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Abstract 
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Master of Computer Technology, University of Computer Studies Mandalay, 2016 

Master of Science (Engineering and Technology), Sirindhorn International Institute of 
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Genetic algorithm (GA) has been successfully applied to many numerical 

optimization problems in history. Multi-parent genetic algorithm (MPGA) is a 

generalized genetic algorithm. The crossover operator in MPGA uses more than two 

parents, differs from the original genetic algorithm, for the transformation of genetic 

information. Since MPGA has been increasing its interest in the family of genetic 

algorithms, it becomes an interesting algorithm to improve the solutions better than 

the traditional genetic algorithm. In this study, the effect of the number of parents in 

MPGA is investigated for solving ten multimodal high dimension benchmark 

functions and the problem of shuttle bus routing system (SBRS) in Thammasat 

University (Rangsit Campus). The experiment proves that using more parents in 

genetic algorithm yield better solution than the traditional genetic algorithm without 

taking too much on computation time. 

 

 

Keywords: Genetic algorithm, multi-parent genetic algorithm, numerical 

optimization problems, shuttle bus routing system. 
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Chapter 1 

Introduction 

 

1.1 General 

 

Genetic algorithm (GA) is a search technique, which is inspired by the process 

of biological reproduction system. Genetic algorithm was developed by John Holland 

and his students in the 1970s according to the Darwinian notion of the survival of the 

fittest [14]. Genetic algorithm allows the population as a search space to optimize the 

fittest solution by the iterative process of randomly selected chromosomes and 

reproduces the better chromosomes in each generation.  

 

Genetic algorithm (GA), a sub class of evolutionary algorithms (EAs), have 

been efficiently exploited for its robustness in many optimization problems [13]. 

Evolutionary algorithms are population-based metaheuristic optimization algorithms 

which are inspired by the nature of biology mechanisms such as genetic algorithms, 

evolution strategies and evolutionary programming [3]. Among these algorithms, 

genetic algorithm has been the most extensively investigated algorithm in the history 

of evolutionary optimization [5]. The common idea of all evolutionary algorithms is 

the iterative process of selecting the fittest solution in the boundary of search space 

with the variation of operators. The operators cause the natural selection process 

which modifies the candidates and choses the better fittest. The evolutionary process 

makes the better fittest solution in the search space. Unlike the other evolutionary 

algorithms, genetic algorithm has binary string representation for the candidate 

solutions. The string representation of genetic algorithm is powerful for mimicking 

the gene transformation of natural selection.  

 

Since genetic algorithm successfully applied for solving optimization 

problems, there are many different types of genetic algorithms were evolved with 

different gene transformation methods. The results for each method are varied due to 
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the optimization problems and gene selection process. Optimal solutions for different 

kinds of real world problems are still remain in the optimization area.  

 

1.2 The concept of Genetic Algorithm 

 

The routine of original genetic algorithm is straightforward. The genetic 

algorithm starts with a randomized initial population. In the terminology of genetic 

algorithm, the variables are called genes. In order to model the genes recombination, 

the variables are encoded as binary strings. A chromosome represents as a collection 

of genes. The size of population, genes, chromosomes and the rate of crossover and 

mutation are predefined before the genetic algorithm start. An example of binary 

chromosome can be represented as follow: 

 

       

 

 

 

 

Figure 1.1 The representation of a binary chromosome 

The optimization problem is called fitness function or objective function. Upon the 

type of optimization problems, the fitness function searches the minimize or 

maximize fitness value. The performance of genetic algorithm varies according to the 

problems and its nature. The genetic algorithm involves three major evolutionary 

mechanisms: selection, crossover and mutation. From these three mechanisms, the 

crossover plays the most important role in the process of genetic algorithm. The 

genetic algorithm ends its routine when the fitness value reaches to the optimal 

solution or a predefined number of generations are operated. 

 

Selection, the first mechanism in the genetic algorithm, is a process in which a 

certain number of individual chromosomes are selected according to the fitness values 

and store into a mating pool. The mating pool is a temporary storage where the fittest 

chromosomes are selected by the selection technique. The traditional selection 

1 0 1 0 1 0 1 0 0 1 1 0 0 1 0 1 0 1 0 1 0 0 0 1  

Gene Gene Gene Gene Gene 

Chromosome 

Gene 
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technique selects the best fittest chromosomes from the population and copies them 

into the mating pool. For example, the four best chromosomes are selected from the 

initial population according to their fitness values and keeps in the mating pool as 

listed in the Table 1.1. There are many other selection techniques. Some of which are 

based on the percentage of fitness values, best fitness of random selection, partially 

select from the best fittest individuals and so on. 

 

Table 1.1: Sample of chromosome representation and fitness values 

No. Chromosome Fitness Value 

1 101101 55 

2 100010 49 

3 100101 34 

4 101010 18 

 

After the selection process, the crossover proceeds in two steps. First, two 

chromosomes are randomly selected from the mating pool. The selected 

chromosomes are regarded as the parent chromosomes to reproduce new child 

chromosomes or offspring. Second, each of two parents chromosomes are crossing 

over one another to reproduce offspring. For example, consider the chromosome 

number 2 and 3 are chosen as the parent chromosomes and crossing over both 

chromosomes according to the randomly generated single crossover point as shown in 

Figure 1.2. Then the new offspring are updated into the mating pool. The process of 

crossover process repeats until all new chromosomes are updated in the mating pool. 

 

Parent 1 1 0 0 | 0 1 0 

Parent 2 1 0 0 | 1 0 1 

  Offspring 1 1 0 0 1 0 1  

Offspring 2 1 0 0 0 1 0 

 

Figure 1.2 Simple crossover process with single crossover point 

 Mutation is the last mechanism in the process genetic algorithm. After 

crossover reproduced the new offspring by mixing the gene information from their 

parents, the mutation proceeds to change some random gene information in the 
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chromosome from the mating pool. The process of mutation consists of two steps. 

First, a random variable, r is generated for each single bit of all chromosomes in the 

mating pool. Second, if r is less than the mutation rate p, which is predefined before, 

the current bit is flipped to its opposite value. Therefore, all new chromosomes are 

updated in the mating pool. A sample of mutation for an offspring from Figure 1.1 is 

demonstrated in Figure 1.2.  

 

1 1

1

10 0 0

0 0 0 0 1

Offspring 1

New offspring

Current bit

flip

 

 

Figure 1.2 Mutation 

By changing some of gene information in the mating pool, the mutation may affect 

the current solutions not to converge in the local optimum. The illustration for the 

effect of mutation as shown in Figure 1.3.  

 

Global

optimum

Local

optimum
*

*

 

Figure 1.3 Effect of mutation 
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All updated chromosomes in the mating pool evaluates the fitness values to 

decide whether the best fitness value for current generation meets with a desire 

optimal solution or not. If the solution does not meet the optimal solution, repeats the 

genetic algorithm from the selection process. Otherwise, the iteration of generations 

in genetic algorithm stops its process and produces the best solution from whole 

generations. The most common stopping criteria in the traditional genetic algorithm 

are: 

 The best fitness value in the current generation does not change in 

many generation. 

 The genetic algorithm reaches a certain number of generations. 

 

1.3 Statement of problems 

 

The traditional genetic algorithm is easy to understand, but comprehensive.  

The selection chooses the best candidates from all possible solution spaces. The 

crossover reproduces the better candidates and the mutation might bring directly to 

the optimal solution. As the crossover mechanism carries out the best information 

from the parents which naturally adapts and delivers into the offspring, many 

researchers have been focused on various ways of crossover process rather than the 

selection and mutation.  

Traditionally, the genetic algorithm chooses two chromosomes from the 

mating pool, as the parents to reproduce the new child chromosomes by the crossover 

operator. But, unlike in nature, there is nothing restricting us from using more than 

two parents to generate offspring. Since the results of genetic algorithms from the 

previous researches varied due to the correlation between the optimization problems 

and the crossover operators, the lack of complexity over the real-world problems still 

remains to challenge a new genetic algorithm among the previous traditional genetic 

algorithms. In this research, the genetic algorithm using more than two parent 

chromosomes, called multi-parent genetic algorithm (MPGA), is proposed to solve 

the numerical benchmark functions and the problem of shuttle bus routing system 

(SBRS). 
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A shuttle bus routing system (SBRS) provides the free shuttle buses service 

within the campus connected by a few routes. The bus stops are located along the 

different routes in order to reach every corner within the campus. In the proposed 

SBRS, the problem is to minimize the distance of a certain number of routes and to 

cover every bus stops inside the campus. Moreover, it can be considered as the nature 

of formulating the school bus routing system is similar with the nature of vehicle 

routing problems (VRP). 

This research contains twofold. First, the proposed multi-parent genetic 

algorithm is compared with the traditional genetic algorithm by measuring their 

performance on high dimensional multimodal benchmark functions. Second, the 

problem of shuttle bus routing system inside the campus is successfully solved by the 

proposed multi-parent genetic algorithm and the traditional genetic algorithm. The 

experiment results are compared and analyzed in order to measure the performance in 

both genetic algorithms. 

The rest of the book is organized as follows. All the related researches from 

the beginning of genetic algorithm to multi-parent genetic algorithm are described in 

Chapter 2 as the literature review. The component of the proposed multi-parent 

genetic algorithm (MPGA) is detailed in Chapter 3. The experiment results on both 

genetic algorithms are explained in Chapter 4. Finally, the conclusions are drawn in 

Chapter 5. 

 

1.4 Objectives of study 

 

The study aims to utilize the multi-parent genetic algorithm (MPGA) to the 

real world problem. The objectives of the study are 

 To analyze the effect of the number of parents in genetic algorithm 

 To compare the traditional genetic and multi-parent genetic algorithm 

 To solve the problem of shuttle bus routing system by using the multi-

parent genetic algorithm. 
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Chapter 2  

Literature Review 

 

2.1 Extended Genetic Algorithms 

 

Since the performance of genetic algorithm is varied according to the 

crossover operator and optimization problems, many extended crossover methods are 

developed for solving the numerical optimization problems.  Multi-parent genetic 

algorithm is one of the extended genetic algorithms from the family of evolutionary 

algorithms. Using more than two chromosomes as the parent for reproduction process 

of the genetic algorithm is not new in the history of genetic algorithms.  

The first approach for a genetic algorithm with three parents uniform 

crossover was developed and analyzed to solve De Jong test functions [12]. The 

uniform crossover reproduces n new children from n parents. The algorithm generates 

three child chromosomes from the following three parents uniform crossover mask 

and its inverses as shown in Figure 2.1.  

let k = length of the bit-string

for j = 1 to k do

mask[j] = random(0,1,2)

inverse_mask_1[j] = (mask[j]+1) MOD 3

inverse_mask_2[j] = (mask[j]+2) MOD 3

endfor

 

Figure 2.1 Three parents uniform crossover operator and inverse mask construction 

 

The function random (0,1,2) returns either 0, 1 or 2, each with probability one-third, 

then all the bit-level genetic information is maintained in the child chromosomes. The 

experiment proved that three parents genetic algorithm outperforms two parents 

traditional genetic algorithm when solving De Jong test functions. De Jong invented a 

test environment of five minimization functions [16]. The test functions are listed in 
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Figure 2.2. De Jong test functions still remains as a milestone in the development of 

genetic algorithm because of the following natures: 

 Continuous or discontinuous 

 Convex or nonconvex 

 Unimodal or multimodal 

 Quadratic or nonquadratic 

 Low-dimensionality or high-dimensionality 

 Deterministic or stochastic 

 

Later, another non-traditional genetic algorithm with gene scanning crossover 

operators is analyzed for solving Traveling Salesman Problem (TSP), graph coloring 

and De Jong test functions [8]. The gene scanning crossover operators calculate the 

fitness values of the chromosome based on occurrence based scanning which selects 

the most occurrence genes in the parent. The fitness based scanning which chooses 

the fitness values. The uniform scanning in which genes are randomly chosen from 

the parents. The experiment on all the crossover operators concluded that using more 

parents in some of the De Jong test functions outperform the traditional genetic 

algorithm, but for the other problems, the traditional genetic algorithm outperforms 

the genetic algorithm with more than two parents.    

 

 

Figure 2.2 De Jong test functions 

 

In [9], diagonal crossover for different number of parents is investigated and 

compared to the scanning crossover. The fitness functions contain De Jong test 

𝑓1               𝑓1(𝑥𝑖) =  ∑ 𝑥𝑖
23

𝑖=1 ,     −5.12 ≤  𝑥𝑖 ≤ 5.12 

 

𝑓2               𝑓2(𝑥𝑖) = 100(𝑥1
2 − 𝑥2)2 + (1 + 𝑥1)2,  −2.048 ≤  𝑥𝑖 ≤ 2.048 

 

𝑓3               𝑓3(𝑥𝑖) =  ∑ 𝑖𝑛𝑡𝑒𝑔𝑒𝑟(𝑥𝑖),5
𝑖=1    −5.12 ≤  𝑥𝑖 ≤ 5.12 

 

𝑓4               𝑓4(𝑥𝑖) =  ∑  𝑖𝑥𝑖
4 + 𝐺𝑎𝑢𝑠𝑠(0,1),30

𝑖=1   −1.28 ≤  𝑥𝑖 ≤ 1.28 

 

𝑓5               𝑓5(𝑥𝑖) = 0.002 + ∑
1

𝑗+∑ (𝑥𝑖−𝑎𝑖𝑗)
62

𝑖=1

,25
𝑗=1  −65.536 ≤  𝑥𝑖 ≤ 65.536 
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functions. The scanning crossover is generalized by the uniform crossover which 

selects the most occurrence bit in the parents into the child chromosome as shown in 

Figure 2.3 and the diagonal crossover is generalized by the classic 1-point crossover 

which reproduce n offspring by n parents as shown in Figure 2.4. Each of the test 

functions, the optimal number of parents are always higher than two in both 

crossovers. The experiment shown that the diagonal crossover yields better results in 

all test functions when the scanning crossover failed in one test function.  

Parent 1: 1 0 0 1 1 0

Parent 2: 0 1 0 1 0 1

Parent 3: 0 0 1 0 1 1

          Offspring: 0 0 0 1 1 1

 

Figure 2.3 Occurrence based scanning crossover in three parents 

 

Parent 1: 1 0 0 1 1 0

Parent 2: 0 1 0 1 0 1

Parent 3: 0 0 1 0 1 1

Offspring 1:     1 0 0 1 1 1

Offspring 2:     0 1 1 0 1 0

Offspring 3:     0 0 1 0 0 1
 

Figure 2.4 Diagonal crossover with three parents 

 

The genetic algorithm with a new multi-parent crossover applied to solve 

different numbers of the constrained optimization problems [11].  The problems are 

introduced in the CEC2010 constrained optimization competition session [7]. A new 

randomized crossover operator is used to replace mutation, which is intended to 

escape the local optima and premature convergence. The crossover operator used 

three individuals to reproduce three offspring according to the crossover rate. The 

experiment shown better performance as it compares to the traditional genetic 

algorithm. The efficiency of genetic algorithm was improved by the randomized 

crossover operator. 
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In the operations research area, the quadratic assignment problem includes one 

of the most difficult problems. In [1], a genetic algorithm with new sequential 

crossover successfully solved the quadratic assignment problems. The research 

proved that the new sequential crossover operator improves the genetic algorithm 

rather than an existing multi-parent traditional sequential crossover for the problem. 

 The earlier research on multi-parent recombination genetic algorithm 

convinced that the effect of using more than two parents may differ during the 

combination of the gene transformation in the crossover operator and the nature of the 

optimization functions. The diagonal crossover performs better than the existing 

crossovers when solving the numerical test functions. Consequently, other multi-

parent genetic algorithms are still remained to solve not only numerical optimization 

problems, but also for some applications. 

   

2.2 Related Works 

 

In the evolutionary algorithms, the traditional genetic algorithm is widely used 

for solving many numerical optimization problems and applications. There are 

different kind of crossovers which are suitable for solving different kind of problems. 

Multi-parent recombination in the crossover mechanism acquired better performance 

than the genetic algorithms when solving the optimization problems as in De Jong test 

suits. In order to adapt the real world complex problems, multi-parent genetic 

algorithm is a challenge to improve the traditional genetic algorithms.  

Eiben investigated the performance of diagonal crossover for higher number 

of parents in genetic algorithms [10]. The research based on three hypotheses to 

explain why genetic algorithm increases when more parents are used, which are: 

H1.  Using more crossover points leads to better performance 

H2.  Bigger generational gap leads to better performance 

H3.  Using more parents leads to better performance 

The test functions include the behavior of unimodal, multimodal and quasi-random 

landscapes. Two types of diagonal crossovers are used to examine the hypotheses. 

First, the diagonal crossover reproduces three offspring from three parents. Second, 
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the diagonal crossover reproduces one offspring from three parents. The illustration 

for both diagonal crossovers are shown in Figure 2.5. 

 

Parent 1

Parent 2

Parent 3

Child 1

Child 2

Child 3
 

(a) 

 

Parent 1

Parent 2

Parent 3

Child
 

(b) 

Figure 2.5 Diagonal Crossover with (a) three parents and three children and 

(b) three parents and one child 

 

The experiment obverse that using the diagonal crossover with more crossover 

points becomes better in all test functions. Since both types of diagonal crossover 

applied to all test functions, one child from three parents did not solve in every 

function. From the results in some test functions, the performance of algorithm did 

not increase when using more parents recombination.  

The original vehicle routing problem (VRP) is an optimization problem, 

generalized by traveling salesman problem (TSP) [6]. The goal of VRP is to find the 

minimum mileage of the gasoline delivery trucks between terminals and service 

stations. Vehicle routing problem with time windows (VRPTW) is an extension of 

vehicle routing problem with the extra time constraint [2]. The traditional genetic 
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algorithm was applied for solving VRPTW in [17]. A real world application of school 

bus routing problem was experimented by the traditional genetic algorithm in [4] to 

minimize the capacity of buses, the cost of running, and the distance traveled to each 

route. 

Yassen applied a genetic algorithm with multi-parent insertion crossover for 

vehicle routing problem with time windows [20]. The multi-parent insertion crossover 

is enhanced by two parents insertion crossover. The proposed problem finds the 

minimal cost of routes without violating the imposed constrains. The experiment 

compared with two parents crossover operator and obtained better solution.   

In this study, new diagonal crossovers are generalized from the original 

diagonal crossover in both multi-parent genetic algorithm and traditional genetic 

algorithm. The crossover points in the chromosomes are generalized in order to study 

the effect of the higher parents in the proposed multi-parent genetic algorithm. The 

test suits are generalized to the high dimension multimodal bench mark test functions. 

Therefore, the multi-parent genetic algorithm is applied to solving the proposed 

school bus routing system in a college campus. The proposed problem minimizes the 

distance of each route in the campus without losing the number of bus stops within 

the college campus. 
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Chapter 3 

Multi-parent Genetic Algorithm 

 

3.1 Introduction to Multi-Parent Genetic Algorithm 

 

 Genetic algorithm (GA) is a randomized iterative search algorithm. The 

algorithm starts its routine by a random number of population and produces 

subsequent generations with three main genetic operators. Multi-parent genetic 

algorithm (MPGA) is a genetic algorithm, unlike the nature of genetic algorithm, in 

which the number of parent chromosomes in the crossover operator uses more than 

two chromosomes to inherit genetic information from the parent chromosomes to 

offspring chromosomes, from generation to generations.  

The procedures of multi-parent genetic algorithm are as simple as the 

traditional genetic algorithm, beside the crossover operation procedure. In the 

terminology of multi-parent genetic algorithm, the term parents is used for the set of 

chromosomes selected as the gene donors in the crossover operator.  The term 

chromosome is the representation of binary string, which is converted by the real 

values from the problem. The fitness functions are the problems to be optimized by 

using the multi-parent genetic algorithm. The population includes temporary random 

solutions to optimize within the search space. The mating pool is the place where the 

selected chromosomes are stored and replaces throughout the whole algorithm. Once 

all the mechanisms in the algorithm accomplished through one time in the genetic 

algorithm, a one generation is completed.  

The multi-parent genetic algorithm starts with a random number of population. 

Follow by the initialization, all the variables from the fitness function are encoded and 

the three main mechanisms are implemented as follows: 

 Selection operator 

 Crossover operator 

 Mutation operator 

Afterwards, all the chromosomes are decoded back into the variables in order to 

evaluate their fitness values. The proposed multi-parent genetic algorithm terminates 
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when the variation values of the optimal solutions are not changed for several 

generations.  

 

3.2 Test Functions 

 

The first fold of multi-parent genetic algorithm is regarded to investigate the 

effect of the different number of parents in the multi-parent genetic algorithm. 

According to experiment the algorithm on the large problem sets, all ten test functions 

are generalized from the benchmarks (test functions) in [18].  

The benchmarks are commonly known in the literature. All functions are 

under consideration of multi-models functions and applied as the quality test for 

resistant optimization techniques like genetic algorithm, simulated annealing, 

traveling salesmen problem and so on. All the test functions are continuous 

minimization problems and generalized to the n dimension multi-modal test functions 

with huge number of local extremes. The overview of all ten test functions are 

illustrated in two dimensions. The explanations of each function are listed below. 

 

3.2.1 Rastringin’s Function 

 

Ratringin’s function is a non-linear multimodal function which is based on the 

De Jong functions with extra cosine modulation. Rastringin’s function has many local 

minima. An overview of the Rastringin’s function in two-dimension is illustrated in 

Figure 3.1. The definition of Rastringin’s function is as follows: 

 

𝑓(𝑥) = 10𝑛 + ∑(𝑥𝑖
2 − 10 cos(2𝜋𝑥𝑖)),

𝑛

𝑖=1

                               (3.1) 

 

where −5.12 ≤ 𝑥𝑖 ≤ 5.12. Its global minimum is 𝑓(𝑥) = 0 for 𝑥𝑖 = 0, (𝑖 = 1, … , 𝑛). 
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3.2.2 Schwefel’s Function 

 

Many local minimum in the Schwefel’s function are closed to each other. It 

assembles the problem hard to find the global minimum among the local minimum 

points. The algorithm can converge earlier in the local minimum area. The Schwefel’s 

function is illustrated in two-dimension as shown in Figure 3.2. The definition of 

Schwefel’s function is as follows: 

 

𝑓(𝑥) = ∑(−𝑥𝑖 sin(√|𝑥𝑖|)),

𝑛

𝑖=1

                                        (3.2) 

 

where −500 ≤ 𝑥𝑖 ≤ 500. The global minimum is 𝑓(𝑥) = −418.982𝑛 for 𝑥𝑖 =

420.9687, (𝑖 = 1, … , 𝑛). 

 

 

Figure 3.1 An overview of Rastrigin’s function in two-dimension 

 

 

Figure 3.2 An overview of Schwefel’s function in two-dimension 
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3.2.3 Ackley’s Function 

 

The Ackley’s function contains many local optimum points. In its two-

dimension graph in Figure 3.3, there is a large hole in the middle of a broad local 

minimum region. The mathematical definition of Ackley’s function is as follows: 

 

𝑓(𝑥) = −𝑎. exp (−𝑏. √
1

𝑛
∑ 𝑥𝑖

2

𝑛

𝑖=1

) − exp (
1

𝑛
∑ cos(𝑐𝑥𝑖)

𝑛

𝑖=1

) + 𝑎 + exp(1),     (3.3) 

 

where 𝑎 = 20, 𝑏 = 0.2, 𝑐 = 2𝜋  and −32.768 ≤ 𝑥𝑖 ≤ 32.768. Its global minimum 

is 𝑓(𝑥) = 0 for 𝑥𝑖 = 0, (𝑖 = 1, … , 𝑛). 

 

 

Figure 3.3 An overview of Ackley’s function in two dimension 

 

3.2.4 Griewangk’s Function 

 

The Griewangk’s function includes many distributed local minimum points on 

its surface. The two dimension view of the Griewangk’s function is illustrated in 

Figure 3.4. The definition of Griewangk’s function is as follows: 

 

𝑓(𝑥) =
1

4000
∑ 𝑥𝑖

2 − ∏ cos (
𝑥𝑖

√𝑖
) + 1

𝑛

𝑖=1

,

𝑛

𝑖=1

                             (3.4) 
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where −600 ≤ 𝑥𝑖 ≤ 600. The global minimum is 𝑓(𝑥) = 0 for 𝑥𝑖 = 0, (𝑖 = 1, … , 𝑛). 

 

 

Figure 3.4 An overview of Griewangk’s function in two dimension 

 

3.2.5 Langermann’s Function 

 

The Langermann’s function is a multimodal test function. An overview of the 

Langermann’s function in two-dimension is illustrated in Figure 3.5. The definition of 

Langermann’s function is as follows: 

 

𝑓(𝑥) = ∑ 𝑐𝑖

𝑚

𝑖=1

. exp (−
1

𝜋
∑(𝑥𝑗 − 𝑎𝑖𝑗)

2
n

j=1

) cos (𝜋 ∑(𝑥𝑗 − 𝑎𝑖𝑗)
2

𝑛

𝑗=1

) ,             (3.5) 

 

where 𝑚 = 5 𝑎𝑛𝑑 (𝑐𝑖, 𝑖 = 1, … , 𝑚), (𝑎𝑖𝑗, 𝑗 = 1, … , 𝑛, 𝑖 = 1, … , 𝑚) are randomly 

chosen constants.  

 

 

Figure 3.5 An overview of Langermann’s function in two dimension 
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3.2.6 Michalewicz’s Function 

 

The Michalewicz’s function is a multimodal function which possess a number 

of steepest edge according to the parameter m. An overview of the Michalewicz’s 

function in two-dimension is illustrated in Figure 3.6. The definition of Michalewicz’s 

function is as follows: 

 

𝑓(𝑥) = − ∑ sin(𝑥𝑖) (sin (
𝑖𝑥𝑖

2

𝜋
))

2𝑚

,

𝑛

𝑖=1

                              (3.6) 

 

where 𝑚 = 10 , 0 ≤ 𝑥𝑖 ≤ 𝜋 𝑎𝑛𝑑 𝑖 = 1, … , 𝑛. The global minimum value has been 

approximated by 𝑓(𝑥) = −4.687 for 𝑛 = 5. 

 

 

Figure 3.6 An overview of Michalewicz’s function in two dimension 

 

3.2.7 Easom’s Function 

 

The Easom’s function has a long hole in the middle of many local minima. An 

overview of the Easom’s function in two-dimension is illustrated in Figure 3.7. The 

definition of Easom’s function is as follows: 

 

𝑓(𝑥) = − ∏ cos(𝑥𝑖)

𝑛

𝑖=1

.  exp ∑(−(𝑥𝑖 − 𝜋2)),

𝑛

𝑖=1

                      (3.7) 
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where  −100 ≤ 𝑥𝑖 ≤ 100. The global minimum value is 𝑓(𝑥) = −1 for 𝑥𝑖 = 𝜋. 

 

 

Figure 3.7 An overview of Easom’s function in two dimension 

 

3.2.8 Drop Wave Function 

 

The Drop Wave function is a multi-complex function. An overview of the 

Drop Wave function in two-dimension is illustrated in Figure 3.8. The definition of 

Drop Wave function is as follows: 

 

𝑓(𝑥) = −

1 + cos (12√∑ 𝑥𝑖
2𝑛

𝑖=1 )

1
2 . ∑ 𝑥𝑖

2𝑛
𝑖=1 + 2

 ,                              (3.8) 

 

where  −5.12 ≤ 𝑥𝑖 ≤ 5.12. The global minimum value is 𝑓(𝑥) = −1 for 𝑥𝑖 = 0. 

 

 

Figure 3.8 An overview of Drop Wave function in two dimension 
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3.2.9 Shubert’s Function 

 

The Shubert’s function is a one of the multimodal test functions. An overview 

of the Shubert’s function in two-dimension is illustrated in Figure 3.9. The definition 

of Shubert’s function is as follows: 

 

𝑓(𝑥) = − ∑ 𝑖 cos ((𝑖 + 1). ∑ 𝑥𝑖 + 1

𝑛

𝑖=1

) . ∑ 𝑖 cos ((𝑖 + 1). ∑ 𝑥𝑖 + 1

𝑛

𝑖=1

)

5

𝑖=1

5

𝑖=1

, (3.9) 

 

where  −5.12 ≤ 𝑥𝑖 ≤ 5.12. The global minimum value is 𝑓(𝑥) = −186.7309. 

 

 

Figure 3.9 An overview of Shubert’s function in two dimension 

 

3.2.10 Rosenbrock’s Function 

 

The Rosenbrock’s function is a famous test problem, also known as the second 

function of De Jong. An overview of the Rosenbrock’s function in two-dimension is 

illustrated in Figure 3.10. The definition of Rosenbrock’s function is as follows: 

 

𝑓(𝑥) = ∑(100(𝑥𝑖+1 − 𝑥𝑖
2)2 + (1 − 𝑥𝑖)

2)

𝑛−1

𝑖=1

,                      (3.10) 
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where  −2.048 ≤ 𝑥𝑖 ≤ 2.048. Its global minimum value is 𝑓(𝑥) = 0 𝑓𝑜𝑟 𝑥𝑖 =

0, (𝑖 = 1, … , 𝑛). 

 

 

Figure 3.10 An overview of Rosenbrock’s function in two dimension 

 

3.3 Problem Formulation of SBRS 

 

The second fold of the study of multi-parent genetic algorithm is to apply and 

analyze the effects of multi-parent crossover operator by solving the real-world 

problem. The problem is a shuttle bus routing system (SBRS) based on a college 

campus. The problem is formulated by considering the location of the bus stops in the 

Thammasat University (Rangsit Campus), Thailand. Currently, the campus is 

operating with three different shuttle bus routes. The total number of the bus stops is 

47. The distance between the bus stops are different to each route. The location of the 

bus stops is taken by latitude and longitude. The coordinate points of the bus stops are 

listed in Table 3.1.  

 The objective function of SBRS is considered to eliminate the missing bus 

stops and to optimize the minimum requirement of the route distances. The routes 

𝑅𝑖 = (𝑟𝑖1, 𝑟𝑖2, … , 𝑟𝑖,𝑛𝑖
) passes to the bus stops by the order in 𝑟𝑖1, 𝑟𝑖2, … , 𝑟𝑖,𝑛𝑖

. 

Haversine formula is used to calculate the distance 𝐷(𝑅𝑖) for the route 𝑖. The problem 

formulation of SBRS is as follows: 

min ∑ 𝐷(𝑅𝑖) + 𝑘𝑀(𝑅𝑖),                                       (3.11)

𝑛

𝑖=1
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where k is used as a penalty value for the problem. 𝑀(𝑅𝑖) is the minimum number of 

missing stops in the route 𝑅𝑖 and n is the total number of route 𝑖. 

 

Table 3.1: Coordinate points of the bus stops in Thammasat University 

(Rangsit Campus) 

Bus Stops Latitude Longitude 
1 14.07535 100.60165 

2 14.07465 100.60165 

3 14.07395 100.60165 

4 14.07095 100.60165 

5 14.06755 100.60325 

6 14.06735 100.60895 

7 14.06855 100.60745 

8 14.06855 100.60635 

9 14.06745 100.60585 

10 14.06745 100.60415 

11 14.06745 100.60325 

12 14.06605 100.60055 

13 14.06945 100.60155 

14 14.06975 100.60155 

15 14.07375 100.60155 

16 14.06955 100.60175 

17 14.07285 100.60155 

18 14.07555 100.60155 

19 14.07595 100.60065 

20 14.07615 100.59875 

21 14.07615 100.59735 

22 14.07635 100.59575 

23 14.07795 100.59485 

24 14.07655 100.59565 

25 14.07635 100.59735 

26 14.07625 100.59985 

27 14.07615 100.60025 

28 14.07205 100.60195 

29 14.07215 100.60355 

30 14.07215 100.60515 

31 14.07215 100.60815 

32 14.07415 100.61595 

33 14.07205 100.61325 

34 14.07205 100.61185 

35 14.07205 100.60825 

36 14.07205 100.60525 

37 14.07205 100.60335 

38 14.07205 100.60205 

39 14.07045 100.60125 

40 14.07125 100.59795 

41 14.075874 100.59665 

42 14.074961 100.59665 

43 14.074696 100.59675 

44 14.074362 100.596715 

45 14.073288 100.596743 

46 14.072395 100.59699 

47 14.071783 100.597254 
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The distance for two location points in two-dimension is easy to calculate. But 

the calculation of the distance for two locations on earth is required to recognize its 

sphere shape. Therefore, according to calculate the distance for two locations on arc 

which is expressed by latitude and longitude, Haversine formula is used to measure 

the distance. The formula was introduced by James Inman in 1835 [15]. The 

Harvisine formula is described as follows: 

 

∆𝐿𝑎𝑡 =  𝛼2 − 𝛼1                                                                                                        (3.12) 

∆𝐿𝑜𝑛𝑔 =  𝛽2 − 𝛽1                                                                                                     (3.13) 

𝑎 =  sin2 (
∆𝐿𝑎𝑡

2
) + cos(𝛼1) cos(𝛼2) sin2 (

∆𝐿𝑜𝑛𝑔

2
)                                        (3.14) 

𝑐 = 2. atan2(√𝑎, √1 − 𝑎)                                                                                      (3.15) 

𝑑 = 𝑅𝑐                                                                                                                         (3.16) 

 

where 𝑅 is 6371 to consider the radius of the earth in kilometer. 𝛼1, 𝛼2 are the latitude 

points and 𝛽1, 𝛽2 are the longitude points of the geological location on earth.  Then 𝑑 

defines the distance for two location points on earth.  

 

3.4 Chromosome Representation 

 

In numerical optimization problems, most of the variables are real numbers. In 

order to use the binary string chromosomes in the multi-parent genetic algorithm, all 

different type of variables need the binary encoding and decoding process. The 

representation of a randomized binary chromosome for two-dimensions problem is 

demonstrated in Figure 3.11.  

 

 

 

 

 

 

Figure 3.11 The representation of a binary chromosome 

8 bits 

𝑥1  𝑥2 

0 1001 1 1 1 1 1 1 1 10 0 0

8 bits 
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All the variables for the test functions and the number of bus stops are real 

numbers. Each value has its lower and upper bound. The conversion of binary and 

real number is as follows: 

 

   𝑋 = 𝑙 + ((𝑥 +
1

2
) . (

(𝑢−𝑙)

2𝑛 )),                                     (3.17) 

where  

𝑋 ∈ ℝ 

𝑙 = lower bound  

𝑢 = upper bound 

𝑛 = number of bits in a chromosome 

𝑥 = the decimal value of a binary chromosome 

 

3.5 Procedure of Multi-Parent Genetic Algorithm 

 

All the parameters for the multi-parent genetic algorithm are predefined before 

the algorithm starts processing the initialization. The predefined parameters are the 

parent number, the dimension number for the test function, the population size, the 

length of each chromosome, the size of mating pool, and the mutation rate. 

The multi-parent genetic algorithm begins with a randomized initial 

population. The population consist of a collection of randomized binary 

chromosomes. Then the selection operator, the crossover operator, and the mutation 

operator proceeds to finish one generation. The algorithm processes until the 

termination criteria meet. The flowchart for the multi-parent genetic algorithm is 

illustrated in Figure 3.12. 

 

3.5.1 Selection 

 

 Selection is the first operator of the multi-parent genetic algorithm. It also 

manipulates the performance of the algorithm to reproduce better chromosomes in 

each generation. The selection operator selects the best chromosomes from the initial 
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population into the mating pool. Roulette wheel selection technique is a well-known 

selection operator in the history of genetic algorithm. The technique is  based  on  the 

Initialize

the population

Evaluate the fitness

Selection

Crossover

Mutation

Evaluate the fitness

Satisfy the criteria?

Output the result

No

Yes

 

Figure 3.12 Flowchart of multi-parent genetic algorithm 

 

probability of the fitness 𝑓(𝑖) in each chromosome 𝑖 from the population [13]. The 

better chromosomes have the better probability of fitness. The formulation for the 

selection technique is as follows: 

 

  𝑝(𝑖) =  
𝑓(𝑖)

∑ 𝑓(𝑗)𝑛
𝑗=1

          (3.18) 

 

where 𝑛 is the population size. In this research, the Roulette Wheel Selection is 

generalized according to the minimization nature of the test functions. That is, a 

chromosome 𝑥 is chosen with its probability as follows: 
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  𝑝(𝑗) = 1 −
𝑓(𝑥)

∑ 𝑓(𝑗)𝑛
𝑗=1

      (3.19) 

 

where 𝑓(𝑥) is the value of fitness for the chromosome 𝑥. 

 

3.5.2 Crossover 

 

In the genetic algorithm, the process of crossover operator influences the 

performance of the genetic algorithm more than the other operators. The crossover 

operator in multi-parent genetic algorithm generates new 𝑛 chromosomes by 

transforming inherited genes from the 𝑛 parent chromosomes. The diagonal crossover 

operator has been conducted the most efficient and reliable crossover operator for the 

genetic algorithms in history. The original diagonal crossover chooses 𝑛 parents with 

𝑛 − 1 crossover points to reproduce 𝑛 offspring as described in Figure 3.13. 

 

Figure 3.13 Diagonal crossover with  𝑛 − 1 crossover points 

 

Figure 3.14 Diagonal crossover with multiple crossover points 
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Since the performance of genetic algorithm varies according to the crossover 

points in the diagonal crossover operator in the literature. In this study, the effect of 

multi-parent genetic algorithm analyzed with two crossover methods in diagonal 

crossover. First, the diagonal crossover with 𝑛 parents and 𝑛 − 1 crossover points to 

reproduce 𝑛 offspring. Second, the diagonal crossover with 𝑛 parents using more than 

𝑛 crossover points to reproduce 𝑛 offspring. The visualization of multi crossover 

points in the diagonal is illustrated in Figure 3.14. 

 

3.5.3 Mutation 

 

Mutation is the last mechanism in genetic algorithm. The effect of mutation 

operator is also important in genetic algorithm. Mutation operator proceeds to change 

some random genetic information in each chromosome within the mating pool. The 

process of mutation is straightforward, the operator uses mutation rate 𝑝𝑚 to decide 

the opportunity of changing genetic information. The lower mutation rate makes the 

lower chance to mutate the genetic information. In the binary coded genetic 

algorithm, mutation operator is used to flip the bit from 0 to 1 or 1 to 0. Every single 

bit in each chromosome inside the mating pool is applied by a random number 𝑟. A 

bit from the chromosome is changed when a random number 𝑟 is less than the 

mutation rate 𝑝𝑚. The pseudocode for the mutation operator is shown in Figure 3.15. 

 

function Mutation: 

mutation_rate  𝑝𝑚; 

𝑟 = random(); 

while (current_position  ≤  length of chromosome)  do 

 if ( 𝑟 < 𝑝𝑚) 

  then change current_bit; 

  current_position++; 

 endif; 

endwhile; 

end. 

Figure 3.15 Pseudocode for mutation operator 
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 Not every bit in the chromosome is changed due to the mutation rate. 

Normally the probability of mutation sets quite low but changing some genetic 

information in the genetic algorithm makes benefit for some chromosomes not to 

stuck in the local minima. 
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Chapter 4  

Experiments and Results 

 

4.1 Multi-parent genetic algorithm with multimodal test functions 

 

The first fold of experiment is to investigate the effect of the number of 

parents in multi-parent genetic algorithm (MPGA), which is analyzed by solving ten 

high multi-model benchmark functions, as expressed in Section 3.2. The parameters 

for the multi-parent genetic algorithm is listed in Table 4.1. 

 

Table 4.1: Parameter setting of Multi-parent genetic algorithm 

Names Parameters 

Number of Parents 2 − 20 

Number of Dimensions (𝑫) 10 − 90 

Initial Population (𝑷) 20(𝐷 ≤ 50) 𝑎𝑛𝑑 40(𝐷 > 50) 

Chromosome Length 3𝐷 𝑏𝑖𝑡𝑠 

Mutation Rate (𝒑𝒎) 0.01 

Mating Pool Size 𝑃 + 0.5𝑃 

Number of Test Functions 10 

 

 All the experiments are independently run ten times for each test function. The 

multi-parent genetic algorithm with various numbers of parents (from 2 to 20) and 

dimensions (from 10 to 90) are used. We terminate the multi-parent algorithm when 

its best solution has not changed for more than 𝑒−8 so far, which unchanged up to 20 

consecutive generations. The performance of multi-parent genetic algorithm is 

measured by three criteria: the best solution (fitness) found, the minimum number of 

generations to reach the solution and minimum running time. 

The average results of ten run for the first test function, Rastringin’s Function 

in Equation 3.1, are illustrated in Figure 4.1. The results are separated by the three 

criterions. The best result found for the Rastringin’s function at 18 parents. The result 

shows that after using more than two parents in genetic algorithm minimizes the best 

fitness solution rather than the traditional genetic algorithm.  
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Figure 4.1 Average results of Rastringin’s Function in three criterions 

 

Figure 4.2 Results of best fitness in Rastringin’s function  

 

When using more parents in the Rastringin’s function, the necessary of the number of 

generations took slightly higher than the traditional genetic algorithm. Minimum 

consuming time in traditional genetic algorithm is lower than the multi-parent genetic 

algorithm for not more than 0.2 second. In order to emphasize the result of best fitness 

values in all number of parents, the details of different dimensions (10 to 90) are 

shown in Figure 4.2. All fitness values are minimized in all dimensions against some 

fitness slightly increased after using two parents. 
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Figure 4.3 Average results of Schwefel’s function in three criterions 

 

Figure 4.4 Results of best fitness in Schwefel’s function  

 

 The results for Schwefel’s function, Equation 3.2, with three criterions are 

shown in Figure 4.3. After using more than two parents, the fitness values are 

minimized from 1500 to 500. The details result for the fitness values in all different 

dimensions are shown in Figure 4.4. Only the fitness values with dimension 50 and 90 

are slightly higher after two parents.  
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Figure 4.5 Average results of Ackeley’s function in three criterions 

 

Figure 4.6 Results of best fitness in Ackley’s function  

 

 The results for Ackley’s function, Equation 3.3, with three criterions are 

shown in Figure 4.5. The result of time consumed at 10 parent slightly down for 0.1 

second when the number of generations and the fitness value are higher than at 8 

parent. The results of best fitness for each dimension are shown in Figure 4.6. The 

results shown that the fitness values are dramatically minimized when the function are 

using multi-parents with higher dimension.  
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Figure 4.7 Average results of Griewangk’s function in three criterions 

 

Figure 4.8 Results of best fitness in Griewangk’s function  

 

The results for Griewangk’s function, Equation 3.4, with three criterions are 

shown in Figure 4.7. The results for the number of generations and time are slightly 

increased up to 20 parents when the best fitness values are minimized. In Figure 4.8, 

the best fitness values at 4 and 16 parents in 50 dimensions are not better than two 

parents traditional genetic algorithm.  
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Figure 4.9 Average results of Langermann’s function in three criterions 

 

Figure 4.10 Results of best fitness in Langermann’s function 

The results for Langermann’s function, Equation 3.5, with three criterions are 

shown in Figure 4.9 and the details of best fitness for different dimensions are 

illustrated in Figure 4.10. The best fitness values are clearly minimized after two 

parents in all dimensions. 

The results for Michalewicz’s function, Equation 3.6, with three criterions are 

shown in Figure 4.11 and the details of best fitness for different dimensions are 

illustrated in Figure 4.12. The results for all dimensions are minimized equally at 8 

and 18 parents.  
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Figure 4.11 Average results of Michalewicz’s function in three criterions 

 

Figure 4.12 Results of best fitness in Michalewicz’s function  

 

The results for Easom’s function, Equation 3.7, with three criterions are shown 

in Figure 4.13 and the details of best fitness for different dimensions are illustrated in 

Figure 4.14. Using 20 parents totally minimized the best fitness in all dimensions. 
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Figure 4.13 Average results of Easom’s function in three criterions 

 

Figure 4.14 Results of best fitness in Easom’s function 

 

The results for Drop Wave function, Equation 3.8, with three criterions are 

shown in Figure 4.15 and the details of best fitness for different dimensions are 

illustrated in Figure 4.16. The best result of fitness values found at 14 parents in 10 

dimensions when the rest of dimensions, 20 to 90, did not minimize the fitness well. 
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Figure 4.15 Average results of Drop Wave function in three criterions 

 

Figure 4.16 Results of best fitness in Drop Wave function 

 

The results for Shubert’s function, Equation 3.9, with three criterions are 

shown in Figure 4.17 and the details of best fitness for different dimensions are 

illustrated in Figure 4.18. The results are minimized in all dimensions but not steady. 
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Figure 4.17 Average results of Shubert’s function in three criterions 

 

 

Figure 4.18 Results of best fitness in Shubert’s function 

 

 

The results for Rosenbert’s function, Equation 3.10, with three criterions are 

shown in Figure 4.19 and the details of best fitness for different dimensions are 

illustrated in Figure 4.20. The results in all dimensions are obviously minimized after 

using more than two parents. 
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Figure 4.19 Average results of Rosenbrock’s function in three criterions 

 

Figure 4.20 Results of best fitness in Rosenbrock’s function 

 

To sum up the experiment results in all test functions, the multi-parent genetic 

algorithm outperformed than the traditional genetic algorithm in most of the 

generalized test functions. The higher dimensions exploited the biggest achievement 

for the higher number of parents. Using high dimensions and large number of parents 

only effected within a tiny second of processing time. By ranking the probability of 

the best solutions found in each of the dimensions, the multi-parent genetic algorithm 

with 8 parents minimized more than other number of parents. 
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4.2 Multi-parent genetic algorithm with SBRS 

 

The second fold of the experiment is to investigate not only the effect of the 

number of parents in multi-parent genetic algorithm (MPGA) but also the number of 

different crossover points in the diagonal crossover operator, by solving the real-

world problem of the shuttle bus routing system (SBRS) from the Thammasat 

University (Rangsit Campus) in Thailand.  

In this experiments, two type of technique in the diagonal crossover operator 

are applied to investigate the effect of the number of parents in GAs. The first 

technique, the crossover chooses 𝑛 parents chromosomes from the mating pool to 

reproduce the new 𝑛 child chromosomes by using the n-1 crossover points in the 

multi-parent genetic algorithm. The second technique, the crossover reproduces the 

new 𝑛 child chromosomes by  𝑛 parents chromosomes where the different number of 

multiple crossover points increased up to 19 in both GAs. The main reason of those 

two approaches is to compare the effect of the same crossover points in both 

traditional genetic algorithm and the multi-parent genetic algorithm as a result of the 

previous experiment improved the multi-parent genetic algorithm with more 

crossover points rather than in the traditional genetic algorithm. 

The experiments run ten times to each of the different number of parents. The 

problem of SBRS is formulated as a minimization function as described in Equation 

3.11. The parameters for solving SBRS are listed in Table 4.2. 

 

Table 4.2: Parameter setting of MPGA for SBRS 

Names Parameters 

Number of Parents 2 − 20 

Initial Population (𝑷) 20, 100 𝑎𝑛𝑑 1000 

Chromosome Length 6𝑃 𝑏𝑖𝑡𝑠 

Mutation Rate (𝒑𝒎) 0.01 

Mating Pool Size 𝑃 + 0.5𝑃 

Penalty Value, 𝒌 100 
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For the termination of criterion for the problem, the genetic algorithms cease the 

routine of generations where the fitness value of the fittest solution found in the last 

20 consecutive generations are exactly same or the different values are less than 𝑒−8 

from the last generation. The performance of the multi-parent genetic algorithm 

measures according to the following three criteria: 

 The value of the fittest solution 

 The number of minimum missing stops. 

 The total amount of minimum running time. 

 

Table 4.3: Results of MPGA with different number of crossover points 

No of 

Parents Ave. Fitness 

Ave. Missed 

Stops 

Ave. 

Generations 

Ave. Time 

(sec) 

2 611.72 16.4 35.2 58.791 

4 522.88 11.7 31.6 56.389 

6 319.87 4.2 42.7 70.183 

8 267.25 2.8 48.8 84.776 

10 176.58 2.5 57.8 94.145 

12 53.729 0 58.5 111.14 

14 35.573 0 58.6 135.05 

16 34.924 0 86.6 144.85 

18 31.824 0 83.4 163.56 

20 30.658 0 84.8 188.37 

 

Table 4.3 shows that the experiment results in ten runs. The results are 

described as the average values from the results of ten runs. The fittest values of 

MPGA are dramatically optimized as long as the more number of parent 

chromosomes are extended from two parents. After using ten parents in MPGA, the 

algorithm covered all the missing bus. The result proof that using more parent in the 

multi-parent genetic algorithm covered every bus in all three routes. The rest of two 

criteria from the experiment shows that the diagonal crossover, the algorithms spend 

more on the running time for counting the generations. Nevertheless, the increasing 

amount of generations and processing time improved the genetic algorithms to have 

higher chance of delivering the better chromosomes into the mating pool for the next 

generation. 
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Table 4.4: Results of GA with different number of crossover points 

No of Crossover 

Points 

Ave. 

Fitness 

Ave. Missed 

Stops 

Ave. 

Generations 

Ave. 

Time 

(sec) 

1 640.86 16.1 36.6 65.104 

3 576.58 10.4 36.5 71.022 

5 578.32 14.7 36.3 72.911 

7 599.23 13.9 35.8 66.991 

9 611.89 9.5 35.8 57.273 

11 678.65 12.1 36.7 58.095 

13 619.33 14.6 33.3 52.806 

15 687.77 13.8 37.6 59.95 

17 699.32 16.9 32.5 51.763 

19 641.28 17 32.9 52.502 

 

The previous experiment shown the improvement of genetic algorithms by the 

first technique of the proposed diagonal crossover. In order to proof the better solution 

of SBRS in the multi-parent genetic algorithm rather than the traditional genetic 

algorithm, the same crossover points are used in both genetic algorithms. The result 

for the same number of crossover points are shown in Table 4.4. The fitness values 

for each number of parents show that the best fitness value of 19 parents did not 

minimize when comparing with best fitness value of two parents. After increasing the 

number of parents, the fitness values in 3, 5 and 7 parents are minimized but the 

others number of parents increased back to the minimum fitness value of two parents. 

As the effect of the results are unstable in the result of fitness, the number of missing 

bus stops for the traditional genetic algorithm are not stable until 19 parents. Several 

bus stops are missing in each number of parents in all genetic algorithms. The results 

of the last two criteria, the number of minimum generation and processing time, the 

experiment results show that the values are slightly decreased after using more 

parents. However, the values between the differences minimum number of 

generations did not significantly diverse in all genetic algorithms. The results 

confirmed that the more number of crossover points in the diagonal crossover 

operator did not improve the results in both GAs. 

The detail improvement of fitness results is emphasized for both traditional 

genetic algorithm and multi-parent genetic algorithm. The comparison is as shown in 
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Figure 4.21. The results obviously shown that the best fitness values of multi-parent 

genetic algorithm are minimized in the problem of SBRS. The comparison of the 

number of missing bus stops is shown in the Figure 4.22. After using 12 parents GA, 

the missing bus stops is empty up to 19 parents. Apparently, the classic two parents 

GA did not cover the destinations.   

 

 

Figure 4.21 Comparison of the best fitness in MPGA and GA 

 

 

Figure 4.22 The missing stops discovered in MPGA and GA 
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To encapsulate from the experiment results in GAs, we discovered that the 

proposed multi-parent genetic algorithm surpassed the traditional genetic algorithm in 

all the benchmark test functions in the first fold. For the second fold, the multi-paernt 

genetic algorithm outperformed the classic genetic algorithm by solving the problem 

of SBRS from the Thammasat University (Rangsit Campus). The bus routes are 

successfully minimized the distances between all the bus stops without keeping the 

number of missing bus stops. Whether the number of crossover points in the diagonal 

crossover are increased or not, the multi-parent genetic algorithm improves the 

solution better than the classic two parent genetic algorithm. 

 



 

 

45 

 

Chapter 5 

Conclusions 

 

 Genetic algorithm (GA) is a powerful search technique from the family of 

Evolutionary Algorithms (EAs). Many researchers have studied different type of 

genetic algorithms in the literature. Genetic algorithms are different from other 

optimization in variety of parameters, search by multiple search points, not 

derivatives and but stochastic. Genetic algorithms optimize the solutions by applying 

three major mechanisms: selection, crossover, and mutation. Since the crossover 

operator plays vital role in genetic algorithm, unlike the nature, a genetic algorithm 

with multi-parent reproduction method is proposed. 

 First, the experiment of multi-parent genetic algorithm (MPGA) for solving 

ten multimodal high dimension benchmark functions shows that using higher number 

of parents yielded better solution without taking much computation time in all of the 

test cases. The multi-parent genetic algorithm with higher number of dimensions 

improved better convergence with 𝑛 − 1 crossover points in diagonal crossover 

operator. 

 Second, for the performance of multi-parent genetic algorithm with the same 

crossover points in all number of parents, the multi-parent genetic algorithm with a 

real-world problem of the school bus routing system (SBRS) from Thammasat 

University (Rangsit Campus) is considered. The experiments confirmed that when 

comparing the same number of crossover points in the diagonal crossover operator for 

all number of parents, the proposed multi-parent genetic algorithm outperformed the 

traditional genetic algorithm. 

 Consequently, using more than two parents in genetic algorithm does improve 

the performance of genetic algorithm, but no optimal number of parents are not yet 

found. 

  

  



 

 

46 

 

 

References 

 

1.  Ahmed, Z.H. (2015). A Multi-parent Genetic Algorithm for the Quadratic 

Assignment Problems, OPSEARCH, vol. 52, No. 4, 2015, pp. 714-732. 

 

2. Braysy, O. and Gendreau, M. (2005). Vehicle Routing Problem with Time 

Windows, Part I: Route Construction and Local Search Algorithms, 

Transportation Science, vol. 39, pp. 104-118. 

 

3. Bently, P.J. (1999). Evolutionary Design by Computers, Morgan Kaufmann, 

San-Francisco. 

 

4. Ben Sghaier, S., Ben Guedria, N. and Mraihi, R. (2013). Solving School Bus 

Routing Problem with genetic algorithm, Advanced Logistics and Transport 

(ICALT), 2013 International Conference, Sousse, pp. 7-12. 

 

5. Back, T, Schwefel, H.-P. (1993). An Overview of Evolutionary Algorithms for 

Parameter Optimization, Evolutionary Computation 1 (1), 1-23. 

 

6. Dantzig, G.B. and Ramser, J.H. (1959). The Truck Dispatching Problem, 

Management Science, Vol. 6, No. 1, pp. 80-91. 

 

7. Das, S. and Suganthan, P.N. (2010). Problem Definitions and Evaluation 

Criteria for CEC 2011 Competition on Testing Evolutionary Algorithms on 

Real World Optimization Problems, Technical Report, Jadavpur University, 

Nanyang Technology University. 

 

8. Eiben, A.E., Raue, P-E., Ruttkay Zs. (1994). Genetic algorithms with multi-

parent recombination, Proceedings of the 3rd Conference on Parallel Problem 

Solving from Nature, LNCS 866, Springer-Verlab, 78-87. 

 



 

 

47 

 

9. Eiben, A.E., Van Kemenade C.H.M. and Kok, J.N. (1995). Orgy in the 

Computer: Multi-parent Reproduciton in Genetic Algorithms, Proceeding of 

the 3rd European Conference on Artificial Life, LNAI 929, Springer-Verlag, 

pp. 934-945. 

 

10. Eiben, A.E., van Kemenade C.H.M. (1997). Diagonal Crossover in genetic 

algorithms for numerical optimization, Control and Cybernetics, vol 26, No. 3. 

 

11. Elsayed, C.K., Saker, R.A., Essam, D.L. (2011). GA with a New Multi-parent 

Crossover for Solving Constrained Optimization, Evolutionary Computation 

(CEC), 2011 IEEE Congress, pp. 857-864. 

 

12. Edmondson, L.V. (1993). Genetic Algorithm with 3-parent crossover. 

University of Missouri/Rolla. 

 

13.  Goldberg, D.E. (1989). Genetic Algorithm in Search, Optimization, and 

Machine Learning (Addison-Wesley, Reading, Massachusetts, 1989). 

 

14. Holland, J.H. (1975). Adaption in Natural and Artificial Systems, University 

of Michigan Press, Ann Arbor, MI. 

 

15. James, I. (1835). Navigation and Nautical Astronomy, for the Use of British 

Seaman, C & J Rivington. 

 

16. Kenneth A. De Jong. (1795). An Analysis of the Behavior of a Class of 

Genetic Adaptive Systems, PhD thesis, Ann Arbor, MI, USA. 

 

17. Nazif, H. and Lee, L. (2010). Optimized Crossover Genetic Algorithm for 

Vehicle Routing Problem with Time Windows, American journal of applied 

sciences, vol. 7, pp. 95-101. 

 



 

 

48 

 

18. Molga, M., Smutnicki, C. (2005). Test functions for optimization needs, from 

http://www.rosenbertmarks.org/Classes/ENGR5358/Papers/functions.pdf 

19. Malhotra, R., Singh, N. & Singh, Y. (2011). Genetic Algorithms: Concepts, 

Design for Optimization of Process Controllers, Computer and Information 

Science, 4, 39-54. 

 

20. Yassen, E.T., Ayob, M., Nazri, M.Z.A., Sabar, N.R., (2012). Multi-parent 

insertion crossover for vehicle routing problem with time windows, 4th 

Conference on Data Mining and Optimization (DMO), Langkawi, Malaysia. 

 

21. Ben Sghaier, S., Ben Guedria, N. and Mraihi, R. (2013). Solving School Bus 

Routing Problem with genetic algorithm, Advanced Logistics and Transport 

(ICALT), 2013 International Conference, Sousse, pp. 7-12. 

http://www.rosenbertmarks.org/Classes/ENGR5358/Papers/functions.pdf


 

49 

 

Appendix 

List of Publications 

 

A.1 International Conference 

 

1. Seng Pan That Pann Phyu, Gun Srijuntongsiri, “Effect of the number of 

parents on the performance of multi-parent genetic algorithm”, Proceedings of 

the 11th 2016 International Conference on Knowledge, Information and 

Creativity Support Systems (KICSS2016), 2016, pp. 188-193. 

2. Seng Pan That Pann Phyu, Gun Srijuntongsiri, “A Binary Coded Multi-Parent 

Genetic Algorithm for Shuttle Bus Routing System in a College Campus”, 

Proceedings – 4th IGNITE Conference and the 2016 International Conference 

on Advanced Informatics: Concepts, Theory and Application (ICAICTA2016), 

201. 


