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Table 5.8  Daily hazard exposures of the six workers from LP-metric GA 

Worker D1 D2 D3 D4 D5 Mean SD 

M1 0.4423 0.8846 0.8846 0.8846 0.8846 0.7961 0.1978 

M2 0.6824 0.6627 0.9842 0.8136 0.8333 0.7952 0.1302 

M3 0.7821 0.7821 0.7821 0.7821 0.7821 0.7821 0.0000 

M4 0.8876 0.4438 0.8861 0.8861 0.6657 0.7539 0.1980 

M5 0.7638 0.8846 0.6642 0.7030 0.8846 0.7800 0.1018 

M6 0.3215 0.9645 0.8136 0.8136 0.9645 0.7755 0.2648 

 

5.4 Comparison of solution 

The summary result of both solution approaches presented in table 5.9. 

The GA LP-metric objective value was different at 4.1% from the optimal value. For 

each aspect objective value, Z was equal for both CPLEX and GA. For TSC and TSF, 

GA has 3 and 2 deviation from CPLEX respectively. For sub-model solution, GA was 

different from the optimal value equaling 0.41%, 0.82%, and 4.44% for Z, TSC, and 

TSF respectively. 

Table 5.9  Summary result from each approach 

 
LP-metric 

objective value 
Z TSC TSF 

Computation 

time 

(second) 

Optimal LP-metric 0.1636 0.7961 324 131 149 

GA LP-metric 0.1703 0.7961 327 129 253 

Optimal for each sub-model  0.7811 366 135 8163/2.2/3.3 

GA for each sub-model*   0.7843 363 129 166/185/223 
*see detail of solution in Appendix B 

 

From the numerical example, results of the GA were quite satisfies. It can 

yield near optimal solution using reasonable computation effort. In the next chapter, 

the computation experiment will be tested with sets of different sizes of problem to 

exam efficiently of GA. 
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Chapter 6  

Computation Experiment 
 

6.1 Test Problems 

Six hypothetical test problems (P1 – P6) were generated.  The number of 

workers ranged between 6 and 18 persons, the number of work stations ranged 

between 3 and 7 stations and the number of tasks ranged between 5 and 15 tasks. The 

planning period was 5 workdays. All test problems considered non-uniform hazard 

exposure at a workstation. Table 6.1 shows the numbers of workers, work stations and 

tasks used in each test problem. The worker-task person-job fit scores were randomly 

generated, with the scores ranging between 1 and 5. 

Table 6.1  Six test problems for the computation experiment 

Problem 
Number of 

Workers Workstations Tasks 

P1 6 3 5 

P2 7 3 5 

P3 10 5 8 

P4 11 5 8 

P5 13 5 10 

P6 18 7 15 

 
 

6.2 Experiment Design 

Two solution approaches (i.e., optimization, GA) were implemented for 6 

test problems. The weight for LP-metric set equaled one for all objectives. For the 

optimization approach, efficient optimization software named IBM ILOG CPLEX 

v.12.4.0 was used. The MATLAB v.7.11.0.584 with GA Toolbox was utilized to 

process the GA. The same personal computer was used to solve all test problems for 

both approaches Computer specifications: Intel Core i5-2500K, 3.0 GHz, 4GB RAM. 

For GA, each test problem was solved for 5 replicates. The best solution for each 

objective is shown in table 6.2. The target value Z*, TSC*, and TSF* for main-model 

LP-metric are set from optimal or best solution from optimization CPLEX. The 
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termination conditions in chapter 4.27 and parameters in chapter 5.3 were used for 

computation experiment. 

For the optimization approach, a few test problems could not be solved to 

optimality. The computation time limit was set to 12 hours (node files on disk and 

compress is set to prevent “out of memory” error), if CPLEX cannot reach optimal 

solution within this time limit, the current best solution would be represented by the 

upper bound solution.  

Table 6.2  Sub-model results for both CPLEX and GA 

(a) solution 

Problem CPLEX (optimal) Genetic Algorithm 
Z TSC TSF Z TSC TSF 

P1 0.7811 366 135 0.7843 363 129 

P2 0.7915 396 151 0.7919 391 143 

P3 0.8909* 617 239 0.8919 589 215 

P4 0.8894* 653 220* 0.8907 627 201 

P5 0.8871* 806 380* 0.89 761 334 

P6 0.8863* 1271* 640* 0.8963 1191 594 
Note: * = best solution (upper bound) when reach time limit 

(b) computation time (second) 

Problem CPLEX Genetic Algorithm 
Z TSC TSF Z TSC TSF 

P1 8,610 2.1 3.3 166 185 233 
P2 3,121 1.6 3.1 163 188 234 
P3 43,200 2 18 185 208 262 
P4 43,200 5.1 43,200 183 210 263 
P5 43,200 59 43,200 211 236 307 
P6 43,200 43,200 43,200 271 296 398 

 

6.3 Results 

 The LP-metric solutions from two approaches are summarized and shown 

in Table 6.3. Optimization approach CPLEX and GA are able to find the multi-

objective multi-workday ergonomic work schedule solutions with the workers’ total 
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hazard exposure amounts did not exceed the permissible limit in all solved test 

problems. The comparison of the two approached are shown in figure 6.1. 

Table 6.3  LP-metric result 

Problem 
CPLEX Genetic Algorithm 

Dev. Z TSC TSF CT Dev. Z TSC TSF CT 

P1 0.1636 0.7961 324 131 149 0.1703 0.7961 327 129 253 

P2 0.3017* 0.7961 326 133 43200 0.3808 0.803 306 130 248 

P3 0.1508* 0.9013 557 229 43200 0.3227 0.9031 496 212 304 

P4 0.1416* 0.9024 579 217 43200 0.3089 0.9157 527 201 304 

P5 0.2456* 0.9070 694 348 43200 0.3288 0.9104 647 340 344 

P6 0.171* 0.9143 1109 625 43200 0.3071 0.9063 1020 577 441 

Note: CT is computation time (second). Dev. =deviation (objective value of LP-metric); * = best 
solution (upper bound) when reach time limit 

 

 

Figure 6.1  Percent different LP-metric GA/CPLEX 

 

 From table 6.2, when solving sub-model TSC all test problems guaranteed 

the optimal solution except P6. But the sub-model Z could only guarantee optimal 

solution for 2 problems (P1 and P2). The three GA sub-models gave a solution when 

terminated by maximum generation. Table 6.3 shows applying the LP-metric method 

to 6 test problems. From the CPLEX solution, all test problems obtained only feasible 

P1 P2 P3 P4 P5 P6
Z 0 0.9 0.2 1.5 0.4 -0.9
TSC -0.9 6.1 11 9 6.8 8
TSF 1.5 2.3 7.4 7.4 2.3 7.7
Average 0.2 3.1 6.2 5.9 3.1 4.9
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solution after the time limited 12 hours except for P1 that obtained optimal solution. 

The best GA solution from five replicate are also shown in table 6.3. From figure 6.1, 

the difference from optimization approach was -0.9 to 1.5 percentages for the 

percentage for maximum average hazard, -0.9 to 11.0 percentages for the total person-

job fit score, and 1.5 to 7.4 percentages for the total number of satisfaction. The 

average of difference was 0.2 to 6.2 percentages. Solving to each sub-model will 

result in sacrificing the other aspect objective values. Thus, the LP-metric method 

could be helped to manage to get a suitable results for multi-objective consideration.  

The result from LP-metric can obtain a varied results up to the decision, policy or 

strategy of schedule maker that represented in an important weight of each objective. 

In this case, defined equal weight will help to employ the trade-off solution between 

smoothing hazard exposure, total person-job fit score, and total number of satisfaction 

with equal priority. The genetic algorithm demonstrated good performance with 

respect to computation time. Even the large size problem P6, it needed less than 5 

minutes to obtain the solution. For the same test problem, the optimization CPLEX 

used 12 hours and could not guarantee the optimal solution. Another advantage, the 

GA is capable of solving large real world problem sizes with acceptable results as for 

small size. In the other hand, solving large size NP-hard problem on CPLEX is 

difficult and using more computation effort. The result will far from an optimal value 

or even unable to yield any feasible solutions for very large size problem. 
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Chapter 7 

Conclusions and Recommendations 
 

This chapter provides the research conclusion and recommendations of 

this dissertation. The results of the proposed methods are compared and discussed, 

which leads to the summary of the research and research conclusion. Keys 

contributions to both academic research community and industry are presented. 

Recommendations for further studies are also proposed in the last section.  

 

7.1 Summary of the Research 

In this dissertation the application of genetic algorithm for multi-workday 

ergonomic workforce scheduling problem with complex personal and task constraints 

was studied. The solution was to develop an extended multi-day rotating work 

schedule for workers to alleviate their total hazard exposures and prevent them from 

exceeding the permissible daily limit. The works are heterogeneous in terms of limited 

skill to conduct the job or task. Additionally, workstation operation schedules were 

concerned because a few workstation might need to stop at a period for any 

unforeseen situation (i.e., maintenance, inspection, change part). To generate the work 

schedules, three related criteria were described: (1) workers hazard exposure 

balancing, (2) productivity, and (3) satisfaction. The first objective was hazard 

exposure balancing, as general ergonomic WSP only consider single day schedules. In 

order to apply this for several days, the schedule might be the same (hazard dose and 

task requirement are not change) that can impact on hazard exposure balancing among 

workers. If a few workers are exposed the amount of hazard more than another, its can 

affect satisfaction, health and worker morale. The second objective was productivity 

evaluate by fit of the person-job score because job rotation can affect productivity 

when rotating worker to the incompetence task. Another objective was satisfaction of 

workers which can help to enhance performance of a work and reduce turnover rate. 

The goal of this research was to develop a genetic algorithm approach and combine 

the LP-metric method to determine a solution with multi-objective consideration. 
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The multi-workday ergonomic WSP can be formulated as a mathematical 

model and expressed as a mixed integer programming model (MILP). The model was 

split into three sub-models as a single objective model and one multi-objective LP-

metric method model. The optimization software such as the IBM ILOG CPLEX 

V.12.4.0 was employed to solve the problem optimality. One of the objectives was to 

consider this as NP-hard problem. Thus, it was difficult the for an optimization 

approach to reach optimal solution in a suitable computation time. A genetic 

algorithm coding in MATLAB v.7.11.0.584 m-file base on GA optimization tool box 

was developed to solve the problem. The encoding method used permutation 

encoding that was suitable for combinatorial optimization problem. Moreover, the 

proposed modified crossover and mutation were employed which was more efficient 

than conventional GA operators. To verify the efficiency of proposed GA, six test 

problems were generated. The computation experiment showed that each sub-model 

would result in designs in which one aspect was sacrificed for another. Solving the 

multi-objective model by the LP-metric method can makes a tradeoff for the 

productivity and hazard exposure balancing among workers for a policy that allowed 

definition of important weight for each objective. For the efficiency, the results show 

that GA could reach a near optimal solution with a reasonable computation time. The 

solution from LP-metric provided a perfect solution between hazard exposure 

balancing, person-job fit score, and workers satisfaction. 

In conclusion, the proposed multi-objective multi-workday workforce 

scheduling model was able to find the optimal solution for multi-workday ergonomic 

workforce scheduling with personal and task constraint for small size problems. The 

genetic algorithm can be employed to both solve small and large-sized problems. The 

genetic algorithm provided the near optimal solutions within a reasonable 

computation time. The daily rotating work schedule solution achieved the 

safety/ergonomics, productivity, and satisfaction goals. That is, the genetic algorithm 

was a good alternative method to deal with multi-workday ergonomic workforce 

scheduling with personal and task constraints and can be implemented in a variety of 

environment systems (i.e., service, manufacturing, transportation). 
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7.2 Key Contribution of the Research 

The proposed multi-objective multi-workday workforce scheduling model 

includes three outstanding characteristics. First, the ergonomic, productivity, and 

satisfaction are taken into account in this combination. The aim is to obtain a suitable 

tradeoff solution for three objectives (hazard balancing, productivity, satisfaction) 

simultaneously under complex constraints in hazard exposure, personal and worker-

task requirements. Second, job rotation can be achieved in workforce scheduling by 

considering daily rotation. The hazard exposure amount is evaluated in a quantitative 

approach for monitoring and controlling. And third, realistic constraints in hazard 

exposure, personal, and workstation-task are covered. Under these unique points, this 

research is expected to provide exclusive contributions to both the academic 

community and manufacturing. 

7.2.1 Contribution to academic community 

Multi-workday ergonomic workforce scheduling with personal and task 

constraint addressed in this dissertation is expected to provide wide contribution to the 

academic community, especially in the fields of operation research for applications, 

safety and health care management, and engineering management etc. The examples 

of contribution to the academic community are: 

Safety and health care management:  

 Safety aspect can be achieved simultaneously with productivity and job 

satisfaction considerations. 

 The daily hazard exposure of operators can be effectively controlled by 

measuring in quantitative amount and applying operation research methods to 

obtain the best solution.  

Operations research in applications:  

 The optimization and genetic algorithm methods can be applied to determine the 

optimal or near optimal solution in even qualitative aspect such as workers’ 

safety consideration and job/team satisfaction. 

 This research study can determine as an example of the problem including 

conflict of objectives which could be achieved simultaneously with a weighted 

decision under the complex constraints. 
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 Mathematical model for the multi-workday ergonomic workforce scheduling with 

personal and task constraint are provided. 

 The limitation when solving the large-complex combinatorial optimization 

problem by using optimization techniques is proved for characteristics of NP-

hard problems. 

 The genetic algorithm approach for multi-workday ergonomic workforce 

scheduling problem is proposed. 

 Advantages and disadvantages of both optimization and genetic algorithm 

approach are presented in the comparison. 

Engineering management: 

 Satisfaction and ergonomic consideration can be simultaneously achieved with 

the high total system productivity under complex worker and tasks constraints. 

 Applying optimization techniques and a genetic algorithm according to this 

research is a good alternative way to deal with multi-workday workforce 

scheduling, which is a NP-hard problem, under complex constraints. 

7.2.2 Contribution to industry  

This research aimed to provide contributions to the industrial applications 

in many ways such as: 

 Ergonomic and satisfaction aspect are taken into account more as ones of the 

importance factors when constructing an effective worker-task schedule. 

 Combination of ergonomic and satisfaction to the achievement of high total 

system productivity can be implemented to real circumstances by using the 

proposed multi-objective model in this research. 

 Workers gain more satisfactions in their works due to the safe working condition, 

task preference, and partner preference. 

 Industry organizations obtain effective multi-workday ergonomic workforce 

schedule procedures which confirm to have less fluctuate in hazard exposure 

among workers, the highest total system productivity (in total person-job fit 

score), and workers’ satisfactions (in task and partner preferences) at the same 

time. 

 The proposed genetic algorithm is a good alternative method to deal with realistic 

size of multi-workday workforce scheduling problems. 
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7.3 Recommendation for Further Studies 

 For future study in multi-workday workforce scheduling problems, one is  

recommended to focus on these following issues: 

 Extended planning period that covers a longer period (e.g. weekly, monthly) 

would be of interest to consider in further research. 

 A few more realistic constraints in both workers and workstations might be 

considered. Workers constraints: day-off, restrict workday, worker regulation and 

variable-limit hazard exposure. Workstations constraints: variable work-period 

durations. 

 Find more multi-objective methods for choice of decision. 

 Determine solutions from other interesting approaches such as heuristic and 

metaheuristic and test efficiently with a genetic algorithm. 
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Appendix A 

Application of MW-EWSP in the VRPMMH 

 
The Appendix A presents application of multi-workday workforce 

scheduling problems in vehicle routing problem with manual materials handling 

(VRPMMH) that is multi-workday vehicle routing problem (MW-VRP). First, the 

problem description is clarified and two policies for assign worker to delivery vehicle 

are proposed. The optimization approach and comparison of policies for MW-VRP 

was published in Rattanamanee et al., (2015). Then, the mathematical model and 

heuristic procedure approaches are implemented. The numerical results are shown for 

comparison. The computation experiment is examined. 

 

1. Problem Description 

MW-VRP involves a logistics system with one supplier and a set of 

customers. Goods have to be delivered to the customers on a daily basis. A planning 

period consists of several consecutive workdays. The supplier has a set of delivery 

vehicles which have limited load capacities.  Each vehicle has one driver and a team 

of delivery workers. The unloading of goods at customer locations are performed only 

by the worker team. The size of worker team (i.e., the number of workers per team) 

usually depends on the vehicle size. Irrespective of the vehicle’s daily carried loads, 

the required number of workers accompanying the vehicle is unchanged. Delivery 

workers are heterogeneous with respect to their working energy capacities. Each day, 

the vehicles depart from the supplier, visit their assigned customers, perform the 

delivery to satisfy the daily customer demands, and return to the supplier when all of 

their assigned customers have been visited. All vehicles perform only one delivery 

trip per one 8-hour workday. 

Each customer requires a certain quantity of goods to be delivered every 

workday during the given planning period. For any customer, its daily demands do 

not have to be the same. The customer demands of all workdays are known in 

advance at the beginning of the planning period. When the vehicle arrives at the 

customer location, the worker team unloads the goods from the vehicle and move 
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them into a stock room. All load handling activities at the customer location are 

performed manually, possibly with the use of hand carts or dollies. All workers in the 

team are assumed to split the goods to be unloaded equally irrespective of their 

working energy capacities. 

 MW-VRP must satisfy the following conditions: 

1. The vehicle must not carry goods more than its load capacity. 

2. All vehicles must be utilized in each workday. 

3. The customer must receive its daily demand only once per day and from only one 

vehicle. 

4. Each day, the daily total energy expenditure of the worker must not exceed his/her 

working energy capacity.  

 For each vehicle, while the size of worker team is fixed every workday, 

the daily worker-vehicle pairings can be either fixed or varied. When the worker-

vehicle pairings are fixed, workers are said to be “pre-assigned” to vehicles at the 

beginning of the planning period. Further, the same worker-vehicle pairings are 

applied every workday throughout the planning period. Note that the assignment of 

workers to vehicles is performed before knowing the delivery routes of the vehicles 

and, subsequently, their carried loads in each day. 

 When the daily worker-vehicle pairings are varied, it means that a worker 

might be assigned to one vehicle in one day and then assigned to another vehicle 

(either with the same or different partner(s)) in another day. It is then assumed that 

workers are “post-assigned” to vehicles after knowing how much load each vehicle 

must carry each day. To know the carried load of a vehicle, it is necessary to know 

which customers are to be served by that vehicle. 

 To unload one unit of goods from the vehicle, the worker has to expend a 

certain amount of his/her energy. Since the workers are heterogeneous, their working 

energy capacities are unequal. A physically fit person is said to have a large amount 

of working energy capacity while a weak person has a small amount. The daily total 

energy expenditure of a person is the sum of one’s physical energies expended at all 

customer locations where one unloads the goods. At the end of the workday, a 

residual energy of the worker can be calculated as a difference between one’s working 

energy capacity and one’s daily total energy expenditure. For any workday, if the 
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worker’s residual energy is small, it implies that the worker’s workload is heavy. On 

the other hand, if the residual energy is large, the worker’s workload is light. For 

further explanation on working energy capacity and energy expenditure, see 

Boonprasurt and Nanthavanij (2012). 

MW-VRP with ergonomic consideration of physical workload is intended 

to determine the delivery routes of all vehicles for each workday during the planning 

period such that all workers share relatively equal physical workloads during that 

period. Two policies of worker-vehicle pairing are evaluated: 

1.  Worker-vehicle pre-assignment policy 

2.  Worker-vehicle post-assignment policy 

 

2. Mathematical Models 

The mathematical formulation of MW-VRP is based on the following 

assumptions. 

1. The worker’s working energy capacity is known. 

2. The average rate of energy expenditure to unload a unit of goods is known and 

constant. 

3. The energy capacity of the vehicle is the sum of working energy capacities of the 

workers (excluding a driver) assigned to the vehicle. 

4. All delivery workers in the same vehicle split the goods to be unloaded equally. 

5. The vehicle’s load capacity is known. 

6. Daily customer demands during the planning period are known in advance. 

 

2.1 Worker-vehicle pre-assignment policy 

According to this policy, workers are pre-assigned to vehicles and the 

worker-vehicle pairings are fixed throughout the planning period. As a result, the 

energy capacities of the vehicles are known in advance. The daily delivery routes of 

all vehicles can then be determined with an objective to minimize the maximum 

average percent residual energy among workers as computed over the planning 

period. This objective will help to yield the MW-VRP solution where all workers 

receive relatively equal physical workloads on average during the planning period. 
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The notation used in the formulation of the mathematical model is as 

follows: 

Parameters: 

AE average energy expenditure (kcal/unit) for a worker to unload one unit of 

goods 

Ck load capacity (units) of vehicle k 

dij  distance (km) from node i to node j 
t
jD  demand of customer j (units) in workday t 

ECkl working energy capacity (kcal/day) of worker l assigned to vehicle k 

K number of vehicles; k ∈{1,…,K} 

N number of customers including a supplier; i, j ∈ {1,…,N}; 1 = supplier 

T number of workdays in a planning period; t ∈{1,…,T} 

Wk number of workers assigned to vehicle k; l ∈ {1,…,Wk} 

Variables: 

AVG maximum average percent residual energy among workers as computed over 

the planning period  
t
klPE  fraction of the working energy capacity of worker l assigned to vehicle k spent 

in workday t 
t
iU  variables used to avoid sub tours, and can be interpreted as the position of 

node i along the route in workday t 

Decision variables: 

1 if vehicle  travels from node  to node  in workday  
0 otherwise

t
ijk

k i j t
X 

= 
  
1  if vehicle  travels to node  in workday 
0 otherwise

t
jk

k j t
Y 

= 


 

 MW-VRP with the worker-vehicle pre-assignment policy can be described as 

follows. 

  Minimize    AVG             (1)         

subject to 

79 
 



Ref. code: 25595522300028GBWRef. code: 25595522300028GBW

 

1
1 (1 )

K
t t t
j i ijk

k
U U N X

=

≥ + − −∑   , 2,..., ; ;i j N i j= ≠  t ∈ T            (2)

1 1
0

N N
t t
ihk hjk

i j
X X

= =

− =∑ ∑    h = 2,…,N; k ∈K          (3) 

1

N
t t
ijk jk

i
X Y

=

=∑     j = 2,…,N; k ∈ K; t ∈ T; i ≠ j         (4) 

1
1

K
t
jk

k
Y

=

=∑      j = 2,…,N; t ∈ T          (5) 

1
2

1
N

t
jk

j
X

=

=∑     k ∈ K; t ∈ T           (6) 

2

N
t t
jk j k

j
Y D C

=

≤∑    k ∈ K; t ∈           (7) 

2

N
t t
jk j

j t
kl

k kl

AE Y D
PE

W EC
=

⋅
=

⋅

∑
      l ∈ Wk; k ∈ K; t ∈ T                   (8) 

( )
1

1
T

t
kl

t
PE

AVG
T

=

−
≤

∑
   l ∈ Wk; k ∈ K                      (9) 

1t
klPE ≤                      l ∈ Wk; k ∈ K; t ∈ T        (10) 

{ }0,1 , {0,1}t t
ijk jkX Y∈ ∈   i, j ∈ N; l ∈ Wk; k ∈ K; t ∈ T              (11) 

 Objective function (1) is intended to minimize the maximum average 

percent residual energy among workers during the planning period. Constraint (2) 

prevents the sub-tour formation. Constraint (3) guarantees that at each customer 

location, the vehicle that arrives must also leave the location. Constraints (4) and (5) 

state that each customer is visited by only one vehicle in each workday and all 

customers must be served. Constraint (6) states that all vehicles must be utilized in 

each workday. Constraint (7) requires that the vehicle cannot carry loads beyond its 

capacity. Constraint (8) computes the energy expenditure as a fraction of the worker’s 

working energy capacity. Constraint (9) requires that the average percent residual 

energy among workers over the planning period must not exceed the maximum 

average (or the upper bound). Constraint (10) ensures that the fraction of the worker’s 
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working energy capacity does not exceed 1. Finally, constraint (11) defines binary 

decision variables. 

 To improve the routing solution, we employ another mathematical model 

to minimize the total travel distance for all vehicles while using the optimal average 

percent residual energies of individual workers as constraints. New variables and 

parameters are defined as follows: 

Akl optimal average percent residual energy of worker l who is assigned to vehicle k 

TD total travel distance of all vehicles during the delivery period 

 Objective function (1) is replaced by objective function (12) since the 

model is intended to minimize the total travel distance for all vehicles. 

Minimize    
1 1 1 1

T N N K
t
ijk ij

t j i k
TD X d

= = = =

=∑∑∑∑  (12)         

 Next, constraint (9) is removed from the model and constraint (13) is 

inserted. This constraints states that any new delivery routes must not increase the 

optimal average percent residual energy of worker l who is assigned to vehicle k, Akl, 

that is obtained from the first MW-VRP model 

( )
1

1
T

t
kl

t
kl

PE
A

T
=

−

≤
∑

 l ∈ Wk; k ∈ K     (13) 

 

2.2 Worker-vehicle post-assignment policy 

Based on this policy, workers are assigned to vehicles only after knowing 

the carried loads of individual vehicles in each workday. Firstly, a minimum-distance 

VRP model is utilized to determine the optimal delivery routes of all vehicles. The 

model is applied separately for each workday during the planning period. Not 

knowing the worker-vehicle pairings, the exact energy capacities of vehicles are not 

known at the beginning of the planning period. There is a possibility that some large 

vehicles could be assigned to serve too many customers in one workday to reduce the 

total travel distance. When workers are later assigned to the vehicles, they might have 

to work beyond their working energy capacities. To prevent this situation, an average 

working energy capacity is computed from all workers. It is then applied as a 
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representative working energy capacity of one worker to estimate the vehicles’ energy 

capacities. 

Once the optimal delivery routes in each workday are known, the carried 

loads of individual vehicles can be determined (by summing the demands of all 

served customers) throughout the planning period. Then, workers are assigned to 

vehicles such that the maximum average percent residual energy among all workers 

during the planning period is minimized. 

Two mathematical models are sequentially solved. The first model is 

intended to find the minimum-distance delivery routes of all vehicles in each workday 

based on the actual daily customer demands. Next, the second model is applied to 

determine the worker-vehicle pairings that optimally allocate physical workloads 

among the workers during the planning period. 

 

2.2.1 Optimal delivery routes  

Additional parameters, variables, and decision variables are defined as 

follows: 

Parameters: 

jD  demand (units) of customer j in any given workday 

VE average working energy capacity (kcal/day)  

Variables: 

TD total travel distance in any given workday 

iU  variables used to avoid sub tours, can be interpreted as position of node i  

Decision variables: 

1  if vehicle  travels from node  to node  in any given workday 
0 otherwiseijk

k i j
X 

= 


 

1    if vehicle  serves customer  in any given workday
0   otherwisejk

k j
Y 

= 


 

The minimum-distance VRP model is described below. 

Minimize 
1 1 1

K N N

ijk ij
k j i

TD X d
= = =

=∑∑∑   (14) 

subject to 
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1
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j i ijk
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U U N X
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≥ + − −∑  , 2,..., ;i j N i j= ≠  (15) 
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X X
= =
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N

ijk jk
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X Y
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=∑     j = 2,…,N; k ∈ K; i ≠ j                    (17) 

1
1

K

jk
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Y
=

=∑     j = 2,…,N                    (18) 

1
2

1
N

jk
j

X
=

=∑     k ∈ K          (19) 

2

N

jk j k
j

Y D C
=

≤∑  k ∈ K  (20) 

2

N

jk j k
j

AE Y D W VE
=

⋅ ≤ ⋅∑  k ∈ K  (21) 

{ }0,1 , {0,1}ijk jkX Y∈ ∈  i, j ∈ N; k ∈ K (22) 

 Objective function (14) is intended to minimize the total travel distance 

in any given workday. Constraint (15) ensures sub-tour elimination. Constraint (16) 

represents the flow conservation. That is, the vehicle that arrives at one customer 

location must also leave that customer location. Constraints (17) and (18) state that 

the customer will be visited by only one vehicle and all customers must be served.  

Constraint (19) requires that all vehicles must be utilized. Constraint (20) prohibits 

any vehicle from carrying the goods beyond its load capacity. Also, constraint (21) 

prevents the daily total energy expenditure of any vehicle from exceeding its energy 

capacity. Finally, constraint (22) defines binary decision variables. 

 

2.2.2 Physical workload balancing 

 When the delivery routes of all vehicles are known, the required energy 

expenditure can be determined for each vehicle. Since it is assumed that all team 

members will split their work (i.e., goods to be unloaded) equally, the required energy 

expenditure of each worker can be obtained. The mathematical model for physical 
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workload balancing requires the following additional parameters, variables, and 

decision variables. 

Parameters: 

ECl working energy capacity (kcal/day) of worker l  

L number of available workers; l ∈{1,…,L} 
t
kQ  carried load (units) of vehicle k in workday t 

Variables: 

AVG maximum average percent residual energy among all workers as computed 

over the planning period  
t
lPE  fraction of the working energy capacity of worker l spent in workday t 

Decision variables: 

1  if worker  is assigned to vehicle  in workday 
0 otherwise

t
lk

l k t
P 

= 


 

The assignment of workers to vehicles is based on the following 

assignment model. 

Minimize  AVG (23) 

subject to 

1

L
t

lk k
l

P W
=

=∑     k ∈ K; t ∈ T                    (24) 

1
1

K
t

lk
k

P
=

=∑     l ∈ L; t ∈ T                    (25) 

1
( )

tM
t tk

lk l
k k l

AE QP PE
W EC=

⋅
⋅ =

⋅∑   l ∈ L; t ∈ T                    (26) 

( )
1

1
T

t
l

t
PE

AVG
T

=

−
≤

∑
   l ∈ L          (27) 

1t
lPE ≤      l ∈ L; t ∈ T         (28) 

{ }0,1t
lkP ∈     l ∈ L; k ∈ K; t ∈ T        (29) 

 Objective function (23) is intended to minimize the maximum average 

percent residual energy among all workers during the planning period. Constraint (24) 

requires that each vehicle must be accompanied by the worker team according to its 
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required number of workers. Constraint (25) states that a worker can be assigned to 

only one vehicle in each workday. Constraint (26) computes the energy expenditure 

as a fraction of the working energy capacity. Constraint (27) requires that the average 

percent residual energy among all workers during the planning period must not 

exceed the maximum value. Constraint (28) states that the fraction of the worker’s 

working energy capacity must not exceed 1. Finally, constraint (29) defines binary 

decision variables. 

 

3. Heuristic procedure 

 The MW-VRP is considered to be a combined vehicle routing problem 

(VRP) and scheduling problem. Since both of problems are well-known NP-hard 

problems, so is the MW-VRP. A heuristic procedure is developed to determine near-

optimal delivery routes for all utilized vehicles in each workday during the delivery 

period whereas the average percent residual energies of individual workers are 

relatively equal. The following variables and parameters are additionally defined for 

the development of the heuristic algorithms. 

CSj 1 if customer j is assigned to any vehicle; 0 otherwise 

Ik number of customers assigned to vehicle k 
t
kL   current carried load (units) of vehicle k in day t 

t
klRE  current fractional residual energy (kcal/day) of worker l who is assigned to 

vehicle k in day t 

SD standard deviation of average fractional residual energy (kcal/day)  

Z maximum average fractional residual energy (kcal/day) among workers 

 

3.1 Heuristic pre-assignment 

The procedure consists of two phases. Firstly, customers are assigned to 

vehicles to generate vehicle routes. Secondly, the routes are improved using a greedy 

exchange algorithm to reduce the maximum average fractional residual energy among 

all workers. 

Initialization 
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0.1  Compute the vehicle’s energy capacity 
1

kW

kl
l

EC
=
∑ for all k’s. 

0.2  List all customers in descending order of t
jD where j = 1 to J for all t’s. 

0.3  Set t
klRE = 1 for all k’s, l’s, and t’s. 

0.4  Set t
kL = 0 for all k’s and t’s. 

0.5  List all vehicles in descending order of the vehicle’s energy capacity. 

0.6  Set t = 1 and j = 1. 

Phase I: Developing vehicle routes 

1.1 List all vehicles in descending order of the maximum t
klRE . In case of having a 

tie, break the tie by following the list in step 0.5. Choose the first vehicle k on 

the list (set k=1).  

1.2 If t t
k j kL D C+ ≤ and 0

t
jt

kl
k kl

AE D
RE

W EC
⋅

− ≥
⋅

for all k’s and l’s, assign customer j 

to vehicle k. Update t
kL  and t

klRE . Include customer j in the vehicle k’s route. 

Then, proceed to the step 1.3. 

  If any or all of the above conditions are not satisfied, set k = k + 1. 

Repeat step 1.2. If k > K, clear all the assignment of customers and vehicle 

routes in this day t and use follows algorithm instead: 

1.2.1 Set k = 1 (alternating large and small vehicles as sequence order), j = 1 

and CSj = 0 for all j’s. 

1.2.2 If CSj = 0, proceed to the next step. Otherwise, go to step 1.2.4. 

1.2.3 If t
kL  + t

jD ≤ Ck and 0
t
jt

kl
k kl

AE D
RE

W EC
⋅

− ≥
⋅

for all k’s and l’s, assign 

customer j in the vehicle k’s route and set CSj = 1. Update Lk and t
klRE , and 

proceed to the next step.  

1.2.4 Set j = j + 1. If j ≤ J, return to step 1.2.2. Otherwise, proceed to the 

next step. 

1.2.5 If CSj = 1 for all j’s, proceed to the step 1.4. Otherwise, set j = 1 and k 

= k + 1. Return to step 1.2.2. 
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1.3 Set j = j + 1. If j ≤ J, return to step 1.1. Otherwise, re-compute/update Z and 

SD. Then, proceed to the next step. 

1.4 Set t = t + 1 and j = 1. If t ≤ T, return to step 1.1. Otherwise, set t = 1 and 

proceed to Phase II. 

Phase II: Improving vehicle routes by reducing Z and SD 

2.1 Set k = 1 (where k ∈ 𝐾𝐾), i = 1 (where i ∈ Ik), m = 1 (where m ∈ 𝐾𝐾), and n = 1 

(where n ∈ Im). 

2.2 Set customer n of vehicle m in day t as PC(m, n, t). 

2.3 Set k = k + 1. If k > K, go to step 2.6. Otherwise, set customer i of vehicle k in 

day t as SC(k, i, t). 

2.4 If ( ) ( )t t t
m mL D PC D SC C− + ≤  and ( ) ( )t t t

k kL D PC D SC C+ − ≤ , simulate 

exchange between customer PC in vehicle m’s route and customer SC in 

vehicle k’s route and compute new t
klRE , new Z , and new SD proceed to the 

next step. 

  Otherwise set i = i + 1. If i ≤ Ik, set customer i as SC. Repeat this step. 

If i > Ik, return to step 2.3. 

2.5 If new t
klRE > 0 and the new Z does not exceed the current Z (in a case that the 

new Z equals the current Z, the new SD must be less than the current SD), 

exchange between customer PC in vehicle m’s route and customer SC in 

vehicle k’s route. Update t
klRE , t

kL , Z, and SD. Then, return to step 2.1. 

  Otherwise, set i = i + 1. If i ≤ Ik, set customer i as SC and return to step 

2.4. If i > Ik, return to step 2.3. 

2.6 Set n = n + 1. If n > Im, proceed to the next step. Otherwise, set k = m and 

return to step 2.2. 

2.7 Set m = m + 1 and n = 1. If m > K, proceed to the next step. Otherwise, set k = 

m and return to step 2.2. 

2.8 Set t = t + 1. If t > T, proceed to the next step. Otherwise, return to step 2.1. 

2.9 Repeat Phase II until Z cannot be decreased any further. Then, proceed to the 

next step. 
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2.10 Optimize each route using the 2-opt edge exchange. Record a new total travel 

distance. 

 

3.2 Heuristic post-assignment 

 Frist, a minimum travel distance of vehicles are determined in section 

3.2.1. Then, algorithms for post-assignment are also developed to obtain balancing 

workload worker-vehicle paring in section 3.2.2. 

 

3.2.1 Determine a minimum total travel distance 

 This section, the sweep nearest algorithm (SWNA) (Na et al., 2011) is 

applied for this problem. The SWNA improve from original sweep algorithm by using 

nearest neighborhood search and multi reference point. The vehicle’s energy capacity 

constraint is considered in this problem. In order to determine delivery routes all 

workday, the heuristics need to utilize each workday separately with daily demand of 

customers. 

PHASE I: The SWNA for construct routes 

Step0: Set stop i=1 as reference point, use VE to compute the energy capacity of 

vehicle. 

Step1: Calculate the polar angle between each stop and the reference point. 

Step2: Sort stops in increasing order of polar angle (counter-clockwise direction): 

S1,…,Sn ; Set number of random equal K×10. 

Step3: Random vehicles as permutation random. Set k=1.  

Step4: Choose vehicle k. Assign the unrouted stop with the smallest polar angle to the 

vehicle k. 

Step5: Select the nearest stop from the current route. Continue to assign such a nearest 

stop to the vehicle and construct a route while the sum of demand does not exceed the 

capacity of the vehicle and the sum of energy expenditure does not exceed the energy 

capacity of vehicle. 

Step6: If an unrouted stop exists (unassigned customer(s) remaining), set k=k+1, go to 

step4. If k>K set this solution as an infeasible solution go to step8. 

Otherwise (all customers are assigned), if all vehicles are utilized, proceed to step7; 

otherwise set this solution as an infeasible solution and go to step8. 
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Step7: Optimize each route using 2-opt edge exchange. Record a solution. 

Step8: Repeat Step3–Step7 until reach number of random.  

Step9: Repeat Step3–Step8 with sort stops in the decreasing order of the polar angles 

(clockwise direction).  

Step10: Return the best solution (minimum travel distance) from record solutions. 

Step11: Set i=i+1 as next reference point go to step 1. If i >N proceed to step12. 

Step12: Return the solution with minimum travel distance (TD) and proceed to Phase 

II. 

PHASE II: Greedy Exchange Algorithm for reduce total travel distance 

Step1: set k=1 to K. i=1 to Ik; set i=1, n=1, k=1, m=1.  

m and n is a dummy index same as k and i. 

Step2: select customer n of vehicle m as PC(m,n). 

Step3: set k=k+1, if k K> go to step6; if k K≤ , set customer i=1 of vehicle k as 

SC(k,i). 

Step4: check If swap PC with SC is possible ( ( ) ( )m mL D PC D SC C− + ≤  and 

( ) ( )k kL D PC D SC C+ − ≤ ), proceed to next step. Otherwise set i=i+1; if ki I≤ set 

customer i as SC, repeat this step. If ki I>  go to step3. 

Step5: check If swap PC with SC, can reduce total travel distance TD and energy 

expenditure does not exceed vehicle’s energy capacity; exchange customer PC with 

SC in the route of vehicle k and m, update solution. Go to step 1. 

Otherwise set i=i+1; if ki I≤ set customer i as SC, go to step4. if ki I>  go to step3. 

Step6: set n=n+1, if mn I> proceed to next step. if mn I≤ , set k=m go to step2. 

Step7: set m=m+1, n=1. If m K>  proceed to next step. If m K≤ , set k=m go to step2. 

Step8: Return TD, route and carried loads of vehicles. 

 

3.2.2 Determine delivery workers schedules (vehicle-worker pairing) 

 Based on carried loads of vehicles from result of section 3.2.1, the 

objective of this section is to construct multi-workday assignment to balance physical 

workload among workers during multi-workday deliveries period. 

Initialization: 

0.1 list the concerned delivery workers in decreasing order of ECl ; l = 1 to L 
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0.2 list the vehicle in decreasing order of loading quantity t
kQ  for all day t; where k=1 

to K 

0.3 Initially, set t
lRE = 1 for all l’s, t’s. 

0.4 set t=1, k=1, l=1.  

PHASE I: assign delivery workers to vehicles 

Step1: check, if worker l available, proceed to next step. Otherwise select l=l+1, 

repeat this step. 

Step2: check, if vehicle k satisfies required number of workers Wk, set k=k+1 then go 

to step4. Otherwise proceed to next step. 

Step3: check, if 1
t
k

k l

AE Q
W EC

⋅
≤

⋅
, then assign worker l to vehicle k and set l=l+1; 

otherwise set l=l+1.  Next, go to step1. 

Step4: If k≤K, set l=1 go to step1. Otherwise (k>K) set t=t+1 proceed to next step. 

Step5: If t≤T, set k=1, l=1 go to step1. Otherwise (t>T) proceed to next step. 

Step6: obtain the initial assignment, calculated Z and SD (standard deviation of 

average residual among worker), set t=1. Go to phase II. 

PHASE II: Improve balancing by exchange delivery workers among vehicles 

Step1: set k,m=1 to K, i,n=1 to Wk/m (i as worker assigned on vehicle k). Set k=1, i=1, 

n=1, m=1.  

Step2: select worker i of vehicle k in day t as PW(k,i,t). 

Step3: set m=m+1, if m>K go to step5; if m K≤ , set worker n=1 of vehicle m as 

SW(m,n,t). 

Step4: check, if exchange PW with SW, a new t
lRE can reduce Z or reduce SD; subject 

to t
lRE >0, and a new Z ≤  Z; exchange worker PW with SW in the vehicle k and m, 

update t
lRE , Z and SD. Go to step1. Otherwise set n=n+1; if mn W≤ set worker n as 

SW, repeat this step. if mn W>  go to step3. 

Step5: set i=i+1, if ki W> proceed to next step. if ki W≤ , set m=k go to step2. 

Step6: set k=k+1, i=1. If k K>  proceed to next step. If k K≤ , set m=k go to step2. 

Step7: set t=t+1, if t T≤ , go to step1. If t T> , proceed to next step. 

Step8: update t
lRE , Z and SD. Repeat phase II again until Z can’t reduce any more. 
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4. Numerical Example 

 Consider a logistics network with one supplier (S) and ten customers (C1 

to C10). The delivery period consists of six consecutive workdays (D1 to D6). The 

supplier has four delivery vehicles (V1 to V4) and ten workers (W1 to W10) who will 

accompany the vehicles to deliver the goods. The vehicle data is shown in Table 1. 

All customers are served every workday. Daily customer demands are known in 

advance and will not be changed. Table 2 shows all daily customer demands during 

the delivery period. Table 3 shows workers data. 

 Table 4 shows travel distances between the supplier and all customers, 

and among all customers. It is assumed that between any two points x and y in the 

logistics network, the travel distances from point x to point y and from point y to point 

x are both equal. It is assumed that an average energy expenditure required to unload 

one unit of load from the vehicle is 30 kcal per unit. 

Table 1.  Vehicle data 

Vehicle 
Load Capacity 

(units) 

Delivery 

Workers 

V1 200 3 

V2 200 3 

V3 100 2 

V4 100 2 

Table 2.  Customer demands (units) during the delivery period 

Customer Workday 
D1 D2 D3 D4 D5 D6 

C1 28 32 29 85 40 63 
C2 26 37 90 35 44 41 
C3 73 59 37 48 66 45 
C4 36 49 81 20 36 39 
C5 27 64 50 84 88 46 
C6 63 51 104 31 38 57 
C7 53 45 43 41 43 68 
C8 41 81 34 70 54 51 
C9 71 55 46 62 85 26 
C10 105 42 33 26 35 46 
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Table 3.  Data of workers 

Worker W1 W2 W3 W4 W5 W6 W7 W8 W9 W10 

EC 2500 3000 3000 2500 3000 2500 2500 2000 2500 2500 

Note: EC is the working energy capacity of worker 

Table 4.  Travel distances (km) between supplier and customers and among customers 

 S C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 
S 0 11 15 20 14 15 9 13 7 18 8 

C1 11 0 26 27 5 22 16 24 8 29 17 
C2 15 26 0 21 29 24 24 4 18 3 9 
C3 20 27 21 0 22 5 11 17 27 22 12 
C4 14 5 29 22 0 17 11 27 11 32 20 
C5 15 22 24 5 17 0 6 22 22 27 15 
C6 9 16 24 11 11 6 0 22 16 27 15 
C7 13 24 4 17 27 22 22 0 16 5 7 
C8 7 8 18 27 11 22 16 16 0 21 15 
C9 18 29 3 22 32 27 27 5 21 0 12 
C10 8 17 9 12 20 15 15 7 15 12 0 
 

4.1 Pre-assignment policy 

For pre-assignment policy, these workers have already been pre-assigned 

to vehicles. The worker-vehicle assignments are fixed throughout the delivery period. 

For convenience, we assign workers W1, W2, and W3 to vehicle V1; workers W4, 

W5, and W6 to vehicle V2; workers W7 and W8 to vehicle V3; workers W9 and W10 

to vehicle V4. Two solution approaches are employed to obtain the MW-VRP 

solution. 

 

4.1.1 Optimization approach 

The logistics problem in the given example is formulated as two MW-

VRP models (as described in Section 2). Both models are successively solved using 

the ILOG CPLEX V.12.4 program. The first model is solved with an objective to 

minimize the maximum average percent residual energy among workers. The 

resulting average percent residual energies of individual workers are then set as 

constraints for the second model. Then, the second model is re-solved with an 

objective to minimize the total travel distance for all vehicles. The ILOG CPLEX is 
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able to find the optimal solution of the first model (with the computation time of 4.6 

s). For the second model, the ILOG CPLEX is unable to solve it to optimality. The 

program is terminated after 24 hours. 

Table 5 shows percent residual energies of workers in each workday 

(from the second model). It is seen that for each worker, the physical workloads that 

one has to endure in the six workdays are not the same. For example, worker W6 has 

to work rather hard in workday D3 (percent residual energy = 22.8%) but work 

moderately in workday D4 (percent residual energy = 44.8%). The average percent 

residual energy during the delivery period of worker W6 is 33.6%, with a standard 

deviation of 9.6%. Among the ten workers, workers W2, W3, W5, W7, W9, and W10 

have the maximum average percent residual energy of 44.7 %. Worker W8 has the 

minimum average percent residual energy of 30.9%. 

Table 6 shows the delivery routes obtained from the second model. The 

best found total travel distance is 1,020 km. (Note that the total travel distance 

obtained from the first model is 1,174 km.) It is observed that large vehicles V1 and 

V2 are utilized more than small vehicles V3 and V4 since their average travel 

distances are longer. This is because they serve more customers in each workday. 

Table 5  Percent residual energies (%) of workers (optimization approach) 

Vehicle Worker 
Workday 

Average SD 
D1 D2 D3 D4 D5 D6 

V1 

W1 32.8 38.0 32.8 26.8 32.8 38.4 33.6 4.3 

W2 44.0 48.3 44.0 39.0 44.0 48.7 44.7 3.5 

W3 44.0 48.3 44.0 39.0 44.0 48.7 44.7 3.5 

V2 

W4 29.6 36.0 22.8 44.8 24.4 44.0 33.6 9.6 

W5 41.3 46.7 35.7 54.0 37.0 53.3 44.7 8.0 

W6 29.6 36.0 22.8 44.8 24.4 44.0 33.6 9.6 

V3 
W7 40.0 40.0 42.4 49.0 55.6 41.2 44.7 6.3 

W8 25.0 25.0 28.0 36.3 44.5 26.5 30.9 7.9 

V4 
W9 52.6 40.0 46.0 42.4 41.2 46.0 44.7 4.6 

W10 52.6 40.0 46.0 42.4 41.2 46.0 44.7 4.6 
Note: The bold face values are the maximum average percent residual energy. 
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Table 6  Delivery routes and travel distances (in parentheses) (optimization approach) 

Day Vehicle 
V1 V2 V3 V4 

D1 S→C6→C4→C1→C8→S 
(40 km) 

S→C10→C9→S 
(38 km) 

S→C5→C3→S 
(40 km) 

S→C7→C2→S 
(32 km) 

D2 S→C1→C5→C3→S 
(58 km) 

S→C8→C10→C2→S 
(46 km) 

S→C9→C7→S 
(36 km) 

S→C6→C4→S 
(34 km) 

D3 S→C3→C5→C4→S 
(56 km) 

S→C6→C7→C9→S 
(54 km) 

S→C8→C1→C10→S 
(40 km) 

S→C2→S 
(30 km) 

D4 S→C4→C6→C5→C3→S 
(56 km) 

S→C7→C9→C2→S 
(36 km) 

S→C1→S 
(22 km) 

S→C8→C10→S 
(30 km) 

D5 S→C1→C7→C9→S 
(58 km) 

S→C5→C3→C10→S 
(40 km) 

S→C6→C4→S 
(34 km) 

S→C8→C2→S 
(40 km) 

D6 S→C1→C10→C3→S 
(60 km) 

S→C7→C9→C5→S 
(60 km) 

S→C2→C6→S 
(48 km) 

S→C8→C4→S 
(32 km) 

 

4.1.2 Heuristic approach 

The heuristic procedure is applied to determine percent residual energies 

of workers and delivery routes for vehicles in each workday during the delivery 

period. The procedure described in Section 4 is coded in a MATLAB m-file program. 

Firstly, the delivery routes are constructed (in Phase I). Secondly, the resulting 

maximum average fractional residual energy among workers is decreased (in Phase 

II). Also, the total travel distance is decreased using the 2-opt edge exchange.  

Table 7  Percent residual energies (%) of workers (heuristic approach) 

Vehicle Worker 
Workday 

Average SD 
D1 D2 D3 D4 D5 D6 

V1 

W1 32.0 34.4 30.0 37.2 22.4 44.0 33.3 7.2 

W2 43.3 45.3 41.7 47.7 35.3 53.3 44.4 6.0 

W3 43.3 45.3 41.7 47.7 35.3 53.3 44.4 6.0 

V2 

W4 22.4 38.0 20.8 39.2 40.4 41.2 33.7 9.4 

W5 35.3 48.3 34.0 49.3 50.3 51.0 44.7 7.9 

W6 22.4 38.0 20.8 39.2 40.4 41.2 33.7 9.4 

V3 
W7 43.8 42.4 51.4 42.4 47.2 41.2 44.7 3.9 

W8 29.8 28.0 39.3 28.0 34.0 26.5 30.9 4.8 

V4 
W9 53.2 40.0 44.2 41.8 41.4 42.0 43.8 4.8 

W10 53.2 40.0 44.2 41.8 41.4 42.0 43.8 4.8 
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The results of the heuristic procedure are quite astounding. Table 7 shows 

percent residual energies of the 10 workers based on the heuristic procedure. The 

maximum and minimum average percent residual energies are 44.7% and 30.9%, 

respectively, which are equal to the maximum and minimum values obtained from the 

optimization approach (see Table 5).  

Table 8 shows delivery routes and travel distances for all vehicles in each 

workday during the delivery period. The total travel distance is 1,138 km (which is 

11.57% longer than the solution from the optimization approach). Remarkably, its 

total computation time is only 0.30 second. 

Table 8  Delivery routes and travel distances (heuristic approach) 

Day Vehicle 
V1 V2 V3 V4 

D1 S→C3→C9→C2→S 
(60 km) 

S→C10→C7→C4→S 
(56 km) 

S→C6→C1→S 
(36 km) 

S→C5→C8→S 
(44 km) 

D2 S→C8→C1→C6→S 
(40 km) 

S→C5→C4→C10→S 
(60 km) 

S→C3→C2→S 
(56 km) 

S→C9→C7→S 
(36 km) 

D3 S→C6→C3→C8→S 
(54 km) 

S→C2→C9→C10→C1→S 
(58 km) 

S→C4→S 
(28 km) 

S→C5→C7→S 
(50 km) 

D4 S→C1→C6→C7→S 
(62 km) 

S→C5→C3→C4→S 
(56 km) 

S→C8→C10→S 
(30 km) 

S→C9→C2→S 
(36 km) 

D5 S→C9→C7→C3→S 
(60 km) 

S→C1→C4→C6→C10→S 
(50 km) 

S→C5→S 
(30 km) 

S→C8→C2→S 
(40 km) 

D6 S→C7→C9→C5→S 
(60 km) 

S→C1→C4→C3→S 
(58 km) 

S→C6→C2→S 
(48 km) 

S→C8→C10→S 
(30 km) 

 

4.2 Post-assignment policy 

 The assignment of worker-vehicle pairing in each workday is created after 

knowing the delivery route and carried load of vehicles. The first step is to find 

optimal delivery route of vehicle in each workday, secondly intend to assign workers 

to vehicle for minimizing maximum average percent residual energy among workers. 

 

4.2.1 Optimization approach 

 In order to determine the result of delivery routes, the mathematical model 

is employed to solve with ILOG CPLEX separately on each workday. The result of 

delivery routes and total travel distance are optimal solution (total solving time 7.38 

second with total travel distance 804 km). The delivery routes and travel distance are 

represented in table 9. Thus, the load quantity of each truck are known and shown in 

table 10. 
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Table 9  Delivery routes and travel distances (optimization approach-post assignment) 

Day Vehicle 
V1 V2 V3 V4 

D1 S→C5→C3→C6→S 
(40 km) 

S→C8→C7→C10→S 
(38 km) 

S→C9→C2→S 
(36 km) 

S→C1→C4→S 
(30 km) 

D2 S→C6→C5→C3→S 
(40 km) 

S→C10→C2→C9→C7→S 
(38 km) 

S→C1→C4→S 
(30 km) 

S→C8→S 
(14 km) 

D3 S→C7→C9→C2→S 
(36 km) 

S→C5→C3→C6→S 
(40 km) 

S→C8→C1→C10→S 
(40 km) 

S→C4→S 
(28 km) 

D4 S→C7→C9→C2→S 
(36 km) 

S→C6→C5→C3→C10→S 
(40 km) 

S→C4→C8→S 
(32 km) 

S→C1→S 
(22 km) 

D5 S→C5→C3→C6→S 
(40 km) 

S→C2→C9→C7→S 
(36 km) 

S→C10→C8→S 
(30 km) 

S→C1→C4→S 
(30 km) 

D6 S→C6→C4→C1→S 
(36 km) 

S→C7→C9→C2→C10→S 
(38 km) 

S→C8→S 
(14 km) 

S→C5→C3→S 
(40 km) 

Table 10  The carried load of each vehicle (units) (optimization approach) 

Vehicle Day 
D1 D2 D3 D4 D5 D6 

V1 163 174 179 138 192 159 
V2 199 179 191 189 172 181 
V3 97 81 96 90 89 51 
V4 64 81 81 85 76 91 

 

Table 11  Result of assignment (optimization approach) 

Worker Day 
D1 D2 D3 D4 D5 D6 

W1 V1 V2 V3 V1 V3 V4 
W2 V2 V2 V2 V2 V3 V2 
W3 V2 V1 V1 V2 V2 V1 
W4 V4 V1 V3 V4 V1 V1 
W5 V3 V1 V2 V2 V1 V2 
W6 V2 V2 V2 V3 V4 V3 
W7 V1 V3 V1 V3 V4 V2 
W8 V4 V4 V4 V4 V2 V3 
W9 V3 V4 V1 V1 V2 V4 
W10 V1 V3 V4 V1 V1 V1 

 

From the delivery routes in each workday, the loading quantity of each 

vehicle is known in advance. Based on the known carried loads, the result from 

CPLEX leads to the schedule of workers on each workday (total solving time 0.5 

second). Table 11 shows result of workers-vehicles paring in each work. Table 12 
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shows percent residual energies of workers in each workday. The maximum average 

energy residual is 40.5% and minimum is 40.3% perfectly balance.  

Table 12  Percent residual energies (%) of workers (optimization approach-post 

assignment) 

Worker 
Workday 

Average SD 
D1 D2 D3 D4 D5 D6 

W1 34.8 28.4 42.4 44.8 46.6 45.4 40.4 7.2 

W2 33.7 40.3 36.3 37.0 55.5 39.7 40.4 7.8 

W3 33.7 42.0 40.3 37.0 42.7 47.0 40.4 4.7 

W4 61.6 30.4 42.4 49.0 23.2 36.4 40.5 13.7 

W5 51.5 42.0 36.3 37.0 36.0 39.7 40.4 5.9 

W6 20.4 28.4 23.6 46.0 54.4 69.4 40.4 19.5 

W7 34.8 51.4 28.4 46.0 54.4 27.6 40.4 11.7 

W8 52.0 39.3 39.3 36.3 14.0 61.8 40.4 16.2 

W9 41.8 51.4 28.4 44.8 31.2 45.4 40.5 8.9 

W10 34.8 51.4 51.4 44.8 23.2 36.4 40.3 11.0 

 

4.2.2 Heuristic approach 

 The heuristic for determine delivery route in section 3.2 written in 

MATLA m-file yield a near optimal total travel distance equal 808 km (optimal 804 

km) from phase II. The delivery route shows in table 13 and carried load of each 

vehicle shows in table 14. The computation time is 1.1 second. 

Table 13  Delivery routes and travel distances (heuristic approach-post assignment) 

Day 
Vehicle 

V1 V2 V3 V4 

D1 S→C3→C10→S 
(40 km) 

S→C2→C9→C7→C8→S 
(46 km) 

S→C5→C6→S 
(30 km) 

S→C1→C4→S 
(30 km) 

D2 S→C2→C9→C7→C10→S 
(38 km) 

S→C3→C5→C6→S 
(40 km) 

S→C8→S 
(14 km) 

S→C1→C4→S 
(30 km) 

D3 S→C2→C9→C7→S 
(36 km) 

S→C3→C5→C6→S 
(40 km) 

S→C→C8→C10→S 
(42 km) 

S→C4→S 
(28 km) 

D4 S→C3→C5→C6→C4→S 
(56 km) 

S→C2→C9→C7→C10→S 
(38 km) 

S→C1→S 
(22 km) 

S→C8→S 
(14 km) 

D5 S→C2→C9→C7→S 
(36 km) 

S→C3→C5→C6→S 
(40 km) 

S→C1→C4→S 
(30 km) 

S→C8→C10→S 
(30 km) 

D6 S→C2→C9→C7→C10→S 
(38 km) 

S→C1→C4→C6→S 
(36 km) 

S→C8→S 
(14 km) 

S→C3→C5→S 
(40 km) 
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Table 14  The carried load of each vehicle (units) (heuristic approach) 

Vehicle Day 
D1 D2 D3 D4 D5 D6 

V1 178 179 179 183 172 181 
V2 191 174 191 164 192 159 
V3 90 81 96 85 76 51 
V4 64 81 81 70 89 91 

 

After know the carried load of each vehicle, the heuristics for construct 

workers schedule in section 3.2.2 are employed to solve the problem. The solution of 

multi-workday assignment shows in table 15. The percent residual energy shows in 

table 16. The computation time is 0.17 second. 

Table 15  Result of assignment (heuristic approach) 

Worker Day 
D1 D2 D3 D4 D5 D6 

W1 V4 V3 V2 V2 V1 V2 
W2 V1 V2 V1 V1 V2 V1 
W3 V1 V2 V1 V1 V2 V1 
W4 V3 V3 V3 V2 V1 V2 
W5 V3 V1 V2 V1 V2 V1 
W6 V4 V4 V1 V2 V1 V2 
W7 V2 V1 V3 V4 V4 V4 
W8 V1 V4 V4 V4 V3 V3 
W9 V2 V2 V4 V3 V4 V4 
W10 V2 V1 V2 V3 V3 V3 

Table 16  Percent residual energies (%) of workers (heuristic approach-post 
assignment) 

worker 
Energy residual on each day (%) 

Mean SD 
D1 D2 D3 D4 D5 D6 

W1 61.6 51.4 23.6 34.4 31.2 36.4 39.8 14.0 
W2 40.7 42.0 40.3 39.0 36.0 39.7 39.6 2.0 
W3 40.7 42.0 40.3 39.0 36.0 39.7 39.6 2.0 
W4 46.0 51.4 42.4 34.4 31.2 36.4 40.3 7.7 
W5 55.0 40.3 36.3 39.0 36.0 39.7 41.1 7.1 
W6 61.6 51.4 28.4 34.4 31.2 36.4 40.6 13.0 
W7 23.6 28.4 42.4 58.0 46.6 45.4 40.7 12.7 
W8 11.0 39.3 39.3 47.5 43.0 61.8 40.3 16.6 
W9 23.6 30.4 51.4 49.0 46.6 45.4 41.1 11.3 
W10 23.6 28.4 23.6 49.0 54.4 69.4 41.4 19.0 
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5. Computation Experiment 

Six MW-VRP problems (P1 to P6) are generated and tested. The smallest 

problem consists of 4 vehicles, 10 workers, and 10 customers, while the largest one 

consists of 8 vehicles, 18 workers, and 20 customers. Table 17 shows the numbers of 

customers, vehicles and workers used in each test problem. For each problem, both 

the optimization approach and heuristic approach are applied to obtain the MW-VRP 

solutions with two assignment policies (pre and post assignment). The results for pre 

and post assignment are presented in Table 18 and 19 respectively. For pre-

assignment policy, it is noted that when formulating the problems as the first MW-

VRP model, the ILOG CPLEX is able to solve them to optimality. However, none of 

the problems can be solved when they are formulated as the second MW-VRP model. 

The total distances shown in Table 18 are merely the best solutions obtained when the 

ILOG CPLEX is terminated after 24 hours of computation time. 

Table 17  Six test problems for the  MW-VRP computation experiment 

Problem 
Number of 

Customers Vehicles Workers 

P1 10 4 10 

P2 10 4 10 

P3 10 4 10 

P4 15 6 14 

P5 15 6 14 

P6 20 8 18 

Table 18  MW-VRP results of the 6 test problems pre-assignment policy 

Problem 
MW-VRP Solution (Optimization Approach) MW-VRP Solution 

(Heuristic Approach) First Model (Optimal) Second Model 
MAX MIN TD CT TD CT MAX MIN TD CT 

P1 44.1 30.1 1,716 921 1,218 86,400 44.2 30.2 1,586 0.59 
P2 44.7 30.9 1,174 4.68 1,020 86,400 44.7 30.9 1,144 0.30 
P3 43.8 29.8 1,122 12.42 918 86,400 45.1 31.4 1,120 0.07 
P4 40.3 25.4 1,790 351.98 - 86,400 41.7 26.7 1,736 0.21 
P5 40.0 25.0 1,676 191.16 - 86,400 42.6 24.3 1,576 0.15 
P6 41.9 27.4 2,658 9,386.1 - 86,400 42.2 27.7 2,450 1.01 

Note: MAX = maximum average percent residual energy (%); MIN = minimum average percent residual energy 
(%); TD = total travel distance (km); CT = computation time (s); - = unable to yield the feasible solution 
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Table 19  MW-VRP results of the 6 test problems post-assignment policy 

Problem 
MW-VRP Solution (Optimization Approach) MW-VRP Solution (Heuristic 

Approach) 
MAX MIN TD TCR TCA MAX MIN TD TCR TCA 

P1 37.7 37.5 1110 10.37 13.58 39.1 36.1 1150 1.28 0.17 
P2 40.5 40.3 804 7.38 0.5 41.4 39.6 808 1.1 0.11 
P3 39.6 39.2 782 5.92 1290.12 40.5 38.3 828 1 0.12 
P4 35.4 35.1 1052 125.38 3125.5 35.7 34.7 1076 2.8 0.44 
P5 33.7 33.3 1062 193.01 32.63 34.3 32.3 1102 2.6 0.28 
P6 39.0 38.2 1472 1598.1 1990.99 39.2 38.5 1522 6.2 0.7 

Note: TD=total travel distance; TCR and TCA = computation time (sec) for route and assignment respectively. 
 

For pre-assignment policy, when comparing the maximum average 

percent residual energies, it is seen that the heuristic procedure is very effective in 

generating delivery routes such that the allocation of physical workloads among 

workers is close to the optimal result of each problem. The increase from the optimal 

result ranges from 0% to 6.5%. Regarding the total travel distance, we are unable to 

evaluate the effectiveness of the heuristic procedure since the minimum total travel 

distance (from the second MW-VRP model) cannot be obtained. However, by 

comparing the total travel distances obtained from the heuristic procedure to those 

obtained from the first MW-VRP model, the heuristic solutions are superior in all 6 

test problems. 

The heuristic procedure demonstrates outstanding performance with 

respect to computation time. Even for the largest test problem P6, it needs only 1.01 s 

to obtain the MW-VRP solution. For the same test problem, the ILOG CPLEX needs 

9,386.1 s (about 2.60 h) to find the optimal solution for the first MW-VRP model. 

For post-assignment policy as from experiment, the optimization program 

CPLEX can yield the optimal solution for all test problems. For the physical 

workload, the heuristic procedure yield a max average residual energy that deviate 

from optimal solution 0.51 to 3.58 percent and 0.5 to 5.56 percent for total travel 

distance. However, the computation time of heuristic procedure mostly less than one 

second that is very fast than optimization approach. The post-assignment policy is 

superior pre-assignment that can observe from gab between maximum and minimum 

average percent residual energies. 
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6.  Conclusion 

The multi-workday vehicle routing problem (MW-VRP) with ergonomic 

consideration of physical workload is discussed. During a given planning period 

which consists of several consecutive workdays, delivery routes of all vehicles 

throughout the period are determined such that all workers receive relatively equal 

physical workloads. Two policies of worker-vehicle assignment are evaluated. Firstly, 

workers are pre-assigned to vehicles at the beginning of the planning period. The 

worker-vehicle pairings are kept unchanged for every workday. Secondly, workers are 

post-assigned to vehicles. After the optimal delivery routes of all vehicles are 

separately determined for each workday, workers are then assigned to vehicles so as 

to balance their physical workloads over the planning period. 

MW-VRP with the worker-vehicle pre-assignment policy is 

mathematically modeled and solved to determine the delivery routes of all vehicles so 

as to minimize the maximum average percent residual energy among all workers 

during the planning period. Different worker-vehicle assignment patterns also yield 

different solutions. 

MW-VRP with the worker-vehicle post-assignment policy requires two 

problem-solving steps. Firstly, the optimal delivery routes of all vehicles are 

determined separately for each workday. Knowing the delivery routes, the required 

total energy expenditures to perform manual handling tasks in each workday can be 

determined. Secondly, all workers are assigned to the utilized vehicles such that the 

maximum average percent residual energy among the workers during the planning 

period is minimized. This 2-step approach yields not only the shortest total travel 

distance but also the well-balanced physical workload allocation during the planning 

period. 

However, VRP and WSP are also considered as NP-hard problem. When 

problem size increasing, it is impossible to obtain an optimal solution in reasonable 

time. Thus, the heuristic procedure can yield us a near-optimal or an accepted solution 

in reasonable time. The heuristic procedures for both assignment policies are 

developed. The result represent that the heuristic procedure can yield an acceptance 

solution in very less time than optimization CPLEX. 
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Appendix B 

Solution of Single-objective MW-EWSP model 
 

Appendix B represents a detail of solution of single-objective MW-EWSP 

model both CPLEX and GA in Chapter 5: numerical example. The work schedule and 

daily hazard exposure are shown as following tables. 

 

Table 1.  Work schedule from OB1 CPLEX 

Worker 
D1 D2 D3 

P1 P2 P3 P4 P1 P2 P3 P4 P1 P2 P3 P4 

M1 T5 - T1 - T4 T1 - T1 T1 - T4 - 
M2 T2 T2 T2 T2 T2 T5 T5 - T2 - T5 T5 
M3 T1 T1 T3 T3 T3 - - T3 T3 T1 T3 T3 
M4 - - T4 - - T4 - T2 T4 - - T4 
M5 T4 - - - - - T4 T4 - T4 T2 T2 
M6 T3 T3 T5 - T5 - T1 T5 T5 T5 T1 - 

Worker 
D4 D5  

P1 P2 P3 P4 P1 P2 P3 P4     

M1 - T5 T4 - T4 - T4 -     

M2 - - T5 T5 - T5 T5 -     

M3 T4 - T1 T1 T1 T4 T1 -     

M4 T5 T4 - T2 T2 T1 - T4     

M5 - T1 T2 T4 T5 T2 T2 -     

M6 T1 - T3 T3 T3 T3 T3 T5     
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Table 2  Daily hazard exposures of the six workers from OB1 CPLEX 

Worker D1 D2 D3 D4 D5 Average SD 

M1 0.5822 0.9637 0.7030 0.7638 0.8846 0.7795 0.1500 
M2 0.8876 0.8649 0.8649 0.6430 0.6430 0.7807 0.1260 
M3 0.8626 0.3412 0.7725 0.9637 0.9637 0.7807 0.2583 
M4 0.4423 0.6642 0.8846 0.9857 0.9249 0.7803 0.2246 
M5 0.4423 0.8846 0.8861 0.9249 0.7653 0.7806 0.1984 
M6 0.6627 0.9037 0.9037 0.6019 0.8333 0.7811 0.1405 

 

 

Table 3  Work schedule from OB2 CPLEX 

Worker 
D1 D2 D3 

P1 P2 P3 P4 P1 P2 P3 P4 P1 P2 P3 P4 

M1 T4 - T4 - T4 - - T4 T4 - - T4 
M2 T5 - T5 - T5 T5 T5 - T2 T5 T2 T2 
M3 - T3 T1 T3 T3 T1 T1 T1 T1 T1 T1 T3 
M4 T2 T2 T2 T2 T2 - T4 T2 - T4 T4 - 
M5 T1 T1 - - - T4 - T5 T5 - T5 T5 
M6 T3 - T3 - - - - T3 T3 - T3 - 

Worker 
D4 D5  

P1 P2 P3 P4 P1 P2 P3 P4     

M1 - - T4 T4 T4 - - T4     

M2 T5 T5 T5 - T2 T2 T2 T5     

M3 T1 T4 - T1 T1 T1 T1 -     

M4 T4 - T2 T2 - T4 T4 -     

M5 - T1 T1 T5 T5 T5 T5 -     

M6 - - T3 T3 T3 T3 T3 -     
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Table 4  Daily hazard exposures of the six workers from OB2 CPLEX 

Worker D1 D2 D3 D4 D5 Average SD 

M1 0.8846 0.8846 0.8846 0.8846 0.8846 0.8846 0.0000 
M2 0.6430 0.9645 0.9872 0.9645 0.9872 0.9093 0.1493 
M3 0.6019 0.9527 0.9527 0.9637 0.7821 0.8506 0.1583 
M4 0.8876 0.8861 0.8846 0.8861 0.8846 0.8858 0.0013 
M5 0.5214 0.7638 0.9645 0.8429 0.9645 0.8114 0.1832 
M6 0.3412 0.1706 0.3412 0.3412 0.5118 0.3412 0.1206 

 

 

Table 5  Work schedule from OB3 CPLEX 

Worker 
D1 D2 D3 

P1 P2 P3 P4 P1 P2 P3 P4 P1 P2 P3 P4 

M1 T5 - - - - T4 - T4 - T4 - T4 
M2 T3 T3 T3 T3 T3 T5 - T3 T3 - T3 T3 
M3 T1 T1 T1 - - T1 T1 T1 T1 T1 T1 - 
M4 T2 T2 T2 T2 T2 - - T2 T2 T5 T2 T2 
M5 T4 - T4 - T4 - T4 - T4 - T4 - 
M6 - - T5 - T5 - T5 T5 T5 - T5 T5 

Worker 
D4 D5  

P1 P2 P3 P4 P1 P2 P3 P4     

M1 T T4 - - - T4 - T4     

M2 - T5 T3 T3 T3 T3 - T5     

M3 - T1 T1 T1 T1 T1 T1 -     

M4 T5 - T2 T2 T2 T2 T2 -     

M5 - - T4 T4 T4 - T4 -     

M6 T1 - T5 T5 T5 T5 T5 -     
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Table 6  Daily hazard exposures of the six workers from OB3 CPLEX 

Worker D1 D2 D3 D4 D5 Average SD 

M1 0.3215 0.8846 0.8846 0.8846 0.8846 0.7720 0.2518 
M2 0.6824 0.6627 0.5118 0.6627 0.8333 0.6706 0.1140 
M3 0.7821 0.7821 0.7821 0.7821 0.7821 0.7821 0.0000 
M4 0.8876 0.4438 0.9872 0.7653 0.6657 0.7499 0.2099 
M5 0.8846 0.8846 0.8846 0.8846 0.8846 0.8846 0.0000 
M6 0.3215 0.9645 0.9645 0.9037 0.9645 0.8237 0.2820 

 

 

Table 7  Work schedule from OB1 GA 

Worker 
D1 D2 D3 

P1 P2 P3 P4 P1 P2 P3 P4 P1 P2 P3 P4 

M1 T4 - - - - T4 - T4 T3 T4 T3 - 
M2 T2 - T2 T3 T3 T5 - T5 T2 - T5 T5 
M3 T3 T3 T3 - T4 T1 - T1 T1 - T4 T3 
M4 T5 - T1 - T2 - T4 - T4 T5 - T2 
M5 - T2 T4 T2 - - T1 T2 - T1 T2 T4 
M6 T1 T1 T5 - T5 - T5 T3 T5 - T1 - 

Worker 
D4 D5  

P1 P2 P3 P4 P1 P2 P3 P4     

M1 - T4 T4 - T4 T4 - -     

M2 - T5 - T5 T5 T5 T5 -     

M3 T4 - T3 T3 T1 T1 T1 -     

M4 T5 - T2 T2 - T2 T2 T4     

M5 T1 - T1 T4 T2 - T4 -     

M6 - T1 T5 T1 T3 T3 T3 T5     
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Table 8  Daily hazard exposures of the six workers from OB1 GA 

Worker D1 D2 D3 D4 D5 Average SD 

M1 0.4423 0.8846 0.7835 0.8846 0.8846 0.7759 0.1916 
M2 0.6144 0.8136 0.8649 0.643 0.9645 0.7801 0.1488 
M3 0.5118 0.9637 0.8736 0.7835 0.7821 0.7829 0.1691 
M4 0.5822 0.6642 0.9857 0.7653 0.8861 0.7767 0.1630 
M5 0.8861 0.4826 0.9249 0.9637 0.6642 0.7843 0.2048 
M6 0.8429 0.8136 0.5822 0.8429 0.8333 0.7830 0.1129 

 

 

Table 9  Work schedule from OB2 GA 

Worker 
D1 D2 D3 

P1 P2 P3 P4 P1 P2 P3 P4 P1 P2 P3 P4 

M1 T4 - T4 - T4 - - T4 - T4 T4 - 
M2 T5 T2 T5 - T5 T5 T5 - T5 - T5 T5 
M3 T1 - T3 - - T1 T4 T1 T1 T1 T1 - 
M4 T2 - T2 T2 T2 T4 - T2 T2 - T2 T4 
M5 - T1 T1 - - - T1 T5 T4 T5 - T2 
M6 T3 T3 - T3 T3 - - T3 T3 - T3 T3 

Worker 
D4 D5  

P1 P2 P3 P4 P1 P2 P3 P4     

M1 - T4 - T4 T4 T4 - -     

M2 T5 - T5 T5 T5 T2 T5 -     

M3 T4 - T1 T1 T1 T1 T4 -     

M4 - - T4 T2 T2 - T2 T4     

M5 T1 T1 T2 - - T5 T1 T5     

M6 - T5 T3 T3 T3 T3 T3 -     
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Table 10  Daily hazard exposures of the six workers from OB2 GA 

Worker D1 D2 D3 D4 D5 Average SD 

M1 0.8846 0.8846 0.8846 0.8846 0.8846 0.8846 0.0000 
M2 0.8649 0.9645 0.9645 0.9645 0.8649 0.9247 0.0546 
M3 0.4313 0.9637 0.7821 0.9637 0.9637 0.8209 0.2316 
M4 0.6657 0.8861 0.8861 0.6642 0.8861 0.7976 0.1211 
M5 0.5214 0.5822 0.9857 0.7433 0.9037 0.7473 0.1998 
M6 0.5118 0.3412 0.5118 0.6627 0.5118 0.5079 0.1138 

 

 

Table 11  Work schedule from OB3 GA 

Worker 
D1 D2 D3 

P1 P2 P3 P4 P1 P2 P3 P4 P1 P2 P3 P4 

M1 T5 T1 T1 - - - T4 T4 - T4 - T4 
M2 T3 T3 T3 T3 T3 - - T3 T3 T5 T5 T3 
M3 T1 - - - - T1 T1 T1 T1 - T1 - 
M4 T2 T2 T2 T2 T2 - T5 T2 T2 - T4 T2 
M5 T4 - T4 - T4 T4 - - T4 T1 T2 - 
M6 - - T5 - T5 T5 - T5 T5 - T3 T5 

Worker 
D4 D5  

P1 P2 P3 P4 P1 P2 P3 P4     

M1 - T4 T4 - T3 - T5 T4     

M2 - T5 T3 T3 T2 T3 T3 T5     

M3 T4 T1 - T1 T1 T1 T1 -     

M4 - - T2 T2 T4 T2 T2 -     

M5 T1 - T1 T4 - T4 T4 -     

M6 T5 - T5 T5 T5 T5 - -     
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Table 12  Daily hazard exposures of the six workers from OB3 GA 

Worker D1 D2 D3 D4 D5 Average SD 

M1 0.8429 0.8846 0.8846 0.8846 0.9344 0.8862 0.0324 
M2 0.6824 0.3412 0.9842 0.6627 0.8846 0.7110 0.2473 
M3 0.2607 0.7821 0.5214 0.9637 0.7821 0.6620 0.2742 
M4 0.8876 0.7653 0.8861 0.4438 0.8861 0.7738 0.1918 
M5 0.8846 0.8846 0.9249 0.9637 0.8846 0.9085 0.0355 
M6 0.3215 0.9645 0.8136 0.9645 0.6430 0.7414 0.2696 
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