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ABSTRACT 

 

 The yield curve is the benchmark for investors. Change in yield curve will affect 

to the other market index. The primary focus of this paper is forecasting the yield curve 

in Thailand. There are many ways to predict the yield curve. One of the famous paper 

which outperformed many models is Diebold and Li (2006). They suggested using fixed 

lambda parameter in Nelson-Sigel (1987) for out-of-sample forecasting. In this paper, 

I compare fixed lambda parameter method and time-varying method. Moreover, this 

independent study is adopted fixed lambda method into Svensson (1994) model which 

is the extension model of Nelson-Siegel. The results show that fixed lambda method 

can apply to Svensson model. It improves out-of-sample forecasting of the yield curve 

at 5-10 years to maturities. Finally, I added inflation variable to improve forecasting 

model. Inflation can increase the accuracy of predicting model that have time to 

maturities more than five years. 

 

Keywords: Yield Curve, Forecasting, Nelson-Siegel model, Svensson model 
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CHAPTER 1 

INTRODUCTION 

 

 There are many market indexes in financial markets. One of the major market 

indexes is yield curve. Yield curve or term structure is a return on a zero-coupon bond 

issued by the government at the different maturities. Because of trustworthy and reliable 

in government, investors consider these treasury securities as risk-free. Yield curve 

becomes the minimum requirement of return or benchmark in debt market for the 

investor. The change in yield curve affects directly to fixed-income market. Spot curve 

also contains the information about the economic condition. The yield curve shape can 

be interpreted market condition such as the recession. 

 The popular method for construction the yield curve are interpolation and 

regression. First, spline interpolation is the acceptable method for plotting yield curve. 

This method is about connecting point-to-point with spline line. In earlier, linear spline 

and quadratic spline have a significant error. McCulloch (1975) improved the model to 

the 3rd order called cubic spline interpolation. Cubic spline interpolation can fit the yield 

curve smoothly. However, cubic spline method generates downward sloping at long 

maturities when the discount shape is flat. This lead to a significant error at long 

maturities. 

 Another type for plotting the yield curve is the regression. The acceptable 

regression model for yield curve is Nelson-Siegel (1987) model. Nelson-Siegel model 

is known as a best fitting model for yield curve and easy to use for the ordinary investor. 

Svensson (1994) improved this model by adding hump parameter to the formula to 

allow the model to be able to generate more than one hump shape in the yield curve. 

Therefore, Svensson model enhances flexibility in medium and long maturity. 

 Forecasting of the yield curve in Thailand is the primary focus of this paper. 

The data come from ThaiBMA from July 2001 to December 2015. One of the famous 

paper which outperformed many models is Diebold and Li (2006). They studied the 

forecast model and found that fixed lambda in Nelson-Siegel model can significantly 

use for forecasting yield curve. Lorenčič (2016) compared between cubic spline 

interpolation and Nelson-Siegel model. Lorenčič (2016) found that Nelson-Siegel 
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model gives more accurate result in long maturity. Ullah (2013) found that fixed lambda 

in Nelson-Siegel model can apply in Japan. Pongpit (2007) also predicted the yield 

curve in Thailand with fixed lambda in Nelson-Siegel model. He found that fixed 

lambda method in Nelson-Siegel model works very well in Thailand. 

 Since Nelson-Siegel model can apply in Thailand, I will study based on Nelson-

Siegel model and Svensson model. First, I compare between time-varying lambda 

parameter method and fixed lambda parameter method. In in-sample estimation model, 

lambda (decay time) in Nelson-Siegel can vary to get the least sum of squared errors. 

Fixing the lambda in in-sample estimation model lead to higher error. However, 

Diebold and Li (2006) suggested using fixed lambda method instead of time-varying 

lambda in out-of-sample forecasting model to enhance simplicity. The first question of 

this paper is whether fixed lambda method is better than time varying lambda in the 

case of the forecasting model. I found that time-varying lambda parameter method is 

not the appropriate method for forecasting model. 

 Second, I compare between Nelson-Siegel model and Svensson model 

(extension of Nelson-Siegel model). In in-sample estimation model, Svensson model 

has less sum square error than Nelson-Siegel model. Svensson model is a better model 

than Nelson-Siegel model in terms of estimation model but there is not a conclusion 

that it is the better model in terms of the out-of-sample forecasting model. The second 

question is whether Svensson model is better than Nelson-Siegel model in the case of 

the forecasting model. I applied fixed lambda method with Svensson model. I found 

that Svensson model has the sum of squared errors of entire curve less than Nelson-

Siegel model. However, Nelson-Siegel model is better at some specific maturities. 

 Finally, I aim to improve the forecasting power of the model by adding control 

variable. The yield curve comes from government’s Treasury securities so there is no 

credit risk. Treasury securities are the most active product in debt market, so their 

liquidity is very high. The risk that will drive the yield curve is the domestic economic 

risk. For domestic economic, the yield curve will change directly from policy rate. 

However, I avoid using policy rate because there is mismatch about the frequency of 

data. Typically, Policy rate in Thailand announce every 6-7 weeks or 8 times per year. 

Error from interpolation frequency of data to monthly will lead to error in predicting 

yield curve. I used inflation to capture the change in domestic economic. Policymaker 
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usually announces policy rate to slow down or stimulate the economy and their decision 

depends on inflation. The addition benefit from using inflation is the information of 

purchasing power in the country. The bond market will act and force the long-term 

yields due to inflation. I concern the global economic risk such as the spread of U.S 

Treasury securities and VIX index. According to Table 14, I found that these two 

variables are not significant and do not correlate with the yield curve in Thailand. I use 

month-to-month CPI in Thailand as the proxy for domestic inflation. The third question 

is whether this variable can significantly improve forecasting power. This data is at the 

end of the month from July 2001 to December 2015. I found that inflation increases the 

accuracy of the out-of-sample forecasting model for the long maturities. 
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CHAPTER 2 

THEORETICAL FRAMEWORK 

 

 Yield curve or term structure show the relation between zero-coupon bond and 

time to maturity. The zero-coupon bond is treasury securities issued by the government, 

so it is considered as risk-free. We will use the latest Treasury or on-the-run Treasury 

securities to construct the yield curve. Stripped bond or coupon Treasury securities can 

be used to plot the yield of long maturities. 

 There are many ways to construct the yield curve. As mention in the 

introduction, this paper will focus on Nelson-Siegel model and Svensson model. I use 

a formula that factorizes from nominal forward rate Nelson-Siegel (1987). 

 
𝑌𝑡(𝑇) = 𝛽1,𝑡 + 𝛽2,𝑡 (

1 − 𝑒−𝑇.𝜆1,𝑡

𝑇. 𝜆1,𝑡
) + 𝛽3,𝑡 (

1 − 𝑒−𝑇.𝜆1,𝑡

𝑇. 𝜆1,𝑡
− 𝑒−𝑇.𝜆1,𝑡)     

(1) 

Where 

 𝑌𝑡  = Spot rate 

 𝜆1 = Decay time or partial adjusted of time 

𝑇  = Time to maturity 

I vary the time of maturity as follow to analysis the beta of Nelson-Siegel model. 

 lim
𝑇→∞

𝑌(𝑡) =  𝛽1  (2) 

 lim
𝑇→0

𝑌(𝑡) =  𝛽1 + 𝛽2 (3) 

 𝑌∞(𝑡) − 𝑌0(𝑡) =  −𝛽2 (4) 

I vary time to maturity into infinity to see the long-term effect and zero to see a 

short-term effect. When the time to maturity approach to infinity in Nelson-Siegel 

model, there is only 𝛽1 left. If the time to maturity is close to zero in Nelson-Siegel 

model, there are 𝛽1 and 𝛽2 left. Therefore, 𝛽1 will determine the level of the entire yield 

curve. 𝛽2 is a difference between long term and short term effect so that 𝛽2 can be 

identified as the slope. 𝛽3 will determine the curvature of the yield curve which affects 

only the medium term.  
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In sum, 

 𝛽1= Level of yield curve 

 𝛽2= Slope of yield curve 

𝛽3= Curvature of yield curve 

 Nelson-Siegel model is simplicity model and can best fit with the various shape 

of the yield curve. However, Nelson-Siegel can produce only one hump shape in the 

yield curve. Svensson (1995) improved Nelson-Siegel model to enhance flexibility. 

𝑌𝑡(𝑇) = 𝛽1,𝑡 + 𝛽2,𝑡 (
1 − 𝑒−𝑇.𝜆1,𝑡

𝑇. 𝜆1,𝑡
) + 𝛽3,𝑡 (

1 − 𝑒−𝑇.𝜆1,𝑡

𝑇. 𝜆1,𝑡
− 𝑒−𝑇.𝜆1,𝑡)  

+ 𝛽4,𝑡 (
1 − 𝑒−𝑇.𝜆2,𝑡

𝑇. 𝜆2,𝑡
− 𝑒−𝑇.𝜆2,𝑡) 

(5) 

Where 

 𝑌𝑡  = Spot rate 

 𝜆1 = First decay time 

 𝜆2 = Second decay time 

𝑇  = Time to maturity 

 𝛽1= Level of yield curve 

 𝛽2= Slope of yield curve 

𝛽3= Curvature of yield curve 

𝛽4= Hump of yield curve 

Svensson added parameters to improve flexibility in medium maturities. 

Therefore, his model can generate more than one hump. Nowadays, the central bank of 

many countries such as Germany, France, Switzerland, and etcetera use Svensson model. 
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CHAPTER 3 

METHODOLOGY 

 

 The data is end-of-month yield curve provided by ThaiBMA since July 2001 to 

December 2015. The time to maturity of the yield curve in each period is 1 month to 

16 years. 

Table 3.1: Descriptive statistics, yield curve from July 2001–December 2015 

Maturity Mean Std. dev. Minimum Maximum 

1 2.357 1.043 0.901 5.007 

3 2.417 1.033 1.024 5.029 

6 2.502 1.027 1.057 5.192 

12 2.603 1.033 1.069 5.288 

24 2.862 1.045 1.214 5.478 

36 3.089 1.007 1.434 5.625 

48 3.339 0.946 1.514 5.933 

60 3.549 0.936 1.617 6.151 

72 3.772 0.909 1.769 6.417 

84 3.964 0.901 1.947 6.600 

96 4.096 0.929 2.112 6.635 

108 4.199 0.954 2.293 6.716 

120 4.328 0.983 2.565 6.888 

132 4.479 1.013 2.550 6.966 

144 4.576 0.999 2.741 7.029 

156 4.649 0.991 2.912 7.174 

168 4.712 1.001 2.965 7.383 

180 4.785 1.004 3.070 7.551 

192 4.875 0.989 3.206 7.671 
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Figure 3.1: Monthly Yield Curve in Thailand during July 2001–December 2015 

 

I forecast yield curve based on Nelson-Siegel and Svensson model. First, we 

must regress yield curve with Nelson-Siegel and Svenson model to get parameters for 

predicting. 

Nelson-Siegel model: 

 
𝑌𝑡(𝑇) = 𝛽1,𝑡 + 𝛽2,𝑡 (

1 − 𝑒−𝑇.𝜆1,𝑡

𝑇. 𝜆1,𝑡
) + 𝛽3,𝑡 (

1 − 𝑒−𝑇.𝜆1,𝑡

𝑇. 𝜆1,𝑡
− 𝑒−𝑇.𝜆1,𝑡)   (6) 

Svensson model: 

𝑌𝑡(𝑇) = 𝛽1,𝑡 + 𝛽2,𝑡 (
1 − 𝑒−𝑇.𝜆1,𝑡

𝑇. 𝜆1,𝑡
) + 𝛽3,𝑡 (

1 − 𝑒−𝑇.𝜆1,𝑡

𝑇. 𝜆1,𝑡
− 𝑒−𝑇.𝜆1,𝑡) 

+ 𝛽4,𝑡 (
1 − 𝑒−𝑇.𝜆2,𝑡

𝑇. 𝜆2,𝑡
− 𝑒−𝑇.𝜆2,𝑡) 

(7) 

Normally, these 2 model can be estimated with nonlinear least squares so that 

all parameters from estimation will vary over the time. Diebold and Li (2006) suggested 

using fixed lambda to enhance simplicity. They apply fixed lambda because they can 

use ordinary least square (OLS) instead of nonlinear least squares. 
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The fixed lambda come from trial several numbers to find the minimum sums 

of squared error. Diebold and Li (2006) set the lambda to 0.0609 which determine from 

maximized medium term (
1−𝑒−𝑇.𝜆1,𝑡

𝑇.𝜆1,𝑡
− 𝑒−𝑇.𝜆1,𝑡) at the 30-month time to maturity.  

I apply the same practical to find the appropriated lambda for Svensson model. 

I fix 𝜆1 = 0.0609 and trial 𝜆2 to optimize square error in estimation model. I discover 

that 𝜆1 = 0.0609 𝑎𝑛𝑑 𝜆2 = 0.03985 give the best fit in estimation. 𝜆2 = 0.03985 is 

determined from maximized medium term (
1−𝑒−𝑇.𝜆1,𝑡

𝑇.𝜆1,𝑡
− 𝑒−𝑇.𝜆1,𝑡) at the 45-month time 

to maturity. 

Table 3.2: Summary of estimation method 

Model 
Parameters for 

Estimating 
Estimation Method 

Time-varying lambda in Nelson-

Siegel 
𝛽1,𝑡, 𝛽2,𝑡, 𝛽3,𝑡, 𝜆1,𝑡 

Non-linear least 

square 

Time-varying lambda in Svensson 
𝛽1,𝑡, 𝛽2,𝑡, 𝛽3,𝑡, 𝛽4,𝑡, 

𝜆1,𝑡, 𝜆2,𝑡 

Non-linear least 

square 

Fixed lambda in Nelson-Siegel 
𝛽1,𝑡, 𝛽2,𝑡, 𝛽3,𝑡  

 𝜆1,𝑡 = 0.0609 
OLS 

Fixed lambda in Nelson-Siegel 

𝛽1,𝑡, 𝛽2,𝑡, 𝛽3,𝑡 , 𝛽4,𝑡 

 𝜆1,𝑡 = 0.0609 

 𝜆2,𝑡 = 0.03985 

OLS 

 After regression, I obtain the parameters as the same as Table (2) and use it for 

forecasting. I predict out-of-sample with AR (1) for 1-month-ahead forecasting and 

VAR (1) for 6-month-ahead forecasting and 12-month-ahead forecasting. The forecast 

period is January 2013 to December 2015 (36 months). The forecasting horizon is 1 

month, 6 months and 12 months. 

Where AR (1) process 

 �̂�𝑖,𝑡+ℎ/𝑡 = �̂�𝑖 + Ɵ̂�̂�𝑖,𝑡        i = 1,2,3, (8) 



Ref. code: 25595802042167QAURef. code: 25595802042167QAU

9 

 

 

The example for AR (1) of Time-varying lambda in Nelson-Siegel is below. 

 �̂�1,𝑡 = �̂�1 +  Ɵ̂�̂�1,𝑡−1 (9) 

 �̂�2,𝑡 = �̂�2 +  Ɵ̂�̂�2,𝑡−1 (10) 

 �̂�3,𝑡 = �̂�3 +  Ɵ̂�̂�3,𝑡−1 (11) 

 �̂�1,𝑡 = �̂�4 +  Ɵ̂�̂�1,𝑡−1 (12) 

Where VAR (1) process 

 �̂�𝑡+ℎ/𝑡 = �̂� + Ɵ̂�̂�𝑡   (13) 

The example for VAR (1) of Time-varying lambda in Svenson is below. 

 

[
 
 
 
 
 
 
 
�̂�1,𝑡

�̂�2,𝑡

�̂�3,𝑡

�̂�4,𝑡

𝜆1,𝑡

𝜆2,𝑡]
 
 
 
 
 
 
 

= 

[
 
 
 
 
 
�̂�1

�̂�2

�̂�3

�̂�4

�̂�5

�̂�6]
 
 
 
 
 

+ [
Ɵ̂1,1 ⋯ Ɵ̂1,6

⋮ ⋱ ⋮
Ɵ̂6,1 … Ɵ̂6,6

]

[
 
 
 
 
 
 
 
�̂�1,𝑡−1

�̂�2,𝑡−1

�̂�3,𝑡−1

�̂�4,𝑡−1

𝜆1,𝑡−1

𝜆2,𝑡−1]
 
 
 
 
 
 
 

 (14) 

After forecasting, I obtain forecasting parameters for 36 months. I substitute the 

forecasting parameters back into Nelson-Siegel and Svensson model to get the 

forecasting yields. This paper will be used the root mean square error (RMSE) to test 

the forecasting. The model that have the RMSE value lower is more accurate. 

 

𝑅𝑀𝑆𝐸 = √
∑ (�̂�𝑡(𝑇) − 𝑌𝑡(𝑇))2𝑛

𝑡=1

𝑛
 (15) 

 

Table 3.3: RMSE for entire yield curve at 1-month forecasting horizon 

Model RMSE 

Fixed lambda in Nelson-Siegel with AR (1) 0.0418 

Time-Varying lambda in Nelson-Siegel with AR (1) 0.1443 
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Fixed lambda in Svensson with AR (1) 0.0390 

Time-Varying lambda in Svensson with AR (1) 443.9416 

 

Table 3.4: RMSE for major maturities of yield curve at 1-month forecasting horizon 

Maturities Mean Std. Dev. RMSE 

Fixed lambda in Nelson-Siegel with AR (1)  
1 Year 2.1641 0.4375 0.0081 

2 Years 2.3441 0.4569 0.0210 

3 Years 2.5947 0.4610 0.0290 

5 Years 3.0456 0.4589 0.0474 

10 Years 3.6377 0.4595 0.0713 

Time-Varying lambda in Nelson-Siegel with AR (1) 

1 Year 2.3474 0.3994 0.0642 

2 Years 2.5381 0.4357 0.0995 

3 Years 2.7459 0.4540 0.1026 

5 Years 3.1363 0.4627 0.1075 

10 Years 3.8146 0.4154 0.2109 

Fixed lambda in Svensson with AR (1)  

1 Year 2.2550 0.4223 0.0251 

2 Years 2.4174 0.4323 0.0421 

3 Years 2.6062 0.4448 0.0359 

5 Years 2.9733 0.4682 0.0338 

10 Years 3.6000 0.4574 0.0603 

Time-Varying lambda in Svensson with AR (1) 

1 Year -9.9286 4.2775 161.6067 

2 Years -16.7471 4.7825 382.8518 

3 Years -20.3889 4.0197 538.0470 

5 Years -22.7029 2.3745 662.6881 

10 Years -19.3354 4.8295 542.4400 

 

Table 3.5: RMSE for entire yield curve at 6-month forecasting horizon 

Model RMSE 

Fixed lambda in Nelson-Siegel with VAR (1) 0.0428 

Time-Varying lambda in Nelson-Siegel with VAR (1) 0.1912 

Fixed lambda in Svensson with VAR (1) 0.0398 

Time-Varying lambda in Svensson with VAR (1) 6.7454 
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Table 3.6: RMSE for major maturities of yield curve at 6-month forecasting horizon 

Maturities Mean Std. Dev. RMSE 

Fixed lambda in Nelson-Siegel with VAR (1)  
1 Year 2.0531 0.4931 0.0176 

2 Years 2.2599 0.4997 0.0162 

3 Years 2.5362 0.4901 0.0178 

5 Years 3.0267 0.4660 0.0412 

10 Years 3.6663 0.4405 0.0858 

Time-Varying lambda in Nelson-Siegel with VAR (1) 

1 Year 2.2388 0.4624 0.0261 

2 Years 2.4651 0.4691 0.0602 

3 Years 2.7067 0.4664 0.0753 

5 Years 3.1555 0.4532 0.1090 

10 Years 3.9230 0.4060 0.3003 

Fixed lambda in Svensson with VAR (1)  
1 Year 2.1193 0.4799 0.0100 

2 Years 2.3179 0.4818 0.0188 

3 Years 2.5372 0.4757 0.0163 

5 Years 2.9493 0.4666 0.0311 

10 Years 3.6319 0.4330 0.0740 

Time-Varying lambda in Svensson with VAR (1) 

1 Year 5.2041 0.9806 10.7788 

2 Years 5.2479 0.9817 10.3038 

3 Years 5.2625 0.9821 9.2374 

5 Years 5.2742 0.9824 7.2616 

10 Years 5.2830 0.9826 5.1714 

 

Table 3.7: RMSE for entire yield curve at 12-month forecasting horizon 

Model RMSE 

Fixed lambda in Nelson-Siegel with VAR (1) 0.0439 

Time-Varying lambda in Nelson-Siegel with VAR (1) 0.1974 

Fixed lambda in Svensson with VAR (1) 0.0412 

Time-Varying lambda in Svensson with VAR (1) 6.6872 
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Table 3.8: RMSE for major maturities of yield curve at 12-month forecasting horizon 

Maturities Mean Std. Dev. RMSE 

Fixed lambda in Nelson-Siegel with VAR (1)  
1 Year 2.0517 0.4900 0.0174 

2 Years 2.2605 0.4963 0.0162 

3 Years 2.5385 0.4875 0.0181 

5 Years 3.0312 0.4652 0.0429 

10 Years 3.6732 0.4421 0.0888 

Time-Varying lambda in Nelson-Siegel with VAR (1) 

1 Year 2.2376 0.4651 0.0266 

2 Years 2.4659 0.4725 0.0594 

3 Years 2.7099 0.4696 0.0761 

5 Years 3.1631 0.4548 0.1122 

10 Years 3.9368 0.4041 0.3116 

Fixed lambda in Svensson with VAR (1)  
1 Year 2.1174 0.4759 0.0096 

2 Years 2.3192 0.4782 0.0189 

3 Years 2.5401 0.4729 0.0170 

5 Years 2.9539 0.4661 0.0317 

10 Years 3.6396 0.4367 0.0771 

Time-Varying lambda in Svensson with VAR (1) 

1 Year 5.1933 1.0041 10.6942 

2 Years 5.2370 1.0052 10.2127 

3 Years 5.2516 1.0056 9.1492 

5 Years 5.2633 1.0059 7.1982 

10 Years 5.2720 1.0061 5.1238 

According to the Table (3) – (8), it can be concluded that fixed lambda 

parameter in the model is the better method than varying lambda parameter in the 

model. Varying in lambda parameters is not the appropriate method for Svensson 

model. Because the lambda also affects to the slope and curvature factor in Nelson-

Siegel formula. Error from forecasting in lambda will impact to the entire yield curve. 

Therefore, fixed lambda method is more appropriate in the case of prediction. 

 I compare Nelson-Siegel and Svensson that fix lambda parameter due to result 

in the last paragraph. RMSE for the entire yield curve from Svensson model less than 

Nelson-Siegel so that Svensson model is a better model in the overall term. However, 

Nelson-Siegel model is the better model for 2 years to maturity and 12-15 years to 
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maturities. Svensson model has hump parameter. This parameter makes model more 

flexibility and less error in term of forecasting at overall. 

 I add more variables to increase forecasting power. The variable that I select for 

this study must affect the yield curve movement in the future. The movement of the 

yield curve can change by the risk associated with Treasury securities. Government 

issue treasury securities. Treasury securities are the most active in debt market. 

Therefore, there is no proxy for credit risk and liquidity risk. The remainder of risk 

associated is the domestic economic risk. I select Thailand’s inflation to control 

variable. If expected inflation is upward, the market will force yield of long-term bond 

to increase. Therefore, the level of yield curve should have the positive correlation with 

inflation. Policymaker will increase policy rate to slow down the economic and prevent 

hyperinflation. Increasing the policy rate will step up the short-term interest rate so that 

slope and inflation should have the opposite sign of correlation. The model for 

forecasting is fixed lambda parameters in Nelson-Siegel and Svensson model due to the 

result of the first and second question. The forecasting method is VAR because VAR 

method can be added the other variables. The out-of-sample forecasting horizons is 6 

months and 12 months.  

[
 
 
 
 �̂�1,𝑡

�̂�2,𝑡

�̂�3,𝑡

�̂�4,𝑡]
 
 
 
 

= [

    0.707 
−0.693 
−0.209 
−0.888 

] + [

   0.842    0.035 −0.040 0.282
   0.137    0.843    0.144 0.140
   0.216     0.121    0.928 0.151
−0.103 −0.230    0.010  0.797

]

[
 
 
 
 �̂�1,𝑡−1

�̂�2,𝑡−1

�̂�3,𝑡−1

�̂�4,𝑡−1]
 
 
 
 

+ 

[

   0.282
−0.245
   0.234
−0.085

]  𝐼𝑛𝑓𝑙𝑎𝑡𝑖𝑜𝑛𝑡−1 

(16) 

 The equation (14) is the result of Svensson model with VAR (1). The period of 

data for regression is June 2003 to June 2015. The signs of coefficient among inflation, 

level, and slope parameter are the same as expected. 
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Table 3.9: RMSE for entire yield curve at 6-month forecasting horizon with VAR (1) 

and control variable 

Model RMSE 

Nelson-Siegel with VAR (1) + control variable 0.0352 

Svensson with VAR (1) + control variable 0.0322 

 

Table 3.10: RMSE for major maturities of yield curve at 6-month forecasting horizon 

with VAR (1) and control variable 

Maturities Mean Std. Dev. RMSE 

Nelson-Siegel with VAR (1) + control variable 

1 Year 2.0272 0.4995 0.0242 

2 Years 2.2252 0.5096 0.0206 

3 Years 2.4972 0.5026 0.0178 

5 Years 2.9845 0.4819 0.0295 

10 Years 3.6231 0.4597 0.0642 

Svensson with VAR (1) + control variable 

1 Year 2.0891 0.4826 0.0118 

2 Years 2.2779 0.4872 0.0176 

3 Years 2.4928 0.4836 0.0152 

5 Years 2.9019 0.4778 0.0263 

10 Years 3.5836 0.4475 0.0544 

 

Table 3.11: RMSE for entire yield curve at 12-month forecasting horizon with VAR (1) 

and control variable 

Model RMSE 

Nelson-Siegel with VAR (1) + control variable 0.0351 

Svensson with VAR (1) + control variable 0.0327 

 

Table 3.12: RMSE for major maturities of yield curve at 6-month forecasting horizon 

with VAR (1) and control variable 

Maturities Mean Std. Dev. RMSE 

Nelson-Siegel with VAR (1) + control variable 

1 Year 2.0231 0.5004 0.0247 

2 Years 2.2222 0.5112 0.0205 

3 Years 2.4954 0.5053 0.0171 

5 Years 2.9846 0.4865 0.0300 

10 Years 3.6254 0.4662 0.0641 
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Table 3.12: (Continued) 

Maturities Mean Std. Dev. RMSE 

Svensson with VAR (1) + control variable 

1 Year 2.0841 0.4824 0.0119 

2 Years 2.2752 0.4882 0.0172 

3 Years 2.4913 0.4854 0.0147 

5 Years 2.9021 0.4812 0.0266 

10 Years 3.5866 0.4549 0.0551 

The result in the Table (5) - (12) interpret that this inflation improves the 

forecasting power of Nelson-Siegel and Svensson model in the overall term. Adding 

inflation in Nelson-Siegel model does not improve accuracy when predicting yields of 

1 year and 2 years to maturities. This control variable also does not help when predicting 

with Svensson model at 1 year and 4 years to maturities. Inflation variable can improve 

the forecasting power of yield curve when time to maturity is more than 5 years. In 

sum, the inflation contains information about bond market’s force in long-term interest 

and can be used to increase forecasting power of both models. 
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CHAPTER 4 

CONCLUSION 

 

 I predict the out-of-sample forecasting yield curve with Nelson-Siegel and 

Svensson model. I adopt dynamic formula of Nelson-Siegel model and fix lambda 

parameter method from Diebold and Li (2006). The benefit from using fixed lambda 

method are simplicity and stability. Typically, Nelson-Siegel can be varied lambda 

parameter, and its results are more accurate than results from fixed lambda method in 

term of in-sample estimation. I compare these two methods and found that fixed lambda 

parameter is more accurate in the case of out-of-sample forecasting. Error from 

forecasting lambda spread to other parameters such as level, slope, and curvature. I 

adapted fixed lambda method into the Svensson model. Svensson model is an extension 

model from original Nelson-Siegel model by adding hump parameter. The yield curve 

that plot with Svensson model can have more hump shape. Svensson model also has 

fewer sums of squared errors in term of in-sample estimation. I compared Nelson-Siegel 

model and Svensson model with fixed lambda method in the case of out-of-sample 

forecasting. Svensson model is more accurate than Nelson model in the overall term. 

For 6-month to 2-years of time to maturities, Nelson-Siegel is more accurate than 

Svensson model. In sum, Nelson-Siegel is better at some particular points of maturities, 

but Svensson model is better in the overall term. Hump parameter in Svensson model 

improves forecasting in the medium term of the yield curve. I added inflation as a 

control variable to forecasting model. Inflation variable can improve the forecasting 

power of yield curve when time to maturity is more than 5 years for Nelson-Siegel and 

Svensson model. Generally, yields of the long-term bond vary depending on market’s 

perspective. The market will force yield higher if inflation is high, so inflation improves 

the accuracy of yield in long maturities.   

 In sum, the movement of the yield curve is not a random walk. We can forecast 

the yield curve with its lagged term. We can apply Nelson-Siegel and Svensson model 

with fixed lambda method to predict the yield curve. Policymaker can implement this 

forecasting to see the movement of long maturities. They can use this forecasting and 

fundamental data to manipulate policy rate which affects to fund flow in the country. 
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For the further research, I suggest finding a method that allows lambda to change over 

the time without losing stability of beta, adding control variable that increases the 

accuracy of forecasting model in short maturities and applying this method to the 

investment strategies. 
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APPENDIX A 

OUT-OF-SAMPLE FORECASTING WITH  

AUTOREGRESSIVE MODEL 

 

In this study is applied autoregressive model (AR) to forecast the yield curve. 

First, check the serial correlation among their lag term with autocorrelation function in 

figure (A.1). After that, identifying the number of lagging time for the autoregressive 

model with partial autocorrelation function in figure (A.2). Finally, plotting the 

forecasting result with 95% confidential interval and reality which is useful to 

determine suitable horizontal. 
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Figure A.1: Autocorrelation function for level, slope, curvature, hump, lambda1 and 

lambda2 

(level) (Slope) 

(Curvature) 
(Hump)

 

(lambda1)

 

(lambda2)

 

According to Figure (A.1), There are the dynamic correlation with their lagging 

term.  
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Figure A.2: Partial autocorrelation function for level, slope, curvature, hump, lambda1 

and lambda2. 

(level) (Slope) 

(Curvature) (Hump)

 

(lambda1)

 

(lambda2)

 

According to Figure (A.2), 1-period lagging term is appropriate. 
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Figure A.3: Forecasting result of fixed lambda parameter in Nelson-Siegel model for 

1-month forecasting horizon  

(1-year maturity)

 

(2-year maturity)

 

(3-year maturity)

 

(5-year maturity)

 

(10-year maturity) 
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Figure A.4: Forecasting result of fixed lambda parameter in Nelson-Siegel model for 

6-month forecasting horizon 

(1-year maturity)

 

(2-year maturity)

 

(3-year maturity)

 

(5-year maturity)

 

(10-year maturity) 
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Figure A.5: Forecasting result of fixed lambda parameter in Svensson model for 1-

month forecasting horizon  

(1-year maturity)

 

(2-year maturity)

 

(3-year maturity)

 

(5-year maturity)

 

(10-year maturity) 
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Figure A.6: Forecasting result of fixed lambda parameter in Svensson model for 6-

month forecasting horizon  

(1-year maturity)

 

(2-year maturity)

 

(3-year maturity)

 

(5-year maturity)

 

(10-year maturity) 
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APPENDIX B 

OUT-OF-SAMPLE FORECASTING WITH VECTOR 

AUTOREGRESSIVE MODEL 

 

In this study is applied vector autoregressive model (VAR) to add more control 

variable into the forecasting model. As mention in the introduction, I add the proxy for 

the domestic economic risk in table (B.1). The global financial risks are included in 

table (B.2) 
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Table B.1: Example result from Svensson model with VAR (1). ( 1st parameter = 

level, 2nd  parameter = slope, 3rd  parameter = curvature, 4th parameter = hump, 5th 

parameter = inflation) 

Parameter Value Std. Error t-Statistic 

Constant (1) 0.7067 0.2326 3.0385 

Constant (2) -0.6933 0.2397 -2.8921 

Constant (3) -0.2089 0.7828 -0.2669 

Constant (4) -0.8876 0.9436 -0.9407 

Constant (5) 0.1416 0.0419 3.3809 

1-Lag       

Coefficient (1,1) 0.8416 0.0547 15.3810 

Coefficient (1,2) 0.0354 0.0491 0.7221 

Coefficient (1,3) -0.0403 0.0323 -1.2482 

Coefficient (1,4) -0.0546 0.0282 -1.9362 

Coefficient (1,5) 0.2822 0.0868 3.2494 

Coefficient (2,1) 0.1370 0.0564 2.4298 

Coefficient (2,2) 0.8433 0.0506 16.6782 

Coefficient (2,3) 0.1438 0.0333 4.3158 

Coefficient (2,4) 0.1407 0.0291 4.8402 

Coefficient (2,5) -0.2460 0.0893 -2.7546 

Coefficient (3,1) 0.2164 0.1842 1.1749 

Coefficient (3,2) 0.1210 0.1651 0.7325 

Coefficient (3,3) 0.9276 0.1088 8.5248 

Coefficient (3,4) 0.1509 0.0949 1.5897 

Coefficient (3,5) 0.2336 0.2905 0.8041 

Coefficient (4,1) -0.1027 0.2220 -0.4624 

Coefficient (4,2) -0.2299 0.1991 -1.1552 

Coefficient (4,3) 0.0102 0.1312 0.0780 

Coefficient (4,4) 0.7967 0.1144 6.9642 

Coefficient (4,5) -0.0851 0.3504 -0.2430 

Coefficient (5,1) 0.0000     

Coefficient (5,2) 0.0000     

Coefficient (5,3) 0.0000     

Coefficient (5,4) 0.0000     

Coefficient (5,5) 0.3522 0.0818 4.3069 
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Table B.2: Example result from Svensson model with VAR (1). ( 1st parameter = level, 

2nd  parameter = slope, 3rd  parameter = curvature, 4th parameter = hump, 5th parameter 

= inflation, 6th parameter = spread of 10 years and 2 years in US. Treasury, 7th parameter 

= VIX index) 

Parameter Value Std. Error t-Statistic 

Constant (1) 0.7221 0.2842 2.5407 

Constant (2) -0.8898 0.3024 -2.9422 

Constant (3) -0.2221 1.0267 -0.2163 

Constant (4) -0.3161 1.2800 -0.2470 

Constant (5) 0.1621 0.0430 3.7714 

Constant (6) 0.0007 0.0173 0.0407 

Constant (7) -0.0374 0.4229 -0.0883 

1-Lag    

Coefficient (1,1) 0.8713 0.0629 13.8473 

Coefficient (1,2) 0.0499 0.0600 0.8317 

Coefficient (1,3) -0.0555 0.0350 -1.5853 

Coefficient (1,4) -0.0433 0.0275 -1.5763 

Coefficient (1,5) 0.2697 0.1090 2.4748 

Coefficient (1,6) -0.1122 0.2502 -0.4485 

Coefficient (1,7) 0.0059 0.0105 0.5587 

Coefficient (2,1) 0.1223 0.0670 1.8265 

Coefficient (2,2) 0.8208 0.0638 12.8624 

Coefficient (2,3) 0.1468 0.0372 3.9439 

Coefficient (2,4) 0.1116 0.0292 3.8195 

Coefficient (2,5) -0.2183 0.1155 -1.8893 

Coefficient (2,6) 0.1817 0.2642 0.6875 

Coefficient (2,7) -0.0030 0.0111 -0.2717 

Coefficient (3,1) 0.2977 0.2274 1.3090 

Coefficient (3,2) 0.2873 0.2167 1.3259 

Coefficient (3,3) 0.7456 0.1264 5.8966 

Coefficient (3,4) 0.0493 0.0993 0.4971 

Coefficient (3,5) 0.2636 0.3930 0.6708 

Coefficient (3,6) -0.1460 0.8876 -0.1645 

Coefficient (3,7) -0.0500 0.0374 -1.3359 

Coefficient (4,1) -0.3008 0.2835 -1.0609 

Coefficient (4,2) -0.3987 0.2701 -1.4757 

Coefficient (4,3) 0.2701 0.1576 1.7134 

Coefficient (4,4) 0.9377 0.1237 7.5779 

Coefficient (4,5) -0.0527 0.4902 -0.1076 
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Table A.14: (Continued) 

Parameter Value Std. Error t-Statistic 

Coefficient (4,6) 0.3031 1.1058 0.2741 

Coefficient (4,7) 0.0316 0.0466 0.6779 

Coefficient (5,1) 0.0000   

Coefficient (5,2) 0.0000   

Coefficient (5,3) 0.0000   

Coefficient (5,4) 0.0000   

Coefficient (5,5) 0.3152 0.0814 3.8708 

Coefficient (5,6) 0.0000   

Coefficient (5,7) 0.0000   

Coefficient (6,1) 0.0000   

Coefficient (6,2) 0.0000   

Coefficient (6,3) 0.0000   

Coefficient (6,4) 0.0000   

Coefficient (6,5) 0.0000   

Coefficient (6,6) 0.0942 0.0857 1.0989 

Coefficient (6,7) -0.0002 0.0036 -0.0685 

Coefficient (7,1) 0.0000   

Coefficient (7,2) 0.0000   

Coefficient (7,3) 0.0000   

Coefficient (7,4) 0.0000   

Coefficient (7,5) 0.0000   

Coefficient (7,6) 0.2287 2.0740 0.1103 

Coefficient (7,7) 0.0456 0.0864 0.5278 
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