

THE EFFECTS OF EXCHANGE RATE VOLATILITY ON ECONOMIC GROWTH: EVIDENCE FROM THAILAND, SINGAPORE AND MALAYSIA

BY

MISS NAWAN LIMPAVATHANYOO

AN INDEPENDENT STUDY SUBMITTED IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF MASTER OF SCIENCE PROGRAM IN FINANCE (INTERNATIONAL PROGRAM) FACULTY OF COMMERCE AND ACCOUNTANCY THAMMASAT UNIVERSITY ACADEMIC YEAR 2016 COPYRIGHT OF THAMMASAT UNIVERSITY

THE EFFECTS OF EXCHANGE RATE VOLATILITY ON ECONOMIC GROWTH: EVIDENCE FROM THAILAND, SINGAPORE AND MALAYSIA

BY

MISS NAWAN LIMPAVATHANYOO

AN INDEPENDENT STUDY SUBMITTED IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF MASTER OF SCIENCE PROGRAM IN FINANCE (INTERNATIONAL PROGRAM) FACULTY OF COMMERCE AND ACCOUNTANCY THAMMASAT UNIVERSITY ACADEMIC YEAR 2016 COPYRIGHT OF THAMMASAT UNIVERSITY

THAMMASAT UNIVERSITY FACULTY OF COMMERCE AND ACCOUNTANCY

INDEPENDENT STUDY

 $\mathbf{B}\mathbf{Y}$

MISS NAWAN LIMPAVATHANYOO

ENTITLED

THE EFFECTS OF EXCHANGE RATE VOLATILITY ON ECONOMIC GROWTH: EVIDENCE FROM THAILAND, SINGAPORE AND MALAYSIA

was approved as partial fulfillment of the requirements for the degree of Master of Science (Finance)

0 1 MAY 2017

11-

(Assistant Professor Chaiyuth Padungsaksawasdi, Ph.D.)

Member and Advisor

Chairman

Zu

(Associate Professor Tatre Jantarakolica, Ph.D.)

P.Udou

(Associate Professor Pipop Udorn, Ph.D.)

Dean

Independent Study Title	THE EFFECTS OF EXCHANGE RATE				
	VOLATILITY ON ECONOMIC GROWTH:				
	EVIDENCE FROM THAILAND, SINGAPORE				
	AND MALAYSIA				
Author	Miss Nawan Limpavathanyoo				
Degree	Master of Science (Finance)				
Major Field/Faculty/University	Master of Science Program in Finance				
	(International Program)				
	Faculty of Commerce and Accountancy				
	Thammasat University				
Independent Study Advisor	Associate Professor Tatre Jantarakolica, Ph.D.				
Academic Year	2016				

ABSTRACT

According to the economic globalization, many of international businesses are worked across the countries. Exchange rate is used as an intermediary to make the business transaction or market force from one country and another country. The excessive in exchange rate volatility is represented the risk. Thus, if the exchange rate volatility is high, it will obstruct business activities and also may lead to reduce the level of economic growth. In this article, the author intents to study the effects of exchange rate volatility on economic growth in ASEAN-3 countries including Thailand, Singapore and Malaysia. The data were collected in quarterly term covering 2005Q1 - 2015Q4. In term of technique of estimation, standard deviation is used to measure the exchange rate volatility and Fist-Differencing Generalized Method of Moment (GMM) is employed to assess the relationship between exchange rate volatility and significantly influenced economic growth while this relationship also negative but less power to affect economic growth in long-term period.

Keywords: Exchange Rate Volatility, Economic Growth, Standard Deviation, Dynamic panel data, GMM

ACKNOWLEDGEMENTS

First of all, I would like to sincerely thank you my advisor Associate Professor Tatre Jantarakolica, Ph.D. who always guide me and support me in every detail of my independent study. I earn a lot of things from your knowledge. Your comment and suggestion makes me overcome my obstacle in this independent study. So, I am deeply appreciate for your kindness. Another key person, my committee, Assistant Professor Chaiyuth Padungsaksawasdi, Ph.D, he always give me a better idea and hint some point of my independent study. Without both of them, I won't be able to complete this independent study by my own. I am very grateful for your support.

Furthermore, I also would like to thank you to all MIF staff, my MIF classmates and my lovely family. Without all of you, I won't be able to achieve biggest success in my life. They don't give up on me and always support me to pass through the hard time. Having your guys beside me is like a special gift to make me come through this far. No matter how much I write down to this, my feeling is more than like a hundred times.

Miss Nawan Limpavathanyoo

TABLE OF CONTENTS

	Page
ABSTRACT	(1)
ACKNOWLEDGEMENTS	(2)
LIST OF TABLES	(5)
LIST OF FIGURES	(6)
CHAPTER 1 INTRODUCTION	1
CHAPTER 2 LITERATURE REVIEW AND CONCEPTUAL FRAMWORK	5
2.1 Theoretical Framework	5
2.1.1 Exchange Rate Volatility	5
2.1.2 Exchange Rate Volatility and Economic Growth	5
2.2 Literature Review	8
2.2.1 Exchange Rate volatility and Economic Growth	9
2.2.2 Macroeconomics variables and Economic Growth	11
CHAPTER 3 RESEARCH METHODOLOGY	13
3.1 Data Selection	13
3.1.1 Real Exchange Rate Concept	13
3.1.2 Real Effective Exchange Rate Concept	13
3.1.3 Data Collection	14
3.2 Research Methodology	16
3.2.1 Volatility Model: Standard Deviation	16
3.2.1 Growth Model: GMM	17

CHAPTER 4 EMPIRICAL RESULTS	19
4.1 Descriptive Analysis	19
4.2 Volatility Model	20
4.2.1 Standard Deviation	20
4.3 Growth Model	23
4.3.1 Aggregate ASEAN-3 Anlysis in GMM	23
4.3.2 Disaggregate Single Country Analysis in GMM	25
CHAPTER 5 CONCLUSIONS, DISCUSSIONS AND RECOMMENDATIONS	29
5.1 Conclusions	29
5.2 Discussions	30
5.3 Recommendations	31
REFERENCES	32
APPENDICES	
APPENDIX A	35
APPENDIX B	39
BIOGRAPHY	53

(4)

LIST OF TABLES

Tables	Page
4.1 Descriptive Statistics	19
4.6 Generalized Method of Moment in ASEAN-3 countries	24
4.7 Generalized Method of Moment in Thailand and Singapore	25
4.8 Generalized Method of Moment in Thailand	26
4.9 Generalized Method of Moment in Singapore	27
4.10 Generalized Method of Moment in Malaysia	28
A.1 Exchange Rate Volatility in Thailand	35
A.2 Exchange Rate Volatility in Singapore	36
A.3 Exchange Rate Volatility in Malaysia	37

(5)

LIST OF FIGURES

Figures	Page
1.1 GDP Growth Rate in Thailand	3
1.2 GDP Growth Rate in Singapore	3
1.3 GDP Growth Rate in Malaysia	4
4.2 Exchange Rate Volatility in 3 months	21
4.3 Exchange Rate Volatility in 6 months	21
4.4 Exchange Rate Volatility in 9 months	22
4.5 Exchange Rate Volatility in 12 months	22

(6)

CHAPTER 1 INTRODUCTION

In the world of globalization, it does not define for technology and communication only but also the world of economic is more liberalization. After the failure of the Bretton Woods system in 1973, the financial system of many countries was changed to be more liberalization and deregulation. The exchange rate system was changed from fixed exchange rate become floating exchange rate. The consequence of this situation may cause the exchange rate fluctuation because it depends on demand and supply of that currency. The changing of exchange rate system is a great debate among economist to argue that which exchange rate regime is better (Frenkel and Goldsstein, 1987; Cote, 1994; Hanke and Schuler, 1994; Rose, 2000; Calvo and Mendoza, 2000; Calvo, 2001; Frankel and Rose, 2002; Alagidede and Ibrahim, 2016).

Hanke and Schuler, 1994 revealed that fixed exchange rate will improve fiscal policy because government can manage budgetary of the country by controlling the spending. Calvo and Mendoza, 2000; Calvo, 2001 argued that when flexible exchange, the policy makers are hardly to set up a new policy because variability in exchange rate cannot earn enough evidence to support. Rose, 2000; Frankel and Rose (2002); Alagidede and Ibrahim, 2016 found that flexible exchange rate will increase trade uncertainty because of output, cost, and profit of the company.

Exchange rate is a key important variable to exchange products or services from one country to another country by using a currency as an intermediate to make an agreement or transaction in international business. Exchange rate volatility is defined as the fluctuation of exchange rate that is represented the risk or uncertainty of business through cost and benefit. The main cause of exchange rate volatility is created from shocks, as an analyzed by Clarida and Gali, 1994. However, Hausmann et al., 2006 indicates that developing countries are highly possibility to create shock in exchange rate volatility than developed countries. In addition, the paper of Insukindro and Rahutami, 2007 reveal that the movement of exchange rate in up or down is just defined the exchange rate depreciation or appreciation while the exchange rate volatility is defined as exchange rate risk. Nowadays, the world is linked together; the economic activities in many countries are jointly together such as import, export, trade, investment, productivity. These activities are linked with the exchange rate. (Cushman, 1986; Caballero and Corbo, 1989; Bosworth et al.,1996; Serven, 2003; Fuentes, 2006; Aghion et al., 2009). When the exchange rate is variability, it will obstruct these international activities which may turn to reduce the performance of economic growth in both direct effect through cost and revenue and indirect effect through output and investment of developed and developing countries followed by Cote, 1994; Serven, 2002; Pickard, 2003; Cheong, 2004; Kikuchi, 2004; Arize et. Al., 2004. Furthermore, the macroeconomics variables in domestic country such as government spending, gross-fixed capital formation, inflation, labor, trade openness, and term of trade are also a factor to drive the economic growth (Baxter and Stockman, 1990; Flood and Rose, 1995; Rose, 2000; Frankel and Rose, 2002).

According to the several theoretical works, Clark, 1973 reveals that the profitability of the multinational company is determined from exchange rate. When the exchange rate is unstable, it represents risk of the company. The grater exchange rate volatility will make the cost and profit's firm variability. Moreover, the work of McKinnon and Ohno, 1997 finds that the excessive of exchange rate volatility will deleterious the level of economic growth by obstruct the international trade, reduce the investment, and make the profit not smoothing. As the note of Obstfeld and Rogoff's, 1998 reveals that the cost of domestic country will increase when the exchange rate is fluctuated. This cost affects in both households and firms. The consumption and leisure of household is unstable when the exchange rate is fluctuating while the firms will face higher cost because they have to hedge their risk of exchange rate uncertainty by buying a contract. So, they will set the higher price of goods and service to cover their cost. Therefore, it can be concluded that the exchange rate volatility will deleterious the level of economic growth.

The research questions of this study are to investigate the exchange rate volatility influences on economic growth and what macroeconomics variables impact on level of growth in Thailand, Singapore, and Malaysia?

The GDP growth rate in Thailand is average 0.92% over the period from 1993 to 2016. The highest level reaches 9.60% in 2012 because the government lunched

project to stimulate household consumption while the lowest value is recorded in - 6.30% in 2011. After 2014, the trend of economic growth in Thailand is quite slowdown because of export decreasing. Figure 1.1 presents the GDP growth rate in Thailand.

The mean of GDP growth rate in Singapore is 6.86% cover the period 1975 to 2016. In 2010, growth level sharply increases to 37.20% because of the structure rebounding in manufacturing sector. In contrast, the minimum growth is -13.50% in 2008 during the Hamburger Crisis. Figure 1.2 illustrates the GDP growth rate in Singapore.

Figure 1.2: Singapore's GDP Growth Rate

The average GDP Growth Rate in Malaysia is around 1.20% from 2000 to 2016. The maximum value is 5.50% in 2002 while the lowest value is -5.90% in 2001. In 2009, growth level is dramatically dropped that related to the Hamburger crisis in US. Figure 1.3 displays the GDP growth rate in Malaysia.

Figure 1.3: Malaysia's GDP Growth Rate

This paper selects Thailand, Singapore, and Malaysia countries to estimate because these countries are the top 10 of trade competitiveness in Asia and the top trade countries in South East Asia. The nature of South East Asia countries is export market. Thus, it cannot deniable that international trade is a major key factor to drive the level of economic growth in these countries.

Thus, the main purpose of this study is to investigate the effects of exchange rate volatility on economic growth in Thailand, Singapore, and Malaysia relies on quarterly data from period of 2005 to 2015. This paper employs Standard Deviation to measure the exchange rate volatility and Generalized Method of Moments approach (GMM) to determine the influenced of exchange rate volatility on economic growth.

The rest of this research is structured as follows: chapter 2 presents the theoretical framework and literature review. Chapter 3 describes the data selection and the research methodology of measuring exchange rate volatility and empirical model to estimate this relationship of variables. Chapter 4 illustrates the empirical result. Finally, chapter 5 explains the conclusion.

CHAPTER 2 REVIEW OF LITERATURE

2.1 Theoretical Framework

2.1.1 Exchange Rate Volatility

In exchange rate system, it composes of fixed and floating exchange rate regimes. Fixed exchange rate is the rate that constant and not vary by market force of that currency. The movement of fixed exchange rate is controlled by government only. On the other hand, floating exchange rate begins to adopt in many countries after the Breton Woods in 1973 was collapsed. The movement exchange rate is very sensitive because it represents the risk and uncertainty in many activities of business. The excessive in exchange rate volatility such as reduce profit of the firm, limitation in an international trade, unemployment rate, output, and international investment can lead to reduce the level of economic growth as noted of McKinnon and Ohno, 19997. In addition, Barkouas et al., 2002 find out the cause of exchange rate volatility. The study revealed that the cause of exchange rate volatility come from changing in exchange rate system, and changing in economic factor such as inflation, interest rate, output growth.

2.1.2 Exchange Rate Volatility and Economic Growth

According to previous studies, there are many papers, for example Clark, 1973; Cushman, 1983; Cote, 1994; McKinnon and Ohno, 1997; Obstfeld and Rogoff's, 1998; Devereux and Engel, 2003 study the linkage between exchange rate volatility and level of economic growth. These papers try to find which component is mainly effected in economic growth performance.

To illustrate this relationship, the study will begin with an example from the paper of McKinnon and Ohno, 1997. This paper reveals that an excessive in exchange rate volatility will create trade uncertainty, distort investment decision, reduce productivity and restrict level of economic growth. Moreover, as a note of Cote, 1994; Serven, 2002; Pickard, 2003; Cheong, 2004; Kikuchi, 2004; Arizeet. Al., 2004 find the same conclusion as McKinnon and Ohno, 1997. Most of result shows that an increase in exchange rate volatility will directly effect in international trade through an

unsmoothing in cost and profit of firm, trading volume, and unemployment rate. This uncertainty will lead the firm to set a higher price of product because firms have to bare more cost on risk premium. In addition, the excessive in exchange rate volatility also obstruct the investment decision and productivity through an operating facilities and output. Therefore, it can be concluded that an excessive of exchange rate volatility will deleterious the level of economic growth as an analyzed by Cote, 1994.

To reduce the effect of exchange rate fluctuation, it is advantage for the multinational corporation where they trade with many countries. Thus, they have a chance to offset some financial transaction and benefit for hedging currency risk and other variables. From the paper of Cushman (1983), assumes that if the exporters hurt from export price of one currency, they can offset the export price of other countries that they export. Moreover, if the firms trade with a large number of countries, the movement of exchange rate in each country is not the same. Thus, the exporters can prevent their risk by offsetting from different exchange rate direction of each country. Furthermore, if the firms import some input in process of their production. When they face with lower export earning, they can offset by lower cost of input. These conclusions as described by Clark (1973).

According to the theoretical literature of the relationship between exchange rate volatility and international trade. Clark, 1973 examines a competitive firm which producing a product to sell in foreign countries. After exporting is done, the firm gains money in foreign currency as it is one risk factor of company to covert currency back, which is uncertainty and unpredictable. Moreover, the cost of production is also another risk of the company because company orders input and makes the production in advance. Thus, the amount of input factors and output scale is already fixed and cannot be changed even the exchange rate is fluctuating. Therefore, the profitability of the company is dependent on the exchange rate risk is presented by exchange rate volatility. The grater exchange rate volatility will make the profit's firm variability. Furthermore, as the note of Obstfeld and Rogoff's, 1998 reveals that the fluctuation in exchange rate will make the domestic economy more costly and affected in both household and corporation. In household, the variability of exchange rate will affect in household's consumption and leisure. Household is not favor when they buy something

from foreign countries and price is uncertainty because of exchange rate fluctuation. In corporations, before they import an input from foreign countries, they have to check foreign price and exchange rate. If countries that they import input are high exchange rate fluctuation, they will make a contract to prevent their risk by buying a future or forward contract. To buy these contract, firm have to pay more on risk premium even they exercise or not. This will increase cost of the company that will lead the firm have to set the higher price to protect their losses. Therefore, this reason will obstruct an international trade. On the other hand, the theoretical work of Devereux and Engel, 2003 contradicts that if the price is fixed with foreign currency, the exchange rate movement will not affect the domestic cost. In addition, the document of Franke, 1991 and Sercu and Vanhulle, 1992 explained about an "options" approach. The papers point out an option of the company to enter or exit in export market. The main reason of this judgment depends on the cost of the firms which come from the exchange rate volatility. Therefore, the conclusion of this paper reveals that higher exchange rate variability trend to make the firm's decision to enter or exit very sluggishly.

In relation of investment and productivity, exchange rate volatility will obstruct an international investment and level of productivity because of an increase in cost of capital as it represents the risk of investor. As from the paper of IMF, 2004 assumed that if foreign investors invest in the countries which are high exchange rate fluctuation. Foreign investors will want high interest rate to compensate their risk of exchange rate movement and to get the better yield or return. This cause the cost of capital in our countries increases because of interest rate increases. Moreover, an increase in exchange rate volatility will distort the investment decision in both operating structure and finance structure through the output, cost and profit. This also affects the business cycle of the company as an analyzed by Barkoulas, Baum & Caglaya, 2002; Agolli, 2002. In addition, "Sunk costs" is also another factor that impact on investment. Some company builds a manufactory or facilities in order to produce, to inventory and to distribute their product in foreign countries. This massive investment is call "sunk costs". Firm will loan money from bank of foreign country and pay interest rate in each month. If the exchange rate movement arise, it will affect cost of the company unstable. Moreover, an increase in loan interest rate of that country will lead to higher cost of the firm, followed by McDonald and Segel, 1986.

Welfare is also one factor that argues among theoretical work in productivity, as an analyzed by Devereux and Engel, 2003. When the firms produce a goods in foreign country, they have to hire labor from that country as an employee. If the exchange rate is variability, the cost that firms have to pay wage to labor will fluctuate which may turn to increase in cost of production of the company. As the hypothesis of Balassa-Samuelson believes that if the firm produce more in tradable goods, the wage will be increased. However, in reality, the higher productivity is not reflected from the higher wage. To balance this situation, the price of non-tradable goods is expected to be high in relative price of non-tradable to tradable goods. Furthermore, in process of producing a product, firms have order demand of input and output in advance. If the exchange rate movement arise. It also affected cost of input and output price of the company. These problems will also affect in change in profit of the company, as analyzed by Clark, 1973. Therefore, this is the reason why exchange rate volatility obstructs the level of productivity.

According to several theoretical works (Cote, 1994; Serven, 2002; Barkoulas, Baum, &Caglaya, 2002; Agolli, 2002; Pickard, 2003; Cheong, 2004; Kikuchi, 2004; Arizeet. Al., 2004), it can be concluded that exchange rate is a significant factor in many businesses. When the exchange rate movement arise, it is represented the risk of the company. These will lead more costly not only in business but also in household that will interrupt in major part of economics such as international trade, international investment, and level of productivity. Therefore, in generally, exchange rate volatility will adversely affect economic growth performance of the country.

2.2 Literature Review

Apart from theoretical works from previous section, the works reveal that the exchange rate volatility represents exchange rate risk. As it adversely affected in many activities such as international trade, international investment, level of productivity, and economic growth performance. In this section, the authors will analyze a vast of empirical literature to review many viewpoints of other papers that which variables impact on economic growth.

2.2.1 The relationship between exchange rate volatility and economic growth

As the relationship between exchange rate volatility and international trade, Bilquees, Mukhtar, and Malik, 2010 investigate the impact of exchange rate volatility on export growth from some South Asian countries. The authors analyze by employing Co-integration and VECM techniques for time spanning from 1960 to 2007. The empirical result revealed that real exchange rate volatility has negative significant effects on export activity in both short-term and long-term. Another paper of Aey, Gupta, and Myo, 2015 also examine the impact of real effective exchange rate uncertainty on exports in South Africa from 1986 to 2013. The main finding shows that exchange rate uncertainty has a negative significant on exports. These results are also similar as the studies of Cushman, 1986; Peree and Steunherr, 1989; Caballero and Corbo, 1989; Chowdhurry, 1993; Kim and Lee, 1996; Dell'Ariccia, 1999; Arize, Osang, &Slottje, 2000; Bahmani, 2002; Dogalar, 2002; Cho, G., Sheldon, &McCorriston, 2002; Coric and Pugh, 2010. These papers also find the negative relationship between exchange rate volatility and trade.

On the other hand, some articles reveal the positive relationship between two variables that are found by De Grauwe, 1988; Franke, 1991; Sercu and Vanhulle, 1992; De Grauwe and Skudelny, 2000; Bacchetta and van wincoop, 2000; Langley et al., 2000; Doyle, 2001; Bredin et al., 2003. It shows the positively effects of exchange rate volatility on export and trade will be better when increasing in volatility. From the paper of Mahmoodb and Vixathepc, 2007 find the long-run relationship between exchange rate volatility and export by using Japanese export data. The result shows that it is significant in both positive and negative between two variables.

Furthermore, some papers (Dan Bailey, Tavlas, & Ulan, 1986; Gagnon, 1993; Goeltom, 1997; Aristotelous, 2001; Susilo, 2001; Rahutami and Kusumastuti, 2007; Tenreyro, 2007; Eicher and Henn, 2009; Baum and Caglayan, 2010) cannot find any evidence to support this relationship between two variables. Aristotelous, 2001 analyses the impact of exchange rate volatility on the British exports to the USA. The data are analyzed in 10 years. The main finding indicates that the volatility does not effect on the British exports to the US. Therefore, the relationship between exchange rate volatility and trade are ambiguous because the finding of many empirical studies has many directions of answer.

In relation of investment and productivity on exchange rate volatility, the main finding is also mixed. As the noted of Kandil, 2004 investigates the effects of exchange rate fluctuation on inflation and output growth of 22 developing countries. The result shows that the exchange rate volatility will destroy in economic performance and negatively impact on both inflation and output in short-run while it has positive inflation and negative output in long-run. Moreover, the paper of Campa and Goldberg, 1995 studies the linkage between real exchange rate volatility and investment decision in USA and Canada. The result presents that the movement of exchange rate will distort on investment decision only in US data. Darby et al., 1999 examines the relationship between two variables in five European countries. The result also shows the negatively significant. Bosworth et al., 1996 analyzes the nexus of volatility and economic growth of 88 countries in both developing and industrial countries. The answer revealed that the cause of decreasing in output growth come from the exchange rate fluctuation by lowing in total factor productivity and export is a key factor to drive an economic growth. Bleaney and Greenaway, 2001 also study the impact of exchange rate volatility on investment and economic growth by setting the sample of 14 Sub-Saharan African in 15 years. The answer indicates that the exchange rate fluctuation affected only in investment. Lastly, as the empirical work of Aghion et al., 2009 examine the nexus of exchange rate volatility and long-run productivity growth by adding some financial tools of 83 countries over the period of 40 years. The authors also found the same result of negatively affected in long-term productivity growth and obstruct an investment. These results are also similar to others empirical work of Ghura and Grennes, 1993; Ndambendia and Alhayky, 2011.

Lastly, the exchange rate volatility-economic growth nexus will be reviewed by Alagidede and Ibrahim, 2016 analyzed the cause of exchange rate volatility effect on economic growth in Ghana by employing Co-integration and GMM methods. They found that the excessive fluctuations in exchange rate is deleterious on economic growth. Vieira, and Bottecchia, 2013 analyzed the impact of exchange rate volatility on long-run economic growth by setting 82 advanced and emerging countries and using two-step system of GMM over the period from 1970 to 2009. The finding shows that a higher level of exchange rate volatility has a negative significant effect on economic growth. This finding is also similarity with Dollar, 1992; Schnabl, 2009. In addition, the work of Ghosh et al., 1997 studies the relationship rely on 30 years' period in 140 countries. The result does not find any evidence to prove that this relationship is significant.

2.2.2 The relationship between macroeconomic variables and economic growth

According to the note of MAS, 2003 investigates the relationship between exchange rate volatility and macroeconomic volatility including export and import volume, money supply, interest rate, and domestic output in Singapore over 22 years from 1980 to 2002. GARCH(1,1) model is used to measure the volatility and Folld and Rose, 1995 is used to assess the relationship between two variables. The result reveals that exchange rate volatility has a small impact on macroeconomic volatility.

Alagidede and Ibrahim, 2016 analyzed the impact of macroeconomic variables including government spending, gross-fixed capital formation, labor, trade openness, and inflation on economic growth. Generalized Method of Moments (GMM) estimator is used to estimate the result over 34 years. The main finding shows that government expenditure, gross-fixed capital formation, labor, trade openness positively influences on economic growth. In contrast, inflation is expressed as negative relationship on growth.

As the paper of Vieira, andBottecchia, 2013 investigated the nexus among inflation, government spending, and trade on economic growth of 82 advanced and emerging countries by using panel data cover the period from 1970 to 2009. The result reveals that government consumption and trade are positive relationship with growth. In contrast, inflation is deleterious on economic growth.

Musyoki and Pundo, 2012 also examined the effects of government expenditure, health, secondary education, primary enrolment and term of trade on growth. The methodology of this paper is GMM estimator cover the period from January 1993 to December 2009. The final answer shows that government expenditure, health, secondary education, and term of trade propel the economic growth. On the other hand, primary enrolment negatively impacts on growth.

In the relation of economic growth and inflation, the note of Holland and Silva, 2016 also study the nexus between inflation and growth of 82 advanced and emerging economics rely on 40 years' period. The result also shows that inflation negatively

impacts on growth. Furthermore, Schnabl, 2009 examines the effects of inflation, export on growth in 26 emerging countries of Europe and East Asia. The paper also finds that export factor drives the economic growth while inflation is harmful on growth.

As for the relation of employment and economic growth, Feldmann, 2011 analyze the nexus of these two variables by using the data of 17 industrial countries and time spanning 1982-2003. The result displays a higher level of exchange rate volatility adversely employment growth. Balke and Kaas, 2004 collects the data from Eastern European countries and found that the higher level of exchange rate volatility causes lower of employment growth. Furthermore, Bagella et al., 2006 reveals that exchange rate volatility also effect on income per capita. Therefore, the huge amount of exchange rate volatility will increase the level of unemployment rate.

As an empirical review, there are no evidence to present the definitely final result of the relationship between exchange rate volatility and economic growth performance. The answer is quite ambiguous. As a context of Eichengreen (2008) illustrates that many countries should maintain the optimal level and less fluctuation of exchange rate to drive a better economic growth and avoid an excessive fluctuation in exchange rate because it will deleterious not only economic performance but also others activities such as productivity, business, and competitiveness.

CHAPTER 3 RESEARCH METHODOLOGY

3.1 Data Selection

3.1.1 Real Exchange Rate Concept

The real exchange rate is determined by market force or demand and supply of goods and services that produced from one country can be exchanged to another country by using currency as an intermediate to exchange between goods and services across countries. The exchange rate can be divided into nominal exchange rate and real exchange rate. A Nominal exchange rate (NER) is the rate that included inflation while the real exchange rate (RER) is a nominal exchange rate by adjusting an inflation followed by Copeland, 1989; Lothian and Taylor, 1997. Moreover, the exchange rate can be classified into bilateral and multilateral exchange rate as an analyzed by Copeland, 1989. A bilateral exchange rate is the rate that one currency is pegged with another currency only such as USD/THB, USD/SGD, or USD/MYR while multilateral exchange rate is come from weight average of bilateral exchange rate in trading partner countries.

3.1.1 Real Effective Exchange Rate

In this paper, the exchange rate is presented by Real Effective Exchange Rate (REER) to calculate as exchange rate volatility because, in the real world, price is changing all the time and inflation is unstable. This will lead the nominal exchange rate movement arises that directly impacts on the trade competitiveness. Thus, real exchange rate is better to use because it reflects the real purchasing power, exclude inflation and covers the limitation of nominal exchange rate. However, in bilateral exchange rate is not reflecting the whole partner countries because it is pegged with only one currency or represent only one country. So, the multilateral exchange rate is efficiency to represent the whole country and more accuracy than bilateral exchange rate.

Real Effective Exchange Rate (REER) is an indicator to measure the international trade competitiveness. The index is determined by comparing the relative trade balance of the country against trading partner countries. The REER index is the weighted geometric average of the bilateral nominal exchange rates of a country's currency relative to index of major currencies adjusted for the effect of inflation.

The data of REER in Thailand is gleaned from Bank of Thailand (BOT) while REER of Singapore and Malaysia is gathered from Federal Reserve Economic Data (FRED). The process of REER calculation is as follow:

The equation of nominal exchange rate at time t is equal to:

$$NEER_t = NEER_0 * \prod_{i=1}^n \left(\frac{E_{it}}{E_{i0}}\right)^{w_{i,t}}$$
(1)

Where

$$\prod_{i=1}^{n} \left(\frac{E_{it}}{E_{i0}}\right)^{w_{i,t}} = \left(\frac{E_{1t}}{E_{10}}\right)^{w_{1,t}} \left(\frac{E_{2t}}{E_{20}}\right)^{w_{2,t}} \dots \left(\frac{E_{nt}}{E_{n0}}\right)^{w_{n,t}}$$

Where	NEER ₀	=	the nominal effective exchange rate index at base year
	E _{it}	=	the exchange rate in term of currency I at time t
	E_{i0}	=	the exchange rate I in term of currency I at base year
	W _{j,t}	=	the weight of currency I in the index at time t
	n	=	the number of foreign currency in the index

3.1.2 Data

In this research, dynamic panel data is used to analyze and find out the result because the lagged term of dependent variable is included in independent variables. The data are collected in quarterly term. The time spanning is from 2005Q1 to 2015Q4 covering 11 years and 44 samples size of each country. In this period, it captures the huge crisis is called "US subprime crisis" in 2008 which may affect a lot in economics in many countries including Thailand, Singapore, and Malaysia. The data of this study is gleaned from different sources including Bank of Thailand, The national economic and social development board, National Statistic Office Thailand, Bank Negara Malaysia, Monetary Authority of Singapore, Department of Statistics Malaysia, Singapore Department of Statistics, World Bank indicator and CEIC database.

Throughout this paper, the aim of this paper is to find the relationship between exchange rate volatility and economic growth. In order to estimate the impact of level of economic growth, economic growth is set as a dependent variable. The proxy of economic growth is measured by real GDP per capita. It can be calculated by real GDP divided by population. In addition, initial growth is measured by lag of dependent variable, exchange rate volatility is measured by standard deviation of REER, and control variables are set as independent variables. Then, control variables are explained as follow:

Government Spending (CON) is one factor that affects in changing of economic growth. The Keynesian proposition believed that government spending is expected to improve the economic growth of country in term of more investment. However, if spending too much, it also reduces the level of economics because it can be occurred crowding-out effect. Therefore, the expected sign of government spending is ambiguous. The proxy of government expenditure is measured by final government consumption expenditure.

Gross-Fixed Capital Formation (FCF) is one component to determine the national income and expenditure (GDP). This indicator reflects the overall investment in the country that is related to an economy performance in term of production, employment, cost and benefit of business and household. Thus, this indicator will drive the economic growth of country.

Trade openness (TRA) is reflected trade liberalization. It encourages creating international activities and the demand and supply of goods and services of country. The amount of trade openness can be calculated by the sum of total value of exports and imports in goods and services divided by nominal GDP. A rise in this value reflects the extra degree of trade liberalization. Therefore, the expected sign of coefficient is positively influenced growth.

Inflation (INF) is also a significant factor that effects in both exchange rate and economic growth. It is used to measure the change in price level in goods and services. The high inflation reflects higher price of trade goods and services which can be slowed down the trade competitiveness of country by comparing with trading partner countries. Thus, inflation is expected negatively impact on growth. Consumer price index (CPI) is used to measure inflation by reflecting the percentage change.

Labor (LAB) is also one variable that reflects the economic performance. It represents the economically active population in country. The high employment rate reflects the expanding in economic. Thus, labor is positive relationship with economic growth.

3.2 Research Methodology

3.2.1 Volatility Model

In order to measure the exchange rate volatility. The papers of Caballero and Cordo, 1989; Bahmani & Ltaifa, 1992; Stokman, 1995; Carrera and Vuletin, 2002used standard deviations to determine the exchange rate volatility. In this paper, Standard Deviation (SD) is employed to measure the volatility by computing the standard deviation of REER in time rolling sample of 3-month, 6-month, 9-month, and 12-month volatilities. Thus, the exchange rate volatility can be calculated under the standard deviation equation as follows:

$$V_i = \sqrt{\frac{1}{n-1} \sum_{i=1}^{n} (REER_i - \overline{REER_i^n})^2}$$
(2)

Where V_i = the exchange rate volatility i = month n = 3, 6, 9, 12 month

Nevertheless, the standard deviation approach has some limitation. The first drawback is standard deviation is assumed to normal distribution in exchange rate. Secondly, Moreover, it doesn't cover past value of exchange rate. Thus, this weakness limits to measure the accuracy of exchange rate volatility from standard deviations.

Furthermore, we can realize that there are another way to measure the exchange rate volatility that called Generalized Autoregressive Conditional Heteroskedasticity (GARCH) model as introduced from Bollerslev, 1986. In order to use GARCH model, the model is quite same as ARCH model by adding q lags in past conditional variance. The frequent data that suitable for this estimator is high frequency such as daily or weekly data.

In this study, we also try to estimate volatility by employing GARCH model. However, the data collection was gleaned in monthly frequency. Therefore, this paper doesn't find any affect at all.

3.2.2Growth Model

In order to access the impact of exchange rate volatility and economic growth the simple equation of the relationship between exchange rate and economic growth are set as follows:

$$y_{t} = \beta_{0} + \beta_{1} y_{t-1} + \beta_{2} h_{t} + \beta_{3} Z_{t} + \varepsilon_{t}$$
(3)

Where	y_t	=	the economic growth at time t proxied by
			real GDP per capita
	y_{t-1}	=	the initial growth condition proxied by lag of
			dependent variable
	$\widehat{h_t}$	- E 3	the exchange rate volatility at time t
	Z_t	<rp>()=//</rp>	the macroeconomics variables; including
			government spending, gross-fixed capital
			formation, trade openness, inflation, and labor
	ε_t	=	error term

In term of estimation technique, Dynamic Panel Data of Generalized Method of Momentum Estimators Model (GMM) is employed to find out the effects of this relationship by applying the First-differenced Generalized Method of Moment.

According to the first-differenced generalized methods of moments (GMM) as developed by Holtz-Eakin, et. al., 1998; Arellano and Bond, 1991. The equation of first-differenced generalized methods of moments is as followed:

$$y_{i,t} - y_{i,t-1} = (\alpha - 1)y_{i,t-1} + \beta x_{i,t} + \varepsilon_{it}$$
⁽⁴⁾

17

Where

$$\varepsilon_{i,t} = u_i + v_{i,t}$$
$$E(u_i) = E(v_{i,t}) = E(u_i v_{i,t}) = 0$$

It can be rewritten as follow;

$$y_{i,t} = \alpha y_{i,t-1} + \beta x_{i,t} + \varepsilon_{it} \tag{5}$$

$$y_{i,t} - y_{i,t-1} = \alpha(y_{i,t-1} - y_{i,t-2}) + \beta(x_{i,t} - x_{i,t-1}) + (v_{i,t} - v_{i,t-1})$$
(6)

Where	$y_{i,t}$	=	Dependent Variable
	x _{i,t}	=	Independent Variables
	u _i	=	Country specific effect
	v _{i,t}	=	Idiosyncratic Shocks

In order to estimate the economic growth of different countries, it will create the problem of country specific effect which means that economic systems in each country are not the same. To solve this problem, we use lagged dependent variables included in independent variables as an initial growth.

Even though, first-differenced generalized methods of moments can eliminate problem of country specific effect by using lagged variable. However, it still has endogeneity problem because $y_{i,t-1}$ has relationship with $v_{i,t}$ or independent variables are correlated with error term.

To solve this problem, Arellano and Bond, 1991 developed the moment conditions for Endogenous Variables by setting the instrument in difference as lagged level and in level as lagged difference. The assumption of this approach is no serial correlation in variance and all explanatory variables are endogenous. Therefore, lagged variable of independent variables can be used as instrument variable.

In order to robust GMM estimator, we have to check the validity of the instruments by using Hansen's test of over-identification of restriction. The null hypothesis is set as there are no relationship with instruments and residual. Thus, fail to reject the null hypothesis shows the null hypothesis is valid while the reject null hypothesis means the instruments are not robust.

CHAPTER 4 EMPIRICAL RESULTS

4.1 Descriptive Statistics

Firstly, this section will begin with descriptive statistics for all variables in this study. The primary statistics show the trend and pattern of all variable before the estimation. Table 4.1 illustrates the basic descriptive statistics of all variables.

Variable	Observations	Mean	SD	Min	Max
Real GDP per Capita	132	3.7983	5.5022	-11.5359	28.7861
Final Government Consumption	132	6.9157	7.8658	-8.7796	37.9775
Gross Fixed Capital Formation	132	8.1524	16.1418	-32.5082	80.0471
Trade Openness	132	6.3488	5.8378	1.1574	22.1923
Inflation	132	2.1694	1.7640	-2.2848	8.3991
Labor	132	1.7354	9.3576	-100.0000	11.9017
Exchange Rate Volatility in 3 months	132	0.7096	0.6091	0.0451	5.0653
Exchange Rate Volatility in 6 months	132	1.3236	1.5063	0.1474	12.1110
Exchange Rate Volatility in 9 months	132	1.7349	1.7851	0.2296	11.2191
Exchange Rate Volatility in 12 months	132	2.0511	1.9571	0.2167	11.8154

Tal	ble 4	1.1:	D)escri	ptiv	ve	Stati	istics
-----	-------	------	---	--------	------	----	-------	--------

The average value of GDP per capita is approximately half of standard deviation at 3.7983 while the standard deviation is 5.5022. During the US subprime crisis, it affected the economics of many countries around the world which make the minimum level of economic growth at -11.5359. On the other hand, the maximum growth rate is at 28.7861 for the period 2010 to 2011. The final government consumption as an indicator to measure the expenditure of the country. The mean value is 6.9157, with a standard deviation of 7.8658. The maximum government spending is used to boost the economic growth at 37.9775 cover the period 2006 to 2009 while the lowest spending around -8.7796 after the crisis period. The next variable is gross fixed capital formation as it represents an investment of the country. The mean value is 8.1524, with the standard deviation is double in mean around 16.1418. The top value of capital formation is in 2012 at 80.0471. In contrast, the lowest level of investment is during the Subprime crisis at -32.5082. Trade Openness which combines import and export divided by GDP has a mean approximately 6.3488 over the standard deviation of 5.8378. The minimum trade has a 1.1574 in 2014 while the maximum trade value has a 22.1923. The overall trade openness of this 3 countries, Thailand is a country that lowest trade openness while the highest trade openness is Malaysia. The next indicator is inflation. It reflects the price of goods and services in country, with a mean value of 2.1694 that is a double value of standard deviation of 1.7640. The highest level of inflation is in 2008 which is 8.3991. In contrast, the lowest level is -2.2848 in 2009. At last but not least, labor is used to measure. It represents the active population in the country has a mean value 1.7354, with the high standard deviation of 9.3576. The lowest value is reach - 100 because most of labors are hired in country is come from alien worker that is not represented the true economically population while the maximum labors value is 8.3991. Finally, the average level of exchange rate volatility is 0.7096, 1.3236, 1.7349, and 2.0511 while the standard deviation is 0.6091, 1.5063, 1.7851, and 1.9571 in 3, 6, 9, 12 months respectively. This represent the higher variability. The highest volatility is 12.1110 in 6 months whilst 3 months show the lowest level of volatility at 0.0451.

4.2 Volatility Model

There are many ways to measure exchange rate volatility as it is discussed in previous section. In this study, the standard deviation approach is used to determine the exchange rate volatility.

4.2.1 Standard Deviation

In order to measure the standard deviation, this paper follows the standard deviation equation by classifying the time rolling sample variance in 4 series including 3 months, 6 months, 9 months, and 12 months. Figure 4.2, 4.3, 4.4, and 4.5 are presents the exchange rate volatility in Thailand, Singapore, and Malaysia respectively in 4 series.

Figure 4.3: Exchange Rate Volatility in 6 months

Figure 4.5: Exchange Rate Volatility in 12 months

In Thailand, the mean value of exchange rate volatility is 1.8276, with standard deviation of 1.6580. The maximum volatility level is appeared in 6 months with 10.2585 whereas volatility in 3 months displayed the minimum volatility at 0.1250. Singapore has an average level at 1.1471 while the variability equal to 1.9420. The period of highest and lowest volatility is the same as Thailand, but the value is 12.111 and 0.0794 respectively. Lastly, Malaysia average volatility is equal to 1.3897, with the standard deviation is less than mean value in 0.2813. Therefore, the maximum mean value is captured by Thailand, with highest standard deviation level from Singapore.

4.3 Growth Model

Before starting the model of estimation, this section will refer to a review of past several theoretical works of exchange rate volatility and economic growth. Most of works reveal that the changing in exchange rate is represented the risk or uncertainty which may affect in many activities decision of the country such as trade, investment, consumption, and productivity. Thus, the consequence of this uncertainty decision can lead to distort the level of economic growth.

4.3.2 Aggregate ASEAN-3 Analysis

As for dynamic panel data of Generalized Method of Moments (GMM) estimator, this model is estimated into 2 segments. Firstly, it estimated for all countries including Thailand, Singapore, and Malaysia is called Aggregate analysis. Secondly, the estimation is tested separately in each country that called disaggregate analysis. Table 4.6 and 4.7 reports the estimated result of GMM technique in aggregate level. Table 4.8, 4.9, and 4.10 presents the test of GMM in single country including Thailand, Singapore, and Malaysia respectively.

In first section, the result indicates that the exchange rate volatility is negatively but not significantly affected in economic growth except 3 months of exchange rate volatility which statistically significant at 0.1. The result may imply that the movement of exchange rate volatility will reduce the level of economic growth. Even though, the exchange rate fluctuation negatively but it not affected on economic performance. The reason might be come from the data collection is estimated after the Asian crisis for long time. This made people can absorb the shocks and adapt to control this volatility. Gross fixed capital formation is positively significant at 10% to influences the economic growth which may imply that the more invest in fixed capital formation increased the economic performance. However, inflation is also negatively significant at 5% which indicated that an increase in inflation will deleterious the economics.

Variable	3 months	6 months	9 months	12 months
GDP L1.	0.7337***	0.7303***	0.7282***	0.7277***
Final Government Consumption	0.0502	0.0467	0.0426	0.0499
Gross Fixed Capital Formation	0.0396*	0.0441*	0.0443*	0.0419*
Trade Openness	-0.0494	-0.0729	-0.0402	-0.0352
Inflation	-0.4487***	-0.4290**	-0.4771**	-0.4746**
Labor	-0.0200	-0.0210	-0.0221	-0.0229
Exchange Rate Volatility in 3 months	-1.0220*			
Exchange Rate Volatility in 6 months		-0.6758		
Exchange Rate Volatility in 9 months			-0.3277	
Exchange Rate Volatility in 12 months				-0.0738
_cons	2.3813**	2.5275**	2.2115**	1.7703
Ν	126	126	126	126
Chi-Square	174.8156***	170.2066***	176.0091***	169.6669***
Sargan	126.1284	124.6076	129.4307	128.0080

Table 4.6: Generalized Method of Moment in ASEAN-3

According to the exchange rate policy of Malaysia, the adoption of floating exchange rate policy was started since 2005. Thus, the movement of exchange rate in Malaysia is quite stable as fixed exchange rate regime. Thus, this paper tries to estimate the impact of exchange rate volatility and economic growth again by cutting Malaysia country out of the estimation. The estimated result indicated that the exchange rate volatility is negative and significant to reduce the level of economic growth only in short-term volatility because the value of exchange rate is intervened by central bank to control the level of exchange rate not sharply increase or decrease.

Variable	3 months	6 months	9 months	12 months
GDP L1.	0.7297***	0.7223***	0.7206***	0.7229***
Final Government Consumption	0.0696	0.6634	0.7135	0.0814
Gross Fixed Capital Formation	0.1882***	0.1925***	0.1863***	0.1848***
Trade Openness	-2.7177	-2.7192	-2.1739	-2.3256
Inflation	-0.4774	-0.3800	-0.5134	-0.5038
Labor	-0.1817	-0.1780	-0.1627	-0.1515
Exchange Rate Volatility in 3 months	-3.2514***			
Exchange Rate Volatility in 6 months		-1.3519*		
Exchange Rate Volatility in 9 months			-0.3339	
Exchange Rate Volatility in 12 months				-0.0186
_cons	10.5189	9.6171	7.4806	7.2853
Ν	84	84	84	84
Chi-Square	136.6344***	116.3115***	120.3945***	115.8487***
Sargan	76.1271	73.7247	79.8898	78.9198

Table 4.7: Generalized Method of Moment in Thailand and Singapore

4.3.2 Disaggregate Single Country Analysis

According to estimate separately result in each country. The impact of exchange rate volatility and economic growth in Thailand are negatively and significantly for all periods which imply that the higher exchange rate fluctuation hurts the economic growth between 1% and 10% significant level. The effect of gross fixed capital formation on economics is significantly positive at the level of 5% and 10% covering all time spanning. Trade openness measures trade competitiveness, import and export of the country. The outcome also positively and significantly affected growth when the exchange rate volatility is at 9 months. Moreover, the past value of GDP indicates the market adjustment. This means that the market is proficient to adjust to equilibrium.

Variable	3 months	6 months	9 months	12 months
GDP L1.	0.5462**	0.6607***	0.6102***	0.5407**
Final Government Consumption	-0.0415	0.0678	0.0968	0.1948
Gross Fixed Capital Formation	0.2522**	0.2474**	0.2513***	0.2947**
Trade Openness	6.3960	6.5688	10.9710*	7.5729
Inflation	-0.7552	-0.8442	-0.7443	-0.1891
Labor	0.1402	-0.0540	-0.2757	-0.3382
Exchange Rate Volatility in 3 months	-3.7716***			
Exchange Rate Volatility in 6 months		-1.7997*		
Exchange Rate Volatility in 9 months			-2.7153***	
Exchange Rate Volatility in 12 months				-1.1797*
_cons	-2.9741	-5.0272	-9.0332	-7.4399
Ν	42	42	42	42
Chi-Square	55.0643***	88.9428***	98.7445***	45.0237***
R-Square	0.6312	0.5988	0.6486	0.5889
Hansen Test	7.4381	7.1926	7.6413	7.2142

Table 4.8: Generalized Method of Moment in Thailand

The effects of exchange rate volatility in Singapore are negative and insignificant on economic growth except the last term which means that the more exchange rate fluctuation will distort the growth of the country. At the 12-month of exchange rate volatility, inflation shows negative and significant to propel the growth at 5%. Although trade is deficit in this season, it also significantly driven the economic growth. Furthermore, the value of market adjustment in Singapore is close to one. It shows the market is efficient to adjust in equilibrium.

Variable	3 months	6 months	9 months	12 months
GDP L1.	0.7262***	0.7240***	0.7529***	0.7050***
Final Government Consumption	0.1075	0.0972	0.0901	0.1011
Gross Fixed Capital Formation	0.1699**	0.1654**	0.1800**	0.2010***
Trade Openness	-4.0541	-3.9302	-5.0717	-4.6602*
Inflation	-0.3137	-0.3012	-0.0521	-0.3624
Labor	-0.1156	-0.1110	-0.1504	-0.0949
Exchange Rate Volatility in 3 months	-1.2819			
Exchange Rate Volatility in 6 months		-0.4360		
Exchange Rate Volatility in 9 months			-1.7813	
Exchange Rate Volatility in 12 months				-0.4661***
_cons	16.2718	15.6126	20.6836	17.3269
Ν	42	42	42	42
Chi-Square	73.6514***	72.2640***	69.0842***	85.2673***
R-Square	0.7102	0.7078	0.7214	0.7196
Hansen Test	8.5281	8.2634	8.9321	8.5342

Table 4.9: Generalized Method of Moment in Singapore

Eventually, the estimated result of exchange rate volatility effects on growth is quite weird. It shows the different direction affected on the economics. The pattern is not only positive over the exchange rate fluctuation in 3 and 6 months but also negative covering 9 and 12 months exchange rate volatility. Fixed capital formation is positive and significant to push the country growth for all time at 10%. On the other hand, trade openness reflects negatively and significantly influences on economic performance. The impact of labor, an indicator to gauge the economically active population, is negative and significant on economic expansion covering all time length. The market equilibrium in Malaysia is not quite well. This may be because of the policy that effect in market system.

Variable	3 months	6 months	9 months	12 months
GDP L1.	0.0602	0.0828	0.0987	0.1206
Final Government Consumption	0.0941**	0.0941**	0.0933**	0.0900**
Gross Fixed Capital Formation	0.0529***	0.0503***	0.0500***	0.0501***
Trade Openness	-0.1119*	-0.1071*	-0.1175*	-0.1189*
Inflation	0.1559	0.1680	0.1625	0.1422
Labor	-0.0145**	-0.0138***	-0.0133***	-0.0142***
Exchange Rate Volatility in 3 months	0.4710			
Exchange Rate Volatility in 6 months		0.2584		
Exchange Rate Volatility in 9 months			-0.0255	
Exchange Rate Volatility in 12 months				-0.0982
_cons	1.9618**	1.8784**	2.2776**	2.5172***
Ν	42	42	42	42
Chi-Square	25.2769***	26.4016***	26.4304***	29.2294***
R-Square	0.5871	0.5860	0.5860	0.5958
Hansen Test	7.7832	7.4361	7.8549	8.1346

Table 4.10: Generalized Method of Moment in Malaysia

CHAPTER 5

CONCLUSIONS, DISCUSSIONS AND RECOMMENDATIONS

5.1 Conclusions

The first objective of this article examines the impact of exchange rate volatility on economic growth in Thailand, Singapore, and Malaysia rely on quarterly data covering the period of 2005 to 2015. The standard deviation is used to measure the exchange rate volatility and dynamic panel data model of Generalized Method of Moments (GMM) is employed to estimate influences of exchange rate volatility and growth. Before finding the relationship of these two variables, exchange rate volatility is calculated by standard deviation equation. This volatility is separated into 4 series including 3 months, 6 months, 9 months, and 12 months for each country. Then, dynamic panel data GMM is employed to estimate the nexus. The main finding reveals that exchange rate volatility negatively and significantly influenced on Thailand and Singapore's economic growth except only in Malaysia that is insignificant and the coefficient is quite weird because it shows in both positive and negative ways.

Furthermore, the second objective of this paper analyses which macroeconomics variables effects to propel the economic performance. The macroeconomics variables are applied in this paper including government expenditure, gross fixed capital formation, trade openness, inflation, and labor. In this section, the estimation is segregated into aggregate analysis and disaggregate analysis. The estimated result of aggregate analysis shows that gross fixed capital formation and inflation influenced to drive the economic growth in all countries. The capital formation effects in positive way while the inflation effects in negative way. Next, the disaggregate analysis is take into account. The fixed capital formation presents positively and significantly to move the economic performance in all countries. Trade openness also displays significant and negative way except in Thailand shown positive way. In addition, inflation effects negatively and significantly on the level of economic only in Singapore.

5.2 Discussions

According to the economic globalization, many business activities are linked across the countries. Exchange rate is like an intermediate to exchange goods and services form one country to another country. Nowadays, the exchange rate regime is floating exchange rate that means the movement of the exchange rate is determined by market force or demand and supply of country's currency. As the noted of Insukindro and Rahutami, 2007 studies about the movement of exchange rate, the paper exposes that the depreciation and appreciation in exchange rate is presented by the exchange rate move up or down while the exchange rate volatility is represented the exchange rate risk.

The excessive of exchange rate volatility will distort many parts of business transaction through consumption, import, export, international trade, investment, productivity followed by Clark, 1973; McKinnon and Ohno, 1997; Obstfeld and Rogoff's, 1998, Aghion et al., 2009. Therefore, it may turn to reduce the level of economic growth in the country. These final results show the finding similar to this study that is exchange rate volatility will hurt the economic performance. However, some papers (Aristotelous, 2001; Tenreyro, 2007; Eicher and Henn, 2009) cannot find any relationship of exchange rate volatility and economic growth.

Furthermore, macroeconomic variables also as a factor influence the economic performance. Several studies try to use a different variables to find the direction that effect on economic growth. As the noted of MAS, 2003 reveals that there are small effects of exchange rate volatility and macroeconomic volatility. Moreover, many empirical studies (Musyoki and Pundo, 2012; Vieira, and Bottecchia, 2013; Algidede and Ibrahim, 2016) reveal that government spending, capital formation, trade openness, labor, term of trade, secondary education influence positive to drive the economic growth. In contrast, only inflation is harmful to economic performance. In this study, the estimated result is quite similar as empirical study. Government expenditure and gross fixed capital formation present positive way to propel the economic whereas trade openness, inflation, and labor show the negative way.

5.3 Recommendations

The main purpose of this article wants to contribute to all readers to understand the meaning of exchange rate volatility and effects on economic growth. Firstly, it would be benefited for household, firms, and trading sectors to recognize the exchange rate risk and how to control the uncertainty of exchange rate. Secondly, investors who are types of risk loving will have a chance to gain more money when they invest in the country that high exchange rate volatility. Moreover, it would be advantaged for Forex trader to comprehend the trend and risk of exchange rate before hedging a currency. Lastly, this study will help the policy makers to understand the pattern of the exchange rate volatility and macroeconomics factors before they launch a new policy to encourage the economic growth.

Finally, there are two limitations of this study. Firstly, this paper ignores some macroeconomics variables such as health and education to estimate the impact on economic growth. Secondly, the sample period of this study is covering 11 years. It should be observed more time period to know the trend and pattern of this study. For further study, it should be captured more about managed floating exchange rate. It would be better or not that central bank control the exchange rate system.

REFERENCES

1. Aghion, P., Bacchetta, P., Rancière, R., and Rogoff, K., (2009), Exchange Rate Volatility and Productivity Growth: The Role of Financial Development, Journal of Monetary Economics, 56(4): pp 494-513. http://dx.doi.org/10.1016/j.jmoneco.2009.03.015

2. Arellano, M., and Bover, O., (1995), Another Look at the Instrumental Variable Estimation of Error Component Models, *Journal of Econometrics*, 68(1), pp 29–51.

3. Aristotelous, K. (2001) Exchange-rate volatility, exchange rate regime, and trade volume: evidence from the UK–US export function (1889–1999), Economics Letters, 72, 87–94.

4. Bagella, M., Becchetti, L. and Hasan, I. (2006) Real effective exchange rate volatility and growth: a framework to measure advantages of flexibility versus costs of volatility, Journal of Banking and Finance, 30, 1149–69.

5. Belke, A. and Kaas, L. (2004) Exchange rate movements and employment growth: an OCA assessment of the CEE economies, Empirical, 31, 247–80.

6. Bleaney, M. and Greenaway, D. (2001) The impact of terms of trade and real exchange rate volatility on investment and growth in Sub-Saharan Africa, Journal of Development Economics, 65, 491–500.

7. Bosworth, B. P., Collins, S, M., and Chen, Y., (1996). Accounting for Differences in Economic Growth. In: Kohsaka, A., Ohno, K. (Eds.). (1996), Structural Adjustment and Economic Reform: East Asia, Latin America, and Central and Eastern Europe, Tokyo: Institute of Developing Economies.

8. Caballero, R. J. and Corbo, I. (1989) The effect of real exchange rate uncertainty on exports: empirical evidence, The World Bank Economic Review, 3, 263–78.

9. Clark, Peter B., 1973, "Uncertainty, Exchange Risk, and the Level of International Trade," *Western Economic Journal* 11, September, pp. 302-13.

10. Cushman, David O., 1983, "The Effects of Real Exchange Rate Risk on International Trade," *Journal of International Economics* 15, August, pp. 43-63.

11. Devereux, Michael B., and Philip R. Lane, 2003, "Understanding Bilateral Exchange Rate Volatility," *Journal of International Economics* 60, pp.109-132.

12. Dollar, D. (1992). Outward Oriented Economies Really Do Grow More Rapidly: Evidence from 95 LDCs, 1976-1985. *Economic Development and Cultural Change 9* (40-3), pp 523-544.

13. Danson M., Ganesh P., Moses P. (2012), The impact of real exchange rate volatility on economic growth: Kenyan evidence. *Business and Economic Horizons*, 7, 59-75

14. Eichengreen, B., (2008). The Real Exchange Rate and Economic Growth. *Commission on Growth and Development Working Paper* No. 4.

15. Franke, G., (1991), "Exchange Rate Volatility and International Trading Strategy," *Journal of International Money and Finance* 10, pp. 292-307.

16. F. V. Vieira, M. Holland, and C. Gomes da Silva (2013), Growth and exchange rate volatility: a panel data analysis, Applied Economics, 45, 3773-3741

17. Ghosh, A., Gulde, A. M., Ostry, J. D. and Wolf, H. C. (1997)Does the nominal exchange rate regime matter?, NBER Working Paper No. 5874.

18. Ghura, D. and Grennes, T. J. (1993) The real exchange rate and macroeconomic performance in Sub-Saharan Africa, Journal of Development Economics, 42, 155–74.

19. Hock-Tsen Wong and Hock-Ann Lee (2016), "Exchange rate volatility and exports of Malaysian Manufactured goods to China". *International Journal of Business and Society*, 17, 145-159

20. Kandil, M. (2004). Exchange Rate Fluctuations and Economic Activity in Developing Countries: Theory and Evidence. *Journal of Economic Development 29*(1), pp 85-108.

21. McDonald, Robert L., and Daniel Siegel (1986), "The Value of Waiting to Invest," *Quarterly Journal of Economics* 101 (4): 707-727.

22. Obstfeld, Maurice and Kenneth Rogoff (1998), "Risk and Exchange Rates," NBER Working Papers Series, WP 6694, (Cambridge, Massachusetts: National Bureau of Economic Research).

23. Paul Alagidede and MuazuIbrehim (2016). On the causes and effects of exchange volatility on economic growth: Evidence from Ghana (2016). *International Growth Centre Working Paper*.

24 Sercu, P. and C. Vanhulle, 1992, "Exchange Rate Volatility, International Trade, and the Value of Exporting Firms, *Journal of Banking and Finance* 16, pp. 155-82.

APPENDICES

APPENDIX A

RESULT FROM STANDARD DEVIATION

Voor	Thailand					
I eai	3 Months	6 Months	9 Months	12 Months		
2005 Q1	0.5948	10.2585	8.9857	7.8429		
2005 Q2	0.6300	0.8627	9.6825	9.6980		
2005 Q3	0.8250	0.7201	0.7978	8.7720		
2005 Q4	0.3301	1.0395	1.1056	0.9874		
2006 Q1	1.3186	1.4565	1.8106	1.8861		
2006 Q2	0.6901	1.7208	2.2076	2.6051		
2006 Q3	0.5615	0.9555	1.9457	2.5844		
2006 Q4	0.7951	1.4071	1.7324	2.5202		
2007 Q1	0.9498	0.8871	1.5426	1.9789		
2007 Q2	0.6665	1.3322	1.4335	2.0120		
2007 Q3	1.4365	1.0222	1.4515	1.6345		
2007 Q4	0.5444	1.5168	1.2915	1.3716		
2008 Q1	1.4069	1.3693	1.4374	1.2744		
2008 Q2	1.2794	1.4690	1.7509	1.6249		
2008 Q3	0.9199	2.2994	1.9571	1.8267		
2008 Q4	1.9926	1.4391	2.4429	2.2363		
2009 Q1	1.0335	1.4946	1.3861	2.4274		
2009 Q2	0.4015	0.8288	1.2135	1.1944		
2009 Q3	0.3592	0.3416	0.7029	1.0505		
2009 Q4	0.3148	0.4102	0.4092	0.6260		
2010 Q1	1.3246	1.4471	1.1908	1.0404		
2010 Q2	0.9767	2.1048	2.5280	2.3469		
2010 Q3	1.3563	1.1289	2.1589	2.7783		
2010 Q4	0.2000	1.2817	1.3760	2.3770		
2011 Q1	0.3844	1.6857	1.4988	1.3994		
2011 Q2	1.0950	0.7343	1.6379	1.5185		
2011 Q3	0.2955	0.7175	0.5990	1.4753		
2011 Q4	0.3356	0.5794	0.7463	0.6739		
2012 Q1	1.6741	3.3467	3.2650	3.0441		
2012 Q2	0.1250	4.5885	3.7305	3.3177		
2012 Q3	0.5027	0.5197	4.3600	3.7213		
2012 Q4	0.2570	0.7933	0.9357	4.2405		
2013 Q1	1.9522	2.6755	2.7425	2.7135		
2013 Q2	2.6122	2.2682	3.1548	3.4496		
2013 Q3	1.0557	2.9606	2.5453	2.8374		

Table A.1: Exchange Rate Volatility in Thailand

Vaar		Thailand		
rear	3 Months 6 Months		9 Months	12 Months
2013 Q4	1.1319	1.1904	2.9462	2.7400
2014 Q1	0.7328	1.3969	1.6614	3.1880
2014 Q2	0.4864	0.5572	1.2272	1.6258
2014 Q3	0.6947	0.9690	0.9372	1.1518
2014 Q4	0.9200	1.1555	1.4855	1.4886
2015 Q1	1.2120	1.8885	2.1871	2.4707
2015 Q2	2.0805	1.8866	1.8403	2.0772
2015 Q3	1.5341	2.5642	2.8560	2.4739
2015 Q4	0.3873	1.1834	2.5164	3.1031

Table A.2: Exchange Rate Volatility in Singapore

Vaar		Singapore		
rear	3 Month	6 Month	9 Month	12 Month
2005 Q1	0.2095	12.1110	11.1518	10.0750
2005 Q2	0.4949	0.4843	11.2191	11.8154
2005 Q3	0.5338	0.4847	0.4671	10.1557
2005 Q4	0.6116	0.5147	0.5008	0.4765
2006 Q1	0.1801	0.6979	0.6795	0.6867
2006 Q2	0.4110	0.2940	0.6187	0.6590
2006 Q3	0.1389	0.3640	0.3041	0.6158
2006 Q4	0.1400	0.3980	0.5422	0.4994
2007 Q1	0.2021	0.4222	0.3791	0.4730
2007 Q2	0.6879	0.5093	0.6184	0.5317
2007 Q3	0.4994	0.7740	0.6217	0.6113
2007 Q4	0.3868	1.1712	1.4133	1.2786
2008 Q1	0.2350	0.4358	1.2309	1.5890
2008 Q2	0.5110	1.3847	1.4372	1.9168
2008 Q3	0.4751	0.4530	1.2340	1.4474
2008 Q4	0.5486	0.9812	0.8709	1.4897
2009 Q1	0.4574	0.6474	0.8092	0.7708
2009 Q2	0.4654	0.7020	0.9214	0.8667
2009 Q3	0.2066	0.3711	0.5717	0.8415
2009 Q4	0.4359	0.3693	0.4569	0.5348
2010 Q1	0.1900	0.3008	0.3200	0.4292
2010 Q2	0.7263	1.4908	1.3587	1.2890
2010 Q3	0.5401	1.1070	1.9344	1.9559
2010 Q4	0.4508	0.7578	1.3423	2.1833
2011 Q1	0.3493	1.0464	1.3319	1.8219
2011 Q2	0.4788	0.5336	1.1720	1.5423
2011 Q3	1.0557	1.5613	1.5831	1.9541

Veen			Singapore	1	
Year		3 Month	6 Month	9 Month	12 Month
2011	Q4	0.0819	1.3754	1.3205	1.3566
2012	Q1	0.6035	1.2999	1.2711	1.3736
2012	Q2	0.1277	1.1285	1.8470	1.6382
2012	Q3	0.6338	1.4448	1.9882	2.6142
2012	Q4	0.6002	0.7854	1.6432	2.2886
2013	Q1	0.2516	0.4338	0.7388	1.6182
2013	Q2	0.3704	0.8690	0.7903	0.7898
2013	Q3	0.4801	0.3969	0.7804	0.7779
2013	Q4	0.6955	0.9649	0.9098	0.8800
2014	Q1	0.1473	0.7445	0.7861	0.7787
2014	Q2	0.1801	0.1474	0.6507	0.6818
2014	Q3	0.2811	0.2578	0.2296	0.5689
2014	Q4	0.0794	0.2769	0.2402	0.2167
2015	Q1	0.6694	0.7804	0.7982	0.7062
2015	Q2	0.4957	0.6505	0.6667	0.7200
2015	Q3	0.8516	1.1174	0.9476	0.9982
2015	Q4	0.5682	0.7009	1.1436	1.0512

 Table A.3: Exchange Rate Volatility in Malaysia

Vaar	24		Malaysia		
rear		3 Month	6 Month	9 Month	12 Month
2005	Q1	0.4823	5.1897	4.8719	4.2193
2005	Q2	1.1729	1.0823	4.4652	4.7716
2005	Q3	0.1200	1.3708	1.6262	3.8086
2005	Q4	0.6035	0.8035	1.6207	1.9970
2006	Q1	1.2647	0.8962	0.9996	1.6920
2006	Q2	0.2339	0.9327	0.8624	1.0728
2006	Q3	0.4251	0.5485	0.7948	0.7625
2006	Q4	0.8488	0.7204	0.6264	0.7950
2007	Q1	0.6301	1.7689	1.7986	1.5650
2007	Q2	0.4934	0.5114	1.5748	1.8168
2007	Q3	0.9564	1.4819	1.3847	1.5580
2007	Q4	0.5567	0.7047	1.3140	1.3817
2008	Q1	0.7677	0.8025	0.8558	1.1739
2008	Q2	1.2108	0.9303	0.8785	0.9056
2008	Q3	1.0886	1.1885	1.0182	1.0244
2008	Q4	0.7062	1.1993	1.1339	1.0245
2009	Q1	0.2600	0.8610	1.4238	1.3329
2009	Q2	0.3361	0.3850	0.9094	1.4967
2009	Q3	0.2196	0.9194	0.9870	1.3320

V			Malaysia		
real	ſ	3 Month	6 Month	9 Month	12 Month
2009	Q4	0.0451	0.5941	0.7376	0.8463
2010	Q1	1.0891	1.0628	1.2331	1.0781
2010	Q2	0.4545	2.7488	2.9170	2.9865
2010	Q3	0.5052	0.7807	2.8346	3.3392
2010	Q4	0.2237	1.2389	1.0068	2.4216
2011	Q1	0.4513	0.8591	1.0221	0.8989
2011	Q2	0.4414	0.8938	0.8024	1.0468
2011	Q3	0.9143	0.6988	1.0434	0.9062
2011	Q4	0.2386	1.1764	1.1932	1.5042
2012	Q1	0.9034	1.4813	1.2936	1.1924
2012	Q2	0.7812	0.9628	1.2368	1.1527
2012	Q3	0.4332	0.5765	0.8768	1.0719
2012	Q4	0.2843	0.5859	0.6170	0.7771
2013	Q1	0.7988	0.5603	0.7148	0.7278
2013	Q2	2.1562	1.7936	1.5571	1.5508
2013	Q3	1.5520	2.9364	2.3597	2.0166
2013	Q4	0.4149	1.1916	2.3904	2.0867
2014	Q1	0.2829	0.7514	1.0106	2.2246
2014	Q2	0.6501	0.7777	0.7287	0.9606
2014	Q3	0.4341	1.1952	1.4394	1.2433
2014	Q4	1.4939	1.0350	1.2215	1.4735
2015	Q1	0.5057	2.7829	2.6600	2.2853
2015	Q2	1.2586	0.8926	2.4819	2.6764
2015	Q3	5.0653	4.8283	4.0679	4.6171
2015	Q4	0.7903	3.8130	5.1537	4.9599

APPENDIX B RESULT FROM STATA

Aggregate ASEAN-3 countries Analysis

. xtset Id Time
 panel variable: Id (strongly balanced)
 time variable: Time, 1 to 44
 delta: 1 unit
. xtabond GDP CON FCF TRA INF LAB EXV3

Arellano-Bond dynamic panel-data estimation Group variable: Id Time variable: Time				Number of obs = Number of groups =			126	
							= 3	
			C)bs per gr	oup:	min =	42	
						avq =	42	
						max =	42	
Number of inst	ruments =	127	V	Vald chi2(7)	-	174.82	
			E	Prob > chi	2	-	0.0000	
One-step resul	ts							
					_			
GDP	Coef.	Std. Err.	Z	₽> z	[95%	Conf.	Interval]	
GDP					19			
L1.	.7337361	.0614069	11.95	0.000	.6133	3809	.8540914	
CON	.0501625	.0472446	1.06	0.288	0424	4351	.1427602	
FCF	.039633	.0229003	1.73	0.084	0052	2508	.0845168	
TRA	0494073	.1476484	-0.33	0.738	338	7928	.2399782	
INF	4487414	.1965422	-2.28	0.022	8339	9569	0635259	
LAB	0199842	.0339489	-0.59	0.556	086	5228	.0465545	
EXV3	-1.021952	.5505702	-1.86	0.063	-2.10	0105	.0571457	
_cons	2.381344	1.086486	2.19	0.028	.2	5187	4.510818	
Instruments fo	or difference	d equation						
GMM-ty	vpe: L(2/.).GI	DP						
Standa	rd: D.CON D.I	FCF D.TRA D.	INF D.LA	AB D.EXV3				

Standard: D.CON D.FCF D.TRA D.INF D.LAB D.EXV. Instruments for level equation Standard: _cons

estat sargan
 Sargan test of overidentifying restrictions
 H0: overidentifying restrictions are valid

chi2(119) = 126.1284 Prob > chi2 = 0.3099

. est store MBond3

39

. xtabond GDP CON FCF TRA INF LAB EXV6

Arellano-Bond dynamic pan Group variable: Id Time variable: Time	tion 1	Number of (Number of (obs groups	=	126 3	
		(Obs per gro	oup:	min =	42
					avg =	42
					max =	42
Number of instruments =	127	Ţ	Wald chi2(7)	=	170.21
]	Prob > chi	2	=	0.0000
One-step results						
GDP Coef.	Std. Err.	Z	₽> z	[95%	Conf.	Interval]
GDP						
L17303352	.0619852	11.78	0.000	.608	8463	.851824
CON .04671	.0478264	0.98	0.329	04	7028	.140448
FCF .0440706	.0232019	1.90	0.058	001	4042	.0895455
TRA072854	.1509588	-0.48	0.629	368	7279	.2230199
INF4289582	.2002378	-2.14	0.032	82	1417	0364993
LAB0209677	.0342878	-0.61	0.541	0883	1706	.0462353
EXV66758109	.4430297	-1.53	0.127	-1.54	4133	.1925113
cons 2.527502	1.177547	2.15	0.032	.219	5536	4.835451

```
Instruments for differenced equation
     GMM-type: L(2/.).GDP
      Standard: D.CON D.FCF D.TRA D.INF D.LAB D.EXV6
Instruments for level equation
      Standard: _cons
```

```
. estat sargan
Sargan test of overidentifying restrictions
      H0: overidentifying restrictions are valid
```

chi2(119) = 124.6076Prob > chi2 = 0.3442

. est store MBond6

. xtabond GDP CON FCF TRA INF LAB EXV9 $\,$

Arellano-Bond dynamic panel-data estimation Group variable: Id Time variable: Time				Number of Number of	obs groups	=	126 3
				Obs per gr	oup:	min =	42
						avg =	42
						max =	42
Number of inst	cruments =	127		Wald chi2(7)	=	176.01
				Prob > chi	2	=	0.0000
One-step resul	lts						
GDP	Coef.	Std. Err.	Z	₽> z	[95%	Conf.	Interval]
GDP							
L1.	.7281752	.0608829	11.96	0.000	.60	8847	.8475034
CON	.0425857	.0472854	0.90	0.368	050	0919	.1352634
FCF	.0442949	.0228215	1.94	0.052	000	4345	.0890243
TRA	0401505	.146408	-0.27	0.784	32	7105	.246804
INF	477115	.1946718	-2.45	0.014	858	6648	0955653
LAB	022142	.0336748	-0.66	0.511	088	1434	.0438595
EXV9	327651	.2272498	-1.44	0.149	773	0523	.1177504
_cons	2.211533	1.07954	2.05	0.041	.095	6734	4.327393

```
Instruments for differenced equation
    GMM-type: L(2/.).GDP
    Standard: D.CON D.FCF D.TRA D.INF D.LAB D.EXV9
Instruments for level equation
    Standard: _cons
```

. estat sargan Sargan test of overidentifying restrictions H0: overidentifying restrictions are valid

> chi2(119) = 129.4307 Prob > chi2 = 0.2419

. xtabond GDP CON FCF TRA INF LAB EXV12 $\,$

Arellano-Bond dynamic panel-data estimation				Number of	126		
Group variable	: Id		1	Number of groups =			
Time variable:	Time						
			(Obs per gr	oup:	min =	42
						avg =	42
						max =	42
Number of inst	ruments =	127	I	Wald chi2(7)	=	169.67
]	Prob > chi	2	=	0.0000		
One-step resul	ts						
GDP	Coef.	Std. Err.	Z	₽> z	[95%	Conf.	Interval]
GDP							
L1.	.7277142	.0616869	11.80	0.000	.6	0681	.8486184
CON	.0499042	.0476417	1.05	0.295	043	4718	.1432802
FCF	.0418919	.0230875	1.81	0.070	003	3587	.0871426
TRA	0351571	.1482825	-0.24	0.813	325	7853	.2554712
INF	4745726	.1972066	-2.41	0.016	861	0904	0880549
LAB	0229184	.0341417	-0.67	0.502	089	8348	.0439981
EXV12	0738078	.1855428	-0.40	0.691	43	7465	.2898494
_cons	1.770261	1.078666	1.64	0.101	343	8853	3.884407
Instruments fc	or differenced	d equation		<	2		

GMM-type: L(2/.).GDP Standard: D.CON D.FCF D.TRA D.INF D.LAB D.EXV12 Instruments for level equation Standard: _cons

estat sargan
 Sargan test of overidentifying restrictions
 H0: overidentifying restrictions are valid

chi2(119) = 128.008 Prob > chi2 = 0.2700

. xtabond GDP CON FCF TRA INF LAB EXV3 $\,$

Arellano-Bond	dynamic panel	l-data estima	ation	Number of c	bs	=	84
Group variable	: Id			Number of g	roups	=	2
Time variable:	Time						
				Obs per gro	up:	min =	42
						avg =	42
						max =	42
Number of inst	ruments =	85		Wald chi2(7)	=	136.63
				Prob > chi2	1	=	0.0000
One-step resul	ts						
GDP	Coef.	Std. Err.	Z	₽> z	[95%	Conf.	Interval]
GDP							
L1.	.7296835	.0729458	10.00	0.000	.586	7123	.8726547
CON	.0696031	.0831164	0.84	0.402	09	3302	.2325082
FCF	.1881835	.0617482	3.05	0.002	.067	1592	.3092078
TRA	-2.717703	2.991461	-0.91	0.364	-8.58	0859	3.145452
INF	477377	.3052156	-1.56	5 0.118	-1.07	5589	.1208346
LAB	1816654	.2226239	-0.82	0.414	618	0002	.2546694
EXV3	-3.251444	1.023593	-3.18	0.001	-5.25	7648	-1.245239
_ ^{cons}	10.51891	7.514509	1.40	0.162	-4.20	9257	25.24708

Instruments for differenced equation GMM-type: L(2/.).GDP Standard: D.CON D.FCF D.TRA D.INF D.LAB D.EXV3 Instruments for level equation Standard: _cons

. estat sargan
Sargan test of overidentifying restrictions
 H0: overidentifying restrictions are valid
 chi2(77) = 76.12708

Prob > chi2 = 0.5067

. xtabond GDP CON FCF TRA INF LAB EXV6

Arellano-Bond dynamic panel-data estimation Group variable: Id Time variable: Time			ation	Number of Number of	obs groups	=	84 2	
				Obs per gr	oup:	min =	42	
						avg =	42	
						max =	42	
Number of inst	ruments =	85		Wald chi2(7)	=	116.31	
				Prob > chi	2	=	0.0000	
One-step resul	ts							
GDP	Coef.	Std. Err.	z	₽> z	[95%	Conf.	Interval]	
GDP								
L1.	.7223338	.0771542	9.36	0.000	.571	1143	.8735534	
CON	.0663362	.0882548	0.75	0.452	1	0664	.2393124	
FCF	.1925107	.0654609	2.94	0.003	.064	2098	.3208116	
TRA	-2.719189	3.169416	-0.86	0.391	-8.93	1131	3.492753	
INF	379971	.3298575	-1.15	0.249	-1.0	2648	.2665377	
LAB	1780135	.2357955	-0.75	0.450	640	1642	.2841371	
EXV6	-1.351937	.7460777	-1.81	0.070	-2.81	4223	.110348	
_ ^{cons}	9.617065	7.981015	1.20	0.228	-6.02	5437	25.25957	

Instruments for differenced equation
 GMM-type: L(2/.).GDP
 Standard: D.CON D.FCF D.TRA D.INF D.LAB D.EXV6
Instruments for level equation
 Standard: _cons

estat sargan
 Sargan test of overidentifying restrictions
 H0: overidentifying restrictions are valid

chi2(77) = 73.72475 Prob > chi2 = 0.5847

. xtabond GDP CON FCF TRA INF LAB EXV9

Arellano-Bond dynamic panel-data estimation	Number of obs	=	84
Group variable: Id	Number of groups	=	2
Time variable: Time			
	Obs per group:	min =	42
		avg =	42
		max =	42
Number of instruments = 85	Wald chi2(7)	=	120.39
	Prob > chi2	=	0.0000
One-step results			

GDP	Coef.	Std. Err.	Z	₽> z	[95% Conf.	Interval]
GDP						
L1.	.7205709	.0751867	9.58	0.000	.5732076	.8679342
CON	0712526	0.0 0 0 5 0 0	0 0 2	0 407	0072075	2400107
CON	.0713526	.0860526	0.83	0.407	0973075	.2400127
F'C F'	.1863273	.0636459	2.93	0.003	.0615837	.3110709
TRA	-2.173899	3.084994	-0.70	0.481	-8.220376	3.872577
INF	5133753	.3146176	-1.63	0.103	-1.130015	.103264
LAB	1626663	.2294541	-0.71	0.478	6123881	.2870554
EXV9	3339005	.296135	-1.13	0.260	9143143	.2465134
_cons	7.480569	7.676315	0.97	0.330	-7.564732	22.52587

Instruments for differenced equation
 GMM-type: L(2/.).GDP
 Standard: D.CON D.FCF D.TRA D.INF D.LAB D.EXV9
Instruments for level equation
 Standard: _cons

estat sargan
 Sargan test of overidentifying restrictions
 H0: overidentifying restrictions are valid

chi2(77) = 79.8898 Prob > chi2 = 0.3884

. xtabond GDP CON FCF TRA INF LAB EXV12 $\,$

Arellano-Bond	ation N	Jumber of	=	84			
Group variable	: Id		1	Number of	=	2	
Time variable:	Time						
			C)bs per gr	oup:	min =	42
						avg =	42
						max =	42
Number of inst	ruments =	85	V	Vald chi2(7)	=	115.85
			I	Prob > chi	=	0.0000	
One-step resul	ts						
GDP	Coef.	Std. Err.	Z	₽> z	[95%	Conf.	Interval]
GDP							
L1.	.7228731	.0762639	9.48	0.000	.573	3985	.8723476
CON	.0813969	.0867963	0.94	0.348	088	7207	.2515145
FCF	.1847985	.0645503	2.86	0.004	.058	2823	.3113147
TRA	-2.325559	3.142285	-0.74	0.459	-8.48	4325	3.833207
INF	5037828	.3192475	-1.58	0.115	-1.12	9496	.1219307
LAB	1514826	.2324847	-0.65	0.515	607	1442	.3041789
	0185533	.236067	-0.08	0.937	481	2362	.4441296
EXV12			0 04	0 0 5 0	7 00	1716	00 66601

Standard: D.CON D.FCF D.TRA D.INF D.LAB D.EXV12 Instruments for level equation Standard: _cons

estat sargan
 Sargan test of overidentifying restrictions
 H0: overidentifying restrictions are valid

chi2(77) = 78.91976 Prob > chi2 = 0.4180

Disaggregate Single Country Analysis

. ivregress gmm GDP CON FCF TRA INF LAB EXV3 (1.GDP=L2.GDP) if Id==1 $\,$

Instrumental	variables	(GMM)	regression	Number	of obs	=	42
				Wald ch	i2(7)	=	55.06
				Prob >	chi2	=	0.0000
				R-squar	ed	=	0.6312
GMM weight ma	atrix: Robu	ist		Root MS	E	=	4.577

GDP	Coef.	Robust Std. Err.	Z	₽> z	[95% Conf	. Interval]
GDP						
L1.	.5462094	.2174218	2.51	0.012	.1200705	.9723483
CON	0414986	.1334808	-0.31	0.756	3031163	.220119
FCF	.2522233	.0992313	2.54	0.011	.0577335	.446713
TRA	6.396008	7.560413	0.85	0.398	-8.42213	21.21415
INF	7551567	.825653	-0.91	0.360	-2.373407	.8630934
LAB	.1402453	.2651484	0.53	0.597	3794359	.6599266
EXV3	-3.771574	1.283523	-2.94	0.003	-6.287233	-1.255914
_cons	-2.974139	11.43128	-0.26	0.795	-25.37903	19.43075

Instrumented: L.GDP

Instruments: CON FCF TRA INF LAB EXV3 L2.GDP

. est store Thai3

. ivregress gmm GDP CON FCF TRA INF LAB EXV6 (1.GDP=L2.GDP) if Id==1

Instrumental variables (GMM) regression				
	Instrumental	variables	(GMM)	regression

Number of obs	=	42
Wald chi2(7)	-	88.94
Prob > chi2	=	0.0000
R-squared	=	0.5988
Root MSE	=	4.7736

GMM weight matrix: Robust

GDP	Coef.	Robust Std. Err.	Z	P> z	[95% Conf.	Interval]
GDP						
L1.	.6607421	.1691452	3.91	0.000	.3292235	.9922606
CON	.0677624	.1464601	0.46	0.644	2192942	.354819
FCF	.2474272	.1008549	2.45	0.014	.0497552	.4450993
TRA	6.568845	6.662131	0.99	0.324	-6.488692	19.62638
INF	8442378	.627694	-1.34	0.179	-2.074495	.3860198
LAB	0540448	.3019113	-0.18	0.858	6457801	.5376906
EXV6	-1.799696	1.030144	-1.75	0.081	-3.818741	.2193485
_cons	-5.027241	9.465617	-0.53	0.595	-23.57951	13.52503

Instrumented: L.GDP Instruments: CON FCF TRA INF LAB EXV6 L2.GDP

. est store Thai6

. ivregress gmm GDP CON FCF TRA INF LAB EXV9 (1.GDP=L2.GDP) if Id==1

Instrumental	variables	(GMM)	regression	Number of	e obs	=	42
				Wald chi2	2(7)	=	98.74
				Prob > ch	ni2	=	0.0000
				R-squared	ł	=	0.6486
GMM weight ma	atrix: Robu	ıst		Root MSE		=	4.4675

GDP	Coef.	Robust Std. Err.	Z	₽> z	[95% Conf.	. Interval]
GDP						
L1.	.6102206	.167695	3.64	0.000	.2815445	.9388967
CON	.0968241	.130869	0.74	0.459	1596745	.3533226
FCF	.2512842	.0904942	2.78	0.005	.0739189	.4286495
TRA	10.97097	6.569695	1.67	0.095	-1.905396	23.84734
INF	7443297	.695854	-1.07	0.285	-2.108179	.619519
LAB	2756767	.3572043	-0.77	0.440	9757842	.4244308
EXV9	-2.715271	.8128874	-3.34	0.001	-4.308501	-1.122041
_cons	-9.033151	9.222225	-0.98	0.327	-27.10838	9.042078

Instrumented: L.GDP

Instruments: CON FCF TRA INF LAB EXV9 L2.GDP _...*ur* W.

. est store Thai9

. ivregress gmm GDP CON FCF TRA INF LAB EXV12 (1.GDP=L2.GDP) if Id==1

Instrumental variables (GMM)	regression	Number of obs	=	42
		Wald chi2(7)	=	45.02
		Prob > chi2	=	0.0000
		R-squared	=	0.5889
GMM weight matrix: Robust		Root MSE	=	4.8323

		Robust				
GDP	Coef.	Std. Err.	Z	₽> z	[95% Conf	. Interval]
GDP						
L1.	.5406933	.2479606	2.18	0.029	.0546995	1.026687
CON	19478	1734456	1 1 2	0 261	- 145167	5347271
FCF	.294686	.1193664	2.47	0.014	.0607322	.5286398
TRA	7.572851	8.130592	0.93	0.352	-8.362817	23.50852
INF	1891369	.8483046	-0.22	0.824	-1.851783	1.47351
LAB	3381911	.4248996	-0.80	0.426	-1.170979	.4945967
EXV12	-1.179727	.6953878	-1.70	0.090	-2.542663	.1832076
_cons	-7.439912	11.96498	-0.62	0.534	-30.89085	16.01103

Instrumented: L.GDP

Instruments: CON FCF TRA INF LAB EXV12 L2.GDP

. est store Thail2

. ivregress gmm GDP CON FCF TRA INF LAB EXV3 (l.GDP=L2.GDP) if $\mbox{Id}{=}2$

Instrumental	variables	(GMM)	regression		Number of obs	=	42
				,	Wald chi2(7)	=	73.65
					Prob > chi2	=	0.0000
					R-squared	=	0.7102
GMM weight ma	atrix: Robu	ıst			Root MSE	=	2.7873

GDP	Coef.	Robust Std. Err.	Z	₽> z	[95% Conf.	. Interval]
GDP						
L1.	.7261696	.1203347	6.03	0.000	.4903179	.9620213
CON	1074849	086346	1.24	0.213	0617501	. 27672
FCF	.1699432	.0806494	2.11	0.035	.0118733	.3280131
TRA	-4.054111	3.14879	-1.29	0.198	-10.22563	2.117404
INF	3137165	.2205633	-1.42	0.155	7460126	.1185796
LAB	1156027	.15509	-0.75	0.456	4195735	.1883682
EXV3	-1.281941	2.48485	-0.52	0.606	-6.152157	3.588275
_cons	16.27176	11.59555	1.40	0.161	-6.455097	38.99863

Instrumented: L.GDP Instruments: CON FCF TRA INF LAB EXV3 L2.GDP

. est store Sing3

. ivregress gmm GDP CON FCF TRA INF LAB EXV6 (1.GDP=L2.GDP) if $\mbox{Id}{=}2$

Instrumental variables (GMM)	regression	Number of obs	=	42
		Wald chi2(7)	=	72.26
		Prob > chi2	=	0.0000
		R-squared	=	0.7078
GMM weight matrix: Robust		Root MSE	=	2.7987

GDP	Coef.	Robust Std. Err.	Z	P> z	[95% Conf.	Interval]
GDP						
L1.	.7239969	.1243516	5.82	0.000	.4802722	.9677216
CON	.0972179	.0765668	1.27	0.204	0528502	.2472861
FCF	.1653761	.0741964	2.23	0.026	.0199539	.3107984
TRA	-3.930185	3.136929	-1.25	0.210	-10.07845	2.218083
INF	3012305	.2734537	-1.10	0.271	83719	.2347289
LAB	1110325	.1567925	-0.71	0.479	4183401	.196275
EXV6	4359658	1.559232	-0.28	0.780	-3.492004	2.620072
_cons	15.61258	11.50832	1.36	0.175	-6.943307	38.16847

Instrumented: L.GDP Instruments: CON FCF TRA INF LAB EXV6 L2.GDP

. est store Sing6

. ivregress gmm GDP CON FCF TRA INF LAB EXV9 (l.GDP=L2.GDP) if Id==2 $\,$

Instrumental varia	oles (GMM)	regression	1	Number of obs	=	42
			V	Vald chi2(7)	=	69.08
			I	Prob > chi2	=	0.0000
			F	R-squared	=	0.7214
GMM weight matrix:	Robust		F	Root MSE	=	2.7329

GDP	Coef.	Robust Std. Err.	Z	P> z	[95% Conf.	[Interval]
GDP						
L1.	.752909	.1190867	6.32	0.000	.5195033	.9863146
CON	.0900669	.0761278	1.18	0.237	0591409	.2392747
FCF	.1799639	.0806949	2.23	0.026	.0218048	.338123
TRA	-5.071707	3.446336	-1.47	0.141	-11.8264	1.682988
INF	0521378	.3598404	-0.14	0.885	757412	.6531363
LAB	1504155	.1409102	-1.07	0.286	4265943	.1257634
EXV9	-1.781338	1.567184	-1.14	0.256	-4.852962	1.290287
_cons	20.68358	12.83542	1.61	0.107	-4.473369	45.84054

Instrumented: L.GDP Instruments: CON FCF TRA INF LAB EXV9 L2.GDP

. est store Sing9

. ivregress gmm GDP CON FCF TRA INF LAB EXV12 (l.GDP=L2.GDP) if Id==2 $\,$

Instrumental variables	(GMM)	regression	Number of o	bs =	42	
				Wald chi2(7) =	85.27
				Prob > chi2	=	0.0000
				R-squared	=	0.7196
GMM weight ma	trix: Robu	ıst		Root MSE	=	2.7418

GDP	Coef.	Robust Std. Err.	Z	P> z	[95% Conf.	Interval]
GDP						
L1.	.7049972	.1193208	5.91	0.000	.4711328	.9388616
CON	.1011097	.0796668	1.27	0.204	0550343	.2572537
FCF	.2009806	.0678978	2.96	0.003	.0679032	.3340579
TRA	-4.660157	2.578488	-1.81	0.071	-9.7139	.3935874
INF	3623582	.1755521	-2.06	0.039	7064341	0182824
LAB	0948707	.1653973	-0.57	0.566	4190434	.2293021
EXV12	.4660836	.1220393	3.82	0.000	.226891	.7052762
_cons	17.32693	9.11836	1.90	0.057	5447232	35.19859

Instrumented: L.GDP

Instruments: CON FCF TRA INF LAB EXV12 L2.GDP

. est store Sing12

. ivregress gmm GDP CON FCF TRA INF LAB EXV3 (1.GDP=L2.GDP) if Id==3 $\,$

Instrumental variables	(GMM) regression	Number of obs	=	42
		Wald chi2(7)	=	25.28
		Prob > chi2	=	0.0007
		R-squared	=	0.5871
GMM weight matrix: Robu	ist	Root MSE	=	1.7796

		Robust				
GDP	Coef.	Std. Err.	Z	₽> z	[95% Conf.	Interval]
GDP						
L1.	.0602252	.2347992	0.26	0.798	3999727	.5204231
CON	.0940706	.0378087	2.49	0.013	.0199668	.1681743
FCF	.0529219	.0172352	3.07	0.002	.0191416	.0867023
TRA	1119426	.0637792	-1.76	0.079	2369475	.0130622
INF	.1559169	.231609	0.67	0.501	2980284	.6098622
LAB	0145154	.0056978	-2.55	0.011	0256828	003348
EXV3	.4710097	.3110105	1.51	0.130	1385597	1.080579
_cons	1.961753	.8471941	2.32	0.021	.301283	3.622223

Instrumented: L.GDP Instruments: CON FCF TRA INF LAB EXV3 L2.GDP

GMM weight matrix: Robust

. est store Malay3 . ivregress gmm GDP CON FCF TRA INF LAB EXV6 (1.GDP=L2.GDP) if Id==3 Instrumental variables (GMM) regression

Numbe	er of obs	=	42
Wald	chi2(7)	-	26.40
Prob	> chi2	=	0.0004
R-squ	ared	-	0.5860
Root	MSE	=	1.782

GDP	Coef.	Robust Std. Err.	Z	₽> z	[95% Conf.	Interval]
GDP						
L1.	.0827515	.239657	0.35	0.730	3869676	.5524706
CON	.0940912	.0384933	2.44	0.015	.0186458	.1695366
FCF	.0502506	.0171895	2.92	0.003	.0165597	.0839414
TRA	1070548	.0644024	-1.66	0.096	2332812	.0191715
INF	.1680186	.2323486	0.72	0.470	2873763	.6234135
LAB	0138258	.0053042	-2.61	0.009	0242219	0034297
EXV6	.2583831	.2340715	1.10	0.270	2003887	.7171548
_cons	1.878373	.9560476	1.96	0.049	.0045544	3.752192

Instrumented: L.GDP Instruments: CON FCF TRA INF LAB EXV6 L2.GDP

. est store Malay6

. ivregress gmm GDP CON FCF TRA INF LAB EXV9 (1.GDP=L2.GDP) if Id==3 $\,$

Instrumental	variables	(GMM)	regression	Number of obs	=	42
				Wald chi2(7)	=	26.43
				Prob > chi2	=	0.0004
				R-squared	=	0.5860
GMM weight m	atrix: Robu	ıst		Root MSE	=	1.782

GDP	Coef.	Robust Std. Err.	Z	₽> z	[95% Conf.	Interval]
GDP						
L1.	.0987226	.2467522	0.40	0.689	3849029	.5823481
CON	.0933328	.0392129	2.38	0.017	.0164769	.1701886
FCF	.0499537	.0169734	2.94	0.003	.0166865	.083221
TRA	1174562	.0685588	-1.71	0.087	251829	.0169166
INF	.1625402	.2406975	0.68	0.499	3092183	.6342986
LAB	0132583	.0048456	-2.74	0.006	0227555	0037611
EXV9	.0255177	.2528046	0.10	0.920	4699701	.5210055
_ ^{cons}	2.277612	1.065135	2.14	0.032	.189986	4.365238

Instrumented: L.GDP Instruments: CON FCF TRA INF LAB EXV9 L2.GDP

. est store Malay9

. ivregress gmm GDP CON FCF TRA INF LAB EXV12 (l.GDP=L2.GDP) if Id==3 $\,$

Instrumental variables (GMM) regre	ession Number of obs	= 4
	Wald chi2(7)	= 29.2
	Prob > chi2	= 0.000
	R-squared	= 0.595
GMM weight matrix: Robust	Root MSE	= 1.760

GDP	Coef.	Robust Std. Err.	Z	₽> z	[95% Conf.	Interval]
GDP						
L1.	.1206479	.2262081	0.53	0.594	3227117	.5640075
CON	.0900106	.0381676	2.36	0.018	.0152035	.1648178
FCF	.0501193	.0167864	2.99	0.003	.0172185	.0830201
TRA	1188672	.065517	-1.81	0.070	2472781	.0095438
INF	.1421668	.2227813	0.64	0.523	2944765	.5788101
LAB	0141924	.0041702	-3.40	0.001	0223659	0060189
EXV12	0981671	.2068161	-0.47	0.635	5035191	.3071849
_cons	2.517186	.9471355	2.66	0.008	.6608341	4.373537

Instrumented: L.GDP Instruments: CON FCF TRA INF LAB EXV12 L2.GDP

. est store Malay12

BIOGRAPHY

Name Date of Birth Educational Attainment Miss Nawan Limpavathanyoo November 29, 1992 2014: Bachelor of Arts in Entrepreneurial Economic, Kasetsart University

