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ABSTRACT 

 

As the actual volatility is inherently latent. We use the square return and three 

range-based estimators as the volatility proxy to evaluate the forecasting performance 

of various GARCH-type models from SET index return. The Root Mean Squared Error 

(RMSE) and Superior Predictive Ability (SPA) test of Hansen (2005) are applied to 

measure the goodness of fit. The empirical results indicate that the EGARCH model is 

superior in forecasting ability than other GARCH-type models for rolling out-of-sample 

forecasting. However, with the fixed-window, the findings are quite striking depend on 

the prediction horizon. In addition, the squared return as an exogenous variable can 

improve the forecasting performance of GARCH-type model while the range-based 

estimators cannot. 

 

Keywords: GARCH-type models, Range-based estimators, Volatility forecast, Root 

Mean Squared Error (RMSE), Superior Predictive Ability (SPA) test 
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CHAPTER 1 

INTRODUCTION 

 

There are several type of news reports impacts the asset prices. The positive 

(negative) news will normally cause investors to buy (sell) the asset. Sometimes 

investors may notice that it difficult to interpret news that are issued at the same time. 

It depends on the individual who different background and experiences. It leads asset 

prices become volatility. A degree of variation, volatility, has been studied in several 

research fields, especially in empirical finance and financial econometrics. It is a crucial 

part of portfolio selection, risk management, asset allocation and capital asset pricing.  

As the true volatility is inherently unobservable (latent). To assess and evaluate 

the volatility performance, we rely on ex post proxies for actual volatility. From the 

previous studies, Awartani and Corradi (2005) used squared returns (SR) as a proxy of 

actual volatility compared with different GARCH model. The results show that 

GARCH (1,1) is outperformed against the class of asymmetric GARCH. However, 

Andersen and Bollerslev (1998) pointed out squared return (SR) is unbiased estimator 

but extremely noisy because using only daily close price. When an open-high-low-close 

price are readily available, Parkinson (1980) introduced the estimation of the volatility 

using high-low range. In addition, Garman and Klass (1980) improved the Parkinson 

(1980) by adding open and close price with zero drift and no opening jumps. Moreover, 

Rogers and Satchell (1991) also estimated the variance from entire price process ( high-

low-open-close price) with non-zero drifts term and no opening jumps. We therefore 

apply Parkinson (1980), Garman and Klass (1980) and Rogers and Satchell (1991) as a 

volatility proxy. 

To forecast the volatility, there are several models that try to mimic the 

characteristics of financial volatility. The first generation of parametric volatility 

models is an ARCH model of Engle (1982), which provided a way to model conditional 

heteroscedasticity. The GARCH, or Generalized ARCH model, proposed by Bollerslev 

(1986) which required fewer parameters to model the volatility process adequately. 

Both the ARCH and the GARCH models are designed to capture the volatility 

clustering effects, but cannot obtain the asymmetry effects. To overcome the limitation 
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of those models, there are several class of GARCH-type models that includes leverage 

terms for modeling asymmetric volatility clustering. The well-known and frequency 

applied models are the Exponential GARCH (EGARCH) model of Nelson (1991), 

GJR-GARCH model of  Glosten, Jagannathan, and Runkle (1993).  In light of the non-

normality distribution of asset returns, Kosapattarapim, C., Lin, Y. & McCrae, M. 

(2012) and Wennstrom (2014) suggested that assuming non-normal error distribution 

provides better out-of-sample forecast performance than a normal distribution. 

Moreover, Hung et al. (2013) found that the volatility forecasts can be enhanced by 

including range-based estimators. 

To assess and evaluate the forecasting performance, we introduce two concepts 

of the Root Mean Squared Error (RMSE) and Superior Predictive Ability (SPA) test of 

Hansen (2005). First, Root Mean Squared Error (RMSE) with smallest RMSE is 

approved and accepted. In fact, it is difficult to decide whether the result is due to truly 

superior or merely lucky. Diabold and Mariano (1995) proposed DM test to compare 

the efficiency of two different forecasting model valid under general conditions 

including, for example, non-quadratic, asymmetric and non-Gaussian in forecast errors. 

However, the limitation of DM test is only compare two models in the same time. We 

then use Superior Predictive Ability (SPA) test followed Hansen (2005) to assessing 

the performance of range-based estimators. The main advantage of using the SPA test 

is that it can reduce potential data snooping bias.  

This paper aims to investigate two objectives. The first objective is to find out 

the best volatility forecast of different GARCH-type models (ARCH, GARCH, 

EGARCH and GJR-GARCH) under normal and Student’s t-distribution compared with 

various volatility proxies (SR, PK, GK and RS) for the Stock Exchange of Thailand 

index (SET). The second objective is to compare the performance between the normal 

GARCH-type model as the benchmark and other GARCH-type models incorporated 

with squared return and three range-based estimation (denoted as GARCH-type-SR, 

GARCH-type-PK, GARCH-type-GK and GARCH-type-SR) as an exogenous variable 

in improving the performance of volatility forecast. 
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CHAPTER 2  

REVIEW OF LITERATURE 

 

There are several studies investigating which GARCH-type models are 

outperformed in term of their ability to forecast compared with volatility proxy. The 

previous study of Phanathip (2011) test the forecasting performance in GARCH and 

EGARCH volatility models when adding range-based estimators’ evidence in 

individual fourteen stocks in Thailand during the period 02 January 2002 to 30 

December 2011. Moreover, Using Superior Predictive Ability (SPA) of Hansen (2005) 

to comparing the forecasting models and found GARCH model is more efficiency than 

EGARCH. The result appears to contradict from the previous study that EGARCH is 

more efficiency than GARCH model according to the properties of different data 

between in-of-sample and out-of-sample period. 

Kosapattarapim, C., Lin, Y. & McCrae, M. (2012) evaluate the performance of 

volatility forecast of GARCH models with Six different types of error distributions 

(Normal distribution, Skewed Normal distribution, Student’s t distribution, Skewed 

Student’s t-distribution, Generalized Error distribution and Skewed Generalized Error 

distribution) using the dataset of three Asian stock markets (SET, KLCI and STI). The 

results show that a GARCH (p,q) model with non-normal error distributions tends to 

provide better out-of-sample forecast performance than a normal distributions. 

Moreover, the MSE and MAE given by the best fitted model is insignificantly different 

from that given by the best forecast performance model 

Hung et al. (2013) investigate the volatility forecast of six GARCH-type model 

under normal distribution compared with the proxy of latent volatility. The proxy that 

Hung et al. (2013) use as volatility proxy is squared return, three range-based estimators 

and realized range-based volatility. The squared return is the simplest and commonly 

used to estimate the variance. However, this model is extremely noisy and less efficient.  

Parkinson (1980) introduces the estimation of the variance of the rate of return using 

daily high-low values and claims that using scaled high-low range value is more 

accurate and efficient about 2.5 - 5 times better than the squared return. Garman and 

Klass (1980) extended the Parkinson (1980) model by adding opening and closing 
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values. The result finds that this simulation is better than the simplest one about eight 

times. Moreover, Rogers and Satchell (1991) estimates the variance from daily high-

low opening and closing price but nonzero drifts term. Christensen and Podolskij (2007) 

, Martens and van Dijk (2007) further replace the intraday high-low range instead of 

point of data from Parkinson (1980). To evaluate and assess the performance of 

forecasting,  Hung et al. (2013) use four loss function and the Superior Predictive 

Ability (SPA) test of Hansen (2005). The result shows that IGARCH models is better 

performance that other models when using range-based volatility as a proxy. The study 

of Hung et al. (2013) also examine the volatility proxy as an exogenous variable of 

GARCH-t model to improve the forecasting performance. The finding indicated that 

range-based volatility can improve the out-of-sample forecast. Furthermore, Hansen 

(2005) also suggests if intraday price is unavailable, Garman and Klass (1980) estimator 

can use to improve out-of-sample forecast of the GARCH-t model.  

Wennstrom (2014) investigates the performance of six volatility forecasting 

models (SMA, EWMA, ARCH, GARCH, EGARCH and GJR-GARCH) from different 

Nordic equity indices (OMXS30, OMXC20 and OMXH25). There were three main 

themes in this study. First, the impact of assuming a student’s t-distribution provides a 

better in-sample fit than assuming a normal distribution. However, loss function 

suggested that assuming a normal error distribution provides a better out-of-sample fit. 

Second, normal error distribution. Second, EGARCH (1,1) is the best in-sample 

forecasting performance. Moreover, the higher order GARCH does not necessarily 

provide a better fit. Third, in term of the out-of-sample forecasting performance, the 

results are very inconclusive. The best and worst model respectively depends heavily 

on which loss function is used. 
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CHAPTER 3 

RESEARCH METHODOLOGY 

 

This study uses the nonparametric volatility models (Squared return and three 

of Range-based estimators) as a proxy of actual volatility (�̂�𝑡
2) against parametric 

(GARCH family models) as the forecasting volatility (ℎ̂𝑘,𝑡) in term of symmetric loss 

function (Root Mean Squared Error). After that, we use the superior predictive ability 

(SPA test) by testing the null hypothesis that “any loss function of alternative models 

inferior to the loss function benchmark.”  

The methodology as followed Section 3.1 reviews some of the non-parametric 

estimators (Volatility proxies). Section 3.2 explains the parametric estimators which 

included primitive four type of GARCH family with Gaussian and Student's t-

distribution. We later added the exogenous variables into the general GARCH to test 

whether it improve the performance of volatility forecasting or not. We discussed the 

loss function (Root Mean Squared Error) in Section 3.3 and Superior Predictive Ability 

test in Section 3.4  

 

3.1 Nonparametric Estimators of Volatility or Volatility Proxies (�̂�𝟐) 

Black-Scholes option pricing model assumes stock price movement is generated 

by the stochastic process follow a geometric Brownian motion and characterized by 

𝑑𝑆𝑡  =  𝜇𝑆𝑡𝑑𝑡 +  𝜎𝑆𝑡𝑑𝑍. (1) 

Here, 𝑆𝑡 is the stock price, t is time, 𝜇 and 𝜎 are constant called the percentage 

drift and volatility which assumed constant for the moment. The variable 𝑑𝑍 is an 

innovation term follows a stochastic process called Wiener process,  

𝑑𝑍 = 𝜀√𝑑𝑡, (2) 

where 𝜀 is normal distribution zero mean and variance equal to one. Let’s define 

the following variables for our method of estimating volatility: 
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𝑂𝑡 = daily opening price on the tth trading day, 

𝐻𝑡 = daily highest price on the tth trading day, 

𝐿𝑡 = daily lowest price on the tth trading day, 

𝐶𝑡 = daily closing price on the tth trading day. 

 

We now assume different methods of estimating the volatility such as Squared 

return, Parkinson (1980), Garman and Klass (1980) and Rogers and Satchell (1991) 

 

3.1.1 Close to Close or Squared Return (SR) 

The simplest and common type of calculation that use only the close price to be 

the volatility measure. The formula as followed 

𝜎2̂(𝑆𝑅) =  √∑ ln(
𝐶𝑡

𝐶𝑡−1
)𝑛

𝑖=1 . (3) 

 

3.1.2 Range-Base or Extreme Value 

The high-low, also known as Range based estimation or extreme-value, is 

formed from the entire price process using daily opening, highest, lowest, and closing 

prices. It contains the essential information concerning the stock price volatility. A 

significant practical advantage of the price range provides more highly efficiency in 

contrast to the squared return which only using closed prices.  

The classical range based estimator is developed by Parkinson (1980) based on 

the assumption that the asset price follows a driftless geometric Brownian motion and 

gives more efficiency 5.2 times than the classical estimator. His volatility estimator is 

given below 

�̂�𝑃𝐾
2  =  

1

(4 𝑙𝑛 2)
[ln(

𝐻𝑡

𝐿𝑡
)]
2

. (4) 

Beckers (1983) proved theoretically Parkinson (1980) with Squared return 

estimators by using 208 stocks from 1 January 1973 through 31 March 1980. The result 

gives an accurately better indication of volatility because the inclusion of dispersion of 
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prices observed over the entire day. However, instead of using closing price, Garman 

and Klass (1980) and Rogers and Satchell (1991) further extend Parkinson (1980) the 

range estimator by incorporate information about the opening and closing prices 

observed during the day. They assume the same diffusion process like Parkinson 

(1980). Their estimator provides more efficiency gain compared to the square return 

approximately 7.4 times. The volatility can be estimated by 

�̂�𝐺𝐾
2 = 0.511 [ln (

𝐻𝑡

𝐿𝑡
)]
2

− 0.019 {[ln (
𝐶𝑡

𝑂𝑡
) 𝑥 ln (

𝐻𝑡∗𝐿𝑡

𝑂𝑡
2 )] −

2 [ln (
𝐻𝑡

𝑂𝑡
)𝑥 ln (

𝐿𝑡

𝑂𝑡
)]} − 0.383[ln (

𝐶𝑡

𝑂𝑡
)]2. 

(5) 

This estimation is less biased because Garman and Klass (1980) subtract the 

squared open-to-close return to adjust the drift. However, Wiggins (1991) finds that 

both estimators of Parkinson (1980) and (Garman and Klass) are more efficient than 

close to close estimators when using continuous observation. Nevertheless, observed 

highest and lowest prices would understate and overstate the actual value if they 

calculated from discretely observed samples which give a downward biased and less 

efficient than the square return.  

As Parkinson and Garman & Klass estimators of volatility become biased with 

percentage drift (𝜇) not equal to zero, Rogers and Satchell (1991) relax this assumption 

by extension the Parkinson (1980). They add a drift term in the stochastic process that 

can incorporate into a volatility estimator by using only daily opening, highest, lowest, 

and closing prices. The equation can define by 

�̂�𝑅𝑆
2 = [ln (

𝐻𝑡

𝐶𝑡
) ∗ ln (

𝐻𝑡

𝑂𝑡
)] + [ln (

𝐿𝑡

𝐶𝑡
) ∗ ln (

𝐿𝑡

𝑂𝑡
)]. (6) 

Rogers and Satchell (1991) and Rogers, Satchell, and Yoon (1994) Claims that 

RS estimator is outperforms than PK and GK estimators. We summarize all volatility 

proxies we used in Table 3.1 
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Table 3.1: Summarize of advanced volatility proxies 

Volatility Proxies Short Form Prices Taken Drift Term? Efficiency 

Close to Close SR C No 1 

Parkinson PK HL No 5.2 

Garman-Klass GK OHLC No 7.4 

Roger-Satchell RS OHLC Yes 8 

Note: C = Closing Price; O = Opening Price; H = High Price and L = Low Price 

 

3.2 Parametric Estimators of Volatility or GARCH family (�̂�𝒕) 

3.2.1 The GARCH-type Models 

To best understand the development of GARCH models, we first need to know 

the certain characteristics approximatively exhibit the same statistical properties that 

are commonly associated with all price time series of financial stocks and indexes. We 

list the most popular and well-known stylized facts in volatility analysis. 

 Volatility Clustering: The shock at time t−1 increases not only the variance 

at time t−1 but also the variance at time t. Similarly, the volatility tends to be 

high at time t if it was also high at time t−1. Mandelbrot (1963) noted that 

"large changes tend to be follow by large changes and small changes tend to 

be follow small changes."  

 Fat Tails: In financial data, the probability of time series return generally 

exhibit fatter tails than standard normal or Gaussian distribution. The fat tails 

also are known as leptokurtosis or kurtosis greater than three which depicts 

the situations that extreme outcomes have occurred more than expected or 

most of the variance is due to infrequent extreme deviations than predicted by 

the normal distribution.  

 Asymmetry: The empirically observed sample fact that negative innovation 

at time t−1 have a greater impact on the return volatility at time t than positive 

innovation. On the other word, the risk increases from a negative shock more 

than positive shock. This asymmetry used to be called leverage effect. This is 

a stylized fact that the ARCH and GARCH model is not able to capture. 

However, there are several augmented GARCH models can capture this 

asymmetry effect such as TARCH, AGARCH, EGARCH, GJR-GARCH etc. 



Ref. code: 25595802042225YAJRef. code: 25595802042225YAJ

9 

In next section, we will first start with the simple ARCH model. The 

fundamental tool for analyzing the time-variation of conditional variance. We second 

use GARCH model to address the ARCH drawbacks. Furthermore, we exhibit 

EGARCH and GJR-GARCH which can capture the leverage effect. 

 

3.2.1.1 ARCH Model 

In this section, we focus on financial applications. We first start with the assets 

return equation. Let 𝑟𝑡 denote the daily log return defined relative to a past information 

set which consists of two variables. One is the conditional mean (𝜇𝑡) and another is the 

error term or innovation process (𝜀𝑡) which error variance is time-varying (so that there 

is heteroskedastic all the time). The formula is represented by 

𝑟𝑡 = 𝜇𝑡 + 𝜀𝑡. (7) 

The distribution of error term is conditionally normal as below  

𝜀𝑡|𝐼𝑡−1 = ℎ𝑡𝑧𝑡 and { 𝑧𝑡} ~ IID (0,1), (8) 

 where 𝐼𝑡−1 is the information available at time t-1 and 𝑧𝑡 is independent 

identically distributed (i.i.d.) sequence with 𝐸[𝑧𝑡] = 0 and 𝐸[𝑧𝑡
2] = 1.  

In fact, before ARCH, the primary descriptive tool to capture time-varying 

conditional volatilities is rolling sample windows which incorporate actual data for 

estimation. The standard deviation calculated using a fixed number of the most recent 

observations. We would be able to estimate the rolling sample of volatilities based on 

the n most recent observations, 

ℎ𝑡
2 =

∑ (𝑦𝑡−𝑖−�̂�)
2𝑛

𝑖=1

𝑛
≡

∑ �̂�𝑡−𝑖
2𝑛

𝑖=1

𝑛
. (9) 

The volatility ℎ𝑡
2 depends on the average of squared residual terms. The total 

observation (n) directly determines the variance-bias of the estimator. The larger of 

observation decrease the variance but increase the bias. For instance, a rolling sample 

of variance could be calculated every day for twelve months using the most recent day 

of data (365 days). Similarly, we probably think of this formulation assumes that the 
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variance of tomorrow’s return is an equally weighted average of the squared residuals 

of the last 365 days. 

Nevertheless, there is some drawback of using rolling sample window to 

estimate the volatility. The variance changes slowly over the sample period, and it is 

therefore approximately constant on a short rolling-time window. However, instead of 

equally weight each of the most recent n observations, it is reasonable if we consider 

that more recent samples are more relevant or should have higher weights than the 

longer sample.  

An ARCH (autoregressive conditionally heteroscedastic) model are commonly 

used in model financial time series with time-varying volatility proposed by Engle 

(1982). ARCH model assumes the variance of the current error term or innovation is 

related to the previous time periods' error terms and weights are parameters to be 

estimated. Engle’s ARCH model determines the best weights to use in forecasting the 

volatility. The formulation of the ARCH model, the variance is forecasted as a moving 

average of past error terms. The conditional volatility (ℎ𝑡
2) modeled by 

ℎ𝑡
2 = 𝜔0 + 𝛼1𝜀𝑡−1

2 +⋯+ 𝛼𝑛𝜀𝑡−𝑝
2 = 𝜔0 + ∑ 𝛼𝑖𝜀𝑡−𝑖

2𝑝
𝑖=1 , (10) 

where 𝜔0 > 0 and 𝛼𝑖 ≥ 0 , i=1, 2, …, p to assure that the conditional variance 

value is positive and 𝛼𝑖 < 1 for stationary. The order of p is important to specify before 

fitting the model which can be found by Sample Partial Autocorrelation function of the 

squared returns. The weakness of ARCH model is usually required a high order of p 

such as the suggestion of ACF or PACF is more than 10 which is infeasible or 

unpractical. However, in this study will be restricted to the order of 1.  

The forecasts of the ARCH model are obtained recursively as the forecasts of 

an AR model. If we consider an ARCH(p) model at the forecast origin t, the one-step 

ahead forecast of ℎ𝑡+1
2  is 

ℎ𝑡+1|𝑡
2  =  𝜔0 + 𝛼1𝜀𝑡

2 +⋯+ 𝛼𝑝𝜀𝑡+1−𝑝
2 . (11) 
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The 2-step ahead forecast equation given the information at time t defined by 

ℎ𝑡+2|𝑡
2  =  𝜔0 + 𝛼1ℎ𝑡+2|𝑡

2 + 𝛼2𝜀𝑡
2 +⋯ + 𝛼𝑝𝜀𝑡+2−𝑝

2 . (12) 

We repeat the procedure to j-step ahead forecast for ℎ𝑡+𝑗
2  given the information 

at time t. The equation is represented by 

ℎ𝑡+𝑗|𝑡
2  =  𝜔0 + ∑ 𝛼𝑖ℎ𝑡+(𝑗−𝑖)|𝑡

2𝑝
𝑖=1 , 

where ℎ𝑡+(𝑗−𝑖)|𝑡
2  = 𝜀𝑡+𝑗−1

2   if   j − 1 ≤  0 

(13) 

However, there are some major drawbacks of ARCH model. Firstly, ARCH 

model requires many parameters to precisely describe the volatility process.  We extent 

ARCH (∞) in equation (10) as 

ℎ𝑡
2 = 𝜔0 + 𝛼1𝜀𝑡−1

2 + 𝛼2𝜀𝑡−2
2 + 𝛼3𝜀𝑡−3

2 +⋯+ 𝛼∞𝜀𝑡−∞
2 . (14) 

The conditional variance depends on ∞ lagged squared residual in which 

𝛼1, 𝛼2…𝛼∞ must be estimated under restrictions. To address long lagged length effects 

with fewer parameters, Bollerslev (1986) purposed the generalized ARCH or GARCH 

(p,q) model that we will explain in next section 

Another limitation that ARCH model unable to model the asymmetric effects 

of positive and negative shocks. However, there are many extensions of ARCH model 

that included the leverage effects into the conditional variance like EGARCH, GJR-

GARCH, QGARCH, TARCH etc. 

 

3.2.1.2 GARCH Model 

Bollerslev (1986) introduced generalized autoregressive conditional 

heteroskedasticity (GARCH) which requires less parameters to adequately model the 

volatility process. However, GARCH model lack of ability to model the asymmetric 

effects of positive and negative shocks. The GARCH model is quite like the ARCH 

model by adding q lags of past conditional volatility,ℎ𝑡−1
2 , ℎ𝑡−2

2 , … , ℎ𝑡−𝑞
2

, which acts as 

a smoothing term to the ARCH model. The conditional volatility of GARCH model 

defined by  
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ℎ𝑡
2 = 𝜔0 + ∑ 𝛼𝑖𝜀𝑡−𝑖

2𝑝
𝑝=1 + ∑ 𝛽𝑗ℎ𝑡−𝑗

2𝑞
𝑗=1 , (15) 

where 𝜔0, 𝛼i and 𝛽j is nonnegative (𝜔0 > 0, 𝛼i ≥ 0 and 𝛽j ≥ 0). However, there 

are some limitation to assume that the summation of the parameter must less than one 

(𝛼I + 𝛽j < 1). This condition is necessary and sufficient for the process for covariance 

stationary. Nevertheless, the GARCH model can alternatively be expressed as an 

ARCH model. We begin transform GARCH model into ARCH model by continually 

substitute its past conditional variance. GARCH (1,1) can rewritten in term of ARCH 

as 

ℎ𝑡
2 = 𝜔0 + 𝛼1𝜀𝑡−1

2 + 𝛽1ℎ𝑡−1
2  

ℎ𝑡
2 = 𝜔0 + 𝛼1𝜀𝑡−1

2 + 𝛽1(𝜔0 + 𝛼1𝜀𝑡−2
2 + 𝛽1ℎ𝑡−2

2 ) 

ℎ𝑡
2 = 𝜔0 + 𝛽1𝜔0 + 𝛼1𝜀𝑡−1

2 + 𝛽1𝛼1𝜀𝑡−2
2 + 𝛽1

2ℎ𝑡−2
2  

ℎ𝑡
2 = 𝜔0 + 𝛽1𝜔0 + 𝛼1𝜀𝑡−1

2 + 𝛽1𝛼1𝜀𝑡−2
2 + 𝛽1

2(𝜔0 + 𝛼1𝜀𝑡−3
2 + 𝛽1ℎ𝑡−3

2 ) 

ℎ𝑡
2 = (𝜔0 + 𝛽1𝜔0 + 𝛽1

2𝜔0) + (𝛼1𝜀𝑡−1
2 + 𝛽1𝛼1𝜀𝑡−2

2 + 𝛽1
2𝛼1𝜀𝑡−3

2 ) + 𝛽1
3ℎ𝑡−3

2  

ℎ𝑡
2 = ∑ 𝛽1

𝑖𝜔0
∞
𝑖=1 + ∑ 𝛽1

𝑖∞
𝑖=1 𝛼1𝜀𝑡−𝑖−1

2 . 

(16) 

As we can see that the conditional variance at time t consists of a constant, 𝛽1
𝑖𝜔0, 

and the past square residual term weighted with 𝛽1
𝑖𝛼1. The equation (16) obviously 

same as the equation (10) for ∑ 𝛽1
𝑖𝜔0

∞
𝑖=1 = 𝜔0 and 𝛽1

𝑖𝛼1 = 𝛼1 

To forecast the one-step ahead forecast of ℎ𝑡+1
2  equation given the information 

at time t, the forecasts of the GARCH model are obtained recursively as the forecasts 

of an ARMA model. The equation can be written by 

ℎ𝑡+1|𝑡
2  =  𝜔0 + 𝛼1𝜀𝑡

2 + β1ℎ𝑡
2. (17) 

However, we can rewrite the one step ahead of forecast the volatility equation 

(17) by substituting 𝜀𝑡
2 = ℎ𝑡

2𝑧𝑡
2 and adding 𝛼1ℎ𝑡

2. The equation as followed 

ℎ𝑡+1|𝑡
2  =  𝜔0 + 𝛼1ℎ𝑡

2𝑧𝑡
2 + β1ℎ𝑡

2 + 𝛼1ℎ𝑡
2 − 𝛼1ℎ𝑡

2. (18) 
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We rearrange the equation (18) which give  

ℎ𝑡+1|𝑡
2  =  𝜔0 + (𝛼1 + β1)ℎ𝑡

2 + 𝛼1ℎ𝑡
2(𝑧𝑡

2 − 1). (19) 

The two-step ahead forecast equation given the information at time t defined by 

ℎ𝑡+2|𝑡
2  =  𝜔0 + (𝛼1 + β1)ℎ𝑡+1|𝑡

2 + 𝛼1ℎ𝑡+1|𝑡
2 (𝑧𝑡+1

2 − 1). (20) 

With 𝐸(𝑧𝑡+1
2 − 1) = 0, the two-step ahead forecast can rewritten by 

ℎ𝑡+2|𝑡
2  =  𝜔0 + (𝛼1 + β1)ℎ𝑡+1|𝑡

2  (21) 

We repeat the procedure to j-step ahead forecast for ℎ𝑡+𝑗
2  with the information 

at time t. The equation is represented by 

ℎ𝑡+𝑗|𝑡+𝑗−1
2 = 𝜔0 + (𝛼1 + β1)ℎ𝑡+𝑗−1|𝑡

2 . (22) 

GARCH model is not a perfect model because GARCH model treats “bad 

news” and “good news” symmetrically as same as ARCH model. However, in financial 

world, positive and negative shocks impact asymmetric effects on volatility. In general, 

negative shocks tend to highly impact on volatility more positive shocks.  

 

3.2.1.3 EGARCH Model 

According to the limitation of ARCH and GARCH models, Exponential 

GARCH (EGARCH) is proposed by Nelson (1991). First, ARCH and GARCH models 

assume the only magnitude of unanticipated excess returns determines volatility. 

However, from Nelson (1991) argued that not only the magnitude but also the direction 

of the returns affects volatility. The negative shocks tend to impact volatility more than 

positive shocks. Another limitation is the persistence of volatility shock. How long does 

a shock influence the volatility estimation? Some may persist for a finite period while 

other might persist indefinitely which they may move the whole term structure market 

volatility. Moreover, nonnegative constraint imposed to ensure that ℎ𝑡 is nonnegative 

for all period which leads the estimated volatility ruling out random oscillatory behavior 
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in ℎ𝑡. The limitation can create difficulties in estimating GARCH model of Engle and 

Yoo (1987) 

The EGARCH model provides the first explanation for the ℎ𝑡 in function of time 

and lagged 𝑧𝑡. The equation is followed 

ln(ℎ𝑡
2) = 𝜔0 + ∑ 𝑔(𝑧𝑡−𝑖)

𝑝
𝑖=1 + ∑ 𝛽𝑗 ln(ℎ𝑡−𝑗

2 )𝑞
𝑗=1 . (23) 

The logarithm of ℎ𝑡 ensures that the conditional variances are positive and a 

function of past 𝑧𝑡. Additionally, the EGARCH specification can solve several 

limitations, such as large negative shocks having a greater impact on conditional 

volatility than positive shocks, and small positive shocks having a greater impact on 

conditional volatility than small negative shocks. To illustrate the asymmetrical effects 

of positive and negative return, we consider the function 𝑔𝑖 defined by 

𝑔(𝑧𝑡−𝑖) = 𝛼𝑖𝑧𝑡−𝑖 + 𝛾𝑖[|𝑧𝑡−𝑖| − 𝐸(𝑧𝑡−𝑖)]. (24) 

The parameter 𝜔0, 𝛽𝑗, 𝛼𝑖, 𝜃 and 𝜆 are not required the restriction to assure that 

the conditional variance is nonnegative and 𝑧𝑡 ~ NID (0,1) is the standardized residual 

which equal to 
𝜀𝑡−𝑖

√ℎ𝑡−𝑖
 and 𝐸(𝑧𝑡) depends on what error distribution we assume. If the 

distribution is normal, we have 

𝐸(𝑧𝑡) = (2/𝜋)
1

2. (25) 

The term of  𝑔𝑖(𝑧𝑡−𝑖) is a function of both magnitude and sign of 𝑧𝑡. The first 

term 𝛾[|𝑧𝑡−𝑖| − 𝐸(𝑧𝑡)] represent a magnitude effect or the symmetric effect of the 

model. The second term 𝛼𝑖 𝑧𝑡−𝑖 measures the asymmetry or the leverage effect. This 

enables ℎ𝑡 to respond asymmetrically to positive and negative value of 𝜀𝑡. In summary, 

the different impact on the volatility between the positive and negative shocks is the 

main advantage of the EGARCH model compared to the ARCH and GARCH models. 

We can forecast the one-step ahead of  ℎ𝑡+1
2  from the origin t. The equation can be  

ln(ℎ𝑡+1|𝑡
2 ) = 𝜔0 + 𝛼1𝑧𝑡 + 𝛾1[|𝑧𝑡| − 𝐸(𝑧𝑡)] + 𝛽1 ln(ℎ𝑡

2). (26) 
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However, the jth periods ahead volatility forecast of the EGARCH (1,1) model 

is not presented in this paper due to the limitation of time. Moreover, we decide to use 

ready-to-use MATLAB code to forecast jth periods ahead volatility as same as other 

models.  

 

3.2.1.4 GJR-GARCH Model 

Glosten, Jagannathan, and Runkle (1993) constructed a popular alternative type 

of asymmetry model called GJR-GARCH model also discusses the importance of 

another type of leverage. In finance, a negative return is important because it refers the 

future losses, while positive returns are to be suppressed as they bring profits and not 

part of risk. GJR-GARCH model introduces two leverage parameters to capture the 

importance of negative returns. The GJR-GARCH equation as followed by 

ℎ𝑡
2 = 𝜔0 + ∑ 𝛼𝑖𝜀𝑡−𝑖

2𝑝
𝑖=1 + ∑ 𝛽𝑗ℎ𝑡−𝑗

2𝑞
𝑗=1 + ∑ 𝛾𝑖𝐼𝑡−1𝜀𝑡−𝑖

2𝑝
𝑖=1 , 

where:  𝐼𝑡−1 = {
  1
  0
  𝑖𝑓 

𝜀𝑡−𝑖 < 0
𝜀𝑡−𝑖 > 0

. 

(27) 

The parameter 𝜔0>0, 𝛼𝑖 ≥ 0,  𝛽𝑗 ≥ 0 and 𝛾𝑖 ≥ 0 to ensure that the conditional 

volatility is nonnegative. The first and second term as same as GARCH model, but the 

third term ∑ 𝛾𝑖𝐼𝑡−1𝜀𝑡−𝑖
2𝑛

𝑖=1  depicts the asymmetry effect which 𝐼𝑡−1 give the weighted 

of 0 if the error is positive and if it is negative it will assign a weight equal to 1. This 

will capture the effect of negative return more than the positive return. The one-step 

ahead forecast of ℎ𝑡+1
2  is 

ℎ𝑡+1
2 = 𝜔0 + 𝛼1𝜀𝑡

2 + 𝛾1𝜀𝑡
2 𝐼𝑡 + 𝛽1ℎ𝑡

2. (28) 

When we compute multistep ahead forecasts of the conditional variance, we 

take an expectation (𝐸) and rewritten using  𝜀𝑡
2|𝐼𝑡−1 = ℎ𝑡

2𝑧𝑡
2 which gives 

𝐸(ℎ𝑡+1
2 ) = 𝜔0 + 𝛼1𝐸(ℎ𝑡

2)𝐸(ℎ𝑡
2) + 𝛾1𝐸(ℎ𝑡

2 )𝐸(𝑧𝑡
2) 𝐸(𝐼𝑡) + 𝛽1𝐸(ℎ𝑡

2). (29) 

From 𝐼𝑡 = {
  1
  0
  𝑖𝑓 

𝜀𝑖 < 0
𝜀𝑡 > 0

which give 𝐸[𝐼𝑡] = 1/2 and 𝐸[𝑧𝑡
2] = 1 ,then we 

substitute 𝐸[𝐼𝑡−1] = 1/2 and 𝐸[𝑧𝑡
2] = 1 into the equation (29) as followed 
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𝐸(ℎ𝑡+1
2 ) = 𝜔0 + 𝛼1𝐸(ℎ𝑡

2) +
𝛾1

2
𝐸(ℎ𝑡

2) + 𝛽1𝐸(ℎ𝑡
2). (30) 

We can rearrange the equation (30) which defined by 

ℎ𝑡+1
2 = 𝜔0 + (𝛼1 +

𝛾1

2
+ 𝛽1)ℎ𝑡

2. (31) 

We repeat the procedure to j-step ahead forecast for ℎ𝑡+𝑗
2  and the equation is 

represented by 

ℎ𝑡+𝑗
2 = 𝜔0 + (𝛼1 +

𝛾1

2
+ 𝛽1)

𝑗−1ℎ𝑡+1
2 . (32) 

 

Table 3.2: Summarize GARCH family in term of one lag 

ARCH ℎ𝑡 = 𝜔0 + 𝛼1𝜀𝑡−1
2  

GARCH ℎ𝑡 = 𝜔0 + 𝛼1𝜀𝑡−1
2 + 𝛽1ℎ𝑡−1 

EGARCH log(ℎ𝑡) = 𝜔0 + 𝛼1
𝜀𝑡−1

√ℎ𝑡−1
+ 𝛾1[|

𝜀𝑡−1

√ℎ𝑡−1
| − (2/𝜋)

1
2] + 𝛽1 ln(ℎ𝑡−1) 

GJR-GARCH ℎ𝑡 = 𝜔0 + 𝛼1𝜀𝑡−1
2 + 𝛽1ℎ𝑡−1 + 𝛾11(𝜀𝑡−1<0)𝜀𝑡−1

2  

Note: ARCH: autoregressive conditional heteroskedasticity; GARCH: generalized autoregressive 

conditional heteroskedasticity autocorrelation; EGARCH: Exponential GARCH and GJR-GARCH: 

Glosten, Jagannathan, and Runkle GARCH. 

 

3.2.2 The GARCH-type Models under student’s t-distribution 

The normal ARCH model that we mentioned before are typically estimated by 

maximum likelihood under the assumption of the conditional error distribution is 

Gaussian (normal). However, in many empirical types of research, the standardized 

residuals appear to have fatter tail or leptokurtic than normality distributed. Bollerslev 

(1987) proposed Student’s t GARCH model which assuming standardized Student's t-

distribution instead of normality distributed. Furthermore, the evident in data 

description in chapter 4 display the return series is typically not normally distributed 
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but significantly heavier tails which imply that in this paper two different types of error 

distributions are considered. The probability density of the normal distribution is  

𝑓(𝑒) =
1

√2𝜋𝜎
𝑒
(𝑒−𝜇)2

2𝜎2 , (33) 

where 𝜇, 𝜎 𝑎𝑛𝑑 𝜎2 denotes the expectation of the distribution, standard 

deviation and variance of sample error terms. The density function of the Student's t-

distribution is defined by  

𝑓(𝑒) =
Γ(
𝑣+1

2
)

Γ(
𝑣

2
)

1

√𝑣𝜋
(1 +

𝑒2

𝑣
)−(

𝑣+1

2
)
, (34) 

where 𝑣 is the number of degrees of freedom and Γ(. ) is the gamma function.  

 

3.2.3 Explanatory exogenous variable in the GARCH-type models 

There are several studies added exogenous variables into the conditional mean 

equation. Not only the conditional mean equation, but exogenous explanatory variables 

also added into the conditional variance equation. To address the second objective of 

this paper that the squared return and three range-based estimation in case of Stock 

Exchange of Thailand index (SET) can be improve the forecasting performance of 

GARCH-type model under normal and Student’s t-distribution. We added the squared 

return and three range-based estimation (Parkinson (1980) , (Garman and Klass) and 

Rogers and Satchell (1991)) as the exogenous variables of GARCH-type models. We 

added exogenous parameter (𝛿𝑝𝑟𝑜𝑥𝑦𝑡−1) into the general GARCH-type models in 

equation (10), (15), (23) and (27) see Table 3.3.  
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Table 3.3: Summarize GARCH family with exogenous variable in term of one lag 

ARCH ℎ𝑡 = 𝜔0 + 𝛼𝜀𝑡−1
2 + 𝛿𝑝𝑟𝑜𝑥𝑦𝑡−1 

GARCH ℎ𝑡 = 𝜔0 + 𝛼𝜀𝑡−1
2 + 𝛽ℎ𝑡−1+ 𝛿𝑝𝑟𝑜𝑥𝑦𝑡−1 

EGARCH 
log(ℎ𝑡) = 𝜔0 + 𝛼

𝜀𝑡−1

√ℎ𝑡−1
+ 𝛾[|

𝜀𝑡−1

√ℎ𝑡−1
| − (2/𝜋)

1

2] +

𝛽 ln(ℎ𝑡−1)+ 𝛿𝑝𝑟𝑜𝑥𝑦𝑡−1 

GJR-GARCH ℎ𝑡 = 𝜔0 + 𝛼𝜀𝑡−1
2 + 𝛽ℎ𝑡−1 + 𝛾1(𝜀𝑡−𝑖<0)𝜀𝑡−𝑖

2 + 𝛿𝑝𝑟𝑜𝑥𝑦𝑡−1 

Note: ARCH: autoregressive conditional heteroskedasticity; GARCH: generalized autoregressive 

conditional heteroskedasticity autocorrelation; EGARCH: Exponential GARCH and GJR-GARCH: 

Glosten, Jagannathan, and Runkle GARCH. 

 

3.3 Forecasting GARCH-type models 

Suppose that we have T sample observations (1, 2, …, T). For the estimated 

conditional volatility (ℎ̂𝑘,𝑡), we separate the entire period into two sub-periods. One is 

estimation period (in-of-sample period), another one is forecasting period (out-of-

sample).  To forecast the condition variance, we use two methods to forecast out-of-

sample GARCH-type models. First, we estimate a fixed number of observation to 

predict the h-periods ahead. In other word, we estimate and forecast h-periods ahead 

from in-of-sample period. Second, we apply the rolling out-of-sample forecast to 

predict GARCH-type models by updated the new information and removed the old one. 

(see Figure 3.1). 

 

Figure 3.1: Fixed window out-of-sample forecast 
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Figure 3.2: Rolling window out-of-sample forecast 

 

However, for rolling window out-of-forecast (see Figure 3.2), We choose the 

observation per rolling window as the same size of in-of-sample period. The first rolling 

window sub-period contains observation from 1 through n. We delete one observation 

at the beginning and add new one observation. Then, second rolling window sub-period 

contains observation from 2 through n+1 and so on. The rolling window sub-period is 

increase by one. We re-estimated and forecast h-periods ahead out-of-sample forecast 

compared with the volatility at the same time in terms of loss function and SPA test.  

 

3.4 Loss Function 

To evaluate the performance of volatility forecast models, we use symmetric 

loss functions which emphasize equally of the errors problems no matter what the errors 

resulting from over forecasting or under forecasting. To examine whether the 

forecasting performance of ranged-based estimators could be possible for true proxy in 

GARCH-type models, we use Root Mean Square Error (RMSE) define as follows, 

𝑅𝑀𝑆𝐸 = √
1

𝑛
∑ (�̂�𝑡

2 − ℎ̂𝑡,𝑘
2 )

2𝑛
𝑖=1 ,  (35) 

where n is the total number of daily observations.�̂�𝑡
2 is the true proxy of 

volatility as we computed before and ℎ̂𝑘,𝑡 is the estimated volatility produced by model 

k at time t 

The limitations of loss function are assumed to be quadratic, Gaussian and 

serially uncorrelated in forecast errors. However, there are recent studies which test 

under more relaxed condition. Diebold and Mariano (1995) examines whether two 
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forecasts have equal predictive ability. DM test also directly applicable to non-

quadratic, non-Gaussian, non-zero-mean, serially correlated, and contemporaneously 

correlated in forecast errors. Moreover, the Reality Check of  White (2000) address 

some drawback of DM test that examine a set of forecasting models instead of two 

competing models of Diebold and Mariano (1995). 

 

3.5 Superior Predictive Ability (SPA test) 

Hansen (2005) proposed Superior predictive ability test which quite similar to 

White (2000), but constructs in a different way. SPA test is a test that used to compare 

the forecasting performance of two or more models in term of loss function. The best 

performance of forecasting models is the model that give the smallest expected loss. 

The loss function we use is symmetric loss function as we mention above. SPA test 

helps to reduce the sensitivity of poor predicting models and improves the performance 

of the test.  

We first set up a hypothesis test which consist of a null hypothesis and an 

alternative hypothesis test to determine the validity of a statistical claim. If the 

benchmark model is outperformed the other models, then the mean of each element of 

𝛿𝑘,𝑡 should be 0 or negative where 𝛿𝑘,𝑡 is the vector of excess performance between the 

benchmark and alternative m models at time t. The null hypothesis in a test of SPA is 

𝐻0 : max
𝑘=1,2,…,𝑚

(𝐸[𝛿𝑘,𝑡]) ≤ 0, (36) 

and alternative hypothesis, 

𝐻1 : max
𝑘=1,2,…,𝑚

(𝐸[𝛿𝑘,𝑡]) > 0. (37) 

The standard example of loss function which quantifies the amount of the 

prediction deviates from the actual values for comparing models is 

𝐿(𝜎𝑡+𝑗
2 , ℎ̂𝑘,𝑡+𝑗|𝑡

2 ) = (𝜎𝑡+𝑗
2 − ℎ̂𝑘,𝑡+𝑗|𝑡

2 )2, (38) 

where 𝜎𝑡+𝑗
2  is the non-parametric models, Squared Return, Parkinson (1980), 

Garman and Klass (1980), and Rogers and Satchell (1991) as the volatility proxies or 
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the actual value and ℎ̂𝑘,𝑡+𝑗|𝑡
2  is j-step periods ahead given the information at time t of 

GARCH family models as the comparing volatility model. We can write the differential 

of loss function between benchmark (BM) and one alternative models (k=1) into j x 1 

vector form, 
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2
2
 

𝛿𝑗,1 =

[
 
 
 
𝛿1,1
𝛿2,1
⋮
𝛿𝑛,1]

 
 
 
=

[
 
 
 
 
𝐿(𝜎𝑡+1

2 , ℎ̂𝑡+1|𝑡,𝐵𝑀
2 ) − 𝐿(𝜎𝑡+1

2 , ℎ̂𝑡+1|𝑡,1
2 )

𝐿(𝜎𝑡+2
2 , ℎ̂𝑡+2|𝑡,𝐵𝑀

2 ) − 𝐿(𝜎𝑡+2
2 , ℎ̂𝑡+2|𝑡,1

2 )

⋮
𝐿(𝜎𝑡+𝑛

2 , ℎ̂𝑡+𝑛|𝑡,𝐵𝑀
2 ) − 𝐿(𝜎𝑡+𝑛

2 , ℎ̂𝑡+𝑛|𝑡,1
2 )]

 
 
 
 

≡

[
 
 
 
 
(𝜎𝑡+1

2 − ℎ̂𝑡+1|𝑡,𝐵𝑀
2 )2 − (𝜎𝑡+1

2 − ℎ̂𝑡+1|𝑡,1
2 )2

(𝜎𝑡+2
2 − ℎ̂𝑡+2|𝑡,𝐵𝑀

2 )2 − (𝜎𝑡+2
2 − ℎ̂𝑡+2|𝑡,1

2 )2

⋮
(𝜎𝑡+𝑛

2 − ℎ̂𝑡+𝑛|𝑡,𝐵𝑀
2 )2 − (𝜎𝑡+𝑛

2 − ℎ̂𝑡+𝑛|𝑡,1
2 )2]

 
 
 
 

,  (39) 

 where j=1, 2, …, n. We can rewrite equation (39) in to j x k matrix, then the loss differentials vector is 

𝛿𝑗,𝑘 =

[
 
 
 
𝛿1,1
𝛿2,1

, 𝛿1,2
, 𝛿2,2

⋯
𝛿1,𝑚
𝛿2,𝑚

⋮ ⋱ ⋮
𝛿𝑛,1, 𝛿𝑛,2 ⋯ 𝛿𝑛,𝑚]

 
 
 
=

[
 
 
 
 
𝐿(𝜎𝑡+1

2 , ℎ̂𝑡+1|𝑡,𝐵𝑀
2 ) − 𝐿(𝜎𝑡+1

2 , ℎ̂𝑡+1|𝑡,1
2 )

𝐿(𝜎𝑡+2
2 , ℎ̂𝑡+2|𝑡,𝐵𝑀

2 ) − 𝐿(𝜎𝑡+2
2 , ℎ̂𝑡+2|𝑡,1

2 )
⋯

𝐿(𝜎𝑡+1
2 , ℎ̂𝑡+1|𝑡,𝐵𝑀

2 ) − 𝐿(𝜎𝑡+1
2 , ℎ̂𝑡+1|𝑡,𝑚

2 )

𝐿(𝜎𝑡+2
2 , ℎ̂𝑡+2|𝑡,𝐵𝑀

2 ) − 𝐿(𝜎𝑡+2
2 , ℎ̂𝑡+2|𝑡,𝑚

2 )

⋮ ⋱ ⋮
𝐿(𝜎𝑡+𝑛

2 , ℎ̂𝑡+𝑛|𝑡,𝐵𝑀
2 ) − 𝐿(𝜎𝑡+𝑛

2 , ℎ̂𝑡+𝑛|𝑡,1
2 ) ⋯ 𝐿(𝜎𝑡+𝑛

2 , ℎ̂𝑡+𝑛|𝑡,𝐵𝑀
2 ) − 𝐿(𝜎𝑡+𝑛

2 , ℎ̂𝑡+𝑛|𝑡,𝑚
2 )]

 
 
 
 

’ (40) 

 where j=1,2,…,n and k=1,2,…,m. Suppose we first choose Parkinson (1980) as the volatility proxy and j-step periods ahead forecasting of 

ARCH as the benchmark model. Another comparing model is one-step period ahead of GARCH, EGARCH and GJR-GARCH models as the 

alternative models. We can write the simple form for comparing models using RMSE is 

𝛿𝑗,𝑘 =

[
 
 
 
 
 𝐿 (𝜎1,𝑃𝐾

2 , ℎ̂1|0,𝐴𝑅𝐶𝐻
2

) − 𝐿 (𝜎1,𝑃𝐾
2 , ℎ̂1|0,𝐺𝐴𝑅𝐶𝐻

2
) , 𝐿 (𝜎1,𝑃𝐾

2 , ℎ̂1|0,𝐴𝑅𝐶𝐻
2

) − 𝐿 (𝜎1,𝑃𝐾
2 , ℎ̂1|0,𝐸𝐺𝐴𝑅𝐶𝐻

2
) , 𝐿 (𝜎1,𝑃𝐾

2 , ℎ̂1|0,𝐴𝑅𝐶𝐻
2

)− 𝐿 (𝜎1,𝑃𝐾
2 , ℎ̂1|0,𝐺𝐽𝑅

2
)

𝐿 (𝜎2,𝑃𝐾
2 , ℎ̂2|0,𝐴𝑅𝐶𝐻

2
) − 𝐿 (𝜎2,𝑃𝐾

2 , ℎ̂2|0,𝐺𝐴𝑅𝐶𝐻
2

) , 𝐿 (𝜎2,𝑃𝐾
2 , ℎ̂2|0,𝐴𝑅𝐶𝐻

2
) − 𝐿 (𝜎2,𝑃𝐾

2 , ℎ̂2|0,𝐸𝐺𝐴𝑅𝐶𝐻
2

) , 𝐿 (𝜎2,𝑃𝐾
2 , ℎ̂2|0,𝐴𝑅𝐶𝐻

2
)− 𝐿 (𝜎2,𝑃𝐾

2 , ℎ̂2|0,𝐺𝐽𝑅
2

)

⋮

𝐿 (𝜎𝑛,𝑃𝐾
2 , ℎ̂𝑛|0,𝐴𝑅𝐶𝐻

2
) − 𝐿 (𝜎𝑛,𝑃𝐾

2 , ℎ̂𝑛|0,𝐺𝐴𝑅𝐶𝐻
2

) ,

⋮

𝐿 (𝜎𝑛,𝑃𝐾
2 , ℎ̂𝑛|0,𝐴𝑅𝐶𝐻

2
)− 𝐿 (𝜎2,𝑃𝐾

2 , ℎ̂𝑛|0,𝐸𝐺𝐴𝑅𝐶𝐻
2

) ,

⋮

𝐿 (𝜎𝑛,𝑃𝐾
2 , ℎ̂𝑛|0,𝐴𝑅𝐶𝐻

2
)− 𝐿 (𝜎𝑛,𝑃𝐾

2 , ℎ̂𝑛|0,𝐺𝐽𝑅
2

)]
 
 
 
 
 

 (41) 
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To test the hypothesis, we followed White (2000) who developed a framework 

for evaluating the performance of multiple forecasting models and propose a Reality 

Check (RC) to eliminate data snooping bias. The statistic bias that appears when the 

researcher decides to use the dataset more than once for model selection or conclusion. 

When the set of data reuse, there are possibility using of satisfactory results obtained 

from the previous test to uncover misleading relationships in data. The two methods 

implementation has been used in reality check of White (2000). One is Monte Carlo 

Reality Check, and another is Bootstrap Reality Check which usually used in practice. 

However, the Reality Check of White (2000) uses the loss differentials directly which 

lead to a loss of power of the test if there is a large amount of cross-sectional 

heteroskedasticity or variance term time-varying. Depending on the nature of the 

heteroskedasticity, significance tests can be too high or too low because it provides the 

variance with the over-estimation or under-estimation. To address this problem, Hansen 

(2005) use the Studentized Bootstrap Reality Check. The basic idea of bootstrapping is 

inference the population of interest from our sample data. A practical bootstrapping 

procedure, therefore, is as follows: 

1. We transform each of loss different between benchmark and alternative 

models from equation (39) into 𝛿𝑗,𝑘 where j=1, 2, …, n step ahead of 

forecasting and k=1 ,2 , …, m comparison models as followed, 

𝛿𝑗,𝑘 =

[
 
 
 
𝛿1,1, 𝛿1,2, … , 𝛿1,𝑘
𝛿2,1, 𝛿2,2, … , 𝛿2,𝑘
⋮

𝛿𝑛,1,
 ⋮     ⋱
𝛿𝑛,2, … ,

⋮
𝛿𝑛,𝑘]

 
 
 

. (42) 

2. Compute 𝑇𝑆𝑃𝐴 by choosing maximum each of average of origin sample 
observation (𝛿̅𝑘)  

𝛿𝑗,𝑘 =

[
 
 
 
𝛿1,1, 𝛿1,2, … , 𝛿1,𝑘
𝛿2,1, 𝛿2,2, … , 𝛿2,𝑘
⋮

𝛿𝑛,1,
 ⋮     ⋱
𝛿𝑛,2, … ,

⋮
𝛿𝑛,𝑘]

 
 
 

≡

[
 
 
 
 
�̅�
1

𝛿1,1
𝛿2,1
⋮
𝛿𝑛,1]

 
 
 
 

,

[
 
 
 
 
�̅�
2

𝛿1,2
𝛿2,2
⋮
𝛿𝑛,2]

 
 
 
 

, … ,

[
 
 
 
 
 �̅�

𝑘

𝛿1,𝑘
𝛿2,𝑘
⋮
𝛿𝑛,𝑘]

 
 
 
 
 

 (43) 
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3. Divided maximum of k loss different by a long run variance of 𝛿̅𝑘 (�̂�𝑘
2),  

�̂�𝑘
2 = 𝛾𝑘,0 + 2∑𝑘𝑖

𝑛−1

𝑗=1

𝛾𝑘,𝑗 . (44) 

where 𝛾𝑘,𝑗 is the jth sample autocovariance of sequence of 𝛿̅𝑘 ,and  

𝑘𝑖 =
𝑛−𝑗

𝑛
(1 −

1

𝑤
)𝑗 +

𝑗

𝑛
(1 −

1

𝑤
)𝑛−𝑗  (45) 

where 𝑤 is the window length in stationary bootstrap which we followed 

Politis and White (2004) method to calculate the optimal length of window. 

Then the statistic test of SPA can rewrite as, 

𝑇𝑆𝑃𝐴 = max
𝑘=1,2,…,𝑚

(�̅�
𝑘
/√
�̂�𝑘
2

𝑛
)  . (46) 

4. To compute the Studentized Reality Check p-value as the percentage of the 

bootstrapped maxima which are larger than the sample maximum, 

𝑝 − 𝑣𝑎𝑙𝑢𝑒 = 𝐵−1∑ 𝐼[𝑇𝑏
∗𝑆𝑃𝐴 > 𝑇𝑆𝑃𝐴],

𝐵

𝑏=1
 (47) 

where I=1 when 𝑇𝑏
∗𝑆𝑃𝐴 > 𝑇𝑆𝑃𝐴. To find 𝑇𝑏

∗𝑆𝑃𝐴, let b denote the number 

of bootstrap replications where b=1, 2, …, B. We randomly re-sample t=1, 2, 

…, n observation of the vector of each loss differentials (𝛿�̅�) for b=1, 2, …, B 

times to construct a bootstrap sample (𝛿�̅�
𝑏∗) by using stationary bootstrap which 

widely used in time series data and computed mean of each of bootstrap 

replications, 

{
 
 
 

 
 
 
Own sample

𝛿1̅ =
∑ 𝛿1,𝑡

𝐵∗𝑛
𝑡=1

𝑛

𝛿1,1
𝛿1,2
⋮
𝛿1,𝑛 }

 
 
 

 
 
 

≡

{
 
 
 

 
 
 

𝑏 = 1

𝛿1̅
1∗ =

∑ 𝛿1,𝑡
1∗𝑛

𝑡=1

𝑛

𝛿1,1
1∗

𝛿1,2
1∗

⋮
𝛿1,𝑛
1∗ }

 
 
 

 
 
 

,

{
 
 
 

 
 
 

𝑏 = 2

𝛿1̅
2∗ =

∑ 𝛿1,𝑡
2∗𝑛

𝑡=1

𝑛

𝛿1,1
2∗

𝛿1,2
2∗

⋮
𝛿1,𝑛
2∗ }

 
 
 

 
 
 

,… ,

{
 
 
 

 
 
 

𝑏 = 𝐵

𝛿1̅
𝐵∗ =

∑ 𝛿1,𝑡
𝐵∗𝑛

𝑡=1

𝑛

𝛿1,1
𝐵∗

𝛿1,2
𝐵∗

⋮
𝛿1,𝑛
𝐵∗ }

 
 
 

 
 
 

, (48) 
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{
 
 
 

 
 
 
Own sample

𝛿2̅ =∑ 𝛿2,𝑡
𝑛

𝑡=1

𝛿2,1
𝛿2,2
⋮
𝛿2,𝑛 }

 
 
 

 
 
 

≡

{
 
 
 

 
 
 

𝑏 = 1

𝛿2̅
1∗ =

∑ 𝛿2,𝑡
1∗𝑛

𝑡=1

𝑛

𝛿2,1
1∗

𝛿2,2
1∗

⋮
𝛿2,𝑛
1∗ }

 
 
 

 
 
 

,

{
 
 
 

 
 
 

𝑏 = 2

𝛿2̅
2∗ =

∑ 𝛿2,𝑡
2∗𝑛

𝑡=1

𝑛

𝛿1
2∗

𝛿2
2∗

⋮
𝛿2,𝑛
2∗ }

 
 
 

 
 
 

,… ,

{
 
 
 

 
 
 

𝑏 = 𝐵

𝛿2̅
𝐵∗ =

∑ 𝛿2,𝑡
𝐵∗𝑛

𝑡=1

𝑛

𝛿2,1
𝐵∗

𝛿2,2
𝐵∗

⋮
𝛿2,𝑛
𝐵∗ }

 
 
 

 
 
 

, 

⋮ 

{
 
 
 

 
 
 
Own sample

𝛿�̅� =∑ 𝛿𝑘,𝑡
𝑛

𝑡=1

𝛿𝑘,1
𝛿𝑘,2
⋮
𝛿𝑘,𝑛 }

 
 
 

 
 
 

≡

{
 
 
 

 
 
 

𝑏 = 1

𝛿1̅
1∗ =

∑ 𝛿𝑘,𝑡
1∗𝑛

𝑡=1

𝑛

𝛿𝑘,1
1∗

𝛿𝑘,2
1∗

⋮
𝛿𝑘,𝑛
1∗

}
 
 
 

 
 
 

,

{
 
 
 

 
 
 

𝑏 = 2

𝛿�̅�
2∗ =

∑ 𝛿𝑘,𝑡
2∗𝑛

𝑡=1

𝑛

𝛿𝑘,1
2∗

𝛿𝑘,2
2∗

⋮
𝛿𝑘,𝑛
2∗ }

 
 
 

 
 
 

,… ,

{
 
 
 

 
 
 

𝑏 = 𝐵

𝛿�̅�
𝐵∗ =

∑ 𝛿𝑘,𝑡
𝐵∗𝑛

𝑡=1

𝑛

𝛿𝑘,1
𝐵∗

𝛿𝑘,2
𝐵∗

⋮
𝛿𝑘,𝑛
𝐵∗ }

 
 
 

 
 
 

. 

Compute the p-value of SPA test as the percentage of the bootstrapped 

maxima which are larger than the sample maximum, 

𝑇𝑏
∗𝑆𝑃𝐴 = max (

𝑛−1∑ �̅�𝑘,𝑡
𝑏∗
− �̅�𝑘

𝑛
𝑡=1

√�̂�𝑘
2/𝑛

), (49) 

However, the 𝑝 − 𝑣𝑎𝑙𝑢𝑒 of the 𝑇𝑈
𝑆𝑃𝐴 is for upper bound which assume that all 

models could as good as the benchmark or close to benchmark. However, there are 

some of the models have a very low mean and a high standard deviation. We then 

assume that all loss function that is worse than benchmark model is unimportant for the 

asymptotic distribution test or lower bound (𝑇𝑙
𝑆𝑃𝐴) Another test is only re-centers if the 

loss-differential is positive (e.g. the benchmark is out-performed) or lower bound 

(𝑇𝑐
𝑆𝑃𝐴). We then add 𝐼𝑘

𝑠 into the equation (49), 

𝑇𝑏
∗𝑆𝑃𝐴 = max (

𝑛−1∑ �̅�𝑘,𝑡
𝑏∗
− 𝐼𝑘

𝑠�̅�𝑘
𝑛
𝑡=1

√�̂�𝑘
2/𝑛

), (50) 

where 𝐼𝑗
𝑈 = 1, 𝐼𝑗

𝐶 = 𝛿�̅�/√�̂�𝑗
2/𝑃 > −√2 ln ln𝑃 and 𝐼𝑗

𝐿 = 𝛿�̅� > 0 and the 

studentized Reality Check p-value, 

𝑝 − 𝑣𝑎𝑙𝑢𝑒 = 𝐵−1∑ 𝐼[𝑇𝑠,𝑏
∗𝑆𝑃𝐴 > 𝑇𝑆𝑃𝐴]𝐵

𝑏=1  , s=u, c, l (51) 
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CHAPTER 4  

RESULTS AND DISCUSSION 

 

4.1 Data description 

 The observation data are daily high-low prices and open-close prices from 

Thailand Stock Index (SET) during the entire period from 17 February 1992 until 30 

June 2016, for a total of 5,967 daily observations. We received the data from the 

database of DataStream. This study period divided data into two sub-periods. One is an 

estimation period (in-of-sample) in which the model parameters fitted, another sub-

periods used to evaluate the forecasting performance of the models (out-of-sample). 

The reason for using out of sample evaluating is to ensure optimization methods from 

estimation period can give the best possible results if we use other different sets of data. 

If the entire set of data consists of T observation 𝑋1, 𝑋2, …  , 𝑋𝑇 . The estimation period 

is 𝑋1, 𝑋2, … , 𝑋𝑛 and 𝑋𝑛+1,  𝑋𝑛+2, … , 𝑋𝑇 for forecasting period. Following Tsay(2008), 

he demonstrates that n = 
2𝑇

3
 is the reasonable choice of n in divide total period into two 

sub-periods, which gives the root mean square error (RMSE) superior using n = 
𝑇

2
. 

 

Figure 4.1: Daily closing SET index 

 

Note: We separate our entire data set into in-of-sample (blue line) and out-of-sample (red line) based 

on the study of Tsay (2008) which cutting point is equal to n = 2T/3 



Ref. code: 25595802042225YAJRef. code: 25595802042225YAJ

27 

 

Accordingly, the estimation data starts from 17 February 1992 to 7 May 2008 

consisted of 3,978 observations and observation of forecasting period obtained 1,989 

observations which starts from 8 May 2008 – 30 June 2016. The optimal cutting point 

of in-of-sample period and out-of-sample period will be explained later in this section.  

In Figure 4.1, we plotted the entire period of a daily closing SET price. The 

vertical line (black) separate period of data set into two sub periods. The blue line 

represents the index level for the estimation period (in-of-sample) and forecasting 

period (out-of-sample) is represented by the red line. 

In the real world, there are unpredictable shocks or unexpected changes that 

produce a significant impact on the whole system, especially in financial markets. The 

effect of shocks could die out gradually over the time if the systems are stationary or 

exist permanent if the systems is non-stationary. However, financial data sets are often 

non-stationary which mean, variance, and covariance change over the period. Non-

stationary behaviors can be trends, cycles, and random walks, which cannot be modeled 

or forecasted. The results obtained by using non-stationary time series may be spurious 

that it may indicate a relationship between two variables where one does not exist. To 

test the stationarity of financial time series, there are many different unit-root tests and 

stationary test.  

The Dickey–Fuller (DF) test is the simplest and popular model to test unit root, 

∆𝑦𝑡 = 𝜌𝑦𝑡−1 + 𝑢𝑡, where 𝑦𝑡 is the variable of interest at time t, 𝑝 is a coefficient and 

𝑢𝑡 is the error term that assume IID (0,𝜎2). The null hypothesis that a time series is 

integrated of order 1 or unit root (𝑝 = 1). The alternative hypothesis depends on which 

version of the test, stationary with drift term (∆𝑦𝑡 =∝ +𝜌𝑦𝑡−1 + 𝑢𝑡 , where 𝑝 < 1) and 

stationary with drift term and time trend (∆𝑦𝑡 =∝ +𝜌𝑦𝑡−1 + 𝛾𝑡 + 𝑢𝑡 , where 𝑝 < 1). 

However, Augmented Dickey–Fuller (ADF) expands the DF regressions by adding 

lagged difference terms (∑𝛿𝑖 ∆𝑦𝑡−𝑖) if the error term (𝑢𝑡) is serially correlated. While 

the Phillips–Perron (PP) estimates the equation by ordinary least squares (OLS) instead 

of incorporating lagged difference terms. The critical values for these tests are identical 

to those for the ADF equivalents. The ADF and PP unit root tests are for the null 

hypothesis that a time series is unit root. On the other hand, Kwiatkowski–Phillips–
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Schmidt–Shin (KPSS) is stationary test which the null hypothesis that an observable 

time series is stationary around a deterministic trend. 

In Figure 4.1, we perform unit root test included constant and trend term of SET 

index closing price (Panel A). Our finding shows that both of the PP and ADF tests fail 

to reject the null hypothesis of unit-root at 95.00% confidence level. On the other hand, 

KPSS rejects the null hypothesis of trend stationary. From all test, we conclude that 

daily SET index closing price is non-stationary.  

However, one way to make a time series stationary is to compute the differences 

between observations. This is known as differencing. We then transform SET index 

closing price in term of logarithms return that can help to stabilize the variance of a 

time series. The results in Panel B also confirmed that the return of SET index is 

stationary. Therefore, we use SET return to model and forecast in the next section. 

 

Table 4.1: Stationary test and Unit root test with constant term and time trend of SET 

index closing price and return 

PP test ADF test KPSS test 

Panel A: SET index closing price 

-1.0857 -1.0857 106.3702 

(0.3181) (0.3181) (728.5627) 

Panel B: SET index return 

-70.4131 -70.4131 0.1029 

(20.6291) (20.6291) (0.7049) 

Note: This table shows the test-statistic value from stationary test and unit root test with constant and 

trend term of SET index and SET return with standard deviation in parentheses from 17 February 1992 

to 30 June 2016. The null hypothesis of Phillip-Perron (PP) and Augmented Dickey-Fuller (ADF) tests 

are that the variable contains a unit root. By the way, Kwiatkowski–Phillips–Schmidt–Shin (KPSS), the 

null hypothesis is trend stationary. 

*denote significant at the 5% level. 

 

We also present the basic statistical analysis of daily return of SET index in 

Table4.2. From panel A, the sample size, mean, max, min, standard deviation, 

skewness, and kurtosis is presented. The return of SET index is widely distribution from 
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-16.0633 to 11.3495. The average SET returns are slightly positive and are very small 

compared with standard deviation. Furthermore, the skewness defined as the 

standardized third central moment positive which indicated that the return series is 

skewed to the right side or right-tailed. Additionally, the probability distribution with 

kurtosis greater than three is said to be leptokurtic or fatter tail. Then, it necessary to 

correctly determine the distribution of error term. 

 

Table 4.2: Preliminary analysis of SET return 

Panel A: Summary statistics 

Mean Max Min SD Skewness Kurtosis J-B 

0.0094 11.3495 -16.0633 1.5771 0.0178 10.1260 12,625.55 

      (2110.343) 

Panel B: ARCH test 

Ljung-Box  Eagle’s     

500.5850  206.0492     

(130.3946)  (53.6377)     

Note: This table shows the characteristic test-statistic value for return of Stock Exchange of Thailand 

index with standard deviation in parentheses from 17 February 1992 to 30 June 2016. J-B represents 

the statistic of Jarque and Bera’s (1987) normal distribution test. To check the serial correlation of 

residual terms, we use Ljung-Box test. Finally, the test statistic of Engle and Ng (1993) exhibit 

Autoregressive Conditional Heteroskedasticity effects in the residuals term. 

*denote significant at the 5% level. 

We also use Jarque and Bera (1987) to test of whether daily returns have the 

skewness and kurtosis matching a normal distribution. The JB test is computed from 

skewness and kurtosis which computed as  

𝐽𝐵 =
N

6
(𝑠𝑘𝑒�̂�2 +

(𝑘𝑢𝑟�̂�−3)
2

4
), (50) 

where 𝑠𝑘𝑒�̂� denotes the sample skewness, and 𝑘𝑢𝑟�̂� denotes the sample 

kurtosis. For large sample size (>2000), the test statistic has a chi-square distribution 

with two degrees of freedom. The p-value of JB test of SET daily returns in Table 4.1 

(Panel A) rejects the null hypothesis of normality. The figure 4.2 also demonstrates 

returns (plus sign line) are significantly different from a normal population (dash-dot 
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line). Our data clearly shows that it is reasonable to assume 𝑧𝑡~𝑡(𝑣) than to assume 

𝑧𝑡~𝑁(0,1).  

 

Figure 4.2: Normal probability plot of SET return 

 

Note: This graph shows the residual of SET index is non-normal distribution which the plus sign line 

(return of SET index) do not array in straight line compare with dash-dot line (normal data) 

 

From Panel B, we use regular hypothesis checks for correlation and ARCH 

effect, like Ljung-Box Q test, and Engle’s ARCH test. First, the LB-Q function 

performs whether a series of residual over time are independent or not. If there are 

autocorrelation, it can decrease the accuracy of a time-based predictive model. Second, 

Eagle’s ARCH test is the most popular which also tests the presence of significant 

conditional heteroskedasticity in financial time series. It tests the null hypothesis that a 

time series of sample residuals consists of independent identically distributed (I.I.D.). 

The test statistic of all methodologies rejects the null hypothesis of no ARCH effects 

exist at 95.00% of significant level. 

Besides, in Figure 4.3 shows the Sample Autocorrelation Function and Sample 

Partial Autocorrelation Function for the daily return between lags 0 to 20. The Sample 

Autocorrelation function and Sample Partial Autocorrelation Function are commonly-

used tools for checking the randomness in a data set. This randomness is verified by 

computing the autocorrelations for data values at varying time lags. If random, such 
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autocorrelations should be near zero for any and all time-lag separations. If non-

random, then one or more of the autocorrelations will be significantly non-zero. As we 

can see in Figure 4.3, the sample ACF illustrate no relationship in SET return. However, 

ACF of the squared return shows clearly significant autocorrelation. On the other word, 

SET return is serially uncorrelated but not independent 

 

Figure 4.3: Sample autocorrelation function  

 

Note: The sample ACF exhibits significant autocorrelation at lag 1. The sharp cutoff of the ACF 

combined with the more gradual decay suggests that a GARCH-type model at one lag might be 

appropriate for this data. 

 

Let us look at some stylized facts about the behavior of financial variables, the 

logarithmic return of closing price graph. Figure 4.4 shows the time series of the daily 

returns (Panel A.) which change rapidly over the entire period. We can say that the time 

series are volatile. Furthermore, there is some volatility clustering, which indicates that 

there is an ARCH effect in observation period. Normally, the one of key characteristic 

of introduction of financial times series usually known as volatility clustering, in which 

large changes in price are often followed by larger changes, and small changes are more 

likely to follow small changes as shown as in daily return. We notice groups of 

volatilities from 1997 to 2000 and 2007-2009 which is an Asian crisis and Global 

Financial crisis. Panel (B) shows the histogram of the return which displays non-normal 
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properties. Note that there are more observations around the mean and in the tails. 

Distribution of these properties is said to be “Leptokurtic.” Besides, probability 

distributions of financial data typically observed the fat-tail effect (or excess kurtosis.)  

 

Figure 4.4: Daily logarithm return and histogram 

 

Note: In panel (a) shows SET index in term of logarithm from the beginning to end of data. We obviously 

noticed that there are some of the group of volatility clustering around the year 1997-2000 which is the 

Asian crisis and the period of Subprime crisis in 2007-2009. Moreover, the “leptokurtic” be notices in 

panel (b) 

 

4.2 Volatility Proxies 

As mentioned in the introduction, it is a well-known fact that volatility of asset 

returns is time-varying and unobservable. Volatility also has some commonly seen 

characteristics that volatility exhibits persistence, mean reverting and innovations have 

an asymmetric impact on volatility. In this paper, the focus will be examining the non-

parametric models as the valid proxies of volatility; Square Return and Range-based 

Volatility. All the volatility proxies compared with the forecasting performance of 

commonly used GARCH-type models (Parametric model) under Gaussian and 

Student’s t-distribution to find the actual volatility.  
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Figure 4.5: Volatility Proxies 

 

Note: This figure compares the level of volatility between square return and range-based estimators 

which are Parkinson (1980), Garman and Klass (1980) and Rogers and Satchell (1991). We rescale the 

y-axis to make this chart comparable 

 

Square return is commonly used to determine instability of data set because it 

is simplest and easy to obtain closing price. However, when asset prices fluctuate during 

the day, to capture only closing price, we cannot capture the correct volatility. For 

example, if the closing price of the day equal to the previous close as price significantly 

swing over the day. It reflects low volatility instead of high volatility while the log 

range captures the price movement throughout the day, highest and lowest price, which 

seems to imply correct volatility and can be used for volatility assessment. Moreover, 

in the real world, opening, high, low and closing data are readily available. The previous 

study indicated the different in their efficiency see Parkinson (1980), Garman and Klass 

(1980) and Rogers and Satchell (1991).  

Garman and Klass (1980) who defined the efficiency of a variance estimator to 

be the ratio1 of the variance of the classical daily volatility estimator (Squared return), 

                                                 

1 Eff = (
𝑉𝑎𝑟(𝜎𝑏𝑒𝑛𝑐ℎ𝑚𝑎𝑟𝑘

2 )

𝑉𝑎𝑟(𝜎𝑅𝑎𝑛𝑔𝑒−𝑏𝑎𝑠𝑒𝑑
2 )

), where Eff is variance efficiency ratio, 

 𝑉𝑎𝑟(𝜎𝑏𝑒𝑛𝑐ℎ𝑚𝑎𝑟𝑘
2 ) is variance of the benchmark variance estimator (Square Return), and 

 𝑉𝑎𝑟(𝜎𝑅𝑎𝑛𝑔𝑒−𝑏𝑎𝑠𝑒𝑑
2 ) is variance of the range-based estimator (PK, GK and RS). 
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claimed that the higher of ratio give more efficient estimator. The most efficient would 

take us closer to the unbiased estimators of true volatility. We also computed the 

efficient of volatility proxies followed Garman and Klass (1980). The Parkinson (1980) 

has efficiency 5.82, Garman and Klass (1980) has the highest efficient 8.72 compared 

with three range-based and Rogers, Satchell has efficiency 8.18. 

 

Figure 4.6: Comparing the volatility proxies 

 

Note: This graph compares the level of volatility between square return and range-based estimators. We 

rescale the y-axis to make this chart comparable. The squared return is volatile than three range-based 

estimators means over-under prediction or unbiased estimators of true volatility. 

 

We mutually comparing proxies of volatility is presented in Figure 4.5 and 

Figure 4.6. When comparing range-based measures of volatility (Figure 4.5), we rescale 

of y-axis to compared the level of volatility. We observe squared return estimators 

sometimes report a high volatility or perform poorly relative to range-based estimators. 

Similarly, Andersen and Bollerslev (1998) concluded that squared return is a very noisy 

volatility estimator because it computed by only closing price. By the way, the 

similarity of Range-based variance construction by formed from the entire price process 

using open, high, low, and close price. It is not surprising to find nearly identical level 

of volatility. Most notably, Parkinson’s estimators sometimes report a high volatility 
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compared with other range-based.  However, Roger and Satchell has more efficiency 

than another range-based estimator.  

Next, we firstly investigate the in-of-sample coefficient of GARCH with 

different error distribution. Secondly, we forecast jth periods ahead out-of-sample of 

conditional variance using fixed and rolling windows approach. Thirdly, we evaluate 

the performance of volatility forecast with various volatility proxies in terms of loss 

function and SPA test. Last, we empirically improve the performance of GARCH-type 

models under normal and Student’s t-distribution by adding various volatility proxies 

as exogenous variable.  

 

4.3 The estimation and forecasting of GARCH family models  

In this section, we computed the parametric estimators or GARCH family using 

5,967 daily observations of SET index from 17 February 1992 to 30 June 2016. 

However, this study divided the observations into two sub-periods as we mentioned in 

data description part. For in-of-sample period, we estimated the parameters of GARCH-

type models by using the data from 17 February 1992 to 7 May 2008 consisted of 3,978 

observations. Another period obtained 1,989 observations which starts from 8 May 

2008 to 30 June 2016 which used to test the out-of-sample forecasting performance. 

 

4.3.1 In-of-sample volatility estimation 

In Table 4.3 shows the estimation of different GARCH-type models under 

normal and Student’s t-distribution from 17 February 1992 to 30 June 2016 (3,978 

observations) of SET index return. The first row of each estimation shows the 

coefficient and the second row in the parenthesis form is robust standard error. Panel A 

presents GARCH-type model with normal (Gaussian) distribution which often used in 

general. To capture the stylized fact of SET return, we assume GARCH-type models 

with Student's t-distribution that presented in Panel B.  

Based on the assumption of 5% significant, the parameters of all GARCH-type 

models are highly significant. The statistical significance of α, β and γ indicate that past 

innovations, past conditional variance, and news about volatility from the previous 

periods have an impact on the conditional variance.  
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The estimates of constant term (𝜔) are all positive and extremely smaller than 

the sample variances except EGARCH model due to the changing conditional variances 

over time.  

The parameters α and β are significantly positive for all models. Recall that α is 

the coefficient in front of the innovation term at time t-1. Higher value of α means that 

shock yesterday more impacts the volatility of today. For the coefficient β is in front of 

the conditional variance at time t-1, so a high beta means that the yesterday’s volatility 

dramatically impacts today’s volatility.  

 

Table 4.3: The parameters of GARCH-type with normal distribution and GARCH-type 

with Student’s t-distribution 

Model Constant (𝝎) ARCH (α) GARCH (β) Leverage (γ) 

Panel A: GARCH-type with normal distribution 

ARCH 2.10E-04 0.2637 - - 

(1.33E-05) (0.0357) - - 

GARCH 1.53E-05 0.1319 0.8157 - 

 (9.09E-06) (0.0194) (0.0408) - 

EGARCH -0.5227 0.2624 0.9357 -0.0484 

 (0.2746) (0.0325) (0.0340) (0.0198) 

GJR-GARCH 1.53E-05 0.1002 0.8089 0.0831 

 (8.77E-06) (0.0168) (0.0406) (0.0278) 

Panel B: GARCH-type with Student’s t-distribution 

ARCH 2.03E-04 0.3240 - - 

 (1.08E-05) (0.0369) - - 

GARCH 7.17E-06 0.1261 0.8528 - 

 (1.71E-06) (0.0164) (0.0185) - 

EGARCH -0.2793 0.2269 0.9657 -0.0379 

 (0.0623) (0.0232) (0.0075) (0.0116) 

GJR-GARCH 7.99E-06 0.0953 0.8427 0.0792 

 (1.99E-06) (0.0142) (0.0201) (0.0207) 

Note: In panel A shows the parameter estimates of ARCH, GARCH, EGARCH, and GJR-GARCH with 

normal distribution and Student's t-distribution in panel B. The robust standard error depicts in 

parentheses form. The models are estimated on SET index return from 17 February 1992 to 30 June 2016 

consisted of 3,978 observations (in-of-sample period) 
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Also, the coefficients β is significantly positive, and γ is significantly negative 

for EGARCH model. For β/γ <0, then negative innovations have higher impact on 

volatility than positive innovations or asymmetric effect in SET index. If 0 < β/γ < 1, 

then the positive innovations increase the volatility, but negative innovation decrease 

volatility. Moreover, the coefficients of GJR-GARCH is significantly positive indicated 

that the negative innovations have an impact on volatility. 

Our results also suggest that the persistence in volatility in GARCH and GJR-

GARCH models, as measured by the sum of two estimated ARCH and GARCH 

coefficients α + β (persistence coefficients), is less than one which is required to have 

a mean reverting variance process. In contrast, the sum of parameters of EGARCH 

model is larger than one, suggesting that shocks to the conditional variance are highly 

persistent, i.e. the conditional variance process is exploded. This implies that the 

tendency of large changes in returns of financial assets to cluster together. Therefore, it 

confirms that volatility clustering is observed in SET index returns series.  

Further general evaluation method for comparison of each fitting models from 

in-of-sample periods are presented in Table 4.4. In this paper, we use two of the most 

well-known and popular criteria for model selection, Akaike information criterion 

(AIC) and Bayesian information criterion (BIC). 

 

Table 4.4: Diagnostics from GARCH-type with normal distribution and GARCH-type 

with Student’s t-distribution 

Model ARCH GARCH EGARCH GJR-GARCH 

Panel A: GARCH-type with normal distribution 

AIC -21,525.16 -22,019.35 -22,023.14 -22,044.75 

BIC -21,518.88 -22,006.78 -22,004.28 -22,025.89 

Log L 10,763.58 11,011.68 11,014.57 11,025.38 

Panel B: GARCH-type with Student’s t-distribution 

AIC -22,044.97 -22,393.32 -22,410.03 -22,412.04 

BIC -22,032.40 -22,374.46 -22,384.87 -22,386.89 

Log L 11,024.49 11,199.66 11,209.01 11,210.02 

Note: AIC (Akaike Information Criterion) and BIC (Bayesian Information Criterion) considers 

goodness-of-fit and parsimony. The formula of AIC is -2(Log L) + 2k and BIC is -2(Log L) + ln(n)k 

where Log L, k and n denoted log likelihood value, number of estimated parameters and sample size, 

respectively. To select models, we choose the models give minimize AIC and BIC value. 
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We compare the maximum value of likelihood functions if the number of 

parameters of each model is the same. However, if the models have a different number 

of parameters. The Akaike information criterion (AIC) adjusts the likelihood function 

to account for the number of parameters. The AIC is given by -2(Log L) + 2k where k 

denoted the parameter. However, AIC gives a penalty of 2 for an extra parameter (2k) 

which leads us to choose models with too many parameters. Another model selection 

is Bayesian information criterion (BIC) which gives a penalty of ln(n)k for an additional 

parameter. The penalty term of BIC is larger than in AIC when adding more parameters. 

The BIC is given by -2(Log L) + ln(n)k where k denoted the parameter and n denoted 

the parameter sample size. Based on model selection criterion, the GJR-GARCH model 

with normal and Student's t-distribution is better fit than other models for both AIC and 

BIC which give the lowest values.  

 

4.3.2 Out-of-sample volatility forecasting 

When the four GARCH models have been fully specified with their respective 

order and a probability distribution for the error term. We estimate the in-of-sample 

coefficient, and the out-of-sample evaluation is the next step in the study performed in 

this paper. Since we do not know the optimal sampling frequency, we then forecast 

using various popular used sampling frequencies: monthly, quarterly, half-yearly and 

yearly periods ahead forecast of the conditional variance (jth = 22, 55, 110, and 220).  

Figure 4.7, We plot out-of-sample forecasts of conditional variance using fitted 

four GARCH models with both error distributions from in-of-sample period (3,978 

observations). The rescaled horizontal line is the number of estimation periods of 

volatility and the vertical line presents the estimated conditional and unconditional 

variance from the fitted models. The red dot horizontal lines exhibit in figure 4.7 is the 

unconditional volatility level or long-term average volatility which the prior 

information does not give any information to forecast the volatility at infinite horizon. 

We measured the unconditional volatility2 of ARCH, GARCH, EGARCH and GJR-

GARCH model is calculated as 0.000284, 0.000292, 0.000294 and 0.00031, 

                                                 
2 The unconditional variance of ARCH, GARCH, EGARCH and GJR-GARCH is computed as 

𝜎𝐴𝑅𝐶𝐻
2 =

𝜔

1−𝛼
, 𝜎𝐺𝐴𝑅𝐶𝐻

2 =
𝜔

1−𝛼−𝛽
, 𝜎𝐸𝐺𝐴𝑅𝐶𝐻

2 = 𝐸𝑋𝑃(
𝜔

1−𝛽
), and 𝜎𝐺𝐽𝑅

2 =
𝜔

1−𝛼−𝛽−
𝛾

2

, respectively 
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respectively. For Student’s-t error distribution, long-term average volatility of ARCH, 

GARCH, EGARCH and GJR-GARCH model is 0.0003, 0.000339, 0.000290 and 

0.000356, respectively. The unconditional variance of four GARCH models under 

normal and Student's t-distribution is quite the same except EGARCH model. 

 

Figure 4.7: Out-of-sample conditional variance forecasts from in-sample estimation 

period compared with unconditional variance 

 

Note: The blue line presents the conditional variance forecast which converges asymptotically to the 

unconditional innovation variance (the red dot). 

 

From the beginning of the forecast period, the conditional variance forecast is 

less than the unconditional variance for all models. The forecasts revert upward toward 
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the unconditional volatility level. For ARCH model, the speed of volatility rapidly 

reverts to the unconditional level about three days. However, the conditional variance 

of GARCH, EGARCH and GJR models under normal distribution are increasing and 

mean-reverting to the long-term average about quarter. However, for four GARCH 

under Student's t-distribution, the conditional forecast obviously take longer period 

back to the unconditional variance level. 

 

Figure 4.8: 22 periods ahead forecast of EGARCH-type model using rolling out-of-

sample compared with RS estimators 

 

Note: This figure shows the different between 22 periods ahead rolling out-of-sample forecast of 

EGARCH model under normal and Student’s-t distribution (red line). The blue line is RS volatility 

proxy 
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The estimation and forecasting using rolling window approach provide the 

simplest way to incorporate actual data into the estimation of time-varying volatilities. 

We set the number of consecutive observation per rolling window equal to in-of-sample 

observations (m=3,978 observations). The first rolling window subsample contains 1 

through 3,978 observations. For next rolling window subsample, we include the new 

observation and remove the first one. Then, the second rolling window contains 

observations for period 2 through m + 1, and so on for 1,989 rolling window subsample 

After that, we re-estimate the parameters of each model with one more 

observation added to rolling window sub period. That give estimated 1,989 set of 

coefficients for each model. These values are used to generate jth periods ahead forecast 

of the conditional volatility for 1,989 periods. We keep out-of-sample forecasting using 

rolling window method compared with volatility proxies (SR, PK, GK and RS) in the 

same period to measure the predictive performance in next section.  

Figure 4.8 illustrates the example of the 22 periods ahead forecast of EGARCH 

model under normal and Student's t-distribution using 1,989 rolling out-of-sample 

compared with RS estimator. We noticed that 22 periods ahead forecast of ARCH is 

similar to the unconditional variance presented in Figure 4.7 which has fast mean-

reverting. Figure 4.8 also shows the condition variance of GARCH and GJR under 

Student's t-distribution is more volatile than EGARCH because it takes shorter speed 

of mean reversion back to long-term variance than GARCH and GJR models 

However, we cannot conclude which models have better performance against 

alternative volatility proxies from plotting the graph. To measure the discrepancy 

between proxy of actual volatility and different forecasting models. We use loss 

function and superior predictive ability test which explain the results in section 4.4 and 

section 4.5 

 

4.4 Evaluating the forecasting performance of GARCH family models 

To measure the forecasting performance of the different models, it is necessary 

to specify an actual volatility. Of course, the volatility is unobservable and an ex-ante 

proxy must be utilized. We choose a standard squared return and three type of Range-

based estimators as volatility proxies which are Parkinson (1980), Garman and Klass 

(1980) and Rogers and Satchell (1991) estimators. With the volatility proxies (�̂�𝑡+𝑗
2 ) 
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and jth periods ahead volatility forecasts (ℎ̂𝑡+𝑗|𝑡
2 ), computed for each of the days in the 

out-of-sample period using fixed window or rolling window. A well-known way to 

evaluate the out-of-sample fit is through loss function. The Root Mean Squared Error3 

(RMSE) is widely common metrics used and easy tools to measure accuracy for 

continuous variables which computed the square root of the average of the squared 

deviations between volatility proxies and predicted conditional volatility. The criterion 

for selecting the “Best” model is which model produces the smallest values of RMSE 

In Table 4.5 and 4.6 contain the loss function value (RMSE) between alternative 

volatility proxies in the rows and out-of-sample forecasts of various GARCH-type 

models under normal distribution in four columns on the left and GARCH-type models 

under student’s t-distribution in four columns on the right. The 22, 55, 110 and 220 

periods out-of-sample forecast presented in Panel A, B, C, and D. 

Table 4.5 represents RMSE values of different periods ahead out-of-sample 

forecast using fixed window in-of-sample estimation periods start from 17 February 

1992 to 7 May 2008 (3,978 observation). After the results in Table 4.4 which GJR that 

is assuming both normal and Student's t-distribution provides the best in-of-sample fit 

which gives the smallest AIC and BIC. However, it is quite surprising that RMSE in 

Table 4.5, For normally distributed error terms, EGARCH model gives a better 

performance among others when using PK, GK, and RS estimators as volatility proxy 

for all periods forecast. For Student’s t distribution of error term, the result is quite 

mixed. EGARCH model still give lowest RMSE using range-based volatility proxies. 

However, GJR is better model if we used SR as volatility proxy.  

Moreover, we noticed RMSE of short period forecasting is less than long period 

forecasting (RMSE22 < RMSE55 < RMSE110 < RMSE220). If the forecast period is too 

long, there are more factors can affect the forecast. It leads long-term forecast is less 

accurate than a short-term forecast. Furthermore, using RS estimator as a volatility 

proxy compared with normal and Student's t-distribution of different GARCH models 

give us the lowest RMSE value according to the efficiency of range-based estimators 

which RS provides the best efficiency. 

                                                 

3 𝑅𝑀𝑆𝐸 = √
1

𝑛
∑ (�̂�𝑡

2 − ℎ̂𝑡,𝑘
2 )

2𝑛
𝑖=1  
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For evaluation of the performance of out-of-sample using rolling window 

presented in Table 4.6, we also use loss function to assess the best models. It confirmed 

that EGARCH model with Student's t-distribution significantly provides the lowest 

RMSE values for all period forecasts. Moreover, for normal distribution of error term, 

EGARCH model can beat other models when forecasting for a short-term period. 

However, ARCH better performance for longer period forecast.  
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Table 4.5: The RMSE of alternative volatility proxies and different j periods forecast of GARCH-type with normal distribution and GARCH-type 

with Student’s t-Distribution models from 3,978 fixed windows in-of-sample estimation period (17 February 1992 to 7 May 2008) 

Proxy 
GARCH-type with normal distribution GARCH-type with Student’s t-Distribution 

ARCH GARCH EGARCH GJR ARCH GARCH EGARCH GJR 

Panel A: 22 periods ahead forecast (22 observations) 

SR  2.6903   2.2769   2.2451   2.2732   2.7645   2.2350   2.2639   2.2315  

PK  2.1205   1.2237   1.0614   1.2231   2.2589   0.8016   0.6157   0.8311  

GK  2.1244   1.2165   1.0466   1.2166   2.2655   0.7657   0.5484   0.7992  

RS  2.1172   1.2259   1.0619   1.2254   2.2567   0.8025   0.6182   0.8322  

 

Panel B: 55 periods ahead forecast (55 observations) 

SR  3.4043   3.2717   3.2606   3.2670   3.4313   3.2797   3.3821   3.2654  

PK  2.0375   1.6225   1.5669   1.6690   2.1635   1.3322   1.1443   1.3915  

GK  2.0295   1.5834   1.5230   1.6464   2.1748   1.1992   0.8274   1.2910  

RS  2.1218   1.6946   1.6386   1.7601   2.2684   1.3121   0.9197   1.4068  

 

Panel C: 110 periods ahead forecast (110 observation) 

SR  12.0964   12.0650   12.0613   12.0375   12.0746   12.0269   12.2187   11.9953  

PK  3.3359   3.2163   3.2045   3.2344   3.3822   3.1111   3.1203   3.1341  

GK  3.5270   3.4090   3.3974   3.4338   3.5803   3.2969   3.2595   3.3284  

RS  3.9843   3.8790   3.8690   3.9024   4.0337   3.7757   3.7339   3.8054  

 

Panel D: 220 periods ahead forecast (220 observations) 

SR  13.5947   13.5721   13.5690   13.5421   13.5677   13.5289   13.7335   13.4976  

PK  3.6885   3.6358   3.6305   3.6481   3.7113   3.6237   3.6272   3.6467  

GK  3.2082   3.1517   3.1465   3.1848   3.2533   3.1594   3.0428   3.2068  

RS  3.4783   3.4282   3.4238   3.4648   3.5261   3.4425   3.2955   3.4930  

Note: The RMSE value which presents in this table multiply by 10-4. The bold letter provides the smallest RMSE values. The formula of 𝑅𝑀𝑆𝐸 = √
1

𝑛
∑ (�̂�𝑡

2 − ℎ̂𝑡,𝑘
2 )

2𝑛
𝑖=1 , where �̂�𝑡

2 

denoted alternative volatility proxies in the row and ℎ̂𝑡,𝑘
2  denoted estimated condition variance of different GARCH models  
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Table 4.6: The RMSE of alternative volatility proxies and different j periods forecast of GARCH-type with normal distribution and GARCH-type 

with Student’s t-Distribution models from 1,989 Rolling windows out-of-sample forecast period (8 May 2008 – 30 June 2016) 

Proxy 
GARCH-type with normal distribution GARCH-type with Student’s t-Distribution 

ARCH GARCH EGARCH GJR ARCH GARCH EGARCH GJR 

Panel A: 22 periods ahead forecast (1,967 observations) 

SR 5.4475 5.3906 5.3616 5.4241 5.4716 5.5140 5.3007 5.6017 

PK 2.6118 2.4738 2.4081 2.5881 2.7055 2.7994 2.0976 3.0042 

GK 2.6137 2.4833 2.4131 2.6038 2.7114 2.8276 2.0932 3.0374 

RS 2.9119 2.7990 2.7361 2.9076 3.0007 3.1164 2.4586 3.3084 

 

Panel B: 55 periods ahead forecast (1,934 observations) 

SR 5.4757 5.4665 5.4762 5.5049 5.4991 5.5414 5.3671 5.7060 

PK 2.6339 2.6351 2.6546 2.7672 2.7280 3.0284 2.1667 3.3356 

GK 2.6358 2.6399 2.6583 2.7759 2.7337 3.0567 2.1493 3.3628 

RS 2.9344 2.9399 2.9553 3.0627 3.0233 3.3290 2.5063 3.6114 

 

Panel C: 110 periods ahead forecast (1,879 observations) 

SR 4.7989 4.8165 4.8219 4.8856 4.8309 5.2891 4.6841 5.6203 

PK 2.6103 2.6618 2.6763 2.8346 2.7104 3.5956 2.1741 4.1139 

GK 2.5939 2.6476 2.6626 2.8262 2.6988 3.6005 2.1327 4.1251 

RS 2.8672 2.9163 2.9297 3.0805 2.9633 3.8079 2.4539 4.3080 

 

Panel D: 220 periods ahead forecast (1,769 observations) 

SR 3.2316 3.2705 3.2788 3.4239 3.3001 5.0115 2.9882 6.0066 

PK 2.5186 2.5848 2.5987 2.8152 2.6389 4.7629 2.0111 5.8598 

GK 2.6010 2.6661 2.6797 2.8931 2.7199 4.8214 2.1006 5.9147 

RS 2.8921 2.9510 2.9630 3.1579 2.9996 4.9892 2.4516 6.0547 

Note: The RMSE value which present in this table multiply by 10-4. The bold letter provides the smallest RMSE values. The formula of 𝑅𝑀𝑆𝐸 = √
1

𝑛
∑ (�̂�𝑡

2 − ℎ̂𝑡,𝑘
2 )

2𝑛
𝑖=1 , where �̂�𝑡

2 

denoted alternative volatility proxies in the row and ℎ̂𝑡,𝑘
2  denoted estimated condition variance of different GARCH models 
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4.5 Superior Predictive Ability (SPA) results 

As we evaluate the performance of in-of-sample conditional volatility and out-

of-sample forecast using fixed and rolling in term of loss function in the previous 

section. The result indicated that EGARCH model with alternative volatility proxies 

gives us the smallest RMSE. In this section, we also perform the superior predictive 

ability test to determine the null hypothesis is that none of the alternative models 

outperform the benchmark model in term of loss function. 

To calculate the p-values of SPA, we first generate the loss function of 

benchmark model and alternative models; 𝐿(𝜎𝑡+𝑗
2 , ℎ̂𝑘,𝑡+𝑗|𝑡

2 ) = (𝜎𝑡+𝑗
2 − ℎ̂𝑘,𝑡+𝑗|𝑡

2 )2 where 

𝜎𝑡+𝑗
2  denoted the volatility proxies at time t+j and ℎ̂𝑘,𝑡+𝑗|𝑡

2  denoted j-step ahead forecast 

of GARCH family given the information at time t. We replicated each loss function for 

10,000 times and the optimal of block length for each out-of-sample period followed 

Politis and White (2004). The p-values for SPA tests show how all the tests fail to reject 

the null hypothesis when the benchmark model outperform alternative models.  

The value reports in Table 4.7, Table 4.8, Table 4.9, and Table 4.10 is the p-

value of Superior Predictive Ability test for each GARCH models against alternative 

volatility proxies. The table presents for three range-based volatilities (PK, GK, and 

RS) and SR as the volatility proxies in the rows to assess the performance of fixed and 

rolling window out-of-sample forecast of four GARCH models. The family of GARCH 

benchmark models is presented in the columns and each three p-values of SPA: SPAU, 

SPAC and SPAL are the upper, consistent, and lower p-values of SPA test, respectively. 

The three p-values correspond to different re-center of the losses. The p-value of upper 

bound (SPAU) is a White’s (2000) Reality Check test of the conservative test which 

assumes that all the alternative models are as accurate as the benchmark model. 

However, SPAU is sensitive to including weak and irrelevant models in the comparison. 

While the consistent and liberal tests are not. The consistent p-value (SPAC) is produced 

by the test for SPA of Hansen (2005) determine which models are worse than the 

benchmark. The lower bound (SPAL) is the p-value of a liberal test which the null 

hypothesis assumes that the alternative models with worse performance than the 

benchmark model are poor models.  
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Table 4.7: The p-value of SPA test for alternative volatility proxies and different j periods forecast of GARCH-type with normal distribution 

models from 3,978 fixed windows in-of-sample estimation period (17 February 1992 to 7 May 2008) 

Proxy 

Benchmark: ARCH (1) Benchmark: GARCH (1,1) Benchmark: EGARCH (1,1) Benchmark: GJR (1,1) 

SPAU SPAC SPAL SPAU SPAC SPAL SPAU SPAC SPAL SPAU SPAC SPAL 

Panel A: 22 periods ahead forecast (22 observations) 

SR 0.0013 0.0013 0.0013 0.2664 0.1668 0.1668 1.0000 1.0000 1.0000 0.3066 0.2159 0.1421 

PK 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 1.0000 1.0000 1.0000 0.0000 0.0000 0.0000 

GK 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 1.0000 1.0000 1.0000 0.0000 0.0000 0.0000 

RS 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 1.0000 1.0000 1.0000 0.0000 0.0000 0.0000 

Panel B: 55 periods ahead forecast (55 observations) 

SR 0.0189 0.0189 0.0189 0.0882 0.0673 0.0673 1.0000 1.0000 1.0000 0.4962 0.3325 0.2727 

PK 0.0007 0.0007 0.0007 0.0045 0.0027 0.0027 1.0000 1.0000 1.0000 0.0000 0.0000 0.0000 

GK 0.0004 0.0004 0.0004 0.0046 0.0029 0.0029 1.0000 1.0000 1.0000 0.0000 0.0000 0.0000 

RS 0.0002 0.0002 0.0002 0.0047 0.0024 0.0024 1.0000 1.0000 1.0000 0.0000 0.0000 0.0000 

Panel C: 110 periods ahead forecast (110 observations) 

SR 0.0533 0.0533 0.0533 0.1649 0.1649 0.0907 0.3128 0.3128 0.1526 1.0000 1.0000 1.0000 

PK 0.0464 0.0464 0.0464 0.3357 0.1924 0.1391 1.0000 1.0000 1.0000 0.1375 0.1375 0.1101 

GK 0.0441 0.0441 0.0441 0.3564 0.2116 0.1452 1.0000 1.0000 1.0000 0.0373 0.0373 0.022 

RS 0.0417 0.0417 0.0417 0.3527 0.2111 0.1448 1.0000 1.0000 1.0000 0.03 0.03 0.0132 

Panel D: 220 periods ahead forecast (220 observations) 

SR 0.0159 0.0159 0.0159 0.0682 0.0492 0.0492 0.2613 0.2437 0.1236 1.0000 1.0000 1.0000 

PK 0.0832 0.0832 0.0832 0.3197 0.3197 0.157 1.0000 1.0000 1.0000 0.4089 0.4089 0.312 

GK 0.1155 0.1155 0.1155 0.4567 0.4567 0.1814 1.0000 1.0000 1.0000 0.1586 0.1586 0.1201 

RS 0.1243 0.1243 0.1243 0.5112 0.5112 0.2041 1.0000 1.0000 1.0000 0.0626 0.0626 0.0437 

Note: SPAU, SPAC, and SPAL denoted p-value of White’s (2000) Reality Check test, p-value of Hansen’s consistent and liberal test. The bold letter shows p-value of alternative 

volatility proxies in the rows and estimated GARCH-type models with normal distribution in the columns fail to reject the null hypothesis which none of competing models 

outperforms the benchmark model. To calculated the p-value of SPA, we use 10,000 times of bootstrap replications and optimal of block length followed Politis and White 

(2004)  
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Table 4.8: The p-value of SPA test for alternative volatility proxies and different j periods forecast of GARCH-type with Student’s t-distribution 

from 3,978 fixed windows in-of-sample estimation period (17 February 1992 to 7 May 2008) 

Proxy 

Benchmark: ARCH (1) Benchmark: GARCH (1,1) Benchmark: EGARCH (1,1) Benchmark: GJR (1,1) 

SPAU SPAC SPAL SPAU SPAC SPAL SPAU SPAC SPAL SPAU SPAC SPAL 

Panel A: 22 periods ahead forecast (22 observations) 

SR 0.0032 0.0032 0.0032 0.6715 0.5878 0.4177 0.2945 0.2609 0.2609 1.0000 1.0000 1.0000 

PK 0.0000 0.0000 0.0000 0.0001 0.0001 0.0001 1.0000 1.0000 1.0000 0.0003 0.0003 0.0003 

GK 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 1.0000 1.0000 1.0000 0.0000 0.0000 0.0000 

RS 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 1.0000 1.0000 1.0000 0.0000 0.0000 0.0000 

Panel B: 55 periods ahead forecast (55 observations) 

SR 0.0335 0.0335 0.0335 0.2751 0.1703 0.1109 0.0516 0.0516 0.0432 1.0000 1.0000 1.0000 

PK 0.0000 0.0000 0.0000 0.0002 0.0002 0.0002 1.0000 1.0000 1.0000 0.0002 0.0002 0.0002 

GK 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 1.0000 1.0000 1.0000 0.0000 0.0000 0.0000 

RS 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 1.0000 1.0000 1.0000 0.0000 0.0000 0.0000 

Panel C: 110 periods ahead forecast (110 observations) 

SR 0.0582 0.0582 0.0508 0.2953 0.2953 0.1156 0.059 0.059 0.059 1.0000 1.0000 1.0000 

PK 0.0016 0.0016 0.0016 1.0000 1.0000 1.0000 0.5618 0.4409 0.4376 0.3361 0.2515 0.2515 

GK 0.0002 0.0002 0.0002 0.8103 0.7052 0.4497 1.0000 1.0000 1.0000 0.2383 0.1764 0.1764 

RS 0.0002 0.0002 0.0002 0.7653 0.6472 0.3994 1.0000 1.0000 1.0000 0.2129 0.1507 0.1507 

Panel D: 220 periods ahead forecast (220 observations) 

SR 0.0490 0.0490 0.0467 0.3039 0.3039 0.1284 0.0819 0.0819 0.0819 1.0000 1.0000 1.0000 

PK 0.2079 0.2079 0.2079 1.0000 1.0000 1.0000 0.5421 0.5421 0.4822 0.3678 0.3678 0.2838 

GK 0.2762 0.2762 0.2762 0.6629 0.6629 0.3238 1.0000 1.0000 1.0000 0.0929 0.0929 0.0665 

RS 0.1619 0.1619 0.1619 0.4917 0.3314 0.2138 1.0000 1.0000 1.0000 0.0358 0.0358 0.0221 

Note: SPAU, SPAC, and SPAL denoted p-value of White’s (2000) Reality Check test, p-value of Hansen’s consistent and liberal test. The bold letter shows p-value of alternative 

volatility proxies in the rows and estimated GARCH-type models with Student’s t-distribution in the columns fail to reject the null hypothesis which none of competing models 

outperforms the benchmark model. To calculated the p-value of SPA, we use 10,000 times of bootstrap replications and optimal of block length followed Politis and White 

(2004)  
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The table 4.7 contains the p-value of SPA test for 22, 55, 110 and 220 periods 

ahead forecast conditional variance from estimation period of four GARCH-type 

models compared with different volatility proxies. For each jth period ahead forecast, 

the nominal p-value of SPAC for EGARCH model are all well above 0.10 and give the 

highest p-value which fails to reject the null hypothesis of no alternative models 

outperform EGARCH when using range-based estimators as actual volatility. However, 

for SR as volatility proxy, using GJR is the benchmark model is the best one. 

The p-value of SPA test for all periods forecast of conditional variance of 

various GARCH models with Student's t-distribution presented in Table 4.8. Using 

range-based estimators as a proxy (PK, GK, and RS), EGARCH model tends to be 

preferred one because it has the largest p-value for all period ahead forecast except long 

term forecast (110 and 220 days forecast) which GARCH is better model. For SR as a 

proxy and GJR as a benchmark model, the p-value gives us the largest SPAC value.  

Besides, we also use SPA test with out-of-sample forecast of condition variance 

using rolling window which shows in Table 4.9 and Table 4.10. The result in Table 4.9 

indicated the p-value of each GARCH under normal distribution. The EGARCH model 

can be the benchmark model when using various volatility proxies for short period 

forecast. However, for long-term prediction, using ARCH model as benchmark 

outperform than other types of GARCH models. According to the Table 4.2 and Figure 

4.2 show that SET return has excess kurtosis or fat tail. We then assume the Student's 

t-distribution stead of normal distribution. The result in Table 4.10 presented EGARCH 

model beats three alternative GARCH models when using different volatility proxy for 

all period forecasts.  

To summarize, result from SPA tests provides evidence that the range-based 

volatility estimators could be possibly used as the proxy of actual volatility while 

evaluating several periods forecasting of various GARCH-type models under normal 

and Student’s t-distribution. Moreover, the results from SPA test are consistent with the 

loss function RMSE in the previous section 
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Table 4.9: The p-value of SPA test for alternative volatility proxies and different j periods forecast of GARCH-type with normal distribution 

benchmark models from 1,989 rolling windows out-of-sample forecast period (8 May 2008 – 30 June 2016) 

Proxy 

Benchmark: ARCH (1) Benchmark: GARCH (1,1) Benchmark: EGARCH (1,1) Benchmark: GJR (1,1) 

SPAU SPAC SPAL SPAU SPAC SPAL SPAU SPAC SPAL SPAU SPAC SPAL 

Panel A: 22 periods ahead forecast (1,967 observations) 

SR 0.0000 0.0000 0.0000 0.2235 0.1058 0.1058 1.0000 1.0000 1.0000 0.0022 0.0022 0.0021 

PK 0.0001 0.0001 0.0001 0.2995 0.1782 0.1384 1.0000 1.0000 1.0000 0.0007 0.0007 0.0007 

GK 0.0000 0.0000 0.0000 0.3051 0.1799 0.1355 1.0000 1.0000 1.0000 0.0013 0.0013 0.0013 

RS 0.0001 0.0001 0.0001 0.3067 0.1779 0.137 1.0000 1.0000 1.0000 0.0015 0.0015 0.0015 

Panel B: 55 periods ahead forecast (1,934 observations) 

SR 0.1292 0.1292 0.1059 1.0000 1.0000 1.0000 0.0107 0.0038 0.0038 0.0012 0.0012 0.0012 

PK 1.0000 1.0000 1.0000 0.7198 0.5292 0.444 0.0032 0.0022 0.0022 0.0000 0.0000 0.0000 

GK 1.0000 1.0000 1.0000 0.6418 0.4388 0.37 0.0011 0.001 0.001 0.0000 0.0000 0.0000 

RS 1.0000 1.0000 1.0000 0.6008 0.4027 0.3447 0.0006 0.0005 0.0005 0.0000 0.0000 0.0000 

Panel C: 110 periods ahead forecast (1,879 observations) 

SR 1.0000 1.0000 1.0000 0.0013 0.001 0.0003 0.002 0.0017 0.0017 0.0008 0.0008 0.0008 

PK 1.0000 1.0000 1.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 

GK 1.0000 1.0000 1.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 

RS 1.0000 1.0000 1.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 

Panel D: 220 periods ahead forecast (1,769 observations) 

SR 1.0000 1.0000 1.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0008 0.0008 0.0008 

PK 1.0000 1.0000 1.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0001 0.0001 0.0001 

GK 1.0000 1.0000 1.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 

RS 1.0000 1.0000 1.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0001 0.0001 0.0001 

Note: SPAU, SPAC, and SPAL denoted p-value of White’s (2000) Reality Check test, p-value of Hansen’s consistent and liberal test. The bold letter shows p-value of alternative 

volatility proxies in the rows and estimated GARCH-type models with normal distribution in the columns fail to reject the null hypothesis which none of competing models 

outperforms the benchmark model. To calculated the p-value of SPA, we use 10,000 times of bootstrap replications and optimal of block length followed Politis and White 

(2004)  

  



Ref. code: 25595802042225YAJRef. code: 25595802042225YAJ

 

 

5
1
 

Table 4.10: The p-value of SPA test for alternative volatility proxies and different j periods forecast of GARCH-type with Student’s t-distribution 

benchmark models from 1,989 rolling windows out-of-sample forecast period (8 May 2008 – 30 June 2016) 

Proxy 

Benchmark: ARCH (1) Benchmark: GARCH (1,1) Benchmark: EGARCH (1,1) Benchmark: GJR (1,1) 

SPAU SPAC SPAL SPAU SPAC SPAL SPAU SPAC SPAL SPAU SPAC SPAL 

Panel A: 22 periods ahead forecast (1,967 observations) 

SR 0.0000 0.0000 0.0000 0.0679 0.0679 0.0678 1.0000 1.0000 1.0000 0.069 0.069 0.069 

PK 0.0000 0.0000 0.0000 0.0532 0.0531 0.0531 1.0000 1.0000 1.0000 0.0396 0.0396 0.0396 

GK 0.0000 0.0000 0.0000 0.049 0.049 0.049 1.0000 1.0000 1.0000 0.0393 0.0393 0.0393 

RS 0.0000 0.0000 0.0000 0.0462 0.0461 0.0461 1.0000 1.0000 1.0000 0.0421 0.0421 0.0421 

Panel B: 55 periods ahead forecast (1,934 observations) 

SR 0.0148 0.0137 0.0055 0.0689 0.0489 0.0489 1.0000 1.0000 1.0000 0.0002 0.0002 0.0002 

PK 0.0000 0.0000 0.0000 0.0005 0.0005 0.0005 1.0000 1.0000 1.0000 0.0000 0.0000 0.0000 

GK 0.0000 0.0000 0.0000 0.0011 0.0011 0.0011 1.0000 1.0000 1.0000 0.0000 0.0000 0.0000 

RS 0.0000 0.0000 0.0000 0.0007 0.0007 0.0007 1.0000 1.0000 1.0000 0.0001 0.0001 0.0001 

Panel C: 110 periods ahead forecast (1,879 observations) 

SR 0.0034 0.0002 0.0002 0.0000 0.0000 0.0000 1.0000 1.0000 1.0000 0.0000 0.0000 0.0000 

PK 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 1.0000 1.0000 1.0000 0.0000 0.0000 0.0000 

GK 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 1.0000 1.0000 1.0000 0.0000 0.0000 0.0000 

RS 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 1.0000 1.0000 1.0000 0.0000 0.0000 0.0000 

Panel D: 220 periods ahead forecast (1,769 observations) 

SR 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 1.0000 1.0000 1.0000 0.0000 0.0000 0.0000 

PK 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 1.0000 1.0000 1.0000 0.0000 0.0000 0.0000 

GK 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 1.0000 1.0000 1.0000 0.0000 0.0000 0.0000 

RS 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 1.0000 1.0000 1.0000 0.0000 0.0000 0.0000 

Note: SPAU, SPAC, and SPAL denoted p-value of White’s (2000) Reality Check test, p-value of Hansen’s consistent and liberal test. The bold letter shows p-value of 

alternative volatility proxies in the rows and estimated GARCH-type models with Student’s t-distribution in the columns fail to reject the null hypothesis which none of 

competing models is outperform the benchmark model. To calculated the p-value of SPA, we use 10,000 times of bootstrap replications and optimal of block length followed 

Politis and White (2004)
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4.6 The result of GARCH family models with exogenous variables  

To address the second objective, we incorporated lag of volatility proxies as the 

exogenous variables to improve the out-of-sample performance of forecast as we 

mentioned in section 3.2.3. We first estimate the in-of-sample coefficient and in-of-

sample condition variance. After that, we compare the loss function between in-of-

sample conditional variance of normal GARCH and GARCH with exogenous 

variables. The table 4.11 and table 4.12 shows the loss function of in-of-sample 

conditional variance of normal GARCH and GARCH incorporated with SR and range- 

based estimators compared with volatility proxies. Mostly, RMSE of normal GARCH 

provides the smallest value of losses when using three range-based estimators as proxy. 

 

Table 4.11: The RMSE of in-of-sample conditional variance of GARCH-type under 

normal distribution and GARCH-type under normal distribution with exogenous 

variables, using different volatility proxies 

 

In-of-Sample 

Conditional Variance 

In-of-Sample Conditional Variance of GARCH 

with different exogenous variables (SR, PK, GK and RS) 

Panel A: ARCH model 
Proxy ARCH ARCH-SR ARCH-PK ARCH-GK ARCH-RS 

SR  5.6520   5.6527   -     -     -    

PK  2.5064   -     2.5060   -     -    

GK  2.8463   -     -     2.8457   -    

RS  3.2762   -     -     -     3.2770  

Panel B: GARCH model 

Proxy GARCH GARCH-SR GARCH-PK GARCH-GK GARCH-RS 

SR  7.0411   7.0369   -     -     -    

PK  3.4866   -     3.4878   -     -    

GK  3.4307   -     -     3.4336   -    

RS  3.6479   -     -     -     3.6518  

Panel C: EGARCH model 

Proxy EGARCH EGARCH-SR EGARCH-PK EGARCH-GK EGARCH-RS 

SR  6.9765   6.7506   -     -     -    

PK  3.1583   -     3.1624   -     -    

GK  3.0972   -     -     5.5675   -    

RS  3.3293   -     -     -     5.4284  

Panel D: GJR model 

Proxy EGARCH EGARCH-SR EGARCH-PK EGARCH-GK EGARCH-RS 

SR  6.9844   6.9821   -     -     -    

PK  3.3974   -     3.3984   -     -    

GK  3.3491   -     -     3.3513   -    

RS  3.5697   -     -     -     3.5723  

Note: The RMSE value which present in this table multiply by 10-4. The bold letter provides the smallest 

RMSE values. The formula of 𝑅𝑀𝑆𝐸 = √
1

𝑛
∑ (�̂�𝑡

2 − ℎ̂𝑡,𝑘
2 )

2𝑛
𝑖=1 , where �̂�𝑡

2 denoted alternative volatility proxies 

in the row and ℎ̂𝑡,𝑘
2  denoted estimated condition variance of different GARCH-type models 



Ref. code: 25595802042225YAJRef. code: 25595802042225YAJ

53 

 

Table 4.12: The RMSE of in-of-sample conditional variance of GARCH-type under 

Student’s t-distribution and GARCH-type under Student’s t-distribution with exogenous 

variables, using different volatility proxies.  

 

In-of-Sample 

Conditional Variance 

In-of-Sample Conditional Variance of GARCH 

with different exogenous variables (SR, PK, GK and RS) 

Panel A: ARCH model 
Proxy ARCH ARCH-SR ARCH-PK ARCH-GK ARCH-RS 

SR 6.1555 0.6043 - - - 

PK 2.5329 - 5.4457 - - 

GK 2.6692 - - 6.4773 - 

RS 3.0468 - - - 7.0078 

Panel B: GARCH model 

Proxy GARCH GARCH-SR GARCH-PK GARCH-GK GARCH-RS 

SR  6.9553   6.9511   -     -     -    

PK  3.2582   -     3.2578   -     -    

GK  3.1865   -     -     3.1878   -    

RS  3.4163   -     -     -     3.4182  

Panel C: EGARCH model 

Proxy EGARCH EGARCH-SR EGARCH-PK EGARCH-GK EGARCH-RS 

SR  6.6314   6.8797   -     -     -    

PK  2.9925   -     6.8973   -     -    

GK  3.0649   -     -     5.6328   -    

RS  3.3445   -     -     -     5.5414  

Panel D: GJR model 

Proxy EGARCH EGARCH-SR EGARCH-PK EGARCH-GK EGARCH-RS 

SR  6.8967   6.8932   -     -     -    

PK  3.2021   -     3.2018   -     -    

GK  3.1486   -     -     3.1498   -    

RS  3.3832   -     -     -     3.3849  

Note: The RMSE value which present in this table multiply by 10-4. The bold letter provides the smallest 

RMSE values. The formula of 𝑅𝑀𝑆𝐸 = √
1

𝑛
∑ (�̂�𝑡

2 − ℎ̂𝑡,𝑘
2 )

2𝑛
𝑖=1 , where �̂�𝑡

2 denoted alternative volatility proxies 

in the row and ℎ̂𝑡,𝑘
2  denoted estimated condition variance of different GARCH-type models 

 

However, using SR estimator as a volatility proxy, we notice GARCH-family 

incorporated with lag of SR as an exogenous variable give the better performance 

except ARCH model. For Student’s distribution, the results indicated that adding 

exogenous variable in EGARCH model give worse performance. When using RS and 

PK as a volatility proxy, the results are quite mixed depend on type of GARCH models. 

According to RMSE of in-of-sample conditional volatility, we decide not to 

forecast the conditional variance. We conclude that incorporating volatility proxies into 

the GARCH variance equation not improve the performance of four GARCH models 

in evidence of stock exchange of Thailand. 
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CHAPTER 5 

CONCLUSIONS AND RECOMMENDATIONS 

 

This paper uses the different parametric volatility models to analyze and 

forecast the conditional variance of SET index return.  To exhibit more of the stylized 

facts and characteristics of asset price volatility, the Gaussian distribution and the 

Student’s t-distribution is assumed to be the error term’s distribution in this study. To 

compare the performance of GARCH models which are ARCH, GARCH, EGARCH 

and GJR-GARCH, the four nonparametric volatility models (Squared return, Parkinson 

(1980), Garman and Klass (1980) and Rogers and Satchell (1991) estimators) are 

introduced as a proxy of the actual volatility of the daily returns. The concept of Root 

Mean Squared Error (RMSE) and Superior Predictive Ability (SPA) of Hansen (2005) 

are applied in this study to evaluate the goodness of fit of the models. Thank to the SPA 

test of Hansen (2005), we can reduce the risk of biased statistical inference due to data 

snooping.  

There are 5,979 daily entire price observations (Close, High, Low, and Close 

price) of SET index during the observation period from 17 February 1992 until 30 June 

2016. The in-of-sample period consisted of 3,978 daily observations (17 February 1992 

to 7 May 2008) and the out-of-sample period consisted of 1,989 daily observations (8 

May 2008 – 30 June 2016). We take the first difference to transform SET index because 

financial time series data is non-stationary which unpredictable and cannot be modeled 

or forecasted. After the data has been stationarized by differencing, we then check the 

preliminary statistic test of SET return. The finding presents the return of SET index is 

well-modeled by Student’s t-distribution according to stylized fact of financial time-

series data. Moreover, the SET index return exhibits conditional heteroscedasticity or 

autocorrelation in the squared series. 

To address the first objective of this study, we compare GARCH models under 

normal and Student’s t-distribution with various volatility proxies.  

We first estimate the GARCH models from 8 May 2008 – 30 June 2016 (1,989 

daily observations). Second, we forecast 22, 55, 110 and 220 days out-of-sample 

forecast using the fixed-window. With this model specification setting, in light of the 
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lowest RMSE and p-value of the SPA test, EGARCH model under normal distribution 

provides a better performance among other models (ARCH, EGARCH and GJR-

GARCH) compared to PK, GK, and RS estimators as volatility proxy for all periods 

forecast. With the assumption of Student’s t-distribution, the results were striking 

depend on volatility proxy. With squared return, GJR-GARCH model tends to be the 

most preferred one while EGARCH model clearly better than others when using range-

based volatility as the volatility proxy. Third, we forecast 22, 55, 110 and 220 days 

ahead out-of-sample with rolling-window by adding new observation and removing the 

first one for 1,989 observations. For normally distributed error term, the evidence points 

out that EGARCH model outperforms when we compare it with range-based models as 

a proxy for short-term rolling out-of-sample forecast. However, with squared return as 

a proxy, ARCH model is superior for long-term rolling out-of-sample forecast. 

Furthermore, EGARCH model under Student’s t-distribution beats three alternative 

GARCH models when using different volatility proxy for all period forecasts.  

To address the second objective, we add the volatility proxy as the exogenous 

variable in the GARCH-type models under normal and Student’s t-distribution. We first 

calculated the RMSE of the conditional variance of GARCH-type models with 

volatility proxies (SR, PK, GK and RS estimators). Next, we computed the RMSE of 

four volatility proxies with conditional variance of GARCH-type models that includes 

the lag of each volatility proxy (GARCH-type-RS, GARCH-type -PK, GARCH-type -

GK and GARCH-type-RS). In general, the results show that adding the range-based 

estimators into the GARCH-type models cannot improve the performance of volatility 

forecast because the values RMSE of normal GARCH-type models are still smaller than 

GARCH-type models with exogenous variables. However, adding SR as an exogenous 

variable can improve the GARCH-type volatility forecast.   

For further research, another proxy for the latent volatility could be used is 

realized volatility which provides better efficient than range-based volatility. To further 

increase the understanding of volatility forecasting could consider different forecast 

horizons, other asset classes than equity indices or investigate the use of other error 

distributions such as the skew-normal distribution. 
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