

RELATIONSHIP BETWEEN STOCK MARKET AND REAL ESTATE MARKET: EVIDENCE IN THAILAND

BY

MISS CHIDCHANOK SUVICHACHERDCHOO

AN INDEPENDENT STUDY SUBMITTED IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF MASTER OF SCIENCE PROGRAM IN FINANCE (INTERNATIONAL PROGRAM) FACULTY OF COMMERCE AND ACCOUNTANCY THAMMASAT UNIVERSITY ACADEMIC YEAR 2016 COPYRIGHT OF THAMMASAT UNIVERSITY

RELATIONSHIP BETWEEN STOCK MARKET AND REAL ESTATE MARKET: EVIDENCE IN THAILAND

BY

MISS CHIDCHANOK SUVICHACHERDCHOO

AN INDEPENDENT STUDY SUBMITTED IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF MASTER OF SCIENCE PROGRAM IN FINANCE (INTERNATIONAL PROGRAM) FACULTY OF COMMERCE AND ACCOUNTANCY THAMMASAT UNIVERSITY ACADEMIC YEAR 2016 COPYRIGHT OF THAMMASAT UNIVERSITY

THAMMASAT UNIVERSITY FACULTY OF COMMERCE AND ACCOUNTANCY

INDEPENDENT STUDY

BY

MISS CHIDCHANOK SUVICHACHERDCHOO

ENTITLED

RELATIONSHIP BETWEEN STOCK MARKET AND REAL ESTATE MARKET: EVIDENCE IN THAILAND

was approved as partial fulfillment of the requirements for the degree of Master of Science (Finance)

0 1 MAY 2017

Chairman

(Assistant Professor Chaiyuth Padungsaksawasdi, Ph.D.)

Member and Advisor

Kongchare o ampong

(Assistant Professor Chaleampong Kongcharoen, Ph.D.)

(Associate Professor Pipop Udorn, Ph.D.)

Dean

Independent Study Title	RELATIONSHIP BETWEEN STOCK MARKET
	AND REAL ESTATE MARKET: EVIDENCE IN
	THAILAND
Author	Miss Chidchanok Suvichacherdchoo
Degree	Master of Science (Finance)
Major Field/Faculty/University	Master of Science Program in Finance
	(International Program)
	Faculty of Commerce and Accountancy
	Thammasat University
Independent Study Advisor	Assistant Professor Chaleampong Kongcharoen, Ph.D.
Academic Year	2016

ABSTRACT

This paper study about relationship between stock market, which represented by SET Index, and real estate market, which represented by price index of land, condo, townhouse, and single detach house. Based on two theories which are wealth effect and credit price effect. This paper using bivariate VAR model, also granger causuality, and forecast error varience decomposition. The result was found support both theories. To explain, return of land price index has affect return of SET index which the result support credit price effect. While return of SET index was found support return of price index of townhouse and single detach house, which the result support credit price effect.

Keywords: Real Estate Market, Stock Market, Wealth Effect, Credit Price Effect

ACKNOWLEDGEMENTS

This research was supported by Assistant Professor Cheleampong Kongcharoen, Ph.D. I do receive huge support and couldn't be more appreciate to have Assistant Professor Chaleampong Kongcharoen as my advisor.

To all my classmates who taught life lesson that will never be forgotten.

TABLE OF CONTENTS

ABSTRACT	Page (1)
ACKNOWLEDGEMENTS	(2)
LIST OF TABLES	(4)
LIST OF FIGURES	(5)
CHAPTER 1 INTRODUCTION	1
CHAPTER 2 REVIEW OF LITERATURE	3
CHAPTER 3 DATA	6
CHAPTER 4 RESEARCH METHODOLOGY	8
CHAPTER 5 RESULT	12
CHAPTER 6 CONCLUSION	19
REFERENCES	20
APPENDICES	
APPENDIX A	23
APPENDIX B	30
APPENDIX C	37
BIOGRAPHY	53

LIST OF TABLES

Tables	Page
5.1 Descriptive Statistic	12
5.2 Unit root test	12
5.3 Appropriate Lag	13
5.4 VAR Result	14
5.5 Granger causality Test	15
5.6 FEVD Result	17

LIST OF FIGURES

Figures	Page
3.1 Price Index of Real Estate	7
3.2 Price Index of SET	7
5.1 Return of Price Index of Each Variable	13
5.2 IRF Result	16

CHAPTER 1 INTRODUCTION

Real estate investment is another alternative investment that can be chosen to diversify investor's portfolio. Knowing relationship between stock price and real estate price can help investors as another possibility in order to consider future movement of the markets over historical data of one another.

Impact of wealth on consumption had been studied (green,2002; Piazzesi *et al.*, 2007; Chen,2001; Sutton,2002; Kakes and Van Den End,2004; Ibrahim,2010) and shows the mechanism that augment the relationship between stock and real estate price which is the wealth effect. Wealth effect states that when there is an increasing in the stock market. Investors with unanticipated gain will feel wealthier and more comfortable to purchase properties; this will push up demand on real estate. Hence the stock market will lead real estate market.

Another effect that had been studied call credit-price effect (Sim and chang,2006) shows that when real estate price is up, firms will effected first on the statement of balance sheet imply that when property value rise then there is an unreleased gain and will end up with rising in equity. Firm will have lower cost in case of reinvestment, which leads stock market to be increased also.

Earlier researches study about dynamic linkage between stock price and real estate price, most has examined the correlation of two asset returns and data is the evidence of U.S. and U.K. (Ibbotson and Siegel,1984; Hartzell,1986; Eichholtz and Hartzell,1996). Therefore this paper will be conduct in order to answer the question about how the two markets; stock market and real estate market, interrelate to one another.

Many studies have examined the linkage of these two markets, stock market and real estate market, but most the studies were evidence on developed countries, for example, the United State of America, United Kingdom, Turkey. While studies base on developing countries, which published, were limited in the small amount as well as the applicable of the research result. Therefore, objective of this study is to examine the relationship between stock market and real estate price using land price data available in BOT as real estate price, and using Stock Exchange of Thailand Index as stock market price. Data of this paper will be between 2008-2016, This research will apply Vector Autoregressive Model (VAR) as early research had been applied (Green,2002; Kapopoulos and Siokis,2005; Chen,2001; Ibrahim,2010). Moreover, Granger Causality, Impulse Response Function (IRF), and Forecast Error-Variance Decomposition (FEVD) will also be applied.

CHAPTER 2 REVIEW OF LITERATURE

There are some researches found evidence supported wealth effect and creditprice effect as these two effects can descript the relationship of stock market and real estate of each particular data. For example of wealth effect, the study of (green,2002) applied concept of Granger causality using single-equation framework.. The paper was employed data of four different sources to represent real estate price in California and using Russel 2000 to represent Stock Market. The result according to the paper (green,2002), founds evidence shows that stock market value effects housing consumption.

Earlier researches study about dynamic linkage between stock price and real estate price, most has examined the correlation of two asset returns and evidence data shows both negative relation and positive relation. Researches based on United Kingdom evidence are (Worzala and Vandell, 1993), (Eichholtz and Hartzell, 1996), and (Ibbotson and Siegal, 1984) which mainly focus on correlation of the return between the stock market and real estate market. (Worzala and Vandell,1993) found positive correlation of 0.039 while (Eichholtz and Hartzell,1996) found negative correlation of -0.08

Another interested research of (Quan and Titman,1999) based on set of data that comprised of 17 developed and emerging markets in order to examine relationship of stock price and real estate price whether they move together under the condition of cross-sectional and panel regression. The result showed positive correlation under the cross-sectional regression. However, once controlled variable was added, the result of positive correlation had changed. (Chen, 2001) also have the result support wealth effect which found evidence support wealth effect by using bivariate VAR model. The paper based on quarterly data of Taiwan, data period from 1973 – 1992.

Relationship of the two markets wasn't limited within the same country, there was a research studies the relationship of these two markets across country. (Sutton, 2002) studied the relationship between six economies of developed countries; UK, USA, Canada, Netherland, Ireland, and Australia under VAR framework which the

result was support wealth effect that house price have response to change in stock price positively.

In the other hand, (Sim and Chang, 2006) using VAR model but they found the result in the opposite. Their research using VAR model and found the result supports credit-price effect. While (Miller,2014) shows that real estate and stock returns are correlated generally across lower frequencies but not for all the period of the sample. They use Vector Autoregressive model, Vector Error Correction model, and also threshold error correlation model to examine the linkage between these two markets. Another research that have been resulted both positive and negative effect (Chang, 2013) the paper shows positive relationship for the period of 1890-2012 and negative relation between 1998-2002. This paper using GDP growth as controlled variable and also found that stock price and real estate price are both having positive response to the GDP growth more than one another. Therefore, adding GDP growth.

One research, study relationship between these two markets, in southeast region (Lean and Smyth, 2012). The study using the standard augmented dickey fuller unit root test found evidence support wealth effect for some REITs. For the evidence of Thailand there is one research (Ibrahim, 2010) studies the relationship between these two market using the data from 1995-2006 and focus on using VAR model with two controlled variables, which are real GDP and aggregate price level. The paper found the evidence support wealth effect. Another research evidenced in Thailand using monthly data from 2008-2015 with controlled variable of interest rate, inflation, and real effective exchange rate under methodologies of bivariate VAR and DCC-GRACH. The paper proposed, "low correlation coefficients between the real estate and stock markets prevail and negative correlation between townhouse and stock indices as well as condominium and stock indices" as the result (Padungsaksawasdi and Jaroenjitrkam, 2016). Research of Nittayagasetwat, Aekkachai, and Jiroj Buranasiri was about the relationship between property fund and stock market which indicated that "property fund's return is similar to the overall stock's return by 26%, including value stock 0%, growth stock 4%, medium capitalization stock 9%, and small capitalization stock 13%".

Recent researches find the relationship between stock and real estate price evidence in Turkey (Yuksel, 2016) using VAR model found evidence support wealth effect and credit price effect for the period of pre-crisis. During the crisis period, credit price effect was found but no wealth effect evidence for that period.

CHAPTER 3 DATA

In this study, we use the Stock Exchange of Thailand (SET) set index, as a stock market price. For real estate sector, there are four different price indexes which are land price index, single detached house price index, townhouse price index, and condominium price index. This study investigates thesefour price indexes as a real estate price index. These data is from the Bank of Thailand. Because of the availability of the real estate price index, the data are ranging from 2008 and 2016. The stock price index and real estate price indexes are monthly data. We also use the macroeconomic variables such as manufacturing index and interest rate, which is 1 year T-Billinterest rate, as controlled variables. Previous study on Thai data, such as (Ibrahim, 2010), employs GDP growth and consumer price index as controlled variables with quarterly frequency. Since this paper using monthly data, we use the percentage change of manufacturing production index to match monthly frequency with real estate price index and set index. By using percentage change of manufacturing production index can be reliable according to published research of (Mitchell, Smith, Weale, Wright, and Salazar, 2005). The research has refer that "A range of monthly series is currently available giving indications of short-term movements in output. As the only available information, they are already exploited in various ways: financial commentators routinely examine monthly data on retail sales, the trade figures, and the output of the production industries in order to assess the state of the economy and likely developments in monetary policy; academic researchers exploiting high frequency econometric techniques make use of one another of these series as the best available proxy for a broader measure of demand or output." Therefore, percentage change of manufacturing production index is appropriate to be used alone as GDP growth for monthly data.

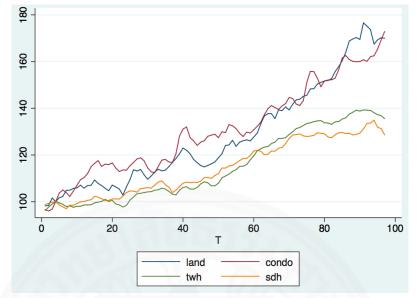


Figure 3.1: Price Index of Real Estate Indexes of Thailand

*Noted that land condo twh and sdh are price index.

Figure 3.2: Price Index of SET

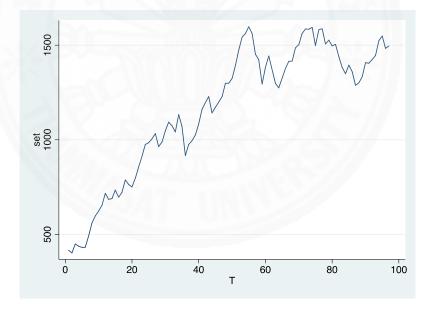
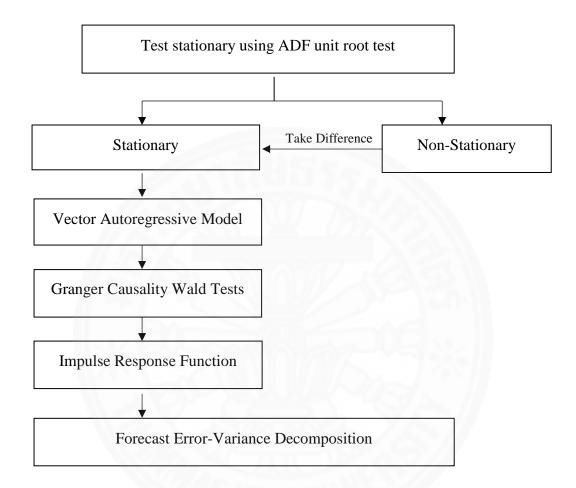



Figure 3.1 showed the illustration of four different kinds of real estate price index, which are land price index, condominium price index, town house price index, and single detach house price index. While the graph showed 97 periods of time begin from October 2008 to September 2016.

Figure 3.2 showed the illustration of Stock Price Index which both figure can tell that the data sets has trend which is not stationary.

In this study, we investigate the dynamic relationship between the stock price and real estate price using the Vector Autoregressive (VAR) model. After we estimate the VAR model, we will use the Granger Causality test, Impulse Response Function (IRF) and Variance decomposition to explain their relationship. Before we estimate the VAR we need perform the Augmented Dickey-Fuller unit root test on variables using in the model (Green,2002) (Chen,2001).

In the case that data is not stationary then we have to make the data stationary by taking the different follow the lag length and order of the model that has to be estimated before running any model. After making data stationary there are many tests that can be apply. In our case, we suspect that the price indexes are nonstationary and we need to transform them into return series which are stationary. In case the data is already stationary then granger causality can be apply next to see whether there is any relationship between stock market and real estate market and if the relationship exists then what direction the relationship is. Long-run Granger causality of stock market and real estate market can also be tested though the null hypothesis $\beta_{k,i} = \ldots = \beta_{k,j} = 0$ to see the relationship between the two market.

Before apply VAR test, the appropriate lag and order of the variables need to be determined. This paper considers appropriate lag and order by minimize of AIC, BIC, likelihood-ratio, and FPE. Reduce-form of VAR is widely use which is shown below. This paper will do the estimation using the bivariate form of VAR

$$R_SET_t = \Gamma_{1t} + \sum_{p=1}^{P} \theta_{1p} SET_{t-p} + \sum_{g=0}^{G} \theta_{1g} X_{t-g} + \lambda_1 Z_t + \varepsilon_{st}$$

$$R_X_t = \Gamma_{2t} + \sum_{j=0}^J \theta_{2j} SET_{t-j} + \sum_{k=1}^K \theta_{2k} X_{t-k} + \lambda_2 Z_t + \varepsilon_{jt}$$

where R_SET _t	is changes in Return of stock price index at time t
R_X_t	is changes in Return of real estate price index at time t
	;(LAND, CONDO, SDH, TWH)

 Γ_{1t} , Γ_{2t} are constants

θ_{1p}	is parameters of auto regressive optimal at lag p
$ heta_{1g}$	is parameters of auto regressive optimal at lag g
θ_{1j}	is parameters of auto regressive optimal at lag j
θ_{1k}	is parameters of auto regressive optimal at lag k
λ_1 , λ_2	is parameters of controlled variables
Z _t	is controlled variable ;(MPI, R)
$arepsilon_{st}$, $arepsilon_{jt}$	is error term

This paper will test the relationship between the two markets with different set of controlled variables. In models 1-4 we include manufacturing production index (MPI). In models 5 to 8, we include MPI and Interest rate. In models 9 to 12, we include Interest rate.

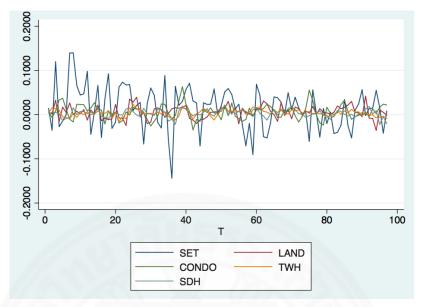
- Noted that Model 1: Represents relationship between Return of SET Index and return of Land Price Index with MPI as controlled variable.
 - Model 2: Represents relationship between Return of SET Index and return of Condo Price Index with MPI as controlled variable.
 - Model 3: Represents relationship between Return of SET Index and return of TWH Price Index with MPI as controlled variable.
 - Model 4: Represents relationship between Return of SET Index and return of SDH Price Index with MPI as controlled variable.
 - Model 5: Represents relationship between Return of SET Index and return of Land Price Index with MPI and R as controlled variables.
 - Model 6: Represents relationship between Return of SET Index and return of Condo Price Index with MPI and R as controlled variables.
 - Model 7: Represents relationship between Return of SET Index and return of TWH Price Index with MPI and R as controlled variables.
 - Model 8: Represents relationship between Return of SET Index and return of SDH Price Index with MPI and R as controlled variables.
 - Model 9: Represents relationship between Return of SET Index and return of Land Price Index with R as controlled variable.
 - Model 10: Represents relationship between Return of SET Index and return of Condo Price Index with R as controlled variable.
 - Model 11: Represents relationship between Return of SET Index and return of TWH Price Index with R as controlled variable.
 - Model 12: Represents relationship between Return of SET Index and return of SDH Price Index with R as controlled variable.

Then apply Granger Causality to see the relationship between the two markets then test for Impulse Response Function in order to analyze the reaction of a system to a shock. To see response of endogenous variables in the VAR model to one-time exogenous impulse with all other variable dated t or earlier held constant and it is better analyzed by using graph. Therefore this paper will also estimate a unit of shock to the system. Finally, FEVD will be applied in order to aid in the interpretation of a vector autoregression (VAR) model once it has been fitted.

CHAPTER 5 RESULT

Table 5.1 displays the summary statistics for the SET index return (R_SET), the land price return (R_LAND), the condominium price return (R_CONDO), the townhouse price return (R_TWH) and the single-detached house price return (R_SDH). Table 5.1 also indicate that Set gives the highest return and highest risk while Single Detach house gives the lowest return but Town House gives the lowest risk. Moreover, the table shows that the data set (Return of price index) is stationary.

VARIABLES	MEAN	STD. DEV.	MIN	MAX	Skewness	Kurtosis
R_SET	0.0146	0.0493	-0.4376	0.1397	0.4687	0.2338
R_LAND	0.0058	0.0148	-0.0357	0.0418	0.9241	0.8871
R_CONDO	0.0062	0.0166	-0.0348	0.0630	0.0793	0.0862
R_TWH	0.0036	0.0077	-0.0159	0.0233	0.8952	0.9776
R_SDH	0.0028	0.0086	-0.0222	0.0214	0.0328	0.2232


Table 5.1: Descriptive Statistic

Begin with the augmented dickey fuller unit root test in order to test weather the data set is stationary or not. Data set was not stationary, thus, the first difference is needed to be applied. Resulted in Table 5.2 that all variables are significance at 1% level critical value, 5% level critical value, and 10% level critical value, respectively.

Table 5.2: Unit Root Test

Variables	Test Statistic	1% Critical	5% Critical	10% Critical
variables	Test Statistic	Value	Value	Value
R_SET	-8.528	-3.516	-2.893	-2.582
R_LAND	-8.967	-3.516	-2.893	-2.582
R_CONDO	-6.247	-3.516	-2.893	-2.582
R_TOWNHOUSE	-6.044	-3.516	-2.893	-2.582
R_SDH	-6.890	-3.516	-2.893	-2.582

Figure 5.1: Return of Price Index of each variable

*Noted that SET LAND CONDO TWH SDH are return of price index

Figure 5.1 shows that the returns are stationary. Since data set using in VAR model is time-series data therefore appropriate lag length is needed. In this paper, the appropriate lags are chosen by the minimum of AIC. The suitable lags for each models are presented in Table 5.3.

Table 5.3:	Appropriate Lag
	Endoganaous

Endogeneo	Appropriate Lag	
SET LAND		4
SET	CONDO	3
SET	SDH	3
SET	TWH	3

Table 5.4: VAR Result

	R_SET		R_L	AND
	Coefficient	SD	Coefficient	SD
R_SET _{t-1}	0.2159*	0.1024	0.0052	0.0263
R_SET t-2	-0.1565	0.1004	0.0382	0.0258
R_SET t-3	0.1822	0.1013	-0.0244	0.0260
R_SET _{t-4}	-0.0053	0.1010	-0.0858	0.0261
R_LAND t-1	-0.2129	0.3724	0.2572*	0.0956
R_LAND t-2	0.3571	0.3401	0.1621	0.0873
R_LAND t-3	0.0539	0.3323	-0.4434*	0.0853
R_LAND t-4	-0.2533	0.3810	0.2272*	0.0980
CONS	0.0119*	0.0068	0.0053*	0.0017
		4 T + T 4 b T		•

	R_S	ET	R_CO	NDO
	Coefficient	SD	Coefficient	SD
R_SET _{t-1}	0.1759	0.0987	0.0147	0.0277
R_SET _{t-2}	-0.1307	0.0992	0.0097	0.0278
R_SET _{t-3}	0.1566	0.0985	-0.0220	0.0276
R_CONDO _{t-1}	0.0491	0.3357	0.3883*	0.0942
R_CONDO _{t-2}	0.1701	0.3574	-0.0524	0.1003
R_CONDO _{t-3}	0.1351	0.3310	-0.4546*	0.0929
CONS	0.0090	0.0059	0.0067*	0.0016

	R_S	SET	R_TWH		
	Coefficient	SD	Coefficient	SD	
R_SET _{t-1}	0.1623	0.0957	0.0001	0.0137	
R_SET _{t-2}	-0.1581	0.0962	-0.0137	0.0138	
R_SET _{t-3}	0.1482	0.0951	0.0029	0.0136	
R_TWH _{t-1}	-0.7392	0.6680	0.4876*	0.0959	
R_TWH _{t-2}	0.3478	0.7183	0.1848	0.1032	
R_TWH _{t-3}	-1.5992*	0.6722	-0.3897*	0.8965	
CONS	0.0194*	0.0062	0.0028*	0.0008	

	R_S	SET	R_SDH		
	Coefficient	SD	Coefficient	SD	
R_SET _{t-1}	0.1620	0.0970	0.0259	0.0164	
R_SET _{t-2}	-0.1265	0.0977	0.0040	0.0166	
R_SET _{t-3}	0.1882	0.0965	0.0018	0.0164	
R_SDH _{t-1}	1.2023*	0.5782	0.2335*	0.0982	
R_SDH _{t-2}	-0.4822	0.6075	0.0843	0.1032	
R_SDH _{t-3}	-1.1629	0.6144	-0.4170*	0.1044	
CONS	0.0125*	0.0055	0.0027*	0.0009	

According to the methodology discussed above, this paper estimates bivariate VAR with controlled variable of MPI or Manufacturing Production Index (Mitchell, Smith, Weale, Wright, and Salazar, 2005). We estimate the bivariate VAR with different proxies for real estate price. The results are presented in Table 5.4. Then, we use the Granger causality to explore dynamic relationship between stock return and real estate return.

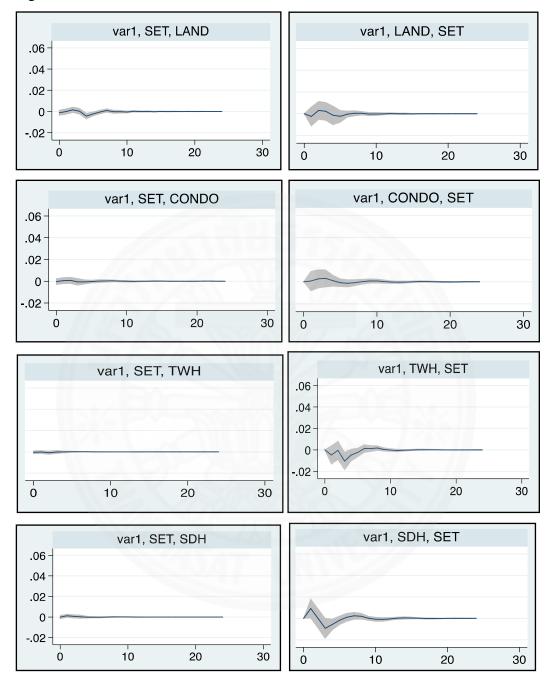

Model No.	Control Variable	Granger Causality	df	Prob > chi2
Model 1	MPI	$R_{SET} \not\rightarrow R_{LAND}$	4	0.054
Widdel 1	MPI	$R_{LAND} \rightarrow R_{SET}$	4	0.003
Model 2	MPI	$R_{SET} \not\rightarrow R_{CONDO}$	3	0.833
Widdel 2	MPI	$R_{CONDO} \not\rightarrow R_{SET}$	3	0.774
Model 3	MPI	$R_{SET} \rightarrow R_{SDH}$	3	0.025
Widdel 3	MPI	$R_{SDH} \not\rightarrow R_{SET}$	3	0.446
Model 4	MPI	$R_{SET} \rightarrow R_{TWH}$	3	0.047
WIUUCI 4	MPI	$R_{TWH} \not\rightarrow R_{SET}$	3	0.799

Table 5.5: Granger Causality Test

*Noted that \rightarrow means granger causality, $\not\rightarrow$ means not granger causality.

From Table 5.5, the return of LAND Granger causes the return of SET for all types of controlled variables, while the return of SET Granger causes the return of Townhouse and the return of Single-Detached House for all types of controlled variables condition. The result supports credit price effect in model that LAND is the representative of Real Estate Market and Wealth effect was supported by model of SDH and TWH which are the representative of Real Estate Market. However, there's no relationship between SET and CONDO which might be because that most of purchasers of LAND, TWH, and SDH were end-user which caused the price of these variables to reflect the rational price of the market, while CONDO price appeared under many types of purchasers (inspectors, investors, and end-user) which are not able to reflect market price rationally.

Figure 5.2: IRF Result

*Noted that SET is Return of Stock price index, CONDO is Return of condo price index, TWH is return of town-house price index, SDH is return of Single Detach house price index.

The IRF graph (Refer to Figure 5.2) which are the relationship of two markets with controlled variable of MPI. The graph shows the impulse by row and response by column with 24 monthly periods. For model1, the graph shows that effect of one S.D. impulse to LAND, SET was response by the small fluctuation in both directions less

than 0.01% changes and move back to normal with 8 periods, while response of LAND when impulse on SET show the similar result. For model2, the effect of one S.D. impulse to CONDO, SET was response with very small change, while response on CONDO was close to unchanged when impulse on SET. For model3, the effect of one S.D. impulse to TWH, SET show negatively fluctuate response less than 0.02% and move back to normal within 12 periods of time, while response on TWH when impulse on SET doesn't show any significant changing. For model4, response of SET when impulse on SDH show rising in SET less than 0.02% for the first 2 periods then decline to -0.01% at the fourth period and move back to normal for within 12 periods approximately. While SDH haven't showed any significant response when impulse on SET.

For Model 5-8, which has controlled variables of MPI and R gives the similar response to the set of model 1-4, respectively. As well as, the set of model 9-12 which has controlled variables of R gives the similar result of direction, magnitude, and effect period

FEVD	Forecast Errors	Variance of SET	Forecast Errors Variance of LAND		
Period ahead	Due to SET	Due to LAND	Period ahead	Due to SET	
1	1	0	1	1	
2	0.9962	0.0037	2	0.9962	
3	0.9953	0.0046	3	0.9953	
4	0.9953	0.0046	4	0.9953	
5	0.9940	0.0059	5	0.9940	
10	0.9922	0.0077	10	0.9922	
20	0.9922	0.0077	20	0.9922	

Table 5.6: FEVD Result

FEVD	Forecast Errors	Variance of SET	Forecast Errors Variance of CONDO			
Period ahead	Due to SET	Due to CONDO	Due to SET	Due to CONDO		
1	1	0	0.0002	0.9997		
2	0.9999	2.4e-06	0.0017	0.9982		
3	0.9988	0.0011	0.0030	0.9969		
4	0.9955	0.0044	0.0060	0.9939		
5	0.9949	0.0050	0.0078	0.9921		
10	0.9940	0.0059	0.0085	0.9914		
20	0.9937	0.0062	0.0087	0.9912		

FEVD	Forecast Errors	Variance of SET	SET Forecast Errors Variance of SI		
Period ahead	Due to SET	Due to SDH	Period ahead	Due to SET	
1	1	0	1	1	
2	0.9648	0.0351	2	0.9648	
3	0.9649	0.0350	3	0.9649	
4	0.9319	0.0680	4	0.9319	
5	0.9206	0.0793	5	0.9206	
10	0.9162	0.0837	10	0.9162	
20	0.9155	0.0844	20	0.9155	

FEVD	Forecast Errors	Variance of SET	Forecast Errors Variance of TWH		
Period ahead	Due to SET	Due to TWH	Due to SET	Due to TWH	
1	1	0	0.0121	0.9878	
2	0.9855	0.0144	0.0123	0.9876	
3	0.9839	0.0160	0.0199	0.9800	
4	0.9284	0.0715	0.0196	0.9803	
5	0.9185	0.0014	0.0196	0.9803	
10	0.9135	0.0864	0.0202	0.9797	
20	0.9131	0.0868	0.0202	0.9797	

Forecast Error Variance Decomposition (Refer to Table 5.6), which it reveals the proportion of the movements in a sequence due to its own shocks versus shocks to the other variable given the result that similarly to IRF. Change on SET for one standard deviation was from the combination of SDH price had changed and combination of TWH price had changed. Therefore, the fluctuation of return on SET Index was determined by the fluctuation of return on SDH and the fluctuation of return on TWH.

CHAPTER 6 CONCLUSION

This paper tries to investigate the relationship between stock market and real estate market supporting by theories of wealth effect and credit-price effect. The paper had applied the VAR model to monthly data on SET index return and real estate return.

The result was support both wealth effect and credit-price effect that the return of SET Index has significant effect the return of Land price. In the other hand, the return of LAND granger causes the return of SET for all types of controlled variables condition, while the return of SET granger causes the return of Townhouse and the return of Single-Detached House for all types of controlled variables condition. The result shows positive relationship between return of stock index and return of single detach house price index while relationship between return of set index and return of town house price index was negative.

The result of relationship between return of SET index and return of land price index was support wealth effect that an anticipate gain in rising of stock price will causes higher purchasing power to invest in land as alternative investment.

Moreover, granger causality and IRF has support the result of VAR model with different controlled variables. This prove the result of the relationship between stock market and real estate market as mentioned.

However, the same data set of real estate price was contain from year 2008 to 2016, which affect sample size to be quite small. Further paper can apply by using longer period of data set.

REFERENCES

 Jaroenjitrkam, Anutchanat, and Chaiyuth Padungsaksawasdi. "Dynamic Conditional Correlation between the Real Estate and the Stock Markets in Thailand." *Chulalongkorn Business Review (จูหาดงกรณ์ ธุรกิจ ปริทัศน์)* 38.3 (2016): 38-57.

2. Case, Karl E., John M. Quigley, and Robert J. Shiller. "Comparing wealth effects: the stock market versus the housing market." advances in Macroeconomics 5.1 (2005).

3. Chang, Tsangyao, et al. "The Co-Movement and Causality between the US Real Estate and Stock Markets in the Time and Frequency Domains." Available at SSRN 2361527 (2013).

4. Chen, Nan-Kuang. "Asset price fluctuations in Taiwan: Evidence from stock and real estate prices 1973 to 1992." Journal of Asian Economics 12.2 (2001): 215-232.

5. Eichholtz, Piet MA, and David J. Hartzell. "Property shares, appraisals and the stock market: an international perspective." The journal of real estate finance and economics 12.2 (1996): 163-178.

6. Galí, J. (2015). Monetary policy, inflation, and the business cycle: an introduction to the new Keynesian framework and its applications. Princeton University Press.

7. Gao, Xiaohui, and Anthony Yanxiang Gu. "The relationship between Chinese real estate market and stock market." Journal of International Business Research 11.1 (2012): 73.

8. Green, Richard K. "Stock prices and house prices in California: new evidence of a wealth effect?." Regional Science and Urban Economics 32.6 (2002): 775-783.

9. Gyourko, Joseph, and Donald B. Keim. "What does the stock market tell us about real estate returns?." Real Estate Economics 20.3 (1992): 457-485.

10. Hartzell, David, John Hekman, and Mike Miles. "Diversification categories in investment real estate." Real Estate Economics 14.2 (1986): 230-254.

11. Ibbotson, Roger G., and Laurence B. Siegel. "Real estate returns: a comparison with other investments." Real Estate Economics 12.3 (1984): 219-242.

12. Ibrahim, Mansor H. "House price-stock price relations in Thailand: an empirical analysis." International Journal of Housing Markets and Analysis 3.1 (2010): 69-82

 Jaroenjitrkam, Anutchanat, and Chaiyuth Padungsaksawasdi. "Dynamic Conditional Correlation between the Real Estate and the Stock Markets in Thailand." Chulalongkorn Business Review (จูฬาลงกรณ์ ธุรกิจ ปริทัศน์) 38.3 (2016): 38-57.

14. Lean, Hooi Hooi, and Russell Smyth. "REITs, interest rates and stock prices in Malaysia." International Journal of Business and Society 13.1 (2012): 49.

15. Liu, Crocker H., et al. "The composition of the market portfolio and real estate investment performance." Real Estate Economics 18.1 (1990): 49-75.

16. Mitchell, J., Smith, R. J., Weale, M. R., Wright, S. and Salazar, E. L. (2005), An Indicator of Monthly GDP and an Early Estimate of Quarterly GDP Growth*. The Economic Journal, 115: F108–F129. doi:10.1111/j.0013-0133.2005.00974.x

17. Nittayagasetwat, Aekkachai, and Jiroj Buranasiri. "THE RELATIONSHIP BETWEEN PROPERTY FUND AND STOCK MARKET."

18. Quan, Daniel C., and Sheridan Titman. "Do real estate prices and stock prices move together? An international analysis." Real Estate Economics 27.2 (1999): 183-207.

19. Sim, Sung-Hoon, and Byoung-Ky Chang. "Stock and real estate markets in Korea: wealth or credit-price effect." JOURNAL OF ECONOMIC RESEARCH-SEOUL-11.1 (2006): 103.

20. Lerskullawat, Attasuda. Financial development and monetary policy transmission: the case of Thailand. Diss. University of Birmingham, 2014.

Sutton, Gregory D. "Explaining changes in house prices." BIS quarterly review
 32 (2002): 46-60.

22. Yuksel, Asli. "The relationship between stock and real estate prices in Turkey: Evidence around the global financial crisis." Central Bank Review 16.1 (2016): 33-40.

APPENDICES

APPENDIX A

EXOGENOUS VARIABLE OF MPI

VAR Result with exogeneous variable of MPI

. var SET LAND,lags(1/4) exog(MFP)

Vector autoregression

Sample: 5 - 97 Log likelihood = FPE = Det(Sigma_ml) =	435.162 4.55e-07 2.96e-07			No. o AIC HQIC SBIC	f obs	= -	93 8.928214 8.708302 8.383569
Equation	Parms	RMSE	R-sq	chi2	P>chi2		
SET LAND	10 10	.048822 .012542	0.0944 0.3447	9.694391 48.92266	0.3758 0.0000		
12				T A			

	11	Coef.	Std. Err.	z	P> z	[95% Conf.	Interval]
SET					2		
	SET						
	L1.	.2159205	.1024102	2.11	0.035	.0152002	.4166407
	L2.	1565149	.1004821	-1.56	0.119	3534562	.0404265
	L3.	.1822858	.1013045	1.80	0.072	0162673	.3808389
	L4.	0053088	.1018051	-0.05	0.958	2048431	.1942255
	LAND						
	L1.	2129968	.3724501	-0.57	0.567	9429856	.5169919
	L2.	.357136	.3401556	1,05	0,294	3095567	1,023829
	L3.	.0539135	.3323032	0.16	0.871	5973888	.7052157
	L4.	2533679	.3818215	-0.66	0.507	-1.001724	.494988
	MFP	0284127	.0286076	-0.99	0.321	0844826	.0276572
	_cons	.0119936	.0068659	1.75	0.081	0014632	.0254504
LAND							
	SET						
	L1.	.0052788	.0263087	0.20	0.841	0462854	.056843
	L2.	.0382966	.0258134	1.48	0.138	0122968	.08889
	L3.	0244771	.0260247	-0.94	0.347	0754845	.0265304
	L4.	0858456	.0261533	-3.28	0.001	1371052	0345863
	LAND						
	L1.	.2572905	.0956809	2.69	0.007	.0697594	.4448215
	L2.	.1621639	.0873846	1.86	0.063	0091067	.3334345
	L3.	4434693	.0853673	-5.19	0.000	6107862	276152
	L4.	.2272256	.0980884	2.32	0.021	.0349759	.4194753
	MFP	.0105712	.0073492	1.44	0.150	0038329	.0249753
	_cons	.0053783	.0017638	3.05	0.002	.0019212	.0088353

. var SET CONDO,lag(1/3) exog(MFP)

Vector autoregression

Sample: 4 – 97				No. o	fobs	=	94
Log likelihood =	428.97			AIC		= -8	.786596
FPE =	5.24e-07			HQIC		= -8	611736
Det(Sigma_ml) =	3.73e-07			SBIC		= -8	353695
Equation	Parms	RMSE	R-sq	chi2	P>chi2		
SET	8	.048757	0.0715	7.239269	0.4044		
CONDO	8	.01369	0.3926	60.76029	0.0000		

		Coef.	Std. Err.	z	P> z	[95% Conf.	Interval]
SET							
	SET						
	L1.	.1759054	.0987919	1.78	0.075	0177232	.369534
	L2.	1307833	.0992956	-1.32	0.188	325399	.0638325
	L3.	.1566259	.0985593	1.59	0.112	0365467	.3497985
	CONDO						
	L1.	.0491425	.3357457	0.15	0.884	6089069	.7071919
	L2.	.1701816	.3574659	0.48	0.634	5304387	.8708019
	L3.	.1351115	.3310648	0.41	0.683	5137635	.7839865
	MFP	0176011	.0283661	-0.62	0.535	0731975	.0379954
	_cons	.0090927	.0059619	1.53	0.127	0025924	.0207778
CONDO						7. 11	
	SET						
	L1.	.0147167	.0277383	0.53	0.596	0396494	.0690828
	L2.	.0097337	.0278798	0.35	0.727	0449096	.064377
	L3.	0220536	.027673	-0.80	0.425	0762917	.0321845
	CONDO						
	L1.	.3883572	.0942691	4.12	0.000	.2035932	.5731213
	L2.	0524187	.1003676	-0.52	0.601	2491356	.1442982
	L3.	4546071	.0929548	-4.89	0.000	6367952	272419
	MFP	.0057155	.0079645	0.72	0.473	0098946	.0213256
	_cons	.0067449	.001674	4.03	0.000	.003464	.0100257

. var SET SDH,lag(1/3) exog(MFP)

Vector autoregression

Sample: 4 – 97				No. of	fobs	= 94
Log likelihood =	484.1489			AIC		= -9.960615
FPE =	1.62e-07			HQIC		= -9.785754
<pre>Det(Sigma_ml) =</pre>	1.15e-07			SBIC		= -9.527713
Equation	Parms	RMSE	R-sq	chi2	P>chi2	
SET	8	.046716	0.1476	16.27549	0.0227	
SDH	8	.00794	0.2517	31.61457	0.0000	

SET	SET L1. L2. L3. SDH L1.	.1620828 1265413 .1882429	.0970078 .0977602 .096539	1.67	0.095	028049	
	L1. L2. L3. SDH	1265413	.0977602		0.095	- 028049	
	L2. L3. SDH	1265413	.0977602		0.095	- 028049	
	L3. SDH			1 20		1020045	.3522147
	SDH	.1882429	006520	-1.29	0.196	3181477	.0650651
			.090559	1.95	0.051	0009701	.3774559
	L1.						
		1.202353	.5782273	2.08	0.038	.0690485	2.335658
	L2.	4822306	.6075773	-0.79	0.427	-1.67306	.708599
	L3.	-1.162967	.6144559	-1.89	0.058	-2.367278	.0413447
	MFP	0060441	.0266607	-0.23	0.821	0582981	.0462099
	_cons	.0125072	.0055937	2.24	0.025	.0015438	.0234706
SDH							
	SET						
	L1.	.025998	.0164886	1.58	0.115	006319	.058315
	L2.	.004004	.0166165	0.24	0.810	0285637	.0365717
	L3.	.0018399	.0164089	0.11	0.911	030321	.0340008
	SDH						
	L1.	.2335069	.0982823	2.38	0.018	.0408771	.4261366
	L2.	.0843085	.103271	0.82	0.414	1180989	.2867159
	L3.	4170599	.1044401	-3.99	0.000	6217588	212361
				• • -			
	MFP	0038434 .0027449	.0045316 .0009508	-0.85 2.89	0.396 0.004	0127251	.0050383

. var SET TWH,lag(1/3) exog(MFP)

```
Vector autoregression
```

Sample: 4 - 97 Log likelihood = FPE = Det(Sigma_ml) =	1.19e-07			No. o AIC HQIC SBIC	f obs	= 94 = -10.27266 = -10.0978 = -9.839763
Equation	Parms	RMSE	R-sq	chi2	P>chi2	
SET TWH	8 8	.047037 .006758	0.1358 0.2972	14.77624 39.75427	0.0390 0.0000	

		Coef.	Std. Err.	z	P> z	[95% Conf.	Interval]
SET							
	SET	\wedge					
	L1.	.1623455	.0957998	1.69	0.090	0254187	.3501097
	L2.	1581798	.0962151	-1.64	0.100	3467579	.0303982
	L3.	.1482545	.0951471	1.56	0.119	0382305	.3347394
	TWH	-					
	L1.	7392676	.6680702	-1.11	0.268	-2.048661	.5701258
	L2.	.3478719	.7183442	0.48	0.628	-1.060057	1.755801
	L3.	-1.599247	.672257	-2.38	0.017	-2.916847	2816479
	MFP	0085424	.0268265	-0.32	0.750	0611215	.0440366
	_cons	.0194319	.006222	3.12	0.002	.007237	.0316269
тwн				12-110	97	23///	
	SET						
	L1.	.0001381	.013764	0.01	0.992	0268388	.027115
	L2.	013718	.0138236	-0.99	0.321	0408118	.0133759
	L3.	.0029859	.0136702	0.22	0.827	0238073	.029779
	тwн						
	L1.	.4076149	.0959845	4.25	0.000	.2194886	.5957411
	L2.	.1848406	.1032076	1.79	0.073	0174426	.3871238
	L3.	3897767	.0965861	-4.04	0.000	5790819	2004714
	MFP	.0015914	.0038543	0.41	0.680	0059628	.0091457
	_cons	.0028726	.0008939	3.21	0.001	.0011205	.0046247

GRANGER CASUALITY Result with exogenous variable of MPI

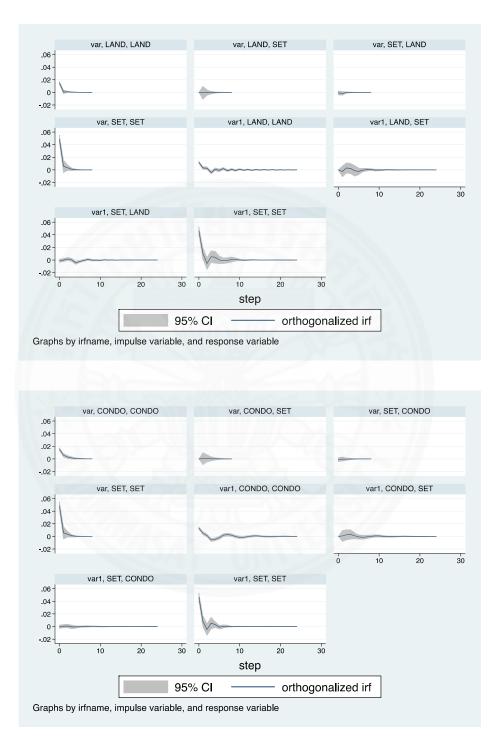
. vargranger

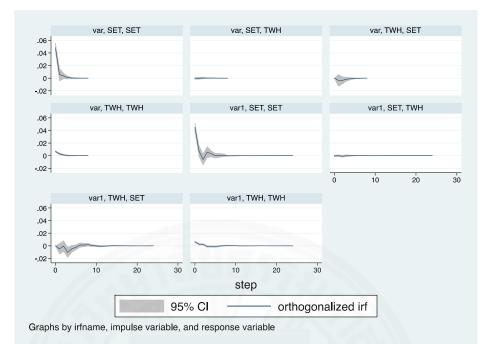
Granger causality Wald tests

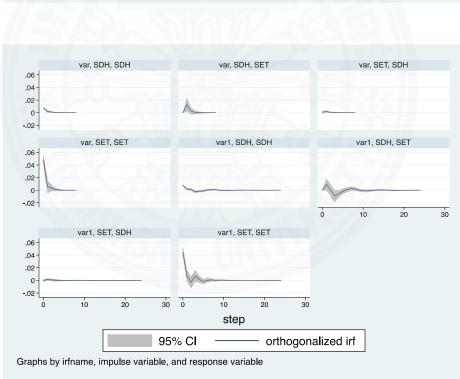
Equation	Excluded	chi2	df Prob > chi2	
SET	LAND	1.3406	4	0.854
SET	ALL	1.3406	4	0.854
LAND	SET	16.036	4	0.003
LAND	ALL	16.036	4	0.003

Granger causality Wald tests

Equation	Excluded	chi2	df Prob > chi	
SET	CONDO	.86814	3	0.833
SET	ALL	.86814	3	0.833
CONDO	SET	1.111	3	0.774
CONDO	ALL	1.111	3	0.774


Granger causality Wald tests


Equation	Excluded	chi2	df Prob > chi2	
SET	SDH	9.3357	3	0.025
SET	ALL	9.3357	3	0.025
SDH	SET	2.6645	3	0.446
SDH	ALL	2.6645	3	0.446


Granger causality Wald tests

Equation	Excluded	chi2	df Prob > chi2	
SET	TWH	7.9308	3	0.047
SET	ALL	7.9308	3	0.047
ТWН	SET	1.0073	3	0.799
ТWН	ALL	1.0073	3	0.799

IRF Result with exogenous variable of MPI

APPENDIX B

EXOGENOUS VARIABLE OF MPI AND R

VAR Result with exogenous variable of MPI and R

. var SET LAND,lag(1/4) exog(MFP R)

Sample: 5 – 97				No. o	fobs	=	93
Log likelihood =	139 0177			AIC	1 003		3.968768
FPE =	4.37e-07			HQIC		-	3.726865
FPE =	4.378-07			HUIC		= -0	5.720005
<pre>Det(Sigma_ml) =</pre>	2.72e-07			SBIC		= -8	3.369659
Equation	Parms	RMSE	R—sq	chi2	P>chi2		
SET	11	.048682	0.1104	11.54393	0.3167		
LAND	11	.012264	0.3810	57.24564	0.0000		

		Coef.	Std. Err.	z	P> z	[95% Conf.	Interval]
SET				- 11			
	SET						
	L1.	.2161972	.1015005	2.13	0.033	.01726	.4151345
	L2.	1402215	.1003819	-1.40	0.162	3369665	.0565235
	L3.	.1903392	.100597	1.89	0.058	0068273	.3875056
	L4.	.0023403	.1010735	0.02	0.982	1957601	.2004407
	LAND						
	L1.	2561711	.3706451	-0.69	0.489	9826222	.47028
	L2.	.2857135	.3416203	0.84	0.403	38385	.9552769
	L3.	0146157	.33358	-0.04	0.965	6684206	.6391892
	L4.	3122862	.3811575	-0.82	0.413	-1.059341	.4347687
	MFP	0270375	.0283733	-0.95	0.341	0826482	.0285732
	R	0827225	.0639181	-1.29	0.196	2079997	.0425547
	_cons	.0139406	.0069692	2.00	0.045	.0002813	.0276
LAND							
	SET						
	L1.	.0054046	.0255697	0.21	0.833	0447112	.0555203
	L2.	.0457033	.0252879	1.81	0.071	0038602	.0952668
	L3.	0208162	.0253421	-0.82	0.411	0704858	.0288535
	L4.	0823685	.0254622	-3.23	0.001	1322734	0324635
	LAND						
	L1.	.2376641	.0933719	2.55	0.011	.0546585	.4206698
	L2.	.1296964	.0860601	1.51	0.132	0389782	.2983713
	L3.	4746215	.0840346	-5.65	0.000	6393263	3099168
	L4.	.2004423	.0960202	2.09	0.037	.0122462	.3886384
	MFP	.0111963	.0071477	1.57	0.117	002813	.0252056
	R	0376043	.0161021	-2.34	0.020	0691638	0060448
	_cons	.0062633	.0017557	3.57	0.000	.0028223	.0097044

. var SET CONDO, lag(1/3) exog(MFP R)

Vector autoregression

Sample: 4 – 97				No. of	obs	= 94
Log likelihood =	430.4176			AIC		= -8.774842
FPE =	5.31e-07			HQIC		= -8.578124
<pre>Det(Sigma_ml) =</pre>	3.61e-07			SBIC		= -8.287828
Equation	Parms	RMSE	R-sq	chi2	P>chi2	
SET	9	.048666	0.0857	8.812041	0.3584	
CONDO	9	.01366	0.4023	63.26131	0.0000	

		Coef.	Std. Err.	z	P> z	[95% Conf.	Interval]
SET			S(_ U	7 7			
	SET						
	L1.	.1770932	.0980383	1.81	0.071	0150583	.3692447
	L2.	1148474	.0994117	-1.16	0.248	3096908	.0799959
	L3.	.1675078	.0982162	1.71	0.088	0249923	.360008
	CONDO						
	L1.	.0458181	.3331791	0.14	0.891	6072009	.6988371
	L2.	.1134562	.3578137	0.32	0.751	5878457	.814758
	L3.	.1545065	.3289146	0.47	0.639	4901543	.7991672
	MFP	0156963	.0281923	-0.56	0.578	0709523	.0395597
	R	0751702	.0622047	-1.21	0.227	1970891	.0467488
	_cons	.0097961	.0059447	1.65	0.099	0018553	.0214475
CONDO		100		9		9//	
	SET						
	L1.	.0143766	.0275183	0.52	0.601	0395582	.0683115
	L2.	.0051715	.0279038	0.19	0.853	0495189	.0598619
	L3.	0251689	.0275682	-0.91	0.361	0792016	.0288637
	CONDO						
	L1.	.389309	.0935197	4.16	0.000	.2060137	.5726042
	L2.	0361792	.1004343	-0.36	0.719	2330269	.1606685
	L3.	4601595	.0923227	-4.98	0.000	6411087	2792104
	MFP	.0051702	.0079133	0.65	0.514	0103396	.0206799
	R	.0215199	.0174602	1.23	0.218	0127014	.0557413
	_cons	.0065435	.0016686	3.92	0.000	.0032731	.0098139

31

. var SET SDH,lag(1/4) exog(MFP R)

Sample: 5 – 97				No. of	fobs	= 93
Log likelihood =	483.153			AIC		= -9.917269
FPE =	1.69e-07			HQIC		= -9.675366
Det(Sigma_ml) =	1.05e-07			SBIC		= -9.31816
Equation	Parms	RMSE	R-sq	chi2	P>chi2	
SET	11	.046307	0.1951	22.54315	0.0126	
SDH	11	.007952	0.2844	36.95774	0.0001	

		Coef.	Std. Err.	Z	P> z	[95% Conf.	Interval]
SET							
	SET						
	L1.	.1620331	.1003752	1.61	0.106	0346986	.3587648
	L2.	1282607	.0984714	-1.30	0.193	3212611	.0647398
	L3.	.2080906	.0958168	2.17	0.030	.020293	.3958881
	L4.	.0829104	.0968944	0.86	0.392	1069991	.27282
	SDH						
	L1.	.837311	.6063118	1.38	0.167	3510383	2.02566
	L2.	4074391	.5942867	-0.69	0.493	-1.57222	.7573415
	L3.	9707124	.6342785	-1.53	0.126	-2.213875	.2724506
	L4.	9568599	.6591811	-1.45	0.147	-2.248831	.3351113
	MFP	0147613	.0264124	-0.56	0.576	0665287	.0370061
	R	0484502	.058824	-0.82	0.410	1637431	.0668426
	_cons	.0158519	.0059136	2.68	0.007	.0042615	.0274424
SDH			0/41/				
	SET						
	L1.	.0273755	.0172363	1.59	0.112	0064071	.0611581
	L2.	.0082168	.0169094	0.49	0.627	0249251	.0413586
	L3.	0007174	.0164536	-0.04	0.965	0329658	.031531
	L4.	.0210017	.0166386	1.26	0.207	0116094	.0536128
	SDH						
	L1.	.2448795	.1041153	2.35	0.019	.0408172	.4489418
	L2.	.0968474	.1020504	0.95	0.343	1031677	.2968625
	L3.	4573558	.1089178	-4.20	0.000	6708307	2438809
	L4.	.0801302	.113194	0.71	0.479	141726	.3019863
	MFP	0045049	.0045355	-0.99	0.321	0133944	.0043845
	R	0133279	.0101012	-1.32	0.187	0331259	.00647
	_cons	.0024144	.0010155	2.38	0.017	.000424	.0044047

. var SET TWH,lag(1/4) exog(MFP R)

Sample : 5 – 97 Log likelihood =	500.4197			No. of AIC	fobs	= 93 = -10.2886
FPE =	1.17e-07			HQIC		= -10.04669
<pre>Det(Sigma_ml) =</pre>	7.27e-08			SBIC		= -9.689486
Equation	Parms	RMSE	R-sq	chi2	P>chi2	
SET	11	.046635	0.1837	20.92313	0.0216	
TWH	11	.006591	0.3575	51.73977	0.0000	

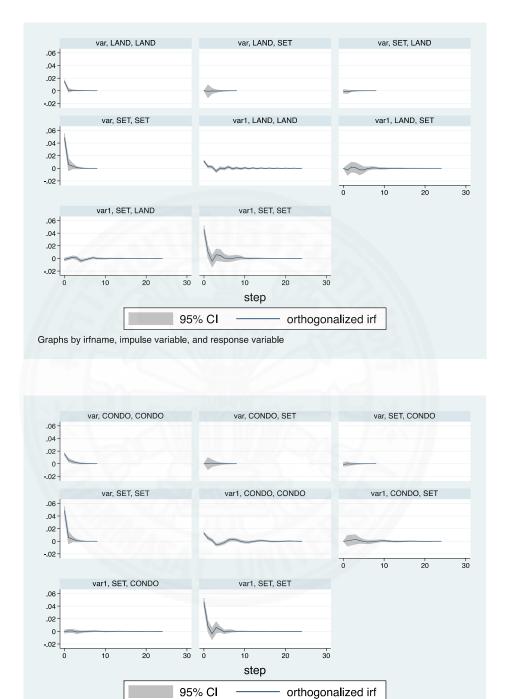
		Coef.	Std. Err.	z	P> z	[95% Conf.	Interval]
SET							
	SET						
	L1.	.1862463	.1011448	1.84	0.066	0119939	.3844864
	L2.	1565188	.0965793	-1.62	0.105	3458107	.0327732
	L3.	.1606453	.0956372	1.68	0.093	0268001	.3480907
	L4.	.0301467	.0948527	0.32	0.751	1557611	.216054
	тwн						
	L1.	8819281	.722625	-1.22	0.222	-2.298247	.5343909
	L2.	.3534488	.7194618	0.49	0.623	-1.05667	1.763568
	L3.	-1.647912	.7205298	-2.29	0.022	-3.060124	2356993
	L4.	2062271	.7678735	-0.27	0.788	-1.711232	1.29877
	MFP	0154918	.0273271	-0.57	0.571	069052	.038068
	R	1144654	.0607811	-1.88	0.060	2335941	.004663
	_cons	.0221642	.0071516	3.10	0.002	.0081473	.036181
тwн							
	SET						
	L1.	.0074804	.0142938	0.52	0.601	0205349	.035495
	L2.	009249	.0136486	-0.68	0.498	0359998	.017501
	L3.	.0110694	.0135155	0.82	0.413	0154204	.037559
	L4.	0109013	.0134046	-0.81	0.416	0371739	.015371
	TWH						
	L1.	.4613589	.1021216	4.52	0.000	.2612042	.661513
	L2.	.1272869	.1016746	1.25	0.211	0719916	.326565
	L3.	4751199	.1018255	-4.67	0.000	6746942	275545
	L4.	.1907651	.1085161	1.76	0.079	0219226	.403452
	MFP	.0038273	.0038619	0.99	0.322	0037419	.011396
	R	0188111	.0085896	-2.19	0.029	0356464	001975
	cons	.0025207	.0010107	2.49	0.013	.0005399	.004501

GRANGER CASUALITY Result with exogenous variable of MPI and R

Equation	Excluded	chi2	df Prob > chi2	
SET	LAND	1.2582	4	0.868
SET	ALL	1.2582	4	0.868
LAND	SET	16.723	4	0.002
LAND	ALL	16.723	4	0.002

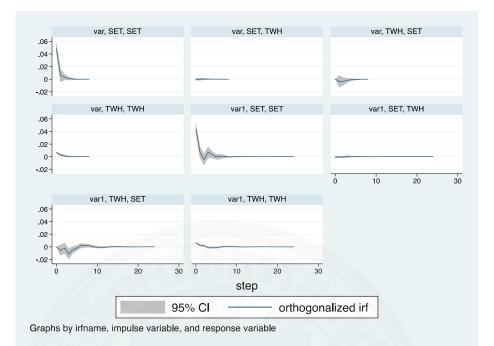
Granger causality Wald tests

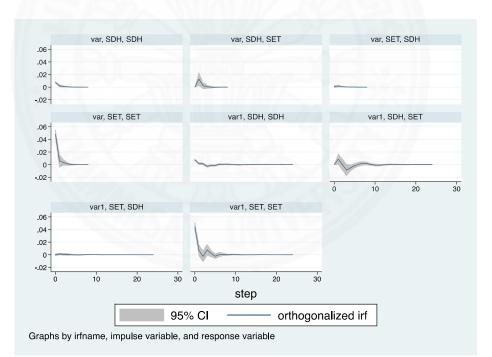
Granger causality Wald tests


Equation	Excluded	chi2	df Prob > chi	
SET	CONDO	.66236	3	0.882
SET	ALL	.66236	3	0.882
CONDO	SET	1.2352	3	0.745
CONDO	ALL	1.2352	3	0.745

Granger causality Wald tests

E	quation	Excluded	chi2	df Prob > chi	
	SET	SDH	8.4158	3	0.038
	SET	All	8.4158	3	0.038
	SDH	SET	2.9202	3	0.404
	SDH	ALL	2.9202	3	0.404


Granger causality Wald tests


Equation	Excluded	chi2	df Prob > chi2		
SET	TWH	9.9973	3	0.019	
SET	All	9.9973	3	0.019	
ТWН	SET	.61094	3	0.894	
ТWН	ALL	.61094	3	0.894	

IRF Result with exogenous variable of MPI and R

Graphs by irfname, impulse variable, and response variable

APPENDIX C EXOGENOUS VARIABLE OF R

VAR Result with exogenous variable of R

. var SET LAND,lag(1/4) exog(R)

Sample: 5 – 97				No. o	f obs	= 93
Log likelihood =	437.5665			AIC		= -8.979924
FPE =	4.32e-07			HQIC		= -8.760012
Det(Sigma_ml) =	2.81e-07			SBIC		= -8.435279
Equation	Parms	RMSE	R-sq	chi2	P>chi2	
SET	10	.048624	0.1017	10.53303	0.3091	
LAND	10	.01235	0.3647	53.38353	0.0000	

	11 -	Coef.	Std. Err.	z	P> z	[95% Conf.	Interval]
SET							
	SET						
	L1.	.2158618	.1019942	2.12	0.034	.0159569	.4157667
	L2.	1328243	.1005687	-1.32	0.187	3299354	.0642868
	L3.	.1875342	.1010436	1.86	0.063	0105077	.385576
	L4.	001988	.1014631	-0.02	0.984	2008521	.196876
		2 V					
	LAND						
	L1.	2510017	.3724103	-0.67	0.500	9809126	.4789091
	L2.	.2355854	.3391897	0.69	0.487	4292142	.9003849
	L3.	0139839	.335204	-0.04	0.967	6709716	.6430038
	L4.	2426977	.3759183	-0.65	0.519	9794841	.4940886
	R	0850036	.0641844	-1.32	0.185	2108026	.0407954
	_cons	.0133813	.0069782	1.92	0.055	0002958	.027058
LAND							
	SET						
	L1.	.0055435	.0259047	0.21	0.831	0452287	.0563158
	L2.	.0426401	.0255427	1.67	0.095	0074226	.092702
	L3.	0196546	.0256633	-0.77	0.444	0699537	.030644
	L4.	0805761	.0257698	-3.13	0.002	131084	0300682
	LAND						
	L1.	.2355235	.0945855	2.49	0.013	.0501392	.4209077
	L2.	.1504547	.0861481	1.75	0.081	0183924	.319301
	L3.	4748832	.0851358	-5.58	0.000	6417462	3080203
	L4.	.1716254	.0954765	1.80	0.072	015505	.358755
	R	0366596	.0163017	-2.25	0.025	0686103	004709
	_cons	.006495	.0017723	3.66	0.000	.0030212	.0099687

. var SET CONDO,lag(1/3) exog(R)

```
Vector autoregression
```

Sample: 4 – 97				No. of	fobs	= 94
Log likelihood =	430.0553			AIC		= -8.809688
FPE =	5.12e-07			HQIC		= -8.634828
<pre>Det(Sigma_ml) =</pre>	3.64e-07			SBIC		= -8.376787
Equation	Parms	RMSE	R-sq	chi2	P>chi2	
·····			· · · · · · · · · · ·		·····	
SET	8	.048462	0.0827	8.474118	0.2926	
CONDO	8	.013611	0.3996	62.55039	0.0000	

		Coef.	Std. Err.	z	P> z	[95% Conf.	Interval]
SET							
	SET						
	L1.	.1788918	.0981465	1.82	0.068	0134718	.3712554
	L2.	1104976	.0992675	-1.11	0.266	3050583	.0840631
	L3.	.1665501	.0983629	1.69	0.090	0262377	.3593378
	CONDO						
	L1.	.0055578	.3257731	0.02	0.986	6329456	.6440613
	L2.	.1220249	.3580715	0.34	0.733	5797823	.823832
	L3.	.1373596	.328009	0.42	0.675	5055263	.7802455
	R	0771065	.0622097	-1.24	0.215	1990353	.0448223
	_cons	.0098483	.0059537	1.65	0.098	0018208	.0215174
CONDO							
	SET						
	L1.	.0137842	.0275657	0.50	0.617	0402436	.067812
	L2.	.0037387	.0278805	0.13	0.893	0509061	.0583836
	L3.	0248535	.0276265	-0.90	0.368	0790004	.0292935
	CONDO						
	L1.	.4025702	.0914975	4.40	0.000	.2232383	.5819021
	L2.	0390016	.100569	-0.39	0.698	2361132	.1581099
	L3.	4545116	.0921255	-4.93	0.000	6350743	2739488
	R	.0221577	.0174724	1.27	0.205	0120875	.056403
	_cons	.0065263	.0016722	3.90	0.000	.0032489	.0098037
		1					

. var SET SDH,lag(1/3) exog(R)

Sample: 4 – 97				No∎ of	obs	= 94
Log likelihood =	484.8961			AIC		= -9.976513
FPE =	1.59e-07		HQIC			
<pre>Det(Sigma_ml) =</pre>	1.13e-07			SBIC		= -9.543612
Equation	Parms	RMSE	R-sq	chi2	P>chi2	
SET	8	.046525	0.1546	17.18684	0.0162	
SDH	8	.007911	0.2573	32.56255	0.0000	

		Coef.	Std. Err.	z	P> z	[95% Conf.	Interval]
SET							
	SET						
	L1.	.1641067	.0965798	1.70	0.089	0251863	.3533997
	L2.	1126213	.097921	-1.15	0.250	3045429	.0793004
	L3.	.1941802	.0963717	2.01	0.044	.005295	.3830653
	SDH						
	L1.	1.137584	.5804069	1.96	0.050	7.25e-06	2.27516
	L2.	4424961	.6066783	-0.73	0.466	-1.631564	.7465715
	L3.	-1.145455	.6082711	-1.88	0.060	-2.337645	.0467343
	R	0544389	.0598028	-0.91	0.363	1716502	.0627725
	_cons	.0127729	.0055768	2.29	0.022	.0018426	.0237032
SDH							
	SET						
	L1.	.0267164	.0164217	1.63	0.104	0054695	.0589023
	L2.	.0078802	.0166497	0.47	0.636	0247527	.0405131
	L3.	.0031134	.0163863	0.19	0.849	0290031	.03523
	SDH						
	L1.	.219676	.0986879	2.23	0.026	.0262513	.4131007
	L2.	.093065	.1031549	0.90	0.367	1091148	.2952449
	L3.	4203822	.1034257	-4.06	0.000	6230928	2176715
	R	0121774	.0101684	-1.20	0.231	0321071	.0077524
	_cons	.0027823	.0009482	2.93	0.003	.0009238	.0046408

. var SET TWH,lag(1/3) exog(R)

Sample: 4 – 97				No∎ of	fobs	= 94
Log likelihood =	503.6808			AIC		= -10.37619
FPE =	1.07e-07			HQIC		= -10.20133
Det(Sigma_ml) =	7.60e-08			SBIC		= -9.943286
Equation	Parms	RMSE	R-sq	chi2	P>chi2	
	• • • • • • • • • • • • •				·····	
SET	8	.046175	0.1672	18.87665	0.0086	
TWH	8	.006566	0.3365	47.68347	0.0000	

		Coef.	Std. Err.	z	P> z	[95% Conf.	Interval]
SET							
	SET						
	L1.	.1616104	.0939809	1.72	0.086	0225888	.3458096
	L2.	1329093	.0951231	-1.40	0.162	3193471	.0535285
	L3.	.1622023	.0936933	1.73	0.083	0214331	.3458377
	тwн						
	L1.	8696395	.6588531	-1.32	0.187	-2.160968	.4216889
	L2.	.1745914	.7089447	0.25	0.805	-1.214915	1.564097
	L3.	-1.68564	.6570304	-2.57	0.010	-2.973396	3978836
	R	1158745	.0606629	-1.91	0.056	2347715	.0030226
	_cons	.0216196	.0062156	3.48	0.001	.0094373	.0338019
тwн							
	SET						
	L1.	0004165	.0133644	-0.03	0.975	0266102	.0257771
	L2.	009805	.0135268	-0.72	0.469	036317	.016707
	L3.	.0057198	.0133235	0.43	0.668	0203937	.0318333
	тwн						
	L1.	.3863489	.0936908	4.12	0.000	.2027182	.5699795
	L2.	.1452869	.100814	1.44	0.150	0523049	.3428787
	L3.	3968911	.0934316	-4.25	0.000	5800137	2137684
	R	020691	.0086264	-2.40	0.016	0375985	0037835
	_cons	.0033058	.0008839	3.74	0.000	.0015734	.0050381

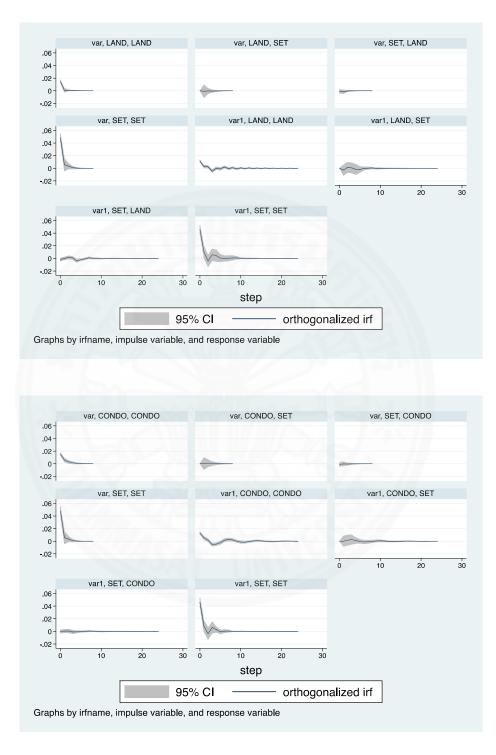
GRANGER CASUALITY Result with exogenous variable of R

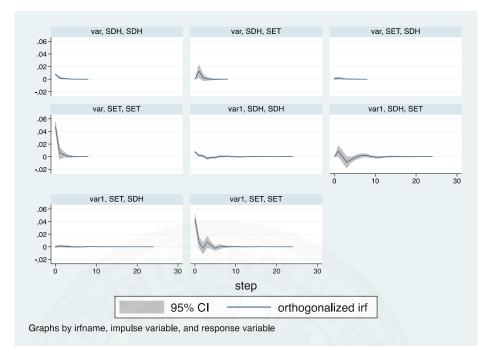
Equation	Excluded	chi2	df Prob > chi2		
SET	LAND	.93176	4	0.920	
SET	ALL	.93176	4	0.920	
LAND	SET	15.328	4	0.004	
LAND	ALL	15.328	4	0.004	

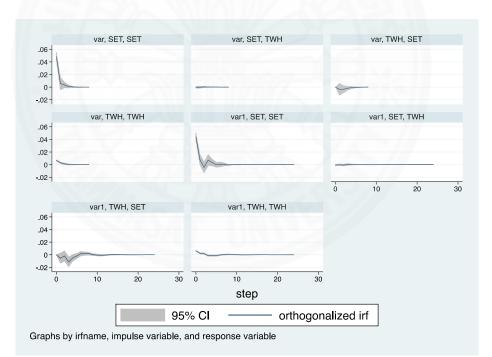
Granger causality Wald tests

Granger causality Wald tests

Equation	Excluded	chi2	df F	Prob > chi2
SET	CONDO	.5704	3	0.903
SET	ALL	.5704	3	0.903
CONDO	SET	1.1708	3	0.760
CONDO	ALL	1.1708	3	0.760


Granger causality Wald tests


Equat:	ion Ex(cluded	chi2 c	df Prob > chi	
	SET SET		8.6111 8.6111		.035 .035
	SDH SDH		8.0803 8.0803		.379 .379


Granger causality Wald tests

Equation	Excluded	chi2	df Prob > chi2		
SET	TWH	10.171	3	0.017	
SET	All	10.171	3	0.017	
ТWН	SET	.66613	3	0.881	
ТWН	ALL	.66613	3	0.881	

IRF Result with exogenous variable of R

. irf table fevd, impulse (SET LAND) response (SET LAND)

step	(1) fevd	(1) Lower	(1) Upper	(2) fevd	(2) Lower	(2) Upper	(3) fevd	(3) Lower	(3) Upper
0	0	0	0	0	0	0	0	0	0
1	1	1	1	.003849	020876	.028574	0	0	0
2	.918649	.815714	1.02158	.014591	033206	.062389	.000194	005408	.005795
3	.910793	.800043	1.02154	.014766	033784	.063315	.000244	005799	.006286
4	.909594	.797269	1.02192	.014804	034048	.063655	.000341	006232	.006915
5	.909276	.796491	1.02206	.014803	034078	.063684	.000384	006347	.007115
6	.909208	.796318	1.0221	.014803	034082	.063687	.000394	006372	.007161
7	.909194	.796282	1.02211	.014802	034082	.063687	.000396	006377	.00717
В	.909192	796275	1.02211	.014802	034082	.063687	.000397	006378	.007172
Ð			-		•				
10	.		•			•			
11							-		
12	.								
13					···· 1. ···				
14					· · ·				
15						4. 47 24			
16	1.	1.15 2	· · · ·						
17		1.							•
18					C				
19									
20									
21									
22									
23					. / .				
24			1						

Results	from	var	var1	

	(4)	(4)	(4)	(5) fevd	(5)	(5)	(6)	(6)	(6)
step	fevd	Lower	Upper	теνа	Lower	Upper	fevd	Lower	Upper
0	0	0	0	0	0	0	0	0	0
1	.996151	.971426	1.02088	1	1	1	.022469	037092	.08203
2	.945617	.860275	1.03096	.996234	.974372	1.0181	.021482	036477	.079441
3	.939494	.845663	1.03332	.995381	.974678	1.01608	.039647	027974	.107268
4	.937925	.841061	1.03479	.995306	.973503	1.01711	.037675	033469	.108818
5	.937588	.839953	1.03522	.994057	.968985	1.01913	.113192	.001959	.224424
6	.937511	.839672	1.03535	.992367	.960246	1.02449	.132873	.007822	.257925
7	.937494	.839602	1.03539	.992328	.95991	1.02475	.132034	.008215	.255852
8	.93749	.839585	1.03539	.992312	.959731	1.02489	.135518	.006902	.264135
9	.		1.1 1.1	.992256	.959513	1.025	.135021	.006796	.263240
10			Sec. 45. 7.	.992252	.959496	1.02501	.134523	.006652	.262395
11				.992247	.959435	1.02506	.135259	.006583	.263930
12	.			.992234	.959404	1.02506	.135061	.006511	.263612
13	.			.992233	.959404	1.02506	.135006	.006465	.263548
14	.			.992233	.959402	1.02506	.134984	.006468	.2635
15	.			.992232	.959407	1.02506	.134948	.006406	.263489
16	.			.992231	.959405	1.02506	.134916	.006378	.263455
17	.			.992231	.959405	1.02506	.134905	.006375	.263435
18	.			.992231	.959406	1.02506	.134888	.006357	.26342
19	.			.992231	.959406	1.02506	.134881	.006345	.263417
20	.		•	.992231	.959405	1.02506	.134873	.006341	.26340
21	.			.99223	.959406	1.02506	.134868	.006335	.26340
22	.			.99223	.959406	1.02506	.134864	.00633	.263398
23	.			.99223	.959406	1.02506	.134861	.006328	.263395
24	1.			.99223	.959406	1,02505	.134859	.006326	263393

. irf table fevd, impulse (SET LAND) response (SET LAND)

	(1)	(1)	(1)	(2)	(2)	(2)	(3)	(3)	(3)
step	fevd	Lower	Upper	fevd	Lower	Upper	fevd	Lower	Upper
0	0	0	0	0	0	0	0	0	0
1	1	1	1	.003849	020876	.028574	0	0	0
2	.918649	.815714	1.02158	.014591	033206	.062389	.000194	005408	.005795
3	.910793	.800043	1.02154	.014766	033784	.063315	.000244	005799	.006286
4	.909594	.797269	1.02192	.014804	034048	.063655	.000341	006232	.006915
5	.909276	.796491	1.02206	.014803	034078	.063684	.000384	006347	.007115
6	.909208	.796318	1.0221	.014803	034082	.063687	.000394	006372	.007161
7	.909194	.796282	1.02211	.014802	034082	.063687	.000396	006377	.00717
3	.909192	.796275	1.02211	.014802	034082	.063687	.000397	006378	.007172
9									
10									•
11									
12									•
13							•		•
14			• • •		• 10 KB			•	•
15	· .		• • • • • • •		•	4. 47.4		•	•
16	•					1. A.		•	•
17	•	· · ·		· ·				•	•
18	•	•		1				•	•
19			•		•	•		•	•
20	•				•	•		•	•
21						•		•	•
22	•				•			•	•
3	•			•					•
24									

	(4)	(4)	(4)	(5)	(5)	(5)	(6)	(6)	(6)
step	fevd	Lower	Upper	fevd	Lower	Upper	fevd	Lower	Upper
0	0	0	0	0	0	0	0	0	0
1	.996151	.971426	1.02088	1	1	1	.022469	037092	.08203
2	.945617	.860275	1.03096	.996234	.974372	1.0181	.021482	036477	.079441
3	.939494	.845663	1.03332	.995381	.974678	1.01608	.039647	027974	.107268
4	.937925	.841061	1.03479	.995306	.973503	1.01711	.037675	033469	.108818
5	.937588	.839953	1.03522	.994057	.968985	1.01913	.113192	.001959	.224424
6	.937511	.839672	1.03535	.992367	.960246	1.02449	.132873	.007822	.257925
7	.937494	.839602	1.03539	.992328	.95991	1.02475	.132034	.008215	.255852
8	.93749	.839585	1.03539	.992312	.959731	1.02489	.135518	.006902	.26413
9	1.		11100	.992256	.959513	1.025	.135021	.006796	.26324
10	1.		a. 6. 7.	.992252	.959496	1.02501	.134523	.006652	.26239
11	1.			.992247	.959435	1.02506	.135259	.006583	.26393
12	1.			.992234	.959404	1.02506	.135061	.006511	.263612
13	1.			.992233	.959404	1.02506	.135006	.006465	.26354
14	1.			.992233	.959402	1.02506	.134984	.006468	.2635
15	1.			.992232	.959407	1.02506	.134948	.006406	.26348
16	1.			.992231	.959405	1.02506	.134916	.006378	.26345
17	1.			.992231	.959405	1.02506	.134905	.006375	.26343
18	1.			.992231	.959406	1.02506	.134888	.006357	.26342
19	1.			.992231	.959406	1.02506	.134881	.006345	.26341
20	1.			.992231	.959405	1.02506	.134873	.006341	.26340
21	1.			.99223	.959406	1.02506	.134868	.006335	.26340
22	1.			.99223	.959406	1.02506	.134864	.00633	.26339
23	1.			.99223	.959406	1.02506	.134861	.006328	.26339
24	1.	-		.99223	.959406	1.02505	.134859	.006326	.263393

	(7)	(7)	(7)	(8)	(8)	(8)
step	fevd	Lower	Upper	fevd	Lower	Upper
0	0	0	0	0	0	0
1	0	0	0	.977531	.91797	1.03709
2	.003766	018096	.025628	.978518	.920559	1.03648
3	.004619	016085	.025322	.960353	.892732	1.02797
4	.004694	01711	.026497	.962325	.891182	1.03347
5	.005943	019129	.031015	.886808	.775576	.998041
6	.007633	024489	.039754	.867127	.742075	.992178
7	.007672	024746	.04009	.867966	.744148	.991785
8	.007688	024892	.040269	.864482	.735865	.993098
9	.007744	024999	.040487	.864979	.736754	.993204
10	.007748	025007	.040504	.865477	.737605	.993348
11	.007753	025059	.040565	.864741	.736064	.993417
12	.007766	025063	.040596	.864939	.736388	.993489
13	.007767	025062	.040596	.864994	.736452	.993535
14	.007767	025063	.040598	.865016	.7365	.993532
15	.007768	025057	.040593	.865052	.736511	.993594
16	.007769	025058	.040595	.865084	.736545	.993622
17	.007769	025057	.040595	.865095	.736565	.993625
18	.007769	025056	.040594	.865112	.73658	.993643
19	.007769	025056	.040594	.865119	.736583	.993655
20	.007769	025056	.040595	.865127	.736595	.993659
21	.00777	025055	.040594	.865132	.736599	.993665
22	.00777	025055	.040594	.865136	.736602	.99367
23	.00777	025055	.040594	.865139	.736605	.993672
24	.00777	025055	.040594	.865141	.736607	.993674

FEVD Result with Exogenous Variable of R

95% lower and upper bounds reported (1) irfname = var, impulse = SET, and response = SET (2) irfname = var, impulse = SET, and response = LAND (3) irfname = var, impulse = LAND, and response = SET (4) irfname = var, impulse = LAND, and response = LAND (5) irfname = var1, impulse = SET, and response = SET (6) irfname = var1, impulse = SET, and response = LAND (7) irfname = var1, impulse = LAND, and response = SET (8) irfname = var1, impulse = LAND, and response = LAND

. irf table fevd, impulse (SET CONDO) response (SET CONDO)

	(1)	(1)	(1)	(2)	(2)	(2)	(3)	(3)	(3)
step	fevd	Lower	Upper	fevd	Lower	Upper	fevd	Lower	Upper
0	0	0	0	0	0	0	0	0	0
1	1	1	1	.004917	022998	.032831	0	0	0
2	.918649	.815714	1.02158	.004312	021604	.030228	.000034	002148	.002215
3	.910793	.800043	1.02154	.004659	023011	.03233	.000332	005206	.005869
4	.909594	.797269	1.02192	.00475	023544	.033045	.000335	005422	.006092
5	.909276	.796491	1.02206	.004787	023726	.0333	.000337	005515	.006188
6	.909208	.796318	1.0221	.004798	023776	.033373	.000337	005526	.006199
7	.909194	796282	1.02211	.004802	023789	.033393	.000337	005527	.006201
8	.909192	.796275	1.02211	.004803	023793	.033398	.000337	005527	.006201
9	.							-	•
10	.	-						-	•
11	.	•						-	•
12	.	· · /		•	•		· ·	-	•
13	·		10 - Lan 14		te ha I		•	-	•
14	.	• / / /	•		• • • • • •			-	•
15	•		ha • the Johnson	•	•	4•		-	•
16	·							•	•
17	· ·	(•	1						•
18	•					1.00	•		•
19	•		•		· ·			-	•
20						•			•
21							•		•
22	•			•	• /				•
23	•			•	1.1 1.1	•			•
24									

Results from var var1

	(4)	(4)	(4)	(5)	(5)	(5)	(6)	(6)	(6)
step	fevd	Lower	Upper	fevd	Lower	Upper	fevd	Lower	Upper
0	0	0	0	0	0	0	0	0	0
1	.984318	.935003	1.03363	1	1	1	.000294	006637	.007225
2	.935363	.832733	1.03799	.999998	.999455	1.00054	.001781	012145	.015707
3	.92933	.817973	1.04069	.998807	.986955	1.01066	.003093	020318	.026505
4	.927917	.813932	1.0419	.995585	.972266	1.0189	.006067	019686	.03182
5	.927565	.812844	1.04229	.994973	.968923	1.02102	.007832	026356	.042021
6	.927479	.812558	1.0424	.994939	.968687	1.02119	.008133	027469	.043735
7	.927458	.812482	1.04243	.994457	.965677	1.02324	.008121	027556	.043798
8	.927452	.812462	1.04244	.99413	.963718	1.02454	.008313	028626	.04525
9			1.1	.994112	.963621	1.0246	.008543	029515	.046602
10			14 <u>.</u> 16 / 4	.99402	.963051	1.02499	.008551	029527	.046628
11			· · · · · · · · · · · · · · · · · · ·	.993862	.962097	1.02563	.008591	029757	.04693
12				.993819	.961843	1.0258	.008675	030121	.04747
13				.993815	.961817	1.02581	.008698	030199	.047595
14				.993772	.961555	1.02599	.008698	03021	.04760
15				.993741	.961373	1.02611	.008719	030313	.04775
16				.99374	.961367	1.02611	.008735	030377	.047847
17			•	.993733	.961322	1.02614	.008736	030378	.04785
18				.99372	.961245	1.02619	.008739	030396	.047874
19			•	.993717	.961225	1.02621	.008746	030425	.047916
20			•	.993716	.961223	1.02621	.008748	030431	.047920
21			•	.993713	.961201	1.02622	.008748	030432	.047927
22				.99371	.961186	1.02623	.008749	03044	.047939
23				.99371	.961186	1.02623	.008751	030446	.047947
24	.		-	.993709	.961182	1.02624	.008751	030446	.047947

	(7)	(7)	(7)	(8)	(8)	(8)
step	fevd	Lower	Upper	fevd	Lower	Upper
0	0	0	0	0	0	0
1	0	0	0	.999706	.992775	1.00664
2	2.4e-06	00054	.000545	.998219	.984293	1.01215
3	.001193	010659	.013045	.996907	.973495	1.02032
4	.004415	018904	.027734	.993933	.96818	1.01969
5	.005027	021023	.031077	.992168	.957979	1.02636
6	.005061	021192	.031313	.991867	.956265	1.02747
7	.005543	023237	.034323	.991879	.956202	1.02756
8	.00587	024541	.036282	.991687	.954749	1.02863
9	.005888	024604	.036379	.991457	.953398	1.02952
10	.00598	024989	.036949	.991449	.953372	1.02953
11	.006138	025627	.037903	.991409	.953061	1.02976
12	.006181	025796	.038157	.991325	.95253	1.03012
13	.006185	025813	.038183	.991302	.952405	1.0302
14	.006228	025988	.038445	.991302	.952395	1.03021
15	.006259	026109	.038627	.991281	.952249	1.03031
16	.00626	026114	.038633	.991265	.952153	1.03038
17	.006267	026143	.038678	.991264	.95215	1.03038
18	.00628	026195	.038755	.991261	.952126	1.0304
19	.006283	026209	.038775	.991254	.952084	1.03042
20	.006284	02621	.038777	.991252	.952074	1.03043
21	.006287	026224	.038799	.991252	.952073	1.03043
22	.00629	026234	.038814	.991251	.952061	1.03044
23	.00629	026234	.038814	.991249	.952053	1.03045
24	.006291	-,026237	.038818	.991249	.952053	1,03045

95% lower and upper bounds reported

(1) irfname = var, impulse = SET, and response = SET

(2) irfname = var, impulse = SET, and response = CONDO

(3) irfname = var, impulse = CONDO, and response = SET

(4) irfname = var, impulse = CONDO, and response = CONDO

(5) irfname = var1, impulse = SET, and response = SET

(6) irfname = var1, impulse = SET, and response = CONDO

(7) irfname = var1, impulse = CONDO, and response = SET

(8) irfname = var1, impulse = CONDO, and response = CONDO

. irf table fevd, impulse (SET SDH) response (SET SDH)

	(1)	(1)	(1)	(2)	(2)	(2)	(3)	(3)	(3)
step	fevd	Lower	Upper	fevd	Lower	Upper	fevd	Lower	Upper
0	0	0	0	0	0	0	0	0	0
1	1	1	1	.007968	027459	.043395	0	0	0
2	.918649	.815714	1.02158	.042502	042285	.12729	.060932	03284	.154704
3	.910793	.800043	1.02154	.045596	045769	.136961	.062197	033998	.158391
4	.909594	.797269	1.02192	.046267	046718	.139252	.062157	034275	.158588
5	.909276	.796491	1.02206	.046364	046855	.139584	.062138	034205	.15848
6	.909208	.796318	1.0221	.046377	046869	.139622	.062141	034172	.158455
7	.909194	.796282	1.02211	.046378	046869	.139625	.062144	034165	.158453
В	.909192	.796275	1.02211	.046378	046869	.139625	.062145	034164	.158453
Э					•	•		•	
10						•			
11								•	
12								•	
13								-	
14			- · · · · ·					•	
15	•					4. 47 2.		-	
16		1. A. C. L.			Com-			•	
17		1. 20						· ·	
18									
19								· ·	
20									
21					· • • • • • • • •	· /			
22									
23				· ·					
24			- · · ·						

Results from var var1

	(4)	(4)	(4)	(5)	(5)	(5)	(6)	(6)	(6)		
step	fevd	Lower	Upper	fevd	Lower	Upper	fevd	Lower	Upper		
0	0	0	0	0	0	0	0	0	0		
1	.786279	.640853	.931705	1	1	1	.000159	004938	.005256		
2	.749729	.593628	.90583	.964827	.895367	1.03429	.022372	032462	.077206		
3	.748168	.59054	.905797	.964927	.895726	1.03413	.031373	040594	.10334		
4	.747743	.589983	.905503	.931991	.843111	1.02087	.031001	040388	.102389		
5	.747631	.589881	.90538	.920612	.81863	1.02259	.030338	039139	.099815		
6	.747599	.589852	.905346	.919569	.816453	1.02268	.030215	039152	.099583		
7	.747591	.589844	.905339	.919336	.815856	1.02282	.031004	040488	.10249		
8	.74759	.589841	.905338	.917547	.811358	1.02374	.030888	040441	.10221		
9	.		1.1.1.20	.916232	.80788	1.02458	.030687	040116	.101493		
10	.		5a - 5 - 7 -	.916225	.807851	1.0246	.03089	040375	.10215		
11	.			.916021	.807347	1.0247	.030932	040495	.10235		
12	.			.915726	.806516	1.02494	.030878	04044	.10219		
13	.			.91565	.80628	1.02502	.030893	040438	.102224		
14	.			.915649	.806281	1.02502	.030911	040469	.10229		
15	.			.915604	.80615	1.02506	.030909	040478	.10229		
16	.			.91557	.806044	1.0251	.030906	040471	.102283		
17	.			.915567	.806029	1.0251	.030908	040472	.10228		
18	.			.915564	.806023	1.02511	.03091	040477	.10229		
19	.			.915557	.806002	1.02511	.030909	040477	.10229		
20	.			.915554	.80599	1.02512	.030909	040476	.102294		
21			•	.915554	.805989	1.02512	.03091	040476	.10229		
22	.		•	.915553	.805987	1.02512	.03091	040477	.10229		
23	.			.915552	.805984	1.02512	.030909	040477	.10229		
24	1.			.915552	.805983	1.02512	.03091	040477	.10229		

	(7)	(7)	(7)	(8)	(8)	(8)
step	fevd	Lower	Upper	fevd	Lower	Upper
0	0	0	0	0	0	0
1	0	0	0	.999841	.994744	1.00494
2	.035173	034287	.104633	.977628	.922794	1.03246
3	.035073	034128	.104274	.968627	.89666	1.04059
4	.068009	02087	.156889	.968999	.897611	1.04039
5	.079388	022594	.18137	.969662	.900185	1.03914
6	.080431	022684	.183547	.969785	.900417	1.03915
7	.080664	022817	.184144	.968996	.897505	1.04049
8	.082453	023736	.188642	.969112	.897782	1.04044
9	.083768	024583	.19212	.969313	.898509	1.04012
10	.083775	024598	.192149	.96911	.897845	1.04038
11	.083979	024696	.192653	.969068	.897641	1.0405
12	.084274	024936	.193484	.969122	.897805	1.04044
13	.08435	02502	.19372	.969107	.897776	1.04044
14	.084351	025018	.193719	.969089	.89771	1.04047
15	.084396	025057	.19385	.969091	.897705	1.04048
16	.08443	025097	.193956	.969094	.897717	1.04047
17	.084433	025104	.193971	.969092	.897713	1.04047
18	.084436	025105	.193977	.96909	.897703	1.04048
19	.084443	025113	.193998	.969091	.897705	1.04048
20	.084446	025119	.19401	.969091	.897706	1.04048
21	.084446	025119	.194011	.96909	.897705	1.04048
22	.084447	02512	.194013	.96909	.897704	1.04048
23	.084448	025121	.194016	.969091	.897704	1.04048
24	.084448	025122	.194017	.96909	.897704	1.04048

95% lower and upper bounds reported

(1) irfname = var, impulse = SET, and response = SET
(2) irfname = var, impulse = SET, and response = SDH
(3) irfname = var, impulse = SDH, and response = SET
(4) irfname = var, impulse = SDH, and response = SDH
(5) irfname = var1, impulse = SET, and response = SET
(6) irfname = var1, impulse = SET, and response = SDH
(7) irfname = var1, impulse = SDH, and response = SET
(8) irfname = var1, impulse = SDH, and response = SDH

step	(1) fevd	(1) Lower	(1) Upper	(2) fevd	(2) Lower	(2) Upper	(3) fevd	(3) Lower	(3) Upper
0	0	0	0	0	0	0	0	0	0
1	1	1	1	.0012	012644	.015045	0	0	0
2	.918649	.815714	1.02158	.001181	013216	.015578	.004875	020756	.030506
3	.910793	.800043	1.02154	.001586	010285	.013457	.009299	028597	.047194
4	.909594	.797269	1.02192	.001884	009844	.013611	.010452	03095	.051854
5	.909276	.796491	1.02206	.001979	009855	.013813	.010725	031462	.052911
6	.909208	.796318	1.0221	.002002	009869	.013874	.010776	031548	.053101
7	.909194	.796282	1.02211	.002007	009873	.013887	.010785	031559	.053128
В	.909192	.796275	1.02211	.002007	009874	.013889	.010786	031559	.053131
Ð				.	-			-	•
10				•	•	•		-	•
11		-	•			•			
12								-	•
13				•				-	•
14		• / / /					•	-	•
15		. / /	•					-	•
16								-	•
17		1. Star 2.	· · ·		1 . Contra			-	•
18	· ·	· ·		·	1.		1.0		•
19	•	•		·			•		•
20	•	•		•	•			•	•
21	•			· ·				-	•
22				•		· / .			•
23	•				•				•
24									

Results from var var1

step	(4) fevd	(4) Lower	(4) Upper	(5) fevd	(5) Lower	(5) Upper	(6) fevd	(6) Lower	(6) Upper
0	0	0	0	0	0	0	0	0	0
1	.919646	.81535	1.02394	1	1	1	.012125	031855	.056106
2	.838825	.697258	.980392	.985554	.943021	1.02809	.012347	03429	.058984
3	.826623	.673665	.979581	.983999	.937084	1.03091	.019909	044286	.084105
4	.823554	.667516	.979592	.928444	.83944	1.01745	.019687	041764	.081138
5	.822937	.666269	.979606	.918522	.817986	1.01906	.019647	041463	.080758
6	.822829	.66606	.979598	.91708	.814383	1.01978	.02015	042362	.082662
7	.822812	.666031	.979593	.915863	.812599	1.01913	.020217	042581	.083016
8	.82281	.666028	.979592	.914723	.810079	1.01937	.020202	042545	.082949
9		N.C.//		.913574	.807587	1.01956	.020224	042568	.083017
10		S	1. 1	.913565	.807535	1.0196	.020252	042641	.083145
11			C.s. &. T.	.913476	.807409	1.01954	.020271	042675	.083217
12				.913231	.806937	1.01952	.020267	042666	.0832
13				.913162	.806761	1.01956	.020266	042668	.0832
14				.913158	.806745	1.01957	.020271	042677	.083219
15				.913142	.806727	1.01956	.020272	042679	.083223
16				.913123	.806689	1.01956	.020272	042678	.083221
17	.			.913114	.806668	1.01956	.020272	042678	.083222
18	.		-	.913114	.806667	1.01956	.020272	042679	.083223
19	.		-	.913113	.806666	1.01956	.020272	042679	.083224
20	.		-	.913111	806662	1.01956	.020272	042679	.083224
21	1.			.91311	.80666	1.01956	.020272	042679	.083224
22				.91311	.80666	1.01956	.020272	042679	.083224
23	1.			.91311	.80666	1.01956	.020272	042679	.083224
24	1.			.91311	.806659	1.01956	.020272	042679	.083224

	(7)	(7)	(7)	(8)	(8)	(8)
step	fevd	Lower	Upper	fevd	Lower	Upper
0	0	0	0	0	0	0
1	0	0	0	.987875	.943894	1.03186
2	.014446	028087	.056979	.987653	.941016	1.03429
3	.016001	030914	.062916	.980091	.915895	1.04429
4	.071556	017448	.16056	.980313	.918862	1.04176
5	.081478	019058	.182014	.980353	.919242	1.04146
6	.08292	019777	.185617	.97985	.917338	1.04236
7	.084137	019128	.187401	.979783	.916984	1.04258
8	.085277	019367	.189921	.979798	.917051	1.04254
9	.086426	019562	.192413	.979776	.916983	1.04257
10	.086435	019596	.192465	.979748	.916855	1.04264
11	.086524	019544	.192591	.979729	.916783	1.04268
12	.086769	019525	.193063	.979733	.9168	1.04267
13	.086838	019562	.193239	.979734	.9168	1.04267
14	.086842	019571	.193255	.979729	.916781	1.04268
15	.086858	019558	.193273	.979728	.916777	1.04268
16	.086877	019557	.193311	.979728	.916779	1.04268
17	.086886	019561	.193332	.979728	.916778	1.04268
18	.086886	019561	.193333	.979728	.916777	1.04268
19	.086887	01956	.193334	.979728	.916776	1.04268
20	.086889	01956	.193338	.979728	.916776	1.04268
21	.08689	01956	.19334	.979728	.916776	1.04268
22	.08689	01956	.19334	.979728	.916776	1.04268
23	.08689	01956	.19334	.979728	.916776	1.04268
24	.08689	01956	.193341	.979728	.916776	1.04268

95% lower and upper bounds reported

(1) irfname = var, impulse = SET, and response = SET
(2) irfname = var, impulse = SET, and response = TWH
(3) irfname = var, impulse = TWH, and response = SET
(4) irfname = var, impulse = TWH, and response = TWH
(5) irfname = var1, impulse = SET, and response = SET
(6) irfname = var1, impulse = SET, and response = TWH
(7) irfname = var1, impulse = TWH, and response = SET
(8) irfname = var1, impulse = TWH, and response = TWH

BIOGRAPHY

Name Date of Birth Educational Attainment

Work Position

Miss Chidchanok Suvichacherdchoo December 9th, 1988 2012, Bachelor degree of Economic, Chulalongkorn University. Lending and Product Structuring Manager, TMB Bank

