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CHAPTER 1

INTRODUCTION

1.1 Literature Review

Category theory has currently been an interesting subject in mathematics for several
decades. It has various powerful connections not only with algebraic topology, but also
with logic, computer science, foundation of mathematics, mathematical physics, and so
on (see for instance [BS, L2, UFP] and also [B] for some theoretical applications to re-
lational quantum theory). Category theory is a vigorous language or conceptual system
letting us to consider what universal components a collection of certain structures has

and how distinct structures are correlated.

In 1945, the first abstract definition of categories was introduced by S.
Eilenberg - S. Mac Lane [EM] in the similar fashion of the group axioms to define
the notions of functors between categories and natural transformations between func-
tors. Later, the more practical definition of categories was used by A. Grothendieck in
1957 and P. J. Freyd in 1964 using the terminology in set theory. For further discussion

on the history of category theory, the reader is required to see [SEP].

As a category (or 1-category) consists of objects and morphisms, the notion
of a 2-category! generalizes this idea by adding 2-arrows between the 1-arrows. Con-
tinuing this process up to n-arrows between (n — 1)-arrows yields an n-category. Strict
n-categories were originally formalized by C. Ehresmann in both cubical forms [E1] in
1963 and globular forms [E2] in 1965. Furthermore, enriched categories of M. Kelly -

S. Eilenburg [EK] permit an iterative construction of strict higher categories.

Sometimes the notion of strict higher categories is “too strict” for some

ISince natural transformations between functors are an example of globular 2-arrows in a strict 2-

category, the notion of higher category theory implicitly existed in the same period as category theory.
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structures; for example, in the category of topological spaces, composition of paths sat-
isfies associativity and unitality only up to reparametrization. In 1963, weak categories,
which are categories whose axioms of associativity and unitality are satisfied only up
to higher-level isomorphisms, were first introduced in the definition of weak monoidal
categories [Bel, M]. Later, in 1967, the concept of monoidal categories was generalized

to bicategories by J. Bénabou [Be2].

In 1979, strict globular w-categories were first introduced by J. Roberts,
who connects category theory with the study of algebraic quantum field theory [R].
During 1977-1981, R. Brown - P. Higgins considered the notions of strict cubical ®-
groupoids and categories in a series of works [BH]. In 1983, strict globular m-categories
were described and the usage of weak m-groupoids was proposed as a way to capture
the homotopy content of spaces in A. Grothendieck’s well-known manuscript ‘“Pursuing

Stacks” [G].

In 1987, the first definition of weak m-categories was introduced by R.
Street [S] based on the algebra of “symplexes”. Later, J. Baez - J. Dolan were mo-
tivated by this concept to obtain the “opetopic” approach to weak n-categories [BD]. In
addition, T. Trimble considered a partially algebraic approach to weak n-categories via
“enrichment” [Tr] in 1999. The definitions of weak n-categories and weak ®-categories
have been a progressing process with various alternative definitions under discussion?.

Recently, M. Batanin [Bal, Ba2], J. Penon [P], and T. Leinster [L.2] developed algebraic

definitions of weak globular ®-categories as “algebras” for certain “monads”.

In category theory, it is normal to supplement some additional structures to
usual categories, such as involutions. However, the concepts of involutions in category
theory have been used in different aspects. Strict involutions have appeared in several
works; for example, M. Burgin [Bu] (1970), P. Ghez - R. Lima - J. Roberts [GLR]
(1985), P. Freyd - A. Scedrov [FS] (1993), J. Lambek [La] (1999), S. Abramsky - B.
Coecke [AC] (2004), P. Selinger [Se] (2005), and many more.

ZFor further discussion of comparison among several possible definitions, we refer to [CL, L2].
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In 2014, P. Bertozzini et. al. described involutions for strict globular n-
categories as covariant/contravariant endofuctors for compositions in [BCLS] and for
the case of strict cubical 2-categories in [BCM]. Moreover, they also considered the

notion of weak monoidal categories in [BCL3].

1.2 Overview

In order to obtain a possible treatment of weak higher C*-categories, our main objective
is to propose a definition of weak involutive higher categories in the spirit of J. Penon’s
definition of weak globular w-categories [P] and its variants [Ba2, ChM, L1, K]. Next,

we are going to describe the content of the thesis.

In sections 2.1 and 2.2, we briefly review some basic notions of elementary
algebraic and topological structures including groups, rings, vector spaces, modules,
topological spaces, and their structure-preserving functions in order to get an idea of

fundamental examples of categories which will be defined in the following section.

In section 2.3, some elementary concepts of category theory are provided;
for example, some equivalent definitions of categories, functors between categories,
free structures, natural transformations between functors, and adjunctions between func-
tors. In addition, the notions of monads and algebras for monads are discussed in such a
way that we can give a definition of weak involutive globular w-categories as an algebra

for an appropriate monad.

In section 2.4, we briefly recall the fundamental notions on strict higher cat-
egories which are necessary for our work. In order to contact with J.Penon’s approach,
we define strict higher categories via “higher quivers”, whose definition is recalled in
subsection 2.4.1. A previous work on higher categories [BCLS] used an algebraic def-
inition of strict higher categories via “partial monoids on n-arrows”; a discussion of
the categorical equivalence between the two descriptions is referred to [Pu, Proposition

2.4.3]. In our work, we restrict our attention to the case of globular higher quivers and
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globular higher categories based on them?.

Since only strict n-categories are discussed in [BCLS], in this work we also
provide the more general case of strict globular ®-categories. The definition of strict
involutive n-category from [BCLS] is extended in the similar fashion to the case of
strict involutive globular m-categories. We remark that for strict (involutive) globular
m-categories it is also possible to replace the “usual exchange” axiom with the more

relaxed “non-commutative exchange” property discussed in [BCLS].

In order to fix the notation and to make the thesis self-contained, the es-
sential features of J.Penon’s construction are recalled in subsection 2.4.3. In our case,
o-globular sets will not be required to be reflexive (thus avoiding the already known

problems described in [ChM]).

The main subject of this work is described as follows. The existence of a
free reflexive self-dual globular ®-magma and a free involutive Penon contraction over
an ®-globular set is discussed in sections 3.1 and 3.2. The concept and some examples
of involutive weak globular m-categories are described in section 3.3. The notion and
some properties of globular cones are described in section 4.1. An explicit definition
and construction of free reflexive self-dual globular-cone ®-magmas is discussed in
section 4.3 and free strict involutive globular-cone m-categories over a globular cone is
presented in detail in section 4.4. Moreover, a similar construction of the free involutive
Penon cone-contraction over a globular cone is given. In section 4.5 we prove that the
forgetful functor from the category 2* of involutive Penon cone-contractions to the
category of globular cones admits a left-adjoint and then we give the monadic definition

of involutive weak globular-cone ®-categories as an algebra for such monad.

3The treatment of cubical higher categories will be an objective of a further separate investigation.
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CHAPTER 2

PRELIMINARIES

This chapter is devoted to recall some definitions, theorems, and examples of elemen-
tary algebraic and topological structures and basic category theory. Later in this chapter,
we discuss the Penon’s definition of weak w-categories and the notion of strict involu-

tive globular higher categories.

2.1 Elementary Algebraic Structures

In this section we recollect some basic definitions and examples of binary operations,
groups, rings, vector spaces, and R-modules as some of these concepts will be important

examples later on.

2.1.1 Binary Operations

Throughout this thesis we denote the sets of integers, positive integers, negative inte-
gers, natural numbers, natural numbers including zero, rational numbers, positive ratio-
nal numbers, real numbers, positive real numbers, and complex numbers by Z, Z*, Z.~,

N, No, Q, Q",R, R™, and C, respectively.

Definition 2.1.1.1. Let A be a nonempty set. We say that x is a binary operation on A

if * is a function from A X A into A.

Remark 2.1.1.2. For convenience, we usually denote the image of (x,y) € A X A under

the binary operation * by *((x,y)) :=x*y.

Example 2.1.1.3. Letn € Nand nZ :={...,—2n,—n,0,n,2n,...}. We see that

1. 4+, —, and - are binary operations on Z, nZ, Q, R, and C,
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2. + is a binary operation on Q\ {0}, R\ {0}, and C\ {0},
3. — is not a binary operation on Z*, Q*, and R™,
4. + is not a binary operation on Z", Q, R, and C.

Example 2.1.1.4. Let n € N and consider the set Z,, := {[k|, CZ | k=0,1,...,n— 1},
where [k],, := {x € Z | x = k(mod n)}. Define, for each [al,, [b], € Z,,

o [a],+, D], = [a+ D]y, e [a] -y [D]n:=a-b],.

Thus, +, and -, are binary operations on Z,,.

Example 2.1.1.5. Let m,n € N and M,,»,(R) be the set of m x n matrices with real

entries. Define

L. [@ijlmxn+ [Dijlmxn = [Gij + Dijlmxn for all [@;jlmxn; [Dijlmxn € Mmxa(R),

n
2. [a,’j]nxn Q [bij]nxn = [Cij]nxn’ where Cij = Z a,-kbkj for 1= 1,27.. .,m and
k=1

7i=1,2,...,n,for all [a;j]nxn, [bijlnxn € Mpxn(R).
Hence, + and - are binary operations on M, ,(R) and M, (R), respectively.
Example 2.1.1.6. Let S be a set and P(S) the power set of S. Define, for all A,B € P(S),
e U((A,B)):=AUB, e N((A,B)):=ANB,
e \((A,B)) :=A\B, e A((A,B)):=AAB:=(A\B)U(B\A).
Notice that U, N, \, and A are binary operations on P(S).

Example 2.1.1.7. Let A be a nonempty set. We see that o (composition of functions) is

a binary operation on End(A) := {f | f:A — A} and Aut(A) :={f | f: A 1;;1 A}.
onto
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2.1.2 Groups and Group Homomorphisms

We begin this section by the notions of sets endowed with a binary operation. For more

details, see Grillet P. A. [Gr]. For convenience, we let m,n € N in this section.

Definition 2.1.2.1. A magma (or groupoid) (A,*) is a nonempty set A equipped with a

binary operation x, i.e. * : A X A — A defined by (x,y) — xxy for every x,y € A.

Example 2.1.2.2. (Z,+), (Q,+), (R,+), (Z,), (Q,"), (R,-), (Z,—), (Q", %), (Zn, +n),
(Zn, n)s (nZ,+), (Mimxn(R), +), (Mmxn(R), =), Mnxn(R),-), (P(S),U), (P(S),N),
(P(S),\), (P(S),A), (End(A),0), and (Aut(A),o) are magmas (or groupoids) while

(Z*,-) and (Z",+) are not.

It is natural to ask when two magmas are related via a function which pre-

serves their structure.

Definition 2.1.2.3. Let (M,x*) and (N, o) be magmas. A function f : M — N is called a

homomorphism of magmas if f(xxy) = f(x)o f(y) forall x,y € M.

Example 2.1.2.4. The following functions are homomorphisms of magmas:
l. f:(Z,—)— (Z,—) defined by f(x) := —x for all x € Z,
2. g:(Q",+) = (Q*,+) defined by g(¥) := g for each ¢ € Q*,

3. h:(P(S),U) — (P(P(S)),N) defined by h(A) := A° for every A € P(S).

Proof. Letx,y€Z,$,5€ Q" and A,B € P(S).

We have the following equalities:
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Hence, f, g and & are homomorphisms of magmas. [

Definition 2.1.2.5. Let (S,*) be a magma. We say that (S, %) is a semigroup if

_x*(y*z) = (_x*y)*z for allx,y,Z es.

Example 2.1.2.6. (Z,+), (Q,+), (R, +), (Z,-), (Q,"), (R,), (Zn,+n): (Zn,-n), (nZ,+),
(M (R),+), Myusn(R),-), (P(S),U), (P(S),N), (P(S),A), (End(A),0), and (Aut(A),o)
are semigroups while (Z,—), (Q", =), (M,uxx(R),—), and (P(S),\) are not.

Definition 2.1.2.7. Let (S, ) and (7,¢) be semigroups. A function f: S — T is called

a homomorphism of semigroups if f(xxy) = f(x)o f(y) for all x,y € S.

Example 2.1.2.8. The following functions are homomorphisms of semigroups:
1. h:(2Z,+) — (3Z,+) defined by h(2x) := 3(2x) for every 2x € 2Z,
2. k:(P(S),n) — (P(P(S)),N) defined by k(A) := P(A) for each A € P(S).
Proof. Let2x,2y € 2Z and A,B € P(S).
We get the following assertions:
1. h(2x+2y) =3(2x+2y) = 3(2x) +3(2y) = h(2x) + h(2y),
2. k(ANB)=P(ANB)=P(A)NP(B) =k(A)Nk(B).
Thus, h and k are homomorphisms of semigroups. ]

Definition 2.1.2.9. Let (M, x) be a semigroup. We say that (M, x) is a monoid if there

exists e € M such that xxe =x=exx forall x € M.

Example 2.1.2.10. (Z,+), (Q,+), (R,+), (Z,-), (Q,-), (R,-), (Zpn, +1n)s (Zn, ), (nZ,+),
(Mnxn(R), +), (Mauxa(R), ), (P(S),U), (P(S),N), (P(S),A), (End(A),0), and (Aut(A),0)

are monoids while (27Z, ) is not.

Definition 2.1.2.11. Let (M, *) and (N,¢) be monoids. A function f : M — N is called
a homomorphism of monoids if f(x*y) = f(x)o f(y) for all x,y € M and if also
f(1y) = ly, then f is unital.
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Example 2.1.2.12. Let f,g: (R,:) = (M2x2(R),-) be defined by

a 0 a 0
fla):= and g(a) :=
0 a 00

We see that f is a unital homomorphism of monoids while g is a homomorphism of

monoids but not unital.

Proof. Leta,b € R.

We obtain the following equalities:

a-b 0 a 0 b 0
1. fla-b)= = = f(a)-f(b),
0O a-b 0 a 0 b
a-b 0 a 0 b 0
2. gla-b)= = =g(a)-g(b)
0 O 00 00

This yields that f and g are homomorphisms of monoids.

1 0
Notice that 1 is the identity of (R, -) and is the identity of (M.»(R), ).

01
. INg0 NG Gy . :
Since f(1) = but g(1) # , f is unital but g is not unital. [
0 1 0 1

Definition 2.1.2.13. Let (G, *) be a monoid. We say that (G, %) is a group if for each

x € G there exists y € G such that xxy = e = y *x.

Example 2.1.2.14. (Z,+), (Q,+), (R,4), (Zn, +n)s (Zn, n), (0Z,+), (Mpxn(R),+),
(Q\ {0},-), (R\{0},-), (P(S),A), and (Aut(A),o) are groups while (Z,-), (Q,-),
(R,-), Muxn(R),-), (P(S),U), (P(S),N), and (End(A), o) are not, where S # .

Definition 2.1.2.15. Let (G, *) and (H,©) be groups. A function f : G — H is called a

group homomorphism if f(x*y) = f(x)o f(y) forall x,y € G.

Remark 2.1.2.16. We do not require that group homomorphisms preserve identities

and inverses as this is an immediate consequence of their definition.
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Example 2.1.2.17. The following functions are group homomorphisms:

1. f:(R,+)— (RT,-) defined by f(x) := 3" forall x € R,

2. g:(Z,+) — (Q,+) defined by g(x) := y forall x € Z, where y € R\ {0},

3. h:(R,+) — (R,+) defined by A(x) := —mnx for all x € R.
Proof. Lety € R\ {0},a,bcRandr,s € Z.

We have the following equalities:
1. fla+b) =34 =330 = f(a)- f(b),

2. g(r+s) =" =

=545 =8(r)+5(s),

3. h(a+b) =—n(a+b)=—n(a)+ (—n(b)) = h(a) + h(b).
Thus, f,g and h are group homomorphisms. ]

Example 2.1.2.18. The following functions are not group homomorphisms:
l. f:(Z,+)— (Z,+) defined by f(x) :=x+1 for all x € Z,
2. g:(QT,) = (QT,") defined by g(x) := -1 for each x € Q*.

Proof. Consider the following arguments:

Lo FO+1) = f(1) =2 #3 =142 = £(0) + £(1),

=8(2)-¢(1).

A=
W=
09—

2 g2 1) =g(2) =} #

Thus, f and g are not group homomorphisms. ]

Definition 2.1.2.19. Let (G,*) be a group. We say that (G, *) is an abelian group if

xxy=yxxforall x,y € G.

Example 2.1.2.20. (Z,+), (Q,+), (R,+), (Zn,+n)s (Zn,-n), (nZ,+), Mypxn(R),+),
(Q\ {0},-), (R\{0},-), and (P(S),A) are abelian groups while (Aut(A), o) is not.
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2.1.3 Rings and Ring Homomorphisms

We now consider some algebraic structures equipped with two binary operations which
are based on the notion of abelian groups. For further discussion of rings, the reader is

required to see Grillet P. A. [Gr].

Definition 2.1.3.1. Let R be a nonempty set and + and - be binary operations on R. We

say that (R,+,-) is a ring if

1. (R,+) is an abelian group,
2. (R,-) is a semigroup,
3. z-(x+y) = (z-x) + (z-y) and (x+y) - z= (x-2) + (y-2) for all x,y,z € R.

Example 2.1.3.2. (Z,+,-),(Q,+,-),(R,+,),(C,+,-),(nZ,+,-),(Zn,+n,n), and
(M, %, (R),+,) are rings.

Example 2.1.3.3. Let X # @ and (R,+,-) be a ring. Consider RX := {f | f: X — R}.

Define binary operations @ and ® on RX as follows: for every f,g € RX and x € X,

L (fog)k) = fx) +g),
2. (fog)x) = f(x)-8().
It is easy to see that (R¥X,®,®) is a ring.
Definition 2.1.3.4. A ring (R,+,-) is said to be unital if (R, -) is a monoid.

Example 2.1.3.5. (Za +7 ')7 (@7 +7 ')7 (Ra +7 ')7 (C7 +7 ')7 (Zl’la +n7 'n)> and (Mnxn(R)v +7 )

are unital rings while (2Z,+,) is not.
Definition 2.1.3.6. A ring (R, +,-) is commutative if x-y =y-x for all x,y € R.

Example 2.1.3.7. (Z,+,-),(Q,+,-),(R,+,-),(C,+,-), (nZ,+,-), and (Z,,+,,-n) are

commutative rings while (M, ,(R),+,-) is not.
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Similar to group homomorphisms, functions which preserves the structures

of rings are called ring homomorphisms.

Definition 2.1.3.8. Let (R,+,-) and (S,®, ®) be two rings.

A function f: (R,+,-) — (S,®,®) is called a ring homomorphism if
L fx+y)=fx)&f()
2. flx-y) =f)&f()

for all x,y € R. And we call it a unital ring homomorphism if it is a ring homomor-

phism and f(1g) = Ig.

Example 2.1.3.9. Let Z(i) = {a+bi | a,b € Z}. We see that (Z(i),+,-) is a ring.
A function 6 : Z(i) — Z(i) defined by 6(a+ bi) := a— bi, for all a+ bi € Z(i), is a unital

ring homomorphism.

Definition 2.1.3.10. Let R be aring and @ # I C R. We say that [ is an ideal of R if

l.a—belforalla,bel,

2.arclandraclforallaclandr cR.
Example 2.1.3.11. For each a € Z, we have (a) := {na | n € Z} is an ideal of (Z,+,-).

Definition 2.1.3.12. Let / be an ideal of a ring R. We say that / is a prime ideal of R

if, foreach a,b € R, ab € I impliesa € [ or b € I.
Example 2.1.3.13. For each prime number p, (p) is a prime ideal of (Z,+,-).
Definition 2.1.3.14. A unital ring (R, +, ) is a division ring if (R\ {Or},) is a group.

Example 2.1.3.15. (Q,+,-),(R,+,),(C,+,-), and (Z,,+,-p), Where p is a prime

number, are division rings while (Z,+, ) is not.
Definition 2.1.3.16. A ring (R,+,) is a field if (R,+,-) is a commutative division ring.

Example 2.1.3.17. (Q,+,-),(R,+,-),(C,+,-), and (Zp,+,-p), where p is a prime

number, are fields.
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2.1.4 Vector Spaces and Linear Transformations

In this subsection we discuss another structure based on abelian groups. Unlike rings,
vector spaces are sets equipped with a binary operation and a scalar multiplication

satisfying some properties. For more discussion of vector spaces, see Sunder V. S. [Su].

Definition 2.1.4.1. Let K be a field and (V,+) an abelian group. We say that (V,+,-)
is a vector space over the field K if there exists a scalar multiplication - : K xV —V

defined by (o, x) — o~ x, for all a0 € K and x € V, satisfying the following properties:
Lo (x+y) = (o x)+ (aa-y),
2. (a+B)-x = (ot-x)+(B-y),

3. - (B-x) = (of) -,

4. 1x-x=nx,
forall o, € Kand x,y € V.

Some typical examples of vector spaces are given as follows.

Example 2.1.4.2. Let R" := {(x,x2,...,%,) | x1,X2,...,x, € R}, where n € N.

Define, for all (x1,x2,...,%,), (V1,Y2,--.,yn) € R" and r € R,

Lo (x1,2x2, .. ,x0) + 1,92, -, 0n) == (X1 +Y1,%2+Y2, .-, X0+ Yn)s

2. r-(x1,x0, .0 Xp) i = (X, P X0, o T Xp).

Then (R”,+,-) is a vector space over R.

Example 2.1.4.3. Let M,,»,(C) be the set of m x n matrices with complex entries.

Define, for all [a;;]mxn; [Pijlmxn € Minxn(C) and k € C,

L. [@ijlmxn + [Dijlmxn = [aij + bijlmxn
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2. k- [aij]mxn = [k'aij]mxn-

Then (M, (C),+,) is a vector space over C.
Example 2.1.4.4. Let Cla,b] := {f : [a,b] — R | f is continuous}.

Define, for each f,g € C[a,b] and c € R,

L (f+8)(x) = f(x) +g(),

Then (Cla,b],+,-) is a vector space over R.

Example 2.1.4.5. Let p € Nand [? := {{x,} CC| ¥ |xu|? < oo}.
n=1

Define, for each x = {x1,x2,...},y = {y1,»,...} €’ and c € C,
L. x+y:={x1+y1,x2+y2,...},
2. ¢c-x:={cxy,cx2,.. .}

Hence, (I7,+,-) is a vector space over C.

Like group and ring homomorphisms, linear transformations play the role

of property-preserving maps from a vector space to the other.

Definition 2.1.4.6. Let V and W be vector spaces over the same field K. We call a
function 7' : V — W a linear transformation from V to W if T (x+y) =T (x) + T (y)
and T (cx) = ¢T(x) forall x,y € V and ¢ € K.

Here we provide some examples of linear transformations.
Example 2.1.4.7. For any angle 0, define Ty : R> — R? by
To(x,y) := (acos® —bsin®,asin® + bcosO)

for all (x,y) € R2. Then Ty is a linear transformation.

Example 2.1.4.8. A function f : Ml,;;»,(K) — M, (K) defined by f(A) := AT, where

AT is the transpose of A, for all A € M., (K), is a linear transformation.
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2.1.5 R-Modules and R-Linear Maps

This subsection discusses mainly about one of the possible generalizations of vector
spaces, namely modules, in the sense that scalars in vector spaces are elements of the
underlying fields but scalars in modules come from the underlying rings. For further

information about modules, see Aluffi P. [A].
Definition 2.1.5.1. Let R be a ring and M an abelian group. We say that
e M is a left R-module if there exists an external multiplication - : Rx M — M

defined by (r,x) — r-x satisfying the following properties:

forall x,y € M and r,s € R,
1. r-(x+y)=(r-x)+(r-y),
2. (r+s)-x=(r-x)+(s-x),
B 18-.((s TOE= i) goos
If R is unital, then we also require 1g-x = x.

e Mp is a right R-module if there exists an external multiplication - : M X R - M
defined by (x,r) — x - r satisfying the following properties:
forall x,y e M and r,s € R,
Lo (x+y)r=0r)+@-r),
2. x-(r+s)=(x-r)+(x-s),
3. (x-r)-s) =x-(rs).
If R is unital, then we also require x- 1g = x.

Example 2.1.5.2. 77 is a left Z-module, gR" is a left R-module, and ¢M,,(C) is a
left C-module.

Example 2.1.5.3. Zz, is a right Z-module, R}, is a right R-module, and M, ,(C)c is a
right C-module.
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Similar to linear transformations, R-linear maps are structure-preserving

maps from a left/right R-module to the other.

Definition 2.1.5.4. Let R be a ring and gM and gN be left R-modules. A function
¢ :r M —g N is said to be a homomorphism of left R-modules if ¢(x+y) = ¢(x) +d(y)

and 0(r-x) =r-¢(x) for all x,y €g M and r € R.

Definition 2.1.5.5. Let R be a ring and Mg and Np be right R-modules. A function ¢ :
Mpg — Np is said to be a homomorphism of right R-modules if ¢(x+y) = ¢(x) + 0(y)
and 0(x-r) = ¢(x)-r for all x,y € Mg and r € R.

Remark 2.1.5.6. We call a function ¢ in these definitions an R-linear map.

Example 2.1.5.7. An R-linear map f : R — R is of the form f(x) = mx with m = f(1).

When both left and right module structures are present simultaneously, it is

usual to further require their mutual compatibility as in the following definition.

Definition 2.1.5.8. Let R and S be rings and M an abelian group. We say that gMy is a
left-R right-S bimodule if gM is a left R-module and My is a right S-module such that

(r-x)-s=r-(x-s)forallr e R,x e M,and s € S.

Example 2.1.5.9. ;77 is a left-Z right-Z bimodule, g R" is left-R right-R bimodule,
and ¢ M, x,(C)c is a left-C right-C bimodule.

Definition 2.1.5.10. Let R be a commutative ring and Mg, Ng, and Pg be R-modules.

An R-bilinear map from M x N into P is a function ¢ : M X N — P such that

L. 0(rixg +raxz,y) = rid(xy,y) + ro(x2,y),
2. 0(x,r1y1+r2y2) = rid(x,y1) +r20(x,32)
for all ri,ry € R, x,x1,x3 € Mg, and y,y1,y2 € Ng.
Remark 2.1.5.11. We call a function ¢ in this definition an R-bilinear map.

Example 2.1.5.12. An R-bilinear map ¢ : R x R — R is of the form ¢(x,y) = axy with
a=0(1,1).

Ref. code: 25595709031073ILP



17

2.2 Elementary Topological Structures

In this section, we turn our attention to the notion of sets together with subsets of their
power sets satisfying some requirements called topological spaces. For more details,

the reader is suggested to see Willard S. [Sp].

2.2.1 Topological Spaces and Continuous Maps

We begin this section by the most fundamental definition of this branch of study.

Definition 2.2.1.1. A topology on a set X is a collection T of subsets of X, called the

open sets, satisfying:
1. @ and X belong to T,

2. any finite intersection of elements of T belongs to T,

3. any union of elements of T belongs to T.

We say (X,7) is a topological space, sometimes abbreviated X is a topological space”

when no confusion can result about T.

Some typical examples of topological spaces are given below.

Example 2.2.1.2. Let X be a set.

1. P(X) is always a topology on X which is called the discrete topology.
2. {@,X} is always a topology on X which is called the indiscrete topology.

Example 2.2.1.3. A collectiont:={A CR | Vxg € A Jey, > 0: (xo —€x,,X0+&x)) CA}

is a topology on R which is called the standard topology on R.

Like homomorphisms of algebraic structures, continuous maps play the role

of structure-preserving maps from a topological space to the other.
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Definition 2.2.1.4. Let X and Y be topological spaces and let f : X — Y. Then f is

continuous on X if and only if for each open set Bin Y, f~!(B) is an open set in X.

Example 2.2.1.5. Let (R, 1) be the standard topological space. Then the function f :
R — R defined by f(x) :=4x— 1 for all x € R is continuous on R.

The following theorems are fundamentally significant; however, we do not

prove in this situation.

Theorem 2.2.1.6. [Sp, Theorem 7.3] Composition of continuous functions gives an-

other continuous function.

2.2.2 Homotopies

Once we study the relationship between two topological spaces via continuous func-
tions, it is natural to ask what kind of relationships between two continuous functions
this special function should be. One of the most intuitive notions of this is called a

homotopy as defined in the following way.

Definition 2.2.2.1. Let X and Y be topological spaces and f,g : X — Y continuous
functions. A homotopy between f and g is defined to be a continuous function
H :X x [0,1] — Y such that H(x,0) = f(x) and H(x,1) = g(x) for each x € X. If such

a homotopy exists, we say that f is homotopic to g, and denote this by f ~ g.

Example 2.2.2.2. If f,g : R — R are any continuous functions, then f ~ g.
Indeed, a homotopy between f and g is a function H : R x [0,1] — R defined by
H(x,t) :== (1 —1)f(x)+1g(x) for every x € R and 7 € [0,1]. It is easy to see that H

is a continuous function because it is a composite of continuous functions.

Example 2.2.2.3. Given an annulus A := {(x,y) | 1 <x?>+y*> <2} and a circle C :=
{z € C||z| = 1}, define functions f,g:C — A by f(e'®) := (2,0) and g(e®) := (1,0)
for every ¢ € C in the sense of polar coordinates (r,0). A homotopy between f and g is

a function H : C x [0, 1] — A defined by H(z,t) := (z+ 1,¢) foreachz € Cand ¢ € [0, 1].
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The following theorem is a significant property of homotopies; however,

we do not prove in details but give its sketch proof instead.

Theorem 2.2.2.4. Given two topological spaces X and Y, homotopy is an equivalence

relation on Hom(X,Y) :={f | f: X =Y}

Remark 2.2.2.5. In this remark, we give some ideas of how homotopy is reflexive,
symmetric, and transitive. Firstly, for each f € Hom(X,Y), the function F : X x [0, 1] —
Y defined by F(x,t) := f(x) for all x € X and ¢ € [0, 1] is a homotopy from f to f.
Secondly, assume that F : X x [0, 1] — Y is a homotopy from f to g. It is easy to prove
that G : X x [0,1] — Y defined by G(x,t) := F(x,1 —¢) forallx € X and ¢ € [0, 1] is a
homotopy from g to f. Finally, suppose that F : X x [0, 1] — Y is a homotopy from f to

gand G: X x [0,1] — Y is a homotopy from g to h. We see that the map

F(x,2t) 0 560

IN
NI—

H(x,t):=
G(x,2t—1) 5 <t

IN

1

is a homotopy from f to A.

2.2.3 Bundles

In the future discussion of categories and ®-categories over an M-quiver, it is convenient

to make use of the alternative language of bundles and fibers as defined by the following.

Definition 2.2.3.1. A bundle is a triple (E, 7, B), where E and B are sets and t: E — B
is a function. In this case, E is called the total space, B is called the base space of the

bundle, and 7 is called the projection. Moreover, for each b € B, n! () is called the

fiber of the bundle over b.

Remark 2.2.3.2. Since the definition of bundles is unrestrictive, we may further specify
each component by adding some additional structures. For instance, we may assume
that £ and B are topological spaces and T is a continuous function with some appro-
priate properties (we will use the term fopological bundle in this case). If E and B are

categories and 7 is a suitable functor, we will use the term categorical bundle).
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2.3 Basic Category Theory

In this section we recall some basic concepts in category theory; for example, functors,
free structures, natural transformations, adjunctions, etc. For more details, see Aluffi P.

[A], Borceux F. [Bo], and MacLane S. [ML].

2.3.1 Definitions and Examples of Categories

Definition 2.3.1.1. A quiver Q consists of a set Q° of objects of O, a set Q' of mor-

s
hisms of Q, and two functions Q° & Q! giving the source and target of morphisms.
p t

s
Definition 2.3.1.2. A category ¢ is a quiver €° %! with an identity map €° — ¢!
t

and a partially defined composition o : € xo €' — €', where
¢! x0 6" = {(f,8) €€ x€"[s(g) =1(/)},
defined by (f,g) — go f, such that the following compatibilities hold:

1. (compatibility of source and target with composition)

s(gof)=s(f) andt(go f) =1(g),

2. (compatibility of source and target with identity)

s(t4) = A =1(14) forevery A € ©°
and such that the following algebraic axioms are satisfied:
1. (associativity) ho (go f) = (hog)o f,
2. (unitality) foly = fandigo f = f
whenever these compositions make sense.

Remark 2.3.1.3. For any category ¢, we denote € and €’ to be the class of objects

of ¢ and the class of morphisms of ¢, respectively.
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Remark 2.3.1.4. This definition of categories is based on quivers. However, we have
another equivalent definition of a category in terms of bundles as follows. A category

% consists of:

e aclass Oby of objects of the category, and

e for each A, B € Oby, a disjoint set Homy (A, B) of morphisms or arrows from A

to B with the following properties:

there exists one morphism 14 for each A € Oby called an identity map,

forall A, B,C € Oby, a function ogpc : Homg (A, B) x Homy (B,C) — Homy (A, C)

defined by (f,g) — goapc f or go f or simply gf called composition,

for each f € Homy (A, B), g € Homy (B, C), and h € Homy (C,D),

ho(gof)= (hog)o f called associativity,

for all f € Homy (A,B), fols = f and 1go f = f called unitality.

Remark 2.3.1.5. As bundles are defined in the subsection 2.2.3, for a category ¢ the
set €0 x € can be seen to be the base space of the bundle and ¢! is then the total
space. Furthermore, the projection is a function 7t : €' — €° x €° which is defined
by m: f > (s(f),t(f)) for every f € €'. Also, the fiber over (4,B) € €° x €° is
€y = {f €€ | s(f) = A1(f) = B} = Homy(A, B).

Some typical examples are given by the following.

Example 2.3.1.6. (Category of functions between sets: Set)
Let €V := {S | Sis a set} = %, the universal class of sets.
For all A,B € €°, Homg (A, B) := {f | f is a function from A to B} =: BA.
Thus, €' := {f | f is a function between sets } = |J BA.
A,B€%0

Define o : BA x CB — C4 by (f,g) — go f, composition of functions.

We see that composition of functions are always associative.
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Moreover, foidy = f and idgo f = f for every f € BA.

Hence, this forms a category of functions between sets.

Example 2.3.1.7. (Monoid as a category)

Let (X,*) be a monoid, i.e. * : X x X — X is associative and there exists a

unique element 1y € X such that xx1x = x = 1y *x for every x € X.
Take €0 := {X} and ¢! := X.
Define! yox:=xxyforall x,y € X.
Composition is associative due to the associativity of x.

Unitality of composition is satisfied thanks to the existence of the identity

of (X, ).

Hence, a monoid is a category with one object.

Example 2.3.1.8. (Pre-ordered set as a category)
Let (X, <) be a pre-ordered set, i.e. < is a reflexive and transitive relation.
Take €0 := X and €' :==.
Composition is defined by (y,z) o (x,y) := (x,z) for all (x,y), (y,z) € €.
Associativity of composition follows from transitivity.
Unitality of composition is induced by reflexivity.
Hence, a pre-ordered set is a category with at most one morphism between
two objects.
Example 2.3.1.9. (Matrices as a category)
Let 4 := N be the set of natural numbers.

For all m,n € N, Homg (n,m) := M, (R), the set of real m x n matrices.

IFor the matter of notations, we have two different ways of writing notations of binary operations.
For basic algebra we usually use the Polish notation; that is, the notation is defined forwardly. On the

other hand, for category theory we define the notation reversedly.
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Thus, €' := |J Myuxn(R) =M(R) is the set of matrices of real numbers.

m,neN

For each A € M;x»,(R) and B € M, ,(R), define composition by
BoA :=A X B, aline-by-column multiplication.
Moreover, for each n € N, there exists [, := [8;;] € M,»,(R), the identity
1 Ji=j
matrix of dimension n, where §;; = .
0 ,i#j

It is easy to see that 4 is a category.

Example 2.3.1.10. (More examples of categories)

The following table lists some basic examples of categories.

Categories Objects Morphisms
Set sets functions
Mag magmas homomorphisms of magmas
Sem semigroups homomorphisms of semigroups
Mon monoids unital homomorphisms of monoids
Grp groups group homomorphisms
Rng rings ring homomorphisms
Ring unital rings unital ring homomorphisms
Vect vector spaces linear transformations
R-Mod R-modules R-linear maps
Top topological spaces continuous maps

Example 2.3.1.11. Let (¢, o) be a category. We can construct another category (¢°7,0,))

from the category % as follows:

1. Ob(fOp = Obcg

2. for each A, B € Obyop, Homyop (A, B) := Homy (B, A)

3. for each A,B,C € Obyop, composition o,, : Homgop (B,A) x Homgop (C,B) —

Homeop (C,A) defined by (f,g) — (go f)P.
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2.3.2 Initial and Final Objects

A category consists of a class of objects and a class of morphisms. In this subsection,

we concentrate on some specific properties of objects, namely initial and final objects.

Definition 2.3.2.1. Let € be a category. We say that an object / of € is initial in ¢ if

for every object A of ¢ there exists a unique morphism / — A in .

Proposition 2.3.2.2. The initial object in the category Set is the empty set &.

Proof. Let A be a set and f a function from & into A.
This implies that f C @ XA = and so f = @.
Hence, @ is the initial object in Set. [

Proposition 2.3.2.3. The initial objects in the category Grp are the trivial groups.

Proof. Let G := {x} and - : G X G — G be defined by * - * := .

Then (G,-) is a group with 1g = * and * ! = .

Let H be a group and f : G — H be defined by f(x) := 1p.

We see that this is the only group homomorphism we can define.

Thus, the trivial groups are initial in Grp. [l
Proposition 2.3.2.4. The initial object in the category Ring is isomorphic to the ring
(Zy+,).

Proof. Let (R,+,-) be any unital ring.

Deﬁnef: (Z=+=) — (R7+7) by

;

n times
N
I+ + g, nel’Z",
f(n) =< O, n=0;
S—lR)—F---—F (—IR)/, nez-.
—n:;mes

\

Without loss of generality, assume that m,n € Z™.
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m-+n times m times n times
o\ N o

I fm+n)="1g++1g =g+ +1g) +(1g+---+ 1g) = f(m) + f(n),

m-n times m times n times

A\ A A

2. fm-n) =g+ - +1g=(g+--+1g)-(Ig+---+ 1g) = f(m) - f(n),

3. f(1z) = 1g.

Hence, f is a unital ring homomorphism.
We see that this is the only unital ring homomorphism we can define.
Therefore, (Z,+,-) is an initial object in Ring. Il

Definition 2.3.2.5. Let % be a category. We say that an object F' of € is final in ¢ if

for every object A of € there exists a unique morphism A — F in €.

Remark 2.3.2.6. The term terminal objects may be used to denote either final objects
or both initial and final objects. Thus, in this proposal we will not use this terminology

to make confusion.

Proposition 2.3.2.7. Singletons play the role of final objects in the category Set.

Proof. Let A be any set and B := {x}.
Define a function f : A — Bby f(a) := x for all a € A.
We see that this is the only function we can define.

Thus, B = {x} is a final object in Set. O

Proposition 2.3.2.8. The final objects in the category Grp are the trivial groups.

Proof. Let H := {x} be the trivial group and G any group.
Define f: G — H by f(x) := * foreachx € G.
Since f(x-y) =x =x%-x = f(x)- f(y) forx,y € G, f is a group homomorphism.
We see that this is the only group homomorphism we can define.

Thus, the trivial groups are final in Grp. U
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Proposition 2.3.2.9. The final objects in the category Ring are the trivial rings.
Proof. Let S := {x} and R be any unital ring.
Define +:Sx S —Sand-: S XS — Sby x+* =% and * - x := x,
Then (S, +,-) is a unital ring with Og = * = lg and —* = *.
Define f : R — S by f(x) := * for each x € R.

We have the following equalities: for each x,y € R
L flx+y) =*=x+x=fx)+ 1),
2. flx-y) =x=x-x=f(x)-f3),
3. f(1g) =*x=lg.

It follows that f is a unital ring homomorphism.

We see that this is the only unital ring homomorphism we can define.

Thus, the trivial rings are final in Ring. L]

A category need not have initial or final objects as described in the follow-

ing example.

Example 2.3.2.10. Consider the category obtained by endowing Z with the relation <.

1. (Z,<) has no initial objects. Indeed, an initial object in this category would be

an integer z such that z < x for all x € Z, but there is no such integer.

2. (Z,<) has no initial objects. A final object would be an integer y such that x <y

for all x € Z, but there is no such integer.

Remark 2.3.2.11. [A, Proposition 5.4] If initial or final objects exist, then they are

unique up to isomorphism.
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2.3.3 Functors

In a category, if one wants to study relationships between two objects, one needs to
know about morphisms between them. But if we would like to study relationships
between two categories, we need the notions of covariant functors and contravariant
functors. Since a category is made up of the information of objects and morphisms,

functors will have to send both objects and morphisms from one category to the other.

Definition 2.3.3.1. Let 4 and Z be two categories. A covariant functor

F : 6 — 2 consists of

1. afunction Oby — Obgy; the image of A € Oby is denoted F(A) or simply FA,

2. for every pair A,B € Oby, a function Homy (A,B) — Homg (F(A),F(B)); the

image of f € Homy (A, B) is denoted F(f) or simply F f
such that the following conditions are satisfied:

o F(ly) = L (A) for all A € Obg,
e F(gogf)=F(g)ogF(f)forallA,B,C € Oby, f € Homy(A,B), and g € Homy (B,C).

Definition 2.3.3.2. Let 4 and & be two categories. A contravariant functor

F : € — 2 consists of

1. afunction Oby — Obgy; the image of A € Oby is denoted F(A) or simply FA,

2. for every pair A,B € Oby, a function Homy (A,B) — Homg (F(B),F(A)); the
image of f € Homy (A, B) is denoted F(f) or simply F f

such that the following conditions are satisfied:

o F(ly) = L (A) for all A € Obg,

e F(gogf)=F(f)ogyF(g)forallA,B,C € Oby, f € Homy(A,B), and g € Homy (B,C).
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The following example is an example of a covariant functor.

Example 2.3.3.3. If R is a unital ring, we denote by R* the group of units (elements
with multiplicative inverses) in R. Every unital ring homomorphism ¢ : R — § induces
a group homomorphism ¢* : R* — S*. We see that F : Ring — Grp which is defined

by F : R+— R* and F : ¢ — ¢* is a covariant functor .

Proof. Let R be a unital ring and R* := {x € R | Jy € R,xy = 1g = yx}.
Note that x,y € R* imply x-y € R* since (xy)(y 'x~!) = 1g = (y " 1x7 1) (xy).

So a binary operation - : R* X R* — R* defined by (x,y) — x-y, for all x,y € R*,

is well-defined.
First, let x,y,z € R*.

This implies that there exist x~!,y~! € R such that xx~! = 1z = x 'x and
wl=1g=y"y.

We see that the following assertions hold:
l. x-(y-z) = (x-y) -z because (R,-) is a semigroup,

2. that 13 € R* follows from the fact that 1glg = 1g,

3. x leRfasx Ix=1g=xxL.

Thus, (R*,-) is a group.

Suppose now that ¢ : R — § is a unital ring homomorphism.

If x € R*, then ¢(x) € S* because ¢(x)d(x') = 1 = 0(x')0(x) for some x’ € R.
This yields ¢* : R* — S* defined by x — ¢(x), for each x € R*, is well-defined.
Notice that ¢* = ¢ |g-.

It also follows that 0*(x-y) = d(x-y) = 0(x)0(y) = ¢*(x)0*(v) for all x,y € R*.
Hence, ¢0* is a group homomorphism.

Next, we will show that F' is a covariant functor.
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Assume that ¢ : R — S and y : S — T are two unital ring homomorphisms.

By definition of induced group homomorphisms, we obtain:
1. F(Idg) = (Idg)* = Idg- = ldp(g),
2. F(yoo)=(yod)" =yod=y 00" =F(y)oF(¢).
Therefore, F is a covariant functor. O]

The following example is an example of a contravariant functor.

Example 2.3.3.4. Let R be a commutative ring. Define the spectrum of R, SpR, as the
set of prime ideals of R. Note that if ¢ : R — S is a homomorphism of commutative
rings, then ¢! (P) is a prime ideal of R for each prime ideal P of S. So, ¢ induces a
function ¢° : SpS — SpR. We see that Sp : Rng — Set defined by Sp : R — SpR and

Sp: ¢ — 0° is a contravariant functor.

Proof. Let R be a commutative ring and SpR := {I | I is a prime ideal of R}.
Firstly, suppose that ¢ : R — S is a homomorphism of commutative rings.
Let P be any prime ideal of S and ab € ¢~ (P).
Then there exists ¢ € P such that ab = ¢~ !(c), i.e. 0(a)d(b) = c.
Since P is prime and ¢(a)0(b) € P, §(a) € P or ¢(b) € P.
Thatis,a € 0~!(P) or b € ¢! (P) and so ¢~ (P) is a prime ideal of R.
Thus, ¢° : SpS — SpR defined by P — ¢~ (P) is a well-defined function.
Assume that y : § — T is another homomorphism of commutative rings.

We have

L ooy =0 loy ' =(yod) ' =(yo0),

2. (Idg)° = (Idg) ! = Idg = Idspr-

Therefore, Sp is a contravariant functor. O]
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Forgetful functors will play a prominent role in the definitions of free struc-

tures and adjunctions.

Example 2.3.3.5. (Forgetful functor: %) Forgetful functors are obtained by forgetting
part of the structure of a given object. For example, Grp — Set (forget the operation on
groups), Rng — Set (forget the operations on rings), R-Mod — Grp (forget the scalar

multiplication on R-modules), etc.

2.3.4 Free Structures

One may think that forgetful functors send objects with more structure to the underly-
ing objects with less structure. Free functors will do the opposite. This means that free
functors will send objects with less structure to free objects with more structure pos-
sessing no further constraints, the latter are called free structures. The formal definition

of free structures is given by the following.

Definition 2.3.4.1. Let % and . be categories and % : € — . a forgetful functor. A
free structure in 4 over an object S in .% is given by § Ny (A), where A € Oby and
a morphism j from S to an object % (A) in .7 is initial for such morphisms, i.e. for
all objects % (A’) in .7, where A’ € Obg, and morphisms S Lo (A’), there exists a

unique morphism of ¢ : A — A" in € such that the following diagram commutes:

7))

T O
J ,
N

S

thatis, j/ =% (¢)oj.

Remark 2.3.4.2. The word “structure” in the above definition can be replaced by any

structures; for instance, magma, semigroup, monoid, group, module, etc.

In the following five theorems we provide the results of the existence of

some of the “free” algebraic structures over a given set. However, we do not spend time
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on proving them in details. But in order to give some ideas of their constructions, we

decide to give here their sketch proofs in the remark after each of its theorem.
Theorem 2.3.4.3. A free magma over a set S exists.

Remark 2.3.4.4. Let S := {x,x2,...,x,} for some n € N.

Define a binary operation * recursively as follows: for each i, j,k,l € {1,2,...,n}
xikXj = (x;,x}),
xi* (xj,) 1= (xi, (), X)),

Cc:, x; ol = (%), el

(xi,5) * (o, xp) = ((x2,7), (k1))

Now let M be the set of union of all such ordered pairs. It can be easily seen that (M, x)
gives a magma. Then set j: S — M to be a function defined by j : x — (x) for every

x € S. This forms a free magma over the set S.

Remark 2.3.4.5. From this construction we see that (M, *) does not satisfy any further

properties; for example, associativity or unitality.
Theorem 2.3.4.6. A free semigroup over a set S exists.

Remark 2.3.4.7. Let M := {(x1,x2,...,%,) | x1,%2,...,X, € S} be the set of finite se-

quences of elements of S. Define, for all (x1,x,...,%,), (V1,¥2,..-,Ym) €M,

(Xl,XQ, cee ’xf’l) * (y17y27 <o ,ym) = (x17x27 ey Xy Y15 Y2y e e ,ym)

We see that (M, %) is a semigroup. Now we define j: S — M by j: x — (x).

This forms a free semigroup over the set S.

Theorem 2.3.4.8. A free monoid over a set S exists.
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Remark 2.3.4.9. Let M := {(x1,x2,...,%,) | x1,%2,...,%, € S}U{( )} be the set of

finite sequences of elements of S. Define, for all (x1,x2,...,X,), (V1,¥2,---,Ym) € M,

(X],Xz, e a-xl’l) * (}’17)’27 Tt ’ym) = (x17x27 et axn7YI7YZ: te aym)

It is easy to see that (M, ) is a monoid. Now we define j: S — M by j: x — (x).

This forms a free monoid over the set S.
Theorem 2.3.4.10. [A, Proposition 5.2] A free group over a set S exists.

Remark 2.3.4.11. Consider the disjoint union SWUS := (S x {0})U (S x {1}), where an
element X’ € S x {1} is considered as the inverse of an element x € § x {0}. Next, we
construct the free monoid F(SWS) over SWS. Then we define an equivalence relation

/

~ which cancels the terms (...,x,x/,...) and (...,x',x,...) for every x € SUS. Now we

let G := F(SWS)/ ~ with a binary operation

[(X1,)C2, ce 7xn>] * [(y17y27 cee ,ym)] = [(x17x27 s Xy Y15Y25 - - >ym)]7
/

identity [( )], and inverse [(x1,x2,...,%,)] ! = [(x,...,x5,x])]. Furthermore, a function

Jj is defined by j : x — [(x)]. This forms a free group over the set S.

Theorem 2.3.4.12. [A, Section 6.3] Given a unital ring R, a free left R-module over a

set S exists.

Remark 2.3.4.13. Consider R®S := @R := {(ry)| ry # O for a finite number of y € S}

Yes
: : Ik Y=m
with a function j : y — &y, where 8,(y1) := :
Or 7’Y7£ "
Define (r%) + (r%) = (r% + r%) and r- (rq}) = (r-r%) for all (r%(), (r%) c R®Sand r € R.

This forms a free left R-module over the set S.

Remark 2.3.4.14. 1. If we define (n}) -r:=(ry-r) for all (ry) € R®S and r € R

instead of r- (ry) := (r-ry

v)» we get a free right R-module.

2. If we define together r- (r%() = (r- r%) with (r%() = (rﬁl( -r), we obtain a free

left-R right-R bimodule.
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2.3.5 Limits and Colimits

Before ending this subsection, we would like to recall some of the most fundamental
notions which will be necessary for our work later, namely /imit and colimit. But before
we head directly to their definition, we need some elementary concepts, called product

and coproduct, which are their least complicated examples first.

Definition 2.3.5.1. Let % be a category and A,B € Oby. A product of A and B is a

diagram

A B

such that for every other diagram

P/
.
A B
there exists a unique morphism y: P* — P such that both diagrams commute:

P/
Jly

OPO
Widne
B

(0

A

that is, x =4 oyand p = mgoYy.
Example 2.3.5.2. In the category Set, a product of A and B is given by
AXB
N
A B

where A X B:={(a,b) |a € A,b € B}, m4 : (a,b) — a, and g : (a,b) — b.
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Proof. Let a pair of functions be given

Ay Q*B

Define a function y: P — A X B by y(x) := (a(x),B(x)) for each x € P.

It follows that, for every x € P

1. myov(x) = ma(¥(x)) = ma((ax), B(x))) = aU(x),
2. mpoy(x) = mp(Y(x)) = mp((a(x),B(x))) = B(x).

As aresult, T4 oy= o and Tgoy=J.

We see that this is the only way we can define this function.

Therefore, a product of A and B is given by

AXB
i
A B
[

Lemma 2.3.5.3. Let (M,+y,-m) and (N,+n,-N) be modules over a ring R. Define
binary operations on M@ N := {(m,n) | m € M,n € N} as follows:

1. +  M@PNXMPN — ME@N by (my,ny) + (mp,na) := (my +pyma,n; +ynz),

2. :RXM@N — MEN by r-(m,n) := (r-yym,r-yn).
Then (M@ N,+,-) becomes an R-module.
Example 2.3.5.4. In the category R-Mod, a product of (M, +yy,-p) and (N, +y,-n) is

M@&N
2N
M N

where M@ N := {(m,n) | m € M,n € N} equipped with binary operations + and -

defined above is an R-module, my, : (m,n) — m, and Ty : (m,n) — n.
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Proof. By Lemma 2.3.5.3, (M@ N,+,-) is an R-module.

Define functions 7ty : ME@N — M and iy : MEN — N by ny((m,n)) :==m
and 7y ((m,n)) := n for each (m,n) € ME@PN.

We first show that both 7y, and 7y are R-linear maps.
Let (m,n), (my,ny),(my,ny) € ME@N and r € R.
1. mp((my,m) + (ma,n2)) = my((my +pyrma,ny +yn2)) =my +ymo
= Ty ((m1,n1)) + T ((m2,m2)),
2. wy((my,ny) + (ma,n2)) =y ((my +pma,ny +yn2)) =np +yn
=y ((m1,n1)) + 7y ((m2,n2)),
3. wy(r-(m,n)) =y ((r-ym,r-yn)) =r-yym=r-yny((mn)),
4. wy(r-(m,n)) =nn((r-ym,r-yn)) =r-yn=r-pyny((m,n)).

This implies that 7y, and 7y are R-linear maps.

Now let P be an R-module and u: P — M and v : P — N R-linear maps:

P
AT
M N
Define a functiony: P — M@ N by y(p) := (u(p),v(p)) for each p € P.

To check that yis R-linear, let p,g € P and r € R.

L. y(p+q) = (u(p+q),v(p+q) = (ulp) +mu(q),v(p) +nV(q))
= (u(p),v(p)) + (u(q),v(q)) =v(p) +¥(q),
2. Y(r-p) = (u(r-p),v(r-p)) = (r-uu(p),r-nv(p)) =r-(u(p),u(p)) = r-v(p).

This yields that yis an R-linear map.

We have the following equalities: for every p € P
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L.y oy(p) = 7 (Y(p)) = 7 ((u(p),v(p))) = u(p),

2. myoy(p) =nn(¥(p)) = mn((u(p),v(p))) =v(p),

It follows that 7y satisfies Ty oy =pu and Ty oy = V.
We see that this is the only way to define such R-linear map.

Therefore, a product of M and N is given by

M@N

GaS
M N

]

Definition 2.3.5.5. Let & be a category and A, B € Oby. A coproduct of A and B is a
diagram

S

20N

A B

such that for every other diagram

S/
TR
A B

there exists a unique morphism y: S — S such that both diagrams commute:

S/
/HA!Y
O s O
AN
A B

that is, & = yois and p = Yo ig.
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Example 2.3.5.6. In the category Set, a coproduct of A and B is given by
AUB
yl X
A B
where AUB := (Ax{0})U(Bx{1}),ia:a+ (a,0),and ip: b (b,1).

Proof. Let a pair of functions be given
S
g
A B

Define Y: AUB — S by y(x) := ) for eachx € AUB.

This yields that, for every x € AUB

1. yoia(x) = v(ia(x)) = ¥((x,0)) = a(x),
2. yoip(x) = Y(ip(x)) = v((x, 1)) = B(x).
Thus, yoiys = o and yoip = .
We see that this is the only function satisfying such properties.

Hence, a coproduct of A and B is given by

AUB

%Y
A B
[]

Example 2.3.5.7. In the category R-Mod, a product of (M, +y,-p) and (N, +y,-n) is

M@N

>

M N
where M@ N := {(m,n) | m € M,n € N} equipped with binary operations + and - is

an R-module, iy : m — (m,0x), and iy : n+— (Opz,n).
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Proof. Define functions iyy : M — ME@N and iy : N - ME@N by iy (m) := (m,0y)

and iy(n) := (Opr,n) foreachm € M and n € N.
We first verify that both iy; and iy are R-linear maps.
Let m,my,my e M,n,n;,np € N,and r € R.
L. iy (my +pmp) = (my +yma,0y) = (my,0n) + (m2,0n) = iy (my) + ipg(my),
2. in(ny+nn2) = (0pr,n1 +nn2) = (0pr,n1) 4+ (Opr,m2) = in(ny) +in(n2),
3. iy(r-yym) = (r-yym,0y) =r-(m,0y) =r-iy(m),
4. in(r-yn) = (Op,r-yn)=r-(0py,n) =r-iy(n).

Thus, iys and iy are R-linear maps.

Now let S be an R-module and i : M — P and v : N — P R-linear maps:

S
u v
M/ \N
Define y: M@ N — S by Y((m,n)) := u(m) +v(n) for all (m,n) € ME@N.
To see that y is R-linear, let (m, n), (m1,n1), (ma,n2) € ME@N and r € R.
Loy((mi,ni) 4 (ma,n2)) = Y((m1 +yma,ni +n na)) = plmy e ma) +V(n1+yn2)
= (u(m1) +u(m)) + (v(n1) +v(n2))
= (u(m1) +v(m)) + (u(mz) +v(n2))
= Y((m1,m)) +¥((m2,n2)),
2. y(r-(m,n)) =¥((r-mm,r-yn)) =u(rsm)+v(ryn)
= r-(u(m) +v(n)) = r-y((m,n)).

Notice that u and v are R-linear imply u(0p7) = 05 = v(Oy).

Consider the following arguments:
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1. yoiy(m) ="y(ipe(m)) =y((m,0n)) = u(m) +v(Oy) = u(m) for all m € M,

2. yoiy(n) =vy(in(n)) =v((0pr,n)) = u(Opr) +v(n) =v(n) foralln € N.

This means that Yo iy =y and yoiy = V.
We see that this is the only R-linear map satisfying such properties.

Therefore, a coproduct of M and N is given by

M@N

YR Y

M N

]

Definition 2.3.5.8. Let .# and % be categories and F : .# — % a covariant functor,
where one thinks of .# as of a category of indices. A cone on F is an object N of &
endowed with morphisms yx : N — F(X) for all X € Ob » such thatif f: X — Y isa

morphism in .# then the following diagram commutes:

N
vy \\vi
o
F(Y
F(f) (¥)

F(X)

that is, yy = F(f) o yy.

Definition 2.3.5.9. Let .# and % be categories and F : .# — % a covariant functor,
where one thinks of .# as of a category of indices. A co-cone on F is an object M of €
endowed with morphisms ¢x : F(X) — M for all X € Ob_» such thatif f: X — Y isa

morphism in .# then the following diagram commutes:

M
Ox oy
O\
F(Y
F(f) (¥)

F(X)

that is, ox = ¢y o F(f).
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Definition 2.3.5.10. Let .# and % be categories and F : .# — ¢ a covariant functor,
where one thinks of .# as of a category of indices. The limit of F' is (if it exists) an

object L of €, endowed with morphisms A; : L — F(I) for all I € Ob y, such that

1. if ou: I — J is a morphism in ., then A; = F (o) o A;:

L
v N
F(I) ——F )

2. L is final with respect to this property: that is, if M is another object, endowed

with morphisms gy, also satisfying the previous requirement:

M
A
F(l) —5—F ()

then there exists a unique morphism y: M — L making all relevant diagrams

dly
O s O
O

that is, uy = Ayoyand uy = Ajo7.

commute:

ﬁ

Remark 2.3.5.11. The limit is the final object in the category of cones.
Remark 2.3.5.12. If the limit exists, it is unique up to isomorphism.

Example 2.3.5.13. Let .7 be the discrete category, a category in which every morphism
admits an inverse, consisting of two objects A and B with only identity morphisms and
let F be a functor from . to any category %. A limit of F is simply a product of F(A)
and F (B). Notice that this limit exists if and only if a product of F(A) and F(B) exists.
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Definition 2.3.5.14. Let .# and % be categories and F : .# — ¢ a covariant functor,
where one thinks of .# as of a category of indices. The colimit of F' is (if it exists) an

object L of €, endowed with morphisms A; : F(I) — L for all I € Ob 4, such that

1. if oo: I — J is a morphism in ., then A = Ay 0 F(Q):
L
M Ay
O
ra - FW)

2. L is initial with respect to this property: that is, if M is another object, endowed

F(I)

with morphisms gy, also satisfying the previous requirement:

M
i
PO ——F()

then there exists a unique morphism y: L — M making all relevant diagrams

M
v T
O I O
Bt

F(l) F(J)

commute:

F(o)
that is, gy = yo Ay and uy = yoA;.
Remark 2.3.5.15. The colimit is the initial object in the category of co-cones.
Remark 2.3.5.16. If the colimit exists, it is unique up to isomorphism.

Example 2.3.5.17. Let .# be the discrete category, a category in which every morphism
admits an inverse, consisting of two objects A and B with only identity morphisms and
let F be a functor from . to any category 4. A colimit of F is simply a coproduct of
F(A) and F(B). Notice that this colimit exists if and only if a coproduct of F(A) and
F(B) exists.
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2.3.6 Natural Transformations and Adjunctions

As before, we can also study relationships between two functors. One of these is called
a natural transformation and another is called an adjunction. First of all, the notion of

isomorphisms is given below because it is preliminary for adjunctions.

Definition 2.3.6.1. Let & be a category and f € €’'. We say that f is an isomorphism

if there exists g € €’ such that go f = L) and fog =1 p).

Example 2.3.6.2. Some typical examples are as follows:

1. In the category Set of sets, isomorphisms are simply invertible functions.
2. In the category Grp of groups, isomorphisms are bijective homomorphisms.

Definition 2.3.6.3. Let ¥ and & be categories and F,G : € — & be covariant functors.
A natural transformation between F and G is given by a map 1 : Oby — Homg such

that, for each A, B € Oby and f € Homy (A, B), the following diagram is commutative:

A
fl g F(f)L O lG(f)
B

¢ )

that is, npo F(f) = G(f) ona. A natural isomorphism is a natural transformation m

such that ny is an isomorphism for every X.

Example 2.3.6.4. Let R be a ring and let M,(R) be the ring of n x n matrices over
R. The inclusion map 1g : R — M, (R) sends an element r € R to the scalar matrix

diag(r,...,r). If f: R — S is a ring homomorphism, there is a commutative diagram

R _LR> Mn<R)
fl O LMn(f)
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of ring homomorphisms. Thus, 1 is a natural transformation from the identity functor

on the the category Rng to the functor M,(—) on Rng.

Proof. First of all, define Id : Rng — Rng by

R R
fl X Lf
S S

It is easy to see that Id is the identity functor.

Now we define M,,(—) : Rng — Rng by

R M, (R)
fl ) an ()
§ M, (S)

where M, (f) : Ml,(R) — M,,(S) is defined by [a;j|nxn > [f(aij)]nxn-

Let f:R— Sand g: S — T be ring homomorphisms and [¢;|,xn € M, (R).

1. Min(g o f)([aijlnxn) = [g© f(aij)lnxn = [(f(@ij))]nxn = Mn(g)([f (@ij)]nxn)
= M (g) o M (f) ([@ijlnxn)
2. Miy(idg) ([ij)nn) = [aijlnxn = id, ) (@ij)cn)-
This yields that M, (g f) = Mu(g) o My () and My (idg) = idhy, ).

That is, M,,(—) becomes a functor.

Next, let 1 : Obrpg — Hompgyg be defined by R — 1 for each R € Obgrpg, where

g : R — M,(R) is defined by r +— [r§;j]nxn-

Consider the following diagram

1d(R) —%> M,(R)
Id(f)t LMn(f)
1d(S) —— Mi,(S)
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which is equivalent to the diagram

R—% M, (R)

fl LMn(f)

To prove that this diagram is commutative, we let r € R.
Consider M, (f) otr(r) = My (f)([r8ij]nxn) = [£(r8ij)lnxn
and 1o f(r) =1(f(r)) = [f(7)8ijlnxn = [f(r8ij)]nsn-

This means that M,,,(f) o1g =150 f.

Therefore, 1 is a natural transformation. ]

Example 2.3.6.5. Given a matrix A = [q;;| over a ring R, the transpose of A is defined
to be the matrix A’ = [a;;], whose entries are in the opposite ring R°. We see that a
map (—)% : M,(R°) — (M, (R))° is a ring isomorphism. Given a ring homomorphism

f R — S, there exists a commutative diagram

so that (—)' is a natural isomorphism between the functors M, ((—)°) and (M,(—))°.

Proof. Recall that the opposite of aring (R,+,-) is the ring (R, +,*) whose multiplica-

tion x is defined by axb := b -a for every a,b € R.

Claim that a ring homomorphism f : R — S induces a ring homomorphism
f°iR° — S°.

Since R° = R and S° = § as sets, we can define f° : r° — f°(r), where r° :=r
and f°(r) := f(r).

To verify that f° is a ring homomorphism, suppose that a,b € R°.

L. fo(a+b) = fla+b) = f(a)+ f(b) = f*(a)+ f°(D),
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2. fo(axb) = f(b-a) = f(b)- f(a) = f*(a)x f°(D).

This means that f° is a ring homomorphism.

Now we define M[,(—) : Rng — Rng by

R M, (R)
fl e jMnm
§ M.,.(S)

where M, (f) : Ml,(R) — M,,(S) is defined by [a;j]nxn > [f(aij)]nxn-
We have already shown that M, (—) is a functor in Example 2.3.6.4.

Now we define (—)° : Rng — Rng by

R R°
fl ) l o
S 5°

where f©:r° — f(r)° with r° :=r and f(r)° := f(r).

The fact that (—)° is also a functor follows from the definition of f°.

o

Since composition of functors is another functor, both M, ((—)°) and (M,,(—))

are also functors.

Let (—)" : Obrag — Homgyg be defined by R +— (—)% for every R € Obgpg,
where (=) : My (R°) — (M, (R))° is defined by [af]nxn > [dij]pxn-
Now consider the following diagram
oy Tk o
M., (R?) — (Mi,(R))
Mn(fo)t l(Mn(f))o
M, ($°) = (M (S))°

To prove that (—)" is a natural transformation, let [a]}],1xn € M (R®).

Consider (Mi,(f))? o (=)&([a7jlnxn) = Ma(f))*([@ijlnxn) = [f(@ij)]xn
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and (=) o M, (f°)([aj]nxn) = (=)s([f (@)lnxn) = [ (@ij)]n-

This implies that (M, (f))° o (=) = (=), 0 M (f°).

Hence, (—)" is a natural transformation.

In addition, if we define ()% : (M,(R))° — M,,(R°) by [a;j]5 > [afInxn, then
(—)ro (—)k =1dgu,(r)) and (—)k o (—)k = Idng, (o)

So (—)% is an isomorphism for every R.

Therefore, (—) is a natural isomorphism. O

As promised, we now consider the concept of adjunctions which will later

relate our main results.

Definition 2.3.6.6. Let 4" and & be categories and F : 4 — & and G : ¥ — € be func-
tors. We say that the functor F is left adjoint to the functor G or the functor G is right
adjoint to the functor F, denoted by F - G or G I F, if there exist natural transforma-

tions M : Idy = GF and € : FG = Idy making the following diagrams commute:

e . "PGRE

i lsF © jGe
lp lg

that is, €éF o F'm = 1F and GeonG = 1g.

We also have an equivalent definition of adjunctions as stated in the follow-

ing theorem.

Theorem 2.3.6.7. Let € and 9 be categories and F : € — 2 and G : 9 — € be func-
tors. The functor F is left adjoint to G if and only if there exists a natural isomorphism

Homy (A, G(B)) ~ Homg(F(A),B) for all A € Oby and B € Obg,.

Example 2.3.6.8. Let Set and Mon be the categories of sets and monoids, respectively.
Then the free monoid functor .# : Set — Mon is left adjoint to the forgetful functor

% : Mon — Set.
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Proof. Remember that the forgetful functor %7 sends monoids to their underlying sets
forgetting the binary operation and the identity.

On the other hand, the free monoid functor .%# maps sets to monoids whose

binary operation is the concatenation of elements of those sets.
First of all, let A € Obget and M € Obygen.
Consider F% (M) = {(x1,x2,...,%,) | X1,X2,..., X0 € X (M)} U{(Om}-
Suppose that f : M — N is a homomorphism of monoids.
We get a function F % (f) : FU (M) — F % (N) defined by
(x1,%2, -, %0) = (f(x1), f(x2),- .., f(x)) and (s — On-

This function is a homomorphism of monoids because

FU(f)((x1,-- %) * 2o 1) 015+ -, Ym))
= FU) (X1, X0, Y153 Ym))
= (fx1)s- -, ), fO1)5- -, fm)
= (fx1)s- -, f(n)) 2z @iy (F31),- -5 f m))
= FU)(x1,-x) xzamw) FU ) (01, Ym))
for each (x1,...,%n)s (V1. .., ym) € FU (M).

Define € : Obpygon — Homygen by M +— €3y where €y : F % (M) — M is defined

by (x1,x2,...,%,) — x1x2 -+ x, for all (x1,x,...,%,) € F% (M) and () — L.

Now consider the diagram

To prove commutativity, we need to show that €yy0 F % (f) = foen.

For each (x1,x2,...,x,) € % (M), we have

l. eyo FU(f)o ((xl,xz,...,x,,)) :8N((f(x1),...,f(xn))) = f(x1)*n - xn f(xn),
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2. foeM((xl,xz,...,xn)) = flxpspr--*prxn) = 1) xn - #n f(xn),

3. eno FU(f)(Om) =en(On) = In = f(Im) = foem((Om)-

Thus, € is a natural transformation.
Now consider % .7 (A) = {(x1,x2,...,Xn) | X1,X2,...,%, €A}

We see that a function f : A — B induces a function % .% (f) : % F (A) —

U F (B) defined by (x1,x2,...,%,) — (f(x1), f(x2),.--, f(xn)).

Define 1 : Obget — Homget by A +— M4 where My : A — %% (A) is defined by

x +— (x) for every x € A.
Now consider the diagram
A—2uy FA)

f L‘%ﬁ’?(f)
B _nT;%')OZ(B)

To prove commutativity, we need to show that % .% (f) ona =ngo f.
For each x € A, we get % Z (f) ona(x) = % F (f)((x)) = (f(x)) =ngo f(x).
Hence, 1 is a natural transformation.

Ultimately, consider the following diagrams
Fn
F——=FUF /4 FU

4
o _ﬂ)%
zZ
I N

F w

To obtain an adjunction, we have to show that both triangles are commutative;

thatis, e&# o N =1z and Zeon% = 1y.

But verifying that such diagrams commute is equivalent to demonstrating that

the following triangles commute:
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FA) -T2z 7)) wM) Y TUM)

\ L£A<%7 \ Uey
Lz ) Lo (m)

7 (A) u M)

Recall that .7 (A) := {(x1,x2,...,x,) | x; €A, i=1,2,...,n} U{()}.

This implies that % .F(A) = {(x1,x2,...,x,) | xi € A,i = 1,2,...,n} and so
FUFA) ={((x11,-- s X1n), -, X1y X)) | xij €AJi=1,...om j=1,...,n}U
{(O}-

Define ¥y : Z (A) - FU F(A) by (x1,x2,...,%,) — ((x1,x2,...,x,)) forall

(X1, %2, -+ %n) € Z(A) and () = (().
Define €4.7 : FU F(A) — F (A) by
((xll,...,xln),...,(xml,...,xmn)) —> (xll,...,xln,...,xml,...,xmn).

It is easy to see that .# 14 and €4.% are homomorphisms of monoids.
Recall again that % (M) = M as a set.

It follows that F % (M) = {(x1,x2,...,xy) | i €% M),i=1,...,n} U{()} and
SO U FU M) ={(x1,x2,....%) | xi €U M),i=1,...,n}.

Define functions Ny % : % (M) — U FU (M) and U epy : U F U (M) — U (M)

by My x> (x) and Z ey (x1,X2,...,X,) = xX1x2--x, € M =U(M).
Next, we will check that 4.7 0 M4 = 1 7(4) and Z ey oY = Loy (mr)-
For every (x1,x2,...,x,) € #(A) and x € % (M), we obtain
1. eaZ o FNa((x1,x2,..., %)) =€aF (((x1,X2,-. ., %)) = (X1,X2,...,Xp)
2. Ueyonu (x) = Uem((x)) =x.
This yields that 4.7 0 F Mg = 1 4y and Z ey oNu % = Loy (-
It follows that &% o Fn =14 and ZeonN% = 1.

Therefore, .# is left adjoint to % . O
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2.3.7 Monads and Algebras

In this subsection, we discuss the notions of monads and algebras2 for monads. The
idea is that a monad gives us a way of describing a theory, such as the theory of groups,
by encapsulating all the information about how structures in that theory are required to
behave. In addition, an algebra is a set equipped with extra structure and the algebra
action tells us how the operations are to be evaluated. For more details, see Cheng E. -

Lauda A. [CL].

Any endofunctor T on a category € has composites T> =T oT : € — €
and T3 =T?0T : ¢ — €. If u: T?> = T is a natural transformation with components
ux : T>(X) — T(X) for each X € Obe, then Tu: T? = T? gives the natural transfor-
mation with components (Tu)x = Tuy : T3(X) — T?(X) and also uT : T3 = T? has

components (uT )x = pir(x)-

Definition 2.3.7.1. A monad on a category % consists of a functor 7 : € — ¥ and
natural transformations 1M : Idy = T (the unit) and u : T2 = T (the multiplication)

such that the following diagrams commute:

7o) T2(X)=—=T(X)\ » T’ X)—T2(X)
L 9 #xl © T20d Tyxl O lﬂx
T(X) T(X) ——T(X)

that is, pux o TNy = ly(x) = ux oNp(x) and ux o Tpux = ux oux T .
Theorem 2.3.7.2. Every adjunction gives rise a monad.

Remark 2.3.7.3. Let ¢ and & be categories. We see that an adjunction pair F' : 4 — &
and G : ¥ — % has a composite T = GF an endofunctor, the unit 1 of the adjunction

is a natural transformation 1 : Id¢ = T, and the counit € : F'G = Id¢ of the adjunction

>There are several definitions of algebras depending on the context. In universal algebra, an alge-
bra over a ring R is an R-module with an R-bilinear multiplication together with some compatibility

conditions.
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produces a natural transformation y = GeF : GFGF = GF =T. Now we consider the

commutativity of the following diagrams:

GFGFGFEL GFGF  FGFGE%:-FG
GsFGFL O LGEF eFGl O Ls
GFGF —— GF FG—(—1g9

Similarly, the left and right unit axioms reduce to the diagram:

1xGF 2% GrGr £ GFiy

Sl 2

GF

which are simply two triangular identities 16 = GeonG : G = G and 1lp =eFoFn:

F = F for the adjunction. Hence, (GF,n,GeF) is a monad on €.

A standard example is the monad for monoids.

Example 2.3.7.4. There is a forgetful functor %7 : Mon — Set from the category of
monoids to the category of sets which simply forgets about the multiplication and iden-
tity. Moreover, there is a free functor .% : Set — Mon which sends every set to the free
monoid on that set. We have shown in Example 2.3.6.8 that .7 is left adjoint to % .

Thus, T = % .% is a monad on Set.

Remark 2.3.7.5. Let’s synthesize the data in Example 2.3.7.4: for each set A

1. T(A) = {(x1,x2,..., %) | x1,%2,...,x, € A}, the set of strings of elements of A,

2. T2(A):{((x“,...,xln)7...,(xm1,...,xmn)) |xl~j€A, = 1,...,m, j= 1,...,11},

the set of strings of strings of elements of A,

3. T3(A):{(((-xllla"‘axlln)v"’a(-xlml7"'7~xlmn));’"7<(x1117"'7xlln);“',
(Xtm1y--Ximn))) | Xk €A, i=1,...,0, j=1,....m, k=1,...,n}, the set of

strings of strings of strings of elements of A,

4. anatural transformation 1 : Idget = 7 is defined by A — M4, whereny : A — T(A)

is defined by x — (x),
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5. a natural transformation u : T2 = T is defined by A — uy, where puy : T2 (A) —

T(A) is defined by ((X11,--+sX10) sy Xmly- -y Xmn)) = (X115- -y Xmn),
6. Tna: T(A) — T?(A) is defined by (x1,x2,...,x,) — ((x1), (x2),. .., (x0)),
7. Nr(a) : T(A) = T2(A) is defined by (x1,x2,...,%a) = ((x1,%2,..., X)),

8. uaT : T3(A) — T?(A) is defined by
(((-xlllu"’ 7x11n)7-- ) (xlm]7~ - axlmn))r ER) ((xlllw .- >xlln)7~ R (xlm17~ .. 7-xlmn)))

= ((x111>---7x11n7- --7x1m17---axlmn)a---7(xllla---7xlln7---axlmlw--vxlmn)),

9. Tup : T3(A) — T?(A) is defined by
(((-xllla s oS 7x11n)7 2H0.0%) (xlmh ... ;xlmn))a- ) ((.X[]l, e ;xlln)7~ ) (-xlmlv' .. axlmn)))

— ((xllla"'axlli’l)a"' ) (xlm17"'7xlmn)7"' ) (xllla"'axlln)v' ~-7(xlm1>~--axlmn))-

Definition 2.3.7.6. Let (7,m,u) be a monad on a category 4. An algebra for a monad
T consists of an object A € Oby together with a morphism 7'(A) % A such that the

following diagrams commute:

thatis, Bong =14 and 0070 =0ouy.

Example 2.3.7.7. An algebra for a monad for the category Mon is simply a monoid.
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2.4 Weak o-Categories: Penon’s Definition

In this section we discuss mainly the Penon’s definition of weak m-categories. We
start with the definitions of globular ®-magmas, strict m-categories, and finally weak
o-categories. For further details, the readers are required to see Cheng E., Lauda A.

[CL], Leinster T. [L1, L2], and Penon J. [P].

2.4.1 Globular ®-Magmas

As defined in the subsection 2.3.1, a quiver can be generalized to an n-quiver for any
n € N and ultimately an ®-quiver. In a similar way, since a category can be viewed to be
based on a quiver, an n-category (®-category, respectively) can be viewed to be based

on an n-quiver (®-quiver, respectively).

1 n—2 snfl

SO N S

Definition 2.4.1.1. Let n € N. An n-quiver Q° &= Q! & --- &= 0" ! &= Q" is a finite
tO tl tn—2 tnfl

family of sets QX for k = 0,1,...,n equipped with n pairs of source and target maps

sk ik QFt1 = OF foreach k =0, 1,...,n— 1. Elements of Q" are called m-cells of Q.

Remark 2.4.1.2. In this case, we also require that the sets Q' and @/ need to be disjoint

for all i # j so as to avoid the repetition of names of cells.

0 1 n—2 n—1 s

N N s s

Definition 2.4.1.3. An o-quiver Q° & Q' & --- &= Q"' &= Q" & --- is an infinite
tO tl tn72 tVl*l mn

family of sets QF, for any k € Ny, equipped with infinite pairs of source and target maps

sk ik OFF1 = OF, for each k € Ny.
Definition 2.4.1.4. Let n € N. An n-globular set is an n-quiver which satisfies the
globularity condition, i.e. s 15k = s~ 1k and A1k = * 1tk forall k = 1,2,...,n— 1.

Remark 2.4.1.5. For each n-globular set, there exists a colimit Q" which can be con-

sidered as a bundle
Qn

l

Qn—l % Qn—l
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with nontrivial fibers over (f,g) € 0" 1 x 0" ! that satisfies the globular condition.

Definition 2.4.1.6. An w-globular set is an ®-quiver satisfying the globularity condi-

tion, i.e. s 1sk = sk 145 and F—1sk = A~ 14 for all k € N.

Remark 2.4.1.7. For each w-globular set, there exists a colimit Q9 which can be con-

sidered as a bundle

with trivial fibers .

Definition 2.4.1.8. A globular n-magma is an n-globular set equipped with a function

og 10" x, Q" — Q" foreach 0 < p <m < n, where
Q" x, Q™= {(x,x) € Q" x Q" | PP ... (x) = sPsP T g (W)Y,
such that the following conditions hold: if 0 < p <m <nand (x',x) € Q" x, Q™,

° squ‘Fl...smil(x/OmX): , ’

s PRI, q<p.
t9r4+1 '-~tm_1(x/) o4 tara+1 '-~tm_](x) > p
p Y q p»

o dpatl.. _tmfl(xl o}”}x) =
(aratl . 'tmfl(x%

q=p.
Remark 2.4.1.9. We can compose k-cells along boundary p-cells, for 0 < p < k. We

call this p-composition. The case k = 3 is depicted below.

o —— 0

¢)

0-composition or

composition along

bounding 0-cells

1-composition or
composition along

bounding 1-cells

2-composition or
composition along

bounding 2-cells
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Definition 2.4.1.10. A globular ®-magma is an ®-globular set equipped with a func-

tion og ;0" %, Q" — Q" for each 0 < p < m, where
Q" xp Q"= {(¥,x) € Q" x Q" [ PP () = PP (X)),
such that the following conditions hold: if 0 < p < m and (x',x) € Q™ x, 0",

o s gn] (3 oM x) sasd Tl s (W) o sAsTH s (x), g > ps
pY) = ;
sqsq+1...sm_l(x/), qu'

(4t () oh 9t (x), g > ps

o 19t gmml(y opx) = .
AT AR LY PO q<p.

Remark 2.4.1.11. In view of further investigation in the direction of ®-C*-categories,
one might need to add linear structures and norms on all the fiber-blocks and in order
to keep this feature also in the w-case, it is convenient to adopt a slightly more general
definition of globular ®w-magmas that allows the possibility on nontrivial fiber-blocks

on each cell in 0.

2.4.2 Strict o-Categories

Definition 2.4.2.1. Let n € N. A strict n-category is a globular n-magma % equipped
with a function 17 : €7 — €P*! for each 0 < p < n; we call 17 (x) the identity on x,

satisfying the following axioms:

1. (sources and targets of identities) if 0 < p < n and x € €7, then

PP (x)) = x = P (1P (x)),

2. (associativity) if 0 < p <m < n and x,y,z € €™ with

(2,), (y,x) € €™ %, €™, then (20} y) o) x = zoj (y ol x),
3. (unitality) if 0 < p <m <nand x € €™, then

lm—] "'lplp-"tm_l(x>o X:X:XOmlm_l ”_lpsp_”sm—]<x)7

m
p p
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4. (binary exchange) if 0 < ¢ < p <m <nand x,x,y,y € €" with
/,y), (X,x) € €™ x, €™ and (¥, X'), (y,x) € €™ x4 €™, then

(y' o y) o (x oy x) = (y' o x') O (v o x),
5. (functoriality of identities) if 0 < ¢ < p <n and (x',x) € €7 x, €7, then
Y (x) oé’“ V(x) =17(x ob x).

Definition 2.4.2.2. A strict m-category is a globular ®-magma % equipped with a

function 17 : €7 — €P*! for each p > 0 satisfying the following axioms:

1. (sources and targets of identities) if p > 0 and x € €7, then

PP (x)) = x =17 (1 (x)),

2. (associativity) if 0 < p < m and x,y,z € € with

(z,¥), (0,x) € €™ x, €™, then (20} y) o x = z0 (y o x),
3. (unitality) if 0 < p < m and x € €™, then

lm_l ‘__lptp...[m_l(x)o x:x:xorpnlm_l olpsp---sm_l(x),

m
p

4. (binary exchange) if 0 < ¢ < p <m and x,x,y,y’ € €™ with
O/,y), (X ,x) € € x, €™ and (¥, X'), (y,x) € €™ x4 €™, then
(' o y) o (& o x) = (v 0 ') O (y o x),
5. (functoriality of identities) if 0 < g < p and (¥, x) € €7 x, %", then

() ol P (x) =17 (x ol x).

2.4.3 Weak w-Category: Penon’s Definition

Definition 2.4.3.1. We say that two k-cells are parallel if k = 0 or k > 0 and they have

the same source and target as one another.
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Definition 2.4.3.2. Let A be a globular ®-magma, B a strict ®-category, and f : A — B

a morphism of globular w-magmas. For each o, B € AX such that

1. o and P are parallel, and

a contraction [-, -] on amap f gives a contraction cell [c, B] : o0 — [ such that f([a, B]) =

1 £y = l¢(p) € B. Furthermore, if A is unital, then (o, a] = 1y € A for all a.

Remark 2.4.3.3. Informally, given any two parallel k-cells o and B with the same image

under f, there is a given (k+ 1)-cell a — [ that maps to the identity under f.

Consider a category 2 whose objects are of the form (A i> B, [, ]) where
A is a globular ®-magma, B is a strict w-category, f is a morphism of globular ®-
magmas i.e. f preserves composition, equipped with a specified contraction [-,-], and
whose morphisms are of the form ¢ : (A L A ]) — (C 2N [«,~]’) such that the

following diagram commutes:

=
a

S 8

T
-

b
—_—
O
—_—

o
C

O
that is, go ¢, = ¢4 o f and they should also preserve contractions, i.e. ¢_yz([x,y]) =

(9. (x), 0. ()]

We have a forgetful functor G : 2 — GSet to the category of ®-globular
sets which sends (A g, B, [, ]) to the underlying w-globular set A. The important result

is that G has a left adjoint F.
Theorem 2.4.3.4. [P, P69] A free ®-magma over an ®-quiver exists.

Definition 2.4.3.5. A weak m-category is an algebra for the monad P = GF'.
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2.5 Strict Involutive Globular Higher Categories

In this section we focus on one of the possible concepts of strict involution in the con-
text of strict involutive globular m-categories. In this work, involutions are defined as
involutive functors together with certain covariance and contravariance properties with
respect to compositions. For more detailed references, see Bertozzini P., et al [BCLS]

and Jacobs B. [J].

2.5.1 Definition

Definition 2.5.1.1. Letn € Nand o C {0,1,...,n— 1}. An o-contravariant functor
between two strict globular n-categories (¢, {0} }o<p<m<n) and (Z,{8} Yo<p<m<n) is

amap 0 : ¢ — & such that: for all x,y € €™ and for some integer 0 < m < n,
1. foreach g ¢ a, if xof y exists, then ¢(xof' y) = ¢(x)57'd(y),
2. for each g € 0., if x o y exists, then ¢(x og'y) = ¢(y)57'¢(x),
3. ifec¥%isa tol—identity, then ¢(e) € Z%is a 6371—identity.

Definition 2.5.1.2. Let m,n € N and o C {0,1,...,n—1}. An o-involution *; on
a strict globular n-category (%, {o}) fo<p<m<n) is an o-contravariant endofunctor such
that (x*@)*e = x for each x € €. Moreover, if {+ | o€ A C P({0,1,...,n—1})}
is a family of commuting o-involutions, the strict globular n-category is said to be A-

involutive.

Remark 2.5.1.3. An o-involution is an involution that is a unital homomorphism for
all of'-compositions with ¢ ¢ o and is a unital anti-homomorphism for 04 -compositions

with g € o
Remark 2.5.1.4. Whenever the family oo C {0, 1,...,n— 1} is a singleton a. = {g}, we

will simply use the notation *g' := *’E’q} and in this particular case we will make use of

the following terminology.
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Definition 2.5.1.5. A strict w-category (%', {0} }o<p<m) is equipped with an involution
over g-arrows, for some g € N, if there exists a map *g' : """ — €™ for every m € N

such that for all x,y € €™

m

. for all p # g, if (x o} )™ exists, then (x opy)e = X7 oy Y,

—_—

2. for p = gq,if (xol} y)* exists, then (x oy y)* =y o) x4,

(98]

. forall p,q, if x is a oj)-identity, x4 is also a o, -identity.
+1
That is, if x € €7, then V” (x)*g = (x*g),
4. for all g € Ny, (x7)"7 = x,

m m m*m

. forall p,q € Ny, (x*r)* = (x* ).

o)

The involution *;' is Hermitian if, for p = g, if x is a o}}-identity, then X7 = x,

Definition 2.5.1.6. A fully involutive strict n-category is a strict n-category equipped
with a g-involution for every ¢ = 0,1,...,n — 1. A strict n-category is partially in-
volutive if it is endowed with a proper subset of the family of involutions *,, for

q=0,1,...,n—1.

2.5.2 Examples

Here some examples of strict involutive categories are given.

Example 2.5.2.1. One of special cases of fully involutive strict globular n-categories is
a strict globular n-groupoid, where a groupoid is a category in which every morphism

is an isomorphism, when inverse maps take the role of involutions.

Example 2.5.2.2. Consider a bipartite 1-quiver, a pair of maps A <~ R L B, where
each element r € R is interpreted as an arrow connecting its source s(r) € A to its target
t(r) € B. We see that bijective bipartite 1-quivers between sets (i.e. both maps are

bijective) are an example of fully involutive strict globular n-groupoids, for all n € N.
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The following example explains one of the possibilities of constructing an
involution from a unital homomorphism of unital involutive monoids.
Example 2.5.2.3. Let (My,-1,¥) and (M3, -2, %) be two unital involutive monoids.
Suppose that ¢ : M| — M> a unital homomorphism of monoids.
Define ¢*(x) := 0(x"1)™, for all x € M.
We see that ¢* : M| — M5 is a unital homomorphism.

This is an example of @-involution (directions of arrows are not reversed)

which is Hermitian.
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CHAPTER 3

INVOLUTIVE WEAK GLOBULAR ®»-CATEGORIES

Along the Penon’s definition of weak globular m-categories discussed in 2.4 and the
definition of strict involutive higher categories discussed in 2.5 together with some
modifications that generalize these ideas, we will combine these two notions to weak

involutive globular m-categories via the following guidelines.

Recall that the category 2 has objects of the form <A i> B, [, ]> , where A

is a globular ®-magma, B is a strict globular ®-category, f is a morphism of globular
®-magmas, equipped with a certain contraction [-,-|, and whose morphisms preserve
everything possible. Now we are going to define a category 2* with a similar role to
the category 2. Its objects are of the form ( ¥ ﬁ; B ]*) where A* is a self-dual
globular ®-magma, B* is a strict involutive globular m-category, f* is a morphism of
self-dual globular @-magmas, equipped with a certain contraction [-,-|*. In addition, its

morphisms should also preserve everything possible.

In order to define an involutive weak globular ®-category as an algebra for
a certain monad, we must have an adjunction between the category 2* and the category
GSet of ®-globular sets in the sense of free-forgetful functors. Indeed, the main part of

this work might be proving that this forgetful functor has a left adjoint that is a free one.

Remark 3.0.2.4. In this work, reflexivity is not assumed in ®-globular sets.

3.1 Free Reflexive Self-Dual Globular o-Magmas

The concepts of involution and self-duality are different in that involution is a self-
dual map that satisfies the condition of involutivity. In this section we will prove the
existence of a free self-dual globular ®-magma over an ®-globular set via establishing

a free self-dual w-globular set and a free globular ®-magma over an ®-globular set.
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3.1.1 Free Reflexive Self-Dual ®-Globular Sets

We begin this subsection with the definition of self-duality.

Definition 3.1.1.1. A (reflexive) ®-globular set Q is called self-dual if there exists a

family of maps *f, : Q" — Q", for every n € Ny and a0 C Np, such that

n+1 n+1

o s"(ffa ) =1"(f)* and "(f*e ) = s"(f)*@ forevery n € aand f € Q"*!,

n+1

o s"(f*a ) =s"(f)" and t”(f*'&ﬂ) =1"(f)* forevery n ¢ ovand f € Q"1

Proposition 3.1.1.2. A free reflexive self-dual ®-globular set over a reflexive ®-globular
set exists.

1 Snfl s

SO S
Proof. Let <QO e, csA@TEERY. 7(16):161\10) be a reflexive m-globular set.

tO tl tﬂfl m

For the further usage of notations, we set, for all x € 0",
2= (x,0),..., (- (x%1)%2) ") = ((x,07),08),...),0%),. ...

For each m € N and n € Ny, let us set

A

O = {(- (6PN B | y e 07, B CNo, j=1,2,...,m}.

We construct a new ®-globular set as follows: for any m € N, n € Ny, and

(- (OPTTHB B € 9n 1 we define Sl 0"l — 0" by

(((s’é(y))ﬁ'f)) moong BUTIA AR
((tgz(y))ﬁrf))ﬁfn, ne BFIH—IA_”ABZ;H.

e s

((...(yﬁ’f“)~~)%“) -

=
~~

(- ()P )P, g Bt A ARG

o (- Py =
¢ (- ((sBO))P) )P, ne Bl A ABEH.

Now we check that these constructions give us an ®-globular set.

Assume thatn € N and (--- (yBrllH)“')Br'i'+1 e Ot
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@)
=
w
2.
o,
(@]
=
(2}

3
L

Q=

—~
-
—
<

P
SN—
N—

=

3
SN—

- N n
(o (s NPT ) )P g B A AR n—1¢BTA -
_ n—1, . (pn—1
(- (s P ) )P ne Bt A AR n—1¢B1A -
.y n—1 n—1 n n
(o (g P ) B, g B A AR n—1€BA -
il n—1 n—1 n
(- (g spODPE ) )P, ne i A AR n—1epiA -
By the globularity condition of the ®-globular set O, we get s’é_ls’é =
. o n—lpn _ n—1l.n
Using a similar argument, we also have ¢ o 5o = 0 t o
s% SIQ s’é_] s’é
WOl ... M o— ... .
lhus, 0" E.0d == &= Q" & --- is an ®-globular set.
1o i o 15
0 0 0 ¢

s SpFT)E n g BT A AR n— 1 ¢ Bl A-
B nEPIHI A AR n—1¢BIA--
~~~)B% 7 ngéﬁ’f“A--~A[3§1+1,n—leB’fAm
B et A AR n—1 eI A

63

A B
A By
A B
AP

Moreover, define l’é OB by (- (yB'f)“') m (- ((In(y))ﬁ’fﬁ)“')ﬁfn“_

In addition, for each (--- (y#1))B» € 0", we have
- NN . 1By B
7oty ((- (P IE) = wn(( (@M )

= (o (5" o (y) Py P
— (...(yB’{)~~-)B$’n

and also
= (" or ()P

= (- (yP1))Bm,

This means that s’é o 1’5 = IdQn = tZ} o L’é.
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=

“

[\

59 s s"

an Q0 L0 A 0

Hence, [ O’ = Q! &= --- Ole=--- ,(l’é)neNO is a reflexive m-globular set.
9 L ! 1

b To T 0

> =

For each n € Ny and o" C Ny, we define * : Q” — Q" by

(...(yﬁ’f)w) oy ((...(yﬁ'f)m)ﬁ’,’n)oc”.

0 —1

=

Sa Sa S A A
an O .70 o L, 70 _
We see that | Q0= Q' =+ &= Q"=+, (xg)acnyneNy: (g )nery, | is a re-
0 1 n—1 n
‘ 2 ’ % %)
flexive self-dual m-globular set.
‘ . SO ) Sl Snfl §
Now consider a family of maps i : Q=0 = =0"=--- | =
tO tl tnfl th
0 1 n—1 n
SO A N ’
O'&=Q0 &=--- = 0" defined by x — x* for every x € Q" and n € Nj.
19 tL 1 th
0 0 0 Q

s sl g1 §
Assume that there exists a morphism f : <Q0 = g =N — ) —
0

t [l tn—l m
0 1 n—1 n
0 SR N SR SR . SR o ' )
RV&=R' &= R" & -, (%3) aCNo.neNy» (1%),,61\;0 into another reflexive self-dual
19 L =l s
R R R

o-globular set.

The only choice of morphism of reflexive self-dual w-globular sets satisfying

the universal factorization property is given by the following.

0 1 gl A 0 1 n—1 n
4 1 S N W) o R o SRR R
Defined: [Q"=Q0' &= =Q0"&=-- | > |RP=R &=--- = R'&= -
i el Al 1% 9 ¢l Pt 1
Q0 Q [ Q R R R R
n

by (0P )P = (- (1)) ) B for cach (- (oBF) )P e 0.

For every (--- (yP1) )P € 0", we have

O((--- (P Py = (- (f () Br) ) B

Hence, ¢ is a unique morphism of reflexive self-dual ®-globular sets satisfying
f=00i.

SO Sl n—1 n

A A S A SA
0 0 0 0
A /\1 A . .
Therefore, =0l =0 - , (*¥5,) aCNg.neNy (1’5),161\;0 i | s
zg té tg*‘ %

a free reflexive self-dual m-globular set over a reflexive ®-globular set. U
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Similarly, we can construct a reflexive self-dual m-globular set from a non-

reflexive m-globular set as described in the following proposition.

Proposition 3.1.1.3. A free reflexive self-dual w-globular set over an ®-globular set

exists.
SO Sl snfl s

Proof. Let Q° &= Q! &= --. & Q" & --- be an w-globular set.
tO tl tVl*l mhn

For each m € N and n € Ny, we let

A

O = {(---((6PHP) )P | ye 0", B1 C Ny, j=1,2,...,m}.

For all m,n € Nand of,a5,...,0,;, C No, we construct the recursive families:
0 . QO

Q) = {(+((x,0)%)%)")% | xe O,
L. QAIU(Q;O)I’

x N2 =

(0" = {(- (1) )®) )% |ye Q'},

S = Qo
[l Il

én+1 ' 5 Qn+1u(én)n+l

Next, we establish the new sources and targets in the new quiver as follows.

n+1, yn+l

For every m € N, n € Ny, and (--- (%1 )% )y e 0"*!, we define

Y)Y,y e Q" ng ot AL Aot
= (- (g4 )%, ye Q@™ neo™ A Aot

(--- ((xoc’f)oc’z’)-~)ocﬁ17 y=(x,n),x € én
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~

~

~~
~

o) )%, ye @ ngaitt A Aoy
= (o ((sp)) ), ye ot ne ot A Aagts
1

(---((x“ )ocg)..‘)oc”m, y= (x,n),x c é"

We now verify that these provide us an ®-globular set.

n+1

Assume that n € N and (--- ((y*

n+1

)%

COl’lSldersg lsg((((y "H)ocg“) .)oc;,'j")

) )ocﬁ,“ c én—i—l_

n—1 n—1 . n—1

(s s )y e yeQ" ng oA Aant,
n—1¢ol A Ao

(s )y yeQH neo A At
n—1lgalA--- Ao

(s )y yeQ  ng ot A A,
| SN0 NG (i

N 28 2N yeQH neat A Aot

n=1leo] A Ao,
BTy ey = (- (&P B, ), z e 07,
n—1¢pIA--AB A A Aol
(G (T @B BTy ey = (- (P ) B, n), z € 0
n—1ePIA- AR AN Aol

(- BT BTy = (e (= D)) n) e 071

(G (s ' (@)
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ands’é ltg(( ((y“'f)“’z’)'“)%)

(

(o (s e o)) oy yEQH ng ot A A,
n—l¢ofA---Aa;

(o (s sty o))y yeQ neaf A Aag,
n—1¢afA---Ao;

(o (e g o)y, yeQ  ng A Aag,

n—leofA---Aoy;
=q (- (s )y yeQ"  nea A At
n—leofA---Aoy;
o (G (sl )BTy By ey = (o (BB, n), z € 07,
n—1¢prA--ABAAA--- Aol
(o (G (a7 @B )BTy Yy y= (- (1) )P, n), ze @,
n—1ePIA-ABACA--Aalk;
(o (- BTy )BTy Yoy = (- (wyn = 1B )R ), w e 0L

By the globularity condition of Q, we get 5% 15 = s 11
ythe g 2/ O, weg W,
Applying a similar method, we obtain 25 = tg th.
5% sk ot s
O *6 o = .
Thus, ° =0l = &= 0" --- isan o-globular set.
O 1 n—1 n
b ‘é o

Now define 1/ 0" — 0" by (- (x%)%) )% (- () )y yom !
It is easy to see that s’é 01’5 =Idz, =11 01’5 for every n € Ny.
For each o C Ny, define *{, : é" — é” by

(oo ((0)8) )% o (- (%)) )0

s9 —1

=
=

1, —
50 0z %0 o 2% ) ‘
We see that [ Q°=Q' =+ &= Q" &=, (Ro)acNoneto, (Uy)ney | 1s a re-
0 1 n-1 A
[Q tQ ZQ 0
flexive self-dual m-globular set.

s sk Pl s
' 0 0 . 1 snl " ;0 Q ;1 0 Q - 0
Definei: Qé:Q2: =0t | 2| 0PEQ = 20"
10 o el " 12 bt 1
0 0 0 ¢
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by x — x?" for every x € Q" and n € Nj,.

N

0 1 § 1 n
Assume that there exists a morphism f : (QO = 0! 5: = Qe ) —

10 t! 1 "
50 sk st s
50 k51 Kk A n n : :
RO=R'&=..- &= R"&=. (*oc)OCQNomENo?(lﬁ)nENo into another reflexive self-dual
0 1 n—1 n
13 t 1 1%
R R R R

o-globular set.

The only choice of morphism of reflexive self-dual w-globular sets satisfying

the universal factorization property is given by the following.

5% sk st s s9 sk sl s
20 Q 2 0 Q A Q 30 *# 51 K R R
Define¢: | Q" &=Q0 &--- &= Q0"+ | — Re=R&=... = R"=...
10 L 1 A 10 ¢l it A
) G 0 [ R

recursively by, for all x € 0°, y € Q',

0 0 0 0

o (- ((x®)%) )% s (- (((F(x)) @ )™)Y, and in particular, x7" s f(x),

1 0 +9 1 1

o (o (G PR 0)%) )0 i (o (G ((F(R))Pr) ) B o)) o,

1 1 1 1

o (- (™)) )% i (- (((F(3))™) %)) on, and in particular, 7' > f(y),

We will show that ¢ is a morphism of reflexive self-dual m-globular set.

First, it is easy to see that, for any x € Q",

n n n n n

O(( () )%) = (- (0 ") %)) = (- ((0)) ") e ) ) o
Then, for each (--- (((--- (xB(l))"‘)Bg,O)“{)"')% € 0!, we have

1

(oo (- (PP 0y )y = (...((1%((...((f(x))*gl)"')*3k)*&1)~-~)*um
0
R
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h+-1

Suppose that ¢((--- ((z,h)*
h=0,1,....n—1landz € O".

whtl whtl

) )) = (- (W(0(2)) 4 ))en' forall

For every z € é", by the hypothesis, we obtain

O((+ (- (PP, >"*‘> %)
@ (e By Ry ey, e o
e my<<w<» >>M» W), e (0
= (o (G ((0)) By By )y

Hence, ¢ is a unique morphism of reflexive self-dual w-globular sets such that

f=0oi.

SO— Sl sn 1 sré
A0 1 = s
Therefore, | | Q % 0 é? = 5 (R&)acno neo, (Jneny | 11 | s
n=1 1"
g Al 7 ¢
a free reflexive self-dual m-globular set over an ®-globular set. U

3.1.2 Free Reflexive Globular ®-Magmas

We give brief constructions of a free reflexive globular w-magma over a reflexive ®-

globular set first and then over an ®-globular set.

Proposition 3.1.2.1. A free reflexive globular ®w-magma over a reflexive ®-globular set
exists.

1 nl s

Proof. Let <QO = Q! §:1 §:1 Q" &= t . 7(1n)n6N0> be a reflexive m-globular set.
10 t " "
First of all, we construct a new ®-globular set that suits our situation.
Setting k,n € N and (Q") := Q°, we construct the following recursive family.
Consider (Q'[1]) := @', s°[1] := %, and 1°[1] := 1°.
Now let (Q'[2]) := {(x,0.5) | x,y € (@11}, s[1](x) = °[1]()}.
Define s°[2] : (Q'[2]) — (Q°) by s°[2]((x,0,y)) := s°[1](»)

and °12] : (Q'[2]) — (Q%) by 1°[2]((x,0,y)) := t°[1] (x).
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Suppose that we have (Q'[1]), s°[/], and °[/] foreach [ = 1,2,...,k— 1
Let (Q'[K]) := {(x,0,y) [x € (Q"[]),y € (Q'[]]) i+ = k,s°[i] (x) =°[] () }-
If (x,0,y) € (Q'[k]). we define s°[k],:°[k] : (Q'[k]) — (Q") by
sOk] ((x,0,y)) :=s O[J']( ) and 1°[k] ((x,0,y)) :=°[i] ().
Set (Q!) := <Q1[ 1) 5% = Us [k], and UrOH
Assume that we have (Q"), s’<"Q>1 and t2">1 foreverym=1,2,...,n—1.
Consider (Q"[1]) := Q", s" ![1] :=s""!, and "~ 1[1] := "L
Let (Q"[2]) := nﬁl{(x,p,y) | x,y € (Q"[1]) 575" 1] (x) = 17"~ 1] () }.

p=0
If (x,p,y) € (Q"[2]), then we define s"~'[2],7"~1[2] : (Q"[2]) — (Q"~') by

("' [1x), P, [1]0)), n—1> p;
1), n—1=p.

o 5" 2)((x,p,y)) := {

o U (p)) = { U, ), 1>
=11 (x), n S
Suppose that we have (Q"[I]), s"[I], and "~ '[I] foreach I = 1,2,...,k—1
Let (@) 1="U ((5.p) |x € T, ye (@) i+ =k
PPt 1) = et ](5),
If (x,p.y) € (Q'[K]). then we define 5”161~ 1[i] : (Q"[K) — (@) by
P 0D, n=1> p

s HA), n—1=p.

o " UK((x,p,y)) = {

(")), p, " 1), m=1>p;
i) (x), n—1=p.

o " K ((x,p,y)) := {

Set (Q") := U (Q"[K). s{g) = US” '[K, and 1! - Ut” [k].
We now check that these definitions give us an ®-globular set.

Letn € Nand (x,p,y) € (Q""1).
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By the globularity condition of the m-globular set O, we have

s s (x), p,s" s (y)), n—1> p;
Al () = | )
Sn—lsn(y)’ n— 1 =p.
" (y), n—1=p.
= s} "2 ((x,p,y))-
(0) D

{ (s”_lt”(x),p,s”_lt”(y)), n—1>p;

n—1_n

Suppose that 57, 's [m] = s’@;t”[m] forallm=1,2,...,k—1.

This implies that if (x, p,y) € (Q""![k]), then

and

71

(" ils" [ (), p,s™ A" 1)) m—1> p;

(" e[l ), p, s (), n—1> p;

s G), n—1=p.
1

. n—1 n
This means that s ) o)

n—1_n _tnfltn

Similarly, we get Loy Sto) = Loy Hoy-

Additionally, we have to establish identity maps as follows.

0

First, we set 1 (0

)= 1Y and 1"[1] := 1" for every n € Np.

{ S His" A), n—1=p.

Next, define 1'[2] : (Q'[2]) — (Q?[2]) by (x,0,y) — (1'[1](x),0,1'[1](y)).

Assume that we have 1! [1] forall h =1,2,...,k—1.

If (x,0,y) € (Q'[k]), where x € (Q'[i]) and y € (Q'[j]), we define

U] - (Q'[K]) — (Q*[K]) by (x,0,y) = (V'[1](x),0,L [j](v)).
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1 14l
Then we let 1, = kL:Jll k]
Suppose that we have 11<Q> forall/=0,1,...,n—1.
Next, define 1"[2] : (Q"[2]) — (Q"'[2]) by (x, p,y) = ("[1](x), p,v"[1](»)).
Assume that we have V"[h] forall h =1,2,... k— 1.

If (x,p,y) € (Q"[k]), where x € (Q"[i]) and y € (Q"[j]), we define
V'] = (Q"[K]) — (@™ [K]) by (x, p,y) = ('] (x), p V"] ().
Then we let 17, := IQIL” [&].

Consider, for each (x, p,y) € (Q"[2]),
"2 ov"2]((x, p,y)) = s"[2((" (%), " (v))) = (5" 01" (x), p, 5" 01"(y)) = (x,P,)-

Thus, s" [2] ol [2] = Id<Qn[2]>.
Now assume that 5" [m] 01" [m] = Id(gn|,y)) for every m=1,2,....k—1.

For any (x, p,y) € (Q"[k]), where x € (Q"[i]) and y € (Q"[/]).

"ok ((x, p,y)) = s"K] ("] (x), " [](0))
= (s"[{oV"[1(x), p,s"[] 01" [1]1())

= (x,p,y).

It follows that S?Q> o 1’<’Q> = Id<Qn>.

Similarly, we have t?@ o 1?Q> =Idgn).

0 1 n—1 n
n e e e S0 . .
Hence, | (Q") §0: (") == Q" = (Vg Ineny | is a reflexive -
o) oy o ")

globular set.

For all p,n € Ny such that p < n, we set
(Q") % (Q") = {(x,5) €(Q") x(Q") | sly)s0g) -+ 8ig) (x) =ttt b1 1 ()}

Then we define of, : (Q") x, (Q") — (Q") by xol,y — (x,p,y).
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. | sy %oy o . )
We see that <Q > éI <Q > éI & (" i;: 7(1<Q>)HEN07(Op)0§p<n€N
o) oy o) “o)

is a reflexive globular ®-magma.

sn
Now consider a family of maps i : (QO = 0! . §: Q' & ) —

10 1! =l "
n—1 n
0 | <Q> %) %)
(0 >§:<Q ) = (Q”) .-+ | defined by x +— x for x € Q" and n € Ny.
o) o) o o)
l §h— 1 §
Suppose that there exists a morphism f : | Q° 2: 0! = Q" & —
tO tl i 1 n
T 1 n
0 | W R L )
(R) §: (R') = -+ = (R") & 7(l<R>)”€N0’( 5)o<p<neN | into another reflex-
k) R f@ k)
ive globular ®-magma.
‘ o0 © S(o)
Then we define a function ¢ : | (Q%) &= (@) &= --- = (Q") = -+ | —
o) oy g o)
St sl S Sl .
(R) = (R") &= --- &= (R") &= --- | recursively by
“R) W o ®
(@) >x — flx)
(Q"[2]) > (x,py) = f(X)SLF0)
(@B 3 (x,p,(,9,2) — [ (f)3f(2))
Q"B 3 ((x,p,3),4,2) = (f(0)8,f(¥))8,f(z)

Next, we will verify that ¢((x, p,y)) = ¢(x) 565,0(y) for every (x,p,y) € (Q").

Notice that if (x, p,y) € (Q"), then x € (Q"[i]) and y € (Q"[j]), where i+ j =k
for some k € N\ {1}.

Ifi=j=1,wehave ¢((x,p,y)) = f(x)85f(y) = 0((x))8h0((v))-

Assume that this equation holds fori=1and j=1,2,...,n—1.

We have ¢((x,p,y)) = f(x)850(y) = 0(x)850(y).
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Now suppose that the equation holds fori =1,2,...,m—1 and j € N.

We have ¢((x,p,y)) = 0(x)850(y).
This means that ¢((x, p,y)) = 0(x)8%0(y) for each (x,p,y) € (Q").

Thus, ¢ is a morphism of globular ®-magma satisfying f = ¢ oi.

We see that ¢ is the only morphism of globular ®-magmas holding f = ¢ oi.

n—1

s s s

oo e e . . ,

Therefore, <Q > = = (0" & - a(1<Q>)n€N07(op)0§p<n€N )1
o o ‘o)

is a free reflexive globular ®-magma over a reflexive m-globular set.

Without the reflexivity in the original ®-globular set, we can also guarantee

the existence of a free reflexive globular ®-magma.

Proposition 3.1.2.2. A free reflexive globular ®-magma over an m-globular set exists.

n—1 §

SO Sl
Proof. Let Q" &= Q! & ... & Q" & --- be an ®-globular set.

10 t! m—1 h

First of all, we introduce a construction of a new m-globular set.
Set (0%) := 0% ({0°)" :={(x,0) | x € (Q°)}, and (Q'[1]) := Q' W ({Q))".
Define s°[1] : (Q'[1]) — (Q°) by

2(), yeoh

SE) =
X, y:(x,O),x€<Q0>.

and also t°[1] : (Q'[1]) — (Q°) by

°(y), ye ol

P (y) = _
X, y:(x,O),x€<Q0>.

Let (Q'[2]) == {(x,0,y) | x,y € (Q'[1]),s°[1](x) = °[1] ()}
Define s°[2] : <Q1[2]> — <Q0> by s°[2] ((x,O,y)) = s[1](y)
and 1°12] : (Q'[2]) — (Q%) by 1°[2]((x,0,y)) := °[1] (x).

Suppose that we have (Q'[/]), s°[/], and °[/] foreach I = 1,2,...,k— 1
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Let (Q'[k]) == {(x,0,y) [ x € (Q'[i]),y € (Q"[j]) ,i+Jj = k,s°[i] (x) =1°[](»)}.
If (x,0,y) € (Q'[k]), we define s°[k],z°[k] : (Q'[k]) — (Q°) by
sOk] ((x,0,y)) := s°[](y) and £°[k]((x,0,)) := 1°[i] (x).
Set (0') = U (Q'). gy = U Wl and 10 = U]
Assume that we have (™), s> >1 and t'<” >1 foreverym=1,2,...,n—1.

(0
Let <Q"[1]> = Q0" (<Q” 1>) and "1 [1],71[1] : <Q”[1]> — <Q"*1[1]> be

defined by
n— . Sn_l()’)? y€on
") { N y=(x,n), xe (Q" ).
}’l—l /1.
O AR
x, y:(x’n),XE<Qn_l>'

Let (Q"[2]) := nol{(x,P,y) %,y € (Q"[1]), 875" 1] (x) =P " [1]() }.

If (x,p,y) <Q" ]), then we define s"~'2],/"~12] : (0"[2]) — (O™ ') by

(" [1](x), p,s" U B)), n—1>p;

-wlmwmwy{
"] (), n—1=p.

n—1 x), p, n—1 , n— :
,ﬁlmmmw%{u @2 10)), n=1>p
i (%), n—1=p.
Suppose that we have (Q"[/]), s"~'[l], and "~ ![/] for each | = 1,2,...,k— 1
Let (Q"[k]) == pgo{(x,p,y) |x e (Q"i]), ye(Q"J]), i+j=k,
o+ i) () = e[ (),
If (x, p,y) € (Q"[k]), then we define s"~[k],r"~[k] : (Q"[k]) — (0"~ 1) by
(" i), 5" HAB)), n—1>p:
"), n—1=p.

o "MK ((x.p.y)) = {

("M ), Pyt ), m=1> p;

"1 (x), n—1=p.

o " HK)((x,p,y)) == {
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SM@%—<”W?5:G¢%mm@:GWWL

k=1
In order to prove the globularity condition, we let n € N and (x, p,y) € (0"™).

By globularity condition of Q, we get "~ ![1]s"~![1] = "~ 1[1]"~![1].

This means that
o 2(p) = {

(s" 11 1] (x), pos" ) (), n—1> p;

Suppose that s’Zé;sn [m] = S’Z Q;t”[ m|forallm=1,2,... . k—1.

and
S HG) = s o)

Thus

_ (" Mi)s"[i] (x), p,s" 1 []s" (/] (»), n—1> p;

SV K ((x, p,y)) = {

o) 1), n1=p.
_ {<s"lmtn[ﬂ(x),p,s"lmr"m<y>>, n—1>p;

s A G), n—1=p.

= ()

This vields s" Z1s” .. = s" 21 .
YIS 30y (0) () (0

n]n

)
Similarly, we get ¢ ( Q> (0) = t’@; t?‘ o)’

ol ol
Thus, (Q°) = (Q') = --- = (0") & .- is an @-globular set.
o o M9 o
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Moreover, we need to establish identity maps as follows.

First, we define 10 : (Q) = (@) by x — (x,0) for all x € (QY).

Next, define 11[1] : < [1]) = (O*1]) by y — (y,1) for any y € (Q'[1]).
Assume that we have 1! [1] forall h =1,2,...,k—1.

If (x,0,y) € (Q'[k]), where x € (Q'[i]) and y € (Q'[}]), we define

VK] (Q'[k]) — (Q*[K]) by (x,0,y) = (1 [i](x),0,1'[]](v))-

Then we let ), := [-] VK.

Suppose that we have 1/ (g) forall[=0.1,....n—1.

Next, define 1*[1] : (0"[1]) — (Q"™![1]) by y — (y,n) for any y € (Q"[1]).
Assume that we have V"[1] forall h = 1,2,...,k— 1.

If (x,p,y) € (Q"[k]), where x € (Q"[i]) and y € (Q"[j]), we define

V(K] - (Q"[K]) — (Q"*'[K]) by (x,p,y) = ("[i](x), p,"[](1))-

= Uvi

Then we let 1 -
(0)

Consider, for each (x, p,y) <Q” >
s"[2] " 2] ((x, p.¥)) = 5" 2 (" (%), 1" () = (s" 01" (x), p, 5" 01" (v)) = (x, P, ).

Thus, Sn [2] Oln [2] = Id<Qn[2]> 0
Now assume that 5" [m] o1 [m] = Id<Q—,,[m]> foreverym=1,2,...,k—1.

For any (x,p,y) € (Q"[k]), where x € (0"[i]) and y € (Q"[j]),

Sk oK ((x.py)) = S"K(Q"[((x), p"[]1())
= (s"[oV"[(x), p.s"[f] " [j]()

= (xp,y)

n n _ _
It follows that S<Q> oL<Q> = Id<Qn>.

. " n i
Similarly, we have t<Q_> 01<Q> = Id<Q,,>.
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I R R R . .
Thus, | (Q%) = (Q') = --- = (Q") &= -+ ,(1”Q>)neN0 is a reflexive ®-
o e o '@

globular set.

For p € Ny, set <Q”> Xp <Q”> ={(x,y) € <Q”> X <Q"> | S]ZQ> (x) = I€Q> ()}

Define a family of operations o, : (Q") x, (Q") = (Q") by xo y — (x, p,y).

p
50 sh s12) "
Lo e e, )
We see that <Q > é(): <Q > &= - 2:I <Q”> &= - ,(1r<lQ>)neNo7(OZ)0§p<n€N
17 - L f

@ o T o
is a reflexive globular ®-magma.

s

SO sl snfl n
Now we define amap i : (Qoéleéz--- p— Q”é:---) —

tO tl t}’l*l i
0 1 n—1 n
I R B R ()
<QO> = <Q > = <Q”> &= -+« | byx+ xforx € Q" and n € Ny.
t() 1 n—1 e

(o) oy o) (@

Sn—l

50 s! s"
Suppose that there exists a morphism f : (QO t= Ol .o 40" — ) —
0

t t! 1 2
n—1 n
I R I X _
(R)Y=(RHY = &= (R") = -+ 7(1?R>)n€N07(OZ)O§p<n€N into another reflex-
) o “®)

ive globular ®-magma.

The only choice of morphism of reflexive globular ®-magmas holding its uni-

versal factorization property is given by the following.

, Lo e e, e
We define a function ¢ : <Q > p— <Q1> = ... = <Q”> = | =
o e 9 o
i 2 _ s S _ Sl . 1
(R) = (R") =--- &= (R") = --- | by, foranyx € Q°, y € Q', u,v,w € 0",
) e ey )
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x = fl),
(50) = U (F(2))
y = fO),
1) = e (F),
(5011) = Uil (F3).
((w,p,v),q,w) = (F(w)8,f(v))egf(w),

(w,p, (v,q,w)) = f(u),(f()ouf(w)),

Next, we will verify that ¢ ((x, p,y)) = ¢(x)870(y) for every (x,p,y) € (Q").
First, notice that ¢((x,n)) = 1’<’R> (f(x) = l?R) (0(x)) for every x € Q.

Notice that if (x, p,y) € (Q"), then x € (Q"[i]) and y € (Q"[}]), where i+ j =k
for some k € N\ {1}.

If i = j =1, we have ¢((x, p,y)) = f(x)&"% £ (y) = 0(x)850(y).

Assume that this equation holds fori=1and j=1,2,...,n—1.

We have ¢((x, p,y)) = f(x)850(y) = 0(x)50(y).

Now suppose that the equation holds fori =1,2,...,m—1and j € N.
We have ¢((x,p,y)) = 0(x)850(y).

This means that ¢((x, p,y)) = 0(x)&%0(y) for each (x, p,y) € (Q").
Thus, ¢ is a unique morphism of globular ®-magma satisfying f = ¢ oi.

As a result,

o e o o ) .
<Q > = <Q > = = <Q > &= 7(l<Q>>n€N07(op)0§p<n€N )1

o) Ney Ny o)

is a free reflexive globular ®-magma over an ®-globular set. U
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3.1.3 Free Reflexive Self-Dual Globular ®-Magmas

Applying the ideas of the proofs of Proposition 3.1.1.3 and Proposition 3.1.2.2, we
can obtain a free reflexive self-dual globular ®m-magma over a (reflexive) m-globular
set. Since the concept of self-duality does not introduce any equations among self-
dual operations, we can talk about the notion of self-duality of a globular ®-magma
regarding it as a self-dual w-globular set equipped with a family of partially-defined

compositions.

Proposition 3.1.3.1. A free reflexive self-dual globular ®-magma over a reflexive ®-

globular set exists.

SO Sl n—1 §
Proof. Let <Q0 b () e IR = (0= o ,(1”),,6N0> be a reflexive w-globular set.
{0 1 -1 Iz

For any m € N and n € Ny, we first set

A

0" i={(-+(OF)¥) )P | ye 0", B S No, j=1,2,...m}.

Letk,m,n € N, {Q°) := 0° and (Q'[1]) := Q.
Define s°[1],°[1] : (Q'[1]) — (Q°) by

0

(- ((P))By )P, 0gBlA---ABL;

o S[J(( 0P )P) 1= A\
(- ()P )P, 0€BlA-- A

0

1 1 o ((0(y))BY) ) B, A ABL:

o O[1]((-+ P )b = (- () 0) )0 0¢ By B

(- (PP )P, 0 € Bl A APy,

Now let (0'[2]) :={(-++((x,0,9)%) )% | x,y € (O'[1]), et} € N,
j=1,2,...,m, s°[1](x) =°[1](»)}.

If (- ((x,0,y)%) )% € (0'[2]), we define $°[2],1°[2] : (0'[2]) — (0°) by

ety ) G (GOIODH) ) 0g o A Ay
(- (O EN™) )%, 0€af A Ay,
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0

(- (O[] (x)) 4Ty )%
(- (P[] ()4 )%, 0ol A Ao,

. . , 0 LAA ’ln;
o OLJ((- ((x,0.9)%) ")) = { S e
Suppose that we have (Q'[1]), s°[1], and °[/] for every I = 1,2,...,k—1.
Let (Q'[K]) = {(-++((x,0,0)*) )% | x € (Q'[), y € (Q'[1]) i+ =K,
o) CNo, h=1,2,....m, s°[i](x) =[] (»)}-

IF (- ((x,0,5) ) )% € (Q'K]). we define s°[Kk], °[K] : (O'K]) — (Q°) by

: 1 (OO ), 0 al A Aok
(0t ey o [ €N, 0 a2 B
(- (EAEN™M) )%, 0€afA--- Aoy,

(- (O @))*) )%, 0 ¢ af A Ay

o O (- ((6,0,y)H) ")) := . :
(- (012 ()

Set (Q') := Ql (Q'[K]), S(ZQ> = k[_-jlso[k], and t?@ = kglto[k].

1 r—1
,and ¢t . foreveryr=1,2,....,.n—1.
i g

Assume that we have <Q’ > sr@
Let (Q"[1]) := Q™.

Define s"~1[1],#"~1[1] : (Q"[1]) — (0" 1) by

G (NPT B, a1 B A AL
(@ ONFT) ), n—TeBiA AP,

o 1) (B )BR) = { Co (@ )BT B a1 EBIA - AR
G (TP ) B, n—1eBrA- AP

Now let <Qn[2]> = ZLZJ(I){(__.((x,p,y)(x’]')u)(x;’n ‘X,y € <Qn[1]>7 067]1‘ - N07
j=12,...,m, sP[1]---s" 1] (x) = ¢P[1]--- " 1] (y)}.

IF (- ((x,p,3)®) )% € (0" [2]), define "' [2]," 2] - (0"[2]) — (0" by
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((... D,
r (---((S”_l[1](x),p,s”_1[1](y))°"1171)"')°°nm71, p<n—1¢0ﬂ7A"‘A0‘rnl1;
) G (@@, pr D)) p<n—l oA A
(- (DS )y, p=n—1dol i Adl
|G (o)) p=n—ledl A Ao
) (- () M) 7))
(- (@ ), pm T ENA ), p<n—1¢al A Aoy
(- (" @), s NS ) )%, p<n—leaf A Aok
(- ()™ ) p=n—lgali A
(o (G G)SE) ), p=n—l€ajAAd,

Suppose that we have (Q"[1]), s"~![1], and t"~![l] for every [ = 1,2,...,k— 1.
o n—1 L . o A
Let (")) == U {(-- (e py)™) )% [x € (O[]}, y € Q") i+i=F,
P
oy CNo, h=1,2,...,m, sP[i] 5" '[i](x) =22 [j]--- "1} () }-

IF (- ((x,2,9)) )% € (Q"[K]), define 5"~ [k],"~ ] : (O"[K]) — (0"~") by

SR (G, pay) ™)) %)

[ (@, OND )N p<n—1 o A Aol
(- (@), ot AONE )%, p<n—Tedi A Ay
(o ()™ )% p=n—1g oA No;

|G (o)) p=n—leol A Ao

R (- ((x,p, ) ) ) %)

[ (0, AN, p<n—T g A A
(- (@), s NS ) )%, p<n—ledf A Aag,
(o (= T )y, p=n—lg¢al A Aol

|G () ) ) p=n—leal Ak
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(o () ) )%, ng ot A Aot n—1 g al A Ao
) (- (T ) ) ) ng ol T A Ao 1ol A A
(o () )y ne o A Ao n— 1ol A Al
(- (1)) )y nedt A A -l et A Al

(
Gl ng ot A AT p— 1ol A Aal;

N ng oI A AW T el A Adl;
N ned A A n—1¢ A Ao

-1
N e A AT n—1eal A Aot

Similarly, "~ 15" [1]((--- @4") ) %) = e U] (- ) )8,

n+1

To prove the globularity condition, we suppose (- - ((x, p,y)% ))% " € ().

n+1 n+1
Oy

Then (--- ((x,p,y)*1 )")% " € (Q"T![k]) for some k € N\ {1}.

This means that there exist i, j € N such that x € (Q""[i]), y € (Q"*1[j]),
i+ j =k, and sP[i](x) = 1" [j]().

For the case k = 2, we have 5"~ [2]s"[2] (( . ((x,p,y)“'llﬂ)"')aﬁfl)

Ref. code: 25595709031073ILP



84

n—1.

(" S ), ps™ USTO)S ) )% p<ng ot A Ao,
p<n—1¢ofA---Nay

m?

n—1.

([ @), o U )4 ) )%, p<ngaft A Aagf,

p<n—learA... Ao

(M)A p<ngoftt A Aot
p=n—1¢a]A---Ao,
(s [ ) p<ngoftt A Aoptt,

p=n—leajA---Aay,
(), s I O)S ) )%, p<ne ot A Ao,

p<n—1¢&afA---Aaw;
Al

(T [, po T )T ), p<nealt A Aot

p<n—leajA---Aay

(eSS p<neoit A Aot
p=n—1¢afA---Ao,

(G ) RO L p<nedi A Aot
p=n—l€olA---Aol,

(U 1), ps UGN A ) )%, p<n—1¢ o A Ay
[0, p [T ONA ) )%, p<n—ledf A Aoy

n—1 n—

(s ] )4 )% p=n—1g¢al A Adb;
(e e )) )y p=n—1€alA - Ao,

Ref. code: 25595709031073ILP



1

(o= (" (e [ (e, pos™ (U (1) ()1

1

(- (@ e [ (), pon L (1] ()

1

(o (" e 1))

n—1 -1

n—1

n+1

=) (- (e pay)™ ) ).

This implies that s~ '[2]s"[2] = s"~![2]¢"[2].

Using a similar argument, we get 1"~ 1[2]s"[2] = "~ [2]¢"[2].

) ) p<ngo
p<n—1l¢afA---Ao

)" )0%"’ p<n§éoc”“A -
p<n—leajA---Aay

) p<ng i
p=n—1¢afA---Aoy

(- (@ L) )™ ) ) p<ng¢goltiA..
p=n—lecafA---Aay,

(- (" s (1)), ps" UGS ) )%, p<neaf™ A
p<n—1¢ofA---Nay

p=n—leafA A}

85

+1
RRVAY o 4RI

m?

1
Ao,

(- (@ s (1) (), p, e U ONSE ) )%, p<neddtl A A
p<n—leafA---Aay,
(- (" s ) )y p<nedt A Aot
p=n—1¢afA---Ao,
(- (" s 1) () ) ) p<ned A A,

m»

Assume that 5"~ ![h]s"[h] = s"~![n]¢"[h] and "~ [h]s"[h] = t"~'[h]¢"[h] for any

h=1,2,... k—1.
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ntl.

Consider s [k]s" [k] ((--- ((x, p,y)*1 ) ”)af”ﬂ)

( n—1

(- ("M 1 (x), pos" M S L O) A ) )%, p<mg oA Aoyt
p<n—lgoal A Ao,

n—1.

(- (@ s 100, A" NS )%, p<ng ot A Ao,

p<n—leafA---Aay

(- (" A AENS )% p<ngai™t A Aot
p=n—1¢o]A---Aa),
(- (" s i )y p<ngait A At
p=n—lealA---Aay,

n—1.

(- (0, pys NS ) )%, p<nedt A Aot
p<n—1¢o]A---Aa),
(- (@ @0, p AP ENS )%, p<nedft A A,

p<n—learA... Ao

T n=ly ot~ n n
G- (A )S )y p<nedft A Aant,
p=n—1¢afA---Aoy,
(R Rl @) e, p<nedi™ A At

p=n—leajA---Aay,

(- (" A (), po S TONS ) )% p<n—1¢al A Doly:
(- (@ @, O™ )%, p<n—leaf A Ao
(- (" S AE)S ) )%, p=n—l¢al A Ao
(o (e i [ () )y p=n—leali Ak
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(" AR, 2 A IENE ) )%, p<ngaltt A Ao,
p<n—1¢o]A---Aa),

(T e G0, ™ A AONM ) )%, p<ndaitt A Aot

p<n—leodlA---Aa!

anT s n—1 n— n n
(T )4 p<ng it A Aoit!
p=n—1¢afA---Aoy,
(T )y p<ng¢att A Aot

p=n—leafA---Aay,

(S, s S AN )%, p<neaft A Ao,

p<n—1¢arA...Ao

m?

(M S G, pt" T S )H ) )%, p<neoft A Aot

p<n—leafA---Aay

(A L)y p<nedt A Aot
p=n—1¢o]A---Aaw,
(" s i) ()4 )y p<nea A Aot
p=n—lealA---Aay,

LR (- ((r pyy) @)@y,

It follows that s" ! [k]s"[k] = s" ! [k]¢"[K].

Applying a similar argument, we have 1"~ ! [k]s"[k] = "~ [k]t"[k].

nAl no_ njltnA dtnjl n :l.njltnA )
(0)*(0) = (0) () "0y () T (0) (o)
o S'Zéi o
So, (Q%) = (Q") 2: - £= (Q") &= --- is an ©-globular set.
t R l . t"fl [
(0) © o) (©)

In addition, we need to construct identity maps as follows.

First of all, set l(<)Q> :=1%and 1"[1] : (Q"[1]) — (Q"![1]) is defined by
1)) (o ()BT )BT for all n € No.

Next, we define 1![2] : (Q'[2]) — (0?[2]) by

(- (6, 0,3) %) )% 5 (- (W 1] (), 0,1 [1] (1)) ) %,
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Assume that we have 1![4] forall h=1,2,..., k—1.

If (- ((x,0,y)%) )% € (Q'[K]), where x € (Q'[i]) and y € {Q"[}]), we define
VIR = (0K — (021K by (- ((,0,0)%1) )% = (- (1 [i(x), 0, [j1 (7)) ).

Then we let 12QA> = kglll k].

Suppose that we have Ll< forall/=0,1,...,n—1.

0)
Next, we define "[2] : (0"[2]) — (0"+![2]) by

+1 Otn+1

(- () ) )% o (o (T, P H)

Assume that we have "[A] for every h =0, 1,..., k—1.

If (- ((x, p,y)®) )% € {Q"[K]), where x € {Q"[i]) and y € {0"[j]),
we define "[k] : (Q"[k]) — (Q""1[k]) by

(o (o)) (- (), ) )y
K.

k=1
Note that, for each (- - (x)%1) )% € (Q"[1]),

Then we let 1" ., =
(2)

+1

ST [1] (- ()™)Y = L] ()T
= (o (" o (x) %) )%
= (- (%) )%,

It follows that s"[1] o1*[1] = Id<Qn[1]>.

Assume that 5" [h] o1 [h] = Id(Qn[h}) foreveryh=1,2,...,k—1.

For any (---((x, p,y)*) )% € (Q"[k]), where x € (Q"[i]) and y € (Q"[j]).

n+1_

S (e p) ™) )%) = SR (@0, 2 HIe)S ) %)
= (o (6" ), s L] L)) )%

= (- ((x,p,y) ™))%,

This means that s"[1] o1"[1] = Id(Qnm).
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That is, s , o1
{0) "

o) = o)

n n

7 1 §
I R I | |
Hence, <Q > = <Q > == <Q > = .- ,(1’<’Q>)HGNO is a reflexive ®-
0 1 n—1 1"
o) ‘o) ’<é> 0)
globular set.

For all p,n € Ny such that p < n, we set
(07 xp{0") i={(x,3) €40") < (") | )55y 13y ) = {05y -1y )}

Then we define o}, <Q”> X p <Q”> — <Q”> by xojy = (x,p,y).
For each o C Ny, we define ] : <Q"> — <Q”> by

n

G YR G () SoiRae .

0 n—1 §
oo e (117 i i 1
SO, <Q > f(): e 2?1 <Q > §n: Tty (l<Q> )nEN()? (Op)0§p<n€N7 (*(x)OCQNo,nENO
o o @
is a reflexive self-dual globular ®-magma.

] n—1

s g
Now consider a family of maps i : <Q0 = Q! t S O i ) —

/0 AR e "
9. sl SO SHA
P (4 I (%) @ . (0 4
<Q0> = (Q") = - = (Q") &= --- | defined by x — x?" for x € Q" and n € Ny.
o o o o

1 § 1 §
Assume that there exists a morphism f : <Q0 =0l = Q" & ) —

/0 A el 1%
SO Sl snﬂ st
U
<R > P <R > él: SR m <Rn> = 7(1r<l]é>)n€N()7( )0<p<n€N,( )OCQN()#ENO of

o e e (&)

reflexive m-globular sets into another reflexive self-dual globular ®-magma.

~
=

The only choice of morphism of self-dual globular ®-magmas satisfying the

universal factorization property is given by the following.

, ol o o)
Then we define a function ¢ : | (Q°) §: OH = =(0) = | =
o o o o
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R I T R _
(R%) = (R") = --- = (R") &= --- | recursively by
0 1 -1 n

Next, we will show that, for each (--- ((x, p,y)%1) )% € (Q"),

o (pa %) = (- ((oeeer) ™)) ™

Note that if (--- ((x, p,y)¥) )% € (Q"), thenx € (Q"[i]) and y € (Q"[j]), where
i+ j=kforsome k € N\ {1}.

Indeed, for every (--- (yP1)")Pn € (0"[1]), we have

O((+ O B)™) = (- () Bry) B
= (O((- ()P
If i = j = 1, then there exist a,b € 0" and of,...,o0,BY,..., B} € Np such that
x= (- (@))% and y = (--- (691) ).
We see that (1)(( (((C- (@))%, p, (- (bﬁﬁl)'“)ﬁ?))y)'“)s?)

_ (...(<<(...(f(a)»%al)-..)w ﬁl> ) )

Suppose that this equation holds fori =1 and j = 1,2,...,n— L.
We have ¢<( (- (@) ,p,y)S'f).-.)s;l)

— ( ((((..,(f(a)%l).4.)§&m6;¢(y)>%gl)-..>§th

= (- (ot ege) ) )
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Now assume that the equation holds fori =1,2,...,/—1and j € N.

We have ¢<( ((X,P,)’)s"l)'.')s?) = < <<¢(x)6l’¢(y)>%gl>m>

This yields that ¢ is a unique morphism of reflexive self-dual globular ®-magmas

an
*5[

such that f = ¢oi.

Therefore,
0 n—1 n
o o e ) . . . _
<Q > 50: 5?1 <Q > i: 7(1<Q>)HEN()7(Op)0§p<nEN7(*OL)OCQNQ,HQNO 51
@ o @
is a free reflexive self-dual globular ®-magma over a reflexive ®-globular set. [

Proposition 3.1.3.2. A free reflexive self-dual globular ®-magma over an ®-globular

set exists.
SO | Sl Sn—l §

Proof. Let =Q0le=... &= 0" bean o-globular set.
{0 /1 -1 "

First, we introduce the following notation, for every m € N and n € Ny,

A

O = {(---6F))Bn | y e 0", BT CNo, j=1,2,...,m}.

Then we establish a new ®-globular set as follows: <éo> = QO,

—

<<é0>)1 = {(---(x,0)B1)")Bn | x € <é°>, Bi CNo, j=1,2,...,m}.

———

Set <é1[1]> =0y <<é0>>1 and define s°[1],°[1] : <él[1]> — <éo> by

(- ((°))P) )P, yeQ!, 0¢ Bl A ABL;
o OLJ((-- OB B) =9 (o ((0(y))B) )P, ye @l 0Bl A ABL;
(- (xBT))Bm, y=(x,0), x € <éo>.

(- (@O0 P,y Q' 0 BIA- ARy
D)) =0 (- (), ye Q! 0eBlA-- ABL;
1)"‘)5317 y=(x,0), x € <éo>

o O)((-- 0P
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Now let (Q'[2]) :={(-+-((x.0.5)*) )% | x.y € ('1]), o S MNo,
m, 1) =P[10)}-

i=12,...

If (...((x7(),y)a%)"')ailn c <Q1[2]> we define s°[2],1°[2] : o)) -

o 212 ((- ((x,0,y)%1))%n) :=

Suppose that we have <él [l]>, s
0,3)%)")% | x € <él i), v
sl =

, we define sV[k],1°[k] : <

Let ( Q') := {(-++((x

ol CNo, h=1,2,.

If (- ((x,0,)%) )% € ( O'[K])

((x,0,y)* {
((x,0,y)* {

° so[k]((

° lo[k]((

0
0 0c1~

(s"[/1()
0
Jy

0
tol (x))%1)

SOl)C

0(1 o

0.
0‘1

(- (O E)%) )%, 0 al A Aok
(- (O[] ()™) )%, 0ol A Ao,
(- (O[] (x)4) )%, 0ol Ao Aty
(- ([ )™)Y, 0€of Ao Aoy,
O[], and °[[] for every [ = 1,2,...,k— 1.

e (') i+i=k
P}

) = (0") by

0
m7 0¢(X%A.A(xl;
0
)%, 0eal A Aol

(317 Ogéa{AAa}n,
Dol Aa),

§C

eXI::O-O )l sO_:zo-os0 ano_:=°~00.
St<Q> kL_Jl<Q [k]>, 6 Y Ik, dt<Q> ur k]

Let <én+l[1 > Oty <<

(@)

Define s"[1],7"

)
(@)

r—1

")

Assume that we have <Q’>, s’il ,and ¢, .\ foreveryr=1,2,...,n.
(2) <Q>

(o (" O)P) P, ye @ ng BIHH A ARG

ST = 8

(- (BB, y=

()P )P, ye @ ne Bt A AR
(x,n), x €

@)
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(- ("O))P) B, ye @ ng Bl A AR
PO OB =0 e ()P, ye 0 e BT A AR
(B, y=(xn), xe (07),
Now let (0"1[2]) = p@0{<~ ()Y xy € (O)),
o C Ny, j=1,2,..m, sP[1] 5" (1] (x) = 2 [1] -2 [1](3)}.

Define 5" [2],7"[2] <é"+1[2]> = <én> by

S2)((-- (Cr o)y )™
[ (- (1@, P G)D) ), p<ng el A Ads
] @@ o), p<neat A Ao
(- (T, pnd ot A AdH,
(- (1)) )%, poneat A Ao,

(- ([ @), pr [N )%, p<ngai™ A Aopth;
AP (("[1)(x), p,s"[1]())%5) )%, p<neof™ A Aot
Ca((RL @R p=n¢afT A Aopt
(- (" [1] (x)) %) )%, p=neaft'A...Aantl.

Suppose that we have <é”+1[1]>, s"[l], and ¢"[l] for every I = 1,2,...,k—1.
Let (O™ = U (- ((ep)® ) )% e (@7411). y € (011,
p—=
i+j=k off "' CNo, h=1,2,....m, sP[i] - s"[i](x) = t"[j] - - - " [j] () }.

Define s"[K],¢"[K] : { 0"'[K]) — (0" by

("), s [INH) )%, p<ng oA Ao
([ (), Pyt 11 (0))46) )%, p<n€0€§’+lﬁ"'ﬁaﬁ“;
(")) )%, =ng¢ oA Aot
([ (3)) 1)), p—nea’f“ﬂ'“ﬂaﬁl-
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PR (o))
( (- (@[, "GN )%, p<ngai™ A Aoyt
) G N )%, p<ne ot A Aoy
| @, p=ng ot A Aay
\ (“-((s”[i](x))“'f)'“)“fn, p=ne 0c’1’+1 AMAO%H
Set <QX”“> = k[:-jl <én+1[k]>, s’%Q_> = kgls”[k], and tZQ> = k[jlt"[k].
We see that s”_l[l]s”[l]((«--(xo"f“)"')a’in“)
()T xe Q" ngoft A Aagt,
n—1¢ofA---Aap;
..((tnflsn(x))oc’{‘l)---)aﬁ,‘l7 xeQ™ ng OL’I’H A At
n—1leafA---Aay;
”((Sn—ltn(x))oc’f’l)-~~)ocj§f1’ xe Q™ ne arlz+l A Aol
n—1g¢ofA---Aal;
(o)) Yy x€Q ned A A

n—leol A Ao
(G (OB BTy e = (- OB ) n), y € O,
n—1eplA--ABTAUTA---Aa;
(G ()BT B e = (- 0P B ), y e 0,
n—1g¢BIA-- AR AN Al
(o (PR Ty x= ((((an—DF) ¥ n),

z€ <é”_1>.
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(- (1)) )y xeQ ng oA Aagt,
n—l1¢ofA---Aap;
(- (e () )y xe @ ng it A Aot

n—ledfA---Ao;

(---((s"_ls"(x))arfil)"‘)anmil, xe Qn—i-l, ne OcrlH—l A---AO%—H,
n—1¢ ol A Aol
(. . ((tn—lsn(x))a?*l)...)og”mfl’ xe Qn—i-l’ ne (x111+1 A Aar};{‘—l?

n—leajA---Aay;
G (G (s )BT )y B ey o = (- (B )P n), y € 0,
n—lefiA---ABFAafA---Aoy;
oo (G (@ )Py B ey @t = (- (o8 n), y e 07,
n—1¢BIA---ABI AN Nl
(o (- @By By el x= (- ((zn—1)F)")F ),
\ z€E <Q;n—1>.
=) ) ).
Similarly, t"fl[l]sn[l]((- = (xoc’]”')---)ocﬁr') _ t”fl[l]t”[l]«- ¥ (XOC?“)’")O%H).

For the induction step, we refer to the previous proposition.

n—1

Thus, <éo> Sg <él> 2<:Q> Tﬁg <é"> 2<§ -+ is an ®-globular set.

W e @

For the reflexivity, we proceed as follows.

First, we define l2é> : <é0> — <é1> by (--- (xo‘?)"')“& = (e ((x,O)O‘})“‘)%.
Then define 1'[1] ; <é1[1]> - <é2[1]> by (- (x4 )% s (- ((x, 1)) )%,
Assume that we have 1![4] forall h =1,2,...,k—1.

If (- ((x,0,y) ) )% e <é1[k]>, where x € <é1[i]> and y € <él[j]>, define
V1K (Q'1K) = (Q°KT) by (- ((6,0.3)) )% = -+ (W), 0.0 1)) ) -

Now we consider 1!, ,, := (J1![k].
<Q> k=1
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I

Suppose that we have 1 <Q> forevery [ =0,1,..., n—1.

Define ln < > <Qn+1 1]> by ) O ( . ((x,n)o"fﬂ)“')“ﬁﬂ.
If (- ((x, p,y)* <Q”[k> wherex€< []> andy€<é”[j]>,
we define V'[k] : <é [ ]> <Q"+1[ ]>

n+1 OCn-H

(= (G poy) ™))% = (- (i) (), p V[ ) ) )%
For each (--- (x%) )% ¢ <é”[1]> we have
1ot [1]((-- () 7)) = s [1] (-~ ((eym) 4t ) )%

This means that s*[1] o1*[1] = Id< .

o1y’

Similarly, we have *[1] o1"[1] = Id<an |

Assume that s [h] oV [h] = Id<an[h]> =t"[h]o"[h| forall h=1,2,... k—1.

[1])

"

For every (---((x,p,y)®) )% e <é [k]> with x € <Q”[z]> and y € <é"[]]>,
Sk o[k (- ((x, py3) ) ) %)

N

= S"[k]((---((1”[i](X),p,l”[j](y))°°? et

- ((e"[d] Ol”[l](X) pt"[lov [j)())*4) )%, ne ot A Aot

It follows that 5" [k] o1"[k] = 1d < " ]>

Similarly, " [k] o1"[k] = 1d < [k]>

This means that s<Q> otzf2> = Id<én> = ;né> ol’%é>.

That is, (<é0> 2<:> <é1> = - ;: <é”> ’ifi> 7(12Q>>HGNO) becomes a

reflexive m-globular set.

For p € Ny, set<

(Q)l
\/
X

~
S
(@Y
S
~_—
I
—
—~
=
<
S~—
m
S
@]
S
~_—
X
S
L\
S
~_—
Y
T
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Define a family of operations o, <é > X p <Qn> <é”> by xo"y - (x, p, ).
For each o C Ny, define %, : <én> N < n>

(o ()Y )% i (- ((%)%) o)

This yields that we have a reflexive self-dual globular ®-magma

n

(&) 2 @ (&) 2 4 gy s Rospnes (4Dlacronciy

0 n—1 T
@) (o) (0)
1 §h 1 §
Now we define amapi: | Q° i: Q! 2: o= (0% —
/0 A T n

[

<é0>si<:é> <é1>S§<ZQ> L. < ><é >t< . -+ | byx— xforx e Q" and n € Ny.

o T W1

(%) ()

tO tl - 1 th

1 P 1 s
Suppose that there exists a morphism f : (QO =k 2: S il §) g = ) —

1 §

<I§o> j;> <I§1> ;;> . 55;? <R > ff:> ’(12R>)HGNO’( )0<p<n€N7< )OLQN()J!GNO
W o W

into another reflexive self-dual globular ®-magma.

The only choice of morphism of reflexive self-dual globular ®-magmas holding

its universal factorization property is given by the following.

o (o (o)) ) s (- (((f(x)) ")) ), and in particular, x° - f(x),
o (o (- (BT) )R o))y o <-~<<12§><<-~-<<f<x>>*31>'">*3k>%> i,

1 A1 2l

o (- ()™)Y s (-~ (((f(y)) @) o) )P, and in particular, y7' > £(),
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Combining the proofs of Proposition 3.1.2.2 and Proposition 3.1.1.3, we get that

¢ is a unique morphism of reflexive self-dual globular ®-magmas such that f = ¢oi.

Therefore,
SO . Sn_] §
Y =T — . i |
<Q > S): % <Q > i: 7(1<Q7>>n6N07(Op)0§p<n€N7(*oc)OCQN(),nENO y1
‘@ o) (2)
becomes a free reflexive self-dual globular ®-magma over an ®-globular set. [

3.2 Free Involutive Penon Contractions

In this section we will examine the notion of a free involutive Penon contraction over
an ®-globular set applying the previous results. We begin with an investigation of a free

strict involutive globular ®-category over an ®-globular set.

3.2.1 Free Strict Involutive Globular w-Categories

Since the existence of a free reflexive self-dual globular ®-magma over an ®-globular
set has been discussed, we will use this result to obtain a free strict globular m-category
via a specific congruence. First, we give a definition of congruence relation on a reflex-

ive self-dual globular ®m-magma as follows.
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Lemma 3.2.1.1. A product of reflexive self-dual globular ®-magmas is a reflexive self-

dual globular ®m-magma with pointwise operations.

0 n—1 n
Siy Sy iy
0
PVOOf. Let <M % §:1 M" % 7(1]7/1)1161\107 (02)0§p<neNv (*’&)OCQNQ,nENO and
oty M

n—1

0 n
SN SN SN
(NO = = N = () nengs (8))o<paneN, (%’&)QQNO’neN()) be two reflexive self-

0 n—1 n
Iy IN Iy

dual globular ®-magmas.

For each M" and N"*, we consider a product M" x N".

Define s, 13y« y MU NPHL 5 M x N7, for all (x,y) € M"™H x N1 by
S ((6) 7= (s (), 5% () and £,y ((x,) = (6 (), 23 (7)) -

For each (x,y) € M"t! x N**!, we have

SienSinan ((6) = (Shr sk (x), sy~ sy ()

= (sh 't (x)sy R O))

T SZ/?QN#IXN((LY))'

. n—1 n _n—1 .n
This means that sy, xSy v = SarNEVN-

, e - i, % -1 .1
Using a similar deduction, we get #y, xSy N = NI« -

—1
0 0 S?lXN SX/IXN S?WXN A
Thus, M” x N° & --- & M"xXN" & --- is an m-globular set.
tl(l)/lxN t;tld_><llv fxn

In addition, define 1}, : M" x N" — M"1 x N""1 by (x,y) = (U (x), 1 (7))-

M n n — — ¢n n
It is easy to see that s}, 0 Uy vy = Idpymsne = 155, v O Uy -

51?/1 N s7v1_11v SMxN

X X X

.. . 0 0

This implies that [ M xN” & -+ & M"XN" & -, (U n)neN,
Y il Iy
MxN MxN MxN

becomes a reflexive ®-globular set.
Set (M" x N") s, (M N") := { (), (a,5)) | (x,), (3,) € M" 5, N"}.
Defining &), : (M" X N") X, (M" X N") — M" x N" by ((x,),(a,b))
(xofa,y87b) and ¥¢ : M" X N" — M"™ X N" by (x,y) — (x*a,y%) gives us compositions

and self-dual operations in the new quiver.
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That is,
0 0 SVxN SﬁlfxlN " " ShxN n n n
M"XN" &= -+ &= M"XN 3: T (IMXN)HGN(V (Op)0§p<n€N7 (*OL)OCQNOJZGNO
Woew Ty <
becomes a reflexive self-dual globular ®-magma. U

Definition 3.2.1.2. Given a reflexive self-dual globular ®-magma

0 551)/1 s;l’,l_l sty
M= = M= (Uy)neNgs (95)0<p<neNs (¥6)aCNoneNy | 5

0 n-1 n
Iy

a congruence relation on M is a subquiver R of M x M such that R" C M" x M" is an

equivalence relation, for all n € Ny, such that

1. if (x,y),(a,b) € R" and (x,a), (y,b) € M" x, M", then (xoZa,y o b) €R",
2. if (x,y) € R", then (x*®,y*a) € R",
3. if (x,y) € R, then (1},(x),1%,(y)) € R*+1.

Proposition 3.2.1.3. A free strict involutive globular ®-category over an ®-globular set

exists.

Proof. Recall that we have a free reflexive self-dual globular ®-magma

n—1

s9 sk s s
oM 1M M Ty n n n .
M&eM &M= s (lM)neNm (op)0§p<n€N7 (*OL)OLQN(),HENQ ,1

0 | n-1 n
1 oty 4

0 1 n—1 §

N N N
over an ®-globularset 0% = Q! &= ... &= Q" &= ---.
{0 /! =1 m
Next, we construct a congruence in M containing axioms that need to hold.

Since there are no axioms for M x M°, we define AxX? =& C MO x MY,

For every n € N, we define
AX":={((xohy) ohz,x0% (yoh 2)) | (%), (,2) € M" X, M",p=0,1,...,n—1}
U{(l”_l~--lptp~--t”_1(x)on,x) |xeM", p=0,1,...,n—1}

U{(xo;’jlnfl---lpsp---snfl(x),x) |xeM", p=0,1,....n—1}
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U{(L (xofy), " (x) ZHL”(y)) | (x,y) eM"xM",p=0,1,....n—1}
U{((Y o y) o (& O x), (v o &) ofs (yolrx)) | (,y), (¥, x) € M" x, M™,
(V,2), (3,%) € M x g M"}U{((x*8)"8, (x'B)"4) | x € M, &, B C No}
U{((xo’;y)*&,x*& oZy*&) | (x,y) eM" x,M", NoDoZp=0,1,....,n—1}
U{((xofy)®a,y*aol x*o) | (x,y) € M" x,M", Ng D> p=0,1,...,n—1}

1

U (wee ), (0 (w)) e | w e Mo C No}
U{((x*@)*o,x) | x € M", 00 C No} € M" x M".
Let R be the smallest congruence such that Ax" C R" for any n € Nj,.

Restricting domains of compositions to R" x , R" and of self-dual operations to

o 53 sﬁ ! sk
R" provides us a reflexive self-dual globular »-magma R° é: Rl . &R &
i) @l R

Set M" /R" := {[x], | x € M"}, where [x], := {y € M" | (x,y) € R"}, and define
a family of maps " : M" — M" /R" by x — [x],,.

Define s” : M"TL /R — M7 /R by SM/R([ ]n+1) = [S;"/I(x)]n and

M/R M/R
g (W) 1= [y 0)],,

Since (x,y) € R"™! implies both (s,(x),s},(y)) € R" and (¢},(x), 1%, (y)) € R",

Sy /R and 1y, /g are well-defined.
0 1 § 1 n
Sm/R sM/R M/R SM/R
So, M°/R = M'/R' = &= M"/R" & --- is an ®-globular set.
M/R ’1}4/1? tﬁ/zle MR

Moreover, we define 1, : M"/R" — MR by [ = U ()]t

R

Ol'n n 1 —tn IOl'n

ItlseasytocheckthatsM/R M/R M/R MR M/R M/R MR O /R>

0 sl § 1

SM/R M/R SM/R S;lvf/R
This yields that [ M°/R° é: M'/R' = == M"/R" = = » (U /r)nem
M/R "Myr tlrll/I/R T/

is a reflexive m-globular set.

For every 0 < p <n € N, we set as usual

M"/R" XpMn/Rn = {([x]na[)’]n) |5111]/1/R ' M/R([x] ) tﬁ/R'-‘t&7}Q([y]n)}.
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Define 8%, : M" /R" x , M" /R" — M" /R" by [x],,6

Also, define

&1 M"/R" — M"/R" by [x]5¢ =

],

SDIn =[xl y]n.

102

These definitions are well-defined thanks to the definition of congruence.

This implies that we obtain a strict involutive globular ®-category

§ 1

0110 24/1% SM/R SX/!/R
M /R - = Mn/Rn
tI(l)/I/R tzr\i[7113 /R

0
(CO = CLAN M O
7

(1M/R)neN07 ( )0<p<n€N7 ( )agNo,neNo

We now check the universal factorization property.

Assume that there exists a morphism f : (

1 n—1
£@ 4o Sc

1 n—1
Ic

Ic tc

strict involutive globular ®-category.

sl

10 t!

n—1

QOé:Qlé: e

-1

)%

(lC)}’IENo? ( )O<p<n6N; ( )GQNo,HGN()) into another

Since (M, i) is a free reflexive self-dual globular ®-magma over an ®-globular

set, there exists a unique morphism of reflexive self-dual globular ®—magmas

sy S S sy
O: [ MO=M = = M=

0 ) Nl T
f=6doi.

Consider, for all n € Ny,

C01:C1§: B

0 1 n—1
> ( Sc Sc

0 1 n—1

1 Ic 1&

Ry = {(x,9) € M" X M" | 4u()

s¢

1

- q)n(y)}

.- ) such that

We first claim that Ry becomes a congruence in M due to the fact that ¢ is a

morphism of reflexive self-dual globular ®-magmas.

On(a) =

To see that Ry is an ®-globular set, suppose that (x,y) €

= On(sh (v))-

This means that ¢, (x)

Thus, ( o

With a similar argument, we also get (zj,(x),

= 0n11(y) and s0 0, (s (x))

shy(x),s%,(y)) € R} as desired.

() € Ry,

So Ry with restriction of sources and targets to M x M is an ®-globular set.

If we assume (x,y), (a,b) € Ry with (x,a), (y,b) € M" x , M", then ¢y (x)

On(b), x0a and y o, b exist.

The fact that ¢ is such morphism yields the following implications:

= ¢n(y>,
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o O (x*) = ¢, (y*) and then (x*e,y*e) € RE,
o i1 (1) = 01 (6 (0)) and hence (4, (x), s () € RL™,

hd ¢n(xOZa) = q)n(x)ép(bn(a) = ¢n()’)6z¢n(b) = ¢n(yOZb) and so (Xoﬁa;yogb) € R$'
Since C is a strict involutive globular ®-category and all axioms in Ax" need to
be satisfied in C, Ax" C R$ for every n € N.
This also implies that M /R, is a strict involutive globular ®-category.
Note that [x]® = [y]® implies (x,y) € Ry and so ¢(x) = ¢(y) for any x,y € M.

If we define ¢ : M /Ry — C by ¢ ([x]°) := ¢(x), it becomes a unique map such
that ¢ o Tty = ¢, where Ty : M — M /Ry is defined by x — [x]%.

As R is the smallest congruence containing Ax, R C Ry and so 6 : M /R—M/ Ry,

defined by [x] — [x]%, is a unique map such that Ty = 8o .

Combining all the previous maps, we get that ¢ := ¢o 0 : M /R — C is a unique

morphism of strict involutive globular m-categories satisfying the equation

f:(j)oi:ﬂ)of%oi:q~)oeoTCOi:(T)O(TCOi).

Therefore,
0 n—1 n
0 /p0 MR e n /pn e n n n
M /R 0§: §:1 M /R i: 7(lM/R)HENm(op)0§p<n>(*a)a§N09n ,TLO1L
U tlrll[/R "M/r
is a free strict involutive globular ®-category over the ®-globular set Q. ]

Remark 3.2.1.4. We denote [Q] a free strict involutive globular ®-category over an

m-globular set Q.

3.2.2 Free Involutive Penon Contractions

Let us establish a category 2* whose objects are of the form (M i) C, [, ]) , where M

is a self-dual globular ®-magma, C is a strict involutive globular ®-category, and f is
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a morphism of self-dual globular ®-magmas, equipped with a Penon contraction [-,-].

We simply call these objects involutive Penon contractions.

Theorem 3.2.2.1. A free involutive Penon contraction over an ®-globular set exists.
Proof. Let Q° ﬁ% 0! é% Y;:: o i; --- be an w-globular set.
! t "= "
Using the same terminology as in Proposition 3.1.3.2 and Proposition 3.2.1.3,
we set M0 := <éo> =:CY and ¥ : M? — O as the identity map.
As there is no contraction induced by n°, the domain of [-,-]o is @.

Define M' := <Q]>, C':=M"'/R', and ' : M' — C! as the quotient map by

the smallest congruence R' C M' x M! generated by all algebraic axioms Ax'.
Notice that the domain of [-,]; is exactly Ax!.
Let M2[1] := <Q2[1]>qu1,where Ax'i={(-- (OPT)")Pu | y € Ax!, B2 C No}.
Define si,[1],¢3,[1] : M?[1] — M" by
Iy...\R!
(- (G ONP) P, ye @ 1EBTA--- AR
2...\R2
o sylll((--OF))m) = 0 (- (@ ODP) )P, ye @ 1epia-- AR

1)) m y:(_x)z)l eAXl

(- ("GP )P, ye QX 1¢B2A- AR,
o i [1(C-- P Bn) = (o (5T )R )P, ye 02 1€ B A AP
\ (...(ZB})‘-)B,‘M, y=(x,2) € Ax' .

Then we follow exactly as in the proof of Proposition 3.1.3.2 to inductively

define M?[k], s},[k], and t},[k], for each k € N.
Set M? := k[-lez k], s}, = kf-jls}w[k], and t}, 1= k[-jlt]b[k].
Consider [A;kH] = Axkt! Lj{(sk((x,y)k),x) | (xjy) € AxF}
UL (e 9)i)) | (,7) € AXFU{((n ), (x.k)) | x € M4
and [R¥*1] is the smallest congruence generated by [Ax**!] for any k € N.

Assume that we have M”, slr‘,l_l,t;,l_l, and w" : M" — C" forevery r=1,2,...,n.
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Let M1 [1] == (01 ) (AxTH),

Define s7,[1],2%,[1] : M"T1[1] — M" by

), gt By A AR
()PP, ne BT A AR
((xB'f))Bnm, y = (x,2)n € [AX"].

—~
—~
~—~
[
=
—
NS
S—
N—
1=

o s[1] (- 0P )BT =

—~

o ng BiTA AR

—~
—~
—
~
S
S
~
~—
~—
=
~—
~—
=
3

n+1, .\ Retl - "
o (0TI =g (PR, ne BT A AR
(...(Zﬁ'f)...) ;’17 y = (x,2) € [AX].
By Proposition 3.1.3.2, we can set M" ! := GM”“[](], S = GSMIC], and
k=1 k=1

t%, .= |J ¢} [k] and also t*+1 : M1 — C"+1 .= g+l /[RPH],
k=1

Arguing in a similar fashion as in Proposition 3.1.3.2, we get a reflexive ®-

2 sty S iy
globularset | M* =M' = ... = M" = --- | (U}))nen, | With a similarly-defined fam-
19 the o T Ty

ily of identity maps (1},),eN, -

For all p,n € Ny such that p < n, we set

M" x,M" :={(x,y) e M" x M" | sﬁ,,si,“ --~sﬁl(x) = t,fi,t,fi;rl---tf[l(y)}.

Then we define o, : M" x, M" — M" by xo}} y — (x,p,).

For each o* C Ny, we define *j, : M" — M" by

(o= (e py) ™))% s (- ((, pyy) M) ™) )

5O sx,fl shy
So, | MO = &= M" = -, (U )neNg» (98)o<pnens (*) acNoneN,
PR s T
is a reflexive self-dual globular ®-magma.
By Proposition 3.1.3.2, this quadruple becomes a free reflexive self-dual globu-

lar ®-magma over an ®-globular set.

Define [-,], : [AX"] — M" 1 by [x,y], := (x,y)n.
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We see that the following equations are satisfied: s, ([x,y],) = x, 13 ([x,¥]1) =,
([, y]n) =12 (n"(x)) =1 (7(y)), and [x,x], = U}, (x).
Hence, <M L, ([, ] ")n eN) becomes an involutive Penon contraction.

To prove the universal factorization property of this category, we define a map

g:0— (MAC, (["']")neN> by x — x2.

—_—

Assume that ¢ : Q — <M £> éa ([, ']n)neN

) is a morphism into another involu-

tive Penon contraction.

Since we want such morphism to preserve contractions as well, we have to add

the following assignment to these extra arrows: for any n € N,
nt+l_ g+l R e ;ErH—l ;En-&-l
(G )™y ) o (o (030, 0 0N
By Propositions 3.1.3.2 and 3.2.1.3, there exist a unique morphism of self-dual
globular ®-magmas ¢y : M — M’ such that ¢p; = ¢y 0 g7 and a unique morphism of

strict involutive globular w-categories qSC : C — C’ such that ¢¢ = qSC ogc.

As a consequence, ((M i> @ ([, ] ,,)n eN) . g) is a free involutive Penon con-

traction over an ®-globular set. ]

3.3 Involutive Weak Globular w-Categories

We know from Proposition 3.2.2.1 that there exists a free involutive Penon contraction
F

over an -globular set. So we obtain a pair of free-forgetful functors GSet = 2%,
U

where GSet is the category of ®-globular sets and 2* is the category of involutive

Penon contractions. This leads us to a significant adjunction.

3.3.1 Adjunction between Free-Forgetful Functors

This subsection is devoted to the proof of existence of a desired adjunction and so a

desired monad immediately.
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Theorem 3.3.1.1. The free functor F : GSet — 2% is left adjoint to the forgetful functor
U:2"— GSet.

Proof. Let O € Obgset and (M NGRS ~]) € Obo-.

First of all, let us separate the functor F into the following components:
Fp:0— <é> and Fe : Q — [Q].

Consider U : M — U (M) forgetting the reflexivity, self-duality, and composi-

tions and U : C — U(C) remaining the original m-globular set.

We see that (M — FopU (M)) is a free reflexive self-dual globular -magma over

the underlying w-globular set of a reflexive self-dual globular ®-magma M.
Suppose that 0 : M — N is a morphism of reflexive self-dual globular ®-magmas.

We get that FopU (0) : FonU (M) — FopU (N), defined similarly as in Proposition

3.1.3.2, becomes a morphism of reflexive self-dual globular ®-magmas.

Now consider a free strict involutive globular w-category (C — FeU(C)) over

the underlying m-globular set of a strict involutive globular ®-category C.
Assume that v : C — D is a morphism of strict involutive globular w-categories.
We obtain a map FgU (V) : FeU(C) — FeU (D) defined by [x], — [V(x)],.

It follows from Proposition 3.2.1.3 that FeU (V) is a morphism of strict involutive

globular w-categories.

Define € : Ob 9« — Hom g+ by <M1>C,[ ]) T , where
(M%C,[,})

€/ FU ((M = C,| )) — (M= C N ) is divided into two as follows.
(M—>C [ ~])

For each ((---(x"‘&)m)*’&m,(---(y*ﬁl)m)"‘ﬁk) e (M[i]) %, (M"[j]), we define
el FopU (M) — M by (-~~(((--~(x*'&1)"')""&m62(-~(yiﬁl)“');gk)% )"
o (e (o () o o (' )--~)*ﬁk)*¥1)“-)*¥,_

Forevery ([ (- (x))%a] . [(-+ ™)) h] ) € [cli] x, [CLJ]]. define

zn

et : FeU(C) — Cby [( (e (Tor)y ) Fom (- (y'hr )"')q‘ﬁk)”_‘%)”')%]nﬂ
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5 (o (o )yt ofy (- (7)) ) ),
First, consider the diagram

(Fg;nU(M), (6?7)0§p<n6N7 (*&)UQNQ,VZENO) T (M7 (02)0§p<n6N7 (*&)OLQNO,nENO)

FmU(G)l le

(F‘J.RU(N)? (6Z)OSP<I’IGN7 (%&)OLQN()J!EN()) W (N7 (67))0§p<n€N; (%&)OLQN(),HGN())

To prove commutativity, we need to show that €3 o FnU (8) = 80¢}).

We see that

ey o FnU/(8) (-~ (- (™)) np(--.
= el (- (- (B )yt - (B
= (o (G- ((8)) i)y Mool (- ((B(y)) ) )8
- 9((...(((...()(*1)‘)*(xmop( .(y*ﬁl)'")*ﬁ@*%)"')%)
- eogﬁ((...(((...(x%’&l)~-~)%&mag(...(y*ﬁl)~~-)*’ék)*$1)"')*~’},)'

Then we will show that this diagram commutes:

SC
(FQ:U(C)7 (6Z>0§p<n€N7 (;&)OCQN(),I’IGN()) ; (C7 (og)0§p<n€N7 (*’&)QQNo,nENo)

FQU(V)l lV

(FCU(D)v (6Z)OSP<HGN7 (;E&)OCQN()JZEN()) Eg_> (D7 (62)0§p<n€N7 (%}&)(XQN(),HEN())

We also see that

e o Fel(v) ([ (- (- (o)) g (o By B) ) ) %] )

- 8'%([<---(((---<<v(x>>*&1>"'>*&m6';<---<<v<y>>*’ﬁl>"'>"‘ﬁk>"‘?l)"'>"‘*LH>
- (---<<<---<<v<x>>*&1>‘">%6;<---<<v<y>>*’él>"'>*ﬁk)*?1)"')*?f

_ Vogg([(---(((---(x%l)'");g‘még(m(y;ﬁ ) ﬁk) vl) ~)ﬂ?¥r}n+1>.

Thus, € is a natural transformation.
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Define 1 : Obgset — Homgget by Q — Mg, where np : Q — UF(Q) is defined
by x — x*@ for every x € Q.
Now consider the diagram
n
0 —=UF(Q)
xl lUF(k)

R—=UF(R)

To prove commutativity, we need to show that g oA = UF (A) ong.

For any x € Q", we see that

n

UF(X)omg(x) = UF() (¥ ) = (A(x)) ™ = ne (A(®)) = e oA (x).

Hence, 1 is a natural transformation.

Finally, consider the following diagrams

L g W
k laF k\ LUS
F U

To obtain an adjunction, we have to show that both triangles are commutative;

thatis, eF o Fn = 1p and UeonU = 1y.

But verifying that the diagrams commute is equivalent to demonstrating that the

following triangles commute:

Feng
Fp(Q) —=FmUFn(Q)  Fe(Q) —FeUFe(Q)

Sman \ lSCFQ
% L © 1re(0) ©

Fn(Q) Fe(Q)
vt oy U(C)—luRu(c)
Ly LUE%T luc) lUsg
U(M) U(C)

First, using the same notation as before, we get Fon(Q) = <é>
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Thus, UFn(Q) = <é> as an m-globular set and so F ,UF ,(Q) = <<é>>

Define FgmngT : Fn(Q) — FpUFn(Q) by x — (x)% for every x € <é">
For each (x,y) € <é"[z]> Xp <é"[]]> and z € <é"[1]>, we define
&g Fan - FopU Fan(Q) — Fon(Q) by
(o () ) )) = (o (o)),

n

(C (@))% = (o)),

an

It follows that egthﬁ o angt(x) = Eféanm ((x)*z ) A

This implies that €)' Foyr 0 For)' = 1 (0)-

Second, since Fg(Q) = [Q], UFg(Q) = [Q] as an m-globular set and so
FeUFe(Q) = [[Q]]-

Define Fen : Fe(Q) — FeUFe(Q) by bl = [l

Define SCSF@ : FeUFg(Q) — Fe(Q) by

[ (b)) Y] o o (o b)) )

n+1
[zl [z

for any (x,y) € [C"[i]] %, [C"[j]] and z € [C"[1]].
It is obvious that ESFQ; o ang = lg,(0)-
Third, consider U (M) = M as an ®-globular set.
So FjpU (M) = <]\§I > constructed from elements of M.
Thus, UFnU (M) = <1\5[ > as an ®-globular set.
Define NJJU : U(M) — UFnU (M) by x — (x)*% for every x € M".

Define Ugiy : UFypU(M) — U(M) by

-n n

(- () ) ) s (e (o) i) ),

(- (@)™ o (- (7)),
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for any (x,y) € <1\§I”[z]> X p <A§I”[]]> and z € <A§I”[1]>
We see that Ue) onU (x) = Ueiy (xyé) =x.
This means that Usg),} om\/,I//U = lym)-
Fourth, consider U(C) = C as an ®-globular set.

Then FeU(C) = [C] established from elements of C and so UF:U(C) = [C] as

an m-globular set.
Define n&U : U(C) — UFgU(C) by x = [x],.
Define Uet : UFsU(C) — U(C) by

[ (@bl )Y o o ((ao bl

n+1

for any (x,y) € [C"[i]] %, [C"[j]] and z € [C"[1]].
It is easy to see that UagongU = ly()-
This means that eF o F1 = 1r and UeonU = 1y.

Therefore, F' is left adjoint to U. ]

3.3.2 Involutive Weak Globular m-Categories

Now we can provide our main definition as follows.

Definition 3.3.2.1. A Penon involutive weak globular w-category is an algebra for

the monad (UF,U¢F,n).

Finally, we list here some examples of Penon involutive weak globular ®-

categories but discuss some of them in detail.

Example 3.3.2.2. Weak ®-groupoids are just special cases of weak involutive globu-
lar w-categories with involutions given by (suitable composition of) the inverses. In

particular the most elementary and well-known examples fitting our definition of weak
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involutive globular m-category are the fundamental ®-groupoids I1,(X) of a topolog-

ical space X.

Proof. First of all, let X be a topological space and I (X)? := X.

Consider Iy (X)! := C([0,1];X) := {fM : [0,1] = X | £V is continuous} the

set of continuous paths in X.
Define s°,1 : Tlo(X)" — Mo(X)° by s°(f1V) := (1 (0) and 0 (1)) == f1V(1).

Define o} : Ty (X)! x0Ty (X)! — Ty (X)! by (f( ) ) — f ol g, where

(1) 1
Pyt g oy
fHDu—-1), 1<u<l

and Tl (X)! xoTlo(X)! 1= { (1,611 € Mo(X)! x To(X)! | (£1) =1°(sM) }.
Suppose that we have already defined ITg(X), s*~!, =1, and o’l‘, for every

p<k=12,....n—1.

Then we let
Mo(X)" = { £0 € C([0,11"5X) | £ 1persc g0y 7l 1y € o)™
Ve=0,...,n— 1, Yull,...ou_ 1,0, 00 Uk 1, U Ty 1, - - B,
f(”)(u’l,...,u;ﬁl,O,ukH,...,un):f(”)(u’l,...,u;ﬁl,O,ﬁkH,...,ﬂn),

f(”)(u'{,...,u?{’fl,O,ukH,...,un) :f(”)(u’{,...,uLl,O,ﬁkH,...,ﬁn)}.
Define s~ ' "1 : Tu(X)" — Mu(X)" ! by "1 (f0) := f(">\[07un,1x 1oy and
lnil(f(n)) = f(n)’[07l}n—l><{l}-

0 1 § 1 §

N
We see that TT,(X)°? &= I, (X)! é: - &= Mp(X)" & - is an w-globular set.

tO [1 = 1 h

Define o} : Tl (X)" X [ (X)" — Iy (X)" by (f( ”) ) — f) ), where

(n) < < L.

£ 0" e (xy, X1 Xn) = g Dty e W), 0= xpe1 <2
f(n)(xla"'vzprrl_17"'7xn)5 %SprrlSl

and Iy (X)" % , e (X)" 1= {(f(n)7g(")> € Hy(X)" x H(X)" | 7 (f0)) = tl’(g(”))}.
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Moreover, for each n € Ny, we define 1" : TT(X)" — T (X)" ! by

V() (xr, . XXy 1) == f (x1,...,x,) for any £ € Ty (X)" and x,,11 € [0, 1].
It is obvious that 5" 01" = Idy, (x)» = 1" o1" for every n € Np.

Next, for all o C Ny and n € Ny, we define ), : IT(X)" — I (X)" by

(FY o (x1, 22,0y ) 1= £ (1 (x1),12(302), o Y ()

z, k¢ o
where Y (z) 1= forallk=1,2,...,n.

11—z, keo.

F
Let GSet = 27 be the pair of free-forgetful functors and T = UF'.
U

Then T (I1,(X)) is the family of all possible concatenated elements of IT,(X)

attached by compositions, involutions, and identities discussed before.

It remains for us to define a suitable evaluation map 0 : 7' (I (X)) — Iy(X);

however, we give here a brief construction on simple elements as follows:

(x) — =,
(x,p,y) = x0pLy,
= xfe
(x,n) — 1(x)

It is easy to check that (I (X),0) is an algebra for the monad (UF,n,UeF). [

Example 3.3.2.3. Every strict involutive globular ®-category is a very particular trivial

case of involutive weak globular m-category; in particular, strict globular ®-groupoids.

Example 3.3.2.4. Globular m-quivers are an example of strict involutive globular ®-
category. Globular propagators of globular m-quivers give an example of involutive

weak globular ®-categories (see [BJ]).

Example 3.3.2.5. Let .#° be a family of involutive monoids A,B,C,... and .#" the

family of the bimodules 4Mp, with A,B € .#°. Composition o(l) of bimodules is given
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by the Rieffel tensor product 4Mp @p pN¢ and involution *(1) of bimodules is provided
by the Rieffel dual pM4 where M := {X | x € M} is just a (specific) disjoint copy of M
and the bimodule actions are b-X-a := a*xb*, foralla € A, b € B and x € M. Similarly
starting from a class .#° of strict involutive 1-categories, the family .#' of “bimod-
ules” between them is an involutive weak 1-category. Introducing a suitable notion
of “bimodule” between strict involutive globular n-categories, we obtain an involutive
weak globular n-category. If . is a family of strict globular w-categories, the family

" of “bimodules” between them is an involutive weak globular w-category.
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CHAPTER 4

INVOLUTIVE WEAK GLOBULAR-CONE ®o-CATEGORIES

In this chapter we slightly modify the Penon’s approach to obtain a generalized notion

of involutive weak globular higher categories as discussed in Chapter 3.

In order to be able to capture the notion of weak C*-categories, which
Penon’s weak globular higher categories constructed from an algebra for a certain
monad does not, we are forced to generalize this concept. A special class of infinite
cells will be added and simultaneously dominate its own m-globular set. We call this
new structure a globular cone. In the first section we study some of its basic properties

so as to understand how to deal with further operations involved.

Consider the category 2 whose objects are of the form (,/// ER 6, ])
where .# is a globular-cone w-magma, % is a strict globular-cone w-category, f is
a morphism of globular-cone globular m-magmas, together with a specific contrac-
tion [-,-], and whose morphisms preserve everything possible. Then we will define
a category 2* with a similar role to the category 9. Tts objects are of the form
(//l ¥ ﬁ; (2 *,[/,\]) where .Z* is a self-dual globular-cone m-magma, .Z* is a strict
involutive globular-cone m-category, f* is a morphism of self-dual globular-cone ®-

=N

magmas, equipped with a certain contraction |-, -|.

In order to define an involutive weak globular-cone w-category as an alge-
bra for a certain monad, we must have an adjunction between the category 9* and the

category GCone of globular cones in the sense of free-forgetful functors.

So, in this chapter, we will mainly give constructions of a free self-dual
globular-cone ®w-magma and a free strict involutive globular-cone m-category over a
globular cone. Then we adopt some modification to the original contraction suiting our
situation. The monadic definition and examples of free involutive weak globular-cone

m-categories are also discussed.
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4.1 Globular Cones

This first section deserves to investigate basic behaviors of the so-called globular cones.

9 sl sl s

0 0
Let 0 = Q' & ... &= Q" --- be an w-quiver with globularity condition:

n—1 té

0 )
n—1n _ n—1,n n—1n _ n—1,n
So Sp =950 o and o So=1lo o for any natural number n.

Consider a globular cone & over an ®-globular set

QO

59 5! sl s
that is, (&,s% )nen, is a cone over VLol &... & pgnf ... and (1% )nen, is

n

a cone over Q S 0! ol o S Moreover, we also require the following
t t, 177 !
0 0 0 Q

natural compatibility: s’étf@“ = si‘g and tés’grl = t(’;, for each k € Np.

4.1.1 Truncated Globular Cones

Definition 4.1.1.1. Let n € N. An n-truncated globular cone over an ®-globular set is

a diagram

k+1 k

such that sgs@@ =Sy = s’ét{’}“ and tés’(}“ = t(’; = tét(’;“ foreachk=0,1,...,n—1.
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We observe that, for any n € N, n-truncated globular cones can be con-

structed from (n + 1)-globular sets and vice versa.

SO Sl Snfl n
Lemma4.1.1.2. Q° = Q' &= --- &= Q" = Q" isan (n+1)-globular set iff
lO tl tnfl "
&
y
Qn

is an n-truncated globular cone, where & = Q"+, st .= sk, tg =k,
sl = smsmtlo o on=1en and 1% = prgmtl, =l

foreachk=0,1,....n—1and m=0,1,...,n.

Proof. Suppose that

is an n-truncated globular cone.
First, set s := s’g and 1" := tg forallm=1,2,...,n.

1. . .
Then, let Q"' := &, s" := s and 1" := 1}
0 1 n—1

N N §
Since Q & Q! &= --- & (" is already an n-globular set by hypothesis, it re-
10 t! m—1
mains to prove that s’é‘ls’féa = s’;@_l = s’é‘lt;‘a and tzz_ls’é’a = t(}_l = tg_ltga.

By the property of the n-truncated globular cone, we have

n—1n _ n—1_ n—1.n n—1n _ ,n—1_ .n—1.n
So Se=Sg =S¢ témandtQ Sp=1tg =15 g
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0 1 n—1 n

S S S S
Thus, Q° = Q' &= --- &= Q" &= Q" is an (n+ 1)-globular set.

l‘O ll tn—l m
1 snfl n

SO S S
Conversely, let Q¥ &= Q' &=--- &= Q" &= Q" be an (n+ 1)-globular set.

{0 /l -1 "

First, let & := Q" !, sp=s"and 1y :=1" forallm=0,1,...,n— 1.

Set s 1= sgs’g'l . ~s'51s'éa and 1 1= tgz’t’Q”+1 = ~tg*1tgd form=0,1,...,n.

Next we need to prove the following compatibility conditions:

k _ ok k+1 k _ k hk+1 k _ kk+1 k _ 4k k+1 —
Se =S50S o le =lgly > S =Sole ,andtéo—théa foreachk=0,1,...,n—1.
Foreachk=0,1,...,n— 1, we have
k _ ok k+l on—1on _ kok+tl  n—1ny_ k k+l
L sp =550 'Sg Se=50(5g S Sp) =555

2. 1 e Y e AR T

k Kk+1 1

3. sl(cg):stQ ___Sré— k k41 k Kk+1 n—1.n

n o__ n—1.n __
Séa—SQSQ "'SQ té«)—SQSQ "'tQ t(ga
R S B S PR o8

k _ k k+1 n—1l.n _ .k k+1 n—1n _ .k k+1 n—1_n
4. léa—thQ "'tQ léa—tQtQ "'tQ S(ga—thQ "'SQ S(sa

N L T o o R ot
= —tQSQ SQ Sg; tQS(g’ 2

Hence, we obtain an n-truncated globular cone

as desired. ]
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SO Sl snfl
Lemma 4.1.1.3. Let n € N. Given an n-globular set Q° &= Q' & --- & Q", we can
10 1 m—1

construct an ®-globular set.

SO sl Sn—l
Proof. Let Q" &= Q! & .- & Q" be an n-globular set.
10 t! =1

sn
To construct an (n + 1)-globular set, consider Q" &= Q"*! with Q"*! := Q",
[il

s" :=iand t" := i, where i(x) = x for all x € Q"

We see that, for all x € Q"1

1 " s (x) = " 1(s"(x)) = " 1(i(x)) = "L (¢ (x)) = s~ 1" (x),
2. 1) = 78 () e i) = £ L) = ).

1 § 1 n
Thus, Q° ﬁ: o! é: - &= Q"= Q" lisan (n+ 1)-globular set.
tO tl - 1 m

n—1 m—1

s’ N

Suppose that Q° 2: 0! 5: er= (O é: - & Q™ is an m-globular set.

10 ! m—1 tm—1

Consider Q™ é: Q"+ with Q"+1 .= @™, s := i and " := i, where i(x) = x for

[ﬂl

all x e Q"1

We see that, for all x € "1,
1. s L™ (x) = 5™ U(s7(x)) = s L(i(x)) = 5™ 1(e™(x)) = s 1e™(x),

2. " () = (™ (x) = (i) = (e () = e e (x).

0 1 § 1 § = 1 §n

By induction, Q° = Q' = ... = Q"= -+ &= Qm Q"1le is an (m—+1)-
£0 /1 1 m m—1
globular set for each m > n.
l § 1

Furthermore, every n-globular set Q° §: 0! i: i: Q" can be embedded into
IO 1l m—1

sl §— 1 n+l

0
)
an o-globular set Q° = Q' &= --- = Q" é: Q"1 — ... by setting, for all m > n,

10 1! =1 1

Q" :=0" s" ! :=iand "' :=i, where z( ) = x for all x € Q". ]

Ref. code: 25595709031073ILP



4.1.2 Cones over Globular Products

SO Sl Snfl s

0 0 0

Theorem 4.1.2.1. Let Q° = Q' &= --- & Q" & --- be an o-globular set. Then
9 rl
0 0

! 16

120

QOXGQO( Q QIXGQI Q Q”XGQ”<—...

is a cone, where
Q" xg Q" :={(x,y) € Q" x Q" | spy(x) = sp(y) and t5y(x) = 15(y)}
foralln=1,2,...and Q° xc Q% := Q" x Q°.

Proof. Given k=0,1,... and a globular cone
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Define n’é : O g QK = OF 6 OF by nkQ(x,y) = (st(x),té(y)) for all
(x,y) € QK1 x g QFHL
Note that s’é (x) = s’é (y) and tg (x) = té (y) by the globularity condition.
Define 1% : & — QF x O by ke (x) := (sh(x), 5 (x)) forall x € &
Indeed, the maps n’é and ni‘g) are well-defined thanks to the globularity condition
and the compatibility in the globular cone, respectively.
Next we check the commutativity of the diagrams.
By compatibilities of sources and targets, we have, for all x € &,
() = (5).EW)
— (sléslgr] (x), tétﬁjl (x))
= (so(sl™ (), 19015 ()
= mp(si (0,157 ()

k ok
=\ B AG)

k k+1

s
Thus, Tp =TT

Hence, we obtain a cone of the form

0 x 0« Q 0 x 0! e .. 0" % 0" <

Now we assume that
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is a cone.
Define p! : OF x 0% — Q% and p¥ : Q% x QF — QF by
Pr(x,y) :==xand pi(x,y) ;= y for all (x,y) € O x QF.
Then we define s’(} = prTCkg and t’@; = p’én’;@.
Now we check that s’(‘sa = stsfgfl , tf@ = tétf}“ , s’(‘ga = stt(];frl , and t(’} = tgs?'l.

Letxe &.

Thus, 76 (x) = (pAk (x), Pt (x)) and 5! (x) = (P (v), pl s (2)).

k+1 k+1.k+1 k41 k+1 k+1k+1 k41 k+1
So, mhEH (x) = mb (Pl s (), ph S (1) = (sl (v), bl T ().

By the commutativity of the diagrams, we have n’;a — n"éni‘;’l.

This implies that (p§mk (x), pimh (x)) = (s’éplanlfgfr] (x),tépé“n’gr] (x)).

k o kek ok kHloktl kL
Hence,sg—plnéo—st1 Mg =SpSe

k _ kok _ ok kAl k1 _ ok ket
and 7, = p5T, =toPy Tg =1lpSe

So, (&,5% )nen, and (&,1%),cn, are cones over an w-globular set.
e 8 R T TN k _ kbl _ ok ket
Furthermore, we get s, = 5550 = sple’ and 1o =151, =155, by the

globularity condition of the ®m-globular set.

Therefore, we obtain a globular cone

as required. ]
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Remark 4.1.1. To make the more precise terminology, we will call the former cone a

globular cone over an w-globular set and the latter cone a cone over globular products.

From Lemma 4.1.2.1, we have the following important theorem from the

categorical point of view.

Theorem 4.1.2. There is an isomorphism between the category of globular cones over
an ®-globular set and the category of cones over globular products.

SO Sl N 1 S

0 Ol
Proof. Let Q° = Q' &=--- = Q" = --- be an w-globular set.

0 1 n—1 n
lo ‘ol o ‘o

First of all, we need to synthesize objects and morphisms of both categories.
Let o7 be the category of globular cones over an ®-globular set.

Objects of .o/ are globular cones over an ®-globular set of the form

&

Suppose that

is another globular cone over the same ®-globular set.

Morphisms from a globular cone & to a globular cone .% are functions of the

formy:& — .7
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making all triangles commutative: that s, s’;@ = s’f@\u and t(’; = tfgzlu foreveryk=0,1,....

Let Z be the category of cones over globular products of the form

is another cone over globular products.

Morphisms from a cone & to a cone .% are functions of the form ¢ : & — %
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making all triangles commutative: that is, 71:]:50 = ﬂ:’f?\p forevery k =0,1,....

For our convenience, we let n,k =0, 1, ... from now on.

Now we construct a functor F : &/ — 28 which is defined as follows:

E — &

Q" — O"xc0"
(sp.15) +— T
(sktl) — mg

v ooy

Indeed, F is a functor since it acts as an identity on morphisms, i.e.

1. F(lg) =1¢ = 1p(¢) for every globular cone & € Ob,

2. F(Yo, 0) =Yooz o= F(y)oykF () for every globular cone &,.%,%4 € Ob,y,

¢ € Hom/(&,.%#) and y € Hom  (#,9).

Then we construct a functor G : 4 — & which is defined by

& &

Qn
k _k
(SQJQ)
k k
(Sé"vtéd)

0

St
I 1 A=k L]

Indeed, G is a functor because it maps morphisms onto the same ones, i.e.

1. G(1g) =1¢ =1g(s) for every cone & € Ob,

2. G(yozd) =vyo, b0 =G(Y¥) o, G(d) for every globular cone &,.%,%4 € Oby,
¢ € Homygk(&,.%) and v € Homg(.%#,9).
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To obtain an isomorphism, we need to show that GF =1d,, and FG = Id 4.

For the first equality, we have
1. GF(&)=G(F(&8)) =G(&) =& =1dy(&),
2. GF(Q") =G(F(Q") =G(Q" xc Q") = Q" =1dx(Q"),
3. GF(sy.1) = G(F (ki) = Glh) = (s = s (s 1)
4. GF (sip,t5) = G(F(sip 1)) = G(m) = (sip, 1) = Wy (s55,25),

5. GF(y) = G(F(y)) = G(y) = y = 1d (y).

1. FG(&) =F(G(&)) =F(&) =& =1d»(&),

2. FG(Q"xg Q") =F(G(Q"xc Q") =F(Q") = Q" xc Q" =1d»(0" xc Q")
3. FG(nly) = F(G(rb)) = F(sly ) = (1) = ldp(h),

4. FG(nl) = F(G(n})) = F(sk,15) = (ng) = ldz(ny),

5. FG(9) = F(G(9)) = F(9) = 0 =1d5(9).

Therefore, the category of globular cones over an m-globular set and the cate-

gory of cones over globular products are isomorphic. [

4.1.3 Reflexive Globular Cones

In this subsection we investigate how reflexive ®-globular sets affect the notion of iden-
tities in our globular cone. The result is that if the w-globular set is not reflexive, we
can recover the reflexive one via identities in the globular cone. But before having this
result the notions of both reflexive ®-globular sets and identities in a globular cone need

to be described first.
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0 1 -1 §

s s s
Definition 4.1.3.1. We say that an w-globular set Q0 &= Q' & --- & Q" & --- is

10 1 m—1 "
0 1 n—1 n
reflexive if there exists a family of maps Q° LN 0! Lo o" Ly ... such that
skotk = Idpr = t*o1* for every k = 0,1,... and we call these maps identities in the

o-globular set.

Remark 4.1.3.2. The definition of identities tells us that they map elements in certain
levels to be loops in any higher levels, i.e. s"os™ lo-..sktlotk = orm=lo... ;1 ok

foreach 0 <k < m.

Now we can define identities in our globular cone over a reflexive ®-globular

set in a similar fashion as follows.

First of all, we need to glue a globular cone over a reflexive w-globular
set and a cone over globular products together by defining diagonal maps, for all k =

0,1,...,A%: " = 0% x OF by x — (x,x) for each x € Q.

Constructing the diagonal maps gives the following connection:

AY Al A"
0 1 n—1 n
0 SQ 1 sQ SQ . SQ
0 . 0 . — .
! t t t
o 0 0 0

Now we can give one of the possible definitions of identities in a globular

cone over a reflexive ®-globular set.

Definition 4.1.3.3. Using the same terminology as in the context, a globular cone & is

said to be reflexive if there exists a family of maps Uz : Q" — & such that ﬂ::?_k ol =
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n+k n+k—1 n+1
A o(lQ o...olQ

maps identities in a globular cone.

olré) foreachn =0,1,... and k = 1,2,... and we call these

The following lemma says that we can recover a reflexive m-globular set in

the process of constructing identities in a globular cone over an ®-globular set.

Lemma 4.1.3.4. Using the same terminology as in the previous definition, a family of
maps V' : Q" — & such that T oV = A" and nszk oUL(Q") C A™K(Q"FF) for each
n=0,1,...and k= 1,2,... gives rise to identities in a globular cone over a reflexive

w-globular set.

Proof. Letn=0,1,...and k=1,2,... be given.

Consider a family of maps 1. : Q" — & such that /o, = A" and
nrgk oL (Q") C AMH(QHHK),
If x € Q" for some n, then n’g“k o1, (x) = (y,y) for some y € Ofit”.
So we can define p" : A*(Q") — Q" by p"(x,x) := x for each (x,x) € A*(Q").
Obviously, A" o p" = Idpn(gr) and p" 0 A" = Idgn.

Consider the following diagram:

Define 1}, : Q" — Q"1 such that = prHonl ot satisfying

n n+k

+k—1 n+l1
L =1 n o
& &

n
OLQ ~~OIQ OIQ.

Thus, nn+kol%7::nn+kol2fkoln+k71O...Oln+lolg ::An+ko(ln+kflo'.'o

Q Q Q

n+1

1 o).
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HP ; +1 _ An+l1 +1 n+1 _ i+l
This implies that A"™ o1f, = A" o p"" o™ ol =T o,

It follows that A" = n’; o 1’;@ = n’é

Thus, for every x € 0",

(sgotp(x),tpo1p(x))

n

OTCéa

o=

n+1 _-n _ n n+1 n
OLg—nQOA oLp.

o (1 (). 15(x)))
= n'éoAnHol’é(x)
— )

).

Hence, s, 015 (x) = x = 1, 0145 (x) and so s, o1, = Idgr = 15 015,

Therefore, the ®-globular set is reflexive. O]

4.2 Free Self-Dual Globular-Cone w-Magmas

The concepts of involution and self-duality are different in that involution is a self-dual

map that satisfies the condition of involutivity. In this section we will prove the exis-

tence of a free self-dual globular-cone ®-magma over a globular cone via the following

diagram

Globular Cones

pkc

Self-Dual Globular Cones

mkc

pmFp

Globular-Cone w-Magmas

pmFm

Self-Dual Globular-Cone ®w-Magmas

that is, we will construct these four free functors and verify that this diagram commutes

up to isomorphism.

As a result, we divide this section into three parts. The existence of a free

self-dual globular cone and a free globular-cone w-magma over a globular cone is con-

sidered in the first two subsections. The last subsection we investigate the notion of

free self-dual globular-cone ®w-magma over a self-dual globular cone, a globular-cone

m-magma, and a globular cone, respectively.
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4.2.1 Free Self-Dual Globular Cones

We begin this subsection with the definition of self-duality of a globular cone.

Definition 4.2.1.1. A globular cone & is called self-dual if there exists *q, : & — &, for

all o C Ny, such that
q ( £* q *& q ( £x q *d
o sp(f) =to(f)* and t5(f**) = sy (f)" forevery g € and f € &,
q ko) —— q *g q *o ) — q *?x
o sp(f) =sp(f)eandry(f*) =t,(f)" forevery g ¢ vand f € &.

Remark 4.2.1.2. Being & a self-dual globular cone implies partial self-duality in the

o-globular set.

Proposition 4.2.1.3. A free self-dual globular cone over a globular cone exists.

Proof. Let a globular cone over an m-globular set be given

First of all, we construct a new m-globular set that suits our situation.

For each m € N and n € Ny, we let

A

0" = {(---(OP)P2y )P |y e 0", B; C Ny, j=1,2,...,m}.

We also establish the new sources and targets in the new quiver as follows: for

eachm € N, n € Ny, and (--- ((yP1)P2))Bn € 0"+1, define Sl Q! — 0" by

(- (PP )P gt BrABL Ao AP

° sq((...((yﬁl)ﬁz)---)ﬁm) —
¢ (- (B ())P)B) B, e By AP A+ Ay
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o 1 (o (g o § 7 ERONP P, B Ao 2 2
Q o PP

(- (((sHPP) ) e BrABy A ARy
. N T R
By Proposition 3.1.1.2, Q" &= Q" &= --- &= Q" &= - is an ®-globular set.
12 rk -1 P
0 0 0 Q

Next, we establish the following recursive family:

&' = {x*|xe&,aC Ny},
£ = [P |re s apC N,

" = {(-((x")%2)")% |xe &, 0; CNp, i=1,...,n},

Then we define & := G én.

n=1

To obtain a globular cone, we first define s’;@,, t;; &= O by

ng oy Ao N A Oyy;

RS
FE
—~
=
T
SN
T
=
~—
~—
g
~—
)
S)
~—
S
£

2l | @@y, newmdnh- Ay

(- (5 (x)*1)%2) )%, ng oy Aty A=+ Al
(- (s () )™) )%, neo Aog A Ay,

for every (--- ((x®)%) )% ¢ &,

: nnt+l _ n _ nntl nat+l _ n _ nmntl
ItremamstoshostAséAa —sga—sQAtg andtQAsé% —t(ﬁ—tQAt(ga for n € Ny.

Letn € No, m € Nand (--- (x®)%) )% ¢ &,
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By the compatibility of the globular cone &, we have

Srésrgrl((“.((xoc])ocz)...)am)

(o (s )™ ) )%, mnt 1 o A A

) G ) ) ) o A Aoy 31,
| e ) )Y, T oy A Aoy D
(- (B (@) *) )%, 1€ 0y A+ A Oy

n¢ oy ANy A Ay,

neocIAoczA---Aocm.

and
s’étc:;“((---((xal)%) )%m)
(
("’((srétgv+l(X))a]> )OCm n,n+1¢a1A...A(xm;
¥, ("'((Srésrgl(x))a') ¥, ngo A Aoy d3n+1
(...((tétg}‘l’l(x))a]) )am’ n_|_1 ¢ OC1A"'AOCm Sn
| (...((ng}"’l(x))al) )Oﬂm, I’l,n+1€alA"'Aam.
ARG AR ) e gl SN ) TNy Ay
(- (((ep(x))®1)%2) ") peoag Aap A+ Ady.
g S}(( 4 ((xa‘l)(XZ)" )(Xm)
Hence, s’ésgl =% = s’ét(’}“
mi n+l _ n _ o+l
Similarly, we also get tgs 2 = t:é, = %t(é .

As a result, we obtain a globular cone

132

Ref. code: 25595709031073ILP



133

For a0 C Np, define sq : & — & by (- ((x®)%2) )% 1y (- ((x%1)%2) ) %m) %,
We see that (&, (*a)acn,) is a self-dual globular cone.

Now consider amap i : & — & by x — x2 for each x € &.

Suppose f: & = (F, (*a)ach,) is @ morphism into a self-dual globular cone.

Define W : & — .7 by (- ((x*1)%2) )% = (- ((f(x) ) ez) ) Fam.

For every (--- ((x®)%) )% ¢ £, we have

Y((C (@)®) )N = (- ((F(x)er)To) ) om)e

= (W((...((xal)ocz)-~->ocm)*u.

Hence, v is a morphism of self-dual globular cones satisfying f = yoi.

Assume that ¢ : & — Z is another morphism of self-dual globular cones

satisfying f = ¢oi.

So, W((+- (1)) ) %) = (- ((f(x)Ter)o2) ) Fom = @((--- ((x*1)%2) ) %n).
Hence, v is a unique morphism of self-dual globular cones satisfying f = yoi.

Thus, ((é?’ s (¥a)aCNy ) i) is a free self-dual globular cone over a globular cone.

]

4.2.2 Free Globular-Cone w-Magmas

Definition 4.2.2.1. A globular cone & is called a globular-cone w-magma if there

exists a family of partially-defined operations o), : & x, & — &, for p=0,1,..., where
& xp&i={(xy) €ExE | s(x) =15(y)},

by (x,y) = xo,yforall (x,y) € & x, & satisfying the compatibility between composi-

tions and sources and targets as follows:

o st(xo,y) =sk(x)ofsh(y)and 1l (xo,y) =14(x)oftl(y) forall g > p,

o st(xopy) =s%(y) and 1l (xo,y) =1L(x) forall g < p.
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Remark 4.2.2.2. Being & a globular-cone ®-magma implies partially-defined compo-

sitions in the m-globular set (the first condition).

Proposition 4.2.2.3. A free globular-cone w-magma over a globular cone exists.

Proof. Let a globular cone over an m-globular set be given

&

First of all, we construct a new m-globular set that suits our situation.
Setting k,n € N and (Q") := Q°, we construct the following recursive family.
Consider (Q'[1]) := @', s°[1] := s{), and ¢°[1] := 1),
Now let (Q'[2]) := {(x,0,y) | x,y € (Q'[1]), s°[1](x) = °[1] () }.
Define s°[2] : (Q'[2]) — (@°) by °[2]((x,0,)) := s°[1](»)
and 1°[2] : (Q'[2]) — (Q°) by °[2]((x,0,)) = r°[1](x).
Suppose that we have (Q'[1]), s°[/], and °[/] foreach [ = 1,2,...,k— 1
Let (Q'[k]) := {(x,0,y) [x € (Q'[i]) ,y € (Q'[j]) i+ j = k,s°[i] (x) =[] () }-
If (x,0,y) € (Q'[k]). we define s°[K],1°[K] : (Q'[K]) — (Q") by
sOk}((x,0,)) = s°[j](y) and °[K] ((x,0,y)) := 1°[i] (x).

Set (01) = U (0'[K). sl = U 'l and 1y, = U e

m—1

Assume that we have (Q™), s’<"Q_>1, and ton foreverym=1,2,...,n—1.
Consider (Q"[1]) := Q", 5" ![1] := s’é‘l, and " 1[1] := tg_l

Let (0"(2) 1= U () | 2.y € Q1] sy 1)) = -7 (1)

If (x, p,y) € (Q"[2]), then we define s"~'[2],#"~1[2] : (Q"[2]) — <Qn—1> by
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(" '] (x), pys" 1), n—1>p;
"] (), n—1=p.

o s"2)((x,p.y)) = {

n—1 x), P, n—1 , n— :
. D (py) = { @ ), 1> p
") (x), n—1=p.
Suppose that we have (Q"[I]), s"~'[I], and "~ ![I] foreach I = 1,2,...,k—1
Let (0K) = U ((xp.y) [ v (Q701) v € @), 1+ =k
st e) = 1 )}
If (x, p,y) € (Q"[k]), then we define s"~'[k],s" 1 [k] : (Q"[k]) — (Q@"~!) by
("), 5" AB)), n—1>p;
"), =N

o 5" K ((x,p,y)) = {

o " ((xp.y)) =

Set (") := U (Q"[M]). o5 = U s [k], and 5] = U "~ [K].

k=1 k=1 k=1
B W lo e Sl gey /i
By Proposition 3.1.2.1, (Q°) &= (Q') &= --- &= (Q") & -+ is an ®-globular
o) Yo Yo o

set.
Next, we establish the following recursive family.
For our convenience, we assume g € No.
Let ([1]) :={(2) |z € &}, s7[1]((2)) := 5 (2), and 19[1]((2)) :=1£.(z) for z € &.
Now set (412]) = 1 {(x ) [ € (611, 1)) =#11]0)}-
If (x,p,y) € (£]2)), then we define s9[2],19[2] : (£]2]) — (Q9) by

(s4[1](x), p,s4[1}(¥)), q> p;
sA[1](y), q<p.

o s12]((x,p,y)) = {

@[1](x), p,t[1]()), g > p;
t9[1](x), q<p.

o 12]((x,p,y)) = {
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Suppose that we have (£'[k]), s7[k], and t9[k] for all k = 1,2,...,n— 1.
Let (&[n]) 1ZPGO{(x,P,y) |xe (&), ye (&), i+j=n, sPli](x) =tP[]() }.

If (x, p,y) € (£[n]), then we define s9[n],t4[n] : (&[n]) — (Q7) by

o t4n((x,p,y)) = 4l (x) <
ql; X), q=>7p.

Let (&) := ngl (&[n]), S?g> = nL;Jlsq[n], and tg’éa> = ngltq[n].
. n n+tl_ n _ n n+l n n+l _.n _ .n n+l
It remains to show thats<Q>s<;@'“> =S(g) —s<Q>t<@;f> andt<Q>s<;C> —t<éa> —t<Q>t<(;f>

for all n € Ny.
Suppose that n € Ny and (x, p,y) € (&).
Then (x,p,y) € (£[k]) for some k € N\ {1}.

Note that the case kK = 1 holds immediately owing to the globularity of the cone.

We will only prove s’<1Q>s"Jrl k] ((x,p,y)) =5"[k] ((x,p,y)) = s’<1Q>t”+1 k] ((x, p,y))

while the remaining part can be similarly discussed.
If k=2, then x,y € & and

(" [1)(0), p,s" 1 (1), m+1>p;

sn+1[2]((x,p,y)) = {
S ), n+1<p.

(s?l(x),P,S?l(y)), n+1> p;
S:?rl(y)v n+1<p.

PR p) = {<f2“<x>,p,r;“<y>>, 1> p

tgfl(x), n+1<p.
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It follows from the globularity of the cone that

n n+l
Stoys" T 2)((x,py)) = )
Srés(gj—l (y)7

(s:;"(x)apaszﬂ(y))a n>p;

s (y), n<p.

= S"2l((x.p.y))

Note that n < p and k = 2 imply s (x) = t%(y) and

p—1

n+1
50

s’@’m(x) il s’ésQ p—1_p n+l1

g Se(xX) =505

We also have the other part of equalities

;
(st (), p, st (),
1
S’ZQ>[”+ [2]((x7p,y)) — Srét?—l(y)7
\ s’étgfl(x),
(
(s%(x),p,s%(y)), n>p;
3 a0 n=p;
\ Sga(x), n<p.
) 5().pisE0)), n>ps
SZ" y)a 7550

Thus, 7, "' 2] ((x, p,y)) = s"12]((x,p,y)) = s " "

Assume that s”

holds for every m =1,2,... k—1.
Recall that

(s" i (x), p.s" (),
s (),

(i (), p, A 0)),

i) (x),

S pyy) =

K ((xpy)) =

<Q>anrl [m]((x, p,y)) = s"[m]((x,p,y)) =

137

(55 (), pospyset (), n+1>pAn>p;

(n+1>pAn<p)Vn+1<p.

n

1o (y) = s ().

n+1>pAn>p;
(n+1>pAn<p)Vn+1<p.

n+1<p.

2]((x,p,y))-

Toyt"Hml((x.p.y))

n+1> p;
n+1<p.
n+1> p;
n+1<p.
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It follows from assumption that

(g = {<sgs"“[i]<x>,p,sgs"“m<y>>, n>
S(0)’ YPY)) =

s 0), n<p

_ {(Sn[i](X)’p’sn[j](y)), n> p;
s"[J1(), n<p.
= s"[k]((x,p,y))-

Note that n < p and s”[i](x) = t”[j](y) imply
") = Sigysig -+ sty S7H(x) = sty -0y P L10) = "1 ).
We also have the other part of equalities

[ (s 1[0, p, sy 1)), > p
sigf" K (e py) = syte), n<p.

yad e sk n<p.

v g ey n=p;
L s"[i](x), n<p

4 {<s"[i]<x>7p,snm<y>>, n > p:
s"[71(), n<p.

This means that s7, "' [k] ((x, p.y)) = s" (K] ((x, p,y)) = (g t" ! [K] ((x, p.Y)).
Applying similar argument, we get
t1oys" K (6 p,y)) = 1K) ((x, p.3)) = 11" K] ((x, p.7).-

n n+l _ n _ n mnt+l n nt+tl _ .n _ .n .n+l
Thus, StoySie) = e —s<Q>t<g> and t<Q>s<éa> —t<éa> —t<Q>t<g> for all n € Ny.

Asa consequence,
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7l -
o < ) oo Q)
<Q> <Q> QN &——---
IO l‘l tn—l h
© ty © ©

is a globular cone.

For all p € Ny, set
(6) % () = {(x,3) € (6) x (&) | 14 (x) =11, )},

Define a family of partial operations o), : (&) X, (&) = (&) by xo,y +— (x, p,y).
We see that ((£), (o)) pen, ) is a globular-cone ®-magma.
Define amap i: & — (&) by x — (x).

Suppose that f : & — (.#,(8)) pen,) is @ morphism from the original globular

cone into another globular-cone ®-magma.

Define y : (&) — . recursively by

(€N)>x — flx
(€2]) 3 ((x),p, () = F(X)epf(y)
(€3]) 2 ((),p,((0),4:(2))) = fx)8p(f(¥)84f(2))
(31 > (%), 2, (0)):4:(2)) = (f(x)8pf())8qf (2)

Next, we will verify that y((x, p,y)) = y(x)8,y(y) for every (x,p,y) € (£).

Notice that if (x, p,y) € (&), then x € (£[i]) and y € (&'[j]), where i+ j =k
for some k € N\ {1}.

Ifi=j=1, wehave y(((x),p,(y))) = F(x)8pf(y) = W((x))8,¥((y))-

Assume that this equation holds fori=1and j=1,2,...,n—1.
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We have W(((x), p.y)) = F()3,W(y) = W((x))5,W():

Now suppose that the equation holds fori =1,2,...,m—1 and j € N.

We have y((x, p,y)) = W(x)8,¥(y).

This means that y((x, p,y)) = W(x)8,y(y) for each (x, p,y) € (&).

Thus, Y is a morphism of globular-cone m-magmas satisfying f = yoi.

We see that y is the only morphism of globular-cone ®-magmas holding f =
yoli.

Asaresult, (((£),(p)pen, ), i) is a free globular-cone -magma over a globular

cone. L]

4.2.3 Free Self-Dual Globular-Cone ®w-Magmas

In the previous subsections we have already proved the existence of a free self-dual
globular cone and a free globular-cone ®-magma over a globular cone. Applying these
two propositions, we obtain a free self-dual globular-cone ®-magma. But the notion of

self-dual globular-cone m-magmas need to be defined first.

Definition 4.2.3.1. A globular cone & is said to be a self-dual globular-cone ®-magma
if there exist o, : & X, & — & and *¢ : & — &, for all p € Ny and o C Ny, such that
(&, (*a)acn,) is a self-dual globular cone and also (&, (op),cN,) is a globular-cone

®-magma

We will prove first that a free self-dual globular-cone ®-cone over both a
self-dual globular cone and a globular-cone ®-magma exists. Later we will show that
both of them satisfy the universal factorization property of free self-dual globular-cone

®-magmas.

Proposition 4.2.3.2. A free self-dual globular-cone ®-magma over a self-dual globular

cone exists.
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N

Proof. Let a self-dual globular cone (&', (%q)acn,) Over an ®-globular set be given

First, we establish a new m-globular set that fits our situation.

For any m € N and n € Ny, we first set

A

0" = {(--(GP)P2) )P |y e 0", B; SNy, j=1,2,...,m}.

Letk,m,n € N, <Q0> =00 and <Q1[1]> =0l

Define s°[1],°[1] : {Q'[1]) — <Q0> by

e (2B B, 0By A ARy
o O( 6P {( ((H00P) P, 0¢BI A AP

(- (30N)P) )P, 0EBLA APy,

(- (NP )P, O Br A AP

o O[)(( (6P )P) o= {
(- ((S30NP) P, 0€ B A ABy,

Now let <Q1[2]> = {("'((xa()?y)al)m)am ‘xay < <Q1[1]>7 o C No,
j=12,...,m, s°l](x) =°[1](y)}.
If (- ((x,0.5)))% € (0'[2]). we define $°[2],1°72]: (0'[2]) — (0°) by

(o (O[] ) M) )%, 0o A Aoy

o PRI (00,9)9) 7)) = {
(- (@E)™) ), 0@ A Aoy,

(- ([ E)™M) ), 0o A Aot

o OLJ(( (5, 0.9)) 7)) 1=
(- (@))%, 00 A Aoy,
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Suppose that we have (Q'[1]), s°[1], and °[] for every I = 1,2,...,k—1.
Let (Q'[K]) := {(--+ ((x,0,9)*1) ") | x € (Q'[i]), y € (Q'[J]), i+ ) =k
o, CNo, h=1,2,...,m, s°[i](x) =°[j](y)}.

I (- ((x,0,5)%) )% € (Q'[k]), we define s°[k],°[k] : (O'[k]) — (0°) by

(o (GOLONM) )%, O an A Ad;

. So[k]((...((x,(),y)()ﬂl)"')(xm) —
(- (L)) )%, 0 € 0o A+ A Oy

(- (@) ™M) )%, 0 E o Do Doy,

o Of((+((5,0.5)%) ")) 1= |
(- (O[] (x)) ) ) om 0 € oy A+ A Oy

Set (01 := J (Q'[]), 595, := (J sOk], and 19, := (J £O[k].
Assume that we have <Q’>, Sr(_Q;’ and t@; forevery r=1,2,..., n—1.

Let (0"[1]) := Q™.
Define s"~1[1],:""11] : (Q"[1]) — (0" 1) by

(o (G NP P, n=1 g Br A AP

o S I(( (6P = {
("'((lg_l(y»&)m)ﬁmv e Jlie Bl AABm

Coo (g NP )P, n—1 g Br A AP

o P OP) )P = {
(- (55 0P )P, =1 By AR,

Now let (0"[2]) := 1 {(-- ((x, p,y)*) )% | x,y € (0"[1]), &; C No,

j=12,...,m, sP[1]---s" 1] (x) = ¢[1]--- " 1] (y)}.

IF (- ((x,p.3)®) )% € (0" [2]), define "' [2],1" 2] : (0"[2]) — (0" by
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Let (Q"[k]) := pL-:JO{(~--
o, CNo, h=1,2,...

% € (Q"[k]), define s"~ L [k],r" L[k

, p<n—1ldo A---
m.op<n—leaA---
p=n—1&a -

p=n—leaA---

p<n—ld¢aA.
, p<n—lea -
p:n—1¢alA

p=n—lea -

, p<n—1do A---
, p<n—leo A---
p=n—1¢oA---

p=n—leaA---

, p<n—1l¢aA---
, p<n—leoA---
p=n—1¢a;A---
p=n—leaA---

143

A\ Oy
A\ Oy
A\ Oy
A\ Oy,

A\ Oy
A\ Oy
AY o
A\ Oy,
Suppose that we have (Q"[1]), s"~![1], and t"~![l] for every [ = 1,2,...,k— 1.
(e, p,)) )% [ x € (Q"[i]), y €(Q"[J]), i+ =k,
910 = [ ).
K (Q"K]) — (@"") by
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Set (0" 1= < 0"[K)). 151 = U 5" '[k], and (o) = Uk,

k=1 k=1
SO sl §" 71 n R
" Ay Q) {0) () (0)
By Proposition 3.1.3.1, we have that <QO> = <Q1> = - 2: <Q”> P
A

an m-globular set.
Then we construct the following recursive family.

For our convenience, we suppose g € Nj.
Consider < 1 ]> — {(2) | z€ &} and s9[1],19[1] : <é@[1]> — (Q') which are
defined by s7[1)((z)) := s%(2), and 19[1]((2)) := 1% (z) for z € &.
Nowlet (121) = U {(-+(((xpy))) ) [ vy € (4111).
sP[1](x) = P[] (y), @1, 02, ., 0 C No}.

If (- (((x, p,y)*1)%2) )0 <50[2]> then we define

o 572]: (£12)) > (07) by (+++(((x, p,y)@)%2) )
[ (0 P16 )%) )%, p<qon Bon e Aoty
) @@, p o mm)®)®) ) p<gem Aarhe Aoy
(- (I 5)))%) 7)o, PZaf o Ao Aoy
| (1] (x)) %)) ) om, P>qEo A0 Aoy,

o 1902): (8121 ) = (09) by (- (((x,p,))%) )%
[ (P TO)™)®) ), p<g@on Aon - - Ay
) G0 p s 0D ) ), p<g e Aarh Aoty
(- (1)) o)) ), PEP T TV N ARV
(- (7)) %) ), PEaea Dol Ay,

Suppose that we have <@@[k]>, s[k], and t9[k] for all k = 1,2,....,n— 1.

(o)

Let (&) == U {(-+(((x.p)®) %))  x e (811, ye (411]),

i+j=n, sP[i](x) = tP[j}(y), 01, 0,...,0, C No}.
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o 5] : (Eln]) = (07) by (- (((x, poy) ™)) )%
[ (0, P09 )o, p< g o Aty A At
) ) ) p< g A A Ady;
(- (1)) %) o, poadon Nyt Ay
| (@))% ), P gcanAar A A,

o 14ln): (Eln]) = (07) by (- ((x,p,y))%2) )%
[ (00, T 0)™)%2) ), p< gt o Ay A Aoty
) I ) ) ) p<q o Aan b Ady;
(- (0[] ) )92 Yo, poadon Dt A
(G @ %) ) % P>qgeEo NN Ay,

Let (£) ::n@1<<§"[n]>,s?£> ::nf:jls ], and 1 = Ut ).

. n ntl _on  _ n ntl
It remains to show that S10)5(8) = 5(8) = 510)!() a5

z'<1 Q>s'2;; = tzl 5 = t’Z Q>t'<1@;>1 for all n € Ny.
Assume that n € Ny and (--- (((x, p,y)*)%2) )% ¢ <éAa>
Then (-~ (((x, p,y)™)%) )% ¢ <(§>[k]> for some k € N\ {1}.

Note that the case kK = 1 is satisfied thanks to the globularity and self-duality

conditions of the cone.

We will only show s” ., s" 1 [k] = s"*[k] = s" ... £"T1[k] while the other part is sim-
Y (0) (0) P

ilarly argued.

Note that n < p and k = 2 imply 5%, (x) = r%(y),

—1 1
() = Syt o5 ) = sty s () = (),

and

n nan+1_ .p—1p n+l  .p—l.p n
1%5(x) = tQtQ s sé()_tQtQ - tg(y) % (y).

For k = 2, we see that s’ZQ>s”+1 2]((-+- (((a, p,b)®1)) ) %m)
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(135 (@), porrst () %)) ), p<nt+l €A Aoydn>p;
(s (@), p, s (B)2)%2) ), p<ntl€an Ay Fn>p;
(e8! (a)) ) ) )0, p<ntleoyA Aoy sn<p;
((srét?l(b))otl)OCZ)“')“m, p<nt+leaiA---Aa, Zn<p;
(185757 (@), o5 (B)) ) %2) )%, p<nt 1@ ol Aoy3n>p;
((s3555" (@), poslysst (B)) 1)) )%, p<nt1¢ouls-- Loy Fn> p;
(15! (a))®) %)), p<ntlgarl---Aoy3n<p;
(5 (b)) %2) )%, p<nt+l¢o Doy, Fn<p;
((tgtgjl(a))o“)°°2)“')°°"’7 p>n+lea ANy, dn<p;
(s (@) ) 2) ), pEntlea A Aoy Fn<p;
(515 (b)) )%2) ), PEntlg oA Doy 3n<p:
(5581571 ()))%2) ), pEntld¢mBAayFn<p.
(((t"QtZ?,“(a),p,t"Qté”%“(b))m)0‘2)"')“'", p<nEOA - Alyy;
(55" (@), pysysls™ (£))2) %) )%, p<ngon Do Ao
(((zgt;;,“(a))“l)“2)“')°‘m, pP>neEa A Ay
(((s’és’gl(b))“l)o‘2)"')°‘m, pZng oA Ay,
(@), Py (B) ™)) ™)%%,  p<n€ 0y A Ol
((53(a), P,y (B))™)%2) )%, p < 0y A 1O
(e a)) o)), PEnEw A e Aoty
((s75(B))*1)%2) )%, pzng o Aoy,
(((a,p,b)1)%2)™)%n).
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(- (355 (@), o] b))%y ), p<ntleo A Aty >n> p;
(- (55" (@) posysls™ () *)®) )%, p<ntleoq LAty Fn>p;
(- (s (b)) 1) %) ) o, p<ntleo---Aoy>n<p;
(- (875" (b)) 1)) )%, p<ntleagh---Noy, Fn<p;
(- (35 @), potgrst (8)) ) %) )%, p<nt1g¢oul- Ay dn>p;
) GG @) posprsT () ) %2) ), p<ntl g A Aoy Fn > p;
| @y e, p<ntlg oy Aoy3n< p:
(- (gt () ) o2) ) p<nt+lé¢on---Acy, Fn<p;
(- (5T (b)) ) )% pe>ntleay Aoy sn<p;
(- (575" (B)) 1)) )%, p>ntleo Aoy, Fn<p;
(- (5 (@) ) %2) ), pEn+lg¢agA-Ady >n< p;
| o (S5 (@) ™)) ), pzntlgog Aoy Fn<p.
[ (o (@), ) ™)) Yo, p<meon B Aoty
_ ) (- (((s3(a), P, s (£))*1)%2) )%, p<n@ oy A A Oy;
(- (((5(a)) ™) 2) ) om, pznea s Ady;
| (o (((55(2))%) %) ),y pengog - Ady,.
=s"[2]((--- (((a, p,b)™)%) ") %n).
It follows that s'Z Q>s"+1 2] =s"[2] = s'z Q>r"+1 2]
Suppose that s’z Q>s"+1[m] = 5"'[m] :s’<l Q>tn+1[m] holds forallm=1,...,k—1
Note that n < p and s”[i](x) = t”[j](y) imply
s"[i](x) = S’Z@szg; . -S’ZQT; sPli](x) = sy S’ZE; S’@l P1j1(y) = s"[j]1(»)
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(1 i) (a), poayg (B “) ), p<ntlEa A
(i), posy™  [(B) ) ), p<ntlE o A
(171 i) @))% ) ), p<nileoy i
(s /) (6)) ) )% p<ntleo i
(115" (@) p. " /(D)) ), p<ntlgay A
(s [1(a). p. sy [J)(6) ) ), p<nt 1 ay A
(13541 [ @) ) ), p<ntldon .
(s [7)(B) ) ) o p<ntl¢o .
(171} (a)) ) ) pentlea i
(st i) (@) ) ), pErtleala.
(s (B)) ), e e N
(s [71(B)) ) )%, Y P AL
(@31 @), po g™ ) (B))™)%) )%, p<ne oy A
(5™ i) (@), p. s 1B ™)) )%, p<n Ao
(300 (@) )02 ), p Je AN
(s [7)(B)) )2 ), v Al
(("i)(@), P 1 (B)))%2) ), p<n€ o Aer A

(("[i(@). p.s"L1(B)) ™))%, p<n o A oty

(e[} (a)))2) ), pEnEa A Doy

(" [5](B)) 1)) o pEngarie Doy

(((a.p,b)™)%)))
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Also S’ZQ>t”“[k]((~--(((a,p,b)“‘)“z)'“)“'")

(- ((egs" il (@), potgs T[] (0)4) )%, p<ntl€on
(- (" [i)(@), p,ss™ 1 [1(B))*) )%, p<ntl€oq A
(oo (s il (B)) ) ) o p<ntleo A
(o (s (B)) ™)), p<ntleo A
(- (i) @), page [ (0)*) )%, p<nt+ldon A
(- (st [i)(@), posir" ()4 )%, p<nt+ldon A
(o= (e il (a)) ) ) p<ntlé¢o A
(- (st D)) )%, p<ntlé¢onl..
(o (s (B)) ) )%, p>ntleo A
(o ((sgs™ [ (B)) ™))%, p=ntlecogA--
(o= (et 71(@)) ) )%, pzntlé¢a A
(- (s @) ) =), pzntlga A
(o= (e Hil(a), por e j)(B)1)%2) )%, p<n€m A
(- (((sFs"*il(@), p,ss™H1(B))M)%2) )%, p<ng oA
(oo (g i) (@) %) %)) o, p=neo.-
(- (s LA (B)) ™) 2) ) om, pzn¢go s
(- ((@"[i(a), p, t"[j1(B))*)*2) )%, p<ne oA Ady;
(- (("[i](a), p,s"[j1(£))*1)%2) )%, p<n@ouls--- oty
(- ("] (a)) ™) %2 ) )%, pZnea S Aoy

| o (G L1(B)) %) %) )%, p=ng oS Aoy

= s"[k] (- (((a, p,b)*1)%2) ) %)
ﬂMmmmmm%QﬂWH:ﬁM:%QWWH
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A0y, dn> p;
N0y B n> p;
ANty dn<p;
ANty Zn<p;
AUy, dn>p;
N0y B n> p;
ANty dn<p;
Aoy, Zn < p;
ANty dn<p;
ANy, Zn<p;
Aoy, d>n<p;

ANty Zn < p.

A Ol

A Oy
A\ Oy

Applying similar argument, we get t’Z Q>Sn+1 (k] = t"[k] = 1" . " TV [K].

(0)

Thus, § n-l-l n n+1 and 1" sn+1 —

(0)5(8) =5(2) =5(0) ()

As a consequence,

(0)512) =) = IZQ>IZ}>1 for all n € Ny.
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Oy
~_—
X

aS]
T
S
~_—
1
S -
Oy
~_—
(on
<

Define a family of partial operations o, : <

xopy (X, p,y).

For each a0 C Ny, define *g, : <(§"> — <c§"> by

(- ((Ge, ) ™)) )5 = (G- (((x, 2, y) ™) %) )5,

A

In particular, <é"[1]> 3 (x) > (xFe).
Then (<c§a > , (0p) peNgs (*a)achy,) s a self-dual globular-cone w-magma.
Define amap i : & — <£A"> by x — (x).

Suppose that f : & — (., (6p) peNgs (Fa)acny, ) is a morphism from the original

self-dual globular cone into another self-dual globular-cone ®-magma.

Define y': (& ) = . recursively by

(8101} 3 (5P Yo o (o (g0 )Y,
221) 5 (- () om,pu (- ) ) )
(- (o) yomsy o (r) 2y ) ) )™,

<

Next, we will show that, for each (--- (((x, p,y)*1)%2) )% <<§‘>

w (=) = (- ((wwopw)) ™) )™
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Note that if (-~ (((x, p,y)®)®)")¥ € <g> then x € <£[i]> and y € <£[j]>,
where i+ j = k for some k € N\ {1}.

If i = j = 1, then there exist a,b € & and Oy, ..., 0y, B1, ..., Pn C No such that

x=(---(a*) ") and y = (--- (b"B1)") ¥,
We see that w<(~-- (((C+ (Y yFam), p, (- (ysﬁﬁl)...)gﬁn))sl)...)sj

= (- (¢ iayymsy (- (roymy-ye) ) )
= (- (Wl au(( ) ™) )™

Suppose that this equation holds fori = 1 and j = 1,2,...,n— 1.
We have w((--- s (xs:al).-.);am%p,y)sl)...)s,)

= ( " (((( () )'")%‘*m@pw(y)fé‘ ) ) s

= (- (o eryemspme) ) 7)™

Now assume that the equation holds fori=1,2,...,/—1and j=1,2,...,n.

8[ ~ ;’;5 ’T‘St
we have w( (- ((x,p.)%) ")) = (- ((wow0)) ™) )™
Thus, y is a morphism of self-dual globular-cone ®-magmas satisfying f = yoi.

We see that y is the only such morphism.

Therefore, ((<c§a > ,(0p) peNy» (*a)ocny ) 1) is a free self-dual globular-cone -

magma over a self-dual globular cone. [

Starting from a globular-cone ®-magma, we can also get a free self-dual

globular-cone m-magma as in the following proposition.

Proposition 4.2.3.3. A free self-dual globular-cone ®-magma over a globular-cone ®-

magma exists.

Proof. Let a globular-cone m-magma ((&'), (5,) peN,) over an ®-globular set be given
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7l -
oo <L ) o oo
(@) e—(2") (@) e—""
IO t1 tn—l h
©) © (©) (©

—

Setting (Q") := <Q”>, s = s’ZQ>, and 1" = I?QW for every n € Ny, we obtain

(0) (0)
So— slf\ n-1 ST .
e <Q>/1\ (Q) o — (©Q
an ®-globular set (QY) 20: (Qh §1: 5:1 (on) = ---
L = "
w o ‘o ©)
Consider {&[1]) := {(-- (#)P) )P | y € (£), B; C No, j=1,2,...,m}.

— -

Letting g € N, we first define s7[1],79[1] : (&[1]) — (Q9) by

(o (57 )PP )P, g B Ao O

o s?11((--- B1yB2Y)\Bm =
W {<---<<<rg'g><y>>ﬁl>ﬁz>“>ﬁm, g€ Bibe BB

(- (1 0)P)B) ), @ By A AP

o (1)((-+- (6F)P) ")) o= {
(s

—
<
N~—
~—
=
N~—
=
S
~—
N——
=
_Q
m
=
>
>
=
3

o s92] - (&[2]) = (Q) by (-~ (((a, p,b)*1)%2) )%
(- (711 (x), py s () ")) )%, p<qgonLoph---Aay,
o (- ((E[1](x), p,t9[1] () ")) )%, p<gqe Aty A Aoy,
(- (G () ) %) )%, K- TAN o ARRAN o %
| o (@I () ™) %)) o, P>qEO AN Ay,
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( (- ((@[1](x), p,t9[1] () ") *2) )%, p<qE o Ao A--- Aoy,

) o (T, st U )H)™) )% p<g e fon - Aoy,

(- (@ 1](x)) %) %)) %, pP=qé¢ oo Ady;

[ o (G ) )%2) ), P>qEU AN Ay,
Suppose that we have m, s[k], and t9[k] for all k = 1,2,...,n— 1.

Let (81]) 1= U (o (wp)®)®) )] x € (&, € G,
i+j=n, sP[i](x) =t"[j](y), o1,00,...,0, CNo}.

—

If (- (((x, p,y)*1)%2) )% € (&[n]), then we define

o sn]: (Eln]) — (09) by (- (((a, p,b)™)%2) )%
(- (((s?]1] (x), P, T[] (3))*1)%2) )%, p<q @ a1 D0y A+ Ay
x (- (@[] (x), p, 22 [} () *1)%2) )%, p<g€r DA Ayy;
(-~ (((s7[f] () 31)%2) ) Fm, P>qE o Doy N Aoy,
(e (@[] (x)) %) 52) )0, P>gea; Ao Ay,

o 190n] - [ETA]) — Q) by (-~ (((a,p, ) )%2)")
(- (@] (x), P21 (¥))%1)%2) )%, p<q @ a1 Do A Aoy,
N (- (T[] (x), po T[] (9)) 1) %2) )%, p<gE DO A+ A Oy;
(- (4[] (x) ) %) *2) ) %m, P>qd o Doy A Aoy
| G (T ™) ), P>qgEa A0 A Aty

Let (&) := @1@ 1= n[:jlsqn], and 1L = ngltq[n].

By Proposition 4.2.3.2,
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is a globular cone.

—_— —

For all p € Ny, set (&) x, (&) = {(x,y) € (&) x (/é”\) | s2_(x) =2 (y)}.

—_—

Define a family of partial operations o, : (&) X, (&) = (&) by xo,y — (x, p,y).

—_—

In particular, for (&[1]) x, (&[1]) > (x?,y?), define x? 0, y° — x75,y°.

—_—

For each a0 C Ny, define ¢ : (&) — (&) by

(- ((Ge ) ™)) )5 i (G (((x, pyy) ™) %)) 5

—

Then ((&'),(0p) peNy, (*a)acny,) is a self-dual globular-cone ®-magma.

—

Define amap i: & — (&) by x — x2.

Suppose that f: & — (., (6p) peNgs (Fa)acny, ) is a morphism from the original

globular-cone ®-magma into another self-dual globular-cone m-magma.

—

Define y : (&) — ./ recursively by

= A A

(EID) 3 (- (P )™)Fom o (oo () ) ) Fom,
@ s (- ((c

@) Yrom (- (y;ﬁl )...);Bn>51>~-~>8r

..(x’?
(P sy () ) ) ),

By Proposition 4.2.3.2 again,  is a unique morphism of self-dual globular-cone

m-magmas satisfying f = yoi.

Therefore, (((éa\),(op) peNos (*a)acny),i) is a free self-dual globular-cone -

magma over a globular-cone ®-magma. ]
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Theorem 4.2.3.4. A free self-dual globular-cone ®-magma over a globular cone exists.

Proof. Let a globular cone over an ®-globular set be given

&

—

Defining (Q"), s’<LQ\>, and t<EQ\> similarly as in Proposition 4.2.3.2, we obtain an

1 el

T O — ©
o-globular set (Q°) §0: (oY = --- 1 Q") &= ---.
= et Ao i

() () <é>
Combining Proposition 4.2.1.3 with Proposition 4.2.3.2, we have

(&) =1(C+ (PP )Pn) |y € &, B CNo, j=1,2,....mp
Y U (G (poy )yl xe (8), ve (801).
i+j=n, sPli](x) =tP[j](y), o1,00,...,0, CNo}.

(%)

As before, we define a family of partial operations o), : <(§’ > Xp <<§’ > — <(§" >
by xopy = (x,p,y).

Moreover, for any o0 C Ny, define ¢, : <é~%> — <é%> by

(. .. (((x,p,y)al)az)“')“’" — (( .. (((x7p7y)0t1)ocz)-~~)ocm)oc.

Thus, (<£A > ; (0p) peNgs (*a)ach,) s a self-dual globular-cone w-magma.
It remains to check the universal factorization property.
Defineamapi: & — <c§"> by x — (x9).

Suppose that f : & — (A ,(6p) peNy, (Fa)acn,) is @ morphism from the original

globular cone into another self-dual globular-cone ®-magma.

Ref. code: 25595709031073ILP



156

Define y : <éAa > — . recursively by

(211 5 (- () )) o (- ()Y,

By Proposition 4.2.1.3 and Proposition 4.2.3.2, y is the unique morphism of
self-dual globular-cone ®m-magma which satisfies the property f = yoi.

As a consequence, ((<é%> ,(0p) peiys (*a)acny ), i) is a free self-dual globular-

cone W-magma over a globular cone. ]

As promised, we will prove that there exists an isomorphism between free

self-dual globular-cone ®-magma in both ways.

Theorem 4.2.3.5. A free self-dual globular-cone ®-magma over a free self-dual globu-
lar cone over a globular cone and a free self-dual globular-cone ®-magma over a free

globular-cone ®w-magma over a globular cone are isomorphic.

Proof. Let a globular cone over an ®-globular set be given

&

Combining Proposition 4.2.2.3 and Proposition 4.2.3.3, we get

(&) = {(-(OP)P2) )P |y e &, B SNy, j=1.2,....m}U

U U {(- (e poy)®) ) )| x € (Ei]), y € (E11)),
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It is easy to see that Yy is an isomorphism.

Therefore, free self-dual globular-cone ®m-magmas over both a self-dual globular

cone and a globular-cone ®-magma are isomorphic. [

4.3 Free Reflexive Self-Dual Globular-Cone ®-Magmas

The next section we will prove the existence of a free involutive globular ®-category.
Since a globular m®-category is a globular ®-magma which satisfies associativity and
unitality, we do not construct it directly; yet we apply the existence of a free self-
dual globular-cone ®w-magma and a free reflexive globular cone over a globular cone
to guarantee the existence of a free strict involutive globular-cone ®-category over a

globular cone.

Indeed, as we have already proved the existence of a free self-dual globular-
cone ®-magma over both a self-dual globular cone and a globular-cone ®-magma and
finally over a globular cone, we remain to add the final ingredient, which is reflexivity,

to our globular cone. So, instead of having a commutative (up to isomorphism) square,
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we will obtain a commutative (up to isomorphism) cube:

Reflexive
Reflexive Self-Dual
Self-Dual Globular-Cone
Globular Cones w-Magmas
Self-Dual Self-Dual
Globular C Globular-Cone
obular Cones ®-Magmas
Reflexive Reflexive
Globular Globular-Cone
Cones w-Magmas
Globular Globular-Cone
Cones w-Magmas

In the final subsection, we show that there exist certain equivalence rela-
tions making a reflexive self-dual globular-cone m-magma a strict involutive globular-

cone MW-category.

4.3.1 Free Reflexive Globular Cones

We begin this section by proving that a free reflexive globular cone over a globular cone

exists as shown in the following proposition.

Proposition 4.3.1.1. A free reflexive globular cone over a globular cone exists.

Proof. Let a globular cone over an m-globular set be given
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First of all, we need to form a new appropriate m-globular set.
For each n € N, we construct the following recursive families:
Q" = ¢,
(0" = {(x0)]xe0",
0' = Q'u(@"
(0 = {»nD)|yed'},
0* = Q*u(0"),

@)\ = Az plliee @™
Qn+1 — Qn+1U(Qn)n+l,

Then we define new sources and targets as follows: for all n € Ny,

A _ st (x), xeQ'tl;
: 0" — 0" is defined by s’é(x) s o)

Q1=

Y, x=(y,n), ye Q"

e

Q=

: 0" — Q" is defined by tg(x) = B
Y, x=(yn), ye Q"
s% s1Q s’é ! s’é
With these definitions, we obtain an ®-globularset 0° = Q! =--- &= Q" &
ooty g
Indeed, for every n € N and ¢ € Q"+,
' s’éﬁls’é(c), ceQmtl;
sg%g@ = § s5'b), c=(bn), beQn
| 4, c=((a,n—1),n),ac Q" .
[ —1n ntl.
50 Q(c)7 ce Q'
= q sy l(b), c=(bn), beQ"
| a, c=((a,n—1),n), ac Q" .
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Next, we establish the following recursive family:

160

gO = {(...,(1,(0,)6))'--)‘XGQO},
gl = {(7(27(17y)))|y€Q1}’
" = {(...(n+1,(n2)---) [z€ 0"},
& = syl e
n=0
ForeachnENo,deﬁnes- <5"—>Q"by
sT (x), X €&,
n k—1 ~k .
K o , = _._,k7 gio i € ,n<k,
PR 5 ) ( (y))y?
e x:("v(naz)"')7Z€Qn;
(((Wak) )l’l—l) x:(7<k,w))’W€Q_k70§k<l’l
1%5(x), x €&,
n k—1 oL
L ’ X = i, ), yeQY, n<k;
)= | 0 ») (oY) y Q
z, x=(..,(n2)-+), z€ Q"
(- (Wk),..),n—1), x=(..,(kw)---),we Q% 0<k<n.
For each m,n € Ny, we have the following equalities:
(
st’grl(x), XEE;
s s 1), x= (e () ), yE O b1 <y
sps () = q ), x=(.. n+1,z) ), z€ Q"
v, x:( "),VGQn;
| (D) )in=1), x= (... ), we @k 0<k<n.
(
8T (%), XEE;
n ... gk=1 = . Dk :
_ SHT 80 (y), x=(... ), yE€ O, n<k;
v, x=(... ), veQh
| (G nD),)n=1), x=(... ), we @k 0<k<n.
~ )
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and
s’ét(’}fl (x), XES;
n n+1 k—1 _ ~k .
SQlQ ZQ (y)7 x_("u(kay) )7y€Q7n+1<k,
S’ét;—j%x) = 9 S%(Z)v x=(...,(n+1,z)---), ZEQ_n_H;
v, x=(...,(n)--), veQy
\ ((---wD),..)n=1), x=(..,(kw)---),we 0" 0<k<n
(
87 (x), XEE&;
5575 0) x= (s (ky)-), ye O m< ks
¢! X:(..7(V,n)---),V€Qn;
((---wD),..),n=1), x=(..(k,w)---),weQF, 0<k<n.
= s;’-@(x).
It follows that s’és’gl = s%(x) = s’ét;‘;’l.
Arguing in a similar way, we get tgs’gl = fZ-» (g s tét(’?l.

This means that we obtain a globular cone

; n.on An+1 : N1l Td - — 41 11
Defining K 0" — Q" by x — (x,n) provides S6°l5 = Idy =155

Now we define 17 : Q"= Ebyx (..., (n+1,(n,x))---).

According to the reflexivity, we need to establish the following components:
L 0"xG Q"= {(x.y) € 0" x 0" | 8 (x) = s15(y) and £ (x) = 15y},
2. W6 — Q" xg Q" is defined by W (x) 1= (5% (x), 7% (x)),

3. A" Q" — Q" x Q" is defined by A" (x) := (x,x).
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n+k jon _ Antk qntk—=1_ _.n
Weneedtocheckthatn(g-a ot@é—A OLQ o OLQ.

These components induce the following equations:

l(’:(j-k ol%(x) = n?k((...,(n%— 1,(n,x))---))

o
= (s 1,002 ) (o 14 1, (1)) )
- ((---((x,n),...),n+k—1),(---((x,n),...),n+k—1)>
- A"+k<((--.((x,n),n+1),...),n+k—1))
— A"+’<oﬂgk—1(((---((x,n),n+1),...),n+k—2)>

k k—1
— A'T ol'é+ o---ol'é(x).

: . n+k on _ antk qntk—1_  _n
This yields w2 017 = A °l5 00l

That is, (&, (s )nen,) is a reflexive globular cone.
Next, we define i : & — & by x — x.

Assume that f: & = (%, (U)neny ): (1, )nen, ) is a morphism from the original

globular cone into another reflexive globular cone.

The only choice of morphism of reflexive globular cones holding its universal

factorization property is given by the following.

Ref. code: 25595709031073ILP



Define y : & — 2 recursively by, for each w € &, x € Q°, y € Q!

(x,0)

y

(»1)

((x,0),1)

(-5 (1,00,x))-)
(52, (1,9)) )

(s (1,(x,0)) )

(s (3,(2,2)) )
(. (2,0n1)))

(32, 2:((%,0), ). )

I 1 1 1 1

S AT - J

163

,and z € Qz,

f();

We will verify that y is a morphism of reflexive globular cones by induction.

First, it is obvious that, for any x € QV,

Next, for every x € 0!,

v((-.n(2,(1,x) 1)) = {

U (f(x)),
U0, (f), x=(10), ycQ’.

_ { up (v
(v

= (V).

(x)),
((3,0))), x=(»0),ye Q"

xeQh;

xe ol
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Then, for each x € Qz,

15 (f(x), xe Q%
V(- B2x))) = 2, (f0),  x=0(1),yeQh
[ 50,10, (f(2), x=((z,0),1),z€ Q°.
([ 2(w()). e Q¥
=\ WD), x=m1),yeoh
[ 5 (v(((z,0),1)), x=((z,0),1),z€ Q"

Suppose that y((...,(k+ 1, (k,x))--)) = 1, (y(x)) for all k =0,1,...,n— 1

and x € Ok

For z € 0", we have \p((...,(n-l— 1,(n,Z))-"))

(

U, (f(2)), z€ Q%

122[2_@1 (f(Zn—1>)a 4= (Zn—l,n— 1), Zn—1 € anl;

((---(z1,1),...),n—1), z1 € Q1;
((-++(20,0),...),n—1), z0 € 0°.

U 1p,(f(21)), 2
\ oo Wy e
= 1(y(2)).

Thus, Y is a unique morphism of reflexive globular cones such that f = yoi.

Hence, ((&,(V%)nen,),i) is a free reflexive globular cone over a globular cone.

]

4.3.2 Free Reflexive Self-Dual Globular Cones

This subsection is devoted to the proof the existence of a free reflexive self-dual globular

cone over a globular cone. We begin by its definition as follows.

Definition 4.3.2.1. A globular cone & is called a reflexive self-dual globular cone if
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it is a self-dual globular cone equipped with a family of identities U : Q" — &, for all

n € Ny, such that (&, (%) ,en,) is a reflexive globular cone.

Proposition 4.3.2.2. A free reflexive self-dual globular cone over a globular cone exists.

Proof. Let a globular cone over an m-globular set be given

First of all, we construct a new m-globular set that suits our situation.

For each m € N and n € Ny, we let

A

0" = {(---((P)P2)" )P |y 0" B; SNy, j=1,2,...,m}.

For all m,n € N and o, 03, ...,a, C Ny, we construct the recursive families:
0" %==0")
(@) = {(-(®0%)%) )™ |xe 0%,
o' = 0'u(Q"),
(0 = {(-((1)™)®=) )™ [ye Q'

(O™ = {(((zn)™)®2) )% | z€ 0",
Qn—l—l — Qn—}—lu(érz)n—i—l7

Next, we establish the new sources and targets in the new quiver as follows.
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Si’l

é(("

For every m € N, n € Ny, and (--- ((y*1)%2))% ¢ 01, we define

o x 0"l = 0" by

[ (oo (7)) )%,

(- ((@n)2) " )om,

(- ((sp))™) )%,
.((you)ocz)...)ocm) = ("'((té(y))al)'“)am’

(- (g ()*) )%,
(O = G () ) ),

yeQo"inga A

yeQ" neo A

y=(x,n),x € é”

yeo ™ nday A

yeQ" neay A

y=(x,n),x€ Q"

We now verify that these provide us an ®-globular set.

Assume that n € N and (--- ((y*1)%2) )% ¢ én+l.

Consider s’gls’é((. (™ )ocz)~~-)ocm)

166

A\ Oy
YA

I\ Oy

(67 S50))5)2))0, yeQ"hn—1ngd oy Ay A 2Oy
(s g ()0 ) o) ), yeQ@ n¢o Ao A Aoy dn—1;
(G s () r)o2) ") om, yeQ"n—1d¢aAopA---Ady > n;
(5 e ()0 )%2) ), YyEQ n—lneoy Adg A Ay,
(G- (s @)Pry By =)oy = (- (P1))Pe),m),z € QP

n—1¢61A-~-ABkA(XlAH-AO€m;

(G (g @))Py Py )y = (- (P )P, ),z € 07,

H—1EBI A AB AU A Oy

y= (- (mn=1)F))Bn),we 01,
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(sl 1)) %2) ), yEQ n—Tng¢a Aoy A Ay
((sly sty () 1)) )%, YEQH g oy Aty A Aty Sn—1;
(e )y, YEQH n—T¢mAtGA Ay n;
(e sy ()1 ) o, YEQT n— L€ Acp A Aoy
(- (s @By By y =)o,y = ((--- (1) )Be),m), 2 € O,

n—1&BI A AP AC A /Gy

(- (g @)Pry ) Byoayyom -y = ((--- (1) )Pe),m),z € O,
n—1 EBIA-'-AB]{A(MA”-AOC,”;

(o B BE) Yy = (e (Orm DB n), w e B
By the globularity condition of Q, we get s s = s ¢
y the globularity iti ngstQ SQQ
Applying a similar method, we obtain % 1s = 2711,
pplying o SQ 6 o
s9 sk Pl &
O CR & .
Thust 0= O = .4 O =1 lislan o-globular set.
19 0 i 1%
0 0 0 0

Next, we establish the following recursive family.

For every m € N, we define

= {( .- ((Wocl)ocz)~~-)ocm | WEE, t,0,...,0, C N()},
= L (s (1,(0,2)) - )4)%2) )% | x € 0°, oy, 00,
= (s (20(1,y)) - )M)%2) )% |y € O, oy, 00,

Next, define <5;”‘ =& 1 én,
n=0

ey Oy € No b,

0 C No},

= A (G 41, (1,2) - )™)®) ) | 2€ 0" a0, -, 0 © Nol,
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To obtain a globular cone, we define the following sources and targets.

For each k,m,n € Ny, SZ; . & — 0" is defined by (- ((x®1)%2))%m) s

(- (s (x)) 1) %)) %), x€&, ng o A A Ay
(- (((2h (x)) )0 ) ) o) XEE, NEU AU\ Oy,
(- ((S'é' ' 'S]‘Qfl(y))“‘)”')o""a 2= (o (- (e )Py )Py ),
ye O  k>n ne oy - A
(- ((%'"fgl(y))“‘)"')o‘m, x= (oo (- (e y)Pry=)Pre)),

yEOK k>n, n€ay Aty
(oo (G (o ( RPry )Py, ) — 1)1y, ze 0k I>n
2= (s (o (=1, (s (o (U 2)Pry )P i)y et ),
Similarly, 1" : & — Q" is defined by (--- ((x®)%2)")%)

(-e- (((t(’;(x))“l)o‘z)"‘)“m), xe& ngar Ao N Ay
(- (s (x))21) %)) %), XEE, nEo At A A Oy
(- ((%'"fgl(y))al)'")“mv 2= (s (oo (ki y)Pry )Py,
ye O k>n n¢ oy A A Oy;
(- ((S'é'"Sgl(y))al)'")o""a x= (o (oo (i, y)Bry )Py,
yeOk k>n,neog Aoy
oo (o (o (o R)Pry= )P, ) m— 1)1 o, zeQk I>n
\ 2= (s (=1, Gy (oo (e )Py By =y = )
We will verify that

is a globular cone.
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For each k,m,n € No, y € 0, and z € OF, s’és’gl (- ((x01)02) ) %m)

[ (o (s () )22y om), xEE nt1d oy A Aoy Fn
(- (st () )y o)), XEE NF1 oA Aoy 3 n;
(+o- (((tés’é’a“(x))“l)0‘2)"')“’"), xe& n+tleoyA---Noy, Bn;
(~-~(((t£’2t(}+1(x))°‘1)°°2) ')o‘m), xe& n+leaA---Ad,, dn;

o (g S ™)), = (e (o ()P )P, v e
k>nn+lédog AN Aay, Fn;

Gty Oy x= (o (o (k)P )Py, y e B,
k>nn+lédog A Aay, dn;

(o (g™ o1 0))) ), 1= (o (o (k)P )Py, y e B,
k>n,n+leoAN---Aoy, B n

(o ((egaz™ 17 0)) ) )%, = (o (o (k)P )Py, y e B,

k>n,n+l1eo; AN Aoy, dn;
o (G (oo (kB )Pme), ) — 2yt ) Y2, z€ Q4 1>n

\ 5= (o (o (=2 (o (- ()P ™))y on-2y =),
[ (st () ) ) )), xEE nga Ao Ay
(- (((t(}(x))“l)“z)“')"‘m), XEE, nEd Ao A A Oyy;
O 5= (oo (o ()P )Py ),
B yeOQk k>n n¢og A A,
]t ey e, 5= (oo (o ()PP ) ),

yeék, k>n,nea; A Ay,
(o (G (o (k) By )P ) on = 1Y) 7 )P, ze 0 1>n
\ 2= (s (oo (=1, o (o (e )Py Py )0y =)o) ),
= (o () ) ),

It follows that s’ = .
0 & &
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‘i 1 NGy
Similarly, we see that s’ét;g” ((...((xotl)ocz) )& )_

[ (o (™ (o) )y, cebntldmA - Aay,Fn
(-e- (((s’és’é’j'l(x))“l)az)“')o‘m), xe& n+l1¢ar AN Aoy, dn;
(.- (((tét’é’fl(x))“‘)0‘2)"')0""), xe&, ntleaN---Ad, Zn;
(--- (((tés’;a“(x))o‘l)o‘2)"')°‘m), xe& n+lcarN--- Aoy, dn;

(s ot OB, = (o ()P )P, y e 6
k>nn+ledog A Aay, Bn;

) Gt = (o (PP ),y 8
k>nn+lédog A Aady, dn;

(s NP, = G (G (PP, y e 8
k>n,n+leoAN---Aoy, B n

(S O, x= (e (G (P, y e 8

k>n,n+leo; A Aoy, dn;
o (G (e (kB )Pme) ) — 2yt ) b2, zehI>n

\ 2= (o (o (=2, (o (G ()P )Py ) ),
[ (- () ™) )y, €&, g o Do Aoy
(- ({3 (x))*)%2) ) Om) XEE, NEU Ny A+ Ay
(o (sl 5 ) ), %= (s (- (k)P )P,
B yeOK k>nng oy Aoy
]t ey e, x= (oo (o ()PP,

yEOK k>n nEay Aoy
o (G (G ()PP, ) = 1))yt ze 0k I>n
2= (o (o =1, (e (R, z) By Py oy =yl )=,
S%(("'((Xal)az)"')am)-

This implies that 5721 = .
0& &
Using a similar argument, we get ts"H 1 = ¢t = 121,

Then we have a globular cone as promised.
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Now define 1% - O — O by (- (%)) )0 (- (((x,m) %) 02) ),
It is easy to see that s; oV =1dz, =12 o'k for every n € Ny.
0 0 Q 0 0

Then, for all n € Ny, we define 1;’5 : é" — (§’ by
(- ()2 )5 (o (A 1 (o () ™) %2) ) %) 2) )2
Due to the reflexivity, we first construct the following components:

L 0" % Q"= {(xy) €Q"x 0" | s(x) =5

2. W& — Q" xg Q" is defined by n’éla(x) = (s’é%(x),t;%(x)),

O

3. A" 0" — 0" xg Q" is defined by A" (x) := (x,x).

We need to check that (1’;) neN, are identity maps in the globular cone.

| ntk m
Cons1derné-j' Olz;,((“-((xo“)“?) ) )

:nrg—k(('”’(n_|_1’(..,(((n7x>(xl)az)-..)am)@>...)®)
= (S;’;k (...,(n—|— 1,(---(((n7x)0°1)Oﬂz)m)ocm)@)u )@)’

I
s
—~
Fo
—
—
—~
=
S
N—
2
N—
3
)
Bt
N7
53
3
N
S
_l’_
=
|
—
N—
Q

= AR o (e n)@)02) )% ) n 4k —1)2)
:A’H"k l”;"k_l oot (- ORLVANLAN
O oo (- ((x%)2) ) o)
This means that 75 % ot = APk o k1. o2,
& & 0 0
For each o0 C Ny, define >T<OL:<5;"—>é§by

(o ()% ) (oo (6)%) )0

Hence, (éx" , (Ra) N » (1’; JneN,) is a reflexive self-dual globular cone.

Next, define i : & — é;"byxr—nc@.
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Suppose that f': & = (Z, (*a)acNy, (U )neNy )s (1, )neN, ) is @ morphism from

the original globular cone into another reflexive self-dual globular cone.

The only choice of morphism of reflexive self-dual globular cones holding its

universal factorization property is given by the following.
Letk,m,n €N, 0u1,...,0m,B1,-.,Bn, V1, ... CNo,we &, xe Q°, andy € Q.
Define y : & — 2 recursively by
o (- ((™)%2)7) % (- (((f(x))Tor) o) ) o,
o (o (o Py )P 0) o)) iy (o (1, (o ((F(x))Br) ) b)) )
o (- (O™)%2)) o (- (((FB))er) o) ) om,
o (o (oGP )P 1)) )% s (o (1 (- ((F ) ) ) m) ) Pon ) ),

o (o (((- (((--- (M) )Y, 0)Br)~)Bn 1oy )om
(o (g (€~ (g (G- ((F )™)Y k) )Py ) b )y )=o) o,

o (- ((wo)®2) )% i (o (((f(w)) ™) 7e2) )" and in particular, w? — f(w),

° (...((___7(2,(]’(...(((...(xYl)"')Yk7O)ﬁl)"')Bn))...)al)"')am,_>
(- (U (- (aQ,, (- ((F Q) ) ) ) ) B ) ) ) o ) ) o,

We will verify that y is a morphism of reflexive self-dual globular cones.
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First of all, it is easy to see that, for each w € &,

Wl () 7)) = () ) )y e
= (o () ) )y,

Then, for all (---((..., (1, (0,(--- (xP1)=)Br)) ... )@)=yom ¢ £0 we have

W (o (1,0, (- (aPry )Py oy yom)
= (...((10%«...((f(x))*ﬁl)"')*Bn))*(xl)"')*txm
= (- (G W(( - Py )Py y e,

Next, for any (--- ((...,(2,(1,(--- (B1))Br)) .. )y =) € £1 we get

W (o (2, (1, (- (Br) 7 )B)) o)) =)o)
(- (G ((F ) Br) ) o)y ren ) ) Fom, yeoh
=9 (G (g (G- ()Y 1)) 1)) By ) Bn ) ) ron ) ) Ham,
y=((--(x"))%,0), x € Q°.
= (- (G (W((--- OPr) )Pryyon) ) om,
Suppose that W( (- ((..., (h+1,(h,z)) - )%1)7)%n) =
(- (" (w(z)) ) ") en holds for every h=0,1,...,k— 1 and z € &".

For x € ék, by the hypothesis, we also obtain

W (o G (- (P))) o))
_ { (W ()P myen)yom, € 05
(O () MYy 8y Yo,z (G5
= (O () e e,

This means that y is a unique morphism of reflexive self-dual globular cones

such that f =yoi.

Therefore, ((éx" s (o) acNy» (1’;;9)”61\;0), i) is a free reflexive self-dual globular cone

over a globular cone. O

Ref. code: 25595709031073ILP



174

4.3.3 Free Reflexive Globular-Cone w-Magmas

Now we turn our attention to the construction of a free reflexive globular-cone ®-magma

over a globular cone.

Definition 4.3.3.1. A globular cone & is called a reflexive globular-cone ®-magma if
itis a globular-cone ®-magma equipped with a family of identities U, : Q" — &, for all

n € Ny, such that (&, (%) ,en,) is a reflexive globular cone.

Proposition 4.3.3.2. A free reflexive globular-cone ®-magma over a globular cone ex-

ists.

Proof. Let a globular cone over an m-globular set be given

&

First of all, we introduce a construction of a new m-globular set.
Set (Q°) := @, (<Q_0>)l :={(x,0) | x€ (Q°)}, and (Q'[1]) := Q' U (<Q0>)1.
Define s°[1] : (Q'[1]) — (Q°) by

sH), yeoh
X, y=(x,0), xe (0°).

) =

and also 1] : (Q'[1]) — (Q") by

(), yeoh
X, y=(x,0), x€ (Q").

1)) :=

Ref. code: 25595709031073ILP



175

Define 5°(2] : (Q'[2]) — (Q°) by 5°[2]((x,0.y)) = s"[1](v)
and 1°[2] : (0'[2]) — (Q°) by 1°[2]((x,0,)) = r°[1](x).
Suppose that we have (Q'[1]), s°[/], and °[/] foreach I = 1,2,... . k— 1
Let (Q'[k]) :== {(x,0,y) | x€ (Q'[i]) ,y € (Q'[j]) i+ j =k, s°[i] (x) =°[j] () }-
If (x,0.5) € (Q'[K]). we define s”[k].10[k] : (0" [k]) — (0") by
sU[k] ((x,0,y)) := O[j]( ) and 1°[k] ((x,0,y)) :=°[i] ().
Set (0') = U (Q'[). s @»:=@swLmd%3::Gﬂwy
Assume that we have (0™), ST >1 and 177 )1 foreverym=1,2,....n— 1.
Let (Q"[1]) := Q"W ((0""))" and 5" '[1],r"~"[1] : (Q"[1]) — (0"~ '[1]) be

defined by
s5ly), yeon
R[S { ¢

e y:(x,n),x€<Q_”_l>.

tnwu@y{féWw7y€Qﬁ
b y:(x,n),x€<Q”_1>.

Let (0"[2]) ¢=ZLZJ;{(x,p,y> |,y € (Q"(1]) 55" [1](x) =25 -1 [1] ()}
If (x, p,y) € (Q"[2]), then we define s"'[2],1"~ 2] : (0"[2]) — (0" ") by

" 1), p,s* 1)), n—1>p;
"), n—1=p.

o S"2)((x,p.y)) = {

n—1 x), p, n—1 , n— :
,WIQKQWJD:{<t 1@.pa" 10), n=1>p
"] (x), n—1=p.
Suppose that we have (Q"[l]), s"~[l], and "~ '[] for each | = 1,2,... .k — 1
Let (Q"[k]) == pL':JO{(x>p7y) |xe(Q"]), ye(Q"[j]), i+j=k

sPsPHL i) (x) = PP 1] (7))

If (x,p,y) € <Q"[k]>, then we define s" ! [k]," [k <Qn > N <Qn71> by
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("), p,s" ), n—1>p

"), n—1=p.

o s"HK((x,p.y)) = {

(] (), pt" M B)), m=1>p;
" i (x), n—1=p.

o " K((x,p,y) = {

Set (0" == J <n[psz; @ []amﬂ@;?:GWIRL

— k=1
SO Sl- s"fl §
o @ (o) @  _ 9
By Proposition 3.1.2.2, we get that <Q0> = <Q1> == <Q”> & .- isan
o o T o

o-globular set.

Next, we establish the following recursive family:

& = {(..,(1,0,x) ) | x€ (")},
& = {2, Ly) ) [y e (BN},

& = {(..,(n+1,(n,2)-) | z€ (M},

Let (£[1]) ==& 1Y &
n=0
For convenience, let us assume that g € N.

Define s7[1],17[1] : (£[1]) — (09) by

s (x), X €&
e 00k Tl k) )y €0, a<k
% x:("'v(qu)"')7Z€<Q_q>;
L ((---wk),...),qg—1), x=(...,(k,w)---), wE<Qk>, 0<k<g.
[ 19x), XEE
91 (x) = oy 1oy ) x= (s ty) o), y€(05), g <k
% xz("'?(%z)"')7Z€<Qq>;
((---wk),...),qg—1), x=(...,(kyw)---), we<Qk>7 0<k<gq.
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Now set (£]2]) 1= p@o{(x,p,y) xy € (&), sP[1(x) = 2 [1]()}.

If (x, p,y) € (£[2]), then we define s9[2],19[2] : (£[2]) — (Q7) by

(s9[1](x), p,s4[1}(¥)), q> p;
s91}(), q<p.

o s/[2]((x,p,y)) = {

@[1](x), p,t[1](y)), q> p;

141] (x), q < p-

o 12((x,p,y)) = {

Suppose that we have (£[k]), s/[k], and t9[k] forall k=1,2,...,n— 1.
Let (&n]) ZZEO{()C,p,y) |xe (&), ye(EL)]), i+Jj=n, sl (x) =t"[j](»)}.

If (x, p,y) € (&[n]), then we define s9[n],19[n] : (£[n]) — (Q7) by

s10il(x), p,s|j ; :
o Tl((5.p3)) = { U0 4
s171(), q < p.
° tq[n]((x,p,y)) = { (tq.[i](x)’p’tq[j](y)% q>p;
14i)(x), q<p.
Let <c5_"> — nL;Jl <é~_0[n]>, S?@ = nglsq[n], and IZ@ = ’gl;q[n]_
We will show show that s/ 5, s'é;; = g, =5 Q>t21;;>1 and t,, s’é}; =1lp =

" 1"t for all n € N,.
(0)'(#) ’
Suppose that n € Ng and (x, p,y) € (&).

Then (x, p,y) € (&[k]) for some k € N.
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For the case k = 1, we have the following equalities:

s’@s”“ [1](x)
s (x), x€&;
s’z >s'<l+; s’z i( Y,  x=(..,(ky)), ye (0", n+1<k;
= 1 %@ x=(.,(n+1,2)-), z€(Q"");
Y, x=(oy(ny)--), ve (0"
| () )in=1), x= (s (kow)--), we (@F), 0<k<n.
(520, XEE&,
_ ) ey a0, x= (b)), y € (Q), n <k
v, x= (oo, (my)-), ve (QM);
| (WD), ) =1), x=(..,(kw)--), we (0, 0<k<n.

(0
( S, X€&
tl{bf@; --t’@‘(y), x= (., (ky)+), y€(Q"), n+1<k;
=\ a®@: x=(..,(n+1,2)-), z€ (O");
v, x= (o (mv) o), ve (0
| (D), )=, x= (o (kw)-o), we (0F), 0<k <.
(5.0, XEE
) Slgy gy O x= (.., (ky)--), y€(O"), n<k
v, x:(...,(n,v)---),v€<Q”>;
| ((---wm1),...),n—1), x:(...,(k,w)-~-),w€<Qk>,0§k<n.
= s"[1](x)
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Suppose that S’ZQ>Sn+1 [m] = s"[m] = s’ZQ.>t”+1 [m] form=1,2,...,k—1.

Note that n < p and s”[i](x) = ¢P[j](y) imply
110 = gy 575y SHI0) = g s 11 0) = "0

It follows from assumption that

oy K ((py) = {

sy ), n<p
19195 s ] (X),p>S”Q>S”“[J](y)), n>p
sty A0, n<p
) {cﬂmwmxwmw,n>p
s"[j](), n<p
= s"[k((xp,y))
and also
[ (2 (i), p, Sy [))), 1> py
S'ZQV"“ [(xpy) = she i), n=p;
\ s’é,t’”rl [{](x), n<p.
[ 5" 10T LN, 7> p
— S’Z@f”“ /1) n=p
\ s’<’Q>t”+1[i](x), n<p
_ {<wmuxnwmun,n>m
s"[J](), n<p.
= "k((x.p.y))
This yields s’z Q>s"+1 (k] = s"[k] = S’Z Q>rn+1 [k] and so s’Z Q>s'@;; = s'z 5= S’Z Q>r'<1;:>1.

Applying a similar areument, we obtain ¢ ., s"tl = = _ #t]1
PPyIng & @)% = &) T o) (e)

As a consequence,
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is a globular cone.

For all p € Ny, set
(8) % (8) = {(50) € () X (8) | 5y () =105 )

Define a family of partial operations o, : (&) X , (&) = (&) by x0,y+— (x, p, ).
Now we define L’ZQ_> : (Q") = (Q™1) by x+— (x,n) for every n € No.
Then define 1’2‘95) :(Q") = (&) by x> (..., (n+1,(n,x))---) for all n € Ny.
Next, we establish the following components:
L (@) %G (@) = {(53) € (Q7) < (8") 5] (1) =] ) and 1y () =17 ),
2. n’Z(§> (&) = (0" xG {Q") is defined by nzg> ). = (S’Z<§> (x),t’<159> (%),

3. A" {Q") — (Q") xg (Q") is defined by A" (x) := (x,x).
These components induce the following equations:
n+k

n<g>ol'<lg,>(x) = TLJ(l;l; -

This means that 'tk o1 | = ol oo,
(&) (&) (0) (2)
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Hence, ({(£),(op) peNy, (L’Z (5>) peN,) is a reflexive globular-cone @-magma.
Next, we define i : & — (&) by x — x.

Assume that f: & — (%, () peny, (Vp)neN, ) (t’éﬂ)neNo) is a morphism from

the original globular cone into another reflexive globular-cone ®-magma.

The only choice of morphism of reflexive globular-cone m-magmas holding its

universal factorization property is given by the following.

Define y : (€) — Z recursively by, for each u,v,w € &, x,z€ Q°, and y € Q',

x = f),
(£,0) — 19, (F(x),

y = f0),
01~ 15, (fO),
((%,0),1) = 19,19, (f(x),

W f(w),
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((w,p,v),q,w) = (f(w)6,f(v))ogf(w),
(,p,(v,q,w)) = f(u)op(f(v)6af(w)),

First, it is easy to see that, for each x € <QO>,
W((a (1,(0,2)) ) =5 (F(x) = 15 (W(x)).

Next, for every x € 0!,

AG xeQ!:
w((...,2,(1,x)---)) = {P@(f( ) cQ

Ul (F0), x=(5,0), ye Q"
B {t;,;(w(x)), xeQl;
(W((»,0)), x=(»0),yeQ".
= L WE).

2

Suppose that y((...,(k+ 1, (k,x))--)) =, (y(x)) forall k =0,1,...,n— 1
and x € <Qk>

For z € <Q”>, we have W((...,(lH— 1,(11,2))--'))

1, (f(2)), 2&,0%

1&“&;} (f(zn-1)), z=(za-1,n—1), zn—1 € anl;

U1, (fz1), z=((-(z1,1),...),n—1), z1 € O
\ U1, (f(20), 2= ((---(20,0),...),n=1), z0 € Q°.
= p(¥(2)).

Assume that y((w, p, (..., (k+1,(k,x))---))) =wW)d,¥((..., (k+1,(k,x)) )
forallk=1,2,...,n—1and x € (QF).
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For z € (Q"), we have y(w,p,(...,(n+1,(n,2))--))

;

Sw)8pi(f(2), z€ Q"

FONSU (F(z1))y 2= (znotin—1), 2y € Q"1

f(W)aplgn%"”llQ@(f@l))a 1= (("'(Zlal)a"')?n_ 1)7 71 € Ql;
e, (o)) 2= (- (20,0),. )= 1), 20 € Q.
= Y(w)opim(v(z)).

Assume that W(((...,(I+1,(Ly) ), p, (..., (k+1,(k,x))--+))) =
V(. T+ 1L Ly) ) epw((-. .y (k+1,(k,x))--+)) forall = 1,2,...,m—1,
k=1,2,...,n,y€ (0" andx € (O").

Foreachne N, x € <Q”> and z € <Qm> we have

V((...,(m+1,(m,2))-),p, (... (n+1,(n,x))--))

.

U (f(2))8pW(x), z€ 0™

lg’lgél(f&m—l»(’spw{x): 4= (Zm—lam_ 1)7 Im—1 € Qm_]§
U1 (F)opw(x), 2= ((+(21,1),...),m—1), z1 € Q'
19 (F20))3pWw(x), 2= ((++(20,0),..),m— 1), 20 € Q°.

\

= 15(¥(2)opW(x).

Next, we will verify that y((x, p,y)) = y(x)8,y(y) for every (x,p,y) € (&).

Notice that if (x, p,y) € (&), then x € (£][i]) and y € (£[j]), where i+ j =k
for some k € N\ {1}.

Suppose that this equality holds fori =1and j=1,...,f — 1 for some t € N.

We have y((x,p,y)) = W((x))8,¥(y).

Assume that the equation holds fori =1,...,5s — 1 and j € N for some s € N.

We have y((x,p,y)) = W(x)8,9(y).

This means that y((x, p,y)) = W(x)8,y(y) for each (x, p,y) € (&).
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As aresult, y is a unique morphism of reflexive globular-cone m-magmas satis-
fying f =yoi.
Therefore, (((&),(op) peny, (1’<’ (95)) peNy)-i) is a free reflexive globular-cone -

magma over a globular cone. [

4.3.4 Free Reflexive Self-Dual Globular-Cone w-Magmas

Definition 4.3.4.1. A globular cone & is called a reflexive self-dual globular-cone ®-
magma if it is a self-dual globular-cone ®w-magma equipped with a family of identities

U : Q" — &, for all n € Ny, such that (&, (1) ,en, ) is a reflexive globular cone.

Combining Proposition 4.3.2.2 with Proposition 4.3.3.2, we can easily have
a free reflexive self-dual globular-cone ®w-magma over a globular cone and then we
will utilize this result to obtain a free strict involutive globular-cone w-category over a

globular cone.

Proposition 4.3.4.2. A free reflexive self-dual globular ®-magma over a globular cone

exists.

Proof. Let a globular cone over an m-globular set be given

For each m € N and n € Ny, we first set

A

0" = {(---(OP)P2y )P |y e 0", B; C Ny, j=1,2,...,m}.
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Then we establish a new ®-globular set as follows: <é0> =00,

—

(<éo>)] = {(- (x,0)P)" )P | x e <é0>, B C Ny, j=1,2,...,m}.

—

(- ((HOP) )P, yeQl, 0B A AP
Biy)Bn yeQl, 0€B A AR

(- (xP1) )P, y=(x,0), x € <Q*o>.

: By )P,y 0, 0¢Bi A APus
o O[(C-OP) )P = (o (GNP P, y e 0EBIA - ABw;
(-« (xBr)y " )Bm, V= (0l T <é°>.

Now let (0! [2]) := {(-+-((x,0.9)*)") | x.y € (0'[1]), oy S No,
=20 e TO () =1 (M5

If (- ((x,0,y)%) )% € <él [2]>, we define °[2],1°[2] : <é1 [2]> = <é°> by

(o (O[] ) M) )%, O o A Ao
(- (@[] )*M) )%, 0€m A - Ao,

(- ([ E)™H) )%, 0o A Aot

s tO[Z](('"((xa()?y)al)m)a’”) b=
(o ()@Y )™, 0€ 0 Ao Aoty

Suppose that we have <é1 [1]>, sO1], and (°1] for every [ = 1,2,... .k — 1.

Let (0'K]) :={(-++((x.0,)) )% | x e (Q'fil), y € (O'[]]) i+ =k
}.

If (- (x,0,9)%) )% € (O'[K] ), we define s°[k],1°[K] : {O'[K]) — () by

~—

o CNo, h=1,2,...,m, s°[i)(x) = 1°[j] (v

(o (GOLN™M) )%, O an A Ad;

o SR (- (0,9 ) 7)) 1= {
(- (@)™ )™, 0 A Aa,
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(O ()% ) )0 Ao Aty
o O (1.0.5)%) o) ;_{ e 00 oo

(- (O] (x)) ) )%, 0 € Oty A+ L\ Oy
AN\ . 0 /Al O o O and 0 = L) O
Set <Q>.— U<Q [k]>, (o) U5, dt<Q> UK

k=1

Assume that we have (Q"), s, .\, and #/ | forevery r=1,2,....n.
(@ (9

n+1

Let <én+l[1]> — Qn+l L <<én >
Define s"[1],7"[1] : <é"+1[1]> — <én> by
(- ()P )P, ye Q™ ngBrA- AP

ST P )P) =4 o (pO)P) )P, ye Q™ ne o ABw;
()P, y=(xn), xe(0").
(- (OB B, y e Q™ ng B A AP
(G OP) )P = 0 ()P B, y e @ nEBL A DB
(@B y=(m), 2 (0.

Now let (67+1[2)) i= U (- ((x,py)™)" ) |y € (074111,
p=0
o; CNo, j=1,2,...,m, sP[1]---s"[1](x) =¢P[1]---£"[1] () }.

Define 5" [2],1"[2] : <é"+1[2]> . <én> by

(- ("1, p s [1G)™) )%, p<n o A Aoy
] @) S ), p<nea A Ay
(- () )%, p=ndou A A
(o () ) )%, p=neo A Lay,

(- (@[], " [HE)*) )% p<ngon - Aoy
_ ) G (GG ps ™))% p <o L A Ot
(- (@[] (x)) %)) p=ng oA Ady;
(- (s [1](x)) 1) ), p=nco Aty

Ref. code: 25595709031073ILP



% oy,

O

187
Suppose that we have <é”+1[l]>, s"[l], and ¢"[l] for every I = 1,2,...,k—1.
Let <é”+1[k]> = 60{(- (4 py)®) ) | x e (0, y e (O J),
=
i+j=k op CNo, h=12,....m, sPli]--s"[i} (x) =27 [j]---1"[j](v) }-

Define 5" [k], 7" [k] : <é"+1[k]> - <én> by

(o (@, P TIONS) ), p<n oA Aoty

_ ) C(@R@), ) M) ) p<nEm D Day;

(- (")) ), pndon A Ao

| (@), s
PR (6 pr) @) )o)

[ (@@, O)S) ), p<ng oy Do Do

] @R p ), p<newm b Aaw

(- () ) ), Ay o |

| (@), p=n€oy A A,

Set <QA"+1> = <Q”+1[k]>, s’%Q> = kgls” k], and tZQ> = kglt”[k].

k=1
It follows from Proposition 3.1.2.2 that we get an ®-globular set

W e e
For every m € N, we define
=l (()™)) [ we &, ar,00,...., 0 © No),
= G (o (1,00 )™ ™))% [ x e (), 0,00, 0 © Nob,
= (@1 ™)) ) [y e ('), 0,0, 0 © Nob,

Ref. code: 25595709031073ILP



188

Now we establish the following inductive family.

Let (&[1]) = [-joén.

For any g € Ny, define s9[1] : <6;"[1]> — <éq> by (--- ((xa')az)m)am> =

(- (s (x)) %) %2) ) %), PSRN K A IWAN 5 WARRRAN A
(- (£ (x)) ) %2) ) %), XE€EE, geU Do N Aty
(- ((Sq<é> i .S]ZQ:B ())%) )%, 1= (s (oo (R, y)Pry )Py,
yE€ <é">, k>q, g on- Doy
( ((tZQ> ..tlzéi(y))‘“) % x= (e (o ()P )Pme) )
yE <ék>, k>q,qgea) A Aoy,;
(o (o (G (@R )P, g =)y, ze(GF) kg
2= (o (C(@= 1, (oo (kg 2)Pry) Py oymny -y gt )
Similarly, define #9[1] : <<§[1]> — <Qq> by (--- ((x01)%2)7)%m)
(- [ PR XEE, g U Do AN Aty
(- (((sF (x)) %) %2) ) %), X€EE, g DA Aty
(o (@ 2 () ) )%, 1= (s (oo (i, y)Pry )Py,
@) {9
y€E <é">, k>q, g o A Ay,
(o (65 5y -8 () ) ) 1= (s (oo (R, y)Pry )Py,
(9) "(9)
yE <ék>, k>q,qgea) A Aoy,;
(o (o (G (@R )P, g =)yt ze (0F) k=g
2= (s (o (g = 15 (s (oo (U 2)Pry )Py ppy =) gy =),
Suppose that we have <d§xa [k]>, s[k], and t9[k] for all k = 1,2,. .., n—1.
Let (8] = U {C(tp)) ) | ve (81) v € (811)
sP[i](x) = P [j](), o € No, k=1,2,...,m}.

~

If (- (((x, p,y)21)%2) )% € <<§”[n]>, then we define

o stn] - (Zln]) = (01) by (- (((x,py)) %))
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[ (). )™)=) )™, p<gd o Al Ay

) @))%, p<geon Aot Doy
(o (17022 ), P qd o hon e Ady:

| () )% ), PEqec Al Aay,

o 190 (Ela] ) = (07) by (- (3, py) %) %))

[ ()P 0)™)™) ), p<gd oAl Ay

) 0P HION ™)), p<geon Acn i Aoy
(- (@))% %)), P qd o fon e Aoy

(- (L1002 ), P> e Al - Ay,

Let <d§’> = G <<§[n]>, szé§> = nglsq[n], and t‘<7(§> = |J t4n].

By Proposition 4.3.2.2 and Proposition 4.3.3.2, we obtain a new globular cone

Then, for each o0 C Ny, we define % : <

S
~_—
.
S

S\
~_—
o
<

(o= (@))% (- () ™2) ) %)

Next we define 1’ZQ> : <é"> — é"+1> by

(= (@) %)) s (- (@) %) 7)) 7.
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Iti t that s" ., ol ., =1Id, =\ =1}, ol} . f Np.
is easy to see tha s<Q>ol<Q> <Q"> t<Q>ol<Q> or every n € Ny

Then, for all n € Ny, we define 1;% . én Ny by
(...((XOH)(XZ)...)(xm s (...,(l’l—l—1,(1’1,("'((X(xl)az)m)am))g)“')g_

We now form the following components:

1 (0") % (0") = {<x,y> e(0")x(0") | (/1)) = (510 é><y>},
2. ﬂ:’zé> : <c§"> — <én> XG <én> is defined by n2(§> (o S= (s’z(§> (x),tZé§> (x)) ,

3. A" <é”> — <é”> XG <é”> is defined by A*(x) := (x,x).

Consider n’i;l; 0125"> (( (0 )az)---)am)
=B (st 10 o (7)) )°)

= (S35 (ot 1 o ()2 )02 )9),

= A"k ol’ig’;—l 0 Ol2é> (- (o)) yom),

This means that 75K o1 ., = Attho"Th=lo. .o _ .
(&) {4 (9) (9)
Hence, <<é§> , (1’%@)”61\]0, (8p) peNg (%Q)OCCNO) becomes a reflexive self-dual

globular-cone m-magma.

~

Next, we define i : & — <£> by x5 x7.

Assume that f: & — (5?, (1, )nemgs (V) nenys (0p) pery (*Q)QQN()) is a mor-

phism of globular cones into another reflexive self-dual globular-cone ®-magma.
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As morphisms of reflexive self-dual globular cones and reflexive globular-cone
m-magmas have already discussed in detail before, we will explain the unique con-

struction of a morphism of reflexive self-dual globular-cone m-magmas y : <<§ > — %

in short as follows.

Forany x € Q",w € &, and (y,p,z) € & x, &, we associate the simple elements

in <@§" > to the simple elements in Z:

wo = f(w),
(x,n) = 15, (f(x),
(ot 1 (nx))--) = 15(f(x)),
(o ) )I s (e ((f)) o) )T,
»p.z) = f)opfl2).

Combining Proposition 4.3.2.2 with Proposition 4.3.3.2, we get a unique mor-

phism of reflexive self-dual globular-cone ®m-magmas satisfying f = yoi.

~

As a result, <é_">,(1’<’((_a JneNy» (8p) peNy» (Fa)acN, ,i) is a free reflexive

self-dual globular-cone ®-magma over a globular cone as desired. ]

4.4 Free Involutive Penon Cone-Contractions

At this point we are about to complete the construction of free components referring
some arguments done before. This section discusses on a free strict involutive globular-
cone m-category and a free involutive Penon cone-contraction over the original globular

cone as before.

4.4.1 Free Strict Involutive Globular-Cone ®w-Categories

Let’s turn our attention now to another significant part of our work of the existence of a

free strict involutive globular-cone ®-category over a globular cone. We start here with
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its definition.

Definition 4.4.1.1. A strict involutive globular-cone w-category is a reflexive self-

dual globular-cone ®w-magma % satisfying the following axioms:

1. (associativity) if (z,y), (y,x) € € X, €, then (zopy) 0px =z0p, (yo,X),
2. (unitality) if 0 < p < m and x € €, then

mfl._'lp-ﬁ-llp p+1 m—1

p m—1 p+l.p p m—1
I(g Q QtQtQ "'t(g CERN § 158 ()C),

(x)opx=x=2x0p1c o S0 Sy

3. (binary exchange) if (y',y), (x',x) € € x, € and (y',x'), (y,x) € € x4 € with

0 < g <p,then () opy)oq (x'0px) = (¥ 0gx') 0p (y 04 x),
4. (functoriality of identities) if 0 < ¢ < p and (x',x) € QP x,QP, then
L% (x) oq 1% ()= lp%ﬂ (x' ol x),
5. (involutivity) if x € €, then (x*)** = x,
6. (commutativity of involutions) if x € €, then (x**)* = (x™B)*c,
7. (covariance/contravariance of involutions) if (x,y) € € x, €, then

o ) X0y, pEW
(xopy)e =
y*o,x*, peEa.

8. (functoriality of involutions) if w € 0", then 1%, (w¥a) = (1 (w))re.

Applying a similar argument as Proposition 3.2.1.3, we get the result.

Proposition 4.4.1.2. A free strict involutive globular-cone mw-category over a globular

cone exists.

Proof. Let (. ,i) be the free reflexive self-dual globular-cone @-magma over a globular

cone & constructed before.
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Consider the smallest congruence R in .# generated by
Ax:={((xopy)opz,x0p (yo,2)) | (x,y),(,2) € M Xp M ,p=0,1,...}
U{(lnj}l~-~lgt5~~-t£/;1(x)opx,x) |xe #,p=0,1,....n—1,ne N}
U{(xopln//;l~~-1’és’é~~s”_l.///(x),x) |xe#, p=0,1,....n—1, n € N}
(v (xoly) 0 (x) 0" () | (x,y) € M X M ,p=0,1,....n—1, n €N}
(0 0py)oq (v 0px), (v 0gx') 0p (yogx)) | ('), (' ,x) € M X M ,
(,x), (0,x) € M xq A} O{((x")"P, (x"P)") | &, B S No}

(xopy)*(x7x*(xopy*(x) ‘ (‘x?y) E‘%Xp%a NO Qa%p:()?lv}

U{( (%) 0p V'l (9), 1 (0 3)) YUV (W), (1 (w)) ™ | w € Q")
Since Ax C R and all algebraic axioms already hold in .# /R, .# /R becomes a

strict involutive globular-cone m-category.

Let f:& — % be a morphism of globular cones into another strict involutive

globular-cone m-category.

As (A ,i) is a free reflexive self-dual globular-cone m-magma over a globular
cone &, there exists a unique morphism of reflexive self-dual globular-cone ®-magmas

0: .4 — % such that f = poi.
Consider Ry := {(x,y) € A x A | O(x) =0(y)}.
It follows that Ry is a congruence in ./ .

Since ¥ is a strict involutive globular-cone w-category, Ax C Ry and so .# /Ry

becomes a strict involutive globular-cone m-category.

If §: .4 /Ry — € is defined by [x]o — ¢(x), it is a unique map such that po 1y =
o, where g : A4 — M [Ry is defined by x — [x]o.

As R is the smallest congruence containing Ax, R C Ry and so 0 : .# /R —

A | Ry, defined [x] — [x]y, is a unique map such that 7y = 0o .
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Combining all the previous maps, we get that ¢ := $o 0 : .Z /R — % isa unique

morphism of strict involutive globular-cone m-categories satisfying
f:q)oi:(T)onq)oi:(T)oOoTcoi:(T)o(Tcoi).

Therefore, (.# /R,moi) is a free strict involutive globular-cone ®-category over

a globular cone &. O

4.4.2 Free Involutive Penon Cone-Contractions

This subsection is devoted to establishing a category 9* whose objects are of the form
(//l * ﬁ; ¢, ]*), where .#* is a self-dual globular-cone ®w-magma, €™ is a strict
involutive globular-cone m-category, and f* is a morphism of self-dual globular-cone
®-magmas, together with a modified Penon contraction [-,-]*. We simply call these
objects involutive Penon cone-contractions. First, we give a modification of such Penon

contraction as follows.

Definition 4.4.2.1. Let

n

and
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be a reflexive self-dual globular-cone ®-magma and a strict involutive globular-cone
-category, respectively. Suppose that T : .#Z — % is a morphism of reflexive self-dual

globular-cone ®w-magmas. For every n € N, consider

D[, ;") = {(ey) €M xM" | sy (x) = sy 0ty (1) =137 (), iy (6) =7y ()}
An involutive Penon cone-contraction is a family of maps [-,-]:# : D([-,-:#) — M™*!
such that the following requirements are satisfied:

L 8" () =ty (b yli) = v,

2. [x,y]7 1’;1 (M1,

3. x=y € M"implies [x,y];” =1", (x) =1",(y).

Remark 4.4.2.2. Observe that the conditions 1 and 3 are exactly the same as in the
definition of involutive Penon contractions. It is easy to see that the condition 2 together
with being a morphism of 7 imply ch“//jl (7)) = v (mh(x)) = Vb (m(y)). Moreover,
if we define [x,y|M := s%l ([, y]:%) = £ Y([x,y]:#), it reduces to the original involutive

Penon contraction.

Theorem 4.4.2.3. A free involutive Penon cone-contraction over a globular cone exists.

Proof. Let a globular cone over an m-globular set be given

Referring to Theorem 3.2.2.1, we already have a free involutive Penon contrac-

tion <<M 5, [ ]) ,g) over an ®-globular set Q.

Now let’s establish </// I €[ 7 ) analogously to Proposition 4.3.4.2.
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Let #|1]:= <£x[l]> and define 57 [1],¢7 [1]: .#[1] — M4 by

("'(yal)m)ama X = ()’7Z)n eAxn;

sA[L]((- - (x%)")%m),  otherwise.

(+o (%)) Om x=(y,2)n € AX";

t9[1]((-+- (x*1)7)%n),  otherwise.

£ (o ) 7) ) = {

Suppose that we have .# [k], s, [k], and t? k] for every k =1,2,...,n— 1.
Set A [n] := <(§[n]>.

If (- (((x, p,y)*1)92) )% € #[n], where x € #[i] and y € .#|}j], we define

o 57 [n]: A [n] = My (- (((x,p,y)*1)%2) )%
[

(- (g [ (x), 5%, LA (3)) ) %) )%, p<qd s Do D Ady;

B (- (L), 0 (11 (6))*)%2) )%, p<gear Do Ady;
(- (2 [ (3)) 1) %2 ) ) m, P=qE o Do Aoy

(- (2 [ (x)) ) o2) ) oom, P>gEo Ao A - A0y,

o t%yn]: M [n] — MTby (- (((x,p,y)*)%) )%

( (- (2 ), 2t (1) *)%2) )%, p<qdarDop - Ady;

N (- (P [ (x), 5T, L) *1)%2) )%, p<gear Do Ady;
(- (£ ] (x)) o) 2) ) o, P>qEonDNog - Aoy

(- (7 L) ()21 ) 22 ) ) om, P=qE0 A0 A - Ay,

Let 4 := U///[ st = s ) and 1, == U e, [n)].

n=0 n=0

By Proposition 4.3.4.2, we obtain a globular cone

n—1
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For each o C Ny, we define ¢ : 4 — 4 by
(- (@) %2) ) B (- (1) ™2) ) %m) %
We also define o, : A X, .M — M by x o, y— (x,p,y)?, where
My M= {(xy) €M AM|s", (x)=t",)}.

Next we define 1}, : M" — M™ ! by

(CR REAC R (TR )
Then, for all n € Ny, we define ", : M" — M by

(el O %), e R o =AY RHE e NS ).

It follows from Proposition 4.3.4.2 again that we get a free reflexive self-dual

globular-cone w-magma ( (., (1", )neny, (0p) peNy» (*a)acny ) +i) over &.

As the list of axioms Ax" has already been defined in Theorem 4.4.1.2, for each
n € N, we define [Ax'] := Ax and [Ax" "] := Ax" T U{(s", ((x,);),x) | (x,y) € Ax"}
U{(e (e 3):7),9) | (x,) € Ax"}U{((x,0)m, (1)) | x € M"}.

In addition, we set [R"*!] to be the smallest congruence generated by [Ax"*!],

for any n € N, and also R := |JJ [R*"!].
~0

n=

Defining € := .# /R, we get a strict involutive globular-cone ®-category and so

I1: .# — € plays the role of the quotient map.

Furthermore, we define [-,-];” : [AX"] = .# by (x,y) — (..., (1, (x,y)a) ).

It is easy to see that [, -]:# is an involutive Penon cone-contraction.
Next, we define g: & — (/// B, [,]///) by x — x7.
The rest of the proof follows from Proposition 3.2.2.1 and Proposition 4.3.4.2.

As a result, ((/// E> €, [,]/// ) ,g) becomes a free involutive Penon cone-

contraction over a globular cone &. [
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4.5 Involutive Weak Globular-Cone ®w-Categories

Analogous to Theorem 4.4.2.3, we can easily get a couple of free-forgetful functors
F* A

GCone = 2%, where GCone is the category of globular cones and 2* is the category
U*

of involutive Penon cone-contractions. This provides us an important adjunction.

4.5.1 Adjunction between Free-Forgetful Functors

Theorem 4.5.1.1. The free functor F* : GCone — 2* is left adjoint to the forgetful
functor U* : 9* — GCone.

Proof. Let & € Obgcone and (/// EN7AS -]) € Ob ..

First of all, let us separate the functor F* into the following components:

~

F 6 <£> and F : & — [&).
Consider U* : .4 — U () forgetting the reflexivity, self-duality, and compo-

sitions and U* : € — U (%) remaining the original globular cone.

So, (A — FU*(.#)) is a free reflexive self-dual globular-cone w-magma over

the underlying globular cone of a reflexive self-dual globular-cone ®-magma . .

Suppose that 0 : .#Z — .4 is a morphism of reflexive self-dual globular-cone

(M-magmas.

We get that F,U*(0) : FyU* () — FU* (), defined similarly as in Propo-

sition 4.3.4.2, becomes a morphism of reflexive self-dual globular-cone ®-magmas.

Now consider a free strict involutive globular-cone w-category (4 — FgU* (%))

over the underlying globular cone of a strict involutive globular-cone ®m-category %'

Assume that v : 4 — & is a morphism of strict involutive globular-cone ®-

categories.

We obtain a map FU*(v) : FfU*(%') — F;U*(Z) defined by [x] — [v(x)].
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It follows from Proposition 4.4.1.2 that FfU*(v) is a morphism of strict involu-

tive globular-cone m-categories.

Define € : Ob 5, — Hom 4. by (//l ER €, [,]) — 8< , where

jzéﬂ,.])

e (/// . %,[-,-1) . FrU ((,/// Lal, ])) = (/// ER7AD -]) is divided as follows.

For each ((---(x’_k“l)“');‘a'n,(---(y;kﬁl)'“)%ﬁk> € (M i) % p (A j]), we define €7} :
FiU* () — 4 by (- <<<---<x*w>-">*amap< () Ty ) e
o (o (e o (7)) ) 1))

For every ( [(-++(x™1)")Fan] [( (7)) ) € [€11] x, (€11 define
€ FEUS(®) > € by [(++- (- (o)) Fams, (- (o70) ) ) ) ")
|_>(...(((...(x*OCl)"')*(xmop( (y™®r) *Bk)*Yl) )*Yt

First, consider the diagram

eMm

(FE;STU*(///), (6p)p€No7 (;‘oc)(ngo) L (//{, (Op)peNoa (*(x)(ngo)
F;nU*(e)l le
(FSSTU*(JV),(5p)peN0,("~‘oc)agN0>£r (Jya(ap)peNoa (’T‘oc)ocQNo)

N

To prove commutativity, we need to show that €%} o FjU*(0) = 60€™},.
We see that

e’y o FyrU™(8) (( ((Co- (o)) Foms (- (y;kﬁl)"');‘ﬁk)’_““)"');v’>
= &) (( (- ((8x))For) ) Fem (- ((B(y)) )”')%k);“)"');”)
= (- (- (O ) ) Fema (- (B(3)) Br) ) ) 1) )
(e (e (oYY o (- (7)) ) ) )
= 0oely <("'((('--(X"‘“')"');“mép(---(yg‘ﬁl)”');ﬁk);“)”');Y’>-

Then we will show that this diagram commutes:

(FE*U*(CK) (3p )pENoy(;OC)OCgN())S%’;. (Cga (Op)pGNov(*OC)OCQNO)
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We also see that

SgoFéU*(v) <[( ((( c (xF )'");O‘mép(- - (yiﬁl)"')J‘ka\’l)'")ivz]>
= g% ([( . ((( . ((V(x))’?al )"')*amap(. N ((V(y))*ﬁl)"‘)*ﬂk>*“/l)"')*Yz]/)

Thus, € is a natural transformation.

Define 1 : Obgcone — Homgcone by & — Mg, where ng : & — UF*(&) is

defined by x — x*2 for every x € &.

Now consider the diagram

& —LUrF(&)
xt LU*F*(X)

To prove commutativity, we need to show that Ng oA = U*F*(A) ong.

For any x € &, we see that
U*F*(M) ong(x) = U*F*(A) (x*?) = (Mx))* =ng (Mx)) = Ny o Mx).

Hence, 1 is a natural transformation.

Finally, consider the following diagrams

* *
N e S o

* U*

To obtain an adjunction, we have to show that both triangles are commutative;

that is, eF* o F*n = lp+ and U*eonU™ = 1.
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But verifying that the diagrams commute is equivalent to demonstrating that the

following triangles commute:

Fypn2t Fgng

Fin(&) VU Fy(6) FE(8) —NRUTR(8)

N lg?F;ﬁ N legFé
Fip (&) FE(&)

F(€) Fe(€)

n U ngU*
U (M) U FRU (M) UNE) — U*FEU (%)

U*e™ U*eg
M L % lys(%) l ¢

U*(A) U(¢)

~

First, using the same notation as before, we get Fj, (&) = <@‘_" >
Thus, U*Fy(&) = <<5§> as a globular cone and so F),U*F’,(&) = <<//;>>

Define Fpn% : Fyn (&) — FnU*Fyp (&) by x— (x)*2 for every x € <é§>

For each (x,y) € <é"[z]> Xp <éx"[]]> and z € <é;a[1]>, we define
e gy FaU*Fiy (&) — Fp(&) by
(- ((py)™ ) ) ) = (- ((ropy)*n) ™),
((...((Z)@vl)m)@vz)% = Ead e L
It follows that €2 Fygpy 0 FgpM2+ (x) = €2 Fay, ((x)*2) = x.
This implies that €2'Fyy o Fymy' = 1z (#)-
Second, since F (&) = [£], U"F{ (&) = [£] as a globular cone and so
FeUFe (8) = [[€7).
Define Fin$ : Ff (&) — FLUFE(&E) by ] — [D]]-
Define €S Fy : F{U*F; (&) — FE(&) by
[ (D™ Y] o o (o b)) ),
[l2l]” — [l

for any (x,y) € [€[i]] x, [€¢[j]] and z € [€[1]].

Ref. code: 25595709031073ILP



202

It is obvious that EgF* o Fé‘ng = lF*( &)-
Third, consider U*(.#) = ./ as a globular cone.

So Fi;gtU *( < > constructed from elements of .7 .

~

Thus, U*FpU* (A ) = <£> as a globular cone.
Define NN U* : U* (M) — U*FgU* (M) by x — (x)*2 for every x € A .

Define U*€”™, : U*FjU* (M) — U* () by

(o (@) ™)) o (o ((wopy) ) )™,

(- (@™) ") )*e s (-on(2) )"

for any (x,y) € <//;[l]> X p </;[]]> and z € <//Z[1]>
We see that U*e”, onLU* (x) = U*e", (x*2) =x.
This means that U*e”} oNZU* = 1y+( ).
Fourth, consider U*(%) = % as a globular cone.

Then FfU*(%’) = [€¢] established from elements of ¢ and so U*F{U*(¢) = [¢]

as a globular cone.
Define nSU* : U*(&) — U*FFU*(&) by x + [x].
Define U*eS : U*F{U* (%) — U*(%) by
[ (8, BD™) )] = (- (W op D)™1) ™)™,
[l — [l

for any (x,y) € [€[i]] x, [€[j]] and z € [€[1]].
It is easy to see that U*e% on%U* = ly+(%)-
This means that eF* o F*n = 1p+ and U*eonU* = 1.

Therefore, F* is left adjoint to U*. O]
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4.5.2 Involutive Weak Globular-Cone m-Categories

Now we can provide our main definition as follows.

Definition 4.5.2.1. An involutive weak globular-cone m-category is an algebra for the

monad (U*F*,U*e*F* n").

Finally, we list here some examples of Penon involutive weak globular-cone

m-categories but discuss some of them in detail.

Example 4.5.2.2. Every strict involutive globular-cone ®-category is a very particular

trivial case of weak involutive globular-cone m-category.

Proof. Let (€,(V%)neny, (9p) peNgs (*a)achy,) be a strict involutive globular-cone -

category over an ®-globular set Q.

By definition, ¥ is a globular cone over Q.
F*

Let GCone = 2* be the pair of free-forgetful functors and 7* = U*F*.
U*

Then 77(%) is the family of all possible concatenated elements of ¢ attached

by new operations of compositions, involutions, and identities.

Now we define the evaluation map 6" : T7*(4") — % on simple elements by

(x) X,
(X7P7Y) xopy7
XOL x*a

(x,n)
(o, (nyx)+)

(X, 9)n

i 1 1 1 1
S=
)

We see that (%,0) is an algebra for the monad (U*F*,n*,U*e"F*). O
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Example 4.5.2.3. Globular m-quivers are an example of strict involutive globular-cone
m-category. Globular propagators of globular m-quivers give an example of weak invo-

lutive globular-cone m-categories (see [BJ]).

Example 4.5.2.4. Let .#° be a family of involutive monoids A,B,C,... and .#" the
family of the bimodules 4Mp, with A,B € .#". Composition o(l) of bimodules is given
by the Rieffel tensor product 4 Mp ®p pN¢ and involution *(1) of bimodules is provided by
the Rieffel dual pM4 where M := {X | x € M} is just a (specific) disjoint copy of M and
the bimodule actions are b-X-a := a*xb*, foralla € A, b € Band x € M. Similarly start-
ing from a class .#° of strict involutive 1-categories, the family .#! of “bimodules”
between them is an involutive weak 1-category. Introducing a suitable notion of “bi-
module” between strict involutive globular-cone n-categories, we obtain an involutive
weak globular-cone n-category. If .#° is a family of strict globular-cone ®-categories,
the family .#"' of “bimodules” between them is an involutive weak globular-cone ®-

category.
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CHAPTER 5

OUTLOOK

There are plenty of further directions that emerge from this work. In the near future, we

plan to study/explore;

further details of the several examples briefly introduced here.

e the involutive versions of weak globular ®-categories in the Batanin’s approach.

e the involutive versions of weak globular m-categories in the Leinster’s approach.

e the (involutive) versions of weak cubical m-categories.

o the possibility to define globular/cubical weak ®-C*-categories.

e tentative notions of noncommutative higher topos theory adapted to C*-algebraic

environments.

e possible applications (vertically categorified) to noncommutative geometry.

e possible applications to relational quantum theory.
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