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Abstract 
 

AUTOMATIC INITIALIZATION OF ACTIVE CONTOURS FOR 
SEGMENTATION OF ULTRASOUND IMAGES OF BREAST CANCER 

 
by 
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Bachelor of Science (Computer Science, 2nd Class Honors), Chiang Mai University, 

2004 

Master of Science (Computer Science), Chiang Mai University, 2007 

Doctor of Philosophy (Engineering and Technology), Sirindhorn International 

Institute of Technology, Thammasat University, 2017 

 

Segmentation of ultrasound (US) image of breast cancer is one of the most 

challenging problems of modern medical image processing. A number of popular 

codes for US image segmentation are based on the active contours (snakes) and on a 

variety of modifications of gradient vector flow (GVF). The snakes have been used to 

locate objects in various medical images. The main difficulty in applying the methods 

is initialization. The GVF snakes produce inaccurate results if the initial contours 

(seeds) are initialized inappropriately i.e. far from the real boundaries or/and close to 

the false boundaries (noise and artifacts). Therefore, the subject of dissertation is a 

novel method for automatic initialization of GVF-type active contours. The first 

proposed method is based on phase portrait analysis (PPA) of the underlying vector 

field and a sequential initialization of multiple trial snakes (TS). The PPA makes it 

possible to exclude the noise and artifacts and properly initialize the multiple snakes. 

In turn, the TS method allows us to differentiate between the seeds initialized inside 

or outside the desired object. The second proposed method is based on exploding 

seeds (ES) or walking particles. At the first step, the algorithm locates the seeds at 

converging and diverging configurations of the vector field. At the second step, the 

seeds “explode”, generating a set of walking particles designed to differentiate 
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between the seeds generated inside and outside the object. The TS and ES outperform 

five state-of-the-art initialization algorithms. 

   

Keywords: image segmentation, medical images, ultrasound, active contours, 

automatic initialization, gradient vector fields, exploding seeds, phase portrait 

analysis. 
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Chapter 1 

Introduction 
 

The computer aided systems for the medical image segmentation help the radiologists 

or physicians to pre-locate the features of interest, increase the diagnosis accuracy and 

reduce the image reading time [1]. Presently, mathematics, statistics and computer 

science methods are applied to analyze the medical images. Many types of imaging  

techniques such as Mammography, Computed Tomography, Magnetic Resonance 

Imaging , Ultrasound (US) imaging [2], Doppler and elasticity imaging [3-6] are used 

for scanning of breast cancer (see Figure 1.1).  

Breast cancer is the most common cancer worldwide for women [1]. In particular in 

Thailand, it is reported in the hospital-based cancer registry annual report 2015 of the 

National Cancer Institute [6]. Early detection increases the patient’s survival rate and 

offers more treatment options [1]. The mammography is an effective tool for early 

screening of breast cancer. However, it still has some limitation such as low 

sensitivity (non-cancer lesions can be misinterpreted as a cancer, while cancers may 

be missed [1]). Due to some restrictions of mammogram imaging, the US and MRI 

screening are often suggested for further analysis. Currently, the most effective tool 

which supplements the mammogram screening is the ultrasound [1]. The ultrasound 

imaging or sonography is a technique that utilizes the high-recurrence sound wave to 

create dynamic virtual images of organs, tissues, or blood streams [2]. However, the 

US images are operator-dependent and still require expert radiologists for 

interpretation [1]. Therefore, the computerized segmentation systems may increase 

the accuracy of breast cancer detection.  

One of the most popular techniques for extraction of complex objects from digital 

image is active contours or snakes originally proposed by Kass and colleagues [8]. 

The performance of the classical snakes can be improved by using higher-order 

parametric models proposed by Rochery et al. [9]. Further, the accuracy can be 

enhanced by improving the external force field. Xu and Prince propose the gradient 
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vector flow (GVF) [10] to increases the capture range of the snake and the generalized 

gradient vector flow (GGVF) [11] which introduces weighting functions and non-

linear diffusion coefficient.  

The computational time and the accuracy of the snakes critically depend on the initial 

contours (seeds). Noise and small objects may attract the snake to a local energy 

minimum, which does not correspond to the actual boundary. Therefore, to reach the 

boundary of desired object, the initial contour should be initialized close to the object 

boundary. The problem can be partially solved by initializing multiple snakes, which 

can split, merge, and collapse (disappear). Moreover, the higher-order active contours 

(quadratic snakes) proposed by Rochery et al. [9] are able to “see” each other, so that 

they do not intersect if not required. However, such strategies still require proper 

initialization.  

Numerous research papers apply the active contours and a variety of their 

modifications to extract the object of interest from medical images. However, as 

mentioned above, the snakes strongly depend on the initialization. If the seeds of 

initial snakes are initialized improperly i.e. far from the real boundaries and/or close 

to the false boundaries, the snakes may get attracted to them and produce inaccurate 

segmentation results. Unfortunately, up to now only a few papers deal with the snake 

initialization. The majority of the existing models offer the user to define the initial 

contour manually [10-13]. The competing level-set method [14] also requires a 

manually initialized initial surface. The quasi-automatic initialization [15] defines an 

initial skeleton snake generated around the centers of strong and weak divergence of 

the gradient vector flow. Besides, it still requires one manually selected point inside 

the object. The Poisson inverse gradient flow is combined with Canny edge detection 

and obtained by a genetic algorithm [16]. However, the method is sensitive to the 

artifacts and noise. As far as the US images are concerned, the majority of the 

initialization methods are based on the analysis of the gray levels and textures, to 

locate the most probable seed points [17-19]. However, all the above methods depend 

on the particular features of the image and may not work if a strong noise is present.  

2 



Ref. code: 25605422300284YJH

 
 

Therefore, this dissertation offers two algorithms for automatic initialization which 

combine the multiple competing active contours [16] and the idea of vector field 

analysis [20].    

The first proposed method called the Trial Snake (TS) relies on the idea of vector 

field analysis using PPA [20] and multiple GVF-type snakes [16]. Note that PPA has 

been used in a variety of image processing applications, e.g. [21-27]. However, the 

PPA in the framework of initialization algorithms has been actually overlooked. The 

PPA makes it possible to exclude the noise and artifacts and properly initialize the 

seeds of multiple snakes. In turn, the trial snakes allow us to differentiate between the 

seeds initialized inside or outside the desired object. If the trial snakes grow and reach 

the image border, the seeds are classified as external, otherwise they are considered to 

be the internal candidate seeds.  

The second proposed method called the Exploding Seeds (ES) is based on walking 

particles. At the first step, the algorithm locates the seeds at converging and diverging 

configurations of the vector field obtained from the PPA. At the second step, the seeds 

“explode”, generating a set of walking particles designed to differentiate between the 

seeds generated inside and outside the object. If the majority of the particles 

originated from the particular seed reach the image border, they are classifies as the 

external seeds, otherwise, they are the candidate internal seeds.  

The numerical experiments show the advantages of the TS and ES with the reference 

to five state-of-the-art initializations. We also show that the active parametric 

contours endowed with the proposed initialization outperform the level set method 

[28] and Fuzzy C–Mean clustering [29].       

This dissertation consists of five chapters. Chapter 1 is an introduction, problem 

statement, motivation, objective and outline of the dissertation. Chapter 2 is a 

literature review. Chapter 3 presents the Trial Snakes Model. Chapter 4 presents the 

Exploding Seeds Model. Chapter 5 deals with conclusions and future work. 
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(a) (b) 

 
(c) (d) 

Figure 1.1 Images of malignant solid mass from [7], (a) Ultrasound image,               

(b) Doppler image, (c) Elastography image, (d) Ground truth image hand-drawn by a 

radiologist. 
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Chapter 2  

Literature Review 
 

The chapter presents a literature review which includes snake-based segmentation for 

medical image processing, GVF–type active contours, phase portrait analysis (PPA), 

charged particles for edge detection and current state of the art of snake initialization 

methods. 

 
 
2.1 Generalized Gradient Vector Flow Active Contours 

 
( ) [ ]( ) ( ) ( )An active contour or snake is a parametric curve , , 0,1X s x s y s s= ∈  involving 

inside the image domain (grows or contracts) to attach itself to the boundary of the 

object of interest. The evolution of the snake is simulated by Euler equations, 

corresponding to minimization of a certain energy functional [8]. The equation are 

given by   

                     

2 4

2 4

d X d Xa b
ds ds

0extE+ +∇ =

extE∇

,                                       (2.1) 

where a and b are weighting parameters to control the snake’s tension and rigidity and 

 is the GVF type gradient vector flow. One of the most popular is the GGVF 

[11], obtained by solving the following system of partial derivative equations                                       

             
( ) ( )2 ( ) 0V h f f V∇ − ∇ ∇ − =

V g f
t

∂
− ∇

∂
,                               (2.2)                        

f is the image edge map, ( ) ( ) ( )where ( )1,
f K

g f e h f
− ∇

g f∇ = ∇ = − ∇ K, and is a 

calibration parameter. Among numerous extensions of the GGVF type gradient vector 

flow idea are Normal Gradient Vector Flow [30], Infinity Laplacian [31], Harmonic 

Gradient Vector Flow [32], Convolution Vector Flow [33], Dynamic Directional 

Gradient Vector Flow [34], Adaptive Diffusion Flow [35], and Multi Feature Gradient 

Vector Flow [36]. 
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2.2 Phase Portrait Analysis 

The idea to use the PPA for oriented patterns in image processing has been used in 

fingerprint identification [23, 27], texture analysis [26], and satellite imagery [21, 22]. 

PPA techniques have been also applied to detect architectural distortions in 

mammogram breast images [37]. As far as the initialization of active contours is 

concerned, He et al. [38] use the PPA and a Boolean classifier to initialize snakes at 

the centers of divergence. However, the method can not differentiate the internal and 

external seeds.   

PPA is based on the analysis of the vector flow V assumed to change linearly in the 

neighborhood of the critical point ( , )p x y=  as follows, V Ap= , where A is the 

corresponding matrix. The matrix is approximated by the least square method applied 

to in the moving window centered at p. The flow is characterized by the 

eigenvalues of A (see Table 2.1), where  are the eigenvalues, , 

, and i  [39, 40]. The phase portrait patterns are illustrated in Table 2.1. 

The following classifier has been proposed [40] 

V

Reλi iR =

Im=

1λ ,λ2

λi iI 1,2=

                       
1 2

1 1
1 2

1 2
,

1 2

1 2 2 2

min( , )
2 2 2

1 1 2 2 2

boundary,   ,   
max( , )

min( , )
( )  noise,   ,    or  

max( , )

 regular point,   or  ,

i jC W

λ λ
λ λ

λ λ
λ λ

λ λ

⎧
 or  ,

,

λ λ

λ λ

≤ Δ >⎪
⎪
⎪⎪= > Δ⎨
⎪
⎪ ≤ Δ ≤ Δ⎪
⎪⎩

Δ > Δ

> Δ > Δ

21  ,

 ,             (2.3) 

 
Δwhere W is the window around the pixel , and ,i j Δ  are the thresholds evaluated 

by training.  
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Table 2.1 Phase portrait analysis of 2D critical points 

Pattern Eigenvalues Illustration 

Repelling Focus 021 >= RR 1 02 ≠−= II  
 

Attracting Focus 021 = <RR 1 02 ≠−= II  
 

Saddle Point 0,0 21 <> RR 1 02 == II   

Repelling Node 021 >≠ RR 1 02 == II   

Attracting Node 021 ≠ <RR 1 02 == II   

Center 021 = =RR 1 02 ≠−= II  
 

Repelling Star 021 >= RR 1 02 == II   

Attracting Star 021 = <RR 1 02 == II   

Pure Shear 021 = =RR 1 02 == II  
 

Node-Saddle1: Repelling 0,0 21 => RR 1 02 == II   

Node-Saddle 2: Attracting 0,0 21 =< RR 1 02 == II   
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2.3 Charged Particle Method for Edge Detection 

The charged particle method for edge detection was introduced by Jalba and 

colleagues [41]. This method is motivated by classical electrodynamics and is based 

on a simulation of the moving charged particles in an electrostatic field. The charged 

particles are attracted by an electric field acting towards the boundary of the object. 

The particles’ sources are computed based on the edge map of image. The idea was 

further developed in [42, 43].  

 
2.4 Snake-based Segmentation for Medical Image Processing 

Many segmentation methods have been developed for US images of breast cancer. 

Numerous reviews (e.g. [44, 45]) present methods to treat segmentation of medical 

images as a general image processing problem while others use a priori information 

relevant to the specific type of the images. Conventional segmentation methods 

include thresholding [46-50], neural networks [51-58], mode-based methods (such as 

expectation–maximization) [59, 60], clustering [61, 62], region growing [63], 

deformable active contours (snakes) [17, 46, 64-67] and level set methods [14]. The 

segmentation is usually followed by feature extraction to distinguish malignant and 

benign masses. The features include shape of the mass, posterior acoustic behavior, 

radial gradient or margin, variance or autocorrelation, contrast, distribution of the 

distortions and many others [68]. Survey [69] reports 17 texture features, 17 

morphological features, 10 model based features and 13 descriptor features.  

Recent advances in the US segmentation include fusion of the medical images [70], 

using graphic processing units [71], multi-atlas segmentation [72], incorporating 

priors [73] using the AI methods combined with snakes [72, 74-76], advanced level 

set methods [28, 29, 77-82] and the multi-scale approach [83]. The US image analysis 

is a part of the computer assisted diagnostic systems. The entire evaluation includes 

mammography (usually the primary step), thermography [84, 85], Doppler imagery 

[3, 4] and elasticity analysis [5]. Such evaluation along with the computerized 

cytology [86, 87] constitutes a basic architecture towards the ultimate goal of fully 
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automatic clinical decision support systems for detection and grading of the breast 

cancer [88].    

Active contours or snakes originally introduced by Kass et al. [8] is one of the most 

popular techniques for extraction of complex objects from digital images. Since the 

seminal work of Kass and colleagues, active contours have been applied to many 

object extraction tasks with differing degrees of success (e.g. survey [89]). Further 

improvements process the underlying vector field which moves the snake towards the 

required boundary, such as the gradient vector flow (GVF) [10, 90] and the 

generalized gradient vector flow field (GGVF) [11]. Some variations of these ideas 

are the multidirectional GGVF [91] and the non-linear diffusion model [92]. Recent 

modifications are the Convolution Vector Flow [33], Poisson Gradient Vector Field 

[16, 93], Segmented External Force Field [94], Dynamic Directional Gradient Vector 

Flow [34], Normal Gradient Vector Field [30], Priory Directional Information Vector 

Flow [95], Adaptive Diffusion Flow [35], Multi Feature Gradient Vector Flow [36], 

and Divergence Gradient Vector Flow [96].  

A competing approach called the level set method (LSM) [97] is based on the ideas 

proposed by Osher and Sethian [98] to use a model of propagating liquid interfaces 

with curvature-dependent speeds. The LSM combined with the contour energy 

minimization resulted in a variety of the so-called geodesic deformable models [99-

102]. However, the LSM makes it difficult to impose arbitrary geometric or 

topological constraints on the evolving contour via the higher dimensional hyper 

surface. Besides, the level set models may generate shapes having inconsistent 

topology with respect to the actual object, when applied to noisy images characterized 

by large boundary gaps [103] and non-closed curves [94]. Besides, the LSM is 

computationally expensive since it requires to propagate a 2D object (the level set 

surface) in the 3D space whereas the active contour methods evolve a 1D object (the 

closed contour) in the 2D space.       

Numerous research papers apply the active contours to medical images. The examples 

are multi-direction snakes: skin cancer images [91], topology-adaptive snakes:  MR 

brain images and CT scans [104], gravitational force snakes: a variety of medical and 
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non-medical images [105], narrow-band snakes: MRI and CT scan images of lungs 

[106], distance snake [107], GVF snake, balloon snake [108], “area and length” 

snakes [100], geodesic snakes [99], constrained snakes [101] and level set method: 

MRI, CT and US images of brain, liver, kidney [102], region-competition snakes 

(originally [109]): CT scan slices of arteries [110], sectored snakes [111] : abdominal 

CT scans [112], parametric snakes: US of breast masses [113], 3D-snakes: US breast 

cancer images [64, 113], GVF snakes with an edge map pre-processing: US of the 

liver tumors [114], GVF snakes combined with the region growing and the median 

filter: US breast tumors [115], sketch-snakes [64]: chest X-ray images [64], 

combination of snakes and active shape models: US of the human heart [116], the 

early-vision and the discrete-snakes: the US images [117], multi-resolution snake: 

echographic and echo brachial images [118], GGVF snakes combined with a 

continuous force field analysis: breast tumors in the US images [119], geodesic 

snakes and coupled geometric snakes: female pelvic organs in the MRI images [120-

122].    

Although, the snakes are widely used for detecting the objects of interest in various 

medical images. The success of snake-based segmentation strongly depends on the 

initialization. The inappropriate initialization may produce incorrect results.     

  

2.5 Initialization Methods for GVF-type Parametric Snakes 

One of the popular ideas is analysis of the vector field generated by the GVF-type 

model. For instance, [94] applies force field segmentation (FFS) to divide the image 

domain into disjointed regions representing the capture range of the external force 

field. The snakes can be individually initialized within each of the enclosures and 

moved to the targeted object boundary within it, avoiding being attracted by other 

objects. However, the algorithm transforms the image segmentation problem into a 

vector field segmentation problem, which is difficult to solve if strong noise is 

present. 

     

10 



Ref. code: 25605422300284YJH

 
 

The idea to initialize the snakes at the centers of divergence (CoD) of the GVF-type 

vector field was first mentioned in [123]. Further, Xingfei and Jie [20] define the CoD 

by analyzing relative directions of the vector field in a sliding 2x2 window (a 

generalization to larger windows is not available). He et al. [38] uses PPA [25] to 

detect the critical points of the vector field and a rule that “the initial contours should 

be set to contain all of the node points in the object area and none of the others”. 

Although PPA has been used in a variety of image processing applications, e.g. [21, 

23-27], the standard PPA classifier based on “if then” rules often can not be adapted 

to the case of snake initializations characterized by irregular nodes corrupted by noise. 

Moreover, neither [20] nor [38] differentiate the external and internal snakes. As a 

result, the image produced by [20] requires a special merging procedure to remove 

pseudo-boundaries appearing due to the over segmentation. Further, [38] uses only 

seeds characterized by a certain gray level associated with the object. Therefore, the 

method fails on low contract images characterized by shadows and artifacts such as 

the US images of breast cancer.   

The similarity of the GGVF and the Navier-Stokes equations makes it possible to use 

the analogy of a flow through a porous medium. Consequently, [124] treats the initial 

snakes as sources of the flow emitting normal unit vectors on the image domain. The 

authors also noticed critical points of the flow and proposed to merge multi-snakes 

initialized around those points for segmentation of the MRI images of lungs. 

However, the method works only when the snakes are initialized inside the lungs. 

Although for these types of medical images such initialization is trivial, it is not the 

case for low contrast images such as the US images of breast cancer.  

A competing idea is placing the seed points uniformly or randomly over the entire 

image, evolving the snakes from each seed point and analyzing the resulting 

configuration. For instance, [125] runs snakes until their convergence to a local 

minima and constructs a pattern image (an annular band around each snake). Next, the 

algorithm projects each pattern image into an already trained principal component 

classifier. The snakes associated with a lower reconstruction error are classified as 

objects and others as non-objects. However, the required classifier to validate the final 

configuration must be trained. Besides, classification of randomly initialized snakes is 
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computationally expensive and might lead to considerable inaccuracies. The final 

configuration depends on the relative speed of the snakes’ evolution (time step) which 

is set up manually. Therefore, the final configurations can differ considerably.    

Another interesting approach is the quasi-automated initialization (QAI) method by 

Tauber et al. [15, 126]. The method employs CoDs, combined with a tracing 

procedure to create a “skeleton” of the object, consisting of centers of strong and 

weak divergence. The centers of weak divergence are the points where the vectors of 

the GVF diverge in one (either horizontal or vertical) direction. The centers of strong 

divergence feature both horizontal and vertical divergences. The initial snake is 

generated around the skeleton. However, the initialization is not entirely automatic. 

The algorithm still requires at least one manually generated point inside the object. 

Moreover, in some cases the skeleton can evolve outside the boundary of the object. 

Poisson Inverse Gradient Vector Flow (PIG) [127] establishes a relationship between 

the external force field and the underlying external energy field via the solution of the 

corresponding Poisson equation. The isoline of the minimum energy is selected as the 

initial contour. The model has been applied to the 2D and 3D cases for a variety of 

medical images. However, the method may suffer from incomplete isolines, as well as 

from over segmentation.  

An automatic initialization method has been proposed in [16] for PET images of the 

liver. The candidate contours are generated by Canny edge detection and subsequently 

classified by a genetic algorithm. The algorithm has been applied to segmentation of 

face contours in video files [128]. A similar idea was introduced in [129] for detection 

of the synovial boundaries in US images. However, the proposed initial snakes 

selected from the edge map are not robust and may not be applicable to multiple 

objects. 

The initialization algorithms for the US images often rely on gray levels and textures 

to place the seed points inside the tumor [17-19]. Saliency and feature maps have 

been proposed in [130]. [131] introduces a special vector field to hybridize the GVF 

and the texture. A Chan–Vese type model is proposed in [132] generates an initial 
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contour in the framework of region based segmentation. A few papers related to a 

specific medical image processing task use the typical position of a human organ in 

the US images (see, for instance, [133]). However, these models are image dependent 

and may not work if strong noise is present.  

However, the existing initialization models for snake based segmentation are image 

dependent and may not work if a strong noise is present. Therefore, two new 

initialization algorithms are presented in Chapters 3 and 4.  

2.6 Conclusions  

The problem of initialization is in fact a problem of a rough segmentation. That is 

why the most popular method of initialization is manual. One of the most important 

problem is to determine whether the initial contour or multiple initial contours are 

located inside or outside the object of interest (the tumor in our case). Contours which 

partially located inside and partially outside the tumor are unacceptable or difficult to 

treat. The problem of initialization is not a specific problem of active contours. A 

good initialization method can be applied to level set methods [14], region growing 

[63], clustering [61, 62], watershed algorithms [58] and other segmentation methods.  

As far as the US images are concerned, the proposed algorithms can be generalized to 

all types of breast abnormalities such as fibroadenoma, cyst, etc. Although there are 

some specific features attributed to these specific abnormalities, the proposed method 

will work with minor modifications.   
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Chapter 3 

Trial Snakes Model 
 
 

3.1 Introduction 

It is critical to differentiate the snake’s seeds initialized inside and outside the object 

of interest. Obviously, if one can do it for every position in the image, it means that 

the object has already been segmented. However, it is sufficient that the algorithm 

does it only for some points for which such differentiation is possible.  

Our solution is based on trial snakes (TS) initialized around false objects and false 

edges so that they do not get attracted to them during their evolution (Figure 3.1 (c)). 

The proposed TS model combines the idea of vector field analysis [20] and multiple 

competing active contours [16]. The TS differentiates the internal and external seeds 

by checking their intersections with the boundary of the image. The basics of the TS 

have been published in [140]. This chapter presents an extended version of the TS 

paper. 

3.2 Methodology 

Our methodology is based on numerical experiments tested by ground truth hand 

drawn by the experienced radiologists. The accuracy measures are the Hausdorff 

distance (contour-based measures) and conventional region-based measures.   

 

3.2.1 Seed Classifier 

We propose a modification of classifier (2.3) (see [39], [40]) given by   

1 2 1 2

1 2 1 2

min( λ , λ ) (λ λ ) 1,if 
( , ) max( λ , λ ) 2

0,otherwise.

sign
C λ λ

⎧ +
⎪= ⎨
⎪
⎩

1 2λ δ,λ δ,> >
                   (3.1) 
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where  is a threshold to exclude ill conditioned matrices characterized by small 

eigenvalues. The term 

δ

1 2

1 2

min( λ , λ )
max( λ , λ )

 includes converging/diverging configurations, 

i.e. attracting and repelling stars (see Table 2.1). The term  1 2(λ λ ) 1
2

sign +   excludes 

the saddle points. All other patterns get a 0 score. The converging/diverging 

configurations are differentiated by the sign of the eigenvalues. Since GGVF 

eventually eliminates small groups of noisy pixels, the seeds must be initialized 

around large or medium size stars and nodes. Therefore, the PPA is combined with a 

growing window as follows:  

if 1 2( , )kC λ λ > Δ λ 51,...,kkk,  for every 1 20, λ 0,> > = ,              (3.2) 

where k is the size of the growing window and Δ is the suitable threshold to detect the 

large configuration, then the window is a candidate to be the seed.  

Our numerical experiments show that δ = 0.  and 001 Δ  between 0.7 and 1.0 are 

appropriate for efficient detection of the seeds.   

3.2.2 Algorithm of the Trial Snakes Model  

The TS is based on the idea that if we detect all the converging and diverging stars 

inside the object and run the expanding snakes from them, they will eventually merge 

and attach themselves to the boundary (in case of attracting star the vector field must 

be inverted). Let DN Nand  be the number of the diverging and converging stars 

respectively. The first stage of the algorithm is then given by the following pseudo-

code:   

C
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void Evolve_the_Snakes(inti) 
{  
    Initialize a snake  around the diverging star . The snake is initialized as a    iS iD

 circle inside the maximum window satisfying . 1 2(λ ,λ )kC > Δ

     Evolve  until it converges. If i  touches the image boundary, smooth the vector field inside iS S
                the resulting contour.  

     Exclude  from the set of the diverging stars.  iD
 } 
 
void Process_VectorField(void) 
{  
     do{ 

 Detect_all_Diverging_Stars iD
   

//use classifier (3.1)  

 Evolve_the_Snakes ( )   // call Evolve_the_Snakes times  DN DN
     }while the number of diverging stars does not change and every snake converges  

      to the same position.   

} 
 
void main(void)   // the program body   
{  
    do {  

 Process_VectorField() 

 Invert_the_vector_field    //The converging stars become diverging. 

 Process_VectorField() 

    }while every does not converge to the same position. iS
} 
 

The algorithm is illustrated in Figure 3.1 and Figure 3.2. The first stage eliminates the 

seeds positioned outside the object. If a snake reaches the image boundary, the 

algorithm smoothens the vector field inside the contour to give the way to the snakes, 

which would have been blocked otherwise. The iterative procedure eventually 

excludes every external star (converging or diverging) leaving the internal stars intact 

(see Figure 3.1). When the vector field gets inverted e.g., V V , the 

converging snakes become diverging, so that they are grown on V  until they 

meet vectors in the opposite direction. When they stop, they get offset and then are 

grown further on the original vector field.  

inverted = −

inverted
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(a) (b) (c) 

Figure 3.1 Elimination of the external stars, (a) S  gets blocked, (b)  are 

eliminated, (c) S  is eliminated.   

4 1 2 3, ,S S S

4

 

  
(a) (b) 

  

(c) (d) 
 
Figure 3.2 Multiple Snakes, (a) snake growing from a converging configuration 

“wakes up” a “sleeping” snake, (b) the offset snake picks up the opposite direction of 

the vector field, (c) merging of the growing contours, (d) merging of the intersecting 

contours.   
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Note that at the first stage merging is not allowed: if the external and internal snakes 

merge, the tumor becomes undetectable (see Figure 3.1 (a) - 3.1 (c)). However, when 

the external snakes disappear, merging becomes the basic mechanism of the proposed 

initialization. The algorithm runs on the original vector field, where the converging 

snakes are considered “sleeping”, whereas the diverging snakes are growing and 

merging. Snakes  merge whenever 1 2,S S
1 1 2( , ) δH S Sdist < , where δ is the merging 

threshold and is the Hausdorff distance (see the definition in section 3.3). It is 

often the case that a growing snake merges with the “sleeping” snake and the resulting 

contour keeps growing (Figure 3.2 (a)). However, the algorithm does not guarantee 

that. Therefore, the converging snakes, which have not been “woken up” are offset by 

several pixels to pick up the repelling component of the vector field (Figure 3.2(b)). 

Note that for the converging configuration the small offset never intersects the 

boundary, since there is always a layer of vectors towards the boundary (Figure 3.2 

(a)). The merging procedure generates a joint growing contour when the snakes are at 

the distance less or equal to δ (Figure 3.2 (c)) or when the snakes intersect due to 

initialization or due to excessive numerical step (overstepping). The algorithm 

includes detection of intersections and performs tracing to generate a joint contour, 

which becomes a new snake (Figure 3.2 (d)). The topological changes follow 

conventional split-and-merge procedures [104, 134, 135]. Besides our split-and-merge 

algorithm has been successfully tested on complex-shaped objects in [136].  

1Hdist

 
Note that expanding from the inside of the object is not mandatory. In some cases it is 

acceptable to clean up all the converging and diverging configurations outside the 

object and initialize a contracting snake from the image boundary. However, the 

(tumor) generally has some homogeneity properties. Second, even though the 

smoothing process erases the attracting and repelling stars, the resulting vector field 

outside the tumor still could be chaotic and include false boundaries. 
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3.3 Performance Measures 

In order to compare the proposed method with the conventional algorithms we 

introduce the following performance measures: the accuracy of segmentation result 

(contour-based and region-based), and the performance of the initialization procedure.  

3.3.1 Contour Based Accuracy Measures 

The snakes based segmentation is evaluated in term of the contour based similarity 

using the Hausdorff Distance. The distance (number of pixels) between the true 

contour (tumor ground truth hand-drawn by the radiologist) and the segmentation 

contour are measured as the following. 

3.3.1.1 Maximum Hausdorff Distance 

The maximum Hausdorff distance (H1) given by 

1
dist ( , ) max{maxmin || ||,maxmin ||H b Y a Xa X b Y

||)X Y a b
∈∈

= − a b
∈∈

−

dist

 ,               (3.3) 

where || || denotes the Euclidian distance,  the ground truth contour, and Y the 

resulting contour.  

X

3.3.1.2 Average Hausdorff Distance  

The average Hausdorff distance (H2) obtain from  by replacing the internal 

maximum by the average as the following equation 

1H

}bminmax,minmax{avg),(dist
2

abaYX
XaYbYbXaH −−=

∈∈∈∈
 ,                    (3.4) 

3.3.1.3 Relative Hausdorff Distance  

The relative Hausdorff distance (H3) given by  

ξ
),(dist

1

x

H

L
YX

),(
3H YXdist = ,                                             (3.5) 
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where  is the length of the true contour, and  is the normalizing coefficient. The 

distance allows evaluating the relative importance of the difference between the two 

curves. For instance, if 

XL ξ

1
dist (H , ) 10X Y = , and 100XL =  pixels, the error is 

unacceptable, however, if for instance, 10000XL = , then  is negligible.  
3

distH

1
distH

The importance of the Hausdorff distance in comparing planar curves is that it is 

parametrization-invariant. Although is not a distance in a rigorous mathematical 

sense (it does not satisfy the triangle inequality), [137] shows that it is the best for 

matching the curved objects.  

3.3.1.4 Contour-based True Positive Rate    

The contour-based true positive is  

Y
c

Y

TPTPR
N

=

YN

,                                                     (3.6) 

where  is the number of true positive pixels, and  is the total number of pixels 

belonging to the resulting active contour. 

TP

 
3.3.2 Region Based Accuracy Measures 

3.3.2.1 Sensitivity 

TPSEN
TP FN

=
+

,                                                    (3.7) 

3.3.2.2 Specificity 

FPTN
TNSPE
+

= ,                                                    (3.8) 

3.3.2.3 Accuracy 

   ,TP TN
TP TN FP FN

+
=

+ + +
                                              (3.9) ACC

Fwhere , and , ,TP TN FP N  are the region-based true positive, true negative, false 

positive, and false negative. 
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3.3.3 Dice Analysis 

Dice Similarity Coefficient (DSC) is defined by 

( )BA∩BADSC
A B+

=
*2)

2
dist (H X Y

,( ,                                                  (3.10) 

where A and B are the regions of the ground truth and the segmented result. The DSC 

is in the range of [0,1]. 

3.3.4 Performance of the Initialization Procedure 

Observe that the accuracy measures introduced in Section 3.3.1, 3.3.2 and 3.3.3 are 

only supplementary because they depend on the segmentation engine. Therefore, the 

performance of the initialization is evaluated by 

(1) Percentage of images for which the internal and external seeds 

were correctly detected: Ncorr 

(2) Percentage of images for which the contour was correctly 

segmented (the final snake is considered correctly if 

, ) 3≤ ), Scorr 

3.3.5 Statistical Analysis 

The standard deviation and the p-value are used to validate the significance of the 

numerical results. 

 
3.4 Numerical Experiments 

Our numerical experiments have been performed on 40 synthetic images, subjected to 

various levels of noise, and on 15 real US images of breast cancer. The method has 

been compared with a quasi-automatic initialization (QAI) [15, 126] based on 

detection of the centers of the weak and strong divergences. A special tracing 

procedure connects them, generating some kind of skeleton of the object. The 

skeleton snake requires one manually defined point inside the object (not fully 

automatic), whereas our procedure runs in an entirely automatic mode. Moreover, the 
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skeleton snake has not been properly tested against a series of real images. The impact 

of the noise was not evaluated and the accuracy of the segmentation has not been 

estimated. In this section, we show that skeleton initialization is sensitive to the noise 

and TS model outperforms this method in terms of the number of correct 

initializations and the accuracy. 

We also compare the proposed initialization method equipped only with a basic 

version of GGVF with the Adaptive Diffusion Flow (ADF) [35], a recent version of 

the Level Set Method (LSM) [28, 77, 78] and an advanced version of the Fuzzy C-

mean Clustering (FCM) [29, 79]. The proposed method outperforms the above 

algorithms even though we use the most basic GGVF (without any recent 

improvements).            

The accuracy is measured by the Hausdorff distance between the resulting contour 

and the ground truth, by the percentage of true positives (TP) as well as by the 

sensitivity (SEN), specificity (SPE), accuracy (ACC) and dice analysis (DSC). To 

compare the method with the skeleton snakes, we also use a binary measure counting 

the number of times when the initial snakes were correctly initialized inside the 

tumor. This allows to evaluate the true accuracy since an incorrect initialization can 

substantially decrease the average accuracy. On the other hand, even a correct 

initialization does not mean a good accuracy. Figure 3.3 (a)-3.3 (e) is an introductory 

example showing the skeleton initialization getting “distracted” by the inside 

converging configurations such a noisy “star” located nearby the boundary. (cf. 

correct segmentation by the TS in Figure 3.3 (f)-3.3 (k)). Furthermore, even when the 

initialization is correct i.e. positioned inside the tumor, it does not guarantee that the 

algorithm reaches the boundary. Figure 3.4 shows that the ADF, LSM and FCM may 

fail if the seed is initialized in a noisy area.  

Finally, Figure 3.5 shows an example from Tauber et al. [15]. TS and QAI 

segmentations are practically identical, however, the skeleton snake requires one 

manually defined internal point whereas TS performs in an entirely automatic mode.    
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(a) noisy star  

 
(b) ground truth 

 

 
(c) QAI 

 
(d) QAI 

 
(e) QAI 

 
(f) GGVF/PPA (g) GGVF/TS 

 
(h) GGVF/TS 

 
(i) ADF/PPA 

 
(j) ADF/TS 

 
(k) ADF/TS 

 
Figure 3.3 Introductory example QAI vs. TS initialization, (a) a synthetic tumor,       

(b) the ground truth, (c) QAI: strong and weak diverging points of skeleton snake,    

(d) Skeleton initialization, (e) skeleton snake: final contour, (f) GGVF and the 

corresponding stars, (g) TS initialization, (h) TS: final contour, (i) ADF and the 

corresponding stars, (j) ADF/TS initialization, (k) ADF/TS: final contour. 
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(a) noisy star (b) ADF 
 

(c) ADF 

 
(d) multiple noisy star (e) LSM 

 
(f) LSM 

 
 

(g) FCM 
 

(h) FCM 
 
 

 (i) TS 
 

(j) TS 
 

Figure 3.4 Introductory example TS vs. ADF, LSM and FCM, (a) Noisy star,           

(b) ADF manual initialization, (c) ADF final contour, (d) multiple noisy star, (e) LSM 

manual initialization, (f) LSM final contour, (g) FCM clustering, (h) FCM final 

contour, (i) TS automated initialization for the multiple noisy stars, (j) TS solution for 

the multiple noisy stars.   
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(a) (b) 

 
(c) (d) 

 
Figure 3.5 QAI example image, (a) US image from [15], (b) the vector field, (c) PPA 

segmentation, (d) Tauber’s segmentation.  

 

3.4.1 Example 1: Synthetic Images 

We generate the synthetic tumors visually similar to the real US images. The visual 

analysis has been confirmed by the radiologists from Thammasat University Hospital. 

Forty (300x200) images of synthetic tumors were generated by using oval-like tumor 

shapes subjected to elastic deformations [139] and a trigonometric boundary noise 

(Figure 3.6). The images were degraded by the impulse noise and the additive 

Gaussian noise. The different levels of PSNR are: ∞ dB (no noise), 30 dB, 26 dB and 

21dB (increasing noise). The images are characterized by a low 

contrast 0.51out in

out

G G
G
−

= =c , where are the average grey level inside and 

outside the synthetic tumor. Figure 3.6 shows an example of a typical synthetic image. 

,in outG G
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∞ dB 30 dB 26 dB 21 dB 

 
Figure 3.6 Synthetic tumors subjected to impulse and speckle noise. 

Table 3.1 compares the competing methods in terms of the contour-based and region-

based accuracy. The average accuracy was evaluated when the snakes were correctly 

initialized. The FCM runs with 3 clusters corresponding to the tumor, dark 

background and white shadow areas. The initial centers of the clusters are the average 

gray levels in these clusters. Since the FCM is a region based method, the final 

contour for evaluating 1H  was generated by the LSM [29, 79]. The initial contours 

for ADF, and LSM were generated manually in the noisy areas of the image. The area 

of the initial contour was about 60% of the total area of the tumor. Clearly, the TS has 

an overwhelming advantage with regard to QAI practically for every noise level. 

Even in the absence of the speckle noise (but with the impulse noise present) only 

80% of the QAI are correctly initialized and only half of that 80% reaches the 

boundary. As far as the overall performance is concerned, the increasing noise level 

leads to a further decrease in the accuracy of the skeleton snakes. For instance, in case 

of 21 dB only 10% of the skeleton snakes are successful. The performance of the 

ADF snake with manual initialization is catastrophic with 0 correct segmentations at 

21 dB, however, the LSM and FCM are comparable in terms of the number of 

correctly segmented images. The TS is consistently more accurate. Besides, the 

forthcoming Example 2 shows that TS outperforms the LSM and FCM in terms of the 

number of correctly segmented tumors in case of real US images. Finally, combining 

TS with the ADF does not lead to a substantial improvement. Moreover, in some 

cases TS/GGVF produces more accurate segmentation. This is because the standard 

deviation σ  of a Gaussian smoother required for the ADF has not been tuned. We do 

not adjust it deliberately, otherwise, it won't be fair with regard to TS/GGVF which 
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does not use the Gaussian smoothing at all. We consider  0.5σ =  as recommended in 

[35].  

s. b ethods for synthetic US images Table 3.1 TS v enchmark m

AccCorrectly 
Noise, 

dB 
 

Model 
initialized Correctly 

inside 
object, 
Ncorr % 

segmented, 
Scorr % 

uracy 

Conto d E ionur-base valuat  Region-ba lused Eva ation 

H1 H2 H3 TP SEN SPE ACC 

0   

1TS + GGVF 100 00 2.10 0.73 1.67 99.95 99.80 99.06 99.33 
  6 2 2 QAI +  GGVF 80 40 3.92 3.09 6.57 80.16 82.78 99.15 91.50 
TS + ADF 1 1 100 00 2.13 0.74 1.57 00.00 99.74 99.11 99.33 
LSM Manual 180 2.46 5.49 3.32 79.91 81.25 99.59 94.97 
FCM Manual 80 12.46 5.47 27.71 79.96 80.80 99.93 99.03 
ADF, 60 %  2Manual 10 88.91 9.85 36.94 54.73 64.77 99.61 87.68 

 90 TS + GGVF 90 4.15 1.46 2.60 98.12 99.32 99.54 99.33 
QAI + GGVF 60 30 103.64 57.18 6

30   

1.31 68.68   66.92 99.65 90.38 
TS + ADF 90 90 3.79 1.57 3.16 94.84 98.28 99.71 99.23 
LSM ual 80 Man 14.08 6.14 4.09 78.78 80.40 99.96 94.88 
FCM Manual 80 12.93 5.53 27.71 79.82 80.86 99.88 94.94 
ADF,60% Manual 0 90.44 29.41 36.71 50.79 63.85 99.89 87.63 

26 

8TS + GGVF 80 0 4.53 1.67 3.23 95.37 98.56 99.65 99.24 
QAI + GGVF 10 6 760 10 4.68 9.82 3.86 52.91 60.03 99.66 85.93 
TS + ADF 80 80 4.66 1.86 3.62 87.53 97.47 99.72 98.94 
LSM Manual 80 15.47 6.33 4.30 77.01 79.91 99.95 94.69 
FCM + LSM 2Manual 80 13.31 5.52 7.43 79.38 80.57 99.82 94.90 
ADF, 60 % 3Manual 0 94.11 4.35 42.75 44.26 59.93 99.88 86.18 
TS + GGVF 80 70 9.42 1.98 3.56 88.00 97.55 99.55 98.73 
QAI + GGVF 60 10 141.75 136.78 138.19 47.70 52.91 99.59 82.91 

21 
TS + ADF 80 70 10.56 2.08 83.46 96.78 99.27 98.34 3.51 
LSM Manual 70 19.81 6.67 4.60 71.38 79.10 94.33 99.88 
FCM Manual 80 14.15 5.73 27.92 77.75 79.94 99.73 94.60 
ADF, 60 % Manual 0 90.65 38.11 48.89 37.26 52.34 99.84 83.16 

*The bold numbers indicate the best accuracy in each category  

It should be noted that Table 3.1 and all further accuracy tables include only the cases 

when the contours have been correctly initialized. If the contour is initialized 

tself to the boundary of 

the image. In this case, the evaluation of the accuracy does not make sense. 

The ground truth contours have been hand-drawn by three leading radiologists with 

incorrectly, the resulting snake may collapse or even attach i

3.4.2 Example 2: Ultrasound Images of the Breast Cancer 

This section tests the TS against the QAI on a series of 15 US images of the breast 

cancer. The images have been obtained from Philips iU22 ultrasound machine 

available at Thammasat University Hospital. The ROIs have been outlined manually. 
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the Department of Radiology of Thammasat University. The final ground truth image 

was obtained using the voting overlapping score (two from three). The inter-observer 

variability of the dataset is 0.86 whereas the intra-observer variability is 0.92. The 

resolution of the images ranges from 200x200 to 300x400. Examples which 

demonstrate the advantages of the TS snakes applied to the real US images are shown 

in Figure 3.7 and Figure 3.8. Clearly the QAI, ADF, LSM and FCM fail when the 

tumor includes a large non-homogeneous area characterized by the noise and/or 

shadows. In this case the resulting contour may be attracted to false boundaries 

rrectly only 73% of the images, 

whereas TS generates 93% correct segmentations. Finally, TS scores the best in 8 

ries from 9 (boldface numbers in Table 3.2).     

 

whereas TS avoids the false boundaries using multiple, properly initialized snakes.       

Table 3.2 compares the performance of TS with QAI as well as with LSM, FCM and 

ADF. The initial contour for ADF, and LSM was generated manually so that the 

contour occupies 60% of the area of the tumor. Clearly, the TS outperforms the QAI 

due to its ability to detect the internal and external stars, avoidance of the noise and 

the use of multiple seeds, whereas the skeleton seed often grows outside the object or 

creates an incorrect skeleton which jeopardizes the entire initialization. Furthermore, 

FCM and ADF are apparent losers (60% and 46% respectively). The performance of 

LSM is somewhat acceptable, however, it segments co

catego
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(a) US image 

 
(b) ground truth 

 
(c) QAI 

 
(d) QAI 

 
(e)ADF 

 
(f) ADF 

 
(g) LSM 

 
(h) LSM 

Figure 3.7 Real US example of TS vs. QAI, ADF, LSM and FCM, (a) US image,    

(b) ground truth, (c) QAI skeleton initialization, (d) QAI final contour, (e) ADF 

manual initialization, (f) ADF final contour, (g) LSM manual initialization, (h) LSM 

final contour, (i) FCM manual initialization, (j) FCM final contour, (k) GGVF/TS 

stars before elimination, (l) GGVF stars after elimination, (m) TS/GGVF 

initialization, (n) TS/GGVF final contour, (o) TS/ADF initialization, (p) TS/ADF 

final contour. 
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(i) FCM 

 
(j) FCM 

 
(k) GGVF/TS 

 
(l) GGVF/TS 

 
(m) GGVF/TS 

 
(n) GGVF/TS 

 
(o) ADF/TS 

 
(p) ADF/TS 

Figure 3.7 (Cont.) Real US example of  TS vs. QAI, ADF, LSM and FCM, (a) US 

image, (b) ground truth, (c) QAI skeleton initialization, (d) QAI final contour,          

(e) ADF manual initialization, (f) ADF final contour, (g) LSM manual initialization, 

(h) LSM final contour, (i) FCM manual initialization, (j) FCM final contour,            

(k) GGVF/TS stars before elimination, (l) GGVF stars after elimination,                  

(m) TS/GGVF initialization, (n) TS/GGVF final contour, (o) TS/ADF initialization, 

(p) TS/ADF final contour.  
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(a) US image 

 
(b) ground truth 

 
(c) GGVF 

 
(d) QAI 

 
(e) QAI 

 
(f) ADF 

 
(g) ADF (h) LSM (i) LSM 

 
(j) FCM (k) FCM 

 
(l) TS/GGVF 

 
(m) TS/GGVF 

 
(n) TS/ADF 

 
(o) TS/ADF 

Figure 3.8 Real US with noise example of  TS vs. QAI, ADF, LSM and FCM, (a) US 

image, (b) ground truth,  (c) GGVF, (d) QAI skeleton initialization, (e) QAI final 

contour, (f) ADF manual initialization, (g) ADF final contour, (h) LSM manual 

initialization, (i) LSM final contour, (j) FCM manual initialization, (k) FCM final 

contour, (m) TS/GGVF initialization, (n) TS/GGVF final contour, (o) TS/ADF 

initialization, (p) TS/ADF final contour. 
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Table 3.2 TS vs. benchmark methods for real US images 

Model 

Correctly 
initialized 

inside 
object, 
Ncorr % 

Correctly 
segmented, 

Scorr % 

Accuracy 

Contour-based Evaluation Region-based Evaluation 

H1 H2 H3 TP SEN SPE ACC DSC 

TS + GGVF 100 93.33 8.64 2.16 3.15 89.66 94.50 99.67 98.38 0.998 
  QAI + GGVF 86.67 66.67 19.09 7.02 8.36 79.77 88.94 99.82 97.54 0.972 
TS + ADF 100 93.33 8.54 2.13 3.07 92.58 94.53 99.54 98.25 0.988 
LSM Manual 73.33 38.81 21.25 22.63 66.81 69.77 99.54 90.11 0.939 
FCM Manual 60 25.43 4.93 6.59 76.19 92.10 96.14 95.41 0.969 
ADF Manual 46.67 47.43 20.36 19.54 68.15 73.34 99.91 92.72 0.952 

Further, Table 3.2 shows that the TS produces the highest Dice index. The 

corresponding Standard Deviation (STD) are shown in Table 3.3. The STD for the 

region based measures is excellent, although, it is comparable with the mean for the 

contour based methods. However, 70% of the samples lie in the interval [Mean-STD, 

Mean+STD] which indicates a small error. Note that it also complies with the 

hypothesis of the normal distribution. Finally, the p-values which are less than 0.05 

for every measures (Table 3.4) show that the results are statistically significant 

although the number of images is relatively small. The failed cases include the snakes 

which either attach to the false boundaries created by the noise, self-intersect of attach 

to the boundary of the image. 

Table 3.3 The mean and STD of TS model 

Statistical Analysis 

Average accuracy 

Contour-based measures Region-based measures 

H1 H2 H3 TP SEN SPE ACC DSC 

TS+GGVF 

Mean 8.64 2.16 3.15 89.66 94.50 99.67 98.38 0.998 

STD  3.80 0.75 1.69 9.45 3.66 0.45 0.73 0.006 

TS+ADF 

Mean 8.54 2.13 3.07 92.58 94.53 99.54 98.25 0.988 

STD 3.96 0.57 1.44 6.86 3.66 0.45 0.73 0.006 
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Table 3.4 The p-values of the TS model 

Model p-values 

TS+GGVF 0.048 

TS+ADF 0.012 

 

3.5 Limitations of the method 

The algorithm has been designed and implemented for the case of a single object (a 

malignant or benign tumor in the US images). The case of multiple objects needs 

further modifications. Furthermore, in the case of very noisy images characterized by 

a low contrast, the TS trial external snake may get stuck inside the image and may not 

reach the boundary at all. A possible extension is a combination of the proposed 

multiple growing snakes initialized inside the US image and sequence of contracting 

balloon snakes [108] initialized at the boundary of the image characterized by a 

varying balloon force.  

 
3.6 Conclusions 

The proposed automatic procedure for initialization of snakes for segmentation of the 

US breast cancer images (TS) shows an excellent performance as applied to synthetic 

as well as to real US images. It outperforms a recently proposed quasi-automatic 

method (skeleton snakes). The proposed initialization method equipped with the most 

basic version of GGVF also outperforms the Adaptive Diffusion Flow, an advanced 

Level Set Method, and a Fuzzy C-mean Clustering combined with the Level Set 

Method. The numerical experiments show that in many cases the conventional 

algorithms do not reach the actual boundary due to inappropriate initial positions of 

the seeds. 
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Chapter 4  

Exploding Seeds Model 
 

This chapter presents the Exploding Seeds (ES) method for automatic initialization of 

parametric active contours. The basics of the ES have been published in [141]. This 

chapter presents an extended version of the method. 

 
4.1 Introduction 

The TS introduced in Chapter 3 is characterized by high accuracy, however, the most 

serious drawback of TS is a considerable amount of computational time. 

Therefore, we propose an extension of TS (Trial Snakes). The new fast algorithm for 

automatic initialization combines PPA [20], multiple active contours [16, 140], and 

the walking particles generated by the exploding seeds. It should be noted that the 

idea of using walking particles for edge detection has been proposed in [42]. 

However, their use for snake initialization has been totally overlooked. Besides, [42] 

employs “charged” particles which attach themselves to the edges. As opposed to 

that, our proposed particles bounce off the edges, which creates a totally different 

model suitable for fast initialization. The proposed bouncing particles are also 

different from the evolutionary algorithms, such as the ant colony or fireflies, since 

they do not employ any selection, competition, or other intricate components of the 

bio-inspired models which slow down the computations. Although modifications 

based on artificial intelligence (AI) are possible, they are out of the scope of this 

dissertation.                

This proposed algorithm decides whether the seed is inside or outside the object of 

interest (tumor) as follows: the initial seeds simultaneously “explode”, generating a 

set of particles moving initially along a radial direction relative to the seed. The 

velocity of the particle is subjected to random fluctuations, which prevent them from 

entering into repeated (cyclic) trajectories (see Section 4.2). The key feature of the 

model is that the particles bounce from the strong edges. Therefore, the particles 
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generated inside the object (tumor) stay inside, whereas those generated outside the 

tumor, reach the boundary of the image and disappear. The particle model is faster 

and more accurate than the TS [140]. This is because the TS may get stuck between 

the edges or inside the cavities, whereas the particles will eventually find their way to 

the boundary of the image.  

The ES has been tested against five state-of-the-art models mentioned in Chapter 2 

and Chapter 3, namely, TS [140], FFS [94], CoD [20, 38], QAI [15, 126], and PIG 

[16]. With regard to the above benchmark methods, the ES provides fast and accurate 

initializations, which in turn lead to more accurate segmentations. The algorithm 

might be used in a framework of other segmentation methods such as the level set 

method, hieratical clustering, etc., however, combining ES with the above 

conventional techniques is out of the scope of the thesis. A video demonstration of the 

ES algorithm is at http://onlinemedicalimages.com/index.php/en/presentations 

 

4.2 Methodology 

 

4.2.1 Phase Portrait Analysis  

The first step of ES, we use the PPA based classifier (3.1) to detect the big attracting 

and repelling stars, as well as strong attracting and repelling nodes (see Table 2.1) 

similarly to TS. The walking particles are initialized around these stars. The points 

that are classified as an “edge” (a true or a false boundary in Table 2.1), are 

considered as the “walls” from which the walking particles bounce off.  

4.2.2 Exploding Seeds 

The seeds are initialized around each repelling or attracting star detected by PPA 

based classifier (3.1) or a group of stars merged together. The proposed algorithm 

decides whether the seed is inside or outside the object of interest (tumor) as follows: 

the initial seeds simultaneously “explode”, generating a set of particles moving 

initially along a radial direction relative to the seed (see Figures 4.1 (a), 4.1 (b)). The 

velocity of the particle is subjected to random fluctuations, which prevent them from 
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entering into repeated (cyclic) trajectories. The key feature of the model is that the 

particles are bouncing off the internal and external edges and disappearing (dying) at 

the boundary of the image (Figure 4.1 (c)). Those initialized inside the tumor stay 

inside, whereas particles initialized outside eventually find their way to the boundary 

of the image and subsequently get deleted. Finally, since the majority of the surviving 

particles belong to the inside seeds, this efficiently differentiates the external and 

internal seeds (Figure 4.1 (d)).       

 
(a) 

 
 

(b) 

 
(c) 

 
 

(d) 

Figure 4.1 Elimination of the external seeds, (a) seeds initialized, (b) seeds “explode”, 

(c) walking particles, (d) the majority of the particles stay inside the object. 
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In order to avoid repeated trajectories (loops), the speed of each particle is subjected 

to small random perturbations (noise).   

Let c  be a center of an i th converging/diverging star. The velocity of a particle i  is 

then given by  

i , j

, , , , ,α βi j d i j r i jv v v= +

α,β

,                                                  (4.1) 

 

where  are weighting parameters. The initial deterministic component of the 

velocity is given by , ,

2cos
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p
d i j
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1

j
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j
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π

π

⎛ ⎞
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When the particle bounces off the edge 

= ,                                                        (4.2) 

where  is the unit normal to the edge at the point of the collision. The normal is 

antiparallel to the GVF-type vector at the edge.    

,i jn
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of the particle  is given by  ,i j

t= ,                                                       (4.3) 

before the first collision and by  

, ,+i j j i jp e v t=                                                         (4.4) 

after a collision with the edge je , where t denotes the pseudo-time.   

As already noted, using solely  produces repeated (cyclic) trajectories. The random 

component  prevents the model from entering into repetitions (see Section 4.4 for 

further discussion regarding the relationship between and v ). The particles may get 

stuck between two or more neighboring edges. Such particles are detected, deleted, 

and re-initialized.  

dv

rv

v rd
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When a particle reaches the edge, it bounces off in a direction normal to the edge. The 

incentive is that if the tumor is circular, the particles move towards the center, which 

reduces excessive bouncing. The numerical experiments show that this feature 

reduces the number of degenerate trajectories. Finally, in order to prevent the particles 

from leaving the tumor, jv | | minjvmust satisfy: T≤ , where T is the thickness of 

the edge. Therefore, on each step jv  is normalized, e.g. ,i j
, ,

,| |i j new
i j

Tv
v

v
= . 

,i j

The algorithm is terminated when the death rate d  (the number of particles leaving 

the image) becomes sufficiently small (see Section 4.4 for details and discussion).  

Finally, when the ES model is terminated by the stopping criterion, the seeds are 

classified accordingly to the total average lifetime l  of the corresponding particles. 

If j l≤ Δl ,

N

i jl= l, where  and 
1

p

j
j

l
=
∑ Δ  denotes the corresponding threshold, the seed is 

classified as external, otherwise, as internal. Our forthcoming numerical experiments 

show that the model endowed with appropriate control parameters separates the 

internal and external seeds for the US images with a 96.7% success rate.    

4.2.3 Multiple Snakes 

The next stage of the algorithm is multiple snakes evolving inside the tumor (Figure 

4.2), similar to the last stage of TS (see section 3.2.2). Recall that, the snakes 

initialized around the converging/attracting stars grow along the inverted GVF-type 

vector field until they stop at the local region of noise or artifact inside the tumor. 

These snakes are re-initialized by offsetting them by several pixels to pick up the 

repelling component of the vector field and then they are merging with the snakes 

initialized around the diverging/repelling stars. 
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(a) (b) (c) 
 

Figure 4.2 Snake evolution, (a) attracting and repelling internal stars, (b) attracting 

snake grows, (c) offsetting of the “sleeping” snake. 

4.2.4 Algorithm of the Exploding Seeds Model 

A pseudo-code of the initialization algorithm is given below, where delta1, delta2, 

and delta3 denote the corresponding thresholds. All other notations are self-

explanatory.    
 
void Vector_Field(void) 
{  Evaluate the edge map f .  } 
 
void GGVF(void) 
{  Apply the GVF to f∇ .   }  
 
 
void Find_Stars(void) 
{  Using the PPA detect the converging and diverging stars.  } 
 
 
void Find_Edges(void) 
{  Mark every saddle node (edge point) as Edge .  } 
 
 
void Merge_Stars(void) 
{  Merge closely located stars.  } 
 
 
void Initialize_Particles(int iStar) 
{  Initialize Nparticles particles on a circle around star  i  with the radius derived from condition (3.2).  } 
 
 
void Initialize_All_Particles(void) 
{   
       for (i=1; i<=Nstars; i++)  
 Initialize_Particles(i);   
} 
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void Move_Particle(int iStar, int jParticle) 
{    
    Position_Particle[iStar][jParticle]=Position_Particle[iStar][jParticle]+time_step*Velocity[iStar][jParticle] ; 
    if  (Position[iStar][jParticle]==Edge)  
          Bounce_Particle(iStar, jParticle)  
    else if  (Position[iStar][jParticle]==ImageBoundary)  
          Delete_Particle(iStar, jParticle)  
    else  
         Velocity[iStar][jParticle]=Velocity[iStar][jParticle] + Random_Component(); 
    Normalize_Velocity(iStar, jParticle);   
} 
 
void Move_All_Particles() 
{   
   for (i=1; i<=Nstars; i++) 
        for (j=1; j<=Nparticles[i]; j++) 
          Move_Particle(i, j) 

} 
 
int Death_Rate() 
{  Count the number of particles deleted during the current step.  } 
 
 
void main(void) 
{   
    Vector_Field() 
    while (Residual <delta1)   
          GGVF(); 
    Find_Stars(); 
    Merge_Stars(); 
    Find_Edges(); 
    Initialize_All_Particles(); 
    while  Death_Rate() > delta2 
        Move_All_Particles(); 
   for (i=1; i<=Nstars; i++) 
        if (Nparticles[i] >delta3)  
           Initialize_Snake(i)  
} 
  

 
 
4.3 Performance Measures 

In order to compare the ES with the benchmark algorithms we evaluate the 

performance of segmentation results in terms of the contour based accuracy and the 

region based accuracy measures (see sections 3.3.1, 3.3.2 and 3.3.3 respectively). We 

also evaluate the computational time.  
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The initialization performance of the ES are evaluated as following, 

(1) Percentage of the images for which the seeds are correctly 

initialized as internal/external seeds: Ncorr 

(2) Percentage of the images for which the contour was correctly 

segmented: Scorr (the final snake is considered correct if 

, 3
2

dist ( )H X Y ≤  

(3) Computational time of initialization procedure: Tcomp 

As noted above, the segmentation accuracy depends not only on initialization, but on 

the segmentation model as well. For instance, the level set method, clustering, region 

growing, and edgeless active contours may benefit from the proposed TS and ES. 

However, this analysis is out of the scope of this dissertation. The model is limited to 

the parametric active contours, whereas the benefits of the geometric or level set 

methods may be precluded by this initialization. 

4.4 Results and Discussion 

The algorithm has been tested on 60 US images of breast cancer from 60 different 

patients obtained by a Philips iU22 ultrasound machine at Thammasat University 

Hospital. The ground truth contours have been hand-drawn by leading radiologists 

with the Department of Radiology of Thammasat University. The ground truth was 

obtained from three expert radiologists to check the inter-observer variability and 

intra-observer variability. The inter-observer variability value of this dataset is 1.91 

whereas the intra-observer variability value is 1.12. 

The ES has been tested against five state-of-the-art models, namely, TS [140], FFS 

[94], CoD [20, 38], QAI [15, 126], and PIG [16], using the performance measures 

introduced in Section 4.3. In order to prove the efficiency of the ES, we apply the 

recent Adaptive Diffusion Flow (ADF) method [35], which has been proven to be 

superior to GVF [90], GGVF [11], Normal Gradient Vector Flow [30], Infinity 

Laplacian GVF [31], Harmonic Gradient Vector Flow [32] and Convolution Vector 

Flow method [33]. We test the five competing initialization methods, considering the 
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ADF snakes as one of the best tools to perform segmentation, given a particular initial 

contour or a set of contours.   

Figure 4.3 is an introductory example, comparing the initialization and the resulting 

snake produced by the ES with QAI, CoD, FFS, and PIG.   

(a) (b) (c) 

(d) (e) (f) 

(g) (h) (i) 

(j) (k) (l) 
 

(m) (n)  
 
Figure 4.3 ES vs. Benchmark methods, (a) original US image, (b) ground truth,        

(c) vector field and stars, (d) walking particles detect the internal snakes, (e) ES 

initialization, (f) ES final contour, (g) QAI initialization, (h) QAI final contour,        

(i) CoD initialization, (j) CoD final contour, (k) FFS initialization, (l) FFS final 

contour, (m) PIG initialization, (n) PIG final contour. 
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Table 4.1 shows a numerical comparison of the ES with the above benchmark 

initialization methods performed on 60 US images. The CoD and FFS failed, whereas 

QAI and PIG yield a lower performance in both Ncorr and Scorr. The ES initialization 

leads to a better segmentation accuracy. For instance, in terms of , the average 

accuracy of the ES is 3.06 pixels, vs. 13.69 and 6.53 for QAI and PIG, respectively. 

3Hdist

, , ,βj r i jv

The ES also gives the best DSC (about 99%). The TS method is the only real 

competitor of the ES. The TS method produces approximately the same initialization 

results, however, the TS model is extremely slow relatively to the ES. Our numerical 

experiments show that the ES is approximately 10 times faster.  

Recall that the velocity of the particle is given by , ,αi j d iv v= + α,β, where  are 

weighting parameters corresponding to the random and deterministic component of 

. The parameter ensures that the particles do not enter cyclic trajectories, so that 

a majority of the external particles sooner or later leave the image. On the other hand, 

too large β  leads to abrupt trajectories and slows down the model. 

,i jv β

 

Table 4.1 Comparison of the ES with the benchmark initialization methods 
 

Model 
Correctly 
initialized,  

Ncorr % 

Correctly 
segmented, 

Scorr % 

Average accuracy 

Contour-based measures  Region-based measures 

H1 H2 H3 TP SEN SPE ACC DSC 

ES 96.7 90 10.38 3.59 3.06 83.77 85.13 99.83 96.41 0.989 
QAI 86.7 66.7 36.87 26.01 13.69 70.24 71.35 99.84 94.45 0.972 
CoD 0 0 83.81 49.74 19.68 30.40 95.51 68.34 74.33 0.772 
FFS 0 0 89.86 38.58 21.96 37.57 92.94 88.44 89.33 0.916 
PIG 73.3 68.3 24.69 6.24 6.53 78.96 80.23 97.41 93.28 0.976 

Consider a normalized velocity, i.e. v v, , ,α (1i j d i j , ,α) r i jv= + − , | .  , | 1i jv =

αTable 4.2 illustrates tuning the parameter  using 15 additional US images. The 

images were manually selected from onlinemedicalimages.com as follows: 5 images 

with a weak boundary, 5 images characterized by complex shaped boundaries, and 5 

random images (see Figure 4.4). None of the images was included in our basic test set 

of 60 images. 
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(a) (b) 

Figure 4.4 Examples of the US images selected for tuning the model, (a) weak 

boundary, (b) complex shaped tumor. 

 

Table 4.2 Deterministic vs. random component of the velocity 
 
α  
 

S 
(# of iterations) 

Tcomp 
(computational time), sec 

0.9 677 8.43 

0.8 634 7.78 

0.7 727 9.73 

0.6 767 10.19 

0.5 646 8.12 

 

The model stops when 90% of the outside particles leave the image domain. Clearly, 

for this image collection, α , provides an optimal computational time. 0 .8≈

Note that, although Table 4.2 gives us an idea about the range of the weighting 

parameterα , it is based on a very conservative stopping criterion. In practice, we do 

not know how many outside particles have left. As a matter of fact, the stopping 

criterion should be 1) independent of the total number of particles, 2) related to the 

number of the external particles, and 3) related to the size of the image.  

 

 

44 



Ref. code: 25605422300284YJH

 
 

Therefore, we introduce a stopping criterion based on the moving average of the 

“dead” particles    

, ,0 1
δ max ( )r k d r ss k

m m
≤ ≤ −

≤                                                    (4.5) 

where  is the moving average with the radius r at step k  given by  ,r km

( 1) 1

,

r k

s rk
r k

d
m

r

+ −

==
∑ s

                                                       (4.6) 

where sd d is the number of “dead” particles at step s and δ , the prescribed threshold. 

In other words the stopping criteria requires that the average death rate drops 

significantly, relative to the maximum average.    

We evaluate the radius of the moving average by  

,

max( , )γ 1
min( )i j

w hr
v

⎡ ⎤
= + ,                                                (4.7) ⎢ ⎥
⎢ ⎥⎣ ⎦

,w hwhere  are the width and the height of the image, γ  is a coefficient representing 

the ratio of the size of the image vs. the size of the tumor, and “[ ]” denotes the 

nearest integer. The above formula is a conservative estimate of the number of steps 

required for the majority of the external particles to reach the boundary. For instance, 

our set of images of 300x300 is characterized by tumors of about 3 /  of the total 

area of the image. Since

4

,min( )i jv 1= , 1γ=
8

38, and r = . In practice, we considered 

.  25

0.2d

r =

Clearly, in order to optimize the model, we need to stop the particles “not too early” 

and “not too late”. Table 4.3 demonstrates that the proposed stopping criteria tested 

on 60 US images is applicable, with the best δ = . δ 0.1d =  is a safe threshold, but 

the model becomes slightly slower. 
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Table 4.3 Stopping criteria vs. # of particles 

 
#particles/ 

seed 
S 

(# of iterations) 
,0 1

max ( )a ss S
m

≤ ≤ − ,a Smδd  
 Computational 

time, sec 

Classification accuracy 
(seeds) 

SEN SPC ACC 

0.1 3 105 0.424 0.004 1.98 100 97.14 98.18 
 5 131 0.616 0.004 2.84 100 97.14 98.18 
 10 231 1.381 0.004 6.00 100 97.86 98.64 
 50 358 6.818 0.004 27.57 100 97.86 98.64 
 100 288 13.600 0.004 34.67 100 97.86 98.64 

0.2 3 62 0.424 0.053 1.50 100 97.14 98.18 
 5 78 0.616 0.047 1.94 100 97.14 98.18 
 10 173 1.381 0.025 4.97 100 97.86 98.64 
 50 152 6.820 0.672 10.50 100 97.86 98.64 
 100 155 13.600 1.379 18.75 100 97.86 98.64 

0.4 3 46 0.424 0.134 1.49 100 77.14 92.52 
 5 62 0.616 0.085 1.92 100 86.43 93.73 
 10 91 1.381 0.186 3.18 100 87.86 94.64 
 50 106 6.818 1.421 7.48 100 87.86 94.64 
 100 89 13.600 3.579 10.92 100 87.86 94.64 

 

On the other hand, δ  does not provide the required classification accuracy. For 

similar collections of the US images, we recommend 

0.4=

δ [0.1, 0.2]d

d

∈  (note that the 

stopping criterion does not depend on the number of particles). Ten particles per seed 

seem to be optimal for this collection, in terms of the computational time and 

accuracy (see Table 4.3). Recall that, the seed classification criterion is given by 

j l≤ Δl , where ,
1

1 pN

j i j
jp

l
=
∑ 0.2l Sl

N
=  (see Section 4.2.2) and where = .  Δ

Finally, Table 4.4 presents a summary of the numerical experiments of 60 US images 

of breast cancer from 60 different patients obtained by a Philips iU22 ultrasound 

machine at Thammasat University Hospital. Observe that the experiments have been 

performed on the US images of breast cancer. Other types of images may require 

different configurations of the parameters. 
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                Table 4.4 Time/accuracy of the ES vs. conventional methods 

Model Initialization time 
Correctly Initialized, 

corrN , % 

ES fast (3-5sec) excellent (96.7) 

TS very slow (60-90 sec) excellent (93.3%) 

QAI slow (30-50 sec) good (86.7) 

CoD very fast (1-2 sec) very poor (0) 

FFS very fast (1-2 sec) very poor (0) 

PIG very fast (1-2 sec) medium (73.3) 

 

Tables 4.5 presents the statistical analysis of the proposed method. The STD of the 

region-based accuracies is sufficiently small. As far as the contour measures are 

concerned, more than 70% of the samples lie in the interval [Mean-STD, 

Mean+STD]. The p-value of the ES is 0.048 which implies that the results are 

statistically significant. 

                  

Table 4.5 The mean and STD of ES model 

Statistical Analysis 

Average accuracy 

Contour-based measures Region-based measures 

H1 H2 H3 TP SEN SPE ACC DSC 

Mean 7.89 1.80 2.60 93.05 88.69 99.87 97.42 0.989 

STD  4.87 0.89 1.77 7.22 4.97 0.14 1.09 0.007 
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4.5 Additional Testing on Public Datasets 

We verify whether the proposed model depends on the dataset by testing results 

obtained on Thammasat University database (Biomed) and several public datasets of 

the US images. Figure 4.5 shows sample images from Biomed SIIT [7], MedScape 

[142] and UltrasoundCase.info [143]. 

 

 

(a) (b) (c) 

Figure 4.5 Examples of different dataset of US images, a) BioMed SIIT,                    

(b) MedScape, (c) UltrasoundCase.info. 

 

Table 4.6 Accuracy obtained on different datasets (20 images) 

 
Model 

Average accuracy 

Contour-based measures Region-based measures 

H1 H2 H3 TP SEN SPE ACC DSC 

ES 

BioMedSIIT 7.89 1.80 2.60 93.05 88.69 99.87 97.42 0.989 

MedScape 5.46 1.95 2.57 93.28 90.07 99.61 98.20 0.991 

UltrasoundCase.info 6.55 2.05 2.62 93.52 90.15 99.65 99.02 0.992 

TS 

BioMedSIIT 8.65 2.15 3.14 89.63 94.45 99.65 98.35 0.989 

MedScape 7.54 2.13 3.07 90.58 94.52 99.53 98.45 0.990 

UltrasoundCase.info 7.35 2.12 3.06 92.58 94.53 99.54 98.68 0.991 
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Table 4.6 comparing the results obtained on 20 sample images from each database 

shows that the accuracy practically does not depend on the particular database.  

 

4.6 Testing Against the Location of Abnormality  

We verify whether the proposed model depends on the location of abnormality by 

changing the location as shown in Figure 4.6 for 20 images from Biomed SIIT 

database. 

   

(a) Center (b) Top Left Corner (c) Bottom Left Corner 

  

 

(d) Top Right Corner (e) Bottom Right Corner  

Figure 4.6 Examples of different location of abnormality. 
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Table 4.7 shows that the results practically do not depend on the location of 

abnormality. 

 

Table 4.7 Accuracy vs. different tumor location (20 images) 

Model 

Average accuracy 

Contour-based measures Region-based measures 

H1 H2 H3 TP SEN SPE ACC DSC 

ES 

Center 4.00 1.84 3.74 97.94 92.63 99.99 99.18 0.991 

Top Left Corner 4.10 1.93 3.92 97.51 92.39 99.97 99.15 0.990 

Bottom Left Corner 4.05 1.88 3.82 97.59 92.63 99.98 99.17 0.991 

Top Right Corner 4.00 1.85 3.76 97.84 92.70 99.99 99.19 0.992 

Bottom Right Corner 4.24 1.94 3.94 96.83 92.42 99.94 99.16 0.990 

TS 

Center 4.10 1.85 3.81 97.62 92.73 99.98 99.17 0.991 

Top Left Corner 4.14 1.96 3.99 96.69 92.39 99.97 99.12 0.990 

Bottom Left Corner 4.13 1.87 3.81 97.58 92.70 99.98 99.14 0.990 

Top Right Corner 4.11 1.90 3.87 97.11 92.63 99.99 99.15 0.991 

Bottom Right Corner 4.12 1.95 3.96 97.07 92.30 99.99 99.13 0.990 

 

4.7 Conclusions 

The proposed new automatic procedure for initialization of active contours for 

segmentation of ultrasound images of breast cancer outperforms preceding 

algorithms. In terms of the accuracy, the ES is better than QAI, CoD, FFS, and PIG, 

and is comparable with TS. However, the exploding particles are faster than TS. This 

is because TS may get stuck between the edges or inside the cavities, whereas the 

exploding particles eventually find their way to the boundary of the image. As far as 

QAI, CoD, FFS, and PIG are concerned, their weakness is that they are based purely 

on configurations of the vector field which can be irregular and chaotic. As opposed 

to that, ES uses the vector field and the edge map at the same time.  
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The method is simple, totally automatic, and does not involve any human 

intervention. However, it requires several tuning parameters, such as the ratio of the 

deterministic/random component of the velocity and the coefficients associated with 

the stopping criteria. These values might depend on the intensity of the noise and the 

density of the edges. Nevertheless, we conjecture that the proposed values of the 

parameters, verified on the test US images, are applicable to similar US images 

without any modifications.     
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Chapter 5 

Conclusions and Recommendations 
 

5.1 Conclusions 

The numerical experiments on synthetic and real US images of breast cancer indicate 

that the proposed procedures work very well to extract tumors from low-contrast US 

images. The proposed methods combined with the GVF-type snakes are robust and 

accurate. The two proposed algorithms outperform the following initialization 

algorithms: QAI, CoD, FFS, PIG and manual initialization. The active contours 

combined with the proposed initialization outperform Level Set Method [28] and 

Fuzzy C-mean Clustering [29]. From the testing of noisy low-contrast images of 

synthetic and real US images of breast cancer, the TS and ES give an excellent result 

for more than 90% of the images whereas the QAI and PIG solve about 80% and 70% 

of the cases respectively. In turn the CoD and FFS totally fail. The manual 

initialization for LSM and FCM can not be compared properly with the automatic 

initialization, however, even manually selected contours often fail to resolve the 

tumor. In terms of the computational time, the ES initialization is faster than TS. 

However, even though the ES is slower than the competing methods, the accuracy of 

the method is always the highest.  

 
The proposed ES model can be also associated with the artificial life (autonomous 

multi-agent models) for edge detection.  However, all previous models of this type are 

pixel-based. The agents interact not only with each other but with all neighboring 

pixels which slows down the computations. Therefore, it is not clear whether the 

proposed autonomous agents provide an efficient segmentation. Some pixel-based 

autonomous agents have been proposed characterized by different behaviors such as 

communication, perception, tagging, reproduction, diffusion, disappearance, etc.   

A combination of a multi-agent pixel based model, the proposed ES and a deformable 

model may probably work even better since the multi-agents will “live” in the pixel 

based and the edge based environment. However, this is a subject of the further 

research. 
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Note that we also can translate this idea into a continuous level (a diffusion model 

with impenetrable walls). However, the continuous model (parabolic equations) 

allows the particles (temperature) pass even through the smallest openings in the 

boundary. As opposed to that, the discrete model defines particles of an appropriate 

size which may bounce off the boundary even though it has openings. The 

combination of the small walking particles which are able to penetrate the cavities and 

large particles which are able to close the boundary (in cooperation with the small 

particles) may constitute another research direction.  

5.2 Limitations 

The proposed methods have been designed and implemented for the case of a single 

object of interest like a malignant or benign tumor. The initialization methods have 

not been combined with other segmentation methods which also require seeds such as 

the LSM, clustering, region growing, etc.  Furthermore, the model does not work if 

the contour is characterized by large openings. In this case the inside and outside 

walking particles with mix together.   

 
5.3 Recommendations 

Apart from the multi-agent options mentioned above, possible extensions of the 

proposed algorithms lie along the lines of combining with the other segmentation 

methods which require seeds. Further, the method can be improved by involving some 

secondary features of the object such as the intensity, texture, etc. Finally, the ES can 

be integrated into the framework of the artificial life as well into artificial intelligence 

framework (fireflies, ant colony, etc.).  
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