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Abstract 

 

VR Based "9-Square Matrix" Aerobic Exercise for Prevention of 

Physical and Cognitive Decline in Older Adults 

 

By 

 

SWETA DWIVEDI 

 

 

Bachelor of Science, Sirinhorn International Institute of Technology, 2012 

 

Master of Engineering, Sirinhorn International Institute of Technology, 2018 

 

Medical and technological advancements enable a better quality of life than was 

previously possible. Currently, there exists a wide variety of devices and sensors 

which enable the convergence of these two fields. Serious games and exergames 

show promising results for using technology as a tool for rehabilitation and improving 

the health and self-efficacy of the elderly community. This research focuses on the 

implementation of the traditional “9-Square Matrix” aerobic exercise in the form of 

an exergame. The implementation is done using a normal webcam and the widely 

popular Microsoft Kinect sensor. The outcome of the experiments shows that the 

webcam and the Kinect sensor provides an acceptable rate of success when tested 

with subjects.  
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Chapter 1  

Introduction 

 

The world population is slowly seeing a rise in the aging demographic due to falling 

fertility rates and longer life expectancies. Hence, it has become crucial to understand 

the implications of this trend on social, economic and health-care sectors. According to 

the world population aging report 2017 [1], it has been indicated that by 2030, senior 

citizens (age > 60) will outnumber children below the age of 10.  

 

Aging brings about numerous physiological and psychological changes which affect 

the overall health and well-being of individuals. The process of aging also makes 

individuals over a certain age more susceptible to diseases such as heart disease, stroke, 

and cancer. The risk factors for such diseases are also influenced by lifestyle choices 

and environmental factors. However, one of the most decapacitating age-related illness 

includes dementia and advanced form of dementia known as Alzheimer’s disease. The 

chances of an individual developing some form of dementia increase drastically with 

advanced age. The result of which is the inability to perform day to day activities, and 

dependence on a fulltime caretaker.  

 

Numerous studies and research have concluded that physical inactivity in midlife and 

advanced age increase the risk of an individual developing cardiovascular diseases and 

mental conditions such as dementia [2]. Moderate to intense exercise and physical 

activity on a daily basis maintains cardiorespiratory functions, motor abilities, prevents 

muscle loss and, the onset of cognitive decline [3]. To sustain the health benefits of 

exercise in older adults, it is important to engage in regular exercise for 30 minutes per 

day and 5 days per week.      
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The development of innovative new devices and sensors in the gaming sector of the 

tech industry has enabled immersive experience for the users in the form of Virtual 

Reality (VR).  The popular VR devices include the Microsoft Kinect sensor, 

SonyEyetoy Kinetics, and Nintendo Wii. The emergence of these devices has propelled 

a new segment of games known as serious games and exergames. 

 

Serious games and exergames are a category of games that are designed to obtain a 

particular objective such as rehabilitation, exercise, education, and training. Many of 

these games are targeted towards the older population for rehabilitation and achieving 

a daily fitness target. Exergames are specifically designed for the purpose of physical 

exertion and mostly involve the gamification of traditional exercise routines. 

 

1.1 Motivation and Objectives 

The motivation for this research lies in pursuing older adults to engage in regular 

aerobic exercise routine by creating a VR-based exergame on the “9-Square Matrix” 

aerobic exercise.  

 

The “9-Square Matrix” or “Tarang-9-Chong” is a traditional aerobic exercise developed 

by Dr. Krabuanrat in 1995 [4]. This exercise routine is very popular among autistic 

children and the elderly community in Thailand. A study conducted with autistic 

children performing the exercise on a regular basis proved that there are numerous 

benefits such as overall improvement in their moods, emotions, language skills and 

motor abilities [5]. The exercise routine involves stepping on a matrix of 9 squares in a 

sequence followed by one of the 8 dance step patterns (shown in Table Table 1.1) along 

the rhythm of the music. The dance step sequence follows a shape pattern that can be 

easily remembered (Figure 1.1). 
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Figure 1.1 “9-Square Matrix” Step Patterns 

In this study, implementation of the “9-Square Matrix” exergame is done using both a 

normal webcam and the Microsoft Kinect sensor. The webcam implementation solely 

relies on image processing techniques for matrix detection and user tracking, whereas 

the Microsoft Kinect sensor has an additional depth camera and relies on sophisticated 

machine learning algorithms for user tracking. In order to minimize errors and increase 

the reliability of the detection for each implementation, it is crucial to determine the 

optimal placement or setup for the devices such that the observability of both the matrix 

and the users are maximized. Once the optimal setup has been determined in each case, 

experiments with 8 and 10 test subjects will be performed to determine the accuracy of 

the implementation by recording the data and checking for insertion, deletion and 

substitution errors in tracking. 

Table 1.1 Step Sequence for “9-Square Matrix” Aerobic Exercise 

Step Step Shape Step Sequence 

Left Right 

1 I 8,5,2 8,5,2 

2 T 8,5,2,1,2,5,8 8,5,2,3,2,5,8 

3 v 8,4,8 8,6,8 

4 V 8,1,8 8,3,8 

5 x 8,1,5,7,5,8 8,3,5,9,5,8 

6 X 8,1,5,7,5,8 8,9,5,3,5,8 

7 O 8,3,7,8 8,1,9,8 

8 ◊ 8,4,2,4,8 8,6,2,6,8 
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1.2 Thesis Structure 

Chapter 2 presents previous work done in the field of serious games and exergames 

for the elderly community using commercially available consoles. The design criteria 

for implementation and application of such games, and the results from the clinical 

trials measuring the health benefits of the intervention. 

 

Chapter 3 discusses the implementation of the “9-Square Matrix” using a normal 

webcam. The algorithms applied for detection of the matrix and user tracking. The 

study presents the results from the optimal camera placement experiment and actual 

implementation of the exergame using an error classification model with 8 test subjects. 

 

Chapter 4 discusses the implementation of the “9-Square Matrix” using a Microsoft 

Kinect sensor. The algorithms applied for detection of the “9-Square Matrix” and user 

tracking. The study also presents the results from the experiment for optimal sensor 

setup by measuring the depth accuracy of matrix detection and implementation of the 

exergame using the error classification model described in chapter 3 with 10 test 

subjects. 

 

Chapter 5 presents the design of the “9-Square Matrix” Exergame user interface and 

game mechanics along with the discussion on the experiment performed with the 

participants. 

 

Chapter 6 presents the conclusion for the techniques used in this study to achieve the 

implementation of the “9-Square Matrix” exergame. It also analyzes the cause of 

various errors introduced during gameplay with both the devices and a proposed 

solution to reduce the overall errors and improve the accuracy. 
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Chapter 2  

Related Works 

 

2.1 The Design of Exergames for Older Population 

2.1.1 A Framework to Analyze the Effects of Exergames on Individuals 

Mueller et al. [6] presents a study about the effects of exergaming on individuals by 

analyzing different exergames and their outcomes on the participants on every level 

using the 4 Lens model. The model describes an individual’s experience of exergames 

on 4 levels: 

 

1. The Responding Body describes the effects of exertion on the physiological 

level, such as improvement in the cardiovascular and cardiorespiratory systems 

and brain plasticity. The effects and benefits of exergames on the responding 

body is sustained even after the physical activity or exertion has ended, for 

example, weight loss, increased muscle mass and strengthened bone structure. 

 

2. The Moving Body describes the effect on the sensory-motor skills of an 

individual depending on the type of exertion activity being performed. These 

skills include improved balance ability and reaction times, which can be 

enhanced and transferred onto day-to-day activities.  

 

3. The Sensing Body describes the way in which the body experiences objects 

and context present both in real and virtual environments. Many exergames 

augment both physical and virtual objects to create a hybrid space to enhance 

the overall experience of the players.   

 

4. The Relating Body describes the social interaction and communication with 

regards to technology. Augmenting social interaction in the form of coplayers 

and opponents increase the motivation for people to engage in exergames daily.  
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In order to understand the effectiveness of serious games and exergames, it is important 

to analyze the outcomes of the game using the model which describes the influence on 

the physiological, psychological, sensory-motor and social interaction levels.  

 

2.1.2 Design Guidelines for Exergames targeting the Elderly Population based on 

Microsoft Kinect Sensor 

Bronx et al. [7] presented a case study of user-centered design (UCD) for serious games 

and exergames for older adults. This study utilizes a series of mini-games using 

Microsoft Kinect sensor called the GameUp project. The mini-games included 3 games 

which focused on balance and additional 4 games targeting strength and flexibility in 

elderly with varying levels of difficulty. The trial involved 10 participants (2 men, 8 

women) with an average age of 81.7 years and trial period lasting 3 years. The study 

follows a structure for user-centered design protocol and results of implementing the 

protocol which is divided into 4 phases (as shown in Table 2.1) 

Table 2.1 UCD Protocol of Exergame Design Phase for Older Adults 

Phase Design Results 

Requirement 

Gathering and 

Analysis 

• Literature review 

• Questionnaire with background 

information 

• User observation while playing 

commercial games 

• Group discussions regarding 

gameplay 

• Existing knowledge of gameplay, 

taking inputs from physiotherapist 

• Physiotherapist provided input 

for appropriate exercises 

• Game developers assessed the 

suitable technology for 

implementation of exergames. 

(Wii, Kinect, etc.) 

Design 

• Observations 

• Semi-structured interviews 

• Group discussions 

• Designing suitable game 

elements such as themes, 

graphics, movements, GUI, 

sounds, playability etc. 

• Determined suitable technology 

to implement exercise routine 

defined by physiotherapist. i.e. 

Microsoft Kinect sensor.  
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Implementation 

• Observations 

• Semi-structured interviews 

• Group discussions 

• Testing early prototypes and 

user testing 

• Testing iteratively with users 

according to inputs from earlier 

prototypes 

• Testing the user interface 

elements 

• Testing focused on gameplay 

and theme 

Evaluation 

• Structured and semi-structured 

interviews 

• Questionnaires 

• Prototype trials with new 

participants 

• Testing the final prototype 

 

Apart from the UCD design guideline, the study also suggests key functionality 

elements for exergames as follows: 

1. Speed: The users need time to adjust and react to the exergame environment 

appropriately, therefore the speed of the game should be adjusted for different 

actions. 

2. Movements: Age factor has an impact on the user’s flexibility and motor 

abilities, hence the movements should be designed to not stretch the abilities to 

extreme leading to loss in balance or injury. 

3. Information: Elderly users direct most of their focus on the mechanics of 

gameplay, hence it is better to present all useful statistics at the end of the game 

session. 

4. Colors and Contrasts: most of the elderly population have diminished 

eyesight, making it important for graphics to be bright and have a good amount 

of contrast. The variation of colors used can be reduced. 

5. Small Details: the user’s focus on the gameplay mechanics can detract them 

from noticing small details leading to confusion about the object(s). 

6. Text/Font: The text font used should be large, bold and clear with minimal text 

during gameplay. It is also crucial to provide oral feedback which is easier to 

follow for older adults. 

7. Menu: The interactive buttons should be large and have sufficient space 

between them to avoid accidental activation. 

8. Sound: The volume throughout the gameplay should be consistent. 
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2.2 Application of Exergames for Older Adults 

Weimeyer and Kliem [8] presented a literature review on existing serious games and 

exergames while analyzing their success in terms of achieving specific targets and 

analyzing their outcomes on the individuals using the 4 Lens model. Exergames can be 

divided into the following categories based on their objectives: 

 

2.2.1 Endurance Training 

For endurance training, the goal of the exergames is to raise the energy expenditure 

below a minimum threshold of 600-800 kCal per week. Most of the exergames that 

focus on energy expenditure utilize commercially available consoles such as Nintendo 

Wii Sports and Wii Fit [9-15], Sony EyeToy Kinetics [16], Microsoft Kinect sensor  

[17, 18] and Konami Dance Dance Revolution (DDR) [19]. However, the studies 

concluded that highest energy expenditure observed was around 400 kCal per hour. In 

order for the exergames to meet the minimum required dose of PA, the overall duration 

of the exergame sessions need to be 2 hours per week and to achieve the optimal 

threshold around 7.5 hours per week. 

 

The study presented by Wollersheim et al. [20] investigating the physical and 

psychosocial impact of exergames on community-dwelling older women concluded 

that there were no substantial physical gains by engaging in a 6-week intervention 

playing the Nintendo Wii Sports. However, the participants enjoyed the experience and 

were motivated to continue engaging in such activities. 

 

To conclude about the studies involving exergames on energy expenditure using the 4 

Lens model, the exergames had lesser impact on the physiological functions 

(responding body) of the body but more so on the psychological level (moving body). 

The exergames failed to reach the optimum level of PA but had positive effects such as 

increased motivation, positive mood and overall social well-being. 
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2.2.2 Resistance and Strength Training 

For exergames focused on resistance and strength training, the aim is to improve the 

strength of the upper and lower extremities. A study by King [21] showed that 

embedding game-context into traditional strengthening exercises had increased the 

number of repetitions of the exercise. This intervention included 146 patients between 

the age range of 16-78 years.  

 

Another randomized control trial by Sonhsmeyer et al. [22] involving 40 subjects was 

conducted using the Nintendo Wii Bowling game. The exercise group was made to play 

Nintendo Wii Bowling for a duration of 6 weeks, whereas the control group did not 

engage in any exercise program. At the end of the intervention program, the exercise 

group had shown significant improvements in the strength of their left and right 

quadriceps compared to the control. 

 

The quality of study presented in this category is low because of the lack of detailed 

quantitative data, but the benefit of exergames can be seen on the sensing body and the 

relating body.  

 

2.2.3 Sensory-motor Training 

The exergames focused on sensory-motor training aim to improve the reaction times 

and balance in elderly people. There have been a lot of studies and trials based on the 

intervention of using exergames to improve sensory-motor abilities using commercially 

available consoles such as Nintendo Wii (Table 2.2). 

 

According to the 4 Lens model, the studies showed an improvement on the 

psychological level and the sensory-motor level (sensing body). The exergames in the 

category of sensory-motor training had the intended effect of improving the balance 

ability and reaction times in the elderly population. 
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Table 2.2 Existing Studies on Exergames based on Resistance and Strength Training 

Author(s) Study Type Summary 

Kliem and 

Weimeyer [23] 

• Sample: 22 

• Mean age: 47.36 

• SD: 13.14 

• Duration: 3 weeks,3 

sessions per week (10-

12min) 

• EG: Digital game 

• CG: Traditional 

• Exercise 

• Both the EG and CG showed improvements 

in 4 out of 5 balance tests. 

• The effectiveness of the traditional exercise 

program was deemed better than game-

based program 

Williams et al. [24] 

• Sample: 15 

• Mean age: 70 

• Duration: 12 weeks, 

• 2 sessions/week. 

• EG: Wii Fit 

• CG: Traditional Exercise 

• The participants involved older adults who 

had a history of falls 

• The EG had shown improvement in their 

balance ability by 4th week of intervention 

• The CG had not improved their balance 

skills 

Harley et al. [12] 

• Sample: 30 

• Age: 60-94 

• Duration: 1 year 

• EG: Wii Bowling 

• CG: N/A 

• Qualitative study based on the experience of 

older adults playing Wii Bowling 

• The study concluded that it was not too hard 

for older adults to adapt to new technologies 

and had a fun experience 

• The game sessions had helped in enhancing 

the social connections between peers 

Young et al. [15] 

• Sample: 6 

• Mean age: 84.1 ± 5.1 

• Duration: 4 weeks, 

• 10 sessions (20 min) 

• EG: Wii Balance Board 

• CG: N/A 

• The participants showed an improvement in 

overall balance and self-efficacy 

 

2.3 Comparison of Different Wireless Motion Sensors for Implementing 

Exergames 

Fraile et al. [25] presented a suitability analysis for wireless motion sensors available 

in the market for the purpose of implementing exergames. Currently, the two most 

popular choices of commercially available wireless motion sensors for exergaming 

include the Nintendo Wii and the Microsoft Kinect sensor.  
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Figure 2.1 Nintendo Wii Console and Accessories 

Most of the early research and studies based on exergames for the elderly community 

is based on commercially available and the highly popular console known as the 

Nintendo Wii. The Nintendo Wii console includes a remote called the Wii-mote, which 

uses Bluetooth to relay the data from its in-built triaxial accelerometer [26]. The optical 

sensor in the Wii-mote can also send data related to its positioning by detecting the 5 

LED lights on the sensor bar and their projection on its own infrared panel. It also 

contains several buttons which can be used to provide direct feedback to the game. The 

Nintendo Wii console provides another motion sensor called the Nunchuk that works 

in tandem with the Wii-mote. In addition to the Wii mote and Nunchuk, Nintendo had 

launched a balance board called the Wii Balance Board. The balance board contains 4 

pressure sensors and is used to measure the user’s center of balance. The Wii balance 

board has been used extensively in exergames targeted to improve the balance skills of 

the elderly prone to falls.    

 

The other most widely popular choice of wireless sensor for exergames involving the 

elderly is the Microsoft Kinect sensor (Figure 2.2). The sensor includes an RGB camera 

coupled with a depth camera and an infrared projector. The infrared projects a speckle 

pattern which can be seen by the depth camera. The sensor calculates depth by using 

the triangulation method. The Kinect sensor does not require any additional accessories 
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and detects the user skeleton by applying sophisticated machine learning algorithms. 

The sensor can return position data of up to 20 estimated joint values. 

 

Fraile et al. compared the specifications of both the consoles and presented the outcome 

of the usage of both the technologies by creating a tool called SANDRA. It is a 

multiplatform browser-based game, that uses OpenNI library for handling Kinect data, 

wiigee for Wii controllers and, Wiiboard-simple for the Wii balance board interfaces. 

The gameplay consisted a team of 4 players, who played the games together and once 

the game ended were led to the scoring page to see their performance outcomes. The 

exercise included stretching out to reach different objects in the scenes placed randomly 

above the participants.  

 

The challenges that occurred during the implementation of SANDRA included the 

crashing of the OpenNI library for Kinect. The developers had to use 1:1 movements 

that Kinect provides rather than substitute avatar animations in certain scenarios. The 

authors concluded that although the Nintendo Wii controllers were a suitable option, 

they needed to be adapted for the elderly users and could not be used off the shelves. 

The other constraints of using the Wii controllers were limited amount of data obtained 

by the sensor. The data returned by Wii controllers could not be used to animate the 

full body avatars of the players.  

 

The authors concluded that the Microsoft Kinect sensor is a good choice as a standalone 

device for developing a wide variety of exergames due to its skeleton tracking abilities 

which can perfectly mimic the natural state of the body without any additional 

accessories and its ease of use. 

 

 
Figure 2.2 Microsoft Kinect Sensor 
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2.4 Existing VR-Based Exergames for Elderly Population and their Outcomes 

There exists a lot of studies on the usage of exergames with the elderly population for 

rehabilitation and increase in physical activity. Majority of these trials with the elderly 

community are based on the Nintendo Wii console [10, 11, 13, 27-30] in tandem with 

the Wii Fit game suite. The suite consists of a series of games that are mainly designed 

to promote physical fitness by augmenting exercises that incorporate strength training, 

aerobic exercise, and balance training. The other existing VR exergames include dance-

based step pads [31].  

 

To analyze the effect of exergames on the elderly community, it is important to 

understand the design methodologies employed by the study along with the different 

assessments made before and after the intervention. Most popular assessment tools 

employed in these research studies measure changes in balance and sensory-motor 

skills using TUG, BBS, FES / FES-I and Tinetti-POMA assessment tasks and 

questionnaires (Table A.1). 

 

2.4.1 Studies based on Exergames using the Nintendo Wii 

The randomized controlled trials based on Nintendo Wii mostly evaluated the gains in 

mobility using Timed-Up and Go (TUG) tests. The trials using TUG assessment [10, 

13, 27, 29] showed an improvement for the intervention group [13, 27] compared to the 

control group. However, the studies [10, 29] did not show any improvement in either 

groups. 

 

The following studies [10, 11, 13]  used the Berg Balance Scale (BBS) to assess the 

improvement in the balance ability of the participants. The outcome of BBS for the 

studies [10, 13]  showed a significant improvement for the intervention group compared 

to the control. Although there was an improvement of the BBS scores compared to the 

pre-intervention period for study [11], there was no significant difference between the 

intervention groups within the study.    
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Tinetti-POMA is used to analyze the mobility and gait in the elderly community prone 

to falls [11, 14, 29]. For the study [11], there was an improvement in the Tinetti-POMA 

scores. However, the studies [14, 29] showed improvements over the control group but 

not between the intervention groups within the study. The other forms of popular 

assessment made included FES/FES-I [27, 29] and FRT [10, 30] which shows an 

improvement in the study [27] and no improvement in the rest.  

 

2.4.2 Studies based on Exergames using the Dance Step-pads  

Schoene et al. [31] presented a randomized controlled trial with 37 participants around 

the mean age of 78 ± 5 years. The study included a computer game that required the 

participants in the exercise group to step on a step-pad following the instructions from 

the game. The control group did not receive any intervention. The intervention group 

was suggested to take part in the game sessions at least 2-3 times per week for 10-15 

minutes. After 8 weeks, the follow up assessments show an improvement in the Choice 

Stepping Reaction Time (CSRT), Physiological Profile Assessment (PPA) composite 

scores, as well as the postural sway and contrast sensitivity PPA sub-component scores. 

Another significant improvement can be seen in the TUG dual-task. 
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Chapter 3  

“9-Square Matrix” Aerobic Exercise Recognition using Image 

Processing  

 

This chapter explains the design and methodology for the “9-Square Matrix” aerobic 

exercise implementation using image processing techniques. The study describes the 

algorithms used to detect the “9-Square Matrix” and perform user tracking based on a 

single low-cost webcam. The performance of the “9-Square Matrix” aerobic exercise 

recognition is further tested with 8 subjects by classifying the different types of errors 

detected.  

3.1 System Design 

3.1.1 Framework and Experimental Scheme 

For the implementation of the “9-Square Matrix” using a normal Logitech webcam, it 

is important to achieve two objectives; (1) Detecting the “9-Square Matrix” and (2) 

Tracking the region of interest (ROI) successfully. Both these tasks rely solely on image 

processing techniques. 

 

To ensure accurate detection of the “9-Square Matrix”, it is important to understand the 

various factors that may affect the overall image quality. Most vision-based algorithms 

suffer from excessive noise introduced by poor lighting conditions and low image 

resolution. Other factors include radial and tangential distortion caused by cheap 

cameras.  

 

The “9-Square Matrix” by design resembles a standard chessboard pattern. This allows 

the detection and extraction of its corner points using the find chessboard algorithm (as 

explained in Figure A.1) by the image processing library called OpenCV. To remove 

the distortion and ensure maximum accuracy in detection, there are two parameters that 

need to be estimated before-hand. The two parameters include the camera matrix (focal 

length and principal centers) and the pose of the camera.  
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Once both the parameters have been obtained, any corresponding point from the 3D 

world can be re-projected onto the screen. Hence, to determine the accuracy of the 

matrix, we eliminate the distortion coefficients and compare the difference between the 

detected corner points and the re-projected corner points using the re-projection error. 

 

The first part of the experiment is to determine the optimal camera placement. The 

camera height and distance of the matrix will be altered for each setup and re-projection 

error will be calculated. The re-projection error will be used to decide the best setup for 

the “9-Square Matrix” implementation. 

 

The second most crucial task is to detect the user’s foot (ROI) and track it in real-time. 

In order to detect the ROI, all other objects in the scene needs to be filtered out. Here 

the filter is based on color thresholding. After the filter is applied, the binary image 

obtained is tracked by calculating the image moments. The image moments function 

calculates the centroid of the binary image or blob, which is the real-time coordinates 

of the object being tracked.  

 

3.1.2 Camera Calibration and Computing Re-Projection Error 

The camera’s intrinsic parameters include its focal length (ƒx, ƒy) and the principal point 

(cx, cy), which describes the image center. The extrinsic parameters or pose is the 

rotation and translation of the camera in relation to an object. The intrinsic and extrinsic 

parameters together form the projection matrix (Equation 3.1) which can be used to 

project any 3D point to its corresponding 2D projection on the screen. 

 

 𝑠 [
𝑢
𝑣
1

] =  [
𝑓𝑥 0 𝑐𝑥

0 𝑓𝑦 𝑐𝑦

0 0 1

] [

𝑟11 𝑟12 𝑟13 𝑡1

𝑟21 𝑟22 𝑟23 𝑡2

𝑟31 𝑟32 𝑟33 𝑡3

 ]  [

𝑋
𝑌
𝑍
1

] (3.1) 

 

The camera’s intrinsic and extrinsic parameters can be estimated by the process of 

camera calibration. The calibration process requires multiple snapshots of a calibration 

rig (e.g. chessboard) in various poses.  
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The extrinsic parameters for each pose is calculated independently using the solve PNP 

Ransac function and for each pose the re-projected corner points are calculated. The 

difference between the estimated values obtained from Equation 3.1 and the captured 

corner points on the screen is calculated using the root mean square error (RMSE). The 

RMSE (Equation 3.2) is also known as re-projection error. The average re-projection 

error for different chessboard views captured indicates the accuracy of the calibration 

process. 

 

𝑅𝑀𝑆𝐸𝑟𝑟𝑜𝑟 =  √
∑ (ŷ𝑖 − 𝑦𝑖)2𝑛

𝑖=1

𝑛
 (3.2) 

For calibrating the Logitech webcam and removing distortions (radial and tangential), 

a 10x7 chessboard with 8cm squares was used. The pattern was captured in varying 

poses and a sample of 50 views were collected (Figure 3.1). The resulting average re-

projection error value of 0.301135mm was obtained. 

 

Figure 3.1 Camera Calibration and Distortion Removal 

To compute the re-projection error of the “9-Square Matrix”, the pose of the camera 

with respect to the matrix needs to be estimated before-hand. For the pose estimation 

problem, the camera parameters that needs to be estimated include 6 unknowns, in 

which the first 3 unknowns define the rotation of the camera (yaw, pitch, roll) using 

Euler angles and the rest 3 unknowns define the 3D translation of the camera with 

respect to the matrix in the x-, y- and z-directions.  
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Given the 3D world coordinates of the detected corner points and their corresponding 

2D screen projections, the pose estimation problem can be solved using direct linear 

transformation (DLT) algorithm. Furthermore, the RANSAC method implements the 

Levenberg-Marquardt optimization to remove the outliers and minimize the re-

projection error. 

  

Once the pose for each setup has been computed, the re-projection error for all the views 

can be calculated individually. The view resulting in the minimum re-projection error 

value will be selected for the setup. 

 

3.1.3 User Tracking based on Color Thresholding and Image Moments 

To track an object, the region of interest must be defined first. The region of interest in 

this case is the user’s foot. The players must wear colored slippers which can be easily 

detected and segmented out from the background (Figure 3.2) by performing color-

based thresholding. Initially, the image frames are converted from the BGR color space 

to HSV color space. The HSV color space defines a color by its hue, saturation and 

value. It is more robust to noise introduced by various lighting conditions compared to 

other color spaces. 

 
Figure 3.2 HSV Color Thresholding 

The segmentation of the ROI from the background is done by performing binary 

thresholding on the input image for a specific color value (i.e. the slippers color). Once 

the binary image with only the ROI is obtained, morphological operations such as 

dilution and erosion are performed to eliminate any remaining noise. 
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The binary image which contains only the foot region of the player is used to calculate 

its moments. Image moments are functions that represent a statistically significant 

value. For tracking purposes, the 0th order moment (Equation 3.3) of the image is 

calculated for determining the area of the ROI. 

 µ0,0 =  ∑ ∑ 𝑓(𝑥, 𝑦)

ℎ

𝑦=0

𝑤

𝑥=0

 (3.3) 

The moments function in this case is a weighted sum of all the x-y pixel values of the 

binary image. The centroid (µ1,0, µ0,1) of the object to be tracked can then be calculated 

by dividing the weighted average of the pixels in the x- and y- directions (Equation 3.4) 

individually over the area of ROI (Equation 3.5).  

 𝑠𝑢𝑚𝑥 =  ∑ ∑ 𝑥 ∗ 𝑓(𝑥, 𝑦)  and 𝑠𝑢𝑚𝑦 =  ∑ ∑ 𝑦 ∗ 𝑓(𝑥, 𝑦) (3.4) 

 µ1,0 =  
𝑠𝑢𝑚𝑥

µ0,0
  and µ0,1 =  

𝑠𝑢𝑚𝑦

µ0,0
    (3.5) 

3.2 Experimentation and Results 

3.2.1 Detecting Optimal Camera Placement 

To achieve the objective of detecting the “9-Square Matrix” with maximum accuracy, 

it is important to determine the optimal camera placement. The goal of this experiment 

is to determine the setup that will maximize the observability and detection of the 

matrix. For each setup, a snapshot of the “9-Square Matrix” will be taken and the re-

projection error will be computed.  

 

In this experiment, the camera was mounted on a tripod with a fixed tilt angle of -27° 

towards the floor plane (Figure 3.3). The height of the tripod was varied from 100-

160cm in 20cm intervals, whilst the matrix on the floor was shifted by 24cm each time. 

The re-projection error (mm) was computed for each view (Table 3.1).  
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Table 3.1 Re-Projection Error (mm) for Camera Placement 

Height (cm) Range (cm) 
Avg. RMSE 

(mm) 

Min. RMSE 

(mm) 

Distance 

(mm) 

100 80-152 32.78 22.04 152 

120 110-182 27.97 22.85 182 

140 120-192 25.92 18.74 192 

160 180-252 23.92 14.38 252 

 

The results of this experiment indicate that the re-projection error values decrease with 

increasing distances. According to the data, the best setup for the implementation of the 

“9-Square Matrix” is at the camera height of 160cm and the matrix distance of 252cm 

resulting in a minimum RMSE value of 14.38mm. Although the RMSE is a good 

estimator for determining the accuracy of the camera calibration process, it is not an 

ideal indicator for the best setup. 

 

This can be attributed to the fact the re-projection error is calculated by finding the 

Euclidean distance between the captured points (θ) and the estimated points (θ’). 

However, this study [32] on camera placement shows that the traditional pin-hole 

camera model describes an inverse relationship between the distance of the object and 

its observability with respect to the camera. The reduced observability of the matrix 

contributed to the minimum re-projection error over large distances. The other factor 

that is reducing the observability of the matrix is that it’s not lying parallel to the camera 

increasing the foreshortening effect, reducing the accuracy of detection even further. 

 

The better setup parameter would be at a mid-height camera elevation of 140cm and 

the distance of 192cm. The matrix lies on the center of the camera’s FOV, reducing the 

barrel distortion while not necessarily reducing the matrix observability. 
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Figure 3.3 “9-Square Matrix” Setup using Webcam 

3.2.2 User Tracking and Game Mechanics 

The second experiment is to perform user tracking for evaluating the accuracy rate for 

the detection of ‘9-Square Matrix” Aerobic Exercise. For this experiment, 8 subjects 

were asked to perform the 8 step sequences from the “9-Square Matrix” exercise. The 

steps have a number sequence that needs to be followed in exact order. The players are 

given the step to perform and the output is recorded as list of steps that was detected by 

the program.   

 

To measure the accuracy of the detection from the program, there needs to be a 

classification of different types of errors that can occur while performing the “9-Square 

Matrix” exercise. The 3 types of errors recorded are categorized as follows: 

1. Insertion Error(s): This type of error occurs when the user is midst of performing 

or progressing towards the next step in the sequence and the program does a 

false detection. (False Positive) 

2. Deletion Error(s): This type of error occurs when the user steps on the matrix 

cell, but it does not get registered by the program. (False Negative) 

3. Substitution Error(s): This type of error occurs when a different cell gets 

substituted instead of the matrix cell the user is stepping on. 
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The probability of each type of error for each individual step sequence is given by 

Equation 3.6: 

 𝑃(𝐸𝑟𝑟𝑜𝑟) =
𝑁𝑜. 𝑜𝑓 𝐸𝑟𝑟𝑒𝑛𝑜𝑢𝑠 𝑆𝑡𝑒𝑝𝑠 𝐷𝑒𝑡𝑒𝑐𝑡𝑒𝑑

𝑇𝑜𝑡𝑎𝑙 𝑁𝑜. 𝑜𝑓 𝑆𝑡𝑒𝑝𝑠
 (3.6) 

The results from the program output (Table 3.2) shows that the probability of the 

highest number of error recorded was the insertion error. This can be attributed to the 

fact that the implementation was using a normal webcam which lacked any depth 

sensing capabilities, thus detecting a false positive when the user’s foot was not 

touching the floor plane.  

 

Table 3.2 Probability Error for Detection of “9-Square Matrix” 

Step 
Probability of Error  Total Error 

(%) PI(E) PD(E) PS(E) 

1 0.025 0.013 0.000 3.75 

2 0.054 0.036 0.000 8.93 

3 0.125 0.021 0.021 16.67 

4 0.188 0.021 0.000 20.83 

5 0.146 0.042 0.000 18.75 

6 0.094 0.042 0.010 14.58 

7 0.141 0.000 0.000 14.06 

8 0.150 0.000 0.000 15.00 

 

The occurrence of deletion error was overall low but had been observed when the user 

was performing a step too fast for the program to correctly register resulting in a false 

negative detection. The substitution error was very minimal and occurred due to the 

user’s foot overlapping the neighboring cells rather than incorrect detection by the 

program. However, it is important to note that for most steps the probability of overall 

error remains below 20%.  
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3.3 Evaluation 

The first experiment regarding the optimal camera placement shows that the re-

projection error or RMSE used in the camera-calibration process is not a good indicator 

for the best setup value. This technique works best for calibration patterns that are 

mostly placed parallel to the camera, which does not necessarily diminish the 

observability of the calibration pattern. In addition, a good estimation should include a 

at least 10 snapshots of the pattern. Hence, the camera calibration performed with 50 

views of the chessboard covering the entire field of view (FOV) of the camera in various 

poses returned a good re-projection error rate of 0.301135mm. 

 

For the second experiment following the implementation of the “9-Square Matrix” 

aerobic exercise. It can be noted that the color-based segmentation for defining the ROI 

and tracking the ROI using image moments performed well due to the lower amount of 

error rate for majority of the steps. The highest error probability was for insertion errors 

since the camera used was a normal camera without any additional information on 

depth.   
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Chapter 4  

VR-Based “9-Square Matrix” Aerobic Exercise for Preventing 

Physical and Cognitive Decline in Older Adults 

 

This chapter focuses on the implementation of the “9-Square Matrix” Aerobic Exercise 

as an exergame using the Microsoft Kinect sensor. The first phase of the 

implementation presents a model for determining the optimal sensor setup based on the 

user’s height and matrix distance. Once the setup variables are determined, the optimal 

setup is obtained by performing an experiment to determine the depth accuracy on each 

of the setup variables. The second phase of implementation includes testing the 

exergame with 10 test subjects and classifying the results based on the error detection 

model described in Chapter 3. 

 

4.1 Design for the VR-Based "9-Square Matrix" using Microsoft Kinect Sensor 

For the implementation of the “9-Square Matrix” exercise into a VR-based exergame, 

it is crucial understand the process flow of the program (Figure 4.1). The program 

design relies heavily on the basic tasks of matrix detection and tracking the user’s foot 

location accurately on each of the matrix cells.  

 

The matrix detection is performed by the find chessboard algorithm (described in 

Figure A.1) using the image processing library called EmguCV. Whereas the user 

tracking is done using the Kinect SDK, that relies on machine learning algorithms to 

detect the user’s skeleton. The first part of the implementation of the exergame involves 

determining the optimal sensor setup by testing for the depth accuracy at each given 

setup. The setup variables such as the camera height, angle and matrix distance are 

determined by a mathematical model with the minimum user height acting as a 

constraint. Once the setup variables have been calculated, the experiment for depth 

accuracy will be conducted on those parameters. 
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The second part of the implementation is based on user tracking. The 10 subjects are 

asked to perform each of the 8 step sequences and the program output is recorded. The 

errors are then classified into insertion, deletion and substitution error as defined in 

Section 3.2.2.  

 

4.1.1 Determining the Setup Variables and Criteria for Sensor Placement 

The Microsoft Kinect sensor provides depth sensing capabilities by including an IR 

projector and a depth camera along with a standard RGB camera. The Kinect sensor 

creates a depth map of the surrounding environment by projecting a laser speckle 

pattern which is visible to the depth camera. Depth is calculated by triangulation 

between the source (IR projector) and the depth camera. The skeleton data of the users 

is also generated from the depth map using machine learning algorithms. 

 

The Microsoft human computer interface guidelines for Kinect [33], recommends the 

distance for the player and objection detection using depth mode to be between 1.2 

meter to 3.5 meters. The depth resolution reduces drastically beyond this range. The 

maximum supported resolution of the depth camera is 640x480 pixels at 30 frames per 

second. The angular field of view (AFOV) for both the RGB and depth camera are the 

same, horizontal FOV is 57.5° and the vertical FOV is 43.5° 

 

The Kinect sensor also contains a motor at the bottom to adjust the tilt angles (±27°) of 

the sensor manually. To design the experiment for the optimal sensor placement, there 

are 3 setup variables that need to be determined: (1) the elevation of the sensor, (2) the 

tilt angle of the sensor and (3) the ideal distance of the matrix to the sensor.  

 

Additionally, the optimal setup for the sensor needs to accommodate both the view of 

the “9-Square Matrix” as well as the user. In this case, the constraints arise from the 

varying heights of different players. All users must lie within the sensors field of view 

for every setup that include various sensor poses (elevation and tilt) and matrix distance. 

If any part of the user is occluded, the skeleton tracking fails to detect the user.  
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Figure 4.1 VR-Based “9-Square Matrix” Process Flow 

4.1.2 Creating a Model to Determine the Sensor Pose (Tilt and Elevation) based 

on User Height and Matrix Distance  

The objective is to find the optimal sensor elevation and tilt angle that can accommodate 

users within a minimum defined height. The tilt angle and distance affect the view 

pyramid; therefore, the user’s height needs to be the constraint in formulating the 

problem. The sensors field of view is fixed but the tilt of the sensor towards the matrix 

lying on the floor plane can cause occlusion for users over a certain height. The setup 

scenario of the exergame is depicted in Figure 4.2. 
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The adjustment of the sensor’s tilt allows varying observability of the matrix by 

increasing or decreasing the tilt angle (θ) towards the floor plane. The following 

equations can be formulated from Figure 4.2: 

 tan(21.75 −  𝜃) =
ℎ𝑢𝑠𝑒𝑟 −  ℎ𝑐𝑎𝑚𝑒𝑟𝑎

𝑑
 (4.1) 

 tan(21.75 +  𝜃) =
ℎ𝑢𝑠𝑒𝑟 ∗ (1 − 0.1591 ∗ tan2(𝜃))

𝑑
 (4.2) 

 

Combining Equations 4.1 and 4.2, results in Equation 4.3: 

 

 0.7978 + 0.7978 ∗ tan2(𝜃) =
ℎ𝑢𝑠𝑒𝑟 ∗ (1 − 0.1591 ∗ tan2(𝜃))

𝑑
 (4.3) 

 

By specifying the minimum user height (ℎ𝑢𝑠𝑒𝑟) and distance (𝑑) to the sensor in 

Equation 4.3, the tilt angle (𝜃) is obtained. The tilt angle can then be substituted in 

Equation 4.1 to derive the sensor height (ℎ𝑐𝑎𝑚𝑒𝑟𝑎) for that tilt angle. This model will 

provide us the sensor elevation and tilt angle which will cover both the “9-Square 

Matrix” and user at the same time. 

 

 
Figure 4.2 Sensor Setup Parameters for “9-Square Matrix” 
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4.1.3 Detecting the Pattern and User Tracking 

The “9-Square Matrix” used in this exergame is identical to the chessboard calibration 

pattern used in the image processing library such as OpenCV. Similarly, for this 

implementation the matrix detection will be handled by using the find chessboard 

corners algorithm. After the extraction of all the individual corner points, the 

neighboring corners will be arranged into individual matrix cells.  

 

For each of the detected corner points, the depth of the corner points will be obtained 

by mapping the pixel location from the RGB camera to the depth camera. This is only 

possible when the resolution of the RGB and depth camera is set to be the same 

resolution (i.e. 640 x 480 pixels) because the Kinect SDK does not allow mapping from 

the color space to the depth space. 

 

Apart from providing depth values, the Kinect sensor also supports skeleton tracking. 

It relies on depth data to segment out the player pixels from the static objects in the 

scene. The skeleton tracking is enabled by sophisticated machine learning algorithms 

used by the Kinect sensor. The skeletal tracking algorithm can return data for up to 20 

joint values. To track if the user is stepping on the matrix cell, the skeleton joint needs 

to be checked, if its overlapping with the matrix. 

 

In addition, to the checking the if the user’s foot lies within the boundaries of the matrix 

in relation to distance from the sensor, it is also crucial to detect the user’s current 

posture. The Kinect sensor provides an estimation of the floor clip plane by 4 floating 

point values x-y-z and w, where w is the height of the sensor and the rest defines the 

orientation of the floor plane. The distance between the user’s foot from the floor can 

be estimated using the point-plane distance formula as follows: 

 

 𝐷 =
𝑎𝑥0 +  𝑏𝑦0 +  𝑐𝑧0 + 𝑑

√𝑎2 + 𝑏2 +  𝑐2
 (4.5) 
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4.2 Experimentation and Results 

4.2.1 Optimal Sensor Placement and Depth Accuracy Estimation 

The goal is to determine the optimal sensor placement for maximum depth accuracy of 

the matrix and the user’s joint data. The VR-based exergame implementation of the “9-

Square Matrix” relies heavily on depth data for determining the distance of the matrix 

and skeleton tracking, therefore it is crucial to pick the most suitable sensor setup which 

results in minimal depth approximation error (η).   

 

For this experiment, all the feasible sensor setup (elevation and tilt angle) values (Table 

4.1) are calculated through the model described in Section 4.1.2. The sensor is mounted 

on an adjustable tripod and the tilt angles are modified programmatically. The program 

initially tries to detect the matrix lying on the floor, once detected the corner points are 

extracted and depth values are obtained by mapping the color space onto the depth 

space.  

 

After the extraction of the depth values, the program calculates the distance between 

the adjacent corner points. The width of each matrix square (ν) is exactly 24cm. By 

calculating the difference for each adjacent corner point, the average approximation 

error can be computed as follows: 

 𝜂 =
𝜖

|𝜈|
=  |

𝜈 −  𝑣𝑎𝑝𝑝𝑟𝑜𝑥

𝜈
| =  |1 −

𝜈𝑎𝑝𝑝𝑟𝑜𝑥

𝜈
| (4.6) 

The average approximation error (η) is not the sole measure used for determining depth 

accuracy, the variance (σ2) and standard deviation (σx) are also indicators of the error 

in depth data. The high variance and standard deviation values of the given population 

results in higher average approximation error.  
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Table 4.1 Depth Approximation Error for Localized Corner Points 

Angle 
Height 

(cm) 
Distance 

Variance 

(σ2) 

S.D 

 (σx) 

η  

(cm) 

η  

(%) 

-26 189 170 3.804 1.950 1.408 5.868 

-23 180 180 5.669 2.381 2.058 8.576 

-20 170 190 4.866 2.206 1.775 7.396 

-16 156 200 5.986 2.439 2.400 10.000 

Min 3.804 1.950 1.408 5.868 

Max 5.986 2.439 2.400 10.000 

 

The data from Table 4.1 illustrates that the best setup for a successful implementation 

of the “9-Square Matrix” exergame would be at a tilt angle of -26°, elevation height of 

189cm and matrix distance of 170cm. The results indicate that the depth fidelity 

decreases with increasing distances, which is consistent with the Microsoft Kinect 

guidelines specification of depth range from 1.2 meters to 3.5 meters.  

 

4.2.2 User Tracking and Game Mechanics  

To test the success of the implementation of VR based “9-Square Matrix”, 10 subjects 

were asked to perform on all the 8 steps sequences from the exercise routine while the 

program output was recorded. The output was compared with the actual sequence and 

the error classification is performed using the same model defined in Chapter 3, Section 

3.2.2.  The result of the probability for each type of error is given in Table 4.2. 

 

Table 4.2 Probability of Error Detection 

Step 
Probability of Detected Error(s) Total Error 

(%) PI(E) PD(E) PS(E) 

1 0 0.020 0 2 

2 0.007 0.043 0 5 

3 0.117 0.033 0 15 

4 0.100 0.050 0 15 

5 0.142 0.042 0 18 

6 0.050 0.067 0.017 13 

7 0.263 0.113 0.038 41 

8 0.080 0.070 0 15 
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The occurrence of insertion error for the Kinect sensor occurs due to incorrect height 

threshold settings. The threshold is set for a minimum height of the joint from the floor 

plane. If the threshold is set too low then a false detection happens, whereas for higher 

thresholds the step might not get registered causing a false negative detection. 

 

The deletion errors might also occur in the following cases: (1) Failure in skeleton 

tracking due to occlusion of the user’s body parts and (2) Incorrect joint estimation by 

the sensor, which can be caused by the user’s apparel or jitter in the data. The lowest 

probability of error detected was the substitution error. The substitution errors detected 

by the program is mostly caused by jitter in the data due to unreliable detection of the 

foot region.  

 

It is important to note that for most of the steps the total error rate is well below 20% 

with an exception for step 7, which registers an error rate of 41%. The data indicates 

that while performing step 7, all types of errors were detected (insertion, deletion and 

substitution). This can be attributed to the fact that the step itself is highly complicated 

and creates an occlusion problem, which causes the skeleton tracking to fail 

temporarily.  

 

4.2.3 Comparison of Implementation Techniques for "9-Square Matrix" Aerobic 

Exercise Recognition using Webcam and Microsoft Kinect Sensor 

The “9-Square Matrix” Aerobic Exercise can be implemented using a simple webcam, 

relying solely on image processing tasks for detecting the matrix and perform user 

tracking. It is achieved by using the image processing algorithms provided by OpenCV 

library. The matrix detection is performed by the find chessboard corners algorithm, 

which is a robust algorithm that works even if the matrix is lying on the floor. It supports 

detection of the chessboard in various orientations and performs well even in poor 

lighting conditions.  
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Both the devices rely on the find chessboard corner algorithm for matrix detection using 

OpenCV library. The user tracking in case of the webcam is performed using color-

based segmentation. This technique presents a constraint in terms of the accessory the 

user needs to wear (i.e. colored slippers) which might not be preferred by the users and 

the detection will fail in case there are objects of similar color placed in the webcams 

FOV. The color-based segmentation algorithm can also fail if there is too much noise 

introduced by different lighting conditions. The image moments function tracks the 

users foot with a good amount of precision, provided the detection of the slippers work 

correctly. 

 

The user tracking for Microsoft Kinect sensor relies on the skeletal tracking engine to 

detect the various joints of the users. The skeleton tracking performs well for most of 

the joints estimated but can suffer while tracking the foot joint. The foot joint is the 

only joint estimation which suffers from jitter. Apart from the estimation problem, the 

occlusion of body parts can cause the skeleton tracking to stop working. This can be 

problematic due to the fact that the “9-Square Matrix” exercise routine consists of steps 

that can cause occlusion of body parts.  

4.3 Evaluation 

The first experiment is performed with the objective of finding the best sensor position 

and orientation for the detection of the “9-square matrix” and user tracking. According 

to the results of the experiment, the most optimal position and orientation of the sensor 

for this study is at the elevation level of 189cm and at an angle of -26° with the matrix 

at distance of 170 cm which results in minimum approximation error value of 5.86% 

given in Table 4.1.  
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The results in Table 4.2 demonstrate that 4 out of the 8 patterns have been performed 

with minimal insertion, deletion and substitution errors whereas the rest of the patterns 

have shown a larger amount of error. Therefore, the success of the implementation of 

VR based “9-square matrix” exergame would rely on more sophisticated machine 

learning algorithms that would be able to estimate the joint data in the case of occlusion 

or a combination of skeleton data and simple image processing algorithms such as 

color-based thresholding to achieve as high of an accuracy as possible in joint location 

estimation. An additional Microsoft Kinect sensor can also provide a better view of the 

user to eliminate the occlusion and improve the accuracy of detection drastically.  

 

 
Figure 4.3 “9-Square Matrix” Exergame Setup 
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Chapter 5  

“9-Square Matrix” Exergame 

 

This chapter provides details on the design of the interface and game mechanics of the 

exergame for the “9-Square Matrix”. The evaluation of the gameplay for the “9-Square 

Matrix” using Kinect sensor is given in Chapter 4. 

5.1 Game Design 

The “9-Square Matrix” exergame is designed for older adults to be able to perform 

aerobic exercise daily at their home without minimal external assistance. Hence the 

requirements of the system have been narrowed down to the following criteria’s: 

• A low cost and low maintenance system which can be used with minimal effort 

• Developing the interface for elderly users 

• The exercise routine for “9-Square Matrix” should be appropriate for elderly 

population 

• Addition of new exercise routines can be easily done by the coach or 

physiotherapist 

• In game assistance for the elderly by providing audio and visual feedback to the 

user 

After considering the traditional “9-Square Matrix” exercise routine, it has been 

determined that the most suitable device for the implementation for the exergame would 

be Microsoft Kinect sensor due to its ability to perform full body tracking. The Kinect 

allows natural user interactions which are easier to learn compared to controller-based 

sensors and devices. 

 

The system allows for selection of different levels of difficulty which can be adapted 

according to the ability of the users. The exergame can be further adapted and 

customized by the physiotherapist by simply adding new step sequence into a text file.  

The key design elements from previous studies [7, 34, 35] are incorporated for the 

design of the e” 9-Square Matrix” exergame. 
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5.2 System Architecture 

5.2.1 User Interface and Design Flow 

The initial prototype for the exergame was built using a normal Logitech webcam was 

implement in C++ programming language and OpenCV image processing library. The 

interface was simple and only provided output for the user’s step on the matrix. 

 

For the actual exergame implementation using the Kinect sensor, the system was 

designed to accommodate the design recommendations for older adults. The interface 

has minimal amount of text in large and clear fonts, there are buttons placed for 

navigations between each menu items. The gesture control for navigation is limited due 

to scaling issues which can be very hard and frustrating to use for the elderly. The only 

gesture used for navigation is to the end the game session using the wave gesture, since 

the user will be significantly away from the computer device. 

 

There are audio and visual in-game assistance to guide the user, in case the users have 

forgotten a step. At the end of the game session, the user can see their performance in 

terms of the time of each session and score. For the different difficulty levels, a step 

will be either added or omitted. 

 

The “9-Square Matrix” exergame user interface has been implemented using C# 

programming language and EmguCV image processing library. The user interface and 

overall system design is presented in Figure 5.1. 
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Figure 5.1 The User Interface for “9-Square Matrix” Exergame: (a) Main Menu, (b) 

Instruction Screen, (c) Settings Menu, (d) Scores Page 

5.2.2 Game Mechanics 

The game session starts with matrix detection and once the matrix has been captured 

successfully, the numbers on each respective matrix is displayed (Figure 5.2). The 

system presents a pattern to the user, along with the next steps for the left and right foot 

they need to perform, much like the gameplay for DDR (Figure 5.3). The step pattern 

is displayed visually, and the audio is presented to the user.  

 

 

Figure 5.2 Matrix Detection and Capture for “9-Square Matrix” Exergame 
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In the background, there is a timer set to 35 seconds, during which the user needs to 

repeat the step until the times up. The user scores an additional point for each step 

performed correctly including the repetitions. The different levels of difficulty 

presented to the users include easy, medium and hard. The easy level only presents the 

users from step 1 to step 4, the medium level includes step 5 and 6 and the hard level 

includes step 7 and 8.  The steps are presented in a random order for the users to 

perform. 

 

After the end of every session, the user is presented with a summary of their 

performance. The summary page shows the score and time spent playing the game. The 

goal of this exergame is not for the users to maximize their scores, but to spend a 

minimum required time on each play session.  

 

 
Figure 5.3 Game Play User Interface 
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5.2.3 The Results of Implementing "9-Square Matrix" Aerobic Exergame using 

Kinect 

To understand the challenges of implementing the “9-Square Matrix” Aerobic exercise 

as an exergame, it is important to analyze the results from the implementation of Kinect 

(Table 5.1). The study participants based on the Kinect implementation of the exergame 

involved 10 healthy young adults (5 females, 5 males) with a mean age of 25 years ± 3 

years.  

 

Table 5.1 Probability of Insertion, Deletion and Substitution Error(s) for Kinect with 

10 test subjects 

Step 
Error Sequence Total 

Error (%) Insertion PI(E) Deletion PD(E) Substitution PS(E) 

1 0 0.000 2 0.020 0 0.000 2 

2 1 0.007 6 0.043 0 0.000 5 

3 7 0.117 2 0.033 0 0.000 15 

4 6 0.100 3 0.050 0 0.000 15 

5 17 0.142 5 0.042 0 0.000 18 

6 6 0.050 8 0.067 2 0.017 13 

7 21 0.263 9 0.113 3 0.038 41 

8 8 0.080 7 0.070 0 0.000 15 

 

The highest type of error recorded was the insertion error, followed by deletion and 

substitution error. The deletion error for Kinect sensor mostly resulted from occlusion 

and incorrect threshold settings. Lastly, substitution errors occurred from either the 

users stepping on the boundaries of matrix cells or the jitter in skeleton data for the foot 

joint. 

 

As for the performance of the exercise routine itself, step 7 was deemed the most 

difficult step resulting in fall for 2 male participants. Apart from that, the subjects 

experienced fun while performing the dance routines (Figure 5.4).    
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Figure 5.4 “9-Square Matrix” Exergame Implementation Experiment 
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Chapter 6  

Conclusion and Future Work 

 

This research focuses on the implementation of the “9-Square Matrix” Aerobic Exercise 

in the form of an exergame for older adults. The first phase of the implementation lies 

in recognizing the techniques for using image processing in the detection of the matrix. 

The matrix detection for both cases of implementation using webcam and Kinect sensor 

relies on image processing algorithm to successfully capture the matrix. 

 

In both the cases, the optimal setup and camera placement has been determined. For the 

webcam placement problem, the re-projection error was a suggested as a measure of 

accuracy for the matrix detection. However, the re-projection error was not suitable for 

this purpose, due to incorrect results. Instead a setup was chosen to maximize the 

observability instead.  

 

The optimal setup for Microsoft Kinect sensor using matrix detection required a model 

to determine the setup values, so that it would include the user’s entire body in the FOV 

of the sensor to avoid failure in skeleton tracking engine. The accuracy was measured 

by calculating the length between all adjacent corner points using depth. The best-case 

scenario returned an average depth error rate of 5.9%. 

 

The second phase of implementation for both the webcam and Kinect sensor included 

user tracking and recognition of the steps performed by the system. In this scenario, the 

Kinect sensor performed better than the webcam overall, but both the systems had 

shown an error rate below 20% for all the steps except one step. 

 

Both the systems are implemented using completely different techniques and can be 

augmented together to further improve the accuracy of detection. The Kinect sensor can 

stop working in the case of occlusion for the body parts of the users, where the webcam 

does not suffer from this problem and the webcam is a cheap and effective solution to 

address the short-comings of the Kinect.  
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“9-Square Matrix” Aerobic Exercise Design 
 

 

The implementation of the “9-Square Matrix” relies on important image processing 

algorithms which are discussed in this section.  

 

A.1  Assessment Methodologies for Physical Functioning in Older Adults 

 

There are a lot of existing methodologies for assessing the overall balance ability, motor 

skills and physical functioning in elderlies. Most of the trials and studies based on 

exergames use these assessments to test the improvement pre and post intervention. 

This section presents a summary of most widely used assessment such as Timed-Up 

and Go (TUG), Berg Balance Scale (BBS), Falls Efficacy Scale (FES) and Functional 

Reach Test (FRT). 

Table A.1 Assessment Tests to Measure the Physical Functioning in Older Adults 

Methodology Measurable Outcomes 

Berg Balance Scale (BBS) 

• The BBS contains 14 sets of tasks to be performed 

by older adults to measure their dynamic and static 

balance ability. 

• The examiner must rate each task on a scale from 0 – 

4. (lowest to highest) 

• To see a real difference in the balance ability of the 

elderly, a minimum 8-point difference needs to be 

achieved compared to the results before the 

intervention. 

• The time required to perform the BBS test is 15-20 

mins and requires a ruler, chairs (with and without 

arm rest), footstep, wrist watch and walking space. 

• Balance ability and gait assessment 

in elderly subjects 

• An 8-point score increment 

compared to previous results is 

required to measure an impact in the 

balance ability of the individual 

 

Timed Up and Go (TUG) 

• The TUG test is designed to assess the mobility and 

balance for elderly people  

• The TUG test consists of sitting on the chair with back 

leaning straight against the chair and arms on the arm 

rest, the patient is asked to walk to a marker placed 3 

meters (9.8ft) away and then turn around and walk 

back and sit on the chair 

• A stopwatch is used to time, how long it took the 

person to get up, walk and sit back in the chair starting 

from the instruction go. 

 

• Tests the mobility of elderly people 

by measuring the time (seconds) to 

perform the test 

• The higher the time to complete the 

test indicates higher risk of falls and 

balance ability 

• Cut-off rate greater than 13.5s 

shows the ability to predict falls in 

community dwelling elderly, 

however there is no standardized 

cut-off score   
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Tinetti-POMA (Performance Oriented Mobility Assessment) 

• Tinetti-POMA is a test used to evaluate the mobility 

and gait of elderly individuals 

• The test is divided into 2 parts; Balance assessment 

and Gait assessment each consisting of different tasks 

which overall require 10-15 mints to complete 

• The scores allotted vary from 0 – 2, 0 = most impaired 

and 2 = independent. The max score for balance 

assessment is 16, gait assessment is 12 making the 

overall max to 28 (balance + gait)  

• The equipment needed to carry out the Tinetti-POMA 

tests include hard armless chair, stopwatch and 15ft 

walking space 

• The evaluation is done based on the 

sum of the balance and gait score 

• 25-18 = low fall risk, 19-24 = 

medium fall risk and < 19 = high fall 

risk 

• The tasks consist of activities such 

as standing, sitting, walking etc., 

which helps predicts the risks of fall 

while performing day-to-day 

activities 

Morse Fall Scale (MFS) 

• The Morse fall scale was created to assess the 

probability of a fall occurring 

• Morse fall risk assessment is usually conducted when 

the patient is admitted to the hospital, changes wards, 

following a fall or monthly/weekly basis 

• The Morse fall scale ratings are based on the 

following factors 

• History of previous falls 

• Whether the patient has any other medical 

conditions or secondary diagnosis 

• Ambulatory aid, meaning whether the patient 

requires nurse to aid them continuously (bed rest) 

or they need crutches and walker to move around 

or can walk by clutching on the furniture but 

doesn’t ask for help 

• Is an IV being administered to the patient or any 

other equipment is attached 

• Patient’s gait assessment is normal, weak or 

impaired 

• Patient’s mental status is normal or overestimate 

their abilities and are forgetful 

• The MFS provides an overview 

over the probability of falls of a 

patient depending upon their scores 

in each section. 

• The maximum score is 125 and the 

lowest is 0. 

• While the lowest score indicates no 

risk for falls, anything below 25 is 

also considered a low risk patient 

whereas 24-45 present moderate 

risk and anything beyond 45 should 

be considered a high-risk patient. 

Falls Efficacy Scale – FES / FES-I (International) 
• This is a questionnaire based on an individual’s self-

assessment on risk of falling based on day-to-day 

activities (14 activities). 

• The score is ranges from 1 (not at all concerned) – 4 

(very concerned) and takes 5 mints to complete. 

• The higher score reflects a lack of confidence in 

performing the task independently without falling. 

• This test is basically a 

questionnaire for evaluating an 

individual’s efficacy in performing 

a task without falling or presenting 

a risk of falls 

Functional Reach Test (FRT) 
• The functional reach test aims to measure the stability 

and balance in individuals  

• A measuring tape is attached to a parallel wall and a 

subject is asked to reach as further as they can by 

keeping their body in the same position and keeping 

their arms at 90 degrees and stretching it forward 

without moving 

• The distance is measured, and the test is performed 3 

times overall to obtain an average value 

• Balance and risk of fall detection 

based on reach values compared to 

the baseline values 
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A.2 Matrix Detection using Find Chessboard Algorithm in OpenCV 

 

The find chessboard algorithm is used for both the webcam and Kinect based 

implementation of the exergame. It uses many iterative approaches for the chessboard 

detection, which makes it the most robust and efficient algorithm for the matrix 

detection as well. The algorithm is described in Figure A.1.  

 

 

 
Figure A.1 Find Chessboard Algorithm 
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“9-Square Matrix” Exergame Experimental Results 

 

This section presents the experimental results from Chapter 3 based on the optimal 

camera setup and Chapter 4 for the depth-based Kinect sensor setup along with user 

tracking results for both.  

 

B.1 User Tracking Data for “9-Square Matrix” using Webcam with 8 Test 

Subjects 

Table B.1 “9-Square Matrix” Aerobic Exercise Recognition Data for Subject 1 

Step 
Error Sequence Total 

Errors 
PT(E) 

Insertion PI(E) Deletion PD(E) Substitution PS(E) 

1 1 0.100 0 0.000 0 0.000 1 0.100 

2 0 0.000 1 0.071 0 0.000 1 0.071 

3 0 0.000 1 0.167 1 0.167 2 0.333 

4 1 0.167 1 0.167 0 0.000 2 0.333 

5 1 0.083 2 0.167 0 0.000 3 0.250 

6 0 0.000 3 0.250 1 0.083 4 0.333 

7 1 0.125 0 0.000 0 0.000 1 0.125 

8 2 0.200 0 0.000 0 0.000 2 0.200 

Table B.2 “9-Square Matrix” Aerobic Exercise Recognition Data for Subject 2 

Step 
Error Sequence Total 

Errors 
PT(E) 

Insertion PI(E) Deletion PD(E) Substitution PS(E) 

1 0 0.000 1 0.100 0 0 1 0.100 

2 1 0.071 0 0.000 0 0 1 0.071 

3 0 0.000 0 0.000 0 0 0 0.000 

4 2 0.333 0 0.000 0 0 2 0.333 

5 3 0.250 1 0.083 0 0 4 0.333 

6 1 0.083 0 0.000 0 0 1 0.083 

7 0 0.000 0 0.000 0 0 0 0.000 

8 2 0.200 0 0.000 0 0 2 0.200 

Table B.3 “9-Square Matrix” Aerobic Exercise Recognition Data for Subject 3 

Step 
Error Sequence Total 

Errors 
PT(E) 

Insertion PI(E) Deletion PD(E) Substitution PS(E) 

1 0 0.000 0 0 0 0 0 0.000 

2 0 0.000 0 0 0 0 0 0.000 

3 1 0.167 0 0 0 0 1 0.167 

4 2 0.333 0 0 0 0 2 0.333 

5 2 0.167 0 0 0 0 2 0.167 

6 2 0.167 0 0 0 0 2 0.167 

7 3 0.375 0 0 0 0 3 0.375 

8 0 0.000 0 0 0 0 0 0.000 
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Table B.4 “9-Square Matrix” Aerobic Exercise Recognition Data for Subject 4 

Step 
Error Sequence Total 

Errors 
PT(E) 

Insertion PI(E) Deletion PD(E) Substitution PS(E) 

1 0 0.000 0 0 0 0 0 0.000 

2 0 0.000 0 0 0 0 0 0.000 

3 1 0.167 0 0 0 0 1 0.167 

4 2 0.333 0 0 0 0 2 0.333 

5 2 0.167 0 0 0 0 2 0.167 

6 2 0.167 0 0 0 0 2 0.167 

7 3 0.375 0 0 0 0 3 0.375 

8 0 0.000 0 0 0 0 0 0.000 

Table B.5 “9-Square Matrix” Aerobic Exercise Recognition Data for Subject 5 

Step 
Error Sequence Total 

Errors 
PT(E) 

Insertion PI(E) Deletion PD(E) Substitution PS(E) 

1 1 0.100 0 0 0 0 1 0.100 

2 0 0.000 0 0 0 0 0 0.000 

3 0 0.000 0 0 0 0 0 0.000 

4 0 0.000 0 0 0 0 0 0.000 

5 2 0.167 0 0 0 0 2 0.167 

6 0 0.000 0 0 0 0 0 0.000 

7 0 0.000 0 0 0 0 0 0.000 

8 0 0.000 0 0 0 0 0 0.000 

Table B.6 “9-Square Matrix” Aerobic Exercise Recognition Data for Subject 6 

Step 
Error Sequence Total 

Errors 
PT(E) 

Insertion PI(E) Deletion PD(E) Substitution PS(E) 

1 0 0.000 0 0 0 0 0 0.000 

2 0 0.000 0 0 0 0 0 0.000 

3 1 0.167 0 0 0 0 1 0.167 

4 2 0.333 0 0 0 0 2 0.333 

5 2 0.167 0 0 0 0 2 0.167 

6 3 0.250 0 0 0 0 3 0.250 

7 1 0.125 0 0 0 0 1 0.125 

8 1 0.100 0 0 0 0 1 0.100 

Table B.7 “9-Square Matrix” Aerobic Exercise Recognition Data for Subject 7 

Step 
Error Sequence Total 

Errors 
PT(E) 

Insertion PI(E) Deletion PD(E) Substitution PS(E) 

1 0 0.000 0 0 0 0 0 0.000 

2 0 0.000 0 0 0 0 0 0.000 

3 1 0.167 0 0 0 0 1 0.167 

4 1 0.167 0 0 0 0 1 0.167 

5 1 0.083 0 0 0 0 1 0.083 

6 1 0.083 0 0 0 0 1 0.083 

7 1 0.125 0 0 0 0 1 0.125 

8 2 0.200 0 0 0 0 2 0.200 
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Table B.8 “9-Square Matrix” Aerobic Exercise Recognition Data for Subject 8 

Step 
Error Sequence Total 

Errors 
PT(E) 

Insertion PI(E) Deletion PD(E) Substitution PS(E) 

1 0 0.000 0 0.000 0 0 0 0.000 

2 0 0.000 1 0.071 0 0 1 0.071 

3 2 0.333 0 0.000 0 0 2 0.333 

4 1 0.167 0 0.000 0 0 1 0.167 

5 1 0.083 1 0.083 0 0 2 0.167 

6 1 0.083 1 0.083 0 0 2 0.167 

7 2 0.250 0 0.000 0 0 2 0.250 

8 2 0.200 0 0.000 0 0 2 0.200 

 

B.2 Determining the Depth Accuracy for Each Setup Value 

Table B.9 Depth Data for Tilt Angle: -26°, Elevation: 189cm and Distance: 170cm 

 Cell 1 Cell 2 Cell 3 Cell 4 Cell 5 Cell 6 Cell 7 Cell 8 Cell 9 

Depth 1 23.8 24.2 24.2 28.6 26.2 23.4 24.7 21.4 24.2 

Depth 2 24.2 24.2 26.6 26.2 23.4 23.8 21.4 24.2 21.4 

Depth 3 2.4 0 2.4 0 2.8 2.8 3.3 0 0 

Depth 4 2 0 0 2.4 0 2.4 0 2.8 2.8 

 Mean 24.375 Variance 3.804 S.D. 1.950 

Table B.10 Depth Data for Tilt Angle: -23°, Elevation: 180cm and Distance: 180cm 

 Cell 1 Cell 2 Cell 3 Cell 4 Cell 5 Cell 6 Cell 7 Cell 8 Cell 9 

Depth 1 21.8 22.5 26.6 25.8 23.8 21 24.2 28 27.5 

Depth 2 22.5 26.6 22.5 23.8 21 23.8 28 27.5 28 

Depth 3 4.8 0 0 2.8 2.8 2.8 6.6 3.3 3.3 

Depth 4 4.1 4.1 4.1 4.8 0 0 2.8 2.8 2.8 

 Mean 24.625 Variance 5.669 S.D. 2.381 

Table B.11 Depth Data for Tilt Angle: -20°, Elevation: 170cm and Distance: 190cm 

 Cell 1 Cell 2 Cell 3 Cell 4 Cell 5 Cell 6 Cell 7 Cell 8 Cell 9 

Depth 1 22.5 25 20.4 23.8 24.2 26.7 28 25.1 28.6 

Depth 2 25 20.4 22.9 24.2 26.7 24.2 25.1 28.6 25.1 

Depth 3 0 2.1 0 2.5 2.5 2.5 2.9 0 0 

Depth 4 2.5 2.5 2.5 2.9 0 0 0 3.5 3.5 

 Mean 24.708 Variance 4.866 S.D. 2.206 

Table B.12 Depth Data for Tilt Angle: -16°, Elevation: 156cm and Distance: 200cm 

 Cell 1 Cell 2 Cell 3 Cell 4 Cell 5 Cell 6 Cell 7 Cell 8 Cell 9 

Depth 1 26.6 26.6 29.1 21 23.8 21.3 27.5 24.7 28 

Depth 2 26.6 29.1 27.1 23.8 21.3 24.2 24.7 28 25.1 

Depth 3 0 0 2 0 2.5 0 2.8 0 2.9 

Depth 4 0 2.5 0 2.8 0 2.9 0 3.3 0 

 Mean 25.417 Variance 5.948 S.D. 2.439 
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B.3 User Tracking with “9-Square Matrix” Exergame using Microsoft Kinect 

Sensor for 10 Test Subjects 

Table B.13 “9-Square Matrix” Exergame Error Sequence for Subject 1 

Step 
Error Sequence Total 

Errors 
PT(E) 

Insertion PI(E) Deletion PD(E) Substitution PS(E) 

1 0 0 0 0 0 0 0 0 

2 0 0 0 0 0 0 0 0 

3 0 0 0 0 0 0 0 0 

4 0 0 0 0 0 0 0 0 

5 0 0 0 0 0 0 0 0 

6 1 0.083 0 0 0 0 1 0.083 

7 3 0.375 0 0 0 0 3 0.375 

8 2 0.2 0 0 0 0 2 0.2 

Table B.14 “9-Square Matrix” Exergame Error Sequence for Subject 2 

Step 
Error Sequence Total 

Errors 
PT(E) 

Insertion PI(E) Deletion PD(E) Substitution PS(E) 

1 0 0 0 0 0 0 0 0 

2 0 0 0 0 0 0 0 0 

3 0 0 0 0 0 0 0 0 

4 0 0 0 0 0 0 0 0 

5 0 0 0 0 0 0 0 0 

6 0 0 0 0 0 0 0 0 

7 1 0.125 3 0.375 0 0 4 0.5 

8 0 0 0 0 0 0 0 0 

Table B.15 “9-Square Matrix” Exergame Error Sequence for Subject 3 

Step 
Error Sequence Total 

Errors 
PT(E) 

Insertion PI(E) Deletion PD(E) Substitution PS(E) 

1 0 0 1 0.1 0 0 1 0.1 

2 0 0 1 0.071 0 0 1 0.071 

3 1 0.167 0 0 0 0 1 0.167 

4 1 0.167 0 0 0 0 1 0.167 

5 0 0 2 0.167 0 0 2 0.167 

6 0 0 1 0.083 0 0 1 0.083 

7 0 0 0 0 1 0.125 1 0.125 

8 0 0 2 0.2 0 0 2 0.2 
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Table B.16 “9-Square Matrix” Exergame Error Sequence for Subject 4 

Step 
Error Sequence Total 

Errors 
PT(E) 

Insertion PI(E) Deletion PD(E) Substitution PS(E) 

1 0 0 0 0 0 0 0 0 

2 1 0.071 0 0 0 0 1 0.071 

3 3 0.5 0 0 0 0 3 0.5 

4 0 0 1 0.167 0 0 1 0.167 

5 6 0.5 0 0 0 0 6 0.5 

6 1 0.083 2 0.167 1 0.083 4 0.333 

7 3 0.375 2 0.25 0 0 5 0.625 

8 2 0.2 0 0 0 0 2 0.2 

Table B.17 “9-Square Matrix” Exergame Error Sequence for Subject 5 

Step 
Error Sequence Total 

Errors 
PT(E) 

Insertion PI(E) Deletion PD(E) Substitution PS(E) 

1 0 0 0 0 0 0 0 0 

2 0 0 2 0.143 0 0 2 0.143 

3 0 0 0 0 0 0 0 0 

4 0 0 0 0 0 0 0 0 

5 0 0 1 0.083 0 0 1 0.083 

6 0 0 1 0.083 0 0 1 0.083 

7 1 0.125 3 0.375 0 0 4 0.5 

8 2 0.2 0 0 0 0 2 0.2 

Table B.18 “9-Square Matrix” Exergame Error Sequence for Subject 6 

Step 
Error Sequence Total 

Errors 
PT(E) 

Insertion PI(E) Deletion PD(E) Substitution PS(E) 

1 0 0 0 0 0 0 0 0 

2 0 0 0 0 0 0 0 0 

3 2 0.333 0 0 0 0 2 0.333 

4 2 0.333 0 0 0 0 2 0.333 

5 9 0.75 0 0 0 0 9 0.75 

6 0 0 0 0 0 0 0 0 

7 3 0.375 0 0 1 0.125 4 0.5 

8 1 0.1 1 0 0 0 1 0.1 

Table B.19 “9-Square Matrix” Exergame Error Sequence for Subject 7 

Step 
Error Sequence Total 

Errors 
PT(E) 

Insertion PI(E) Deletion PD(E) Substitution PS(E) 

1 0 0 0 0 0 0 0 0 

2 0 0 0 0 0 0 0 0 

3 0 0 2 0.333 0 0 2 0.333 

4 0 0 0 0 0 0 0 0 

5 2 0.167 1 0.083 0 0 3 0.25 

6 2 0.167 0 0 1 0.083 3 0.25 

7 0 0 1 0.125 1 0.125 2 0.25 

8 1 0.1 2 0.2 0 0 3 0.3 
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Table B.20 “9-Square Matrix” Exergame Error Sequence for Subject 8 

Step 
Error Sequence Total 

Errors 
PT(E) 

Insertion PI(E) Deletion PD(E) Substitution PS(E) 

1 0 0 1 0.1 0 0 1 0.1 

2 0 0 0 0 0 0 0 0 

3 0 0 0 0 0 0 0 0 

4 1 0.167 0 0 0 0 1 0.167 

5 0 0 0 0 0 0 0 0 

6 0 0 0 0 0 0 0 0 

7 3 0.375 0 0 0 0 3 0.375 

8 0 0 1 0.1 0 0 1 0.1 

Table B.21 “9-Square Matrix” Exergame Error Sequence for Subject 9 

Step 
Error Sequence Total 

Errors 
PT(E) 

Insertion PI(E) Deletion PD(E) Substitution PS(E) 

1 0 0 0 0 0 0 0 0 

2 0 0 2 0.143 0 0 2 0.143 

3 1 0.167 0 0 0 0 1 0.167 

4 0 0 2 0.333 0 0 2 0.333 

5 0 0 1 0.083 0 0 1 0.083 

6 0 0 3 0.25 0 0 3 0.25 

7 1 0.125 0 0 0 0 1 0.125 

8 0 0 1 0.1 0 0 1 0.1 

Table B.22 “9-Square Matrix” Exergame Error Sequence for Subject 10 

Step 
Error Sequence Total 

Errors 
PT(E) 

Insertion PI(E) Deletion PD(E) Substitution PS(E) 

1 0 0 0 0 0 0 0 0 

2 0 0 1 0.071 0 0 1 0.071 

3 0 0 0 0 0 0 0 0 

4 2 0.333 0 0 0 0 2 0.333 

5 0 0 0 0 0 0 0 0 

6 2 0.167 1 0.083 0 0 3 0.25 

7 6 0.75 0 0 0 0 6 0.75 

8 0 0 0 0 0 0 0 0 
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