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f (ux− vy,uy− vx,wz) = g(x,y,z)+h(u,v,w)+ `(x,y,z)n(u,v,w),

f (ux+ vy,uy− vx,wz) = f (x,y,z)+ f (v,u,w)+g(x,y,z)g(u,v,w)

are determined without any regularity assumptions on the unknown functions. These

equations arise from identities satified by the determinant and permanent of certain

symmetric matrices.
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1
CHAPTER 1

INTRODUCTION

We first introduce the notion of functional equations and some definitions related to

functional equations. We then give some basic examples of functional equations in-

cluding some basic concepts for solving each example.

1.1 Functional Equations

The study of functional equations originated more than 260 years ago. Functional equa-

tions arise in many fields of applied science and engineering, such as Mechanics, Geom-

etry, Statistics, Hydraulics, and Economics [1], [3]. From 1747 to 1750, J. d’Alembert

started published three papers on functional equations. These three papers were re-

garded as first papers on functional equations. Functional equations were studied by

many celebreted mathematicians including d’Alembert (1747), Euler (1768), Poisson

(1804), Cauchy (1821), Abel (1823), Darboux (1875). The field of functional equations

includes differential equations, difference equations and iterations, and integral equa-

tions. Functional equations are equations in which the unknowns variables are functions

[3].

Example 1.1. The following equations are typical examples of functional equations.

1. Cauchy’s Equation

f (x+ y) = f (x)+ f (y) (x,y ∈ R).

This equation involves only one unknown function.
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2. Pexider’s Equation

f (x+ y) = g(x)+h(y) (x,y ∈ R).

This is an equation of three unknown functions.

3. Homogeneous Equation

f (zx,zy) = zn f (x,y) (x,y ∈ R≥0, n ∈ R+).

Notice that the unknown function f depends on several variables.

4. Transformation Equation

f ( f (x,y),z) = f (x,g(y,z)) (x,y,z ∈ R).

This is an example of an equation with several functions of several variables.

�

Solving a functional equation means to find all functions satisfying the

functional equation. Unlike the field of differential equations, where a clear method-

ology to solve them exists, in functional equations such a methodology does not exist.

The main operation is the substitution of known or unknown functions into known or

unknown functions, for see example [2].

Example 1.2. Let a,b be fixed non-zero real numbers. Find all function f : R→R such

that

f
(

x− b
a

)
+2x ≤ a

b
x2 +

2b
a
≤ f

(
x+

b
a

)
−2x (x ∈ R). (1.1)

Solution. Putting y = x− b
a

in (1.1). The left inequality becomes

f (y)≤ a
b

y2 +
b
a
.

Similarly, writting y = x+
b
a

in (1.1). The right inequality becomes

f (y)≥ a
b

y2 +
b
a
.
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Hence,

f (y) =
a
b

y2 +
b
a

(y ∈ R).

It is easily verified that this solution function satisfies (1.1).

Example 1.3. Find all function f : R→ R such that

2 f (x+ y)+6y3 = f (x+2y)+ x3 (x,y ∈ R). (1.2)

Solution. Putting y = 0 in (1.2), we get

2 f (x) = f (x)+ x3.

Thus,

f (x) = x3 (x ∈ R).

In the other hand, for f (x) = x3, the left hand of (1.2) equals

2x3 +6x2y+6xy2 +8y3,

while the right hand side equals

2x3 +6x2y+12xy2 +8y3.

This implies that the functional equation (1.2) has no solution.

The previous problem points out that, when we solve any functional equa-

tions, we must check that the obtained functions indeed satisfy the given functional

equation.

Example 1.4. Determine all function f : R→ R such that

f (x+ y)+2 f (x− y)+ f (x)+2 f (y) = 4x+ y (x,y ∈ R). (1.3)



Ref. code: 25595809031056AKJRef. code: 25595809031056AKJRef. code: 25595809031056AKJ

4

Solution. Putting y = 0 in (1.3), we have

4 f (x)+2c = 4x (x ∈ R),

where f (0) = c is a constant. Thus,

f (x) = x− c
2

(x ∈ R).

Next, using this solution back into (1.3) we see that c = 0. Hence,

f (x) = x (x ∈ R).

It is easily checked that this result satisfies the functional equation (1.3).

For more detailed description, we refer the reader to the book by Castillo,

Iglesias, and Ruiz-Cobo [1] and the book by Sahoo and Kannappan [3].

In next section, we review the literature of functional equations. Our moti-

vations and proposed problems are outlined in the last section.

1.2 Literature Reviews

It is easily checked that the 2×2 determinant function d : R2→R, which is defined by

d(x,y) =

∣∣∣∣∣∣ x y

y x

∣∣∣∣∣∣= x2− y2,

satisfies the two functional equations

f (ux+ vy,uy+ vx) = f (x,y) f (u,v), (1.4)

f (ux− vy,uy− vx) = f (x,y) f (u,v), (1.5)

while the 3×3 determinant function D : R3→ R, which is defined by

D(x,y,z) =

∣∣∣∣∣∣∣∣∣
x 0 y

0 z 0

y 0 x

∣∣∣∣∣∣∣∣∣= (x2− y2)z,
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satisfies the functional equation

f (ux+ vy,uy+ vx,wz) = f (x,y,z) f (u,v,w). (1.6)

Henceforth, functional equations like (1.4) or (1.5) or (1.6), which are satisfied by such

determinants, will be collectively refered to as determinantal equations.

In 2002, Chung and Sahoo [6] solved (1.4) and (1.6) as well as their pex-

iderized forms

f (ux+ vy,uy+ vx) = g(x,y)h(u,v), (1.7)

f (ux+ vy,uy+ vx,wz) = g(x,y,z)h(u,v,w). (1.8)

In another direction, the 2× 2 permanent function p : R2 → R, which is

defined by

p(x,y) := per

 x y

y x

= x2 + y2,

satisfies the functional equation

f (ux+ vy,uy− vx) = f (x,y) f (u,v), (1.9)

while the 3×3 permanent function P : R3→ R, which is defined by

P(x,y,z) := per


x 0 y

0 z 0

y 0 x

= (x2 + y2)z,

satisfies the functional equation

f (ux+ vy,uy− vx,wz) = f (x,y,z) f (u,v,w). (1.10)

In 2016, Choi, Kim and Lee [4] solved (1.10) and the functional equation

f (ux− vy,uy− vx,wz) = f (x,y,z) f (u,v,w), (1.11)
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which are the 3-dimensional extensions of the functional equations (1.9) and (1.5), re-

spectively. We shall refer collectively to functional equations like (1.9) or (1.10) as

permanental equations.

Closely related to (1.5) and (1.9) are the following functional equations

f (ux− vy,uy− vx) = f (x,y)+ f (u,v)+ f (x,y) f (u,v) (1.12)

f (ux+ vy,uy− vx) = f (x,y)+ f (u,v)+ f (x,y) f (u,v), (1.13)

which were solved in 2007-2008 by Houston and Sahoo [7, 8]; they also solved the

pexiderized form of (1.12):

f (ux− vy,uy− vx) = g(x,y)+h(u,v)+ `(x,y)m(u,v). (1.14)

In 2014, Chung and Chang [5] solved the following two functional equa-

tions

f (x1,y1) f (x2,y2) = f (x1x2 + y1y2,x1y2− x2y1), (1.15)

and

f (x1,y1,u1,v1) f (x2,y2,u2,v2)

= f (x1x2 + y1y2 +u1u2 + v1v2,x1y2− y1x2 +u1v2− v1u2,

x1u2− y1v2−u1x2 + v1y2,x1v2 + y1u2−u1y2− v1x2) (1.16)

Obviously, a permanent function p : R2 → R also satisfies the functional equation

(1.15). These two functional equations arise from a well-known theorem in number

theory: A positive integer of the from m2n, where each divisor of n is not a squares of

integer, can be represented as a sum of two squares of integer if and only if every prime

factor of n is not of the form 4k+3.
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1.3 Motivations and Proposed Problems

Now we consider the following three functional equations:

f (ux+ vy,uy+ vx,wz) = f (x,y,z)+ f (u,v,w)+ f (x,y,z) f (u,v,w) (1.17)

f (ux− vy,uy− vx,wz) = f (x,y,z)+ f (u,v,w)+ f (x,y,z) f (u,v,w) (1.18)

f (ux+ vy,uy− vx,wz) = f (x,y,z)+ f (u,v,w)+ f (x,y,z) f (u,v,w). (1.19)

It is easily verified that a function

f (x,y,z) =

∣∣∣∣∣∣∣∣∣
x 0 y

0 z 0

y 0 x

∣∣∣∣∣∣∣∣∣−1 = (x2− y2)z−1 (1.20)

satisfies the functional equations (1.17) and (1.18), while a function

f (x,y,z) = per


x 0 y

0 z 0

y 0 x

−1 = (x2 + y2)z−1 (1.21)

satisfies the functional equation (1.19). Note that the functional equations (1.18) and

(1.19) are the 3-dimensional extensions of the functional equations (1.12), and (1.13),

respectively.

In this thesis, we embrace all the afore-mentioned results by solving the

following two pexiderized functional equations:

f (ux+ vy,uy+ vx,wz) = g(x,y,z)+h(u,v,w)+ `(x,y,z)n(u,v,w) (1.22)

f (ux− vy,uy− vx,wz) = g(x,y,z)+h(u,v,w)+ `(x,y,z)n(u,v,w) (1.23)

f (ux+ vy,uy− vx,wz) = f (x,y,z)+ f (v,u,w)+g(x,y,z)g(u,v,w), (1.24)

without any regularity assumptions on the unknown functions f ,g,h, `,n : R3 → R.

These three equations are the 3-dimensional generalizations of the functional equations

(1.17), (1.18) and (1.19), respectively.
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Our strategy is to first solve the corresponding equations of only one un-

known function, which are the functional equations (1.17)-(1.19).

This thesis is organized as follows: in Chapter 2, the some definitions of

some functions which involve the main results and the preliminaries results are given.

In chapter 3, we solve the determinantal functional equations. In Chapter 4, general

solutions of the permanental functional equations are determined. The conclusions and

recommendations are given in Chapter 5.
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CHAPTER 2

PRELIMINARY RESULTS

Let D be a non-empty set of real numbers having the properties that D contains at least

one non-zero element, and whenever x,y (6= 0) ∈D, then both xy and x/y are also in the

set D. The solutions of our results involve the use of the logarithmic and multiplicative

functions which are the functions L,M : D→ R satisfying, respectively,

L(xy) = L(x)+L(y) (x,y ∈ D),

M(xy) = M(x)M(y) (x,y ∈ D).

In passing, note that the only logarithmic function defined over the entire

set of real numbers, i.e., when D = R, is the zero function.

Lemma 2.1. A) The general solution f : D3→ R of the functional equation

f (x1x2,y1y2,wz) = f (x1, y1, z) f (x2, y2, w) (2.1)

is given by

f (x,y,z) = M1(x)M2(y)M3(z), (2.2)

where M1,M2,M3 : D→ R are multiplicative functions.

B) The general solution f : D3→ R of the functional equation

f (x1y2,y1x2,wz) = f (x1,y1,z) f (x2,y2,w) (2.3)

is given by

f (x,y,z) = M1(xy)M3(z), (2.4)

where M1,M3 : D→ R are multiplicative functions.

C) The general solution f : D3→ R of the functional equation

f (x1x2, y1y2, wz) = f (x1, y1, z)+ f (x2, y2, w) (2.5)
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is given by

f (x,y,z) = L1(x)+L2(y)+L3(z), (2.6)

where L1,L2,L3 : D→ R are logarithmic functions. If D = R, then f ≡ 0 is the only

solution of the functional equation (2.5).

Proof. It is easily checked that the functions (2.2), (2.4), and (2.6) satisfy the functional

equations (2.1), (2.3) and (2.5), respectively.

A) If f is a constant function solution of (2.1), then either f ≡ 0 or f ≡ 1,

both of which are of the form (2.2). Assume now that f is a non-constant solution of

(2.1). Clearly, (2.1) implies that f (0,0,0) = 0.

We claim that there exists a ∈ D \ {0} such that f (a,a,a) 6= 0. For if not,

then f (a,a,a) = 0 for all a ∈ D\{0}. Putting x1 = y1 = z = a in (2.1), we have

f (ax2,ay2,aw) = f (a,a,a) f (x2,y2,w) = 0,

showing that f ≡ 0, which is a contradiction, and the claimed is verified. Take such an

a as in the claim and using (2.1) repeatedly, we get

f (x,y,z) = f (x,y,z) f (a,a,a) f (a,a,a)2 f (a,a,a)−3

= f (xa,ya,za) f (a,a,a) f (a,a,a) f (a,a,a)−3

= f ((xa)a,(ya)a,(za)a) f (a,a,a) f (a,a,a)−3

= f ((xaa)a,(yaa)a,(zaa)a) f (a,a,a)−3

= f (xa(aa),a(yaa),a(zaa)) f (a,a,a)−3

= f (xa,a,a) f (aa,yaa,zaa) f (a,a,a)−3

= f (xa,a,a) f (aa,(ya)a,a(za)) f (a,a,a)−3

= f (xa,a,a) f (a,ya,a) f (a,a,za) f (a,a,a)−3

= M1(x)M2(y)M3(z), (2.7)
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where

M1(x) := f (xa,a,a) f (a,a,a)−1,

M2(y) := f (a,ya,a) f (a,a,a)−1,

M3(z) := f (a,a,za) f (a,a,a)−1.

There remains to show that the functions M1,M2,M3 are multiplicative. We

show this only for M1 as the others are similar. Using (2.1) repeatedly, we get

M1(xy) = f ((xy)a,a,a) f (a,a,a)−1

= f ((xy)a,a,a) f (a,a,a) f (a,a,a)−2

= f ((xya)a,aa,aa) f (a,a,a)−2

= f ((xa)(ya),aa,aa) f (a,a,a)−2

= f (xa,a,a) f (ya,a,a) f (a,a,a)−2

= f (xa,a,a) f (a,a,a)−1 f (ya,a,a) f (a,a,a)−1

= M1(x)M1(y).

B) The proof is the same as that of part A) except the step leading to (2.7),

which we now elaborate. Let a ∈ D \ {0} be such that f (a,a,a) 6= 0. Using (2.3)

repeatedly, we get

f (x,y,z) = f (x,y,z) f (a,a,a) f (a,a,a)−1

= f (xa,ya,za) f (a,a,a) f (a,a,a)−2

= f ((xa)a,(ya)a,(za)a) f (a,a,a) f (a,a,a)−3

= f ((xaa)a,a(yaa),(zaa)a) f (a,a,a)−3

= f ((xa)aa,a(yaa),a(zaa)) f (a,a,a)−3

= f (xa,a,a) f (yaa,aa,zaa) f (a,a,a)−3

= f (xa,a,a) f ((ya)a,aa,a(za)) f (a,a,a)−2

= f (xa,a,a) f (ya,a,a) f (a,a,za) f (a,a,a)−3

= M1(x)M1(y)M3(z),
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where

M1(x) := f (xa,a,a) f (a,a,a)−1,

M3(z) := f (a,a,za) f (a,a,a)−1.

C) If f is a constant function solution of (2.5), then f ≡ 0, which is included

in (2.6). Assume now that f is a non-constant solution of (2.5). Let a ∈ D be fixed.

Suppose that f : D3→ R satisfies the functional equation (2.5). Then

f (x,y,z) = f (x,y,z)+ f (a,a,a)+2 f (a,a,a)−3 f (a,a,a)

= f (xa,ya,za)+ f (a,a,a)+ f (a,a,a)−3 f (a,a,a)

= f ((xa)a,(ya)a,(za)a)+ f (a,a,a)−3 f (a,a,a)

= f ((xaa)a,(yaa)a,(zaa)a)−3 f (a,a,a)

= f (xa(aa),a(yaa),a(zaa))−3 f (a,a,a)

= f (xa,a,a)+ f (aa,yaa,zaa)−3 f (a,a,a)

= f (xa,a,a)+ f (aa,(ya)a,a(za))−3 f (a,a,a)

= f (xa,a,a)+ f (a,ya,a)+ f (a,a,za)−3 f (a,a,a)

= L1(x)+L2(y)+L3(z),

where

L1(x) := f (xa,a,a)− f (a,a,a),

L2(y) := f (a,ya,a)− f (a,a,a),

L3(z) := f (a,a,za)− f (a,a,a).

There remains to show that the functions L1,L2,L3 are logarithmic. We

show this only for L1 as the others are similar. If D = R, the result follows from the

above observation that L ≡ 0, henceforth assume that D 6= R. Using (2.5) repeatedly,

we get
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L1(xy) = f ((xy)a,a,a)− f (a,a,a)

= f ((xy)a,a,a)+ f (a,a,a)−2 f (a,a,a)

= f ((xya)a,aa,aa)−2 f (a,a,a)

= f ((xa)(ya),aa,aa)−2 f (a,a,a)

= f (xa,a,a)+ f (ya,a,a)−2 f (a,a,a)

= f (xa,a,a)− f (a,a,a)+ f (ya,a,a)− f (a,a,a)

= L1(x)+L1(y).

Part A) and C) of Lemma 2.1 are generalized versions of Lemma 2 and

Lemma 3 in [7] on page 62-63, respectively, while part B) is a new functional equation.

Lemma 2.2. A.) The general solutions f , g : R3→ R of the functional equation

f (x1x2,y1y2,wz) = f (x1,y1,z)+ f (x2,y2,w)+g(x1,y1,z)g(x2,y2,w) (2.8)

are given by 
f (x,y,z) = δ2 [M1(x)M2(y)M3(z)−1]

g(x,y,z) = δ [M1(x)M2(y)M3(z)−1] ,
(2.9)

where M1,M2,M3 : R→ R are multiplicative functions, and δ is an arbitrary constant.

B.) The general solutions f ,g,h : R3→ R of the functional equation

f (x1x2,y1y2,wz) = f (x1,y1,z)+ f (x2,y2,w)+g(x1,y1,z)h(x2,y2,w) (2.10)

are given by

f ≡ g≡ 0, h is arbitrary, (2.11)

or

f ≡ h≡ 0, g is arbitrary, (2.12)
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or 

f (x,y,z) =
1

k1k2
[M1(x)M2(y)M3(z)−1]

g(x,y,z) =
1
k2

[M1(x)M2(y)M3(z)−1]

h(x,y,z) =
1
k1

[M1(x)M2(y)M3(z)−1] ,

(2.13)

where M1,M2,M3 :R→R are multiplicative functions and k1,k2 are nonzero constants.

Proof. A.) That the functions (2.9) satisfies (2.8) is easily checked. If g ≡ −δ is a

constant function solution of (2.8), then the equation (2.8) becomes

f (x1x2,y1y2,wz) = f (x1,y1,z)+ f (x2,y2,w)+δ
2 (x1,x2,y1,y2,w,z ∈ R). (2.14)

Defining F : R3→ R by

F(x,y,z) = f (x,y,z)+δ
2 (x,y,z ∈ R), (2.15)

enables us to rewrite (2.14) as

F(x1x2,y1y2,wz) = F(x1,y1,z)+F(x2,y2,w) (x1,x2,y1,y2,w,z ∈ R). (2.16)

Using Lemma 2.1 C), we get F(x,y,z) ≡ 0, and so (2.15) shows that f (x,y,z) ≡ −δ2,

which is included in (2.9).

Assume now that g is a non-constant solution of (2.8). Putting x2 = y2 =

w = 0 in (2.8) we have

f (x1,y1,z) =−g(0,0,0)g(x1,y1,z) (x1,y1,z ∈ R). (2.17)

We assert now that g(0,0,0) :=−1/α 6= 0. For otherwise f (x1,y1,z) = 0 for all x1,y1,z

∈R. This imples, by (2.8), that g is a constant function, which is a contradiction. Thus,

(2.17) can be rewritten as

g(x,y,z) = α f (x,y,z) (x,y,z ∈ R). (2.18)
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Substituting (2.18) back into (2.8), we have

f (x1x2,y1y2,wz) = f (x1,y1,z)+ f (x2,y2,w)+α
2 f (x1,y1,z) f (x2,y2,w) (2.19)

(x1,x2,y1,y2,w,z ∈ R).

Using the substitution

F̃(x,y,z) = α
2 f (x,y,z)+1 (x,y,z ∈ R), (2.20)

the functional equation (2.19) becomes

F̃(x1x2,y1y2,wz) = F̃(x1,y1,z)F̃(x2,y2,w) (x1,x2,y1,y2,w,z ∈ R). (2.21)

Using Lemma 2.1 A) and (2.20), we get

α
2 f (x,y,z)+1 = F̃(x,y,z) = M1(x)M2(y)M3(z) (x,y,z ∈ R), (2.22)

where M1,M2,M3 : R→R are multiplicative functions. Finally, using (2.18) and (2.22)

we obatain 
f (x,y,z) =

1
α2 [M1(x)M2(y)M3(z)−1]

g(x,y,z) =
1
α
[M1(x)M2(y)M3(z)−1] ,

(2.23)

where M1,M2,M3 : R→ R are multiplicative functions. If g is a non-constant solution

of (2.8), then Mi 6= 0 for all i ∈ {1,2,3}.

B) It is easily checked that the functions (2.11)-(2.13) satisfy the functional

equations (2.10). If g(x,y,z)h(u,v,w) = 0, then the functional equation (2.10) becomes

f (x1x2,y1y2,wz) = f (x1,y1,z)+ f (x2,y2,w) (x1,x2,y1,y2,w,z ∈ R). (2.24)

Using Lemma 2.1 C), we obtain f (x,y,z)≡ 0. Assume now that g(x,y,z)h(u,v,w) 6= 0,

there are two possible cases.

Case I : If g≡ h, then (2.10) yields

f (x1x2,y1y2,wz) = f (x1,y1,z)+ f (x2,y2,w)+g(x1,y1,z)g(x2,y2,w) (2.25)

(x1,x2,y1,y2,w,z ∈ R).
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The desired result thus follows at once from Lemma 2.2 A):
f (x,y,z) = δ2 [M1(x)M2(y)M3(z)−1]

g(x,y,z) = δ [M1(x)M2(y)M3(z)−1]

h(x,y,z) = δ [M1(x)M2(y)M3(z)−1] ,

(2.26)

where M1,M2,M3 : R→ R are multiplicative functions, and δ is an arbitrary constant.

Case II : If g 6≡ h, then putting x2 = y2 = w = 0 into (2.10) we have

f (x1,y1,z) =−h(0,0,0)g(x1,y1,z) (x1,y1,z ∈ R). (2.27)

We claim that h(0,0,0) 6= 0; for if not, then f (x1,y1,z)≡ 0, and so (2.10) gives

g(x,y,z)h(u,v,w) = 0, which is a contradiction. Thus, (2.27) becomes

g(x,y,z) = k1 f (x,y,z), k1 :=−1/h(0,0,0) 6= 0. (2.28)

Similarly, putting x1 = y1 = z = 0 in (2.10) we get

h(x,y,z) = k2 f (x,y,z), k2 :=−1/g(0,0,0) 6= 0. (2.29)

Substituting (2.28) and (2.29) back into (2.10), we have

f (x1x2,y1y2,wz) = f (x1,y1,z)+ f (x2,y2,w)+ k1k2 f (x1,y1,z) f (x2,y2,w) (2.30)

(x1,x2,y1,y2,w,z ∈ R).

Using the substitution

F(x,y,z) = k1k2 f (x,y,z)+1 (x,y,z ∈ R), (2.31)

we can write (2.30) as

F(x1x2,y1y2,wz) = F(x1,y1,z)F(x2,y2,w) (x1,x2,y1,y2,w,z ∈ R). (2.32)

Invoking upon Lemma 2.1 A), and using (2.28), (2.29) and (2.31) we obtain

f (x,y,z) =
1

k1k2
[M1(x)M2(y)M3(z)−1]

g(x,y,z) =
1
k2

[M1(x)M2(y)M3(z)−1]

h(x,y,z) =
1
k1

[M1(x)M2(y)M3(z)−1] ,

(2.33)
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where M1,M2,M3 : R→ R are multiplicative functions, which are the asserted solu-

tions.

Part A) of Lemma 2.2 is a new functional equation, while part B) is gener-

alized version of Lemma 3 in [7] on page 64.

Corollary 2.1. A) The general solutions f ,g : R3→ R of the functional equation

f (x1y2,x2y1,wz) = f (x1,y1,z)+ f (y2,x2,w)+g(x1,y1,z)g(x2,y2,w) (2.34)

are given by f ≡ g≡ 0, or
f (x,y,z) =

1
k2 [M1(xy)M3(z)−1]

g(x,y,z) =
1
k
[M1(xy)M3(z)−1] ,

(2.35)

where M1,M3 : R→ R are multiplicative functions and k is a non-zero constant.

B) The general solutions f ,g,h : R3→ R of the functional equation

f (x1y2,x2y1,wz) = f (x1,y1,z)+ f (y2,x2,w)+g(x1,y1,z)h(x2,y2,w) (2.36)

are given by

f ≡ g≡ 0, h is arbitrary, (2.37)

or

f ≡ h≡ 0, g is arbitrary, (2.38)

or 

f (x,y,z) =
1

k1k2
[M1(x)M2(y)M3(z)−1]

g(x,y,z) =
1
k2

[M1(x)M2(y)M3(z)−1]

h(x,y,z) =
1
k1

[M1(y)M2(x)M3(z)−1] ,

(2.39)

where M1,M2,M3 :R→R are multiplicative functions and k1,k2 are nonzero constants.
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Proof. A) It is easily verified that the functions (2.35) satisfies the functional equation

(2.34). Interchanging x2 with y2 in (2.34), we get

f (x1x2,y1y2,wz) = f (x1,y1,z)+ f (x2,y2,w)+g(x1,y1,z)g(y2,x2,w) (2.40)

(x1,x2,y1,y2,w,z ∈ R).

Using the substitution

h(x,y,z) = g(y,x,z) (x,y,z ∈ R), (2.41)

the functional equation (2.40) becomes

f (x1x2,y1y2,wz) = f (x1,y1,z)+ f (x2,y2,w)+g(x1,y1,z)h(x2,y2,w) (2.42)

(x1,x2,y1,y2,w,z ∈ R).

The solution function follows by appealing to Lemma 2.2 B), and so (2.41) shows that

f ≡ g≡ 0, h is arbitrary, (2.43)

or

f ≡ h≡ 0, g is arbitrary, (2.44)

or 

f (x,y,z) =
1

k1k2
[M1(x)M2(y)M3(z)−1]

g(x,y,z) =
1
k2

[M1(x)M2(y)M3(z)−1]

h(x,y,z) =
1
k1

[M1(y)M2(x)M3(z)−1] ,

(2.45)

where M1,M2,M3 :R→R are multiplicative functions and k1,k2 are nonzero constants.

Finally, using (2.45) back into (2.34) we see that M1 =M2 and k1 = k2 = k, and so (2.45)

becomes 
f (x,y,z) =

1
k2 [M1(xy)M3(z)−1]

g(x,y,z) =
1
k
[M1(xy)M3(z)−1]

h(x,y,z) =
1
k
[M1(yx)M3(z)−1] ,

(2.46)
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which are the desired solutions.

B) That the function (2.37)-(2.39) satisfies the functional equation (2.36).

Interchanging x2 with y2 in (2.36), we get

f (x1x2,y1y2,wz) = f (x1,y1,z)+ f (x2,y2,w)+g(x1,y1,z)h(y2,x2,w) (2.47)

(x1,x2,y1,y2,w,z ∈ R).

Defining h̃ : R3→ R by

h̃(x,y,z) = h(y,x,z) (x,y,z ∈ R), (2.48)

the functional equation (2.47) becomes

f (x1x2,y1y2,wz) = f (x1,y1,z)+ f (x2,y2,w)+g(x1,y1,z)h̃(x2,y2,w) (2.49)

(x1,x2,y1,y2,w,z ∈ R).

The solution function follows by appealing to Lemma 2.2 B), and so (2.48) shows that

f ≡ g≡ 0, h is arbitrary, (2.50)

or

f ≡ h≡ 0, g is arbitrary, (2.51)

or 

f (x,y,z) =
1

k1k2
[M1(x)M2(y)M3(z)−1]

g(x,y,z) =
1
k2

[M1(x)M2(y)M3(z)−1]

h(x,y,z) =
1
k1

[M1(y)M2(x)M3(z)−1] ,

(2.52)

where M1,M2,M3 :R→R are multiplicative functions and k1,k2 are nonzero constants.
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CHAPTER 3

DETERMINANTAL FUNCTIONAL EQUATIONS

In this chapter, the general solutions of the functional equations (1.17) and (1.18) as

well as their pexiderized functional equations (1.22) and (1.23) are determined.

In 2002, Chung and Sahoo [6] solved the functional equation (1.6) and its

pexiderized form, which are the functional equation (1.8). Next, Choi, Kim and Lee

[4] solved the functional equation (1.11), in 2016, which are contained in the following

theorem.

Theorem 3.1. A) (Chung and Sahoo [6]) The general solution f : R3 → R of the

functional equation

f (ux+ vy,uy+ vx,wz) = f (x,y,z) f (u,v,w) (3.1)

is given by

f (x,y,z) = M1(x+ y)M2(x− y)M3(z), (3.2)

where M1,M2,M3 : R→ R are multiplicative functions.

B) (Chung and Sahoo [6]) The general solutions f ,g,h : R3 → R of the

functional equation

f (ux+ vy,uy+ vx,wz) = g(x,y,z)h(u,v,w) (3.3)

are given by

f ≡ g≡ 0, h is arbitrary, (3.4)

or

f ≡ h≡ 0, g is arbitrary, (3.5)
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or 
f (x,y,z) = k1k2 [M1(x+ y)M2(x− y)M3(z)−1]

g(x,y,z) = k2 [M1(x+ y)M2(x− y)M3(z)−1]

h(x,y,z) = k1 [M1(x+ y)M2(x− y)M3(z)−1] ,

(3.6)

where M1,M2,M3 :R→R are multiplicative functions and k1,k2 are nonzero constants.

C) (Choi, Kim and Lee [4]) The general solution f : R3→ R of the func-

tional equation

f (ux− vy,uy− vx,wz) = f (x,y,z) f (u,v,w) (3.7)

is given by

f (x,y,z) = M1(x2− y2)M2(z), (3.8)

where M1,M2 : R→ R are multiplicative functions.

We are now ready to prove our first main results. The general solutions of

functional equations extending those similar to (1.12) and (1.13) are contained in the

following corollary.

Corollary 3.1. A) The general solution f : R3→ R of the functional equation

f (ux− vy,uy− vx,wz) = g(x,y,z)h(u,v,w) (3.9)

are given by

f ≡ g≡ 0, h is arbitrary, (3.10)

or

f ≡ h≡ 0, g is arbitrary, (3.11)

or 
f (x,y,z) = k1k2 [M1(x+ y)M2(x− y)M3(z)−1]

g(x,y,z) = k2 [M1(x+ y)M2(x− y)M3(z)−1]

h(x,y,z) = k1 [M1(x− y)M2(x+ y)M3(z)−1] ,

(3.12)



Ref. code: 25595809031056AKJRef. code: 25595809031056AKJRef. code: 25595809031056AKJ

22

where M1,M2,M3 :R→R are multiplicative functions and k1,k2 are nonzero constants.

B) The general solution f : R3→ R of the functional equation

f (ux+ vy,uy+ vx,wz) = f (x,y,z)+ f (u,v,w)+ f (x,y,z) f (u,v,w) (3.13)

is given by

f (x,y,z) = M1(x+ y)M2(x− y)M3(z)−1, (3.14)

where M1,M2,M3 : R→ R are multiplicative functions.

C) The general solution f : R3→ R of the functional equation

f (ux− vy,uy− vx,wz) = f (x,y,z)+ f (u,v,w)+ f (x,y,z) f (u,v,w) (3.15)

is given by

f (x,y,z) = M1(x2− y2)M2(z)−1, (3.16)

where M1,M2 : R→ R are multiplicative functions.

Proof. A) Replacing v by −v in the functional equation (3.9), we get

f (ux+ vy,uy+ vx,wz) = g(x,y,z)h(u,−v,w) (x,y,u,v,w,z ∈ R). (3.17)

Defining h̃ : R3→ R by

h̃(x,y,z) = h(x,−y,z) (x,y,z ∈ R), (3.18)

enables us to rewrite (3.17) as

f (ux+ vy,uy+ vx,wz) = g(x,y,z)h̃(u,v,w) (x,y,u,v,w,z ∈ R). (3.19)

Using Theorem 3.1 B), and so (3.18) shows that

f ≡ g≡ 0, h arbitrary, (3.20)

or

f ≡ h≡ 0, g arbitrary, (3.21)
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or 
f (x,y,z) = k1k2 [M1(x+ y)M2(x− y)M3(z)−1]

g(x,y,z) = k2 [M1(x+ y)M2(x− y)M3(z)−1]

h(x,y,z) = k1 [M1(x− y)M2(x+ y)M3(z)−1] ,

(3.22)

where M1,M2,M3 :R→R are multiplicative functions and k1,k2 are nonzero constants,

which are the asserted solutions. The solution function and the justification of the sub-

stitution are verified by direct checking with the functional equation (3.9).

B) It is easily checked that the function (3.14) satisfies the functional equa-

tion (3.13). If f is a constant solution of (3.13), then either f ≡ 0 or f ≡ −1, both of

which are of the form (3.14). Assume now that f is a non-constant function solution of

(3.13). Defining g : R3→ R by

g(x,y,z) = f
(

x+ y
2

,
x− y

2
,z
)
+1 (x,y,z ∈ R), (3.23)

allows us to replace (3.13) by

g((x+ y)(u+ v),(x− y)(u− v),wz) = g(x+ y,x− y,z)g(u+ v,u− v,w) (3.24)

(x,y,u,v,w,z ∈ R).

Substituting x1 = x+ y, y1 = x− y, x2 = u+ v and y2 = u− v into (3.24), we get

g(x1x2,y1y2,wz) = g(x1,y1,z)g(x2,y2,w) (x1,x2,y1,y2,w,z ∈ R). (3.25)

The shape of the function solution follows immediately from Lemma 2.1 A):

g(x,y,z) = M1(x)M2(y)M3(z), (3.26)

and so (3.23) yields

f (x,y,z) = M1(x+ y)M2(x− y)M3(z)−1, (3.27)

where M1,M2,M3 : R→R are multiplicative functions, which is the asserted solutions.
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C) That the function (3.16) satisfies the functional equation (3.15). Making

the variable change

g(x,y,z) = f (x,y,z)+1 (x,y,z ∈ R), (3.28)

the functional equation (3.15) becomes

g(ux− vy,uy− vx,wz) = g(x,y,z)g(u,v,w) (x,y,u,v,w,z ∈ R), (3.29)

which is of the form (3.7), and so Theorem 3.1 C) and (3.28) yield the results follows:

f (x,y,z) = M1(x2− y2)M2(z)−1, (3.30)

where M1,M2 : R→ R are multiplicative functions.

Theorem 3.2. A) The general solutions f ,g,h, `,n : R3→ R of the functional equation

f (ux+ vy,uy+ vx,wz) = g(x,y,z)+h(u,v,w)+ `(x,y,z)n(u,v,w) (3.31)

are given by 

f (x,y,z) = β1 +β2 +α1α2

g(x,y,z) = β2

h(x,y,z) = β1 +α1α2−α2n(x,y,z)

`(x,y,z) = α2

n(x,y,z) is arbitrary,

(3.32)

or 

f (x,y,z) = β1 +β2 +α1α2

g(x,y,z) = β2 +α1α2−α1`(x,y,z)

h(x,y,z) = β1

`(x,y,z) is arbitrary

n(x,y,z) = α1,

(3.33)
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or 

f (x,y,z) =
1

k1k2
[M1(x+ y)M2(x− y)M3(z)−1]+β1 +β2 +α1α2

g(x,y,z) =
1

k1k2
[M1(x+ y)M2(x− y)M3(z)−1]

−α1

k2
[M1(x+ y)M2(x− y)M3(z)−1]+β2

h(x,y,z) =
1

k1k2
[M1(x+ y)M2(x− y)M3(z)−1]

−α2

k1
[M1(x+ y)M2(x− y)M3(z)−1]+β1

`(x,y,z) =
1
k2

[M1(x+ y)M2(x− y)M3(z)−1]+α2

n(x,y,z) =
1
k1

[M1(x+ y)M2(x− y)M3(z)−1]+α1,

(3.34)

where M1,M2,M3 :R→R are multiplicative functions and α1,α2,β1,β2,k1(6= 0),k2 (6= 0)

are constants.

B) The general solutions f ,g,h, `,n : R3→ R of the functional equation

f (ux− vy,uy− vx,wz) = g(x,y,z)+h(u,v,w)+ `(x,y,z)n(u,v,w) (3.35)

are given by 

f (x,y,z) = β1 +β2 +α1α2

g(x,y,z) = β2

h(x,y,z) = β1 +α1α2−α2n(x,y,z)

`(x,y,z) = α2

n(x,y,z) is arbitrary,

(3.36)

or 

f (x,y,z) = β1 +β2 +α1α2

g(x,y,z) = β2 +α1α2−α1`(x,y,z)

h(x,y,z) = β1

`(x,y,z) is arbitrary

n(x,y,z) = α1,

(3.37)
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or 

f (x,y,z) =
1

k1k2
[M1(x+ y)M2(y− x)M3(z)−1]+β1 +β2 +α1α2

g(x,y,z) =
1

k1k2
[M1(x+ y)M2(y− x)M3(z)−1]

−α1

k2
[M1(x+ y)M2(y− x)M3(z)−1]+β2

h(x,y,z) =
1

k1k2
[M1(x− y)M2(x+ y)M3(z)−1]

−α2

k1
[M1(x− y)M2(x+ y)M3(z)−1]+β1

`(x,y,z) =
1
k2

[M1(x+ y)M2(y− x)M3(z)−1]+α2

n(x,y,z) =
1
k1

[M1(x− y)M2(x+ y)M3(z)−1]+α1,

(3.38)

where M1,M2,M3 :R→R are multiplicative functions and α1,α2,β1,β2,k1(6= 0),k2 (6= 0)

are constants.

Proof. It is easily checked that the equations (3.32) - (3.34) and (3.36)-(3.38) satisfy

the functional equations (3.31) and (3.35), respectively.

A) The substitution

F(x,y,z) = f
(

x+ y
2

,
x− y

2
,z
)

G(x,y,z) = g
(

x+ y
2

,
x− y

2
,z
)

H(x,y,z) = h
(

x+ y
2

,
x− y

2
,z
)

L(x,y,z) = `

(
x+ y

2
,
x− y

2
,z
)

N(x,y,z) = n
(

x+ y
2

,
x− y

2
,z
)

(x,y,z ∈ R),

(3.39)

enables us to replace (3.31) by

F((x+ y)(u+ v),(x− y)(u− v),wz) = G(x+ y,x− y,z)+H(u+ v,u− v,w)

+L(x+ y,x− y,z)N(u+ v,u− v,w) (3.40)

(x,y,u,v,w,z ∈ R).
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Substituting x1 = x+ y, y1 = x− y, x2 = u+ v and y2 = u− v in (3.40), we get

F(x1x2,y1y2,wz) = G(x1,y1,z)+H(x2,y2,w)+L(x1,y1,z)N(x2,y2,w) (3.41)

(x1,x2,y1,y2,w,z ∈ R).

Putting x2 = y2 = w = 1 in (3.41) we get

F(x1,y1,z) = G(x1,y1,z)+α1L(x1,y1,z)+β1 (x1,y1,z ∈ R), (3.42)

where α1 = N(1,1,1),β1 = H(1,1,1). Similarly, setting x1 = y1 = z = 1 in (3.41) we

get

F(x2,y2,w) = H(x2,y2,w)+α2N(x2,y2,w)+β2 (x2,y2,w ∈ R), (3.43)

where α2 = L(1,1,1),β2 = G(1,1,1). Putting (3.42) and (3.43) back into (3.41), we get

F(x1x2,y1y2,wz) = F(x1,y1,z)−α1L(x1,y1,z)+F(x2,y2,w)

−α2N(x2,y2,w)+L(x1,y1,z)N(x2,y2,w)−β1−β2 (3.44)

(x1,x2,y1,y2,w,z ∈ R).

Defining F̃ , L̃, Ñ : R3→ R by
F̃(x,y,z) = F(x,y,z)−β1−β2−α1α2

L̃(x,y,z) = L(x,y,z)−α2

Ñ(x,y,z) = N(x,y,z)−α1 (x,y,z ∈ R),

(3.45)

allows us to relplace (3.44) by

F̃(x1x2,y1y2,wz) = F̃(x1,y1,z)+ F̃(x2,y2,w)+ L̃(x1,y1,z)Ñ(x2,y2,w) (3.46)

(x1,x2,y1,y2,w,z ∈ R).

Invoking upon Lemma 2.2 B), we obtain

F̃ ≡ L̃≡ 0, Ñ is arbitrary, (3.47)
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or

F̃ ≡ Ñ ≡ 0, L̃ is arbitrary, (3.48)

or 

F̃(x,y,z) =
1

k1k2
[M1(x)M2(y)M3(z)−1]

L̃(x,y,z) =
1
k2

[M1(x)M2(y)M3(z)−1]

Ñ(x,y,z) =
1
k1

[M1(x)M2(y)M3(z)−1] ,

(3.49)

where M1,M2,M3 :R→R are multiplicative functions and k1,k2 are nonzero constants.

Finally, using (3.39), (3.42), (3.43), (3.45), (3.47), (3.48) and (3.49), we

obtain 

f (x,y,z) = β1 +β2 +α1α2

g(x,y,z) = β2

h(x,y,z) = β1 +α1α2−α2n(x,y,z)

`(x,y,z) = α2

n(x,y,z) is arbitrary,

(3.50)

or 

f (x,y,z) = β1 +β2 +α1α2

g(x,y,z) = β2 +α1α2−α1`(x,y,z)

h(x,y,z) = β1

`(x,y,z) is arbitrary

n(x,y,z) = α1,

(3.51)
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or 

f (x,y,z) =
1

k1k2
[M1(x+ y)M2(x− y)M3(z)−1]+β1 +β2 +α1α2

g(x,y,z) =
1

k1k2
[M1(x+ y)M2(x− y)M3(z)−1]

−α1

k2
[M1(x+ y)M2(x− y)M3(z)−1]+β2

h(x,y,z) =
1

k1k2
[M1(x+ y)M2(x− y)M3(z)−1]

−α2

k1
[M1(x+ y)M2(x− y)M3(z)−1]+β1

`(x,y,z) =
1
k2

[M1(x+ y)M2(x− y)M3(z)−1]+α2

n(x,y,z) =
1
k1

[M1(x+ y)M2(x− y)M3(z)−1]+α1,

(3.52)

which are the desired solutions.

B) Replacing v by −v into (3.35) we obtain

f (ux+ vy,uy+ vx,wz) = g(x,y,z)+h(u,−v,w)+ `(x,y,z)n(u,−v,w) (3.53)

(x,y,u,v,w,z ∈ R).

Interchanging x with y in (3.53), we get

f (uy+ vx,ux+ vy,wz) = g(y,x,z)+h(u,−v,w)+ `(y,x,z)n(u,−v,w) (3.54)

(x,y,u,v,w,z ∈ R).

The substitution 

F(x,y,z) = f (y,x,z)

G(x,y,z) = g(y,x,z)

H(x,y,z) = h(x,−y,z)

L(x,y,z) = `(y,x,z)

N(x,y,z) = n(x,−y,z) (x,y,z ∈ R)

(3.55)

allows us to replace (3.54) by

F(ux+ vy,uy+ vx,wz) = G(x,y,z)+H(u,v,w)+L(x,y,z)N(u,v,w) (3.56)

(x,y,u,v,w,z ∈ R),
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which is a functional equation of the form (3.31), and the results follows from part A

and (3.55): 

f (x,y,z) = β1 +β2 +α1α2

g(x,y,z) = β2

h(x,y,z) = β1 +α1α2−α2n(x,y,z)

`(x,y,z) = α2

n(x,y,z) is arbitrary,

(3.57)

or 

f (x,y,z) = β1 +β2 +α1α2

g(x,y,z) = β2 +α1α2−α1`(x,y,z)

h(x,y,z) = β1

`(x,y,z) is arbitrary

n(x,y,z) = α1,

(3.58)

or 

f (x,y,z) =
1

k1k2
[M1(x+ y)M2(y− x)M3(z)−1]+β1 +β2 +α1α2

g(x,y,z) =
1

k1k2
[M1(x+ y)M2(y− x)M3(z)−1]

−α1

k2
[M1(x+ y)M2(y− x)M3(z)−1]+β2

h(x,y,z) =
1

k1k2
[M1(x− y)M2(x+ y)M3(z)−1]

−α2

k1
[M1(x− y)M2(x+ y)M3(z)−1]+β1

`(x,y,z) =
1
k2

[M1(x+ y)M2(y− x)M3(z)−1]+α2

n(x,y,z) =
1
k1

[M1(x− y)M2(x+ y)M3(z)−1]+α1,

(3.59)

where M1,M2,M3 : R→ R are multiplicative functions and α1,α2,β1,β2 are arbitrary

constant and k1,k2 are nonzero constants.



Ref. code: 25595809031056AKJRef. code: 25595809031056AKJRef. code: 25595809031056AKJ

31
CHAPTER 4

PERMANENTAL FUNCTIONAL EQUATIONS

In this chapter, the general solution of the functional equation (1.19) and its partial

pexiderized functional equation (1.24) are determined.

In 2016, Choi, Kim and Lee [4] solved the functional equation (1.10), which

is contained in the following theorem.

Theorem 4.1. (Choi, Kim and Lee [4]) The general solution f : R3→ R of the func-

tional equation

f (ux+ vy,uy− vx,wz) = f (x,y,z) f (u,v,w) (4.1)

is given by

f (x,y,z) = M1

(√
x2 + y2

)
M2(z) (4.2)

where M1,M2 : R→ R are multiplicative functions.

We turn now to our last batch of results. We begin with

Lemma 4.1. The only solution function f : R3→ R of the functional equation

f (ux+ vy, uy− vx, wz) = f (x, y, z)+ f (v, u, w) (4.3)

is the trivial zero function f ≡ 0.

Proof. Clearly, the zero function is a solution of the functional equation (4.3). On the

other hand, if f ≡ c is a constant solution of the functional equation (4.3), substituting

into the functional equation (4.3) shows that c = 0. If f is a non-constant solution, then

putting v = u = w = 0 into the functional equation (4.3) yields f ≡ 0.

Applying Theorem 4.1, we obtain the extension of the functional equation

(4.1), which is contained in the following corollary.
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Corollary 4.1. The general solution f : R3→ R of the functional equation

f (ux+ vy,uy− vx,wz) = f (x,y,z)+ f (u,v,w)+ f (x,y,z) f (u,v,w) (4.4)

is given by

f (x,y,z) = M1

(√
x2 + y2

)
M2(z)−1, (4.5)

where M1,M2 : R→ R are multiplicative functions.

Proof. If f is a constant function solution of (4.4), then either f ≡ 0 or f ≡−1, both of

which are of the form (4.5). Assume now that f is a non-constant function solution of

(4.4). The substitution

g(x,y,z) = f (x,y,z)+1 (x,y,z ∈ R) (4.6)

allows us to replace (4.4) by

g(ux+ vy,uy− vx,wz) = g(x,y,z)g(u,v,w). (4.7)

Invoking upon Theorem 4.1, the desired solution function follows at once:

f (x,y,z)+1 = g(x,y,z) = M1

(√
x2 + y2

)
M2(z), (4.8)

where M1,M2 : R→ R are multiplicative functions. The solution function and the jus-

tification of the substitution are verified by direct checking with the functional equation

(4.4).

Theorem 4.2. The general solutions f ,g : R3→ R of the functional equation

f (ux+ vy, uy− vx, wz) = f (x,y,z)+ f (v,u,w)+g(x,y,z)g(u,v,w) (4.9)

are given by 
f (x,y,z) = δ2[M1(

√
x2 + y2)M2(z)−1]

g(x,y,z) = δ[M1(
√

x2 + y2)M2(z)−1],
(4.10)

where M1,M2 : R→ R are multiplicative functions and δ is an arbitrary constant.
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Proof. It is easily checked that the functions (4.10) satisfy the functional equation (4.9).

On the other hand, if g ≡ −c is a constant function satisfying the functional equation

(4.9), then the equation (4.9) becomes

f (ux+ vy,uy− vx,wz) = f (x,y,z)+ f (v,u,w)+ c2 (x,y,u,v,w,z ∈ R). (4.11)

Defining F : R3→ R by

F(x,y,z) = f (x,y,z)+ c2 (x,y,z ∈ R), (4.12)

the functional equation (4.11) becomes

F(ux+ vy,uy− vx,wz) = F(x,y,z)+F(v,u,w) (x,y,u,v,w,z ∈ R). (4.13)

By Lemma 4.1, we get F(x,y,z) = 0, i.e., f (x,y,z) =−c2, which is included in (4.10).

Assume now that g is a non-constant function satisfying (4.9). Putting u =

v = w = 0 in (4.9) we have

f (x,y,z) =−g(0,0,0)g(x,y,z) (x,y,z ∈ R). (4.14)

In the equation (4.14), g(0,0,0) 6= 0; for if not, then f (x,y,z) = 0, implying, by (4.9),

that g≡ 0, which is a contradiction. Rewrite the equation (4.14) as

g(x,y,z) = k f (x,y,z), k :=−1/g(0,0,0) 6= 0. (4.15)

Putting x = y = z = 0 in (4.9), we get

f (v,u,w) =−g(0,0,0)g(u,v,w) (u,v,w ∈ R), (4.16)

and use the same arguments, we obtain

g(y,x,z) = k f (x,y,z) (x,y,z ∈ R), (4.17)

which by virtue of (4.15) yields

g(y,x,z) = g(x,y,z) (x,y,z ∈ R), (4.18)
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and so

f (x,y,z) = f (y,x,z) (x,y,z ∈ R). (4.19)

Substituting (4.15) back into (4.9), and using (4.19), we obtain

f (ux+ vy,uy− vx,wz) = f (x,y,z)+ f (u,v,w)+ k2 f (x,y,z) f (u,v,w) (4.20)

(x,y,u,v,w,z ∈ R).

Making the variable change

F̃(x,y,z) = k2 f (x,y,z)+1 (x,y,z ∈ R), (4.21)

the functional equation (4.20) becomes

F̃(ux+ vy,uy− vx,wz) = F̃(x,y,z)F̃(u,v,w) (x,y,u,v,w,z ∈ R), (4.22)

and the desired results follows from Theorem 4.1 and (4.21):

k2 f (x,y,z)+1 = F̃(x,y,z) = M1

(√
x2 + y2

)
M2(z) (x,y,z ∈ R), (4.23)

where M1,M2 : R→R are multiplicative functions. Finally, using (4.15) and (4.23) we

obtain 
f (x,y,z) =

1
k2 [M1(

√
x2 + y2)M2(z)−1]

g(x,y,z) =
1
k
[M1(

√
x2 + y2)M2(z)−1],

(4.24)

which are the desired solutions.



Ref. code: 25595809031056AKJRef. code: 25595809031056AKJRef. code: 25595809031056AKJ

35
CHAPTER 5

CONCLUSIONS AND RECOMMENDATIONS

General solution function f : R3→ R of the following three functional equations

f (ux+ vy,uy+ vx,wz) = f (x,y,z)+ f (u,v,w)+ f (x,y,z) f (u,v,w) (1.17)

f (ux− vy,uy− vx,wz) = f (x,y,z)+ f (u,v,w)+ f (x,y,z) f (u,v,w) (1.18)

f (ux+ vy,uy− vx,wz) = f (x,y,z)+ f (u,v,w)+ f (x,y,z) f (u,v,w) (1.19)

are as follows:

• for the functional equation (1.17):

f (x,y,z) = M1(x+ y)M2(x− y)M3(z)−1,

where M1,M2,M3 : R→ R are multiplicative functions.

• for the functional equation (1.18):

f (x,y,z) = M1(x2− y2)M2(z)−1,

where M1,M2 : R→ R are multiplicative functions.

• for the functional equation (1.19):

f (x,y,z) = M1

(√
x2 + y2

)
M2(z)−1,

where M1,M2 : R→ R are multiplicative functions.

General solution functions f ,g,h, `,n : R3→ R of the following two pex-

iderized functional equations

f (ux+ vy,uy+ vx,wz) = g(x,y,z)+h(u,v,w)+ `(x,y,z)n(u,v,w) (1.22)

f (ux− vy,uy− vx,wz) = g(x,y,z)+h(u,v,w)+ `(x,y,z)n(u,v,w) (1.23)

are as follows:
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• for the functional equation (1.22):

f (x,y,z) = β1 +β2 +α1α2

g(x,y,z) = β2

h(x,y,z) = β1 +α1α2−α2n(x,y,z)

`(x,y,z) = α2

n(x,y,z) is arbitrary,

or 

f (x,y,z) = β1 +β2 +α1α2

g(x,y,z) = β2 +α1α2−α1`(x,y,z)

h(x,y,z) = β1

`(x,y,z) is arbitrary

n(x,y,z) = α1,

or 

f (x,y,z) =
1

k1k2
[M1(x+ y)M2(x− y)M3(z)−1]+β1 +β2 +α1α2

g(x,y,z) =
1

k1k2
[M1(x+ y)M2(x− y)M3(z)−1]

−α1

k2
[M1(x+ y)M2(x− y)M3(z)−1]+β2

h(x,y,z) =
1

k1k2
[M1(x+ y)M2(x− y)M3(z)−1]

−α2

k1
[M1(x+ y)M2(x− y)M3(z)−1]+β1

`(x,y,z) =
1
k2

[M1(x+ y)M2(x− y)M3(z)−1]+α2

n(x,y,z) =
1
k1

[M1(x+ y)M2(x− y)M3(z)−1]+α1,

where M1,M2,M3 : R→ R are multiplicative functions and α1,α2,β1,β2 are arbitrary

constant and k1,k2 are nonzero constants.
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• for the functional equation (1.23):

f (x,y,z) = β1 +β2 +α1α2

g(x,y,z) = β2

h(x,y,z) = β1 +α1α2−α2n(x,y,z)

`(x,y,z) = α2

n(x,y,z) is arbitrary,

or 

f (x,y,z) = β1 +β2 +α1α2

g(x,y,z) = β2 +α1α2−α1`(x,y,z)

h(x,y,z) = β1

`(x,y,z) is arbitrary

n(x,y,z) = α1,

or 

f (x,y,z) =
1

k1k2
[M1(x+ y)M2(y− x)M3(z)−1]+β1 +β2 +α1α2

g(x,y,z) =
1

k1k2
[M1(x+ y)M2(y− x)M3(z)−1]

−α1

k2
[M1(x+ y)M2(y− x)M3(z)−1]+β2

h(x,y,z) =
1

k1k2
[M1(x− y)M2(x+ y)M3(z)−1]

−α2

k1
[M1(x− y)M2(x+ y)M3(z)−1]+β1

`(x,y,z) =
1
k2

[M1(x+ y)M2(y− x)M3(z)−1]+α2

n(x,y,z) =
1
k1

[M1(x− y)M2(x+ y)M3(z)−1]+α1,

where M1,M2,M3 : R→ R are multiplicative functions and α1,α2,β1,β2 are arbitrary

constant and k1,k2 are nonzero constants.
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General solution functions f ,g :R3→R of the patial pexiderized functional

equation

f (ux+ vy,uy− vx,wz) = f (x,y,z)+ f (v,u,w)+g(x,y,z)g(u,v,w), (4.9)

are given by 
f (x,y,z) = δ2[M1(

√
x2 + y2)M2(z)−1]

g(x,y,z) = δ[M1(
√

x2 + y2)M2(z)−1],

where M1,M2 : R→ R are multiplicative functions and δ is an arbitrary constant.

It would be of interest to investigate whether the each of method of the

proof can be extended to treat the general n-dimensions.
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