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CHAPTER 1

INTRODUCTION

In 1934, Marty [9] first presented the concept of the algebraic hyper-
group. The class of hypergroups is generalized from group theory. In a group, the
combination between elements is an element but in a hypergroup, the combina-
tion between elements is a set. The semihypergroups are an associative property

of hypergroups which are based on the concept of hyperoperation.

In 1993, Corsini [2] introduced the fundamental of theory of hyper-
structures, and many notion of hyperstructure can be found in his work. Other
reseachers extended his idea to develop the concept of hyperstructure, for ex-
ample, in 2000, Davvaz [5] proved new identities of strong regularity and fuzzy
strong regularity on semihypergroups, and presented results on congruences on

semihypergroups [6].

In 2012, Jafarabadi, Sarmin and Moleri introduced new kinds of hy-
perstructure called simple and completely simple semihypergroups, presented
methods for constructing these new classes of hyperstructure and considered the

regularity of semihypergroups [8].

The special subclasses of hypergroup called polygroups were studied
by Comer [1]. He studied polygroups and applied hyperstructures with algebras

and color schemes.

Davvaz considered the normal subpolygroups and homomorphisms
between polygroups and identified the isomorphism theorems of polygroups [3].

He later discussed polygroup theory and related systems [4].
The outline of this thesis is as follows:

Chapter 2 gives a brief overview of some basic notions and results on
polygroups theory related to this reseach. Some results on semipolygroups and

inverse semipolygroups are presented in Chapter 3.



CHAPTER 2

BASIC NOTIONS AND PRELIMINARIES

2.1 Hyperstructures

In this chapter, we introduce some basic notions and results concerning
polygroups.

Let H be a non-empty set and let P*(H) be the set of all non-empty
subsets of H. A hyperoperation on H is a map o: H x H — P*(H) and the
couple (H,o) is called a hypergroupoid. If A and B are non-empty subsets of

H, then we denote

AoB= U aob,
acAbeB

zoA={zx}oAand Aox = Ao{zx}.

For all a,b,c in H, if aob equals the singleton set, for example, aob = {c}, then

we write the singleton set of ¢ as ¢ instead of {c}.

Definition 2.1.1. [4] A hypergroupoid (H, o) is called a semihypergroup if, for

all x,y,z of H, we have (xoy)oz =z o(yoz), which means that

LJ Uoz = LJ T ov.

ueEroy vVEYOoZ
A hypergroupoid (H,o) is called a quasihypergroup if, for all = of H, we have
roH=Hox=H.

Definition 2.1.2. [4] A hypergroupoid (H,o) that is both a semihypergroup and
a quasihypergroup is called a hypergroup.

Example 2.1.3. [4] Let H = {a,b,c,d}. Let the hyperoperation o on H be given
by the following table:



o a b c

d

c | {e,d} {cd} a
d|{c,d} {cd} b

Then (H,o) is a hypergroup.

A polygroup is a special case of a hypergroup.

Definition 2.1.4. [1] Let P be a non-empty set.

a|{a,b} {a,b} {c,d} {c,d}
b | {a,b} {a,b} {c,d} {cd}

b

a

A polygroup is a system P =< P,-,e,”' >, where e € P, - maps P x P into the

non-empty subsets of P, i.e., ) £ x-y=-(x,y) C P for all z,y € P, and the following

axioms hold for all x,y,z in P:

(i) (z-y)-z=2-(y-2);

(@) fe=r=ro=kix

(iii) for each z there exists a unique =1 € P such that

ecz-zlandecz 1 z;

(iv) z €y 2 implies y €z- 271 and z € y~

1'$.

The following elementary facts about polygroups follow easily from

1

the axioms: Forall 2,y € P,ecz-z ‘Ntz el =e (a7 =2,(z-y)" ! =

ytoz ! and z €y 2 implies 2 € 21y L,

Example 2.1.5. [4] Let P ={a,b,c,d} with the following table:

a b c
ala b c
blb a c

o
@)
o

{a,b,d}  {c,d}

d|d d {cd} {a,b,c}



Then P is a polygroup.

Example 2.1.6. [4] Let P = {e,a,b,c,d} with the following table:

e a b c d
ele a b c d
ala e b c d
blb b {ea} d c
Gl d {e,a} b
d9k o™ B G b {e,a}

Then P is a polygroup.

Example 2.1.7. Let G be a group. Define a system < G,*,e,”! >, where e is the
identity of G and for all g1,90 € G

g1*xg2 = {9192},

where - is a binary operation of G. For all g1,¢92,93 € G.

() (91%92) %93 ={9g1-92} x93 = {(91-92) - 93} = {91 (92-93)} = g1 * {92 g3} =
g1 % (92%93)-

(ii) exgr ={e-g1} ={g1} ={g1-e} =g xe.

(iii) For each g € G there exists a unique g~! € G such that e € gx g~ ' = {g-g7'} =
{e} andee g txg={g7" g} = {e}.

(iv) If g1 € g2 g3, then g1 € {g2- g3} and so g1 = gags.

It follows that ga = g1g3"' € {g1-93 '} =g1%g3"' and g3 =gy ' 1 € {9y " -0} =
92" # g1

Hence < G, *,e,” > is a polygroup.

Example 2.1.8. [3] Conjugacy class polygroups.

In dealing with a symmetry group, two symmetric operations belong to the same
class if they present the same map with respect to (possibly) different coordinate
systems, where one coordinate system is converted into the other by a member of

the group. In the group theory, this means that the elements a,b in a symmetric



group G belong to the same class if there exists a g € G such that a = gbg™!,

i.e., a and b are conjugate. The collecion of all conjugacy classes of a group G
in denoted by G and the system < G,#,{e},”!> is a polygroup where e is the
identity of G and the product A* B of conjugacy classes A and B consists of all
conjugacy classes contained in the elementwise product AB.

Now, we illustrate constructions using the dihedral group Dy,
Dy=<rhlh®=1=r*and rh=hr=! >.

This group is generated by a counter-clockwise rotation r of 90° and a horizontal

reflection h. The group consists of the following eight symmetries:
{1=70rr2=57r3=t h hr=dhr’=vhrd=f}.

The dihedral groups occur frequently in art and nature. Many of the decorative
designs used on floor coverings, pottery, and buildings have one of the dihedral
groups as a group of symmetry. In the case of D4 there are five conjugacy classes:
{1},{s},{r,t},{d, f} and {h,v}. Let us denote these classes by C1,...,Cs respec-
tively. Then, the polygroup Dy is

* 10| Co C3 Cy Cs
Ci1|Cr| Co Cs Cy Cs
Cy | Ca | C1 C3 Cy Cs
C3 | C3| C3 | C1UCy Cs Cy
Cy | Cy | Cy Cs CrUCy C3
Cs | Cs5 | Cs Cy Cs C1UCy

As a sample of how the table entries are calculated, consider C3xC'5. To determine

this product, compute the elementwise product of the conjugacy classes
{rt ety ={r? rt,tr, 2} ={s,rr3=rt=113r =rt=1r=5} = {5,1} = C1UCy.

Thus, Cs* ('3 consists of the two conjugacy classes C1,Cy. Furthermore, for ex-

ample,



CoxCy={s}{s} ={s’} ={r'} = {1} =,
Cs%Cs = {h,v}{h,v} = {1,h(hr?), (hr)?h,(hr?)?} = {1,5} = C1 U .

Example 2.1.9. [4] Extensions of polygroups by polygroups.

Suppose that A =< A,-,e,”'> and B =< B,-,e,”'> are two polygroups with
ANB = {e}. A new system A[B] =< M, x,e, > called the extension of A by B is
formed in the following way: Set M = AUB andlet el =e, 2l =27l exz=zxe=x

for all z € M, and for all x,y € M — {e}, then

Ty ifx,ye A

i ifreByeA
TxY =93y ifre A,ye B

Ty if x,y€ B,y#x"!

z-yUA ifzyeBy=xz"1

In this case, A[B] is a polygroup which is called the extension of A by B.

In the last case, e occurs in both z-y and A. If A={e,a;,aq,...} and

B ={e,b1,by,...}, the table for % in A[B| has the form

e al as - by by
el e az - by bo
a1 | a1 aiay aias  c-- by bo
as | as asay asas  c-- by bo
by | b1 b1 by -+ byxby byxby
by | ba  be bo -+ baxby baxboy

Definition 2.1.10. A polygroup P is called commutative if a-b=b-a for all
a,bin P.

Definition 2.1.11. [3] A non-empty subset K of a polygroup P is said to be a
subpolygroup of P if, under the hyperoperation in P, K itself forms a polygroup.



Lemma 2.1.12. [3] A non-empty subset K of a polygroup P is a subpolygroup
of P if and only if

(i) a,b € K implies a-b C K;

(ii) a € K implies a=' € K.

Example 2.1.13. Let A = {e,a,b} with the following table:

e a b
ele . a b
ala e b
blb b {ea}

1

From Example 2.1.6, it is clear that A is a subpolygroup of P where a™* = a and

bl =0

Definition 2.1.14. [4] Let < Pp,-,e1,”' > and < Py, *,e2,71 > be polygroups.
Let ¢ be a mapping from P into P such that ¢(e) = ea. Then, ¢ is called

(i) an inclusion homomorphism if
o(a-b) Cp(a)*p(b), forall a,be Pi;
(ii) a strong homomorphism or a good homomorphism if

o(a-b)=p(a)*p(b), forall a,be P;.

Definition 2.1.15. [4] A strong homomorphism ¢ is an isomorphism if ¢ is

one to one correspondence. We write P; = Py if P; is isomorphic to Ps.

Example 2.1.16. Let < P,-,e,”'> and < P,*,e,”!> be polygroups with the

following tables:

e a b x| e a b

ele a b ele a b
{e,b} {a,b}
{a,b} {e,a}

S|
S|
a
<
S|
S

j=p)

blb b {eb} b



Define ¢ : P — P by p(z) =z*z forall z € P. As p(e) =exe = e, is an inclusion
homomorphism.

Example 2.1.17. From Example 2.1.16, if we define ¢ : P — P by ¢(x) = 27!

for all x € P, such that op(e) = e~ = ¢, then we also have that ¢ is an inclusion

homomorphism.

Example 2.1.18. Let P be a commutative polygroup. Define ¢ : P — P by

p(x) =z -x for all z € P. Then ¢ is a strong homomorphism.

2.2 Binary Relations; Equivalences

A (binary) relation on a set X, by which we simply mean a subset
p of the Cartesian product X x X. At this stage, it is convenient to develop the
theory of relations in a some what more general and abstract way. Intuitively, we
think of elements x and y for which (z,y) € p as being related, and we frequently
prefer writing xpy instead of (z,y) € p. The empty set ¢ of X x X is included
among the binary relations on X; other special relations worthy of mention are
the universal relation X x X, in which everything is related to everything else,

and the equality relation

lx ={(z,z) : x € X}, (2.2.1)
also known as the diagonal relation on X, in which two elements are related if
and only if they are equal.

Let us denote the set of all binary relations on X by Bx. A binary

operation o is defined on Bx by the rule that, for all p,o in By,
poo={(zr,y) e XxX:(3z€X) (v,2) €pand (z,y) € o} (2.2.2)
It is easy to see that, for all p,o,7 in By,
if we suppose that p C o, for
(x,y) €por = (Fz€X) (v,2) €pand (z,y) €T,
= (Jze€X) (z,2) €0 and (z,y) €T,

= (z,y)€0o0T,



and for
(x,y) €ETop = (Fz€X) (v,2) €T and (z,y) € p,
= (JdzeX) (z,2) eTand (z,y) €0,
= (x,y)€ToO0,
por Coorand TopCroo.
The proof that the operation is associative as follows: for all p,o,7 € By,

(poo)oT=po(ogoT),

for (z,y) € (poo)or & (Jz€ X) (x,2) €Epoo and (2,y) €T,
& (FzeX)(FueX) (z,u) €p,(u,2) €0 and (z,y) €T,
< (Jue X) (z,u) € pand (u,y) Ecor,
& (@y)epoloor)

Whilst we shall not normally revert to simple multiplicative notation
when discussing the semipolygroup (Bx, o), we shall allow ourselves to write p?, p3,
etc., instead of pop,popop, etc.

For each p € By, we define the domain dom p by

domp={zxeX:(FyeX) (z,y) € p}, (2.2.3)
and the image im p by
imp={yeX:(FreX) (z,y) € p}. (2.2.4)
For each z in X and p in Bx we define a subset p(x) of X by
p(x) ={y € X : (z,y) € p}; (2.2.5)

thus p(z) # 0 if and only if x € dom p. If A is a subset of X, we define

p(4) = U {p(a)}. (2:2.6)

a€A

For each p in By, we define p~!, the converse of p, by
p~t={(z.y) € X x X : (y,x) € p}. (2:2.7)

Certainly, p~! € Bx.
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Proposition 2.2.1. [7] Let Bx be the set of all binary relations on a set X.
Then, for all p,o in By,

(i) pC o= dompC domo and im p C im o;

(i) (™) = p;

(i) (poo) L = oo pL;

(iv) if pC o, then p~t Co™L;

(v) dom (p~Y)= im p and im (p=1) = dom p;

(vi) p~Y(x) # 0 if and only if x € im p.

Proof. Let p,o € Bx.

(i) Suppose that p C o and let x € dom p,

re€ domp = (FyeX) (v,y) €E€p,
= (@yeX) (zy)eo,

= z € dom o.

That is, dom p C dom o.
Letycimp, Y€ imp = (IreX) (z,9)€p,
= (JreX) (z,y) €0,

= [y €] Imio.

So im p C im o.

(ii) Since (z,y) € p & (y,2) € p~" & (z,y) € (p71) 7", we have (p~1) ' = p.

-1

(iif) (z,y) € (poo) ) € poo,

< (v
& (JzeX) (y,2) €pand (2,2) €0,

& (FzeX) (z,y)€p tand (2,2) €0,
&

T,y) €0 op
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(iv) Assume that p C 0. Then

(z,y) €p?

(v) We see that

FyeX) (zy)ep,
(Fy € X) (y,z) €p,

r € 1m p.

z e dom (p~h)

and y € im (p) Bz e X) (z,y)ep™,

Bz e X) (y,2) €p,

T ¢ ¢ ¢ ¢ O

y € dom p.

(vi) Suppose that p~!(x) # (.

Then there exists y € p~!(x) if and only if y € X such that (z,y) € p~ L.

It follows that (y,x) € p. Therefore, x € im p.
Conversely, if x € im p then (y,z) € p for some y € X.

This implies that (z,y) € p~! and y € p~(z). Thus, p~!(z) # 0. O

A relation ¢ is called a map, or a function, if dom ¢ = X. Then, a
relation ¢ on X is a map if and only if |¢p(x)| =1 for every z in X.

A relation p on a set X is
reflexive if and only if 1x C p,

symmetric if and only if (Vz,y € X) (z,y) € p= (y,x) € p,

1

anti-symmetric if and only if pNp~™" =1x, and

transitive if and only if pop C p.
An equivalence p on a set X to be a relation that is reflexive, symmetric, and

transitive.



12

By symmetric property, this property is expressed as p C p~'. Notice
that, by (iv) and (ii) it follows that p~! C (p~1)~! = p; thus the symmetry con-

1

dition can equally well be expressed as p~* = p. On the same theme, if p is an

equivalence, then we can deduce that

p=1lxopCpop.

Thus the transitivity condition can be replaced by pop=p.
If p is an equivalence on X then, by (i) of Proposition (2.2.1),

dom p2Odom lx =X,im p2O im 1x = X,

hence dom p=im p=X.
A family 7 = {4; :i € I'} of the subsets of a set X is said to form a partition of
X if
(P1) each A; is non-empty;
(P2) for all 4,7 in I, either A; = A; or A;NA; =0;
(P3) U{4i:iel}=X.
On the face of it, the notions of partition and equivalence are quite different, but

in fact they are closely related.

If p is an equivalence on X, we shall sometimes write zpy or x =
y (mod p) as alternatives to (z,y) € p. The sets p(z) that form the partition
associated with the equivalence are called p-classes, or equivalence classes.
The set of p-classes, whose elements are the subsets p(x), is called the quotient
set of X by p, and is denoted by X/p. In the next section we shall have occasion

to examine the natural map p? (read p natural) from X onto X/p by
p(x)=p(x) forall zeX. (2.2.8)

Remark Let p be an equivalence on X and let x,y € X. p(x) = p(y) if and only

if xpy.

Proposition 2.2.2. [7] If ¢: X — Y is a map, then o ¢~ is an equivalence.
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Proof. The easiest way to see this is to note that

popt = {(z,y) e X x X :(Fz€ X) (x,2) € ¢ and (z,y)€¢_l}
= {(zr,y) eXxX:(Fz€X) (x,2)€¢and (y,2) € ¢}
= {(z,y) € X x X : ¢(2) = 8(y) }-

Let z,y € X.

Then, for all (z,2) € 1x, (z,2) € pod™ !, so it is reflextive.

Suppose that (z,y) € pop~ L.

There exists z € X such that (r,2) € ¢ and (z,y) € ¢~ 1.

This implies that (z,2) € ¢~ and (y, 2) € ¢.

Hence (y,z) € po¢~ 1, and thus it is symmetric.

Finally, we assume that (z,y) € (pod~ ) o(pop™1).

This means that there is z € X such that (z,2) € pop~ ! and (z,y) € o™ 1.

It follows that ¢(z) = ¢(2) and ¢(2) = ¢(y).

Therefore, ¢(z) = ¢(y) and (z,y) € pop~!. So pop~! is transitive. O

We call the equivalence ¢pop~! the kernel of ¢, and write ¢po¢p~! =ker¢. Notice

that ker p? = p.

In the next chapter, we will introduce the notions of semipolygroups

and inverse semipolygroups that main results of this reseach.
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CHAPTER 3

SEMIPOLYGROUPS AND INVERSE
SEMIPOLYGROUPS

In this chapter, some properties of semipolygroups and inverse semipoly-

groups are described.

3.1 Semipolygroups
First, we present some basic notions and results concerning semipoly-
groups.

Definition 3.1.1. A polygroupoid is a system (S,0) where o is a hyperopera-
tion, i.e., ) £ xoy =o(x,y) C S for all z,y of S.

A polygroupoid (S,0) is called a semipolygroup if, for all z,y,z of S, we have

(xoy)oz=uwo(yoz), which means that

LJ Uoz = LJ rov.

uUEroY vVEYOoZ

Here, we behold that semipolygroup is a semihypergroup.
We desire to present the concernment between this property and definition of

polygroup, so we called this property as semipolygroup instead of semihypergroup.
Example 3.1.2. Let (5,-) be a semigroup. Define system (%) by

sp*ksg ={s1-s2} forall s1,s9 €S.
For any s1,s2,53 € S,81%s2 ={s1-s2} C S and

(s1x82)xs3 = {s1-sa}*xsz3={(s1-52) 83} ={s1-(s2-53)} =s1%{s2-s3}

= s1%(S2%s3).

Therefore, (S,x*) is a semipolygroup.
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Definition 3.1.3. If a semipolygroup (S, 0) has the property that,
for all z,y in S,

zoy=youz,

we shall say that S is a commutative semipolygroup.

If a semipolygroup (S,0) contains an element e with the property that, for all x

in 9,
el e o {1

we say that e is an identity element of S, and that S is a semipolygroup with

identity.

A semipolygroup (S,0) has at most one identity element, since if ¢’ also has the

property that ¢’ oz =xoe’ ={z} for all z in S, then

{'} = eo€ (since e is an identity)

= {e} (since € is an identity)

and so ¢ =e.
If a semipolygroup (5,0) has no identity element, then it is very easy to adjoin
an extra element e to S to form a semipolygroup with identity. We define a

hyperoperation on S which has an adjoined element e as
eor=xoe={z} forall z in S, and ece = {e},

and it is a routine matter to check that SU{e} becomes a semipolygroup with
identity.

We now define

o1 S if S has an identity element;

SuU{e} otherwise.

We refer to S as the semipolygroup with identity obtained from S by

adjoining an identity if necessary.
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Definition 3.1.4. If a semipolygroup (S,0) with at least two elements contains

an element 0 such that, for all x in S,
Oox = {0},

we say that 0 is a left zero element of S, and S is called a semipolygroup
with left zero. Similarly, 0 is called a right zero element of S, and S is a

semipolygroup with right zero, if for all x in S,
zo0={0}.

We say that 0 is a zero element (or just a zero) of S if it is both a left and a
right zero element of S, and that S is a semipolygroup with zero if it is both

a semipolygroup with left zero and right zero.

Again, if a semipolygroup (.S,0) has no zero, then it is easy to adjoin an extra

element 0 and we define
0oz =200=000={0} forall zin S.

It is then a routine matter to check that associativity survives in the extended set
SuU{0}.
By analogy with the case of S1, we define

50 S if S has a zero element;

SU{0} otherwise,

and refer to S° as the semipolygroup obtained from S by adjoining a zero

if necessary.

Example 3.1.5. Let S be a non-empty set with at least two elements and let

a € S. If we define a hyperoperation on S by

zoy=yox={a} for all z,y in S,
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we have (zoy)oz={a}oz={a} =xo{a} =xo(yoz) for all x,y,z € S. Then, S
is a semipolygroup. Since aox =z oa ={a} for all z € S, so a is a zero element

of S, and hence S is a semipolygroup with zero.

Example 3.1.6. Let S be a non-empty set with at least two elements. If we

define a hyperoperation on S by

zoy ={z} for all x,y in S,

then (zoy)oz={z}oz={z} =zo{y} =zo(yoz) forall z,y,2 € S. Thus, Sis a
semipolygroup. For any a € S,aoxz = {a} for all x € S, so a is a left zero element

of semipolygroup S and S is called a left zero semipolygroup.

Example 3.1.7. Let S be a non-empty set with at least two elements. If we

define a hyperoperation on S by

zoy={y} for all z,y in S,

we have (zoy)oz={ytoz={z} =xo{z} =z0(yoz) forall x,y,z € S. Therefore,
S is a semipolygroup. For any b€ S,xo0b={b} for all z € S, so b is a right zero

element of semipolygroup S and S is called a right zero semipolygroup.

Example 3.1.8. Define a hyperoperation on the closed interval I = [0,1] by

roy = {min{z,y}} for all z,y € I.

Let z,y,z € I.

If xt=y=2z then xo(yoz)=zo(rzox)=zof{zr}={z}={r}or=(rox)oxr=
(roy)oz.

If z =y and y # z, then

xro = = oz if z
vo(yor) = {v} =1y} ={y} y < _ (wog)ox.

rof{z}={z}={y}loz ify>=z

If x #y and y = z, then
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zt={zxloz if
o(yoz)=zo{y}= b=t <y=(xoy)0

{y} ={z} ={z}oz ifz>y

We now assume that z # y # z.

If v <y<z thenzo(yoz)=zo{y}={z}={r}oz=(x0y)oz.
If 2 <z<vy, then zo(yoz)=xo{z}={a}={z}oz=(zoy)oz.
If y<ax <z thenzo(yoz)=xzo{y} ={y}t={y}oz=(xoy)oz
If y<z<uz, then zo(yoz)=xzo{y} ={yt={y}oz=(xoy)oz.
If z<x <y, then zo(yoz)=zo{2} ={z}={x}oz=(roy)oz.
If z<y<z, then xo(yoz)=zo{z}={z}={z}oz=(zoy)oz.

Then [ is a semipolygroup.
Since 0oz = {min{0,z}} = {0} = {min{z,0}} = 200, so that 0 is a zero element.
We have zo1 = {min{x,1}} = {2} = {min{l,2}} = 1oz, so that 1 is an identity

element.

Example 3.1.9. Define a multiplication on the closed interval I = [0, 1] by
xoy ={max{z,y}} for all z,y € I.

It is easy to see that [ is a semipolygroup.
Since 0oz = {max{0,z}} = {z} = {max{z,0}} =z 00, 0 is an identity element,

and since xol = {max{z,1}} = {1} = {max{1l,z}} = 1oz, 1 is a zero element.

Example 3.1.10. Define a multiplication on the closed interval I = [a,b], where

a,b are real numbers such that a < b:
roy={min{z,y}} for all z,y € I.
Then I is a semipolygroup with a as a zero element and b as an identity element.

Similarly, if we define x oy = {max{z,y}} for all z,y € I, then b is a

zero element and a is an identity element of semipolygroup 1.

Example 3.1.11. Let S = {a,b,c} with the following table:
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a b c
al a {a,b} {a,c}
b | {a,b} b {b,c}
c | {a,c} {b,c} c

Then S is a semipolygroup.

Example 3.1.12. Let S = {a,b,c} with the following table:

a b c
a | {a,b} {a,b} c
L " G c
c c c {a,b}

Then S is a semipolygroup.

Example 3.1.13. Let (Z,+) be a group. Define a hyperoperation o on Z by

roy={z+y,z—y}

Let x,y,z € Z. We see that

(voy)oz =

{z+yz—yloz=

for all z,y € Z.

U uoz

U€{$+y7$—y}

= {(z+y)+z(z+y)—2(z—y)+2(z—-y) -z}

= {z+@W+2),r—(y+2),z+{Hy—=2),z—(y—2)}

il

vov=zo{y+zy—2}=zo(yoz).

ve{y+z,y—=z}

Therefore, (Z,0) is a semipolygroup.

Example 3.1.14. Let S be a non-empty set. Define a hyperoperation o on S by

xoy=A{z,y} for all z,y in S.

Let x,y,z € S. We obtain

(zoy)oz = {ryjoz=

U woz=(z02)U(yoz)={z,y}U{y,2} ={z,y,2}

uefz,y}

= {z,y}U{z,2} = (roy)U(z02) =

So, (S,0) is a semipolygroup.

U zov=uzo{y,z}=z0(yo2).
ve{y,z}
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Example 3.1.15. Define a hyperoperation o on Z by
zoy=A{zy,—zy} for all z,y,z € Z.

Let x,y,z € Z. Then
(woy)oz = {ay,—wyjoz={(xy)z,—((xy)2),(-xy)z,—((-2y)2)} = {zyz, —wyz}

= {a(yz), —(x(y2)), 2(—y2) — (x(-y2))} = o {yz,—yz} = vo(yo2).
Thus, (Z,0) is a semipolygroup.
Example 3.1.16. Define a hyperoperation o on R by

zoy=A{z,—x,y,—y} for all z,y,z € R.

Let x,y,2z € R. We have

(xoy)oz = {z,—=x,y,—y}oz
= {z,—x,2,—2,—z,—(—x),2,—2,¥,—Y,2,—2,—Y,—(—y),2,— 2}
= {x,—x,y,—y,z,—z}
= {z,—z,y,—y,x,—z,—y,—(-y),z,—z,2,—z,x,—x,—2,—(—2) }
= zo{y,—y,z,—z2}=z0(yoz),
and (R, o) is a semipolygroup.

Example 3.1.17. Let (Zy,-) be a group. Define a hyperoperation o on Z,, by
[a] o [b] = {]a],[0],[a] » [b]} for all [al,[b] € Zj,.
Let [al,[b],[c] € Zy,. Then

([aJofb)olel = {lal,b],[a] -n[b]} o [c]

and thus (Zy, o) is a semipolygroup.
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If A and B are non-empty subsets of a semipolygroup .S, then we write

AB to mean U
acA,beB

(AB)C

aob. For all non-empty subsets A, B, and C of .5,

U roc

r€AB,ceC

U roc

2E€Uqe 4 pe p a0b,c€C

U (LY oot
U  (aob)oc

acA,beB,ceC

U ao(boc)

ac€AbeB,ceC

Ua0< U boc>
acA beB,ceC
U aoy
aeA,yeUbeBperoc
U aoy
acA,ye BC
A(BC).

Hence, once again, notations such as ABC and A1As--- A, are mean-

ingful. When dealing with singleton sets we shall use the notational simplifications

that are customary in algebra, writing Ab and bA rather than A{b} and {b} A, re-

spectively.

If a is an element of a semipolygroup S without identity, then Sa need

not contain a. The following notations will be standard:

Sta = Sau{a},
aS' =aSU{a}.

For z,y € S, we write the product of x,y as xy instead of xoy.

Definition 3.1.18. Let S be a semipolygroup. For a € S and k € N,
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Lemma 3.1.19. Let S be a semipolygroup. For a € S and m,n € N,
(’L) ama” = am—|—n;

(i) (a™)" =a™".

Proof. The proof is by induction on n.
(i) Let P(n) be a statement a™a" = a™*" for all m € N.
If n =1, then a™a' = a™*! for all m € N. Thus, P(1) is true.
Suppose that P(k) is true where k € N. Then a™a”* = a™** for all m € N.
Therefore, a™aF ! = a™(aka) = (a™aF)a = a"Fa = a(MHRIH1 = gm+{k+1)
Hence, P(k+1) is true and it holds that a™a™ = a™*" for all m,n € N.
(ii) Let P(n) be a statement (a™)" = a™" for all m € N.
If n=1, then (a™)! = a™ = ™! for all m € N. So P(1) is true.
Suppose that P(k) is true where k € N. Then (a™)* = a™* for all m € N.
Then (a™)F+1 = (a™)ka™ = gMkgm = gmhk+m — gm(k+1),
Therefore, P(k+1) is true and (a™)" = a™" for all m,n € N. O

Definition 3.1.20. A non-empty subset T" of a semipolygroup S is called a sub-

semipolygroup if

e i forall z,y e T.

Example 3.1.21. Let T'={a,b} with the following table:

a b
a| a  {ab}
b | {a,b} b

From Example 3.1.11, we see that T is a subsemipolygroup of a semipolygroup S.

Definition 3.1.22. [8] An element e of a semipolygroup S is called an idempo-

tent if e € €.



23

Example 3.1.23. Let S = {a,b,c} and o be a hyperoperation on S defined by the

following table:

o a b &
a | {a,b} {a,b} S
b|{a,b} a S
c| S S c

We see that (5,0) is a semipolygroup and a,c are idempotents of S.
Even though a,c are idempotents of .S, every element in ac need not be an idem-

potent element. Here, b is not an idempotent.

Definition 3.1.24. Let S be a non-empty set. The number of elements in S is
denoted by |S].

Definition 3.1.25. [8] The element a of a semipolygroup S is called a scalar if

k=P =R Gl = A5

Example 3.1.26. Let S be a semipolygroup and e € S be a scalar idempotent,
for which e? = ee = {e}. Then {e} is a subsemipolygroup of S.

Definition 3.1.27. A semipolygroup S is a rectangular band if aba = {a} for
all a,bin S.

From Examples 3.1.6 and 3.1.7, we can see that the left zero semipoly-

group and the right zero semipolygroup are rectangular bands.

Definition 3.1.28. Let I be a non-empty subset of a semipolygroup S. We say
that I is a right ideal of S if xs C I for all s€ S,z € I. A left ideal is defined
analogously. We call [ is a (two-sided) ideal if it is both a left and a right ideal
of S.

Lemma 3.1.29. Let a,b be an elements of a semipolygroup S. Then aS =S and
Sa =S if and only if there exists x,y in S such that ax 2O {b} and ya O {b}.
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Proof. Let a,b be an elements of a semipolygroup S.
Suppose first that aS =5 and Sa= S for all a € S.
Then, aS=5,5a=S5, and bS=5,5b=S.
So, b€ S =aS implies b € ax or {b} C ax for some x € S.
We also have that b € S = Sa, and so b € ya or {b} C ya for some y € S.
Conversely, assume that {b} C ax and {b} C ya for some z,y € S.
Let x € aS, where a € S. Then x € as for some s € S.
Since a € S,s € S, as C S and thus x € S. Hence aS C S.
Let p € S. By hypothesis, {p} C an for some n € S.
Since n € S, an C aS. This implies that {p} C aS, that is p € aS.
It follows that S C aS, and hence aS = S.
Next, we will show that Sa = S. Let x € Sa. Then x € sa for some s € S.
Since a € S,s € S,sa C S and so x € S. Therefore, Sa C S.
Let p € S. By hypothesis again, {p} C ma for some m € S.
Because m € S, ma C Sa. This means that {p} C Sa, and p € Sa.
It follows that S C Sa. Then Sa=S. O

Definition 3.1.30. A map ¢:S — T, where (S,0) and (T,*) are semipolygroups,

is called a morphism (or homomorphism) if, for all z,y in §

Pp(zoy) = o(x)*p(y).

If S and T are semipolygroups with identity elements eg and ep, respectively, then

¢ will be called a morphism only if we have the additional property

P(es) = er.

We refer to S as the domain of ¢ and T as the codomain.
The image (or range) of ¢ is defined as {¢(s) : s € S}. If ¢ is one to one we shall

call it a monomorphism.
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Example 3.1.31. Let ¢: S — T be a map, where (S,0) and (7,*) are left zero
semipolygroups. It is easy to see that, for all z,y in S, ¢(zoy) =p({z}) ={o(x)} =
¢(x) * p(y). Therefore, ¢ is a morphism.

Similarly, if (S,0) and (7', *) are right zero semipolygroups, then ¢ is a morphism.

Proposition 3.1.32. Let ¢ : S — T be a morphism, where S is a left (right)
semipolygroup and T is a semipolygroup. Suppose that, for all semipolygroup U

and for all morphisms o, :U — S,

poa=¢of implies a=[.
Then ¢ is a monomorphism.

Proof. Let ¢: S — T be a morphism, where S is a left (right) zero semipolygroup

and T is a semipolygroup.

Suppose that for all semipolygroup U and for all morphisms «,5: U — S,

doa = ¢of implies a = 3.

Assume that ¢(x1) = ¢(x2), where z1,x2 € S.

Let U = {p} be a singleton set and pp = {p}. Then U is a semipolygroup.

Let o, 3 : U — S be defined by «a(p) = x1 and B(p) = x2.

That is, a(pp) = a({p}) = {a(p)} = {1} = r1021 = a(p) o a(p) and

Bpp) = B{p}) ={B(p)} = {z2} = 22022 = B(p) o 5(p).

Thus, a, are morphisms.

Then, (¢oa)(p) = ¢(a(p)) = ¢(z1) = ¢(x2) = ¢(B(p)) = (¢ 3)(p).

Therefore, poa = ¢o 3 implies that oo = 3.

Thus 21 = a(p) = f(p) = 2, and so ¢ is a monomorphism. ]
Lemma 3.1.33. Let ¢ : S — T be a morphism from a semipolygroup S into a
semipolygroup T'. Then the following:

(i) If e is an idempotent in S, then ¢(e) is an idempotent in T';
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(i) If a is a scalar idempotent in S, then ¢(a) is a scalar idempotent

i T.
Proof. (i) Suppose that e is an idempotent in S. Then e € €.

Since e € S, ¢(e) € ¢(S) C T.

So, we have ¢(e) € ¢(e?) = d(ee) = p(e)¢(e) = d(e).

Hence, ¢(e) is an idempotent in 7.

(ii) Suppose that a is a scalar idempotent in S. Then a? = aa = {a}.

Because ¢ is a map from S into T, ¢(a) € ¢(S) CT.

Hence, ¢(a)d(a) = ¢(aa) = ¢({a}) = {¢p(a)}, and so ¢(a) is a scalar

idempotent in 7. O

Lemma 3.1.34. Let ¢ : S — T be a morphism from a semipolygroup S into a
semipolygroup T. Then ¢(S) is a semipolygroup.

Proof. Let ¢(x1),d(x2), ¢(x3) € 4(S). Then z1,22,73 € S.
First of all, 71262 C S because S is a semipolygroup.
AT (o I e ) oL (o) fonfiime S &z 72 C 5.
It holds that z = ¢(z) € ¢(z122) C ¢(S). Hence, ¢(z1)é(z2) C H(S).
Let y € [p(z1)d(x2)]¢(23) = [p(z122)]d(23).
Hence, 3 € ¢(z) D)=t lzms)dorstmeste T12; C 5.
That is, y = ¢(m) for some m € za3 C (z122)a3 — 21 (2273).

Thus, there exists n € xoxs such that m € xyn. This implies that
y = ¢(m) € p(z1n) = ¢(z1)p(n) C ¢(1)(v213) = d(21)[(72)P(23)].

Therefore, [p(x1)p(x2)]d(x3) C d(z1)[d(x2)P(x3)].
Similarly, let u € ¢(z1)[¢(22)P(x3)] = ¢(z1)[d(z223)]-
It follows that u € ¢(x1)p(k) = ¢(x1k) for some k € xoz3 C S.

It also have that u = ¢(p) for some p € x1k C x1(x223) = (v122)x3.
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Then, there exists ¢ € x1x2 such that p € qrs.

Consequently,
u=¢(p) € d(qr3) = d(q)d(x3) C d(z122)d(23) = [(21)P(22)|P(73).
It concludes that ¢(S) is a semipolygroup. O

Theorem 3.1.35. Let ¢: S — T be a morphism from a rectangular band S into

a semipolygroup T'. Then ¢(S) is a rectangular band.

Proof. Let ¢(s1),0(s2) € ¢(S). Then s1,s9 € S.
By rectangular band property, s1s251 = {s1}.
By Lemma 3.1.34, ¢(S) is a semipolygroup.
oS Hret) ) o A L) N0 s, TN Rt AN, o roquired.
0

Lemma 3.1.36. Let ¢: .S — T be a morphism from a semipolygroup with identity
S into a semipolygroup T. If e is an identity element of S, then ¢(e) is an identity

element of ¢(9).

Proof. Suppose that e is an identity element in S.
Then, for all z € S,ex = ze = {z}.
Let ¢(z) € ¢(S). Then x € S. By Lemma 3.1.34, ¢(5) is a semipolygroup.

By the morphism property, it is obvious to verify that
¢(e)o(x) = plex) = p({a}) = {o(2)} = o({z}) = d(xe) = ¢(x)¢(e).
Consequently, ¢(e) is an identity element of ¢(.5). O

Lemma 3.1.37. Let ¢: S — T be a morphism from a semipolygroup with left zero
S into a semipolygroup T. If 0 is a left zero element of S, then ¢(0) is a left zero

element of ¢(9).
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Proof. Assume that 0 is a left zero element S. Then, for all z € S,0x = {0}.
By Lemma 3.1.34, ¢(S) is a semipolygroup.
Let ¢(x) € ¢(S). Then x € S and ¢(0)d(x) = ¢(0z) = ¢({0}) = {#(0)}.

Hence, ¢(0) is a left zero element of ¢(5). O

Similarly, we now obtain the next Lemma:

Lemma 3.1.38. Let ¢ : S — T be a morphism from a semipolygroup with right
zero S into a semipolygroup T. If 0 is a right zero element of S, then ¢(0) is a
right zero element of ¢(.S).

By Lemma 3.1.37 and Lemma 3.1.38, we have proved the following Lemma:

Lemma 3.1.39. Let ¢ : S — T be a morphism from a semipolygroup with zero S
into a semipolygroup T. If 0 is a zero of S, then ¢(0) is a zero of ¢(S).

Theorem 3.1.40. Let ¢ : S — T be a morphism from a commutative semipoly-

group S into a semipolygroup T. Then ¢(S) is a commutative semipolygroup.

Proof. Let ¢(s1),¢(s2) € ¢(S). Then s1,s9 € S.
By Lemma 3.1.34, ¢(S) is a semipolygroup.

It obtains @(s1)P(s2) = ¢(s152) = ¢(s251) = ¢(s2)¢(s1), and thus

¢(S) is a commutative semipolygroup. O

Definition 3.1.41. A morphism ¢ : S — T is called an isomorphism if it is
invertible, that is to say, if there exists a morphism ¢! : 7T — S such that ¢~ Lo ¢
is the identity map of S and ¢o¢~! is the identity map of T

If there exists an isomorphism ¢ : S — T we say that S and 7" are isomorphic,
and write S ~T.

A morphism ¢ from S into S is called an endomorphism of S, and if it is one

to one correspondence it is called an automorphism.

Proposition 3.1.42. [8] If (S,-) and (T,0) are semipolygroups, then the cartesian

product S xT becomes a semipolygroup if we define
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(s,t)o (s, ) =(s-8) x (tot') = U {)}

x€s-s' yetot!

We refer to this semipolygroup as the direct product of S and T'.

Proof. Define ¢: (SxT)x (SxT)— SxT as follows:

(s,t)o (s, t) = U {(z,y)} for all (s,¢),(s',t') € SxT.

rEs-s' yetot!
Since s,s' € Sand t,t' €T, s-s' C S and tot' CT.

Hence, (s-8') x (tot') = U {zy)}=(st)o(s,t) T SxT.
rEs-s' yetot!

Suppose that (s,t) = (a,b) and (s',t) = (d', V).

(s;t)o(s't) = U {@w}

x€s-s' yetot!

5 U @)}

x€a-a’ ,ycbob’

= (a,b)o(d,b).

This implies that ¢ is well-defined.

Let (s1,t1), (s2,t2),(s3,t3) € S x T.

[(317751) o (Sg,tg)] o(s3,t3) =

HASERREDPRIIS ARe12)

= U <x7y><>(837t3)

rES]1-82,yEt10ty

~ U { U {<u,v>}]

TES1-82,yEt1oly | uEX-83,VEYOL3

= U {(u,0)}

u€(s1-s2)-s3,v€(t10tg)ots

= U {(u,v)}

u€sy-(s2-83),v€t10(tg0t3)

= (s1,t1)0 U Ak}

DES2-53,qE€t20t3
= (Sl,tl) o [(82, tg) <o (Sg,tg)] .

U {(%y)}] o (s3,t3)

Hence, S x T is a semipolygroup. m
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Example 3.1.43. Let S be a semipolygroup with at least two elements. If A
is a left zero semipolygroup of S and B is a right zero semipolygroup of S,

then A x B is a semipolygroup whose hyperoperation is given by (a1,b1)(ag,b2) =

U @y} ={(a1,b2)}.

T€aiaz,ycbiba

Theorem 3.1.44. Let S be a semipolygroup. Then the following conditions are
equivalent:

(i) S is a rectangular band;

(ii) every element of S is a scalar idempotent, and abc = ac for all a,b,c in S;

(iii) there exists a left zero semipolygroup L and a right zero semipolygroup R such

that S ~ L X R;

(iv) S is isomorphic to a semipolygroup of the form A x B, where A and B are

non-empty sets, and where hyperoperation is given by (a1,b1)(az,b2) = {(a1,b2)}.

Proof. (i)=-(ii). Let a € S.

4 2

Then, by (i), we get aaa = {a}, and so a* = a%a = {a}a = a®.

2a = a*. Hence, a® = {a} as required.

Again, by (i), we have {a} = aa
Now, let a,b,c € S. From (i), we have {a} = aba,{c} = cbc, and {b} = b(ac)b.
Hence, ac = (aba)(cbc) = a(bacb)c = a{b}c = abe, as required.

(ii)= (iii). Choose and fix an element ¢ of S. Let L = Sc and R = ¢S.

Then, using (ii), we see that, for all {z} = zc and {y} =tcin L,
xy = (zc)(tc) = z(cte) = zee = z{c} = zc = {x},

and so L is a left zero semipolygroup.
Similarly, R is a right zero semipolygroup.

Define ¢: S — LxRby ¢(z)= |J {(a,b)} forallzesS.

a€xc,bece
Suppose that | {(a,0)}= |J {(m,n)}, then
a€xc,becx meyc,necy

{a} =% = ez by (ii) = yez =yey =yy = y* = {y},
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that is x =y, and so ¢ is one-to-one.

Also, ¢ is onto, since for all | J {(a,b)} in L x R, we see that

aczxcbecy
U {ent= U {(@b)}=gy).
ac€zxc,bEcy a€xyc,bEcxy

Finally, ¢ is a morphism, since , for all x,y € S,

o()ely) = U {lv)}y U {mn)}

a€xc,bEcx meyc,necy

= U {pot= U {»a}

p€(xe)(ye),q(cz)(cy) pExce,qEccy

=% D gy et | )

pETC,QECY pETYC,qECTY
= ¢(zy).
(iii)= (iv). Suppose that S ~ L x R, where L is a left zero semipolygroup
and R is a right zero semipolygroup.

Then, the product of two elements (a,b) and (¢,d) in S is given by

@ded= U {@yt= U {@y}={d}

x€ac,yebd zef{a},ye{d}

Thus, we take A= L and B = R as required.

(iv)= (i). Let Ax B~ S, with the given hyperoperation.

Let a,b,c € S. Then, we have a = ¢(x,y),b = ¢(p,q), and ¢ = ¢(m,n)
for some (a,b),(p,q),(m,n) € Ax B,

a* = ¢((z,9)é((2,y)) = o((z,y)(2,9)) = 6({(z.9)}) = {&((x,9))} = {a}.

Therefore, every element of S is a scalar idempotent, and we also have that

aba = ¢((2,9))0((p,0)¢((x,y)) = &((,9) (. 0)) o ((2,y))
= o{(z,9}o(z,9)) = o({(z,y)}) = {d((2,))} = {a}.
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3.2 Regular and Strongly Regular Relations

Let (S, 0) be a semipolygroup and p C S x S be an equivalence relation,

we set

ApB < Ya€ AFbe B,apband V' € B3d' € A,dpl/,
ApB & apb, Ya€ A Vbe B,

where A and B are non-empty subsets of S. We see that if ApB, then ApB.

Definition 3.2.1. [2] The equivalence relation p on S is called
(i) regular on the left (on the right) if, for all z,y,a of S,

zpy = (ax)p(ay) ((za)p(ya), respectively);

(ii) strongly regular on the left (on the right) if, for all z,y,a of S,

zpy = (ax)p(ay) ((za)p(ya), respectively);

(iii) p is called regular (strongly regular) if it is regular (strongly regular) on

the left and on the right.

Remark If p is a strongly regular relation, then p is a reqular relation.

Theorem 3.2.2. [4] If S is a semipolygroup and p is a regular relation on S, then
the quotient set S/p is a semipolygroup with respect to the following hyperoperation:

p(r) @ p(y) ={p(z) : z € 2y}.

Proof. First, we will show that the hyperoperation ® is well-defined on S/p.
Let x,y,2’,y € S be such that p(x) = p(z’) and p(y) = p(v/').
This implies that zpx’ and ypy'.
It follows that (zy)p(z'y) and (2'y)p(z'y’), because p is regular.

By transitivity, (xy)p(z'y’).
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Then, for all z € zy there exists 2’ € 2/y/ such that zpz'.

This means that p(z) = p(z'). It follows that p(z) ® p(y) C p(z') @ p(y').
For all w’ € 2y’ there exists w € zy, wpw’ and so p(w') = p(w).

Then, p(z') @ p(y') € p(z) @ p(y). Therefore, p(x) ® p(y) = p(z') @ p(y/').
Now, we check the associativity of ®.

Let p(x),p(y),p(z) be arbitrary elements in S/p.

Assume that

p(u) € (p(z) @ p(y)) @ p(z) = {p(a) :a € zy} @ p(z) = |J {p(a)@p(2)}.

aczy
This means that there exists p(a) € p(z) ® p(y) such that

p(u) € p(a) ® p(z) = {p(b) : b € az}.
In other words, there exist a; € zy and wu; € az such that p(a) = p(a;) and
p(u) = p(uy), that is, apa; and upu;.
It follows that (az)p(a1z) and so there exists uz € a1z C (xy)z = z(yz)
such that wypus.
From here, we hold that there exists us € yz such that ug € zus.
We have p(u) = p(u1) = p(uz) € p(z) ® p(us) € p(z) ® (p(y) @ p(z)).

It follows that (p(z) ® p(y)) @ p(2) C p(x) @ (p(y) @ p(2)).

In a similar way, we can obtain the converse inclusion. ]

Theorem 3.2.3. [4] Let S be a semipolygroup and p be an equivalence relation

on S. If the hyperoperation defined by Theorem 3.2.2 is well-defined on S/p, then

p 1s reqular.

Proof. Let xpy and a be an arbitrary element of S. Then p(x) = p(y).

If u € za, then p(u) € p(x)® p(a) = p(y) ® p(a) = {p(b) : b € ya}.

Hence, there exists v € ya such that p(u) = p(v) or upv.

If v" € ya, then p(v') € p(y) @ pa) = p(z) @ p(a) = {p(c) : ¢ € za}.
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Thus, there exists v’ € xa such that p(v') = p(u'), i.e., u/pv’. Hence (za)p(ya).

Similarly, we obtain that p is regular on the left. O]
Theorem 3.2.4. [6] Let S be a semipolygroup, and let p be a regular on S. Then
S/p is a semipolygroup with respect to the hyperoperation defined by Theorem 3.2.2

and the map p* from S onto S/p given by (2.2.8) is a morphism.
Now, let'T' be a semipolygroup and let ¢ : S — T be a morphism. Then the relation

kergp=po¢™" = {(a,b) € Sx S: p(a) = $(b)}

is reqular on S, and there is a monomorphism « : S/ker¢ — T such that im « =

im ¢ and the diagram .
S—T

(kew)ﬂ /
S/ker¢

commutes.

Proof. Let S be a semipolygroup, and let p be regular on S.

The natural map p? from S onto S /p is defined by
Px)=p(x) forallzes.

Let z,y € S. We have

P(x)©p(y) = p(x) @ ply) = {p(2) : 2 € oy} = Zgy{p(Z)} = plxy) = p(xy),
so p! is a morphism.

For the second part, suppose that 7T is a semipolygroup and let ¢: S — T
be a morphism.

Thus, that ker ¢ is an equivalence follows from Proposition 2.2.2.

Let ker¢(z) = ker¢(x1) and ker ¢(y) = ker ¢p(y1).

We check that ker ¢(z) @ker p(y) = ker ¢p(x1) @ ker ¢p(y1).

We have xker¢ x1 and yker ¢ y;.
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Then, (x,21), (y,y1) € ker¢ and ¢(x) = ¢(x1),0(y) = é(y1)-

For all ker ¢(z) € ker ¢(z) @ ker ¢(y), we have z € zy.

Thus, 6(2) € d(zy) = H(2)6(y) = $(z1)6(31) = Szayn).

Then, there exists z1 € z1y1 such that ¢(z) = ¢(z1).

This gives (z,21) € ker¢ or zker¢ z;.

That is, ker ¢(z) = ker¢(z1) € ker (1) @ ker p(y1).

It follows that ker p(x) @ ker p(y) C ker¢(x1) @ker ¢(y;) and, in the similar
way we obtain the converse inclusion.

Hence, the hyperoperation ® is well-defined on S/ ker ¢.

By Theorem 3.2.3, ker ¢ is regular.

For brevity, we denote ker¢ by «, and define a: S/k — T by
a(k(a)) = ¢(a) for all a € S.
Then « is both well-defined and one to one, since
k(a) = k(b) & (a,b) € k < ¢(a) = ¢(b).
It is also a morphism, since, for all a,b in 5,
alk(a) @ K(b)] = alk(ab)] = p(ab) = $(a)p(b) = a(k(a))a(k(b)).

Clearly, im o = im ¢, and from the definition of « it is clear that, for all a

in S,

a(kt(a) = a(x(a)) = d(a). -
Theorem 3.2.5. [6] Let p be a regular on a semipolygroup S, and let ¢ : S — T

be a morphism such that p C ker¢. Then there is a unique morphism (:S/p—T
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such that im = im ¢ and such that the diagram
¢

S —— T
"ﬂ %
S/p
commautes.
Proof. We define 5:S/p— T by
B(p(a)) =¢(a) forall a€S. (3.2.1)

Then g is well-defined, since, for all a,b in .S,

p(a) = p(b) = (a,b) € p = (a,b) € ker ¢ = 9(a) = H(b).

It is now a routine matter to show that [ is a morphism, that

im 8 = im ¢, and that Sop? = ¢.

The uniqueness of § is also clear, since any morphism satisfying o p? = ¢
must be defined by the rule (3.2.1). O

Theorem 3.2.6. Let p,o be reqular relations on a semipolygroup S such that

pCo. Then
a/p={(p(x),p(y)) € (S/p) x (S/p): (z,y) €0}

is a reqular on S/p and (S/p)/(c/p) ~S/o.

Proof. The above theorem implies that there is a morphism S from S/p onto S/o
such that the diagram

b
SL»S/U

| A

S/p

commutes. The morphism f is given by B(p(a)) = o(a) for all a € S, and
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the regular ker 5 on S/p is given by

ker 3 = {(p(a),p(b)) € S/pxS/p:B(pa)) = B(p(b))}
= {(p(a),p(b)) € S/pxS/p:a(a)=0(b)}
= {(p(a),p(b)) € S/pxS/p:(a,b) €a}.

It is usual to write ker 3 as o/p.

From Theorem 3.2.4, it now follows that there is a monomorphism

a:(S/p)/(a/p) — S/o defined by

ala/p(p(a))) =0c(a) forallaes. (3.2.2)

For all, o(a) € S/o,
since a € S, we have p(a) € S/p, so there is o /p(p(a)) € (S/p)/(c/p) such
that a(o/p(p(a))) = o(a) and so « is surjective.

Hence, « is an isomorphism such that the diagram

d’h

S S/o

MR

S/p F (S/p)/(a/p)

commutes. O

Proposition 3.2.7. For an arbitrary equivalence E on a semipolygroup S, we
define
E ={(a,b)e Sx S : (:an)E:J(xby) Va,y € 1.

Then E” is a equivalence on S.

Proof. Let x,y € S' and a,b,s € S.
For all u € zay we have uEw, i.e., (xay)f?(xay). It follows that (a,a) € E”.
Suppose that (a,b) € E” . That is, for all 2,y € S!, we have (xay)é(:vby).

Then, for all u € zay, for all v € xby,uFEv implies vEu by symmetry.
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Hence, (xby)E(zay), and so E’ is symmetric.
Next, we assume that (a,c) € E°o E°.

Thus, for some b € S, (a,b) € E” and (b,c) € E°.

That is, (zay)E(xby) and (zby)E(zcy) for all z,y € ST
Therefore, for all u € xay, v € xby, w € xcy, we have uEv and vEw.

By transitivity, uEw and (zay)E(xcy). We conclude that (a,c) € E>. O

If a is an element of semipolygroup S, the smallest left ideal of S
containing a is SaU{a}, which, as noted in Section 3.1, it is convenient to denote
by Sta. We shall call it the principal left ideal generated by a. An equivalence
L on S is defined by the rule that a£b if and only if a and b generate the same
principal left ideal, that is, if and only if S'a = S'b. Similarly, we define equivalence

R by the rule that aRb if and only if aS* = bS?.

Proposition 3.2.8. Let a,b be elements of a semipolygroup S. Then aLlb if and
only if there exist x,y in S such that xa D {b},yb D {a} and aRb if and only if
there exist u,v in S' such that au D {b},bv D {a}.

Proof. Suppose that aLb. Then S'a= S, i.c., SaU{a} = SbU{b}.
If a = b, then there exist z = e,y = e € S' such that {b} = eb = za and
{a} = ea = yb.
If a # b then b€ Sa and a € Sb.
That is, {b} C xa for some v € S C S and {a} C yb for some y € S C St
Conversely, we assume that {b} C xa and {a} C yb for some z,y € S'.
If x =e, then {b} C ea = {a} implies b= a.
Similarly, if y = e we get a =b.

Therefore, for x = e or y = e, we have Sa = Sb and also

Sta=SaU{a} = SbuU{b} =S
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Next, we assume that x # e and y # e.

If S has no identity element, then z,y € S, and so {b} C Sa and {a} C Sb.
Let p € SaU{a}.

If p=a we get p € Sb C SbU{b}, because {a} C Sb.

If p # a, then p € Sa and for some
s€S,p€salCs(Sh)=(sS)bC SbC SbhU{b}.

Therefore, SaU{a} C SbU{b}.

Let ¢ € SbU{b}.

If g=b we get ¢ € Sa C SaU{a}, because {b} C Sa.

If ¢ € Sb then, for some s € S,q € sb C s(Sa) = (sS)a C Sa C SaU{a}.
Therefore, SbU{b} C SaU{a}, and so SaU{a} = SbU{b}.

Similarly, if S has an identity element, then z,5 € S —{e} and S' = S.

If p’ € S'a = Sa, then there is s; € S such that

p' € s1a C s1(yb) = (s1y)b C Sb= S'b.
If ¢ € S'h= Sb, then there is s9 € S such that

q' € s9b C s9(xa) = (s92)a C Sa = Sla.

Hence, S'a = S'b.
In the same way, we can prove that aRb if and only if there exist u,v € S!

such that {b} C au and {a} C bv. O

Our final equivalence is the two-sided analogue of £ and R. The prin-

cipal two-sided ideal of S generated by a is S'aS", and we define the equivalence
J by the rule that aJb if and only if STaSt =SS!, that is to say, if and only if

there exist z,y,u,v in S! such that

{b} Czay,{a} C ubv.
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If alb, then there exist x,y € S' such that {b} C za and {a} C yb. We can
choose k = e € S such that {b} C za = (za)e = wak and {a} C yb = (yb)e = ybk.
Similarly, if aRb, then there exist u,v € S such that {b} C au and {a} C bv.
Hence, {b} C au = (au)e = auk and {a} C bv = (bv)e = bvk. So aJb . Hence,
L C J. Similarly, R C L.

Definition 3.2.9. A semipolygroup S is called equidivisible if, for all s,t,u,v
in S, st = uv implies that either
(i) there exists x € S1 such that s € uz and v € xt; or

(ii) there exists y € S* such that u € sy and ¢ € yov.

Notice that every polygroup is equidivisible simply by defining z € u=1s

in (i), or y € s~ u in (ii).

Definition 3.2.10. [8] An element a of semipolygroup S is called regular if there

exists z in S such that aza > a.

Definition 3.2.11. [8] The semipolygroup S is called regular if all its elements

are regular.

Polygroups are of course regular semipolygroups, but the class of reg-
ular semipolygroups is vastly more extensive than the class of polygroups. For
example, every rectangular band B is regular, since {a} = aba for all a,bin B. We
also have that the left (right) zero semipolygroup S is regular because zyz = {x}
for all z,y € S.

Lemma 3.2.12. Let ¢: .S — T be a monomorphism from a reqular semipolygroup
S into a semipolygroup T. Then im ¢ is reqular. If f is an idempotent in im ¢

then there exists an idempotent e in S such that ¢(e) = f.

Proof. Let ¢(s) €im ¢ ={op(s):s€ S}
There exists x in S such that s € sxs, because S is a regular.

Thus, ¢(s) € ¢(sxs) = ¢(s)p(x)p(s), and so im ¢ is regular.
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Suppose that f is an idempotent in im ¢.

Since f € im ¢, there exists e € S such that ¢(e) = f.

We have ¢(e) = f € ff = d(e)d(e) = d(ee), that is, ¢(e) € d(ee) = | {o(a)}.

acee

Then, there exists a € ee such that ¢(a) = ¢(e).
It follows that a = e, because ¢ is a monomorphism. Hence, e € ee.

Therefore, e is an idempotent, as proved. O

3.3 Inverse Semipolygroups

Definition 3.3.1. If a is an element of a semipolygroup S, we say that a is an
inverse of a if

/ / / /
a€aaaand a €aaad.

Notice that an element a may well have more than one inverse. Indeed,
in a rectangular band, every element is an inverse of every other element and every
inverse semigroup has an inverse. We also have that every element of a left (right)
zero semipolygroup has an inverse.

Definition 3.3.2. A semipolygroup S will be called an inverse semipolygroup

1

if there exists a unique unary operation a — a~ " on S with the properties

(@ 9 L Wiy 0> 08

a€bcimpliesbcac tand ceb ta  forall a,b,cin S.

Notice that, since these equations are to hold for every element of §S' it

1

follows that a~taa™' =a"'(a™!)"ta"! 3 a1, and so a~! is the inverse of a.

Remark Every inverse semipolygroup is regular.

Example 3.3.3. Let S = {a,b,c} with the following table:

a b c

a|{ab,c} {a,b}  {a,c}
b | {ab} A{ab,c} {b,c}
c| {a,c}  {byc} {a,b,c}
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Then (S,-) is an inverse semipolygroup.

Example 3.3.4. Let (G,-) be a group. Define a semipolygroup (G,o) by

giog2={g1-g2} for all g1,92 € G,

L—e=qa"1q for all

Because G is a group, there exists a~!' € G such that a-a~
a € G, where e is the identity element of G. It follows that (a=1)~! =a.
Moreover, aoa toa={a-a '} oa={e}oa={e-a} = {a}.

Next, we suppose that a € boc. That is, a € {b- c}.

It follows that aoc™ ' C {b-cloc ' ={(b-c)-c '} ={b-(c-c 1)} ={b-e} = {b}, 50
we get aoc™ ! = {b}. Similarly, b=toa Cblo{b-ct={b"1-b-c} ={e-c} ={c},

so b~loa = {c}. Hence, (G,0) is an inverse semipolygroup.

Example 3.3.5. Let P be a polygroup.
Let a,b,c € P. We have (a=!)~! =@ and a € bc implies b € ac™!,c € b~ 1a.
Since e € aa™!, it follows that {a} = ea C aa™'a, i.e., a € aa'a.

Therefore, P is an inverse semipolygroup.

Example 3.3.6. Define a hyperoperation o on R™ by
roy={zy} for all z,y € RT.
Let z,y,z € RT. First,

(xoy)oz = {wyloz={(zy)z} ={z(yz)} =xo{yz} =x0(yo2).

Thus, (R*,0) is a semipolygroup.

1
Since x € RT, there exists 7! = = € Rt such that
T
1 1 1
zox tox = zo—ox=< xz|—|pox={1l}ox={zx}>x,
T

-1
1
and (z71)~1 = () = x. Suppose that w is an inverse of x.
T

Then x € rowox = {zwx}.

1
It follows that z = zwz, and hence w = —. That is, 27! = = is unique.
x x
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Suppose that x € yoz = {yz} for all z,y,z € RT.

It holds that z = yz, so that y = L and 2= 2. Tt follows that
z Y

A £ Y S
e ) (G-t

Therefore, (R1,0) is an inverse semipolygroup.

Example 3.3.7. Define a hyperoperation o on R™ by
zoy={—zy} for all z,y e R™.

Let z,y,z € R™.

Then, there exists r1,r2,73 € RT such that £ = —r1,y = —r9 and z = —r3.

(zoy)oz = ((—r1)o(—r2))o(=r3)={—(=r1)(=r2)}o(—r3) ={-rira}o(-rs)

= {—(=r1re)(=r3)} ={—r1rars} = {—(=r1)(=rar3)} = (=r1) o {—rors}

= (=r1)o{—=(=r2)(=r3)} = (=11)0((=12)0(=73)) =20 (y02).

Thus, (R™,0) is a semipolygroup.

L 1
Since € R™, there exists 7! = (—r1)™! = — = = € R~ such that
—{ dl X

_1701 o(—r1) = { LA <_1> } o(—r1) ={-1}o(-r1)

1
= =D ={-n}={z} >z,

rox tox = (—rp)o

T
Then, there exists a € R such that p = —a.

-1
1
and (z71)~1 = ( = x. Suppose that p is an inverse of x.

r=-r1 € zopox=(-r1)o(—a)o(—r1)={—(-r1)(—a)}o(-r1)={-ra}o(-r1)

= {—(-ra)(=r1)}={-rar}.

1
This implies that —r; = —rjar;, and hence — = —a =p. Thus, 27! = — is
—71 —r1

unique.

Suppose that x € yoz = {—yz} for all z,y,z € R™.
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Then, z = —yz and —ry = —(—r2)(—73).
It follows that —r — _7“7{3 and —r3 = _7“;2 Thus,
N N ) MRS En e
~ 2ol —zox and
e e} e (e
e yten
y

Therefore, (R™,0) is an inverse semipolygroup.

Example 3.3.8. Let S = {a,b} with the following table:

a b
oMl N ¥ {aft}
b | {a,b} b

Then (S,-) is an inverse semipolygroup where a~' =b and b~! = a.

Consider the system < S,-,e,”'>, we have aa"'Na"ta=abNba =S

and bb='Nb~1b=banab=S.

If e = a, then e =a € aa"'Na~'a. In addition, ea = aa = {a} = aa = ae,
but eb=ab= S # {b} and be =ba = S # {b}. Similarly, if e = b, then ea = ba =
S #{a} and ae =ab= S # {b}. Consequently, (5,0) is an inverse semipolygroup,
but it isn’t a polygroup.

Lemma 3.3.9. Let S be an inverse semipolygroup and x € S. Fvery element in

zx~ " and 7'z is regular.

Proof. Let S be an inverse semipolygroup and x € S.
Then, there exists a unique = € S such that zz=1 C S.
Let a € zz~!. This implies that z=! € v7'a and z € a(z71) ! = ax.
1

Thus, we have a € z27! C (ax)(z7'a) = a(zz™)a.

Hence, there exists b € zz~! such that a € aba, and hence every element in
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1

zx~! is regular. Similarly, every element in 2!

x is regular. O]

Lemma 3.3.10. Let S be an inverse semipolygroup. Then
(i) if e is an idempotent of S, then e™! =¢;
(ii) if e is a scalar idempotent of S, then ee™! = {e}.

Proof. (i) Let e be an idempotent of S.
Because S is an inverse semipolygroup, there is a unique e~! € S such that
e € eele. Since e € €2 = ce C eee, e is an inverse of e.
That is, e ! =e.
(ii) Let e be a scalar idempotent of S. By (i), ee™! = ee = {e}. O
Definition 3.3.11. A non-empty subset K of an inverse semipolygroup S is said

to be an inverse subsemipolygroup of S if, under the hyperoperation in S, K

itself forms an inverse semipolygroup.
Lemma 3.3.12. A non-empty subset K of an inverse semipolygroup S is an
inverse subsemipolygroup of S if and only if

(i) a,b € K implies ab C K ;

(ii) a € K implies a™' € K.

Proof. First, suppose that K is an inverse subsemipolygroup and let a,b € K.
Then K is an inverse semipolygroup.
Thus, there exists a unique e~ € K and we have ab C K.
Conversely, we assume that (i), (ii) are true and let a,b,c € K.
Thus, we have abC K and a ', b~ € K.
Since K C S, (ab)c = a(bc), that is, K is a semipolygroup.
Because S is an inverse semipolygroup, there exists a unique ¢~ 1,6~ € §
such that (a™')~!' =a,a € aa 'a.

Because K C S, the inverse is unique and thus ¢~ 1,071 € K.
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Suppose that a € be. Since K C S, this implies that b € ac™! and ¢ € b~ La.
It follows that K is an inverse subsemipolygroup. O]

Example 3.3.13. Let S be an inverse semipolygroup and let a be a scalar idem-

potent of S. Then we have {a} =a® and a=' € S. Let z,y € aa™".

Now, consider zy C (aa~1)(aa™') = aaaa = a*a® = aa = aa~! by Lemma 3.3.10(i).
Since v € aa~ ', 27! € (aa™1) "t =aa .
Hence, aa™"! is an inverse subsemipolygroup of inverse semipolygroup S.

Proposition 3.3.14. Let a,b be an elements of an inverse semipolygroup S. Then
(i) (ab) ™ =b1a";
(i3) if a='a = b~'b then aLlb;

(iii) if aa=' = bb~! then aRb.

Proof. Let a,be S.
Then, there exist a=1,b~! € S such that a € aa~'a and b € bb~1b.
(i) We have ab C S. Let 2! € (ab)™' = {271 : x € ab}.
Then, x € ab implies 2! € b=1a~!. Hence, (ab)™' Cb~1a~!
Since a= 1,671 €S, b la™1 C S. Then, let y € b~ 1a 1.
This implies that a1 € (b~ ly=by=becaly =yt c(a 1) lb=ab.
Thus, y~! € ab. Tt follows that (y=1)~! € (ab)7!, ie., y € (ab)~L.
Therefore, we get b~ta~! C (ab)~!. Consequently, (ab)~! =b"1a"!.
(ii) Suppose that a~ta =b~'b.
We have a € aa " ta = ab~ b= (ab"')b and b € bb~1b =ba"1a = (ba!)a.
Then, there exists z € ab~' C S C Sl,y € ba~1 C S C S such that a € zb
and b € ya. From Proposition 3.2.8, it follows that a.Lb.
(iii) Similarly, aa=! = bb~! implies that aRb. O

Lemma 3.3.15. Let A, B be inverse subsemipolygroups of an inverse semipoly-

group S. Then, for all z,y,a,b € S,
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(i) x € Ab implies b€ A~ x;
(ii) y € aB implies a € yB~1.
Proof. Suppose that x € Ab. Then x € a1b for some a; € A.

It holds that b € al_lx C A 1y,

In the same way, we can prove that y € B implise a € yB~. O

Lemma 3.3.16. Let A, B be inverse subsemipolygroups of an inverse semipoly-

group S. Then
(AB)1 =B 1Al where A7l ={a"':ac A}.
Proof. Consider (AB)™ ' ={y ':y€ AB}. Let y=! € (AB)™!. Then y € AB.
Then, y € ab for some a € A and b € B which implies that
yleblalCcB 1AL

Let 7 le B~1A71,
Thus, there are b' € B~! and a=! € A~ such that 2= e b~ 1o 1.

This implies that = € ab, and we get = € (AB)~1.

Hence, (AB)"!=B~1A~1 O
Corollary 3.3.17. Let ay,as,...,a, be elements of an inverse semipolygroups.
Then

(arag---an) "t =a;ta, - ayl for every positive integer n.

Proof. The proof is by induction on n € N.
Let P(n) be the statement (ajag---a,)~t =a,'a ' - ay’.
If n =1, then P(1) is true.

Suppose that P(k) is true where k € N. Then (ajas---ag) "' =ay ta;t--ar .
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Thus,

-1 -1 -1 —1 -1 (-1, -1 -1

Upy10f Gy--01 = agglag a2y -ar)
= apy(arag---ap) ™!

= ((arag---ap)apr1) "t ; by Lemma 3.3.16

= (a1a2---apags1)”"

Hence, P(k+1) is true.
By Mathematical Induction, we get

1_ . —1-1 ]

(a1ag---an) ' =a;la;t; a7l foralln €N,

Definition 3.3.18. Let S be an inverse semipolygroup and a € S. For all k € N,
=y ).

Lemma 3.3.19. Let S be an inverse semipolygroup and a € S. Then a™a™ = o™+

for allm,ne Z~.

Proof. For m,n € Z~, we have n = —p and m = —q for some p,q € Z". Then

]

For al me€Z*n€Z or meZ ,n€Z", Lemma 3.3.19 isn’t true,
because if we suppose P = {e,a,b,c}, and consider the commutative polygroup

< P,-,e,7'> ([4]), where - is defined on P as follows:

e a b c

ele a b c

ala P {a,b,c} {a,b,c}

b|b {ab,c} P {a,b,c}

clc {abct {a,b,c} P
then P is an inverse semipolygroup where ¢! =a,b67! = b, and ¢~! = ¢, because
P is a polygroup. Consider a=3a? = (a=1)?a® = a® = P, but o322 =1 = a.

Thus, a 342 # a(=3)+2,
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Lemma 3.3.20. Let S be an inverse semipolygroup and a € S. Then, for all
m,n € Z—{0},
(i) a" = (a=1)" = (a™)"L;
(ii) (™) =a™".
Proof. (i) For n € Z*, we have a=" = (a~!)" by Definition 3.3.18.
Let P(n) be the statement a=" = (a™)~! for all n € Z™.
If n=1, then a=! = (a!)~!. So P(1) is true.
Suppose that P(k) is true, where k € Z*. That is, a™* = (a¥)~1
Since k€ ZT, -k € Z™.

By Lemma 3.3.19 and Proposition 3.3.14 (i), we have
a— k1) — g—kq—1 = (ak:)—la—l Tl (aak)—l — (&k+1)—1.

Hence, P(k+1) is true.

By Mathematical Induction, we get =" = (a)~! for all n € Z7.
For n € Z~, we have n = —p for some p € Z™T.

Thus, a=® = a~{?) = g = ((®)"))71 = (¢=?)71 = (™) ! and
o= =ar = (@) P = (@) P = )

Thus, a™" = (a=1)" = (a”)~! as required.

(ii) For n € Z*, let P(n) be a statement (a™)" = a™" for all m € Z — {0}.
If n =1, then P(1) is (a™)! = a™ = a™ = a™" for all m € Z—{0}.
Suppose that P(k) is true, where k € Z+.

That is, (™) = a™* for all m € Z — {0}.

If m € Z*, then mk € Z*, and so by Lemma 3.1.19 (i), (ii) we get

qmk+1) — gmk+m _  mk m _ (am)kam _ (am)k+1'

—= a a =

If meZ~, then mk € Z~.

Hence, aF+1) = gmktm — gmkgm — (gm )k (g™) = (a™)*+1 by Lemma 3.3.19.
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Therefore, we get (a™)" = a™" for all m € Z — {0} for all n € Z".
For n € Z~, we have n = —p for some p € ZT.

If m € Z™, then

If m € Z~, then we have m = —¢q for some ¢ € Z™T.

Since (a™)" = a™" for all m € Z— {0} for alln € Z7,

(™) = (a=9) P = ((a?) )P = (a9)~(P) = (a9)P = a® = o(-D(=P) = g
So, our claim holds. O

Proposition 3.3.21. Let S be an inverse semipolygroup, and let a,b € S. The

following statements are (i) < (ii) = (v), (iv) < (iii) = (vi) and (v) < (vi):

(i) aa! = ba™ 1, (ii) aa=' = ab~;
(iii) a 'a =b"ta; (iv) a=ta = a=b;
(v) a € ab™a; (vi) a € aa™'b.

Proof. (i)&(ii). aa™' =ba~' iff (aa™!)~! = (ba= ")t iff aa™ = ab~ L.
(i)=(v). Suppose that aa~! = ba='.

L — g=1ba=t. Tt obtains a € ab™ta.

Since a € S,a™' € S and a~ ! € a~laa™
(iv)e(ii). ata=a 10 iff (a7ta)™t = (a7 10) L iff a~la=b"1a.
(iii)=-(vi). Suppose that a~'a=b"1a.

Since a € S,a™' € ataa™! =b " laa™!. This implies that a € aa~'b.
(vi)=(v). Suppose that a € aa~'b. It follows that a=! € b~laa~!.
By Lemma 3.3.15 (i), we obtain a=! € (b~ta) " ta~! =a"tba=L.
Thus, a € ab™ta.

(v)=(vi). Suppose that a € ab~'a. This implies that a=! € a~1ba~!.
By Lemma 3.3.15 (i), we obtain ! € (a7 ') ta™! = b~ taa™1.

Then, a € aa™'b. O
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Theorem 3.3.22. Let ¢: S — T be a morphism from an inverse semipolygroup

S into semipolygroup T. Then ¢(S) is an inverse semipolygroup.

Proof. Assume that ¢ is an element of ¢(5).

Then, there exists an element s in S such that ¢(s) =t.

Because S is an inverse semipolygroup, there exists a unique s~ € S

such that s € ss™1s, and so t = ¢(s) € ¢(ss~1s) = ¢ (s)d(s 1 o(s).

We also have that s71 € s71ss™1 ¢p(s71) € p(s Do (s)p(s71).

So, we obtains ¢(s~!) is an inverse of ¢(s) and ¢(s) is an inverse of ¢(s~1).

Then ¢(s~1) = (¢()) ™ =+ and ¢ = §(s) = ($(s~)) .
It follows that (t=1)~1 = ((¢(s)) )"t = (o(s7 1)) =o(s) =t.

Assume that m is an inverse of t.

Then m = ¢(a) for some a € S and t € tmt.

Therefore, ¢(s) € ¢(s)p(a)p(s) = P(sas).

So s € sas, it follows that a = s~! because s~

1 is unique.

Thus, m = ¢(a) = ¢(s~) = (8(s)) " =t~".

We now conclude that ¢! is unique.

Let t1,t2,t3 € ¢(S). Suppose now that ¢ € tots.

Then, we have t] = ¢(s2),t2 = ¢(s2) and t3 = ¢(s3) for some s1, 52,53 € S.

Thus, ¢(s1) € ¢(s2)d(s3) = @(s253), this means that s; € s953.

It implies that so € 31351 and sg € 32_131, SO

ty = ¢(s2) € Ps1s35") = d(s1)0(s3") = d(s1)(é(s3)) " = tat3" and
ty = ¢(s3) € dlsy ' s1) = d(sy)d(s1) = (¢(s2)) " d(s1) =3 ',
and so ¢(.S) is an inverse semipolygroup, as required. O

By Theorem 3.3.22, we have the additional property that ¢(s~1) =

(p(s))~! for all sin S.
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Theorem 3.3.23. Let ¢ : S — T be a morphism from a commutative inverse
semipolygroup S into semipolygroup T. Then ¢(S) is a commutative inverse

semipolygroup.

Proof. As a Theorem 3.1.40, ¢(5) is a commutative semipolygroup.
Again, by Theorem 3.3.22, it holds that ¢(S) is a commutative inverse
semipolygroup, as required. O
Theorem 3.3.24. Let (S,-) and (T,0) be two inverse semipolygroups.

Then the product S X 'T" with respect to hyperoperation defined by Proposition 3.1.42

is an inverse semipolygroup, where (s,t)~" = (s71,t~1) for all (s,t) € Sx T.

Proof. By Proposition 3.1.42, it obtains that S x T is a semipolygroup.
Let (S,t), (Sl,tl), (Sz,tg), (Sg,tg) eSxT.
It obtains ((s,)™") " = (s7Ht7 )" = ((s7) 7L () TH) = (s,1).

Now, (s,t)o(s,t)_lo(s,t): U {(z,y)}.

x€s-s~L.syctot—lot

Since s €s-s"1.sand t € tot lot,
(s,t) € U {(@,9)} = (s,t)o (s,) Lo (s,1).
xcs-s~l.s,yctot—lot

Suppose now that (s1,t1) € (s2,t2) ¢ (s3,t3) = U {(z,y)}

TES9-83,YElg0l3

Thus, s1 € s9-s3 and t; € tyots.

This implies that s9 € 31-351,33 € 32_1 -S1,t0 € tlotg1 and t3 € t2_1 oty.

Hence,
(s1,t1)0(s3,t3) " = (s1,t1)o(s3  t5") = U {(p,q)} > (s2,t2) and
pesl.sgl,qetlotgl
(527t2)_10(817t1) = (82_17t2_1)<>(81at1> = U {(uav)} = (837t3)'

-1 -1
UES, ~+S1,UEL, ot

So, our claim holds. O
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Let S be an inverse semipolygroup and let K be an inverse sub-
semipolygroup of S. If s € S then the subset Ks is not necessary contain s,
but it definitely contains s if ss™1 C K bacause s € ss s C Ks. We define a
right coset of K to be a set Ks (s € S) for which ss™' C K. If s~'s C K then
s € 55 1s C sK. We define a left coset of K to be a set sK (s € S) for which
sTlsC K.

3.4 Normal Subsemipolygroups

Definition 3.4.1. A non-empty subset N of an inverse semipolygroup S is a

normal subsemipolygroup in S if
(i) N is an inverse subsemipolygroup.
(ii) If e is idempotent of S then e € N.

(iii) If @ € N then 27 lax C N for all z € S.

Example 3.4.2. Define a hyperoperation o on Q* by
roy={wy} for all z,y € Q.

First, we see that QT CR™. Let z,y,2 € QT.
m u
Then, xt = —,y = - and z = — where m,n,p,q,u,v € Z*.
n q v
m m
Thus, we have xoy = WNT L {p}
n o q ng
Since m,n,p,q € Z*, mp,nqg € Z*. Thus, zroy C Q™.

m n
Since x = — € QT, there exists 7! = — € QT such that
n m

rortor = Moo (M) (1) ()b o)y,

-1
n m
and (r7 171 = () = — = 2. Suppose that w is an inverse of .

m n
m m m m m m m m
Then, z=— €rowor=—owo—= w|— | . Hence, — = — Jw| — |,
n n n n n n n n
1M .
and so w = —. Therefore, z7" = — is unique.
n

Suppose that JUEyozzgog = {pu} for all z,y,z € Q™.
q v qu
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U mu m
Then, z = pe implies that y = — and 2z = am .
qu nu pn
mu m v m m
Thus, y € {} = —o—=gxoz tand z € {q} . PNl =y lox.
nu n u n D on

Therefore, (QT,0) is an inverse semipolygroup.

From Example 3.3.6, we have 1 € 101 = {1}.

Suppose that a is an idempotent of RT. This means that a € aoa = {aQ}.
Hence, a = a?, and thus a = 1.

Consequently, there is only 1 is an idempotents in R™ and it is obvious to see that
1 is an idempotents in Q.

1
Let r € RT. Then there exists a unique 7—! = = € RT such that
T

ozor = LoZor={(1) (M) [y cor

From Example 3.3.6, we have Q%1 is a normal subsemipolygroup of an inverse

semipolygroup R™.

Example 3.4.3. Define a hyperoperation o on Q~ by
zoy={—zy} for all z,y € Q.

First, we have Q7 CR™. Let z,y,2 € Q.

m u
Then, r = ——,y = —P and z = —t2 where m,n,p,q,u,v € ZT.
n v

e~ (2o 2] (- ()0} {2}

Since m,n,p,q € Z", mp,nqg € Z". Thus, xoy C Q.

m n
Since © = —— € Q, there exists 7' = —— € Q™ such that
n m

erter = ()00 (0) - ERG)
= (=)= {ren (-2 {-a e

-1
n m
and (z7H)~1 = <— ) = —— = 1z. Suppose that w is an inverse of x.
m n

Thus, w € Q~, and there exists a,b € ZT such that w = —%. Then
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o e ()e(5) () (- CR)E)(5)
()R]

2

3

m m-a a n n
Hence, —— = ———, and it implies that —— = ——. Then, w = ——.
n n2p b m m
-1 n.. .
Therefore, x7' = —— is unique.
u u
Next, we suppose that x € yoz = (_p) o <—> = { _p} for all z,y,z€ Q™.
q v qu
U muv m
Then, x = e implies that y = —— and 2z = - L Thus,
qu nu n

v e w={--{-5) (5 () (5)e ()
i i e O ]G0 o G K R

Therefore, (Q7,0) is an inverse semipolygroup.
From Example 3.3.7, we have —1 € (—=1)o(—1) ={—(-1)(-1)} = {-1}.
Suppose that a is an idempotent of R™. This means that a € aca = {—a?}.
Hence, a = —a?, and thus a = —1.
Consequently, there is only -1 is an idempotents in R™ and it is clearly that —1 is
an idempotents in Q.
Let r € R~ —{0}. Then there exists b € RT such that r = —b.

1 1

1
Again, there exists a unique 7~ = (=b)~! = S R~ such that
b r

e = () ()= (G) Ry
- = (Ca)eof e

From Example 3.3.7, we have Q™ is a normal subsemipolygroup of an inverse

semipolygroup R™.

Corollary 3.4.4. Let N be a normal subsemipolygroup of an inverse semipoly-

group S and let a € S. Then Na= Nb for all b€ Na.

Proof. Let a € S and let x € Na. Then z € nja for some ny € N.
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Since b € Na, so b € naa for some no € N.

It now implies that a € ny 'b, and so x € nia C ny(ny ') = (nyng H)b C Nb.
Similarly, we let y € Nb. Thus, y € nsb for some n3 € N.

It is immediate that y € n3b C n3(na2a) = (n3n2)a C Na, and so Na = Nb.

[]

Corollary 3.4.5. Let K and N be inverse subsemipolygroups of an inverse semipoly-
group S with N normal in S. Then NNK is a normal subsemipolygroup of K if
NNK is a non-empty set.

Proof. Suppose that NN K is a non-empty set. Let a,be NNK.
Then a,b &€ N and a,b € K.
It follows easyily that ab C N and ab C K, that is, abC NN K.
Now, we get that NN K is a subsemipolygroup of K.
Since a € N and a € K, we also have that a ' € N,a ™' € K, soa ' e NNK.
By using Lemma 3.3.12, NN K is an inverse subsemipolygroup.
Suppose now that e is an idempotent of K.
Because N is normal in S and e € K C 9, it implies that e € V.
Then ee NNK.
Suppose that a € NN K and k € K. Thus, we have that a € N and a € K.
Because N is normal, this implies that k¥~ 'ak C N.
Since a,k, k! € K, we also implies that k~lak C K.
That is, s~ lak C NN K.
Hence, NN K is a normal subsemipolygroup of K as reqiured. O]

Definition 3.4.6. Let N be a normal subsemipolygroup of an inverse semipoly-

group S. Define the relation 7 on S by

(z,y) € 7 (or x 7y) if and only if zy~ ' NN # 0.
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Lemma 3.4.7. The relation 7 is an equivalence relation on an inverse semipoly-

group S.

Proof. Suppose that z€S. Let a€ S and let n € N. Then 2! € Sand n=t € N.
We have 2n C S.
Then, there exists a € zn such that z € an™! and 27! € na™!.
zr~ 1 C (an ) (na™t) =a(n"'n)a"! CaNa~! C N because N is normal.
Hence, z2~' NN # (). Therefore, z 7 z, and so 7 is reflexive.
Suppose that x 7y, where 2,y € S. Then zy ' NN # (.
That is, there exists a € zy !N N,ie., a € xzy~! and a € N.
Since a € zy~ !, this implies that ¢~ € yz~1.
Sincea € N, a™1 € N.
Hence a~t € yz~ NN, that is, yz = ' NN # 0 or y 7 x, and so 7 is symmetric.
Assume that = 7y and y 7 z, where z,y,z € S.
Then there are a € zy !N N and b€ y2~'N N, that is, a € zy~',a € N and
beyz"tbe N. So we get x € ay and 2~ € y~1b.
It follows that 2~z C (y~'b)(ay) =y~ (ba)y C N because ba C N
We see that 7'z =271(271) "= (2712) "' ={u' :u € 2712} C N because
forallu € 212 C N, sou™! € N.
Let v € v~ 2. This implies that z € (z7!) v =2v =1 € zv7 L.
Then we have show that 2z 1 C 201271 C N, we deduce that rz NN # ()
or x T z. Hence, 7 is transitive, as required. O
Lemma 3.4.8. The equivalence relation T on an inverse semipolygroup S is a

strongly reqular.

Proof. Let x,y,a € S. Suppose that x7y. So we have xy 1NN # 0.

Let u € za and let v € ya. It follows that vt € a1y~ 1.
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We obtains v 'u C (a 'y~ 1) (2a) = a " (y'2)a.
Since zy ' NN # ), there exists k € xy~" and k € N such that z € ky.

Ly C y_lk;y C N, because N is normal.

Now, we get that y—
It is obvious to see that v~1u C N.

For any r € v™'u C N, we have r—1 € N.

This implies that wv ! = (v 1)t = (v lu)t={rtirevtu} CN,
that is, uv "' NN # () and so u 7 v.

Therefore, 7 is a strongly regular on the right.

1. -1

Let m € ax and let n € ay. Then m~' €z~ ta "l and n=t ey~ la L.
It holds that m™! 7 n~!, because 7 is a strongly regular on the right.
Thus, m~'nN N # @ and there exists p € m~'nNN, ie., p€m~tn and

p € N. It follows that p~! € n='m and p~' € N and that p~! e n"'mnNN.

Hence, n™'mN N # 0 and so m 7 n. Thus, our claim holds. O]

Let 7(z) be the equivalence class of the element x of an inverse semipoly-

group S. Assume that the quotient set
S/t ={r(x):z €S}
On S/7 we consider the hyperoperation @ defined as follows:
T(z)®@7(y) ={7(2) : z € zy}.

Lemma 3.4.9. Let N be a normal subsemipolygroup of an inverse semipolygroup

S and let T be an equivalence relation on S. Then 7(x) = Nx for all x € S.

Proof. Suppose that y € Nz.
Thus, there exists n € N such that y € nz, which implies that n € yz !
Hence, yz~ "N N # (). That is, yr2 and so y € 7(x).
Now, we have Nz C 7(z).

Next, we let y € 7(x). Then 2 7y or zy ' NN # (). So,
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there exists a € zy~! and a € N such that y ™! €z 'a and y € a2 C Nz.

Therefore, 7(z) C Nz, and thus 7(z) = Nz. O

Lemma 3.4.10. The quotient set S/T is an inverse semipolygroup with respect to

the hyperoperation ®.

Proof. By Theorem 3.2.2, it concludes that S/7 is a semipolygroup.
First, we want to show that ((7(z))~!)~! = 7(z) for all 7(z) € S/7.

Since (1(z)) "' ={y~t:y e7(x)}, so

(r@)™) ™ = {H ™y elr@)™

= {(y:yer(z)} =7(=)

Next, we will prove that 7(z) € 7(2) ® (7(z)) "' @ 7(z).

We have

(r@)®(r(2)) N @®7(2) = {r(m):merz™'}®7(z)
— U 7(m) @ 7(x)

T(m)er(z)®(r(z)) !

= 1{7’(n) :n €ma}.

mexrxr—

1

Since x € zo~ 'z = (zz~!)x, so there exists n € r2~! such that = € na.

Hence, 7(z) € U_l{f(n) n€ma}=1(r)@(r(x) " @1(2).
Let T(:I}),T(y),T:(e;)xE S/7. Suppose that 7(x) € 7(y) @ 7(2).
Then z € yz implies y € 2z~ and z € y~ 1.

It holds that 7(y) € 7(z) ® (1(2)) ™' and 7(2) € (1(y)) ' @7 ().

Therefore, S/7 is an inverse semipolygroup. O

Lemma 3.4.11. Let S be an inverse semipolygroup and N be a normal sub-

semipolygroup of S. Then
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Ker 7= 7(e)
eck

is a normal subsemipolygroup of S, where E ={f € S: f is an idempotent of S}.

Proof. Let z,y € Ker 7. Then, there exist e, f € E such that = € 7(e) and y € 7(f).
This means that ex "' NN # () and fy ' NN # 0.
Thus, there exist m € ez "N N and n € fy 'NN, ie., mcex ' ne fy!
and m,n € N. It implies that z=! € e 'm=em and y~' € f~In = fn.
Let a € zy. Then a~t € y~1z=1 C (fn)(em) C N.
Hence, ea ' CeN C N and thus ea ' NN ().
We obtains a € 7(e), that is, a € Ker 7 and we get zy CKer 7.
Next, suppose that k € Ker 7. Then we have ek™' NN # () for some e € E.
So, there exists u € ek~ ' NN and that v € ek™! and u € N.
This also implies that k~! € e"lu = eu and then k € u=le ! =y~ le.
It easily follows that ek C eu~le C N, so ekNN =e(k~1) 1NN #£9.
Certainly, k! € Ker 7, and thus Ker 7 is an inverse subsemipolygroup.
Let p € S and let ¢ € p~tkp. Then, we also have that ¢~ € p~ 1k~ 1p.
Since u € ek 1 k7! € e~ lu = ew.
We deduce that ¢~ € p~ 1k~ 1p C p~l(eu)p C p~ ' Np C N and it also follows
that eg™! CeN C N, so eq ' NN # 0 and q € 7(e).
Therefore, ¢ € Ker 7 and thus p~tkp C Ker 7 forallp € S.

Then we have established that Ker 7 is a normal subsemipolygroup of S. [

If A and B are inverse semipolygroups of an inverse semipolygroup .5,
(A,B) € 7 if and only if (a,b) foralla€ A and b€ B. If A= {a} then (A,B) €T
if and only if (a, B).

For a € 7(e), where e € E implies that 2~ 'ax C N for all x € S because

ea ' NN # (), that is, there exists m € ea™' N N. It implies that a~! € e"'m and
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a€mle. So, x Yar Cax tmlex C N,

3.5 Polygroups

In this section, some results on polygroups are presented.

Example 3.5.1. From Example 3.3.6, we obtain (i), (iv) of Definition 2.1.4.
Let z € RT.

(ii) There exists e =1 € R such that
£'o e = ot SafilialE=sba.l M AL =2 M= r o .

Suppose that m is an identity of . Then mox = {mz} = {z} = {xm} =zom.
This means that x = ma, that is, m = 1. Hence, e =1 is unique.

1
(iii) By Example 3.3.6, there exists a unique z=! = — € R* such that
T

1 1
roxr ! = xo:{x<>}:{l}91:eand
i 43

Therefore, < R*,0,e,71 > is a polygroup.

Example 3.5.2. From Example 3.3.7, we gain (i), (iv) of Definition 2.1.4.
Let x € R™. Then, there exists p € R™ such that = —p.
(ii) There exists e = —1 € R™ such that

eor = (=1)o(—p)={-(=1)(-p)}={-p}={7}
= {-pt={-(-p)(-1)}=(-p)o(-1)=zoe.

Suppose that m is an identity of x.

Thus, there exists ¢ € RT such that m = —q and moz = {z} = xom. We have

moz = (—q)o(-p)={—(-q)(-p)} ={—gp}, and
zom = (—p)o(—q)={—-(-p)(=q)} ={—pgq}.
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It concludes that —p = —pq, and hence m = —1. It holds that e = —1 is unique.

1 1
(iii) By Example 3.3.7, there exists a unique 27! = — = —= € R~ such that
x

p

rort = (o (2] ={~n(- 1) =03 -1-cma
itor = (<1)otn={-(-2)enf=tn3-1-c

Consequently, < R™,0,e,”1 > is a polygroup.

Definition 3.5.3. If P is a polygroup, then P’ = PU{0} is a semipolygroup,
where 0 is a zero. We shall call a semipolygroup formed in this way a O-polygroup,

or polygroup with zero.

Lemma 3.5.4. If S is a polygroup, then aS =S and Sa= S for alla € S.

Proof. Suppose that S be a polygroup and let a € S.
Let x € aS. Then x € as for some s € S.
Since a € S,s € 5, so as C S and thus x € S. Therefore, aS C S.

Let y € S. Then, there exists a unique y~!' € S such that e € yy~!.

It follows that a € ea C (yy~')a=1y(y~'a). Then a € yb for some b € y~a.
This implies that y € ab™! C a(a™1y).
Since a=! € S,y € S, a'y C S, and hence y € a(a™1y) C aS.

So, S CaS, and thus aS = 5. Similarly, Sa =S for alla € S. O

Notice that the converse of Lemma 3.5.4 is not true, for example if

S ={a,b} with the following table:

a b
a|{a} {a,b}
b | {b} {ab}

then aS =5 = Sa and bS =5 = Sb, but S is not a polygroup.

Proposition 3.5.5. If semipolygroup with zero S is a 0-polygroup, then for all
aeS—{0},aS=S and Sa=S.



Proof. Suppose first that S = P°, a 0-polygroup, and let a € P = S — {0}.

Certainly aP = Pa = P.
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Since aS =aPU{0} and Sa = PaU{0}, it follows that a.S=Sa=S. O
Lemma 3.5.6. Let S be a semipolygroup satisfies the following conditions:
(i) there exists e € S such that xe ={z} for allx € S;
(ii) for each x € S there exists v~ € S such that e € xa~!;
(iii) for all x,y,2 € S, x € yz implies y € vz~ and z € y~lx.
Then S is a polygroup.
Proof. First, let x,y € S. We will show that e™! =e and z = (z7!)~.
From (i), we have e € ee. Then by (iii), e € e e = {e7 !}, so e ! =e.
Since x € ze, e € x7 1.
By (iii) z € (z7Y)"le = {(z~!)~!} and we then have z = (z~!)~L.
Suppose thats p € S such that e € xp and e € px.
This implies that p € 27 'e = {z 7!}, that is p=2~!. Hence 27! is unique.

Finally, we prove that ex = {z}.

Since e € xa 1

Let a €ex. Thenec€az™ and 27! cale={a™'}.

Certainly, we obtain that =1 =a~1.

It is immediately that e € za~! and e € a™'x.

Consider e € a~ 'z, we see that z € (a=1)~!

e = ae, and finally we get
a€ze l=ze={z}.

Thus, we have established that ex C {z}, and so ex = {x}.

Therefore, S is a polygroup.

, s0 we also have that x € e(z™1)~ = ez. Hence, {z} C ex.

]

Notice that if S is an inverse semipolygroup which satisfies the following

conditions: (i) and (ii) then S is a polygroup.
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Lemma 3.5.7. A non-empty subset K of a polygroup P is a subpolygroup of P if
and only if

ab"'CK  forallabeK.

Proof. Suppose that K is a subpolygroup of polygroup P.
Let a,be K.
By Lemma 2.1.12, we get b~! € K, and thus ab™!' C K.
Assume that ab~! C K for all a,be K.
Let k1,ko € K. Then kik; ! C K.
Since k1 e K C P, soeeklk:l_ng.
By hypothesis, it follows that ek; e K.
But ek = {k7'}, {k{!} C K, and so k]! € K.
Hence k' € K.
We obtain kiks = ki(ky 1) C K.
Therfore, K is a subpolygroup of polygroup P. n

Corollary 3.5.8. If < S,0,e,”'> is a polygroup and p is an equivalence relation

on S,then p is reqular if and only if < S/p,®,p(e),”! > is a polygroup, where
pla)™" = pla™).
Proof. Let S be a polygroup and p be an equivalence relation on S.

Suppose that p is regular. We have (S/p,®) is a semipolygroup.

Next, we show that p(e) is an identity element of S/p. Let x € S. Then

plr)@ple) = {pla):acwe={x}}
= {p(a):ac{z}}
= {p(@)},

and
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ple)@p(x) = {p(b):b€ex={x}}
= {p(b) : b€ {z}}
= {p(2)}.

Hence, p(e) is an identity element of S/p.

For each p(z) € S/p, we have that z € S.

Then, there exists a unique =1 € S such that e € zz~! and e € z7 1.

That is, there is p(x)~! = p(2~1) € S/p such that

ple) € pl@)@p(x) ' =p@)@p(x")={pla):a€xz™'}

and ple) € p(z)~ ®p(x)=p(z")@p(z) = {p(b) :bezla}.

Next, let p(y) € S/p be such that p(e) € p(z) ® p(y) and p(e) € p(y) ® p(z).

Then e € zy and e € yx.

1

It follows that y =2~ ! and so p(z~!) = p(x)~! is unique.

So, we get p(x)~1 = p(z~1) is an inverse of p(x) in S/p.

I

Now, we show that p(x) € p(y) ® p(z) implies p(y) € p(z) @ p(z)~* and

p(2) € p(y) ! ® p(w).
If p(x) € p(y) ® p(2), then z € yz.

This implies that y € zz~" and z € y~'a.

It follows that p(y) € p@)@p(z"") = p(x) ®p(z)_1 and

1

p(z) € ply H@p(x)=py)~" @p(x).

Therefore, S/p is a polygroup.
Conversely, we let apb and x be an arbitrary element of S.
If u € az, then p(u) € p(a) @ p(x) = p(b) @ p(x) ={p(v) : v € bx}.

Therefore, there exists v € bx such that p(u) = p(v), i.e., u p v.
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If o' € bz, then p(v') € p(b) @ p(x) = p(a) ® p(z).

There exists u’ € ax such that p(u') = p(v'), i.e., u' pv'.

Hence, (ax)p(bx).

Similarly, we obtain that p is regular on the left.

Therefore, p is regular. O

Theorem 3.5.9. Let ¢: P — S be a morphism from a polygroup P into an inverse

semipolygroup S. Then ¢(P) is a polygroup.

Proof. Suppose that s is an element in ¢(P).

Then there exists p € P such that ¢(p) =s.

We have P is an inverse semipolygroup, because P is a polygroup.

By Theorem 3.3.22, ¢(P) is an inverse semipolygroup.

We obtain {s} = {¢(p)} = ¢({p}) = ¢(ep) = ¢(e)(p) = €’s and

{5} = {6(0)} = 5({p}) = d(pe) = B(p)(e) = s¢', where ¢ = b(e) € $(P).

Since p € P, ep = pe = {p} and there exists a unique p~! € P such that
1

ecpp!andecplp.

Because P is an inverse semipolygroup,

p € pp~'p, and so ¢(p) € ¢(pp~'p) = ¢(p)d(p~ )b (D).
Since s € ¢(P),s € ss~'s which is follows that ¢(p) € ¢(p)(d(p)) Lo (p).
It holds that ¢(p~!) = (¢(p))~' = s~!, because an inverse is unique.
Since e € pp~! and e € p~'p, ¢/ = d(e) € p(pp~!) = P(p)p(p~!) = 557

and ¢’ = ¢(e) € p(p~'p) = ¢(p~p(p) = s 's.

Hence, ¢(P) is a polygroup. O
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