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ABSTRACT

The aim of this thesis is to investigate new contraction mappings with re-
spect to w-distances in complete metric spaces. The main results are distinguish into
three parts. In the first part, we introduce the concept of a ceiling distance and use
this idea for proving some new fixed point theorems for mappings satisfying new con-
tractive conditions along with w-distances in metric spaces. Our theoretical results are
extensions of many results in fixed point theory. Some illustrative examples are pro-
vided to advocate the usability of our results while Banach contraction principle and
some results are not applicable. Also, we give numerical experiments for a fixed point
in these examples. In the next part, the received results are used for proving the ex-
istence and uniqueness of the solution for nonlinear Fredholm integral equations and
Volterra integral equations. In the last part, we apply our theoretical fixed point results

to study the nonlinear fractional differential equations of Caputo type.
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CHAPTER 1

INTRODUCTION

In 1922, a distinguished fixed point theorem was established by the Polish mathemati-
cian, Banach [4], known as the Banach contraction principle (in short, BCP) which
it is a very important result of analysis and is primary sources of metric fixed point
theory. Furthermore, it is immensely applied in many branches of mathematics because
it requires only the structure of a complete metric space with the contractive condition
on the mapping which is easy to test in this setting. It also was used to establish the

existence of a solution for an integral equation. Now, we state this principle as follows:

Theorem A ([4]). Let (X,d) be a complete metric space and f : X — X be a contraction
mapping, i.e.,

d(fx, fy) < kd(x,y) (1.0.1)

for all x,y € X, where k € [0,1). Then f has a unique fixed point. Moreover, for each
xo € X, the Picard iteration {x,}, which is defined by x, = f"xo for all n € N, converges

to a unique fixed point of f.

As the result of its intelligibility and profitableness, it has become a very
celebrated and popular tool in solving the existence problems in many branches of math-
ematical analysis. Many mathematicians extended the Banach contraction principle in
the setting of the contractive condition (1.0.1) to another contractive conditions. In
1984, Khan et al. [17] introduced and studied the notion of an altering distance func-
tion and it is applied in defining a weak contractive condition and proving the existence
of a fixed point. Later, Choudhury et al. [5] proved some fixed point results for gener-

alized weakly contractive mappings by using the idea of an altering distance function.

The another generalization of the condition (1.0.1) appeared in 2014 by Jleli
and Samet [15]. They established a new fixed point result for mappings satisfying this
contractive condition in the framework of generalized metric spaces. Recently, Hussain

et al. [12] investigated several new concepts of generalized contraction mappings and
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studied sufficient conditions for the existence of a fixed point of these classes in various
distance spaces. One of these fixed point results is an extension of a fixed point result
due to Jleli and Samet [15] in the framework of metric spaces. Moreover, it is a gener-
alization of many famous fixed point results such as Kannan’s result [19], Ciric’s result

[7], Chatterjea’s result [8] and Reich’s result [22].

Likewise, the Banach contraction principle was improved by the famous
fixed-point’s researchers as Boy and Wong [3] and Matkowski’s [14]. Afterward, Ri
[23] gave some fixed point results for generalized contraction mappings which gener-
alize the Boyd and Wong’s fixed point theorem in [3] and the Matkowski’s fixed point

theorem in [14].

Recently, Sawangsup and Sintunavarat [24] introduced the notion of a weak
altering distance function by reducing some condition of an altering distance function

and proved the existence of a fixed point by using such function.

On the other hand, in their famed paper, Kada et al. [18] first introduced
and studied the notion of a w-distance on a metric space. They also used this concept
in the improving the Banach contraction principle. In 2008, Du [10] recommended the
concept of a w-distance by adjust conditions in w-distance which use it more and he
also used the concept of a w'-distance to prove the existence of a fixed point. In the
recent, many authors investigated fixed point results for many generalized contraction
mappings with respect to w-distances on metric spaces (see [1, 20, 21] and references

these in).
The aim of this thesis consists of three topics as follows:

First topic, we introduce concept of a ceiling distance with respect to a
metric and prove several new fixed point theorems for new contractive conditions along
with w-distances in metric spaces. Some of these theorems are studied via the idea
of ceiling distance. Our theoretical fixed point results are extensions of many results
of well-known fixed point’s researchers such as Choudhury et al. [5], Hussain et al.

[12], Sawangsup and Sintunavarat [24] and Ri [23]. The reader can see the overall of
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theoretical results in this topic in the Figure 1.1.

Fixed point results Sawangsup and
Ri’s fixed point
for w-generalized Ri- Sintunavarat’s fixed
result in [23]
contraction mappings point result in [24]
Fixed point results for Theoretical Fixed point results
w-generalized weak fixed point for w-generalized SS-
contraction mapping results contraction mappings
Partial Choudhury Fixed point results Hussain et al.’s
et al’s fixed for w-generalized JS- fixed point
point result in [5] contraction mappings result in [12]

Figure 1.1: The overall of theoretical results in this topic

Some illustrative examples are provided to advocate the usability of our results while
Banach contraction principle and some results in the literature are not applicable. Also,

we give numerical experiments for a fixed point in these examples.

Second topic, applications to nonlinear Fredholm integral equations and
nonlinear Volterra integral equations are given to illustrate the usability of all previous
topic.

The last topic, applications to nonlinear fractional differential equations are

given to illustrate the usability of all results in the first topic.

Ref. code: 25595809031015E0I



CHAPTER 2

PRELIMINARIES

In this chapter, we give some important definitions in this research such as fields, vec-
tor space, normed space, metric space etc. Throughout this research, we denote by
N, R, C, Q, and Z,, the sets of positive integers, real numbers, complex numbers, ra-
tional numbers, and the set of all congruence classes of the integers for a modulus p,

respectively.

A notation for the image of a point x under a mapping f would be f(x).
Sometime, to simplify formulas in this proposal, customary to take out the bracket and

write fx.

2.1 Fields

Definition 2.1.1. The set I is called a field when two binary operations + and - on
[F, which we call addition and multiplication, satisfy the following conditions for all

a,b,ceF:

l.a+b=b+aanda-b=>b-a;

2. (a+b)+c=a+(b+c)and (a-b)-c=a-(b-c);

3. there exists an element O € IF such that a + O = q;

4. there exists an element 1y € F such that a- 1y = a;

5. for each a € F, there exists an element —a € F such that a+ (—a) = Op;
6. if a # O, then there exists an element ' € F, such thata- (a~!) = 1f;

7.a-(b+c)=a-b+a-cand (b+c)-a=b-a+c-a.
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Example 2.1.2. (Q,+,), (R,+,-) and (C,+,-) are field under the usual addition and
multiplication. We note that (Z,+,-) is not a field because 5 has no multiplicative

inverse.

Example 2.1.3. (Z,,+,,-,) is a field, where p is a prime number, +, is addition mod-

ulo p and -, is multiplication modulo p.

2.2 Vector spaces

Definition 2.2.1. A nonempty set V is called a vector space (or linear space) over
a field F when the vector addition operation + : V x V' — V and scalar multiplication

operation - : [ x V — V satisfy the following properties for all u,v,w € V and k,m € [:
. (u+v)+w=u+(v+w),
2. u+v=v+u;
3. there exists an element O € V such that u +0 = u;
4. for each u € V, there is an element (—u) € V such that u+ (—u) = 0;
5. (km)x = k(mx);
6. k(u+v) =ku+kv,
7. (k+m)x = kx+ mx;
8. lpu =u.

The vector space X is called a real vector space when [ = R and a complex

vector space when F = C.

Example 2.2.2. The set M, ,(F) of all m x n matrices with entries from a field F is a

vector space under two algebraic operations defined by

A+B = (a;jj+bij)mxn,
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o-A= (Oc-al'j)an

for each A = (a;;)mxn, B = (bij)mxn € Mmxn(F) and each scalar o € IF.

For instance, in M>2(R),

3 2 1 8 4 10 52 20 8
1 2 4 3 5 5 1 3 4 12

Example 2.2.3. The set of all real-valued continuous functions defined on [0, 1] with

function addition and scalar multiplication defined by

(f+8)(x) =fx+gx and (of)(x)=ofx
is a vector spaces over a field R.

Example 2.2.4. The set R" is a real vector space with the two algebraic operations
defined by

u+v= (ul+v17u2+V27+'“7un+Vn)7
o = (owy,Qup~+,~+ - -+, Oy

for each u = (uy,up,---,u,),v= (vi,v2,--+,v,) € R" and each scalar o € R.

2.3 Normed spaces

Definition 2.3.1. Let V be a vector space over a field K (R or C). A norm on V is
a function || - || : V — R that satisfies the following properties for all u,v € V and all

oac K
L lull = 0;
2. ||u|| = 0 if and only if u = 0;
3. [low| = fou]flulf;

4 [u vl < flull +Iv]l-
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The ordered pair (V, || - ||) is also called a normed vector space.

Definition 2.3.2. A sequence {x,} in a normed space (V,|| -||) is called converges to
a point x € V if, for every € > 0, there exists N € N such that ||x, —x|| < € for all
n > N, denoted by nlgl}o X, = x or, simply, x,, — x as n — oo. In this case, {x,} is called a
convergent sequence.

Remark 2.3.3. A sequence {x,} in a normed space (V, || -||) is a convergent sequence

if and only if lim ||x, —x|| = 0.
n—soo

Definition 2.3.4. A sequence {x,} in a normed space (V,| - ||) is called a Cauchy se-

quence if, for every € > 0, there exists N € N such that ||x, — x,,|| < € for all n,m > N.

Remark 2.3.5. A sequence {x,} in a normed space (V,|| -||) is a Cauchy sequence if

and only if lim ||x,, —x,[ = 0.
m,n—o0

Definition 2.3.6. A normed space (V, || - ||) is called complete if for every Cauchy se-

quence in V converges.
Definition 2.3.7. A complete normed space is called a Banach space.

Example 2.3.8. The set R" (or C") is a real (or complex) Banach space with norm

defined by

lull = o/l P+ faa 2 - a2,
where u = (uy,up,...,u,) € R" (or C").
Example 2.3.9. The set R" (or C") is a real (or complex) Banach space with norm

defined by

: »
lullp o= { X fuel”
i=1

l|ul|oo := max{|uy], |uz|, ..., |un| },

or

where u = (u1,uz,...,u,) € R" (or C") and 1 < p < eo. In this case, |- ||, is called

p-norm and || - || is called infinity norm or maximum norm.
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Example 2.3.10. Let p > 1 be a fixed real number and V be the set of all sequences of

real (or complex) numbers, that is, each element of V is a real (or complex) sequence
u=A{uy,uy,...} briefly u={u;}, i=1,2,3,..

such that Y7 | |u;|P < oo. Define a function || - || : V x V — R by

1

oo P
lullp := (ZIW\”) :
i=1

where u = {u;} € V. Then (V,|| - ||) is a Banach space which is denoted by ¢7.

Example 2.3.11. Let V be the set of all bounded sequence of real (or complex) numbers,
that is,

il <o Vie{1,2,..}

for all u = {u;} € V, where ¢, is a real numbers which depend on u, but not depend on
i. Define a function || - || : V xV — R by
]l = sup [ui],
ieN
where u = {u;} € V and sup denotes the supremum (least upper bound). Then (V, || - ||)

is a Banach space which is denoted /.

2.4 Metric spaces

Definition 2.4.1. Let X be a nonempty set. Suppose that the mapping d : X x X — R

satisfies the following conditions for all x,y,z € X:
M1) d(x,y) >0;

(M2) d(x,y) =0ifand only ifx=1y;

(M3) d(x,y) =d(y,x) ;

(M4) d(x,z) <d(x,y)+d(y,z) .
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Then d is called a metric and (X,d) is called a metric space.
Example 2.4.2. Letd : R x R — R be defined by
dx,y) = |x—y

for all x,y € R. Then d is a metric on R. It is known as the usual or standard metric

on R.

Example 2.4.3. Let r >0 and d : R x R — R be defined by
d(x,y) = rlx—y|

for all x,y € R. Then d is a metric on R.

Example 2.4.4. Let X be a nonempty set and d : X X X — R defined by

Then d is a metric on X and it is called the discrete metric or the trivial metric.
Example 2.4.5. Let d : R?> x R? — R be defined by

d(x,y) = |xi| + [x2| + [y1| + [yl
where x = (x1,x2),y = (y1,y2) € R%. Then d is a metric on R

Example 2.4.6. Let d : R" x R” — R be defined by

d(x.y) = /(1 =312+ (2 —y2) -+ (= )2,

where x = (x1,x2,...,%,),Yy = (V1,¥2,---,¥n) € R". Then d is a metric on R" and it is

called Euclidian metric on R”.

Example 2.4.7. Let d : C" x C" — R be defined by

d(x,y) = /e =1+ e =32 b — 3l

where x = (x1,x2,...,%,),Yy = (V1,¥2,.--,¥n) € C". Then d is a metric on C" and it is

called Euclidian metric on C".
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Example 2.4.8. Let [a,b] be a closed interval on R and
X =Cla,b] :={x: [a,b] — R : x is a continuous function}.

Define a function d., : X x X — R by

dos = sup |x(1) —y(7)|
t€(a,b]

for all x,y € X. Then (X,d.) is a metric space. This metric dw is called the sup metric

or max metric or uniform metric on Cla, b).

Definition 2.4.9. Let (X, d) be a metric space. The open ball of radius r > 0 and center

x € X is the set B,(x) C X defined by
By (x):={yeX:d(x,y) <r}

(see some open ball in Figure 2.1).

Figure 2.1: Open ball of radius r and center x in the Euclidean space R?

Definition 2.4.10. Let (X,d) be a metric space. The closed ball of radius r > 0 and

center x € X is the set B,[x] C X defined by
B/lx:={yeX:d(x,y) <r}

(see some closed ball in Figure 2.2).
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Figure 2.2: Closed ball of radius r and center x in the Euclidean space R>

Definition 2.4.11. Let (X,d) and (Y, p) be two metric spaces. A mapping f: X — Y is

called continuous at x € X if for every € > 0, there exist & > 0 such that

f(Bs(x)) C Be(f(x))-

Furthermore, a mapping f is called continuous if it is continuous at each point in X.

The following proposition is the idea of a continuous mapping in terms

limits of sequences.

Proposition 2.4.12. Let (X,d), (Y,p) be two metric spaces. A mapping f:X — Y is

continuous at a point a € X if and only if the following condition holds:
Xp—a as n—oo = f(x,) — f(a) as n— oo.

Definition 2.4.13. A sequence {x,} in a metric space (X,d) is called converges to a

point x € X if, for every € > 0, there exists N € N such that d(x,,x) < € for all n > N,

denoted by 1i_r>nx,, = x or, simply, x, — x. In this case, {x,} is called a convergent
n—yoo

sequence.

Remark 2.4.14. A sequence {x,} in a metric space (X,d) is a convergent sequence if

and only if
limd(x,,x) = 0.

n—so0
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Definition 2.4.15. A sequence {x,} in a metric space (X,d) is called Cauchy sequence

if, for every € > 0, there exists N € N such that d(x;,x,,) < € for all n,m > N.

Remark 2.4.16. A sequence {x,} in a metric space (X,d) is Cauchy sequence if and
only if
lim d(xp,x,) =0.

m,n—oo
Definition 2.4.17. A metric space (X,d) is called complete if for every Cauchy se-

quence in X converges.

Example 2.4.18. The usual metric space R and the Euclidean metric space C are com-

plete metric spaces.
Example 2.4.19. The Euclidean metric space (R”",d) is complete.
Example 2.4.20. The Euclidean metric space (C",d) is complete.

Example 2.4.21. The function space (C[a,b],d) in Example 2.4.8 is complete.

2.5 Weakly continuous functions

Definition 2.5.1. Let (X,d) be a metric space. A function f : X — R is called lower

semicontinuous at a point a € X if and only if the following condition holds:
Xp—a as n—oo = f(a) < lirginff(xn).
n—oo

Furthermore, a function f is call lower semicontinuous if it is lower semicontinuous

at each point in X.

Example 2.5.2. Let X = [0,00) with the metric d : X x X — R which is defined by

d(x,y) = |x—y| for all x,y € X. Define a function f : X — R by

In(r> +2t4+1) ifr<1
f(1) = :
t+1 ift > 1

Then f is lower semicontinuous (see the graph of a function f in Figure 2.3).
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—In(2+2t+1)
— t+1

Figure 2.3: The graph of f in Example 2.5.2.

Example 2.5.3. Let X = [0,o) with the metric d : X x X — R which is defined by

d(x,y) = |[x—y| for all x,y € X. Define a function f : X — R by

3 ifr <1
flt)= :
e—1 ift>1

Then f is lower semicontinuous (see the graph of a function f in Figure 2.4).

6 3

—e -1

4 A

2 (o}

) A

0 0.5 1 1.5 2
t

Figure 2.4: The graph of f in Example 2.5.3.

Example 2.5.4. Let X = [0,00) with the metric d : X x X — R which is defined by

d(x,y) = |[x—y| for all x,y € X. Define a function f : X — R by

£ oifr<1
f(t) = :
2 ifr>1

Then f is lower semicontinuous (see the graph of a function f in Figure 2.5).
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Figure 2.5: The graph of f in Example 2.5.4.

Definition 2.5.5. Let (X,d) be a metric space. A function f : X — R is called upper

semicontinuous at a point a € X if and only if the following condition holds:

Xy —a as n—o = f(a)>limsupf(x,).
n—oo

Furthermore, a function f is call upper semicontinuous if it is upper semicontinuous

at each point in X.

Example 2.5.6. Let X = [0,00) with the metric d : X x X — R which is defined by

d(x,y) = |x—y| for all x,y € X. Define a function f : X — R by

3 i
o S

Then f is upper semicontinuous. (see the graph of a function f in Figure 2.6).

/
13

—te' —1

10 7

/

Figure 2.6: The graph of f in Example 2.5.6.
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Example 2.5.7. Let X = [0,00) with the metric d : X x X — R which is defined by

d(x,y) = |[x—y| for all x,y € X. Define a function f : X — R by

In(1+4¢) ifr <1
f(t) = :
t ifr>1

Then f is upper semicontinuous. (see the graph of a function f in Figure 2.7).

—In(1+1)
t

Figure 2.7: The graph of f in Example 2.5.7.

Example 2.5.8. Let X = [0,00) with the metric d : X x X — R which is defined by

d(x,y) = |x—y| for all x,y € X. Define a function f : X — R by

3 ]
A ifr<1

f(t) = :
DL itk =l

Then f is upper semicontinuous and nondecreasing. (see the graph of a functions f in

Figure 2.8).
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3
S 2[3

0 0.5 1 1.5 2

Figure 2.8: The graph of f in Example 2.5.8.

2.6 w-distances and w®-distances

In 1996, Kada et al.[18] introduced the concept of a w-distance on a metric space as

follows:

Definition 2.6.1 ([18]). Let (X,d) be a metric space. A function g : X x X — [0,0) is
called a w-distance on X if it satisfies the following three conditions for all x,y,z € X:
W1) g(x,y) <q(x,2) +4(z,y);

(W2) g(x,-): X — [0,0) is lower semicontinuous on for all x € X ;

(W3) for each € > 0 there exists & > 0 such that g(x,y) < 6 and ¢(x,z) < d imply
d(y,z) <e.

Remark 2.6.2. In general, for all x,y € X, ¢(x,y) # ¢(x,y) and not either of the impli-

cations ¢(x,y) = 0 if and only if x = y necessarily hold.

Remark 2.6.3. Each metric on a nonempty set X is a w-distance on X.

Here, we give some another examples of a w-distance.

Example 2.6.4. Let (X,d) be a metric space. The function g : X x X — [0,00) defined
by ¢g(x,y) = c for every x,y € X is a w-distance on X, where c is a positive real number.

But ¢ is not a metric since g(x,x) = ¢ # 0 for any x € X.
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Example 2.6.5. Let (X, |- ||) be a normed space. The function g : X x X — [0,)
defined by

q(x,y) =yl

for all x,y € X, is a w-distance on X.

Example 2.6.6. Let (X, |- ||) be a normed space. The function g : X x X — [0,0)
defined by

q(x,y) = ||| + x|l
for all x,y € X, is a w-distance on X.

Example 2.6.7. Let a,b € R with a < b and X = Cla,b| (the set of all continuous

functions from [a, b] into R), with the metric d : X x X — R which is defined by

d(x,y) = sup [x(t) —y(t)]

t€(a,b)

for all x,y € X. Define the function ¢ : X x X — [0,00) by

q(x,y) = sup |x(t)|+ sup [y(r)]
t€la,b) t€(a,b]

for all x,y € X. Then ¢ is a w-distance on X.

The following lemma is a useful tool for proving our main results in this

thesis.

Lemma 2.6.8 ([18]). Let (X,d) be a metric space, q be a w-distance on X and x,y,z € X.

1. If {x,} is a sequence in X such that 1i_r>n q(xp,x) = li_r)n q(xn,y) =0, thenx=y. In
n (=] n (o)

particular, if q(z,x) = q(z,y) =0, then x = y.

2. If q(xn,yn) < oy and q(x,,y) < B, for any n € N, where {a,,} and {B,} are se-

quences in [0,0) converging to 0, then {y, } converges to y.

3. If {x,} is a sequence in X for which for each € > 0 there exists Ng € N such that

m > n > Ng implies q(x,,xn) < €, then {x,} is a Cauchy sequence.
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4. If {o, } is a sequence in [0,o0) such that {o,} converging to 0 and q(x,,xp) < 0,

forall n,m € N with m > n, then {x,} is a Cauchy sequence.

5. If {o,} is a sequence in [0,00) such that {a,} converging to 0 and q(y,x,) < o,

foralln € N, then {x,} is a Cauchy sequence.

Recently, Du [10] recommended the concept of w'-distance by adjust con-

ditions in w-distance which use it more.

Definition 2.6.9 ([10]). Let (X,d) be a metric space. A function g : X x X — [0,0) is

called a wO-distance if it is a w-distance on X with g(x,x) = 0 for all x € X.

Remark 2.6.10. Each metric on nonempty set X is a w’-distance on X

Next, we give some other example of a w'-distance.

Example 2.6.11 ([10]). Let X = R with the metric d : X x X — R which is defined by

d(x,y) = |[x—y| for all x,y € X and a,b > 1. Define the function g : X x X — [0, ) by

q(x,y) = max{a(y —x),b(x—y)}

for all x,y € X. Then ¢ is nonsymmetric and hence ¢ is not a metric. It is easy to see

that g is a w¥-distance.

2.7 Altering distance functions and weak altering dis-

tance functions

In 1984, Khan et al. [17] introduced the concept of an altering distance function as

follows:

Definition 2.7.1 ([17]). A function y : [0,0) — [0,0) is called an altering distance

function if the following properties hold:

1. vy is continuous and nondecreasing;
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Example 2.7.2. Define W1, 2,3, W4 : [0,00) — [0,00) by w1 (£) =1, ¥ (t) =12, y3(¢) =

te¥ yy(t) = In(t> + 2t + 1) for all > 0. It is easy to see that yy, 2,3 and yy are al-

tering distance functions because Y1, Y2, y3 and Yy are continuous and nondecreasing.

Moreover, y;(¢t) = 0 if and only if r = 0 for all i = 1,2,3,4. (see the graphs of functions

V1,2, Y3 and Yy in Figure 2.9).

10

8

6

vi()

W3(t)

0.5

1,000

800

600

Wa(t)

400

200

Wa(t)

—

—In(r?+2t+1)

Figure 2.9: Graphs of Yy, y7,¥3, Y4 in Example 2.7.2.

Recently, Sawangsup and Sintunavarat [24] introduced the notion of a weak

altering distance function by reducing some condition of an altering distance function

as follows:

Definition 2.7.3 ([24]). A function y : [0,00) — [0,0) is said to be a weak altering

distance function if it satisfies the following conditions:

(a)  is lower semicontinuous and nondecreasing;

(b) y(t) =0if and only if r = 0.
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We observe that, if y : [0,00) — [0,00) is continuous, then y is lower semi-

continuous. So, the class of weak altering distance functions is wider than the class of

altering distance functions.

In general, a weak altering distance function need not necessarily be an
altering distance function. Next, we give some examples which guarantee that the class

of weak altering distance functions is bigger than the class of altering distance functions.

Example 2.7.4. Define yi,y2, Y3 : [0,00) — [0,0) by

In(t2+2t+1) ifr<1

Wl(t): )
t+1 ifr>1
3 ifr <1
WZ(t): )
ted —1 ift>1
2k < 1
Y3(1) = :
203 ifr>1

It is easy to see that Yy, Y, and Y3 are weak altering distance functions because Y1, >
and y3 are lower semicontinuous and nondecreasing. Moreover, y;(¢) = 0 if and only

ift =0foralli=1,2,3. (see the graphs of functions Yy, y> and y3 in Figure 2.10).

6

—In(t?+2t+1)

v (1)

t+1

W2 (t)

w3 (1)

— 2
3

— 23

Figure 2.10: Graphs of y1, >, y3 in Example 2.7.4.
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2.8 Fixed point basics

Definition 2.8.1. Let X be a nonempty set. A point x € X is called fixed point of a

mapping f : X — X if and only if fx = x.
Example 2.8.2. Let f: R — R be defined by

x%, ifx<l1
fx) =
2, ifx>1.

for all x € R. Then points 0, 1 and 2 are fixed points of f (see in Figure 2.11 ).

3

2.5 —

) o—/,/i
= 1ES
1

0.5

Figure 2.11: The graph of f in Example 2.8.2

Example 2.8.3. Let f: R — R be defined by
fr=x*+x+3

for all x € R. Then f has no a fixed point (see in Figure 2.12 ).

3

—x+x+1

25 x

2
=
= 1.5
1

0.5

0
0 05 1 1.5 2 2.5 3

Figure 2.12: The graph of f in Example 2.8.3
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Example 2.8.4. Let f: R — R be defined by

I, ifx<1
fx) =

3, ifx>1.

for all x € R. Then a point 1 is a unique fixed point of f (see in Figure 2.13).

3

2.5

2
=

Z s
L

0.5

02
el s B P56 K

Figure 2.13: The graph of f in Example 2.8.4

2.9 Some results on several contraction mappings

In 1922, the following very important result regarding a contractive mapping was proved
by Banach [4], Polish mathematician, which is well known as Banach contraction prin-

ciple.

Theorem 2.9.1 ([4]). Let (X,d) be a complete metric space and f : X — X be a con-
traction mapping, i.e.,

d(fx,fy) < kd(x,y) (2.9.1)

for all x,y € X, where k € [0,1). Then f has a unique fixed point. Moreover, for each
X0 € X, the Picard iteration {x,}, which is defined by x, = f"xo for all n € N, converges

to a unique fixed point of f.

In 1968, a new type of a contractive mapping was introduced by Kannan
[19], which is called the Kannan’s contractive type mapping. He also established some

fixed point results for such mapping as follows:
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Theorem 2.9.2 ([19]). Let (X,d) be a complete metric spaces and f : X — X be a

Kannan’s contraction mapping, i.e.,

d(fx, fy) < kld(x, fx) +d(y, fy)] (2.9.2)

for all x,y € X, where k € [0, %) Then f has a unique fixed point. Moreover, for each
X0 € X, the Picard iteration {x,}, which is defined by x, = f"xo for all n € N, converges

to a unique fixed point of f.

We observe that Kannan’s fixed point theorem is not a generalized of Ba-
nach contraction principle. Anywise, Theorem 2.9.2 is significance because Subrah-
manyam [27] proved that Theorem 2.9.2 characterizes the metric completeness, that
is, a metric space X is complete if and only if every Kannan’s contractive mapping on
X has a fixed point. Some authors have obtained many of fixed point theorems for

Kannan’s contractive mappings (see [11], [28] and [25]).

Preferably, the similar contraction condition and fixed point result for Kan-

nan’s contractive mappings has been introduced by Chatterjea [8].
Theorem 2.9.3 ([8]). Let (X,d) be a complete metric space and f : X — X be a Chat-

terjea’s contraction mapping, i.e.,

d(fx, fy) < kld(x, fy) +d(y, fx)] (2.9.3)

for all x,y € X, where k € [0, %) Then f has a unique fixed point. Moreover, for each
X0 € X, the Picard iteration {x,}, which is defined by x, = f"xo for all n € N, converges
to a unique fixed point of f.

Note that the conditions (2.9.1), (2.9.2) and (2.9.3) are independent.

Here are the results that are beneficial for this work.

Theorem 2.9.4 ([7]). Let (X,d) be a complete metric space, and let f : X — X be a
mapping. Suppose that there exist nonnegative numbers q,r,s and t such that g+ r +

s+2t <1and

d(fx, fy) < qd(x,y) +rd(x, fx) +sd(y, fy) +t[d(x, fy) +d(y, fx)] (2.9.4)
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forall x,y € X. Then f has a unique fixed point. Moreover, for each xo € X, the Picard
iteration {x,}, which is defined by x, = f"xq for all n € N, converges to a unique fixed

point of f.

Theorem 2.9.5 ([22]). Let (X,d) be a complete metric space, and f : X — X be a

mapping with the following property:

d(fx, fy) < ad(x, fx)+bd(y, fy) +cd(x,y) (2.9.5)

for all x € X, where a,b,c are nonnegative real numbers such that a+b+c < 1. Then
f has a unique fixed point. Moreover, for each xo € X, the Picard iteration {x,}, which

is defined by x, = f"xo for all n € N, converges to a unique fixed point of f.

Now, denote by @ the set of functions 0 : (0,00) — (1,0) satisfying the

following conditions:

(01) O is nondecreasing ;

(82) for each sequence {t,} C (0,0), lim0(z,) = 1 if and only if limz, =07 ;
n—oo n—oo

0(r)—1

(63) there exist r € (0,1) and ¢ € (0,e0] such that lim ==

t—0

(84) 6 is continuous.

Theorem 2.9.6 ([15]). Let (X,d) be a complete metric space, and f : X — X be a given

mapping. Suppose there exist © € ® and k € (0,1) such that

xy€EX, d(fx,fy)#0 = 0(d(fx,fy)) <[0(d(x,y))]*. (2.9.6)

Then f has a unique fixed point. Moreover, for each xo € X, the Picard iteration {x,},

which is defined by x,, = f"xo for all n € N, converges to a unique fixed point of f.

Later, some fixed point results for generalized weakly contractive mappings
was proved by Choudhury et al. [5] by using a control function via the notion of an

altering distance function.
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Theorem 2.9.7 ([S]). Let (X,d) be a complete metric space and f a self-mapping on

X. Suppose that f is a generalized weak contractive mapping, i.e., for all x,y € X,

W(d(fx. ) < wim(r.y) =0 max{d(xy).d0. ) }), @9

where

() = max {d(x,),d(x, ), 00 1), 5 . )., )]}

y is an altering distance function and ¢ : [0,00) — [0,0) is a continuous function with

O(¢t) =0 ifand only ift = 0. Then f has a unique fixed point on X.

Next, denote by ¥ the set of all functions y : [0,00) — [1,0) satisfying the

following conditions:

(¥1) v is nondecreasing and y(7) = 1 if and only if 1 =0 ;
(yp) for each sequence {t,} C (0,00), limy(z,) = 1 if and only if lim#, =0 ;
n—oo n—yoo

(y3) there exist r € (0,1) and £ € (0, 0] such that h%ﬂ% =¥,
t—

(Va) W(a+b) <wy(a)y(b) for all a,b > 0.

Theorem 2.9.8 ([12]). Let (X,d) be a complete metric space, and f: X — X be a
continuous JS-contraction, i.e., there are function y € ¥ and nonnegative real numbers

ki,ko, k3, ka with O < ki + ko + k3 + 2k4 < 1 such that

W(d(fx. £y)) < [(de,y))] w(d (e, f2))1 2 0(d O, o)) [ (d x, £y) +d (3, f2)]
(2.9.8)
forall x,y € X. Then f has a unique fixed point. Moreover, for each xo € X, the Picard

iteration {x,}, which is defined by x, = f"xq for all n € N, converges to a unique fixed

point of f.

Recently, some fixed point results for generalized contraction mappings
was proved by Ri [23]. This result generalized the Boyd and Wong’s fixed point theo-

rem in [3] and the Matkowski’s fixed point theorem in [14].
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Theorem 2.9.9 ([23]). Let (X,d) be a complete metric space and f:X — X be a
mapping. Suppose that there is a function @ : [0,00) — [0,00) such that ¢(0) =0, ¢(r) <t

and limsup@(s) < t for all t > 0 and
st

d(fx,fy) < 9(d(x,y)), (2.9.9)

forall x,y € X. Then f has a unique fixed point in X.

Most recently, Sawangsup and Sintunavarat [24] introduced the notion of a
weak altering distance function and proved the following existence of a fixed point by

using such function.

Theorem 2.9.10 ([24]). Let (X,d) be a complete metric space. Suppose that f : X — X

is a continuous mappings such that

w(d(fx, fy)) <o(d(x,y)), (2.9.10)

for all x,y € X, where ¥ is a weak altering distance function and ¢ : [0,00) — [0,00) is
a right upper semicontinuous function such that y(t) > ¢(t) for allt > 0. Then T has
a fixed point. Moreover, for each xo € X, the Picard iteration {x,}, which is defined by

xp = f"xo for all n € N, converges to a unique fixed point of f.
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CHAPTER 3

THEORETICAL FIXED POINT RESULTS

In this chapter, we introduce the new concept of a distance on metric spaces and prove
the existence and uniqueness of fixed point results for new contraction mappings along
with w-distances in complete metric spaces. Some of the results are proved by using
the concept of a new purposed distance. First, we give the new definition of a ceiling

distance on a metric space.

Definition 3.0.1. A w-distance ¢ on a metric space (X,d) is said to be a ceiling distance

of d if and only if

q(x,y) > d(x,y) (3.0.1)
for all x,y € X.
Now we give some examples of a ceiling distance.
Example 3.0.2. Each metric on a nonempty set X is a ceiling distance on itself.

Example 3.0.3. Let X = R with the metric d : X x X — R which is defined by d(x,y) =

|x —y| for all x,y € X and a,b > 1. Define a w-distance ¢ : X x X — [0,00) by

q(x,y) = max{a(y —x),b(x—y)}

for all x,y € X. For each x,y € X, we get
dlx,y) = |x—yl
X=y X2y

y—x, x<y
< max{a(y—x),b(x—y)}

= q(xy).

Then ¢ is a ceiling distance of d.
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Example 3.0.4. Let a,b € R with a < b and X = Cla, D] (the set of all continuous
functions from [a, b] into R), with the metric d : X x X — R which is defined by d(x,y) =

sup |x(¢) —y(z)| for all x,y € X. Define a w-distance g : X x X — [0,0) by
t€la,b]

q(x,y) = sup |x(z)|+ sup [y(r)]
t€la,b) t€[a,b]

for all x,y € X. For each x,y € X and ¢ € [a, D], we obtain

(1) = y(1)]

IN

()] +(2)]

< sup [x(¢)[+ sup [y(t)].
t€[a,b) t€(a,b]

It yields that sup |x(t) —y(¢)| < sup |x(¢)| + sup |y(¢)| and so g is a ceiling distance
t€la,b) t€la,b) t€la,b)

of d.

3.1 Fixed point results for w-generalized weak contrac-

tion mapping

In this section, we introduce the new concept of a generalized contraction mapping
along with w-distances in metric spaces. Furthermore, we investigate the sufficient
condition for the existence and uniqueness of a fixed point of self mappings on metric
spaces satisfying such contractive condition. First, we introduce the definition of the
new type of generalized contraction mappings so called a w-generalized weak contrac-

tion mapping.

Definition 3.1.1. Let ¢ be a w-distance on a metric space (X,d). A mapping f: X — X

is said to be a w-generalized weak contraction mapping if for all x,y € X,

W(q(fx,fy)) < w(m(x,y)) —d(q(x,y)) (3.1.1)

where

m(x,y) := max {Q(x,y), % [q(x, fy) +q(fx,y)] }
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Y : [0,00) — [0,00) is an altering distance function and ¢ : [0,00) — [0, o) is a continuous
function with ¢(z) = 0 if and only if # = 0. If ¢ = d, then the mapping f is said to be a

generalized weak contraction mapping.

Now, we give the main result in this section.

Theorem 3.1.2. Let (X,d) be a complete metric space and q : X x X — [0,0) be a w'-
distance on X and a ceiling distance of d. Suppose that f : X — X is a continuous w-
generalized weak contraction mapping. Then f has a unique fixed point in X. Moreover,
for each xo € X, the Picard iteration {x,}, which is defined by x, = f"xq for all n € N,

converges to a unique fixed point of f.

Proof. Suppose that y, ¢ : [0,00) — [0, 0) are two functions in the contractive condition
3.1.1. Starting from a fixed arbitrary point xog € X, we put x,,+ 1 = fx, for alln € NU{0}.
If x,+ = x4+ for some n* € NU{0}, then x,, is a fixed point of f. Thus we will assume
that x,, # x,41 for all n € NU{0}, i.e., d(xp,x,+1) > 0 for all n € NU{0}. Since ¢ is a
ceiling distance of d, we obtain g(x,, x,+1) > 0 for all » € NU{0}. From the contractive

condition (3.1.1), for all n € NU {0}, we have

W(q(Xnt1,%042)) = W(q(fxn, fXnt1))

< W(m(xn, Xnt1)) — 0(q(xn, Xn11))

= (max snne). JlaCon 50)+ )] ) = laine0)

< (o 5. Slaton i) +atmnnni2)] ) ~0latnnin)

Suppose that
q(XnsXn+1) < q(Xnt1,Xn+2)

for some n € NU{0}. From (3.1.2), we have

W(g(xnr1,Xn42)) S W(g(Xns1,%012)) — O(q(Xn; Xnv1)),

(3.1.2)
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that is, ¢(q(xn,xn+1)) < 0, which implies that g(x,,x,+1) = 0. This implies a contradic-

tion. Therefore, g(x,+1,%n+2) < q(xn,xn+1) for all n € NU{0} and hence {g(xp,xn+1)}

is a monotone decreasing and bounded below. Therefore, there exists r > 0 such that
lim q(x,,X,41) = 1. (3.1.3)

n—oo

In view above facts, from (3.1.2) we have for all n € NU {0},

W(q(Xnt1,%42)) < WG, Xnt1)) — 0(q(Xn, Xnt1))-

Taking the limit as n — oo in the above inequality and using the continuities of ¢ and y,

we have

W(r) <w(r) —o(r),

which is a contradiction unless r = 0. Hence

Lt =10 (3.1.4)
n—soo

Similarly, we can prove that
lionlegziottig s =0 (3.1.5)
n—yoo

Next, we show that {x,} is a Cauchy sequence. Suppose by contradiction
with Lemma 2.6.8, there exists an € > 0 and subsequences {x,, } and {x,, } of {x,} with
ny > my > k such that

(X X)) > € forall keN. (3.1.6)

Choosing ny, to be the smallest integer exceeding my for which (3.1.6) holds, we obtain

that

q(Xmy s Xn—1) < €. (3.1.7)

Now, we get

8 S Q(xmkyxnk) S Q(xmkaxnk—l) +q<xnk—laxnk) S e"‘Q(xnk—l»xnk)-
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Taking the limit as k — oo in the above inequality and using (3.1.4), we have

lim g(Xm, , Xy, ) = €. (3.1.8)

n—oo

By using (3.1.6) and (W1), we have

€ § Q(xmkaxnk> S Q(xmkyxm;ﬁrl) +Q(xmk+17xnk+1) +Q(xnk+1;xnk);

and

q(xmk+laxnk+1> S ‘I(xkarl;ka) +(]<xmkaxnk) +Q(xnkaxnk+l)-

Taking the limit as k — o in the above two inequalities and using (3.1.4), (3.1.5) and

(3.1.8), we have

y}ii?oq(x”’k“ 2 1 )= (3.1.9)

Again, by using (W1), we obtain

q(xmk7xnk) < q(ka,Xnk+1) s Q(xnk+1 7xnk)
S Q<xmkaxnk) +Q(xnkaxnk+l) +Q(xnk+17xnk)
and
C](xmk,xnk) = q(xmk7xmk+1) +q(xmk+17xnk)

S Q(ka,xmk—i-l) + CI(xmk—H 7xmk) + Q(xmkvxnk)-

Taking k — oo in the above two inequalities and using (3.1.4), (3.1.5) and (3.1.8), we

have

1 (g Xng1) = €, Tim qQmgr1,%,) = €. (3.1.10)

Substitution x = X, , y = X, in (3.1.1), we have

V(G (Xmyr 1% 41)) < W(maX{Q(xmwxnk)a %[Q(xmkvxnkﬂ) +Q(xmk+1»xnk>]}> — O(q(my Xny))-
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Letting k — oo in the above inequality, using (3.1.4), (3.1.5), (3.1.8), (3.1.9), (3.1.10)

and using the continuities of ¢ and Y, we have

v(e) < w(e)—o(e),

which is a contradiction with the property of ¢. Hence by Lemma 2.6.8, we can con-
clude that {x,} is a Cauchy sequence. Since (X,d) is a complete metric space, there ex-
ists p € X such that x,, — p as n — oco. From the continuity of f, we get x,,+1 = fx, — fp

asn — oo, 1.e., p = fp. Thus, f has a fixed point.

Finally, we prove that the fixed point is unique. Let p and p* be two fixed

point of f and suppose that p # p*. Then putting x = p and y = p* in (3.1.1), we obtain

wa(rp.1p%) < v(max{a(p.p"). 3la(p. f") + (7.0 }) ~ 0ap.p"))

that is, ¥(q(p,p*)) < w(q(p,p*)) — d(q(p,p*)), which is a contradiction by property
of 0. Therefore, p = p* and the fixed point is unique. This completes the proof. ]

In the next theorem, we omit the continuity hypothesis of f.

Theorem 3.1.3. Ler (X,d) be a complete metric space and q : X x X — [0,00) be a
continuous w'-distance on X and a ceiling distance of d. Suppose that f : X — X
is a w-generalized weak contraction mapping. Then f has a unique fixed point in X.
Moreover; for each xo € X, the Picard iteration {x,}, which is defined by x,, = f"xq for

all n € N, converges to a unique fixed point of f.

Proof. Suppose that y, ¢ : [0,00) — [0, 00) are two functions in the contractive condition
3.1.1. Let x¢ be an arbitrary point in X. Put x,,+ | = fx, foralln € NU{0}. If x,» = x4
for some n* € NU {0}, then x,+ is a fixed point of f. So we will assume that x,, # x,,+1
for all n € NU{0}. Following the proof of Theorem 3.1.2, we know that {x,} is a
Cauchy sequence in X. Completeness of (X, d) ensures that there exists p € X such that

X, — p as n — oo, Assume that p # fp. Putting x = x,,, y = p in (3.1.1), we have

Vg1, fp)) = W(g(fxn, fp))
< w(max {q(unp). 3l ) +alsui1.0)]} ) ~0(a (. p)
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for all n € NU{0}. Taking the limit as n — oo in the above inequality and using the

continuities of ¢, Y and g, we have

walp. ) < v(54(p. 1)),

which is a contradiction. Thus p = fp, that is, p is a fixed point of f. Following the
proof of Theorem 3.1.2, we know that p is a unique fixed point of f. This completes

the proof. ]

Taking g = d in Theorem 3.1.3, we obtain the following result.

Corollary 3.14. Let (X,d) be a complete metric space. Suppose that f : X — X is a
generalized weak contraction mapping. Then f has a unique fixed point in X. Moreover,
for each xo € X, the Picard iteration {x,}, which is defined by x, = f"xq for all n € N,

converges to a unique fixed point of f.

We can extend the condition of w'-distances in Theorems 3.1.2 and 3.1.3
to w-distances if we replace the contractive condition (3.1.1) by some strong condition.

Here we give the purposed results.

Theorem 3.1.5. Letr (X,d) be a complete metric space and q : X x X — [0,00) be a
w-distance on X and a ceiling distance of d. Suppose that f : X — X is a continuous

mapping such that for all x,y € X,

W(q(fx,fy)) <w(q(x,y)) —0(q(x,y)), (3.1.11)

where Y : [0,00) — [0,c0) is an altering distance function and ¢ : [0,00) — [0,00) is a
continuous function with ¢(t) = 0 if and only if t = 0. Then f has a unique fixed point
in X. Moreover, for each xy € X, the Picard iteration {x,}, which is defined by x, = f"x

for all n € N, converges to a unique fixed point of f.

Theorem 3.1.6. Let (X,d) be a complete metric space and q : X X X — [0,0) be a
continuous w-distance on X and a ceiling distance of d. Suppose that f : X — X is a

mapping such that for all x,y € X,

W(g(fx, fy)) < w(q(x,y)) —0(q(x,y)), (3.1.12)

Ref. code: 25595809031015E0I



34

where Y : [0,00) — [0,c0) is an altering distance function and ¢ : [0,00) — [0,00) is a
continuous function with 0(t) = 0 if and only if t = 0. Then f has a unique fixed point
in X. Moreover, for each xy € X, the Picard iteration {x,}, which is defined by x, = f"x

for all n € N, converges to a unique fixed point of f.

3.2 Fixed point results for w-generalized JS-contraction

mappings

The aim of this section is to introduce the new concept of contractility along with w-
distances in metric spaces. Furthermore, we investigate the sufficient condition for the
existence and uniqueness of a fixed point of self mappings on metric spaces satisfying

such contractive condition and give some examples to show the validity of these results.

Throughout this section, we denote by ¥ the set of all functions y : [0,00) —

[1,e0) satisfying the following conditions:
(¥1) v isnondecreasing and y(7) = 1 if and only if 1 =0 ;

(yp) for each sequence {#,} C (0,00), li_r>n y(t,) = 1 if and only if ILm th=0;
n—o0 n—oo

(y3) there exist r € (0,1) and ¢ € (0, 0] such that lir(gl+ \p(t,)fl
1—

=/
(y4) y(a+Db) <wy(a)y(b) forall a,b > 0.
Example 3.2.1. Let y; : [0,00) — [1,00) be defined by

yi(r) = eV,
It is easy to see that Y satisfies conditions (Y1) — (y4). Then y; € V.
Example 3.2.2. Let y; : [0,00) — [1,00) be defined by

W (t) =1+t

It is easy to see that y, satisfies conditions (Y1) — (y4). Then y, € .
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The following is the introducing a new concept which involving with main

result of this section.

Definition 3.2.3. Let g be a w-distance on a metric space (X,d) and y € ¥ . A mapping
f X — X is said to be a w-generalized JS-contraction mapping whenever there are

nonnegative real numbers k1, k>, k3, k4 with O < ky 4 kp + k3 + 2k4 < 1 such that

w(g(fx, fy)) < (g )] Twlgx, £ (g (v )2 wla(x, fy) +q(y, fx))]*
GB.2.1)

for all x,y € X.

Remark 3.2.4. The contractive condition in Definition 3.2.3 is an extension of a con-

cept of JS-contraction due to Hussain et al [12].

Now, we give the main result in this section.

Theorem 3.2.5. Let (X,d) be a complete metric space, q: X x X — [0,00) be a w°-

distance on X and ceiling distance of d, and f : X — X be a mapping. Suppose that f is
a continuous w-generalized JS-contraction mapping with respect to a function y € ¥
and nonnegative real numbers ki,ky, k3, ks in (3.2.1). Then f has a unique fixed point.
Moreover, for each xy € X, the Picard iteration {x,}, which is defined by x, = f"xq for

all n € N, converge to a unique fixed point of f.
Proof. Let xy € X be arbitrary. We define the sequence {x, } by

xn:an():fxn_l,

for all n € N. If there exists np € NU{0} such that x,,, = x,,+1, then x,,, is a fixed point
of f and hence we have nothing to prove. Thus, we may assume that x, # x,, 4 for all
n e NU{0}, i.e.,

d(xp,xp41) >0 (3.2.2)

for all n € NU{0}. Since g is ceiling distance, we have

Q(-xn;-xn—i—l) > 0
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for all n € NU{0}. Now we will prove that

Y}LHDIOQ(xmxn+1> =0.

By using the condition (3.2.1), we obtain

V(g Xnt1)) = W(G(fxn—1,fxn))
(W (g 1,20))] WG (1, f2n 1) 2 W (g (o, )]
X[W(q(xnfl,fxn)+q(xn,fxn,1))]k4

IN

IN

[W(q (v 1,20)) [ (q (- 1,0))] 2 [W (g (o, Xn 1))
< [W(q Con—1,0))] [W (g Con, 1))

= [W(qlen—1,2)) T (g (0,20 41)) 0T

for all n € N. Therefore, we write

ky+ko+ky (k1+k2+k4)n

1 < W(q(n, Xar1)) < [W(g(a—1,%0))] 75 < [w(g(xo,x1))] N 767

(3.2.3)

for all n € N. This implies that

lim (g (xn,xn41)) = 1.

n—yoo

From our assumptions about the function y, we get lim g(x,,x,+1) = 0. From condition
n—oo

(y3), there exist r € (0,1) and ¢ € (0, 0] such that

n—reo [Q(xnaxn+1)]r

=/.
Suppose that ¢ < oo. In this case, let B = %. From the definition of the limit, there exists
ng € N such that

W(q(xn,xnq1)) — 1
[q(xn, %n41)]"

— ¢ <B forall n>ny.

This implies that

W(Q(xmxn—i-l)) —1
[Cl(xnaxn-i-l)]r

>{¢{—B=B forall n> ny.
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Then
nlq(xn, Xni1)]"” < An[W(q(xn,xn41)) — 1] forall n > no,
_ 1
where A = 3

Suppose now that £ = co. Let B > 0 be an arbitrary positive number. From

the definition of the limit, there exists ng € N such that

W(q(xn7xn+l)) —1
[q(xn, Xn41))"

> B forall n> ny.
This implies that
nlg(xn, Xn11)]" < An[W(q(xn, x011)) — 1] forall n > no,
where A = zla' Thus, in all cases, there exist A > 0 and ng € N such that
n[q(xn, xn+1)]" < Any(q(xp,xp41)) — 1] forall n > ny.
Using (3.2.3), we obtain

kytk3+kq

nlq(xp, xn+1)]" < An([\p(q(xo,xl))]( 1=k ~k e 1) forall n> ny.

Letting n — oo in the above inequality, we get

Tim 1l (% 1)) = 0.

Thus, there exists ny € N such that

1
q(xp,xn11) < — forall n>nj.
nr
Now, for m > n > ny, we have
m—1 m—1 1
Q(xnaxm) S Z C](xi,xi—l) S Z 1
i=n i=nlr

Since 0 < r < 1, we get ), il converges and hence ¢g(x,,x,) — 0 as m,n — . Since
i=nl’
q is ceiling distance, we get d(x,,Xn) < q(xn,%y) for all m,n > ny. This implies that
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d(xn,%n) — 0 as myn — o. Thus, we proved that {x,} is a Cauchy sequence. Com-
pleteness of (X,d) ensures that there exists x* € X such that x,, — x* as n — c. From
the continuity of f, we get x,1.1 = fx, — fx* asn — oo, i.e., x* = fx*. Thus, f has a

fixed point.

Finally, suppose that there exists z # x* such that z = fz. Clearly, d(z,x*) =
d(fz, fx*) #0and d(x*,z) = d(fx*, fz) # 0. From condition (3.0.1), we get g(z,x*) #
0, g(x*,z) # 0 and so we can apply condition (3.2.1) for the pair (z,x*) and (x*,z). Now,
by (3.2.1) we get

I < |y

which is a contradiction. Therefore, f has a unique fixed point. This completes the

proof. ]

By taking g = d in Theorem 3.2.5, we obtain the following result of Hussain

[12].

Theorem 3.2.6 ([12]). Let (X,d) be a complete metric space and f : X — X be a

continuous JS-contraction mapping. Then f has a unique fixed point.

In the next theorem, we omit the continuity hypothesis of f.

Theorem 3.2.7. Let (X,d) be a complete metric space, q: X x X — [0,00) be a w°-

distance on X and ceiling distance on d, and f : X — X be a mapping. Suppose that f is
a w-generalized JS-contraction mapping with respect to a function y € ¥, nonnegative
real numbers ki, ky, k3, ks in (3.2.1) and ¢ and q are continuous. Then f has a unique
fixed point. Moreover, for each xy € X, the Picard iteration {x,}, which is defined by

X, = f"xq for all n € N, converge to a unique fixed point of f.
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Proof. Let xo € X be arbitrary. We define the sequence {x, } by

Xn = f"x0 = fXn-1,

for all n € N. Following the proof of Theorem 3.2.5, we know that {x,} is a Cauchy
sequence in X. Completeness of (X, d) ensures that there exists x* € X such that x,, — x*

as n — oo. From condition (3.2.1) we get

W(g(fx, fx7)) < [W(gConx™)] [W(g(n,xae1)) 2 [W(g(x", fx*)))

X [W(q e, fx°) +q (" 1))

Let n — oo, since ¥ and g are continuous, we obtain

Wg(x®, fx)) < [wgla®, fx*))o .

It yields that, y(g(x*, fx*)) = 1 and so by condition (y), we get ¢(x*, fx*) = 0. From,
condition (3.0.1), we get d(x*, fx*) =0, i.e.,, x* = fx*. Thus, f has a fixed point.
The uniqueness of fixed point of f follows from condition (3.2.1). This completes the

proof. [

By taking ¢ = d in Theorem 3.2.7, we obtain the following result of Hussain

[12].

Corollary 3.2.8 ([12]). Let (X,d) be a complete metric space and f : X — X be a JS-
contraction mapping with respect to a function y € Y. If ¥ is a continuous mapping,

then f has a unique fixed point.

Now we give an example which it is possible to apply by Theorem 3.2.7

but not Banach contraction principle.

Example 3.2.9. Let X = [0,o) with the metric d : X x X — R which is defined by

d(x,y) = |[x—y| for all x,y € X . Define the function g : X x X — [0,0) by

q(x,y) = max{y —x,2(x —y)}
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for all x,y € X. Clearly, ¢ is a w'-distance and ¢ is a ceiling distance of d. Also, define

f:X—=Xby

0, x<l1.
Note that the Banach contractive condition does not hold. Indeed, for x =1 and y =
0.9999, we get
d(fx, fy) =0.01 > d(x,y) > kd(x,y)

forall k € [0,1).

Next, we show that Theorem 3.2.7 can be applied in this case. Define a
function y : [0,00) — [1,0) by
()= eV

for all t € [0,00). It easy to see that y € . Here, we will show that f satisfies the

I > ENTS
\/—9—9, k3— /108 and k4€ (0,036)

We will distinguish this claim into the following case.

contractive contraction (3.2.1) with k| = %, ko =

Casel Ifx,y>1with x>y, then

vt ) = [la(2))]

= [y(g(x,y)"
< [wlqe ) (wlg(x, )2 (g (. £y))]"
X (W(g(x, f) +q(, fx))]5.
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Case2 Ifx,y > 1 with x <y, then

vig(fx,fy))] =

41

(450 0.

Case3 Ifx,y < 1, then (3.2.1) holds.

Case4 If x> 1and y < 1, then

W(g(fx, fy)] =

< [W(q(x, £y) +aq(y, fx))]%.

Ref. code: 25595809031015E0I



42

Case5S If x < 1andy > 1, then

vig(fx, fy))] = [\I!(q(&ﬁ))]
< [V
_ [e %]ks
= [w(q(y.fy)°
< [w(q(e )M w(g(x, fx))]2 w(q(y, fr))]

X (W(gq(x, fy) +q, fx))]5.

Therefore, all conditions of Theorem 3.2.7 hold and hence f has a unique fixed point.

Here, x = 0 1s a unique fixed point of f.

Example 3.2.10. Let X = [0,00) with the metric d : X x X — R which is defined by
d(x,y) = |[x—y| for all x,y € X . Define the function g : X x X — [0,0) by

q(x,y) = max{y —x,2(x—y)}

for all x,y € X. Clearly, ¢ is a w'-distance and ¢ is a ceiling distance of d. Also, define

functions f : X — X, and y : [0,0) — [1,0) by

ONIE b 24 ]
fr=
o0 X <1,
and,
OE

for all ¢ € [0,00). By using the similarly technique in Example 3.2.9, all conditions of

Theorem 3.2.7 hold. So f has a unique fixed point. Here, x = 0 is a unique fixed point

of f.

For specific choices of function y € ¥, we obtain some significant results.

First, by taking y(¢) = eV' in (3.2.1), we state a generalization of Ciri¢’s result in [7].
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Corollary 3.2.11. Let (X,d) be a complete metric space , Y € ¥, g : X x X — [0,00) be
a wO-distance on X and ceiling distance on d, and f : X — X be a mapping. Suppose

that there exist nonnegative real numbers ki, ka, k3, kg with 0 < k; + ko + k3 +2kq < 1

such that
Va(fx, fy) <kiva(xy) +kev/q(x, fx) +ksv/a(y, fy) + ks q(x, £3) + q(y, £x)

(3.2.4)
for all x,y € X. If one of the the following conditions hold:

(i) f:X — X is a continuous mapping;

(ii) q and \y are continuous mappings,

then f has a unique fixed point. Moreover, for each xy € X, the Picard iteration {x,},

which is defined by x,, = f"xo for all n € N, converge to a unique fixed point of f.

Remark 3.2.12. Notice that condition (3.2.4) is equivalent to

a(fx.fy) < ka(xy)+kq(x fx) + a0y, fy) +kila(x, £) +a(v, £x)]
+2k1k2\/m +2k1ks/q(x,¥)q (v, )
+2kikar/q(x,y)[g(x, £y) + (0, fx)] + 2kak3/ q(x, fx)q (3, fy)
+2kpky \/q(x Ix)lq(x, fy) +q(y, fx)]

+2kskar/q(v, 1) [a(x, fy) +q(y, fx)].

Next, in view of Remark 3.2.12 , by taking k; = k4 = 0 in Corollary 3.2.11,

we obtain the following extension of Kannan’s result [19].

Corollary 3.2.13. Let (X,d) be a complete metric space, Y € ¥, q: X x X — [0,00) be
a wO-distance on X and ceiling distance on d, and f : X — X be a mapping. Suppose

that there exist nonnegative real numbers ko, kz with 0 < ky + k3 < 1 such that

q(fx, fy) < ka2q(x, fx) +ks*q(y, fy) + 2kaks/q(x, fx) + q(y, f) (3.2.5)

for all x,y € X. If one of the the following conditions hold:
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(i) f:X — X is a continuous mapping;
(ii) q and ¥ are continuous mappings,

then f has a unique fixed point. Moreover, for each xy € X, the Picard iteration {x,},

which is defined by x, = f"xq for all n € N, converge to a unique fixed point of f.
On the other hand, by taking k; =k = k3 =0 in Corollary 3.2.11, we obtain
the extension of Chatterjea’s result in [8].

Corollary 3.2.14. Let (X,d) be a complete metric space , Y € ¥, q: X x X — [0,00) be
a wO-distance on X and ceiling distance on d, and f : X — X be a mapping. Suppose

that there exist ks € [0, %) such that

a(fx, fy) < ka*lq(x, fy) +q(y, fx)]

for all x,y € X. If one of the the following conditions hold:

(i) f:X — X is a continuous mapping;

(ii) q and \y are continuous mappings,

then f has a unique fixed point. Moreover, for each xy € X, the Picard iteration {x,},

which is defined by x, = f"xo for all n € N, converge to a unique fixed point of f.
From Corollary 3.2.11, by taking k4 = 0, we obtain the extension of Reich’s
result in [22].

Corollary 3.2.15. Let (X,d) be a complete metric space, Yy € ¥, q: X x X — [0,00) be
a wO-distance on X and ceiling distance on d, and f : X — X be a mapping. Suppose

that there exist nonnegative real numbers ki, ky, k3 with O < ki + ko + k3 < 1 such that

q(fx,fy) < ki*qlxy) +k?q(x, fx) +ks’q(y, fy)
+2kika\/q(x,y)q(x, fx) +2kiks\/q(x,y)q(y, fy)

+2kokz/q(x, £x)q(y, fy)

for all x,y € X. If one of the the following conditions hold:
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(i) f:X — X is a continuous mapping;

(ii) q and \y are continuous mappings,

then f has a unique fixed point. Moreover, for each xy € X, the Picard iteration {x,},

which is defined by x, = f"xo for all n € N, converge to a unique fixed point of f.

Finally, by taking y(z) = ¢V in (3.2.1), we have the following corollary.

Corollary 3.2.16. Let (X,d) be a complete metric space, Y € ¥, q: X x X — [0,00) be
a wO-distance on X and ceiling distance on d, and f : X — X be a mapping. Suppose
that there exist nonnegative real numbers ki, ky, k3, kg with 0 < ki +ky + ks +2ks < 1

such that

a(fx, fy) < ki/q(x,y) +ka3/q(x, fx) + k33/q(v, £y) + kad/ q(x, fy) + q(y, x)

for all x,y € X. If one of the the following conditions hold:

(i) f:X — X is a continuous mapping;

(ii) q and ¥ are continuous mappings,

then f has a unique fixed point. Moreover, for each xy € X, the Picard iteration {x,},

which is defined by x,, = f"xo for all n € N, converge to a unique fixed point of f.

We can extend condition of w9-distances in Theorem 3.2.5 and 3.2.7 to w-

distances if we replace the contractive condition (3.2.1) by some strong condition.

Theorem 3.2.17. Let (X,d) be a complete metric space , y € P, q: X x X — [0,0) be
a w-distance on X and ceiling distance on d, and f : X — X be a mapping. Suppose

that there exist ki € [0,1) such that

v(g(fx, ) < [w(g(x,y)h (3.2.6)

for all x,y € X. If one of the the following conditions hold:
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(i) f:X — X is a continuous mapping;
(ii) q and \y are continuous mappings,

then f has a unique fixed point. Moreover, for each xy € X, the Picard iteration {x,},

which is defined by x,, = f"xo for all n € N, converge to a unique fixed point of f.

3.3 Fixed point results for w-generalized SS-contraction

mappings

In this section, we introduce the new concept of contractility along with w-distances
in metric spaces and establish a new fixed point theorem for generalized contraction
mappings with respect to w-distances in complete metric spaces by using the concept
of a weak altering distance function. Two illustrative examples are provided to advocate
the usability of our results while Banach contraction principle is not applicable. We also
give numerical experiments for a fixed point in these examples. First, we introduce the
definition of the new type of generalized contraction mappings so called a w-generalized

SS-contraction mappings.

Definition 3.3.1. Let ¢ be a w-distance on a metric space (X,d). A mapping f: X — X

is said to be a w-generalized SS-contraction mapping if

v(q(fx. fy)) < 0(q(x.y)), (3.3.1)

for all x,y € X, where Wy : [0,00) — [0,00) is a weak altering distance function and ¢ :
[0,00) — [0,00) is a right upper semicontinuous function such that y(¢) > ¢(¢) for all

t>0.

Now, we give the main result in this section.

Theorem 3.3.2. Let (X,d) be a complete metric space and q : X x X — [0,00) be a
w-distance on X and a ceiling distance of d. Suppose that f : X — X is a continuous w-

generalized SS-contraction mapping. Then f has a unique fixed point on X. Moreover,
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for each xo € X, the Picard iteration {x,}, which is defined by x, = f"xq for all n € N,

converges to a unique fixed point of f.

Proof. Suppose that y,¢ : [0,00) — [0,00) are two functions satisfying the condition
(3.3.1). Let xo be an arbitrary point in X. Put x, = fx,_1 = f"xo for all n € N. If
Xp+ = Xp=+1 for some n* € NU{0}, then x,+ is a fixed point of f. Thus we will assume
that x,, # x,,4+1 for all n € NU{0}, i.e., d(xp,x,41) > 0 for all n € NU{0}. Since ¢ is a
ceiling distance of d, we obtain g(x,,x,41) > 0 for all n € NU{0}. From the contractive

condition (3.3.1), we have

W(q(n,xnr1)) = W(q(fxn—1,fxn))
O(q(xn—1,%))
< Y(g(xp—1,%xn)) (3.3.2)

IA

for all n € N. Since y is a nondecreasing function, we have

it SIS daibon ", (3.3.3)

for all n € N. Thus, the sequence {g(x,,x,+1)} is decreasing and bounded below. There-

fore, there exists s > 0 such that
q(Xn,Xnt1) =S as n— oo

From (3.3.2), letting n — oo and using the property of y and ¢ we get

Y(s) <Himinfy(g(xn, xnt1)) < imsupW(g(en, Xar1)) < limsupd(g(xn—1,%a)) < (s).

n—oo n—oo n—oo

Since y(r) > ¢(¢) for all # > 0, we have s = 0 and so {g(x,,x,+1)} converges to 0.
Similarly, it can be show that {g(x,+1,x,)} converges to 0. Now, we will show that
{x,} is a Cauchy sequence. Assume this contrary, there is an € > 0 and subsequences

{*m, } and {x,, } of {x,} with ny > my > k such that

q(Xmy,Xn,) > € forall k e N. (3.3.4)
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Choosing ny, to be the smallest integer exceeding my, for which (3.3.4) holds, we obtain
that

q(Xmy s Xn,—1) < E. (3.3.5)

Using (3.3.4) and (3.3.5), we get
€< C[(xmk;xnk) < Q(xm/mxnk—l) +q(xnk_1,xnk) < 8+Q(xnk—1,xnk)-

Hence, q(xy, ,xn,) — € as k — oo. Furthermore, we have

qXmes X)) < q(Xmp s Xme—1) + 4 Xmp—1,Xn—1) +G(Xn,—1,%n,) (3.3.6)
and
G (Xrm—1,%m—1) L G(Xmy—1,%m; ) + G Komg s %) + (X s X~ 1) (3.3.7)
Letting k — oo in (3.3.6) and (3.3.7) and using the fact that r}iigoq(xn,xn+1) =0, r}1_r>r°1° q(Xnt1,%,) =

0 and klim q(Xmy, Xn, ) = €, wWe have
—yo0

kh_EIC}OQ(xmk—l 7xl’lk—1) =E.

From (3.3.1), we obtain

W(CI(xmk,xnk)) < ¢(q(xmk—laxnk—1))~ (338)

From (3.3.8), letting k — oo and using the property of y and ¢ we get

y(e) <Timinfy(q(xm,xn,)) < Timsup (g (m,, xn,)) <Tmsupd(g(m—1,%m 1)) < ¢(8).

It yields that € = 0, which is a contradiction. By using Lemma 2.6.8, we can conclude
that {x,} is a Cauchy sequence. Since (X,d) is a complete metric space, there exists
x* € X such that x,, — x* as n — oo, From the continuity of f, we get x,,+1 = fx, — fx*
as n — oo, i.e., x* = fx*. Thus, f has a fixed point. Finally, we claim that x* is a unique

fixed point of f. Suppose that y* € X is a fixed point of f. By (3.3.1), we obtain

W(g(x",y")) = wlg(fx", fy")) < o(q(x*,y"))

for all n € N. From the fact that y(r) > ¢(¢) for all 7 > 0, we get g(x*,y*) = 0. Similarly,
we have g(x*,x*) = 0. From Lemma 2.6.8, we get x* = y*. This completes the proof.

O
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In the next theorem, we omit the continuity hypothesis of f.

Theorem 3.3.3. Ler (X,d) be a complete metric space and q : X X X — [0,00) be a
w-distance on X and a ceiling distance of d. Suppose that f : X — X is a w-generalized
SS-contraction mapping such that $(0) = 0. Then f has a unique fixed point on X.
Moreover, for each xy € X, the Picard iteration {x,}, which is defined by x, = f"x for

all n € N, converge to a unique fixed point of f.

Proof. Suppose that y,¢ : [0,00) — [0,00) are two functions satisfying the condition

(3.3.1). Let xp € X be arbitrary. We define the sequence {x, } by
Xn = f"X0 = fXn-1,

for all n € N. Following the proof of Theorem 3.3.2, we know that {x,} is a Cauchy
sequence in X. Completeness of (X,d) ensures that there exists x* € X such that x,, — x*
as n — oo. For each k € N, there exists Ny such that my > ng > Ny and g(xp,, Xm,) < %

Since ¢(x,-) is lower semicontinuous, we get

| =

q(xnku-X*) S li]giol‘}fQ(xi’lk:xmk) S

It implies that

lim g(x,,,x*) = 0. (3.3.9)

k—yo0

Setting x = x,,+1 and y = x* in (3.3.1), we get
W(q (X1, %)) < 0(q(x,,x7)). (3.3.10)
From (3.3.10), letting kK — oo and using the property of y and ¢, we get

limsupy(q(x,+1,fx%))) < limsupd(g(xy,,x")))

k—yo0 k—yo0

< 6(0)
= 0.

Therefore, klim q(Xn+1, fx*) = 0. By the triangle inequality, we get
—>00

Q(xnk7fX*) < Q(xnkyxnk—ﬁ—] ) + q(xnk-H 7fX*)
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and so
lim g(x,,, fx*) =0 (3.3.11)
k—yoo
Using Lemma 2.6.8, (3.3.9) and (3.3.11), we conclude that x* = fx*. Following the

proof of Theorem 3.3.2, we know that x* is a unique fixed point of f. This completes

the proof. ]

Now, we give two examples where it is possible to apply contractive condi-
tion (3.3.1) but not Banach contraction principle.
Example 3.3.4. Let X = [0, o) with the metric d : X x X — R which is defined by
dx,y) =[x

for all x,y € X . Define a mapping f : X — X by

NI=

ifo<x<l1
fx=
0 ifx>1.

Then f is not continuous and so f does not satisfy Banach contractive condition. Next,

we define two functions ¢,y : [0,00) — [0,00) by

A0 ]
y(t) =
2 ifr>1
and
2
t
)= —.
o(z) 1

From the Figure 3.1, we observe that y is a weak altering distance function and ¢ is a

right upper semicontinuous function such that y(¢) > ¢(¢) for all > 0 and ¢(0) = 0.

Also, we define a w-distance g : X x X — [0,0) by

q(x,y) = max{x,y}

for all x,y € X. It is easy to see that ¢ is a ceiling distance of d. Now, we will show
that f satisfies the contractive condition (3.3.1) . We will distinguish this claim into the

following cases.
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2
8 7
— 2
6 (%)/4
4 4
24
0 //. ‘ ‘ ‘ |
0 0.5 1 1.5 2 25 3

Figure 3.1: Graphs of y and ¢ in example 3.3.4

Case 1. If x,y € (2,00), then

wig(fx,fy)) =

Case 2. If x,y € [1,2], then

wig(fx,fy)) =

Case 3. If x,y € [0,1), then

V(q(fx,fy))

——
N—

<
N
=
1)
P
—
= N =
[N I

—— —— D=

=
& oo
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Case 4. If x€[0,1) and y € [1,2], then

v(q(fx, fy)) = W(‘na"{o’%})

<
to

&, oo

)
= 0(q(x,y)).

I
<

Case5. If x € [1,2] and y € [0, 1), then the proof is similar to Case 4.

Case 6. If x€[0,1) and y € (2,00), then

Watfe. ) = w(max{o.2})

2

I
-GN

)
= ¢(q(x,y)).

Case 7. If x € (2,00) and y € [0, 1), then the proof is similar to Case 6.

Case 8. If x € [1,2] and y € (2,0), then

wia(refy) = w(ma{%21)

= 0(q(x,y)).

Case 9. If x € (2,00) and y € [1,2], then the proof is similar to Case 8.
Therefore, all conditions of Theorem 3.3.3 hold and hence f has a unique fixed point.

Here, x = 0 is a unique fixed point of f.
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Some numerical experiments for the unique fixed point of f is given in

Figure 3.2. Furthermore, the convergence behavior of these iterations is shown in Figure

3.3.

xo =50 x0=100  xp =150 x0 =200

x1 | 25.000000 50.000000 75.000000 100.000000
x2 | 12.500000 25.000000 37.500000 50.000000
x3 | 6.250000 12.500000 18.750000 25.000000
x4 | 3.125000  6.250000  9.375000  12.500000
x5 | 1.562500  3.125000  4.687500  6.250000
xe | 0.781250  1.562500  2.343750  3.125000
x7 | 0.000000 0.781250  1.171875 1.562500
xg | 0.000000  0.000000 0.585938  0.781250
X9 | 0.000000  0.000000  0.000000  0.000000
x10 | 0.000000  0.000000  0.000000  0.000000

Figure 3.2: Iterates of Picard iterations
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Convergence behavior

2005 T T T
— % Initial point Xy = 50
180 & Initial point x, = 100
1601 —g— Initial point Xy = 1501 |
i > Initial point Xy = 200
140 |
- 120 R
x
k]
o 100 |
=
©
= 80 1
60 R
40 R
20 R
0 & & ]
8 10

Iteration number (n)

Figure 3.3: The convergence behavior in Example 3.3.4
Example 3.3.5. Let X = [0,00) with the metric d : X x X — R which is defined by
d(x,y) = |x—y|

for all x,y € X . Define a mapping f : X — X by

,

S0 jf0<x<1
fx=<¢ Inx ifl<x<?2
L ifx>2

Then f is not continuous and so f is not satisfied Banach contractive condition. Next,

we define two functions ¢,y : [0,00) — [0,00) by

Coifo<r<1
2 ift>1

and
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From the Figure 3.4, we observe that  is a weak altering distance function and ¢ is a

right upper semicontinuous function such that y(¢) > ¢(¢) for all # > 0 and ¢(0) = 0.

2
8| 7
- t2
6 (1%)/4
s
O
>
2,,

Figure 3.4: Graphs of y and ¢ in Example 3.3.5

Also, we define a w-distance g : X x X — [0,0) by

q(x,y) = max{x,y}

for all x,y € X. It easy to see that g is a ceiling distance of d. Now we will show that
f satisfies the contractive condition (3.3.1) . We will distinguish this claim into the

following cases.

Case 1. If x,y € [0, 1], then

Wil fy) = w(max {205 S0
2

{sin x sin? y}
= max ,
8 8

x2 y2
= ma"{z’z}
= ¢(max{x,y})

= 0(q(x,y))-
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Case 2. If x,y € (1,2], then

v(g(fx, fy))

Case 3. If x,y € [2,0), then

W(g(fx, fy))

Case 4. If x € [0,1] and y € (1,2], then

V(q(fx,fy))

IN

IN

IN

56

y(max{Inx,Iny})
X { (Inx)? (Iny)>

2 72
2
ma {55 )

¢(max{x,y})

0(q(x,y))-

}

)

w(max{l =
)

y x

1 1

max{z—yz,z—x2
2 2
-
¢(max{x,y})

J
0(q(x,y))-

Case 5. If x € (1,2] and y € [0, 1], then the proof is similar to Case 4.
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Case 6. If x € [0,1] and y € (2,00), then

W(g(fx, fy))

IN

IN

IA
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Case 7. If x € (2,0) and y € [0, 1], then the proof is similar to Case 6.

Case 8. If x € (1,2] and y € (2,0), then

v(g(fx, fy))

IN

IN

IN

(max {ins. 1)

Case 9. If x € (2,00) and y € (1,2], then the proof is similar to Case 8.

Therefore, all conditions of Theorem 3.3.3 hold and hence f has a unique fixed point.

Here, x = 0 is a unique fixed point of f.

Some numerical experiments for the unique fixed point of f is given in

Figure 3.5. Furthermore, the convergence behavior of these iterations is shown in Figure

3.6.
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X():O.S XO:1.5 X0:3

x1 | 0.239713 0.405465 0.333333
x2 | 0.118712 0.197223 0.163597
x3 | 0.059217 0.097974 0.081434
xs | 0.029591 0.048908 0.040672
x5 | 0.014793 0.024444 0.020330
xe | 0.007396 0.012221 0.010165
x7 | 0.003698 0.006110 0.005082
xg | 0.001849 0.003055 0.002541
x9 | 0.000925 0.001528 0.001271
x10 | 0.000462 0.000764 0.000635

Figure 3.5: Iterates of Picard iterations

—— Initial point Xq = 0.5
—o— Initial point Xq = 1.5
2.5} —&— Initial point x =3 [
2 L
><C
ks
o 1.5
=}
<
>
1 L
0.5
0 L H— i - & ®
0 2 4 6 8 10

Iteration number (n)

Figure 3.6: The convergence behavior in Example 3.3.5

Taking ¢ = d in Theorems 3.3.2 and 3.3.3, we obtain the following results.

Corollary 3.3.6. Let (X,d) be a complete metric space. Suppose that f : X — X is a
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continuous mapping satisfying the following condition:

w(d(fx, fy)) < o(d(x,y)) (3.3.12)

for all x,y € X, where y : [0,00) — [0,00) is a weak altering distance function and
¢ : [0,00) — [0,00) is a right upper semicontinuous function such that y(t) > 0(t) for
allt > 0. Then f has a unique fixed point on X. Moreover, for each xo € X, the Picard

iteration {x,}, which is defined by x,, = f"xq for all n € N, converges to a unique fixed

point of f.

Corollary 3.3.7. Let (X,d) be a complete metric space. Suppose that f: X — X is a

mapping satisfying the following condition:

w(d(fx, fy)) < 0(d(x,y)) (3.3.13)

for all x,y € X, where y : [0,00) — [0,00) is a weak altering distance function and
¢ :[0,00) — [0,00) is a right upper semicontinuous function such that y(t) > ¢(t) for all
t >0and ¢(0) =0. Then f has a unique fixed point on X. Moreover, for each xo € X,
the Picard iteration {x,}, which is defined by x, = f"xo for all n € N, converges to a

unique fixed point of f.

3.4 Fixed point results for w-generalized Ri-contraction

mappings

In this section, we introduce the new concept of a generalized contraction mapping
along with w-distances in metric spaces and prove new fixed point theorems for gen-
eralized contraction mappings with respect to w-distances in complete metric spaces.
First, we introduce the definition of the new type of generalized contraction mappings

so called a w-generalized Ri-contraction mappings.

Definition 3.4.1. Let ¢ be a w-distance on a metric space (X,d). A mapping f: X — X
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is said to be a w-generalized Ri-contraction mapping if

q(fx, fy) < 0(q(x,y)) (3.4.1)

for all x,y € X, where ¢ : [0,00) — [0, 00) is a mapping such that ¢(0) =0, ¢(r) < ¢ and

limsup@(s) <t for all r > 0.
s—tt

Now, we will create two lemmas for proving the main result in this section.

Lemma 3.4.2. Let q be a w-distance on a metric space (X,d). Suppose that f :
X — X is a w-generalized Ri-contraction mapping. Then li_r>n q(f"x, f"x) = 0 and
n—oo

lgn g(f"x, f'x) = 0 for each x € X.
n—oo

Proof. Suppose that @ : [0,00) — [0, ) is mapping satisfying the condition (3.4.1). Let

x € X be arbitrary. We define the sequence {x,} C X by
be ey e

forall n € N. Set a,, := q(x,,x,+1) > 0 for all n € N. If there is ng € N such that a,,, =0,

then ¢(a,,) = 0 and so

0 S Ang+1
= C[(fxn07fxn0+l)

< o(an)
= 0.

This implies that a,,11 = 0. By similar process, we obtain a, = 0 for all n > n,,,1 and
hence

lim g(f"x, f**'x) =0

n—oo

for all x € X. Now we may suppose that a,, > 0 for each n € N. From condition (3.4.1)
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and @(¢) < ¢t for all # > 0, we obtain

INA
S
—
N
N
+
-

IN
S
S
N

< ay

for all n € N. Hence {a,} and {@(a,)} are strictly decreasing and bounded below. It
yields that lim a, and lim @(a,) exist. We assume that 0 < a = lima, and a, = a+¢€,,
n—oo n—roo n—roo

where €, > 0. Note that if limsup@(s) < ¢ for all 7 > 0, then for each sequence {z, } with
s—tt
tn } at as n — oo; limsupo(,) < a. Therefore,
t,—a™t

0 < a

= lima
n—oo il

IN

lim @(ay)

n—oo

lim  sup @(s)

i s€ (a>an+l )

lim sup  @(s)

Entl sl s€ (a,a+£n+1 )

IN

< lim sup o(s)
8_>Ose(a,a+s)
< a.

This is a contradiction. Thus li_r>n a, = 0, that is, ILm g(f"x, f"T1x) =0 foreach x € X.
n—roo n—oo

Similarly, we can conclude that lim g(f"*'x, f"x) = 0 for each x € X. ]
n—soo

Lemma 3.4.3. Let g be a w-distance on a metric space (X,d). Suppose that f : X — X
is a w-generalized Ri-contraction mapping. Then for each x € X, { f"x}'=% is a Cauchy

sequence.

Proof. Suppose that @ : [0,00) — [0, 00) is mapping satisfying the condition (3.4.1). We

want to proof that lim ¢(x,,x,) = 0. Suppose this by contradiction. Assume that
m,n—soo

{x, = f"x}"=7 is not a Cauchy sequence. Then there exist € > 0 and integers my,n, € N
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such that my > ny > k and g(x,,,xm, ) > €fork=0,1,2,.... Also, we can choose m; in

order to be assume that g(xy, ,x,,—1) < €. Hence for each k € N, we have

o™
IA

q (xnk ) xmk>

IN

Q(xnk7xmk—1) + Q(xmk—l 7xmk)

IN

8+Q(ka_1 axmk)'

By Lemma 3.4.2, we obtain

k11_r>1°1° (Kt —AE

We observe that

IN

Q(xnkaxmk) Q(xnkaxnk-i-l) =+ Q<xﬂk+l JXMk+1) - (I(xmk—l—l 7xmk)

= ‘I(xnwxnkJrl) iy (P<q(xnk7xmk)) +q(xmk+17xmk)'

Letting k — oo and using @(¢) < ¢ and limsup,_,,+ @(s) < ¢ for all > 0, we obtain

o
I

T 67 2o, o)
k—yoo

]}LH:O(P(Q (xnk s Xy, )

IN

IN

lim  sup @(s)
€40 5¢(e,6+8)

Sl EX

This is a contradiction. Hence, lim g(x,,x,,) = 0. From Lemma 2.6.8, we get { f"x}—7
m,n—soo

is a Cauchy sequence in X. ]

Next, we give the main result in this section.

Theorem 3.4.4. Let (X,d) be a complete metric space and q : X X X — [0,00) be a
w-distance on X. Suppose that f : X — X is a continuous w-generalized Ri-contraction
mapping. Then f has a unique fixed point in X. Moreover, for each x € X, the Picard
iteration {x,}, which is defined by x,, = f"x for all n € N, converges to a unique fixed

point of f.
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Proof. Suppose that @ : [0,00) — [0, 0) is mapping satisfying the condition (3.4.1). Let

x € X be an arbitrary point in X. From Lemma 3.4.3, we obtain { f"x}"= is a Cauchy

sequence. Since (X,d) is a complete metric space, get li_r>n f"x = p for some p € X.
Nn—yoo

From the continuity of f, we get

— lim f"*x
p n—>°°f

= lim f(f"x)

n—oo

= #{ms)

= f(p)

Thus, p is a fixed point of f. Furthermore, from the condition (3.4.1), we obtain

q(p,p) =q(fp,.fpr) <0(q(p,p)).

It implies that g(p, p) = 0. Next, we will show the uniqueness of the fixed point of T'.

Suppose that u € X is an another fixed point of f. From the condition (3.4.1), we obtain

q(p,u) =q(fp, fu) < e(q(p,u)).

This implies that ¢(p,u) = 0. By Lemma 2.6.8, we get p = u. Therefore, f has a unique

fixed point p. This completes the proof. ]

Here, we give the well-known lemma about the relation between some con-

ditions of the control function without the proof. (see more details from [3]).

Lemma 3.4.5. Let @ : [0,00) — [0,00) be a function.

(1) If @ is right continuous such that ¢(t) <t for all t > 0, then ¢(0) = 0.
(#2) If ¢ is increasing and right continuous, then @ is upper semi-continuous.
(#3) If Q is upper semi-continuous from the right such that ¢(t) <t for all t > 0, then

limsup@(s) <t forallt > 0.
s—tt

By using Theorem 3.4.4 and Lemma 3.4.5, we get the following results.
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Corollary 3.4.6. Let (X,d) be a complete metric space and g : X x X — [0,0) be a w-
distance on X. Suppose that f : X — X is a continuous mapping and @ : [0,00) — [0, 0)
is an upper semi-continuous function from the right such that (0) =0, @(t) < t for all

t > 0and

q(fx, fy) < 0(q(x,y)) (3.4.2)

for all x,y € X. Then f has a unique fixed point in X. Moreover, for each x € X, the

Picard iteration {x,}, which is defined by x, = f"x for all n € N, converges to a unique

fixed point of f.

Corollary 3.4.7. Let (X,d) be a complete metric space and q : X x X — [0,0) be a w-
distance on X. Suppose that f : X — X is a continuous mapping and @ : [0,00) — [0, o)

is increasing and right continuous such that ¢(t) <t for all t > 0 and

q(fx, fy) < 0(q(x,y)) (3.4.3)

forall x,y € X. Then f has a unique fixed point p in X. Moreover, for each xo € X, the

Picard iteration {x,}, which is defined by x,, = f"xo for all n € N, converges to a unique

fixed point of f.

Taking g = d in Theorem 3.4.4 and Corollaries 3.4.6, 3.4.7, we obtain the

following results.

Corollary 3.4.8 ([23]). Let (X,d) be a complete metric space and f : X — X be a
mapping. Suppose that there is a function @ : [0,00) — [0,0) such that ¢(0) =0, @(r) <t

and limsup_,,+ ¢(s) <t forallt > 0 and

d(fx,fy) < 9(d(x,y)), (3.4.4)

for all x,y € X. Then f has a unique fixed point p in X. Moreover, for each xo € X,
the Picard iteration {x,}, which is defined by x, = f"xo for all n € N, converges to a

unique fixed point of f.
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Corollary 3.4.9. Let (X,d) be a complete metric space. Suppose that f: X — X is

a mapping and @ : [0,00) — [0,00) is upper semi-continuous from the right such that

¢(0) =0, o(t) <t forallt >0 and

d(fx, fy) < @(d(x,y)) (3.4.5)

for all x,y € X. Then f has a unique fixed point in X. Moreover, for each x € X, the
Picard iteration {x, }, which is defined by x, = f"x for all n € N, converges to a unique

fixed point of f.

Corollary 3.4.10 ([14]). Let (X,d) be a complete metric space. Suppose that f : X — X
is a mapping and @ : [0,00) — [0,0) is increasing and right continuous such that 9(t) < t

forallt >0 and

d(fx, fy) < ¢(d(x,y)) (3.4.6)

for all x,y € X. Then f has a unique fixed point p in X. Moreover, for each xo € X,
the Picard iteration {x,}, which is defined by x, = f"xo for all n € N, converges to a

unique fixed point of f.
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CHAPTER 4

AN APPLICATION TO NONLINEAR FREDHOLM INTEGRAL
EQUATIONS AND VOLTERRA INTEGRAL EQUATIONS

The aim of this chapter is to present the applications of our theoretical results in the
previous chapter for guaranteeing the existence and uniqueness of a solution for various

problems which regarded by the following equations:

e nonlinear Fredholm integral equations;

e nonlinear Volterra integral equations.

Throughout this section, let us denote C[a, b], where a,b € R with a < b, by

the set of all continuous functions from [a, b] into R.

4.1 Solutions of nonlinear Fredholm and Volterra in-
tegral equations arising from w-generalized weak

contraction mappings

In this section, we prove the existence and uniqueness results of a solution for the non-
linear Fredholm integral equations and nonlinear Volterra integral equations by using

Theorem 3.1.5 in the previous chapter.

Theorem 4.1.1. Consider the nonlinear Fredholm integral equation

b
x(r) = o() —f—/a K(t,s,x(s))ds (4.1.1)

where a,b € R witha < b, ¢ : [a,b] — R and K : [a,b]* x R — R are given mappings.

Suppose that the following condition holds:

(i) @ and K are continuous mappings;
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(ii) the mapping f : Cla,b] — Cla,b] defined by
(fx)(t) =o(r) —i—/lK(t,s,x(s))ds forall x € Cla,b] and t € |a,b]

is a continuous mapping;

(iii) there are two functions ¥, : [0,00) — [0,00) with ¥ is an altering distance func-
tion and § is a continuous function such that y(t) <t forallt > 0 and 6(t) =0 if
and only ift =0, and for each x,y € Cla,b], we have

W) +y(s)1)] - [«p ( sup |+(1)|+ sup |y<1>|>] ~2Jo(1)|

l€a,b] I€(a,b]

K (1,5,x(s))| + K (1,5,y(s))| < b—a

forallt,s € |a,b).

Then the nonlinear Fredholm integral equation (4.1.1) has a unique solution. Moreover,

for each xo € Cla,b), the Picard iteration {x,}, which is defined by

b
() (0) = 9+ | K(t,s.5,1(5))ds

foralln € N, converges to a unique solution of the nonlinear Fredholm integral equation

(4.1.1).
Proof. Let X = Cla,b]. Clearly, X with the metric d : X x X — [0,0) given by
d(x,y) = sup |x(z) —y(t)|
t€la,b)
for all x,y € X, is a complete metric space. Next, we define the function g : X x X —
[0,20) by

q(x,y) = sup |x(z)|+ sup |y(r)]
t€la,b) t€(a,b]

for all x,y € X. Clearly, g is a w-distance on X and a ceiling distance of d. Here, we

will show that f satisfies the contractive condition (3.1.11). Assume that x,y € X and
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€ [a,b]. Then we get

(PO = o)+ [ K sats)as] + o)+ [ Ktes.v(6)as
b
o0

; K(t,s,x(s))ds
20o0)|+ [ 1K s,2(6) s + [ K (e, s

IA

ool +| [ Kie,5.3(5)ds

IN

— el yﬁ/ (K (2.5,x(5))] + K (2,5,5(5))] )ds
m¢|+/< «Hwngwwmwwﬂwm>%

IA

—a

IN

20g)]+ 5 [ (wlax.) ~ ate) ~2l0(0) )
= W(g(xy) = 0(g(x,y))-

This implies that

sup [(fx)()|+ sup [(fy) (@) < w(q(x,y)) —d(q(x,y))

t€la,b) t€la,b)
and so

q(fx, fy) < w(q(x,y)) —9(q(x,y))

for all x,y € X. Hence we have

W(g(fx, fy)) < q(fx, fy)) < w(q(x,y)) —d(q(x,y))

for all x,y € X. It follows that f satisfies the condition (3.1.11). Therefore, all conditions
of Theorem 3.1.5 are satisfied and thus f has a unique fixed point. This implies that
there exists a unique solution of the nonlinear Fredholm integral equation (4.1.1). This

completes the proof. O]

By using the identical method in the proof of the above theorem, we get the

following result.

Theorem 4.1.2. Consider the nonlinear Volterra integral equation

t) —l—/tK(t,s,x(s))ds (4.1.2)
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where a,b € R with a < b, @ : [a,b] — R and K : [a,b]> x R — R are given mapping.

Suppose that the following conditions hold:

(i) ¢ and K are continuous mappings;
(ii) the mapping f : Cla,b] — Cla,b] defined by

t
(fx)(t) =o(1) +/ K(t,s,x(s))ds forall x € Cla,b] and t € [a,b]
a
IS a continuous mapping;

(ii) there are two functions ¥, : [0,00) — [0,00) with ¥ is an altering distance func-
tion and § is a continuous function such that y(t) <t forallt >0, ¢(t) =0 if and
only ift =0, and for each x,y € Cla,b], we have

[w(lx(s) + [y(s))] = [q) ( sup |x(l)|+ SUP}MU)] —2[o(1)|

l€]a,b] I€la,b

|K(t,5,x(s))| + |K(t,s,¥(s))| < b—a

forallt,s € [a,b).

Then the nonlinear Volterra integral equation (4.1.2) has a unique solution. Moreover,

for each xy € Cla,b), the Picard iteration {x, }, which is defined by

(0)(0) = 900)+ [ K(t,5,50-1(5))ds

forall n € N, converges to a unique solution of the nonlinear Volterra integral equation

(4.1.2).

4.2 Solutions of nonlinear Fredholm and Volterra inte-
gral equations arising from w-generalized JS-contraction

mappings

In this section, we prove the existence and uniqueness result of a solution for the non-

linear Fredholm integral equations and nonlinear Volterra integral equations by using

Theorem 3.2.17.
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Theorem 4.2.1. Consider the nonlinear Fredholm integral equation

(1) = o(t) + / " K(t5,x(s))ds @.2.1)

where a,b € Rwitha < b, §: [a,b] — R and K : [a,b]> x R — R are two given functions.

Suppose that the following conditions hold:
(i) 0 and K are continuous mappings;
(ii) the mapping f : Cla,b] — Cla,b] defined by
(fx)(t) = (1) +/[K(t,s,x(s))ds forall x € Cla,b] and t € |a,b)
IS a continuous mapping;

(iii) there is \y € W such that y(t) <t for allt > 1 and for each x,y € Cla,b], we have

X ky _
K(t5,2(5))] + K (1, 5,3(s)) | < PO IZ@B] 2/o(1)|

forallt,s € [a,b], where k; € [0,1).

Then the nonlinear Fredholm integral equation (4.2.1) has a unique solution. Moreover,

for each xo € Cla,b), the Picard iteration {x,}, which is defined by

b
() (0) = 0(0) + [ K(t5,%,-1(s))ds

foralln € N, converges to a unique solution of the nonlinear Fredholm integral equation

(4.2.1).

Proof. Let X = Cla,b]. Clearly, X with the metric d : X x X — [0,00) given by

d(x,y) = sup |x(r) —y(t)|
t€(a,b]
for all x,y € X, is a complete metric space. Next, we define the function g : X x X —

[0,0) by

q(x,y) = sup |x(t)|+ sup |y(z)]
t€la,b) t€[a,b]
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for all x,y € X. Clearly, g is a w-distance on X and ceiling distance of d. Here, we will

show that f is satisfies the condition (3.2.6). Assume that x,y € X and ¢ € [a,b]. Then

we get
PO I@] = Jo)+ [ ks, x(s)as] + o)+ [ Ko 505
< o) +| [ Ktes.x(oas| #1001+ | [ K5 v(6)a
< 20001+ [ 1K (s x)lds + [ K5 y(5)las
= 20001+ (s I, 5,3(5)) D
o) ! \+/( QDO =201 ,
<

2001+ 5 | [ wtatxas— [ 2ooas
= [w(glxy)"

This implies that sup |(fx)(¢)|+ sup |(fy)(1)] < [w(g(x,y))]* and so
tcla,b] t€la,b]

q(fx, fy) < [w(g(x,y))

for all x,y € X. Hence we have

w(g(fx, 1)) < w(w(g@,y)]") < [wig(x,y))]"

for all x,y € X. It follows that f satisfies the condition (3.2.6). Therefore, all condition
of Theorem 3.2.17 are satisfied and thus f has a unique fixed point. This implies that
there exists a unique solution of the nonlinear Fredholm integral equation (4.2.1). This

completes the proof. O]
By using the identical method in the proof of the above theorem, we get the
following result.
Theorem 4.2.2. Consider the nonlinear Volterra integral equation
t
0+ / K(t,5,x(s))ds 4.2.2)
a

where a,b € Rwitha < b, §: [a,b] — R and K : [a,b]> x R — R are two given functions.

Suppose that the following conditions hold:
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(i) 0 and K are continuous mappings;
(ii) the mapping f : Cla,b] — Cla,b] defined by
(fx)(t) = 0(z) +/IK(t,s,x(s))ds forall x € Cla,b] and t € |a,D)
a
s a continuous mapping;

(iii) there is\y € W such that y(t) <t for allt > 1 and for each x,y € Cla,b|, we have

(w(lx()|+ [y(©)D* = 2[0(1)]
b—a

[K(2,5,x(s)) [+ |K(1,5,(s))] <

forallt,s € [a,b], where k; € [0,1).

Then the nonlinear Volterra integral equation (4.2.2) has a unique solution. Moreover,

for each xy € Cla, D), the Picard iteration {x,}, which is defined by

()0 = 00) + [ K(t50-1(5))ds

forall n € N, converges to a unique solution of the nonlinear Volterra integral equation

(4.2.2).

4.3 Solutions of nonlinear Fredholm and Volterra inte-
gral equations arising from w-generalized SS-contraction

mappings

In this section, we prove the existence and uniqueness result of a solution for the non-
linear Fredholm integral equations and nonlinear Volterra integral equations by using

Theorem 3.3.3.

Theorem 4.3.1. Consider the nonlinear Fredholm integral equation

(1) = (1) + / " K(t.5.x(s))ds 4.3.1)

where a,b € Rwitha < b, @ : [a,b] = R and K : [a,b]> x R — R are two given functions.

Suppose that the following condition holds:
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(i) @ and K are continuous mappings;
(ii) the mapping f : Cla,b] — Cla,b] defined by
(fx)(t) = o(r) +/[K(t,s,x(s))ds forall x € Cla,b] and t € |a,b]
a
is a continuous mapping;

(iii) there are two functions Y, 0 : [0,00) — [0,00) with ¥ is a weak altering distance
function and § is a right upper semicontinuous function such that y(t) > ¢(t) for

allt > 0and y(t) <t forallt >0, (0) = 0 and for each x,y € Cla,b|, we have

[0C sup |x(z)|+ sup [y(r)])] —2[e(r)|

s€la,b] s€la,b)

b—a

K (2,5,x(s))| +[K(7,5,5(5))| <

forallt,s € |a,b).

Then the nonlinear Fredholm integral equation (4.3.1) has a unique solution. Moreover,

for each xy € Cla, D), the Picard iteration {x, }, which is defined by

(o) (1) = (2) + / ¢, s e

foralln € N, converges to a unique solution of the nonlinear Fredholm integral equation

(4.3.1).
Proof. Let X = Cla,b]. Clearly, X with the metric d : X x X — [0,0) given by
d(x,y) = sup |x(t) —y(1)]
t€la,b]
for all x,y € X, is a complete metric space. Next, we define the function g : X x X —
[0,e0) by

q(x,y) = sup |x(z)|+ sup |y(z)]
t€la,b) t€[a,b]

for all x,y € X. Clearly, ¢q is a w-distance on X and a ceiling distance of d . Here, we

will show that f satisfies the contractive condition (3.3.1). Assume that x,y € X and
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t € a,b]. Then we get

b b
OO+ = [o0)+ [ K(ts.x9)ds| + [0l + [ K(t.5.5())ds
/abK(t,s,x(s))ds‘ OIE /abK(t,s,y(s))ds‘
b b
2000) |+ [ K(rs.x(5)lds+ [ K(0.5())]ds

b
= 20000)1+ [ (K (s |+ K(o,5, (5D
o sup x(0)] + sup (1)) 2000
2lo0)|+ [ (—=2—F2 )ds
20o)1+ 5[ [ otateds— [ 2lot)as]

= 0(q(x,y))-

IN

(1] +

IN

IN

IN

This implies that sup |(fx)(7)|+ sup |(fy)(?)] < d(g(x,y)) and so
t€[a,b] t€la,b)

q(fx, fy) < [0(g(x,y))]

for all x,y € X. Hence we have

W(q(fx, fy)) < w(0(q(x,y))) < d(g(x,y))

for all x,y € X. It follows that f satisfies the condition (3.3.1). Therefore, all conditions
of Theorem 3.3.3 are satisfied and thus f has a unique fixed point. This implies that
there exists a unique solution of the nonlinear Fredholm integral equation (4.3.1). This

completes the proof. O]

By using the identical method in the proof of the above theorem, we get the

following result.

Theorem 4.3.2. Consider the nonlinear Volterra integral equation

(1) = o(t) + / "K(t,5,x(s))ds 4.32)

where a,b € Rwitha < b, @ : [a,b] = R and K : [a,b]> x R — R are two given functions.

Suppose that the following condition holds:
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(i) @ and K are continuous mappings;
(ii) the mapping f : Cla,b] — Cla,b] defined by
(fx)(t) = o(r) +/[K(t,s,x(s))ds forall x € Cla,b] and t € |a,b]
a
is a continuous mapping;

(iii) there are two functions ,( : [0,00) — [0,00) with ¥ is a weak altering distance
function and § is a right upper semicontinuous function such that y(t) > ¢(t) for

allt > 0and y(t) <t forallt >0, (0) = 0 and for each x,y € Cla,b|, we have

K (2,5,%(5))| + K (1,5,y(s))] < PHOIF g(—t)l” —2Jg(1)|

forallt,s € |a,b).

Then the nonlinear Volterra integral equation (4.3.2) has a unique solution. Moreover,

for each xo € Cla,b), the Picard iteration {x,}, which is defined by

(0)(0) = 90)+ [ K(t,5,5-1(5))ds

forall n € N, converges to a unique solution of the nonlinear Volterra integral equation

(4.3.2).

4.4 Solutions of nonlinear Fredholm and Volterra inte-
gral equations arising from w-generalized Ri-contraction

mappings

In this section, we prove the existence and uniqueness results of a solution for the non-

linear Fredholm integral equations and nonlinear Volterra integral equations by using

Theorem 3.4.4.
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Theorem 4.4.1. Consider the nonlinear Fredholm integral equation
b
x(1) = o(r) + / K(t,s,x(s))ds (4.4.1)
a

where a,b € R witha < b, ¢ : [a,b] — R and K : [a,b]> x R — R are given mappings.

Suppose that the following condition holds:

(i) ¢ and K are continuous mappings;
(ii) the mapping f : Cla,b] — Cla,b] defined by
(fx)(t) = 0(z) +/1K(t,s,x(s))ds forall x € Cla,b] and t € |a,b)
a
IS a continuous mapping;

(iii) there is a function @ : [0,00) — [0,00) such that ¢(0) =0, ¢(¢) < t and limsup@(s) <

s—tt
t forallt > 0 and

<P< sup [x(s)|+ sup MS)\)] —20(2)

s€la,b) s€la,b)

b—a

K (2,5,x(s))| +[K(7,5,5(5))| <
for all x,y € Cla,b] and for all t,s € [a,b].

Then the nonlinear Fredholm integral equation (4.4.1) has a unique solution. Moreover,

for each xy € Cla, D), the Picard iteration {x,}, which is defined by

b
() () = 0(0) + [ K(t,5.50-1(5))ds

foralln € N, converges to a unique solution of the nonlinear Fredholm integral equation

(4.4.1).

Proof. Let X = Cla,b]. Clearly, X with the metric d : X x X — [0,0) given by

d(x,y) = sup |x(t) —y(t)|
t€la,b]
for all x,y € X, is a complete metric space. Next, we define the function g : X x X —
[0,22) by

q(x,y) = sup |x(r)|+ sup |y(z)]
t€la,b) t€[a,b]
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for all x,y € X. Clearly, g is a w-distance on X. Here, we will show that f satisfies the

contractive condition (3.4.1). Assume that x,y € X and ¢ € [a,b]. Then we get

PO = o)+ [ Klesxtoas| + o)+ [ tes.v6)as

< 1o)1+] [ Ks.x(s1as] + o)1+ | [ K5, v(5))as
b b
< 2001+ [ IK(sx(6)lds+ [ K (15, 5()]ds
b
= 2000)|+ [ (K (5,9 + K (1,5,5()])ds
] [“’<S2}fb]'x“)' + sup ]|y<s>|)} 0]
< 20|+ | - ds

= 2001+ 5 [ tolate )~ 2l0(0las]
= 0(q(x,y)).

This implies that sup |(fx)(¢)|+ sup |(fy)(t)] < @(g(x,y)) and so
t€(a,b] t€(a,b]

q(fx, fy) <[o(q(x,y))]

for all x,y € X. It follows that f satisfies the condition (3.4.1). Therefore, all conditions
of Theorem 3.4.4 are satisfied and thus f has a unique fixed point. This implies that
there exists a unique solution of the nonlinear Fredholm integral equation (4.4.1). This

completes the proof. O]

Using the identical method in the proof of the above theorem, we get the

following result.

Theorem 4.4.2. Consider the nonlinear Volterra integral equation

X(t) = 0(t) + / "K(t,5,x(s))ds 4.4.2)

where a,b € R with a < b, ¢ : [a,b] — R and K : [a,b]*> x R — R. Suppose that the

following conditions hold:

(i) 0 and K are continuous mappings;
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(ii) the mapping f : Cla,b] — Cla,b] defined by
(fx)(t) =0(r) —i—/azK(t,s,x(s))ds forall x € Cla,b] and t € |a,b]
is a continuous mapping;

(iii) there is a function @ : [0,00) — [0,00) such that ¢(0) =0, ¢(t) < t and limsup@(s) <
s—tT

t forallt >0 and

sup [x(s)[+ sup MS)I)] —20(1)

s€la,b] s€la,b]
b—a

d
K (2,5,x(s))[ + K (2,5, 5(5))| <
for all x,y € Cla,b] and for all t,s € [a,b].

Then the nonlinear Volterra integral equation (4.4.2) has a unique solution. Moreover,

for each xy € Cla, D), the Picard iteration {x,}, which is defined by

()0 =00)+ [ Klt,5,5-1(5))ds

for all n € N, converges to a unique solution of the nonlinear Volterra integral equation

(4.4.2).
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CHAPTER 5

AN APPLICATION TO NONLINEAR FRACTIONAL
DIFFERENTIAL EQUATIONS

The aim of this chapter is to present the application of our theoretical results in Chapter
3 for guaranteeing the existence and uniqueness of a solution for nonlinear fractional

differential equations of Caputo type.

Throughout this section, let us denote C[a, b], where a,b € R with a < b, by

the set of all continuous functions from [a, b] into R.

First, let us recall some basic definitions of fractional calculus (see [16,
26]). For a continuous function g : [0,0) — R, the Caputo derivative of g order § > 0
is denote by “DP(g(r)) and it is defined as

1

D) = g /0 (£ —5)"B=1g) (5)ds,

where n = [B] 4 1 such that [B] denotes the integer part of the positive real number 3

and I is a gamma function.

Consider the nonlinear fractional differential equation of Caputo type:

“DP(x(t)) = f£(t,x(t)) (5.0.1)

via the integral boundary conditions

where 1 < <2,0<n<1,xeC[0,1] and f:[0,1] x R — R is a continuous function
(see [2]). It is well-known that if f is continuous, then (5.0.1) is immediately inverted

as the very familiar integral equation

S0 = g [ 0= s
1
G o (19 (s

+ﬁ/f </Os(s—m)B_lf(m,x(m))dm>ds. (5.0.2)
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5.1 Solutions of nonlinear fractional differential equa-
tions arising from w-generalized weak contraction

mappings

The aim of this section is to present an application of Theorem 3.1.5 for proving the
existence and uniqueness of a solution for the nonlinear fractional differential equation

of Caputo type.

Theorem 5.1.1. Consider the nonlinear fractional differential equation (5.0.1). Sup-

pose that the following conditions hold:

(i) the mapping T : C|0,1] — CI[0, 1] defined by

it 'S ﬁ/ot(“s)ﬁ_lf (5,x(s))ds
1
<2—nzzt>r(ﬁ>/o (1=5)Pf(s,x(5))ds

forall x € Cla,b] and t € [a,b)],

is a continuous mapping;

(ii) there are two functions ¥, : [0,00) — [0,00) with ¥ is an altering distance func-
tion and § is a continuous function such that y(t) <t for allt > 0 and ¢(t) = 0 if

and only if t = 0, and for each x,y € C[0, 1], we have

75D 1351 < P D gt o)) - [¢ ( sup (1) + sup |y<r>\)]

t€[0,1] t€l0,1]

foralls €10,1].

Then the nonlinear fractional differential equation of Caputo type (5.0.1) has a unique
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solution. Moreover, for each xo € C[0,1], the Picard iteration {x,}, which is defined by

(o)1) = ﬁ /Oto-s)B—l Fls.xn1(5))ds
1
G fp (1 0

+ 2t /n (/s(s m)P=1 £ (m,x (m))a’m)ds

AT NI RN - 1 Xn—1

2-n)T@) Jo \Jo '

for all n € N, converges to a unique solution of the nonlinear fractional differential

equation of Caputo type (5.0.1).
Proof. Let X = CJ0, 1]. Clearly, X with the metric d : X x X — [0,0) given by
d(x,y) = sup |x(t) —y(t)]
t€[0,1]
for all x,y € X, is a complete metric space. Next, we define the function g : X x X —
[0,20) by

q(x,y) = sup |x(z)| + sup |y(z)|
1€[0,1] 1€[0,1]

for all x,y € X. Clearly, ¢q is a w-distance on X and a ceiling distance of d . Here, we
will show that 7" satisfies the contractive condition (3.1.11). Assume that x,y € X and

t € [0,1]. Then we get
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|(Tx) (0)| + [(Ty) (2)]

_ ‘ﬁ/ol(t—s)ﬁ_lf(s,x(s))ds

1
_(Z_T?W/O (1—5)P=1 £(s,x(s))ds

T Uy o s mstmyam)as
+)ﬁ/ot(t—S)B_1f(s7y(S))ds

1
—@_fﬁ | =98 7. 5(5))ds

+—(2—T]2;)F(B) /On (/OS(S—m)B_]f(m,y(m))dm>dS‘

1 4 ol
£ o U X+ 15505 s

e (= X6+ (5.5 s

2-m?)r
2t ny s b
HEEDNE) /0 /0 (s =m)P=1(f (m,x(m)) + f (m, y(m)))dm|ds

1§ 7 _ F(B+1)
Wi)/o It —s|B-! (w(lx(s)[ +y(s)D)] — 0(q(x,y)))ds

. = /01<1 9P L 9]+ )]~ g 3)) s

(212
2t ny fs T(B+1)
TR /0 /0 (s = m)P T 22 (W (1x(9)] + Iy(s) )]

~0(q(x,y)))dm|ds

r(BS+ D ()] - ola(x.)

1 1
B—1
X sup —/ t—s|Pds
t€(0,1)<F(B) 0 | |

# Sﬁ 1 S S — I’I’lB 1 m S
+(2_n2)r(ﬁ)/0 (1= st s / /1 P~ dmas)
< y(g(x,y)) —0(g(x,y))-

IN

IN

IN

This implies that

sup |(Tx)(1)[+ sup [(Ty)(1)] < w(g(x,y)) — 0(g(x,))

t€la,b) t€la,b]

and so

q(Tx,Ty) < w(g(x,y)) —0(q(x,y))
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for all x,y € X. Hence we have

W(q(Tx,Ty)) < q(Tx,Ty) < w(q(x,y)) —d(q(x,y))

for all x,y € X. It follows that T satisfies the condition (3.1.11). Therefore, all condi-
tions of Theorem 3.1.5 are satisfied and thus 7 has a unique fixed point. This implies
that there exists a unique solution of the nonlinear fractional differential equation of

Caputo type (5.0.1). This completes the proof. ]

5.2 Solutions of nonlinear fractional differential equa-

tions arising from w-generalized JS-contraction map-
pings

The aim of this section is to prove the existence and uniqueness result of solutions for

the nonlinear fractional differential equations of Caputo type by using Theorem 3.2.17.

Theorem 5.2.1. Consider the nonlinear fractional differential equation (5.0.1). Sup-

pose that the following conditions hold:

(i) the mapping T : C|0,1] — C[0, 1] defined by

T30 = g5 =9 Floua(s))ds
1
s -9 a(o)as

2t n $ B
+W/O (/0 (s —m) 1f(m,x(m))dm)a’s
forall x € Cla,b] and t € [a,b)],

is a continuous mapping;

(ii) there is \y € ¥ such that y(t) <t for allt > 1 and for each x,y € C[0,1], we have

k1
5.+ 1G5yt < TP w(!x(s)l + |y<s>|>]

forall s € [0, 1], where k; € [0,1).

Ref. code: 25595809031015E0I



84

Then the nonlinear fractional differential equation of Caputo type (5.0.1) has a unique

solution. Moreover, for each xo € C[0, 1], the Picard iteration {x,}, which is defined by

(ka)(t) = % / (6= )81 F 5,01 (5))ds
‘@—iﬁ[)lu—s)“f(s,xm(s»ds

i@y Uy P )

for all n € N, converges to a unique solution of the nonlinear fractional differential

+

equation of Caputo type (5.0.1).
Proof. Let X = CJ0, 1]. Clearly, X with the metric d : X x X — [0,00) given by
d(x,y) = sup |x(t) —y(t)|
t€[0,1]
for all x,y € X, is a complete metric space. Next, we define the function g : X x X —
[0,20) by

q(x,y) = sup |x(z)|+ sup |y(z)]
t€[0,1] 1€[0,1]

for all x,y € X. Clearly, ¢ is a w-distance on X. Here, we will show that T satisfies

the contractive condition (3.2.6). Assume that x,y € X and ¢ € [0,1]. Then we get
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(- TIZZ)F(B) 0
t s _
T fp (y (= smstmyam)a|

1 f _
gy ) 9P s r(w)as

_(Z—lew /01(1 — )P £(5,y(s))ds

Ty (p 6P o stoam)as

f%ﬁﬂﬁ—ﬂB%vwmwn+vmwwmw
___ﬁ%ﬂgﬁkpﬂw1wmawﬂ+vwwwmﬁ

(2-n?
/Os(s—m)ﬁl(f(m,x(m)) + f(m,y(m)))dm
Lot e TB+D)
_/0 r—sP 122

E ; WQAM+U®0
ky
_%/01(1_@;3—1@ W<|x(s)|+b’(s)|>] ds

(2—n?
s TR+
Acs p1E

IN

ds

2t dl
*c—mnw»ﬁ

ky
ds

IN

2t M
*@—wﬁmmﬁ

ky
W<|X(S)| + Iy(S)|>] dm

D g

1 1 B
s (e fy host
S B4 - A "l — B dmds
+<2—nZ)F<B)/o(1 ) d+<2—n2>r<5>/o/o’ P~ dmas )

< [w(g(xy)h.

X ds

IN

This implies that sup |(Tx)(¢)|+ sup |(Ty)(¢)] < [w(g(x,y))]*" and so
t€la,b) t€la,b)

v(q(Tx,Ty)) < w([w(g(x,y)]*) < [w(g(x,y)M
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for all x,y € X. It follows that T satisfies the condition (3.2.6). Therefore, all conditions
of Theorem 3.2.17 are satisfied and thus 7 has a unique fixed point. This implies that
there exists a unique solution of the nonlinear fractional differential equation of Caputo

type (5.0.1). This completes the proof. [

5.3 Solutions of nonlinear fractional differential equa-

tions arising from w-generalized SS-contraction map-
pings

The aim of this section is to present an application of Theorem 3.3.3 for proving the
existence and uniqueness of a solution for the nonlinear fractional differential equation

of Caputo type.

Theorem 5.3.1. Consider the nonlinear fractional differential equation (5.0.1). Sup-

pose that the following conditions hold:

(i) the mapping T : C|0,1] — C|[0, 1] defined by

10 = g5 =97 Floux(s))ds
1
—(2_“2%/0 (1—5)8" £(5,x(s))ds

2t

Sty (] P s xm)dm) s

forall x € Cla,b] and t € [a, D],

is a continuous mapping;

(ii) there are two functions ,¢ : [0,00) — [0,00) with ¥ is a weak altering distance
function and § is a right upper semicontinuous function such that y(t) > ¢(t) for

allt > 0and y(t) <t forallt >0, 0(0) = 0 and for each x,y € C[0,1], we have

rp+1)

£, 2|+ 1f 3] < — P

¢< sup |x(s)| + sup MS)\)]

s€[0,1] s€[0,1]
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foralls €10,1].

Then the nonlinear fractional differential equation of Caputo type (5.0.1) has a unique

solution. Moreover, for each xo € C[0,1], the Picard iteration {x,}, which is defined by

(o)) = ﬁ /Ota—s)B—l Fls.xn1(s))ds
2t

‘@T%HB)/OIM—s>ﬁ—1f<s,xn_1<s>>ds
2t n S _
+ L (] =mP s m 1 (m)am)ds

for all n € N, converges to a unique solution of the nonlinear fractional differential

equation of Caputo type (5.0.1).
Proof. Let X = CJ0,1]. Clearly, X with the metric d : X x X — [0, o) given by
d(x,y) = sup |x(t) —y(1)]
t€[0,1]
for all x,y € X, is a complete metric space. Next, we define the function g : X x X —
[0,22) by

q(x,y) = sup |x(z)|+ sup |y(z)|
1€[0,1] t€[0,1]

for all x,y € X. Clearly, ¢ is a w-distance on X. Here, we will show that T satisfies

the contractive condition (3.3.1). Assume that x,y € X and 7 € [0,1]. Then we get
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|(Tx) (0)| + [(Ty) (2)]

1
g o (=9 Gsxs)ds

Ty Uy e mstmyam)a
g [ =9 Foytoas

—(2_1]2% /01(1 — )P f(5,y(s))ds

miﬁ L ([ 6= mP s n,yon))m )

ﬁ/ot\r—s\ﬁ-luf(s,x(snwrf<s,y<s>>r>ds
_% | (1= PN (5,x(5)) + £ (5,5()) e

(2-m?)r
2t My s B

+m L1 = mP g matm)) + £ om,yom)

( sup [+(s)|+ sup |y<s>|>]ds

s€[0,1] s€[0,1]

/| S[B- 1F|3+1
1
‘a—ﬁw [ - HEED ¢( sup [x(5)| + sup |y<s>|>]ds

s€[0,1] s€[0,1]
n 2t /n
(2—=n*)T(B) Jo

IN

IN

J F T rp+1)
| o—mp =

¢< sup |x(s)|+ sup Iy(S)|>}dm

s€[0,1] s€[0,1]

(B; D [¢(q(x )

X sup / It —s[P~1ds
1€(0,1)

X ds

IN

+(2—n2)F(B)/o(l P st iy b dmas)
< olg(ny)).

This implies that sup |(7x)(¢)|+ sup |[(Ty)(¢)| < d(g(x,y)) and so
t€la,b) t€la,b)

Y(g(Tx,Ty)) <w(9(q(x,y))) < d(q(x,y))

Ref. code: 25595809031015E0I



89

for all x,y € X. It follows that T satisfies the condition (3.3.1). Therefore, all conditions
of Theorem 3.3.3 are satisfied and thus 7" has a unique fixed point. This implies that
there exists a unique solution of the nonlinear fractional differential equation of Caputo

type (5.0.1). This completes the proof. [

5.4 Solutions of nonlinear fractional differential equa-
tions arising from w-generalized Ri-contraction map-
pings

The aim of this section is to prove the existence and uniqueness result of solutions for

the nonlinear fractional differential equations of Caputo type by using Theorem 3.4.4.

Theorem 5.4.1. Consider the nonlinear fractional differential equation (5.0.1). Sup-

pose that the following conditions hold:

(i) the mapping T : C|0,1] — CJ[0, 1] defined by

10 = F7 ) 0= )
s (19 (o)

—f-ﬁ/on (/Os(s—m)B_lf(m,x(m))dm)ds

forall x € Cla,b] and t € [a, D],

is a continuous mapping;

(ii) thereis a function @ : [0,00) — [0, 00) such that (0) =0, ¢(t) <t and limsup@(s) <
s—tt

t for allt > 0, and for each x,y € C|0, 1], we have

Fsx(s))] + | F(sy(s))] < BT

5 sef0,1] s€[0.1]

(P( sup [x(s)[+ sup Iy(S)I)]

forall s €10,1].
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Then the nonlinear fractional differential equation of Caputo type (5.0.1) has a unique

solution. Moreover, for each xo € C[0, 1], the Picard iteration {x,}, which is defined by

(ka)(t) = % / (6= )81 F 5,01 (5))ds
‘@—iﬁ[)lu—s)“f(s,xm(s»ds

i@y Uy P )

for all n € N, converges to a unique solution of the nonlinear fractional differential

+

equation of Caputo type (5.0.1).
Proof. Let X = CJ0, 1]. Clearly, X with the metric d : X x X — [0,00) given by
d(x,y) = sup |x(t) —y(t)|
t€[0,1]
for all x,y € X, is a complete metric space. Next, we define the function g : X x X —
[0,20) by

q(x,y) = sup |x(z)|+ sup |y(z)]
t€[0,1] 1€[0,1]

for all x,y € X. Clearly, ¢ is a w-distance on X. Here, we will show that T satisfies

the contractive condition (3.4.1). Assume that x,y € X and ¢ € [0,1]. Then we get
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|(Tx) (0)| + [(Ty) (2)]

1
g o (=9 Gsxs)ds

Ty Uy e mstmyam)a
g [ =9 Foytoas

—(2_1]2% /01(1 — )P f(5,y(s))ds

miﬁ L ([ 6= mP s n,yon))m )

1 4 -
£, 1o U X+ 15y s

_% /01 (1=s)P= (1 (s x()I 4 £ (5, 9(5)) s

(2-m?)r
2t s B

+m L1 = mB 7 f mxm) + m. )

( sup Jx(s)| + sup |y<s>|>]ds

s€]0,1] s€[0,1]

/ PR T BER |3+1
—L ) B_1M up |x(s u s s
(Z—HZ)F(B)/O N S q’(ép‘,’g' ( >|+s2[01,31]|y( ”)]d

2l gyl s B—IF<B+1)
N T A VA

(P( sup [x(s)+ sup |y(S)|>]dm

s€[0,1] s€[0,1]
F(|35+ b [(P(Q(x y))]

X sup / It —s[P~1ds
1€(0,1)

IN

IN

X ds

IN

+(2—n2)F(B)/o(l P st iy b dmas)
< olalxy).

This implies that sup |(Tx)(f)|+ sup |(Ty)(¢)| < ¢@(g(x,y)) and so
t€la,b) t€la,b)

q(Tx,Ty) < ¢(q(x,y))
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for all x,y € X. It follows that T satisfies the condition (3.4.1). Therefore, all conditions
of Theorem 3.4.4 are satisfied and thus 7" has a unique fixed point. This implies that
there exists a unique solution of the nonlinear fractional differential equation of Caputo

type (5.0.1). This completes the proof. [
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CHAPTER 6

CONCLUSIONS AND OPEN PROBLEMS

In this chapter, we will summarize all of the results of this thesis and give some open

problems for further verification.

6.1 Conclusions

In Chapter 3, we introduce the concept of a ceiling distance and establish the existence
and uniqueness of fixed point results for some new contraction mappings in complete

metric spaces as follows:

(A1) Let (X,d) be a complete metric space and g : X x X — [0,0) be a w'-distance
on X and a ceiling distance of d. Suppose that f : X — X is a continuous w-
generalized weak contraction mapping. Then f has a unique fixed point in X.
Moreover, for each xo € X, the Picard iteration {x,}, which is defined by x, =

Sf"xo for all n € N, converges to a unique fixed point of f.

(A2) Let (X,d) be a complete metric space , W € ¥, g: X x X — [0,c0) be a w'-distance
on X and ceiling distance of d, and f : X — X be a mapping. Suppose that f is
a w-generalized JS-contraction mapping. If f is continuous, then f has a unique
fixed point. Moreover, for each x( € X, the Picard iteration {x, }, which is defined

by x, = f"xp for all n € N, converge to a unique fixed point of f.

(A3) Let (X,d) be a complete metric space and g : X X X — [0, 00) be a w-distance on X
and a ceiling distance of d. Suppose that f : X — X 1s a continuous w-generalized
SS-contraction mapping. Then f has a unique fixed point on X. Moreover, for
each xy € X, the Picard iteration {x, }, which is defined by x,, = f"xq foralln € N,

converges to a unique fixed point of f.

(A4) Let (X,d) be a complete metric space and g : X x X — [0, o) be a w-distance on X.
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Suppose that f : X — X is a continuous w-generalized Ri-contraction mapping.
Then f has a unique fixed point in X. Moreover, for each x € X, the Picard
iteration {x,}, which is defined by x,, = f"x for all n € N, converges to a unique

fixed point of f.

In Chapter 4, we apply fixed point results for proving the existence and
uniqueness results of a solution for the nonlinear Fredholm integral equations and non-

linear Volterra integral equations as follows:

(B1) Consider the nonlinear Fredholm integral equation

b
(1) = (1) + / Kit, 5, x(s))ds 6.1.1)

where a,b € R with a < b, x € Cla,b], ¢ : [a,b] — R and K : [a,h]> x R — R are

given mappings. Suppose that the following condition holds:

(1) ¢ and K are continuous mappings;
(ii) the mapping f : Cla,b] — Cla,b] defined by
t
(f2)(1) = o(1) + / K(t,5,x(s))ds forall x € Cla,b] and 1 € [a,b]
a

is a continuous mapping;

(iii) there are two functions y, 0 : [0,00) — [0,00) with y is an altering distance
function and ¢ is a continuous function such that y(z) < ¢ for all # > 0 and
¢(¢) = 0 if and only if 7 = 0, and for each x,y € C[a, b|, we have

(W)l +1y(s)D] - [«p ( sup [x(1)| + sup |y<z>|>] ~2J(0)|

I€[a,b] l€]a,b]
b—a

K (2,5,x(s)) |+ |K(2,5,5(s))| <

forallz,s € [a,b].

Then the nonlinear integral equation (6.1.1) has a unique solution. Moreover, for

each xo € Cla,b], the Picard iteration {x, }, which is defined by

b
()0 =0)+ [ K(t.5,5,1(9)ds
a
for all n € N, converges to a unique solution of the nonlinear integral equation

(6.1.1).
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(B2) Consider the nonlinear Volterra integral equation

(1) = () + / "K(t,5,x(s))ds 6.12)

where a,b € R with a < b, x € Cla,b], ¢ : [a,b] — R and K : [a,h]> x R — R are

given mapping. Suppose that the following conditions hold:

(i) ¢ and K are continuous mappings;

(ii) the mapping f : Cla,b] — Cla,b] defined by
(fx)(t) = o(1) +/tK(t,s,x(s))ds for all x € Cla,b] and 1 € [a,b]

is a continuous mapping;

(iii) there are two functions W, ¢ : [0,00) — [0,c0) with Y is an altering distance
function and ¢ is a continuous function such that y(z) < ¢ for all ¢+ > 0,

¢(¢) = 0 if and only if 7 = 0, and for each x,y € C[a, b|, we have

[w(lx(s) + ly(s)D)] = lq) ( sup |x(7)[ + sup |Y(l)|>] —2lo@)]
[€[a,b] [€[a,b]

K (t,5,x(s))| +|K(,5,5(5)| < b—a

for allz,s € [a,b].

Then the nonlinear integral equation (6.1.2) has a unique solution. Moreover, for

each xo € Cla, b], the Picard iteration {x, }, which is defined by

(0)(0) = 90)+ [ K(t,5,5-1())ds

for all n € N, converges to a unique solution of the nonlinear integral equation

(6.1.2).
(B3) Consider the nonlinear Fredholm integral equation
b
(1) = (1) + / K(t,5,x(s))ds (6.1.3)
a

where a,b € R with a < b, x € Cla,b], ¢ : [a,b] — R and K : [a,b]> x R — R are

two given functions. Suppose that the following conditions hold:
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(1) ¢ and K are continuous mappings;

(ii) the mapping f : Cla,b] — Cla,b] defined by
(f2)(1) = (1) + / "K(t,5,x(s))ds forall x€ Cla,b] and 1 € [a,b]

is a continuous mapping;

(iii) there is Wy € ¥ such that y(¢) < ¢ for all # > 1 and for each x,y € Cla, b], we

have

[w(lx(@)]+ ly@))I* = 2]0()]
b—a

K (2,5,x(5)) |+ [K(2,5,(5))] <
for all 7,5 € [a, D], where k; € [0,1).

Then the nonlinear Fredholm integral equation (6.1.3) has a unique solution.

Moreover, for each xg € Cla, b], the Picard iteration {x, }, which is defined by

b
(o) (£) = (F) + / A mee

for all n € N, converges to a unique solution of the nonlinear Fredholm integral

equation (6.1.3).
Consider the nonlinear Volterra integral equation
t
X(0) = 0(0)+ | K(t.5,x(s))ds (6.14)
a

where a,b € R with a < b, x € Cla,b], ¢ : [a,b] — R and K : [a,b]> x R — R are

two given functions. Suppose that the following conditions hold:

(1) ¢ and K are continuous mappings;

(ii) the mapping f : Cla,b] — Cla,b] defined by
(fx)(t) = (1) —I—/tK(t,s,x(s))ds for all x € Cla,b] and 1 € [a,b]

is a continuous mapping;
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(iii) there is Wy € W such that y(¢) <t for all + > 1 and for each x,y € Cla,b], we

have

(O] + () DI —210()|

|K(2,5,x(s))| +|K(2,5,y(s))| < h—a

for all 7,5 € [a,b], where k; € [0,1).

Then the nonlinear Volterra integral equation (6.1.4) has a unique solution. More-

over, for each xg € Cla, b, the Picard iteration {x, }, which is defined by

b
o R A / K(t,5,%,_1(s))ds

for all n € N, converges to a unique solution of the nonlinear Volterra integral

equation (6.1.4).

Consider the nonlinear Fredholm integral equation

b
x(t) = 9(t) + / K 6.1.5)

where a,b € R with a < b, x € C[a,b], ¢ : [a,b] — R and K : [a,h]> x R — R are

two given functions. Suppose that the following condition holds:

(i) ¢ and K are continuous mappings;

(ii) the mapping f : Cla,b] — Cla,b] defined by
(f2)(1) = (1) + / "K(t,5,x(s))ds forall x€Cla,b] and f € [a,b]

1S a continuous mapping;

(iii) there are two functions W, ¢ : [0,00) — [0,00) with y is a weak altering dis-
tance function and ¢ is a right upper semicontinuous function such that
y(r) > o(t) for all r > 0 and y(¢) < ¢ for all + > 0, $(0) = 0 and for each

x,y € Cla,b], we have

[O(x(®)| + [y() )] —2[¢()]
b—a

K (2,5,x(s)) [+ |K(1,5,(5))| <

forall 7,5 € [a,D].
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Then the nonlinear Fredholm integral equation (6.1.5) has a unique solution.

Moreover, for each xo € C[a, b, the Picard iteration {x,}, which is defined by

(o) (1) = (8) + / K (05,501 (5))ds

for all n € N, converges to a unique solution of the nonlinear Fredholm integral

equation (6.1.5).

Consider the nonlinear Volterra integral equation

t
x() = 9(r) + / K(t,5,x(s))ds (6.1.6)
a
where a,b € R with a < b, x € Cla,b], ¢ : [a,b] — R and K : [a,b]> xR — R are
two given functions. Suppose that the following condition holds:
(i) ¢ and K are continuous mappings;

(ii) the mapping f : Cla,b] — Cla,b] defined by
(fx)(t) = o(1) +/tK(t,s,x(s))ds for all x € Cla,b] and 1 € [a,b]

is a continuous mapping;

(iii) there are two functions W, ¢ : [0,00) — [0,00) with y is a weak altering dis-
tance function and ¢ is a right upper semicontinuous function such that
y(r) > ¢(r) for all + > 0 and y(¢) < ¢ for all + > 0, ¢(0) = 0 and for each
x,y € Cla,b], we have

[0(x(®)| + [y() )] —2[¢()]
b—a

K (2,5,x(s)) [+ |K(1,5,(5))| <
for all t,s € [a,b].

Then the nonlinear Volterra integral equation (6.1.6) has a unique solution. More-

over, for each xo € Cla,b], the Picard iteration {x, }, which is defined by

(60) (1) = o(t) + / K (15,01 (5))ds

for all n € N, converges to a unique solution of the nonlinear Volterra integral

equation (6.1.6).
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(B7) Consider the nonlinear Fredholm integral equation

x(1) = 0(1) + / " K(t.5.x(s) )ds 6.1.7)

where a,b € R with a < b, x € Cla,b], ¢ : [a,b] — R and K : [a,b]> x R — R are
given mappings. Suppose that the following condition holds:
(i) ¢ and K are continuous mappings;

(ii) the mapping f : Cla,b] — Cla,b] defined by
(fx)(t) = (1) —i—/tK(t,s,x(s))ds for all x € C[a,b] and 1 € [a,b]

is a continuous mapping;

(iii) there is a function @ : [0,00) — [0,00) such that ¢(0) = 0, ¢(t) < ¢ and

limsup@(s) < ¢ for all # > 0 and

s—tT

sup [x(s)| + sup |y(S)|>] —20(t)

s€la,b] s€la,b]

b—a

K (2,5,x(s))| + [K(2,5,9(s))| <
for all x,y € Cla,b] and for all ¢,s € [a, D].

Then the nonlinear integral equation (6.1.7) has a unique solution. Moreover, for

each xo € Cla, b], the Picard iteration {x, }, which is defined by

() 0) = 000) + [ Klt,5,501(5)ds

for all n € N, converges to a unique solution of the nonlinear integral equation

(6.1.7).
(B8) Consider the nonlinear Volterra integral equation
t
(1) = (1) + / K(t,5,x(s))ds 6.1.8)
a

where a,b € R with a < b, x € Cla,b], ¢ : [a,b] = R and K : [a,h]> x R — R.

Suppose that the following conditions hold:
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(1) ¢ and K are continuous mappings;

(ii) the mapping f : Cla,b] — Cla,b] defined by
(fx)(t) = (1) +/tK(t,s,x(s))ds for all x € Cla,b] and 1 € [a,b]

1S a continuous mapping;

(iii) there is a function @ : [0,00) — [0,0) such that ¢(0) =0, ¢(z) < ¢ and

limsup@(s) < ¢ for all > 0 and
s—tT

sup [x(s)|+ sup MS)I)] —20(7)

s€la,b] s€la,b]

b—a

K (t,5,%(5))[ + K (2,5, 3(5))] <
for all x,y € Cla,b] and for all 7,5 € [a, D].

Then the nonlinear integral equation (6.1.8) has a unique solution. Moreover, for

each x € Cla, b], the Picard iteration {x, }, which is defined by

i
()0 = 0(0) + [ K(t,5,%,1(9)ds
a
for all n € N, converges to a unique solution of the nonlinear integral equation

(6.1.8).

In Chapter 5, we apply fixed point results for proving the existence and
uniqueness results of a solution for the following nonlinear fractional differential equa-

tions of Caputo type
“DP(x(1)) = f(t,x(1)) (6.1.9)

via the integral boundary conditions

where 1 < <2,0<n<1,xeC[0,1] and f: [0,1] x R — R is a continuous function.

(C1) Consider the nonlinear fractional differential equation of Caputo type (6.1.9).

Suppose that the following conditions hold:
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(i) the mapping T : C[0,1] — CJ0, 1] defined by

(Tx)(1) = ﬁ [ =5 p(s.xts))as
1
ot fy (- Gt

2t n § B
+W/O </0 (s —m) 1f(m,x(m))dm)ds
for all x € Cla,b] and t € [a, D],

1S a continuous mapping;

(ii) there are two functions W, ¢ : [0,00) — [0,00) with Y is an altering distance
function and ¢ is a continuous function such that y(z) < ¢ for all # > 0 and

¢(¢) = 0 if and only if 7 = 0, and for each x,y € C[0, 1], we have

(5. 175D < P D 1) + (o)) - [q» ( sup (1) + sup M)]

t€l0,1] t€l0,1]

for all s € [0, 1].

Then the nonlinear fractional differential equation of Caputo type (6.1.9) has a

unique solution. Moreover, for each xo € C|0, 1], the Picard iteration {x,}, which

is defined by
(5)(t) = ﬁ / (¢ = 9)B=1 £ (5,501 (5))ds
g (=9 S (9)ds

+m%)n (/Os(s—m)ﬁ_lf(m,xn_l(m))dm)ds

for all n € N, converges to a unique solution of the nonlinear fractional differential

equation of Caputo type (6.1.9).

(C2) Consider the nonlinear fractional differential equation of Caputo type (6.1.9).

Suppose that the following conditions hold:
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(i) the mapping T : C[0,1] — CJ0, 1] defined by

(Tx)(1) = ﬁ [ =5 p(s.xts))as
1
ot fy (- Gt

+(2_1$W/0n </Os(s—m)ﬁlf(m,x(m))dm>ds

for all x € Cla,b] and t € [a, D],

1S a continuous mapping;

(ii) there is y € W such that y(¢) <7 for all # > 1 and for each x,y € C[0, 1], we

have

£ (s,2(8))] + 1 (s, 3(5)) ] <

for all s € [0, 1], where k; € [0, 1).

Then the nonlinear fractional differential equation of Caputo type (6.1.9) has a

unique solution. Moreover, for each x € C|0, 1], the Picard iteration {x, }, which

is defined by
(ka)(t) = ﬁ / T S
~ g =9 S (9)s

+ﬁ/on (/Os(s—m)B_lf(m,x,,_l(m))dm>ds

for all n € N, converges to a unique solution of the nonlinear fractional differential

equation of Caputo type (6.1.9).

(C3) Consider the nonlinear fractional differential equation of Caputo type (6.1.9).

Suppose that the following conditions hold:
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(i) the mapping T : C[0,1] — CJ0, 1] defined by

S ﬁ/ol(“s)B “f(s,x(s))ds
1
(2_n22t)r([3)/0 (1—5)P~1 f(s,x(s5))ds

for all x € Cla,b] and t € [a, D],

1S a continuous mapping;

(ii) there are two functions W, ¢ : [0,00) — [0,00) with y is a weak altering dis-
tance function and ¢ is a right upper semicontinuous function such that
y(r) > o(t) for all > 0 and y(¢) < ¢ for all + > 0, ¢(0) = 0 and for each
x,y € C[0,1], we have

rp+1)

£ (s, x(5))[ + £ (s,3(5))] = ——

¢< sup [x(s)|+ sup Iy(S)|>]

s€[0,1] s€[0,1]

for all s € [0, 1].

Then the nonlinear fractional differential equation of Caputo type (6.1.9) has a

unique solution. Moreover, for each xo € C|0, 1], the Picard iteration {x, }, which

is defined by
(%)(1) = ﬁ / I e
i -9 i (9)as

m%n (/Os(s—m)ﬁ_lf(m,xn_l(m))dm)ds

for all n € N, converges to a unique solution of the nonlinear fractional differential

+

equation of Caputo type (6.1.9).

(C4) Consider the nonlinear fractional differential equation of Caputo type (6.1.9).

Suppose that the following conditions hold:
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(i) the mapping T : C[0,1] — CJ0, 1] defined by

T0) = g =9 Floats)ds
o (19 a(oas

2t n §
e —m)P-1
+(2—T]2)F(B)/O (/0 (s —m) f(m,x(m))dm)ds
for all x € Cla,b] and t € [a, D],
1S a continuous mapping;
(ii) there is a function ¢ : [0,00) — [0,00) such that ¢(0) =0, ¢(z) < ¢ and

limsup@(s) < ¢ for all # > 0, and for each x,y € C|0, 1], we have

s—tT

r+1)
5

[f (s, x(s)) ]+ 1 (5,(5))] <

(P( sup [x(s)|+ sup MS)I)]

s€[0,1] s€[0,1]
forall s € [0, 1].

Then the nonlinear fractional differential equation of Caputo type (6.1.9) has a

unique solution. Moreover, for each xq € C|0, 1], the Picard iteration {x, }, which

is defined by
500 = T, = (o)
~marr (-9 ()
+<2_wa L[ =P 1 () s

for all n € N, converges to a unique solution of the nonlinear fractional differential

equation of Caputo type (6.1.9).

6.2 Open problems

In this section, we have the following problems in the further investigation.

e Can we extend the condition of w'-distances in some results of this thesis to w-

distances and prove the existence and uniqueness of a fixed point?
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e Can the main idea in this thesis be used to create new research for other nonlinear

mappings?

e Can the main idea in this thesis be used to create new research in generalized

metric space?

e Can the main idea in this thesis be used to study via other distances such as 7T-

distances, Q-distances etc?
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