
Ref. code: 25605822043898AVW

DEEP LEARNING FOR SHORT-TERM ELECTRICITY

LOAD FORECASTING

BY

PYAE PYAE PHYO

A THESIS SUBMITTED IN PARTIAL FULFILLMENT OF THE

REQUIREMENTS FOR THE DEGREE OF MASTER OF SCIENCE

(ENGINEERING AND TECHNOLOGY)

SIRINDHORN INTERNATIONAL INSTITUTE OF TECHNOLOGY

THAMMASAT UNIVERSITY

ACADEMIC YEAR 2017

Ref. code: 25605822043898AVW

DEEP LEARNING FOR SHORT-TERM ELECTRICITY

LOAD FORECASTING

BY

 PYAE PYAE PHYO

A THESIS SUBMITTED IN PARTIAL FULFILLMENT OF THE

REQUIREMENTS FOR THE DEGREE OF MASTER OF SCIENCE

(ENGINEERING AND TECHNOLOGY)

SIRINDHORN INTERNATIONAL INSTITUTE OF TECHNOLOGY

THAMMASAT UNIVERSITY

ACADEMIC YEAR 2017

Ref. code: 25605822043898AVW

ii

Abstract

DEEP LEARNING FOR SHORT-TERM ELECTRICITY LOAD FORECASTING

by

PYAE PYAE PHYO

Bachelor of Engineering (Electrical Power), Technological University (Mandalay),

Myanmar, 2013

Master of Science (Engineering and Technology), Sirindhorn International Institute of

Technology, Thammasat University, 2017

 Forecasting of the daily load demand is a complex problem as it is to solve

nonlinearity with influenced external factors. Deep learning, machine learning and

artificial intelligence techniques have been successfully employed in electric

consumption load predictions, financial market predictions, and reliability predictions.

In this paper, we propose to use deep neural network (DNN) and recurrent neural

network (RNN) with long short-term memory (LSTM) for short-term load forecasting

(STLF) to overcome nonlinearity problems and to achieve higher forecasting

accuracy.

 The historical data has been collected every 30 minutes for 24 hours from the

Electricity Generating Authority of Thailand (EGAT). The proposed techniques are

tested with cleaned data from 2012 to 2017 where holidays, bridging holidays, and

outliers are replaced. The forecasting accuracy is measured by mean absolute

percentage error (MAPE).

 In this research, we propose two DNN forecasting structures, i.e., 1-period and

48-periods structures are tested and compared by using the proposed model. The

results show that 1-period forecasting structure give more accurate than 48-periods

forecasting structure.

Ref. code: 25605822043898AVW

iii

 Moreover, there are two different structures of training dataset including

everyday training dataset and same day training dataset. The outcomes of deep neural

network (DNN) are compared with artificial neural network (ANN) and support

vector machines (SVM) with everyday training dataset. The empirical results reveal

that the proposed DNN model outperforms ANN model and SVM model.

 Moreover, the DNN model trained with same day training datasets provides

better performance than DNN trained with everyday training dataset for weekends,

bridging holidays, and Monday. In addition, the DNN using same day training

datasets provides higher accuracies for December and January. Consequently, the

DNN model provides better forecasting accuracy in power industrial management.

 In addition, we train both DNN and RNN with LSTM using new collected

data from 2013 to 2017. The empirical results show that RNN outperforms DNN to

overcome time series data problems by keeping long data information at every time

steps. From all mentioned above outcomes, deep learning models based on neural

network provide reliable and robustness accuracy for STLF in power system

management.

Keywords: Short-Term Electricity Load Forecasting, Deep Learning, Deep Neural

Network, Recurrent Neural Network, Long Short-Term Memory

Ref. code: 25605822043898AVW

iv

Acknowledgements

I would like to express my profound gratitude to my supervisor Assoc. Prof.

Dr. Chawalit Jeenanunta, School of Management Technology, Sirindhorn

International Institute of Technology, Thammasat University, Thailand, for giving me

freedom and encouragement to pursue the research that led to this dissertation. He

supervised the research and gave invaluable guidance from the starting to finalizing

stage of the research. His extensive knowledge, unfailing optimism, and easy nature

have made this thesis an exciting and enjoyable experience, which definitely will

shape my future. I am also thankful to him for his constant encouragement, kind

advice and support throughout my work.

Also, I am grateful to every useful comment and suggestions from my Co-

Advisor Assist. Prof. Dr. Somsak Kittipiyakul and Assoc. Prof. Dr. Pornthipa

Ongkunaruk, External committee member and Chairperson of Examination

Committee. Their advice always been helpful to my works. Afterward, I am highly

indebted to SIIT, Thammasat University for their constant supervision and their

support by providing me an EFS scholarship and golden opportunity to pursue my

master degree.

Finally, a special thanks to my elder sisters and other family members for all

the sacrifices they have done to bring me thus far. They were always there with me

when I had really hard time during my MSc studies. I appreciate their motivations and

encouragements. I would also like to thank all of my seniors, my friends, my research

group and every person that I could not mention here for their supports in numerous

ways. Without all their precious supports it would not be possible to conduct this

research.

Ref. code: 25605822043898AVW

v

Table of Contents

Chapter Title Page

 Abstract ii

 Acknowledgements iv

 Table of Contents v

 List of Tables viii

 List of Figures ix

 1 Introduction 1

 1.1 Electricity Load Forecasting 1

 1.2 Types of Load Forecasting 2

 1.3 Factors Affecting on Electricity Load Forecasting 3

 1.4 Motivation 4

 1.5 Problem Statement 4

 1.6 Objective 5

 1.7 Significance of Study 5

 2 Literature Review 7

 2.1 Time Series Components 7

 2.2 Classifications of forecasting models 7

 2.3 Related Works and Models 9

 3 Methodology 13

 3.1 Deep Learning (DL) 13

Ref. code: 25605822043898AVW

vi

 3.1.1 The Single Neuron Model 14

 3.1.2 Neural Network Model 15

 3.1.3 Back Propagation Algorithm 16

 3.2 Deep Neural Network (DNN) 17

 3.2.1 Stochastic Gradient Descend (SGD) 18

 3.3 Recurrent Neural Network (RNN) 19

 3.4 Long Short-Term Memory (LSTM) 21

 3.5 Support Vector Machine 22

 4 Design of Experiment 24

 4.1 Data Collection and Cleansing 24

 4.1.1 Holidays and Bridging Holidays Replacement 24

 4.1.2 Outliers Detection and Replacement 25

 4.2 Deep Neural Network 27

 4.2.1 Data Arrangement 27

 4.2.2 Study of Different Forecasting Structures for DNN 28

 4.3 Study of Different Forecasting Models 30

 4.3.1 Data Arrangement for ANN, SVM, and DNN1 30

 4.3.2 Data Arrangement for DNN2 31

 4.4 Study of Different Deep Learning Models 32

 4.4.1 Training process in DNN model 33

 4.4.2 Training process in RNN with LSTM 34

 5 Results and Discussion 35

 5.1 Mean Absolute Percentage Error (MAPEꞌ) 35

Ref. code: 25605822043898AVW

vii

 5.2 Result for deep neural network 35

 5.2.1 Case 1: Deep neural network 35

 5.2.2 Case 2: Study of Different Forecasting Models 38

 5.2.3 Case 3: Effect of Different Training Datasets 40

 5.2.4 Case 3: Effect of Different Activation Functions 44

 5.3 Results for Recurrent Neural Network 47

 5.4 Study of Different Deep Learning Models 53

 6 Conclusion 55

 References 57

 Appendix 60

 Appendix A 61

Ref. code: 25605822043898AVW

viii

List of Tables

Tables Page

1.1 Types of Load Forecasting 2

4.1 Example of data arrangement of training and testing pair for 1st May 2013

 in 1-period forecasted model 27

4.2 Everyday training data arrangement for testing target 1st June 2013 31

4.3 Same day training data arrangement for testing target 12th Jan 2013 32

4.4 Same day training data arrangement for testing target 6th Aug 2017 33

5.1 Monthly MAPE' for 48-period and 1-period Forecasting Structures

 with 100HLs, 200HLs & 300HLs 36

5.2 Monthly MAPEꞌ in 2013 for ANN, SVM, DNN1, and DNN2 38

5.3 Comparing MAPEꞌ in 2013 for day type category of ANN, SVM, DNN1

 and DNN2 39

5.4 Average Monthly MAPEꞌ for DNN and RNN with LSTM 54

Ref. code: 25605822043898AVW

ix

List of Figures

Figures Page

 1.1 Different Factor Affecting on Load Forecasting 3

 2.1 Different Load Forecasting Techniques 8

 3.1 A Single Neuron Model 14

 3.2 Activation Functions 15

 3.3 Neural network structure 16

 3.4 Deep Neural Network Structure 17

 3.5 Recurrent Neural Network Structure 20

 3.6 Long Short-Term Memory Structure 21

 3.7 Support Vector Machine Structure 23

 4.1 Load patterns for five categories 25

 4.2 1-Period Forecasting Structure 28

 4.3 48-Periods Forecasting Structure 29

 4.4 48-periods DNN structure 33

 4.5 Load input data for RNN at each time step 34

 5.1 Comparison of average load curves for October, November, and December,

 2013 39

 5.2 MAPE' Curves by using Same Day and Everyday Training Datasets for May 41

 5.3 MAPE' Curves by using different monthly training datasets 42

 5.4 Prediction Curve for 12:00AM in May 2013 42

 5.5 Prediction Curve for 11:00AM in May 2013 43

 5.6 Prediction Curve for 13:00PM in May 2013 43

 5.7 Prediction Curve for 17:00PM in May 2013 44

 5.8 Available Parameters during Training Process 45

 5.9 Prediction Curve using Different Activation Function 45

 5.10 Prediction Curve for Different Hidden Layers using Tanh Activation

 Function 46

 5.11 Prediction Curve for Different Hidden Layers using Relu Activation

 Function 46

 5.12 Prediction Curve for Monday in May 2013 48

Ref. code: 25605822043898AVW

x

 5.13 Prediction Curve for Tuesday in May 2013 48

 5.14 Prediction Curve for Wednesday in May 2013 49

 5.15 Prediction Curve for Thursday in May 2013 49

 5.16 Prediction Curve for Friday in May 2013 50

 5.17 Prediction Curve for Saturday in May 2013 50

 5.18 Prediction Curve for Sunday in May 2013 51

 5.19 Prediction Curve for 12:00AM in May 2013 51

 5.20 Prediction Curve for 11:00AM in May 2013 52

 5.21 Prediction Curve for 13:00PM in May 2013 52

 5.22 Prediction Curve for 12:00AM in May 2013 53

Ref. code: 25605822043898AVW

1

Chapter 1

Introduction

1.1 Electricity Load Forecasting

Electricity plays an important role in our daily lives and one of the most popular

driving factors of a country’s economy. Load forecasting is indispensable section of

designing, planning and operation of electric utilities, moreover, it is necessary to

allocate considerable amount of electric energy to increase the economy significantly

by electric power manufacturers. The electricity load forecasting that is a way of

estimating what future electric load will be for a given perspective based on the

available system information. Energy usage of load demand is one of major factor

affecting on Thailand’s economics evaluated by Electricity Generating Authority

Thailand (EGAT). The total amount of 2.1 billion THB was spent on the energy usage

and there is an increase amount comparing with 2013 and 2014. This increment of

energy consumption is caused by increasing in population, economics, transportation,

and human facilities in both Bangkok region and metropolitan region.

This load forecasting is generally classified according to time interval into

three main categories. Moreover, there are two types of forecasting that are the

subjective and objective forecasting methods. The first one is referred to methods that

are used to measure either individual or group opinion. The better known subjective

forecasting methods involve:

❖ Scales force composites.

❖ Customer survey.

❖ Jury of executive opinion.

❖ The Delphi method.

Another one is the objective forecasting methods that may be classified on the

basic of past history data into two groups as time series methods and regression.

Regression models often integrate the previous history of other series; however, time

series forecasting methods apply only for the past historical data of the series to be

predicted. The latter one has the advantage of easily being combined into a computer

program for updating and automatic forecasting. A casual model forecasts the

Ref. code: 25605822043898AVW

2

dependent variable based on the evolution of one or more other independent variables.

The final goal of using time series forecasting is to find predictable and repeatable

patterns including increasing or decreasing linear trend, curvilinear trend and seasonal

fluctuations in historical past data. Nowadays, electricity load forecasting has

developed into the majority research field in power engineering. It is basic

requirement of power generation, commercial appropriation between plants,

scheduling preservation, and networking with interconnected utilities.

1.2 Types of Load Forecasting

In this section, types of load forecasting are illustrated in Table 1.1 in details. The

input load flow study or emergency analysis in the daily operation like energy transfer

scheduling, and demand-side management is needed to consider for short term load

forecasting. In order to correlate predicted advancement in demand, the medium and

long-term forecasting are applied for enlargement of capacity of generation,

transmission and distribution. Load forecasting is classified as long-term; medium-

term; and short-term forecasting according to time periods. Long-term load

forecasting (LTLF) is more than one year and medium-term load forecasting (MTLF)

ranges from one month to one year. Short-term load forecasting (STLF) can be

regarded as minutes; hour; and day or week ahead predictions.

Table 1.1: Types of Load Forecasting

 Time

Intervals

Forecasted

Values

Accuracy Operation Planning

STLF 24h–1

week

Load curves Fixed Load

Curves

Economic Load

Dispatch

Unit

Commitment

MTLF 1 week-1

year

Load curves Capacity>>Error Unit

Commitment

Reserve

Planning

LTLF >1year Energy

needed

Fixed Energy Power System

Planning

Future Capacity

Expansion

It has big challenge with the upward trend in the electricity market prices since

forecasting accuracy is the basic requirement in energy field. Moreover, forecasting

performance is important thing to balance between energy supply and consumption.

Ref. code: 25605822043898AVW

3

Therefore, electrical producers and authority expect to reduce the generating energy

cost. As mentioned above, STLF has been emerged more and more important role in

Energy Management System (EMS) with power markets development over the past

decades.

1.3 Factors Affecting on Electricity Load Forecasting

Similarly, there are multiple influenced factors on the performance of load which can

be analyzed as time, day, temperature, weather, random and economic factors. Among

them, one of the most popular factors is temperature associated with meteorological

situations for short term load forecasting. Selection of suitable variables for load

forecasting is related to generalize mathematical model. The accuracy of such model

depends on the quality of input information. Deterministic and stochastic are two

different categories of variable. On the other hand, in general, the electric

consumption load is based on human activities. Similarly, human activities are also

depended on population and their economic status. Therefore, the variables are more

or less interconnected to each other. For instance, as a result of changing the

consumer’s comfort feeling for heaters (water, room) and air conditioner and so on, it

causes the changes of weather conditions.

Figure 1.1: Different Factor Affecting on Load Forecasting

Ref. code: 25605822043898AVW

4

In Figure 1.1, it is clear that there are many influencing factors affected on the

electricity load demand. Firstly, time is one of the most popular factors that can be

separated into midnight, morning, evening, night, lunch time and so on when we

consider for one day. So, we can forecast next day electricity demand because we

have different past data for one day. Similarly, we can consider seasonally, yearly,

monthly, weekly and daily etc. Next, weather is also one important thing affected on

load, for example, we can diverge temperature, cloud cover or sunshine, humidity and

so on. Moreover, calendar can also be considered like seasonal variation, daily

variation, weekly cyclic and holidays, hence we can get different data and predict

different results. Likewise, the remaining things such as population, human facilities,

economic for business and electricity prices are influenced on forecasting electricity

load demand.

1.4 Motivation

First of all, it is difficult for predictors to choose the right technique to solve both

linear and nonlinear process. Nowadays, neural network algorithms are the most

popular in AI-based models for nonlinear time series problems. However, if there are

multiple hidden layers, neural networks do not work very well because of back

propagation method. It takes time too long, sometimes it gets poor local minimum and

slow convergence due to randomly initialization. To overcome the complex machine

learning problems, deep architectures are the best choice for STLF. Moreover, the

historical data have been collected every 30 minutes for 24 hours, so that it looks like

sequential data. Recurrent neural network is a great tool for modelling time series.

Therefore, we use deep learning models such as deep neural network and recurrent

neural network to predict daily load.

1.5 Problem Statement

Electricity load forecasting techniques are very prominent parts to execute the good

accurate forecast results for generation and transmission planning of the utility and its

related economic parts. The generating amount of electricity should be stabilized with

the utilizing one by customers since there is no way of storing electrical energy and

Ref. code: 25605822043898AVW

5

producing it immediately. If the expected energy and generating energy are not

balanced, it can cause unsatisfied conditions for the country’s economy. Therefore,

electricity manufacturers must produce balanced electricity between generation,

transmission, distribution and consumer services. In order to overcome problems,

electricity load forecasting can help and reduce the extra cost over generating and

end-user. The proposed deep learning methods are used in order to improve the

forecasting accuracy performance.

1.6 Objective

The main objective of this research is to upgrade the forecasting accuracy

performance by using different deep learning methods. Nowadays, artificial

intelligence (AI) is everywhere based on knowledge around the world and machine

learning (ML) which can learn from the data without explicitly programmed.

However, it has many weakness points, i.e., back-propagation learning algorithms. To

overcome learning and time series problems, deep learning methods were introduced.

Moreover, this research work is conducted with a short-term load forecasting

with external factors like temperature, day of week, month of year and calendar dates.

Considering external factors and original data have to be included to enhance the

accuracy. Furthermore, the objective of this research is to get the minimum error of

1.9 percent for testing data by taking into account all these facts. Mean absolute

percentage error (MAPE) is considered to calculate the forecasting error which is

difference between the forecasted results and the actual load data from the Electricity

Generating Authority Thailand (EGAT).

1.7 Significance of Study

To conquer the above-mentioned problems, there are various forecasting methods to

have less than one percentage error in today’s world. After forecasting by using the

historical past data, we can calculate the forecast error to check how many the

forecast demand deviates from the actual data. This is one of essential roles in load

forecasting. There are three ways which are commonly used to measure the forecast

errors.

Ref. code: 25605822043898AVW

6

The first way is mean absolute deviation (MAD) that indicates how many units

the forecasting is deviate from the actual demand. The following equation shows how

to calculate the MADd for day d.

48

1)(

)()(

48

1

t t

tt

d
dL

dFdL
MAD

The second one is mean square error (MSE) which is similar to variance of

random sample. MSE is computed without using absolute error terms. The equations

for MSEd for day d is given below.

48

1

2))()((
48

1

t

ttd dFdLMSE

The last one is mean absolute percentage error (MAPE) that indicates how

many units the forecasting is deviate from the actual demand. The last way is more

popular than the others. Therefore, the MAPEd equation for each forecasting day d can

be seen below because it is also needed to use in this paper.

0
0

48

1

100
)(

)()(

48

1

t t

tt

d
dL

dFdL
MAPE

However, this MAPE still could lead to extra costs, or could not afford the

necessary amount of electricity for the consumers under the problem statement when

the companies produce the large amount of electricity. In addition to this, over

forecasts could cause extra costs for the utility companies. Therefore, precise

accuracy of forecasting techniques is very prominent than by choosing single

available technique. So, in this research, it is proposed to use different methods of

deep learning to improve the forecasting accuracy performance from problem

statement.

Ref. code: 25605822043898AVW

7

Chapter 2

Literature Review

2.1 Time Series Components

There are many techniques to forecast accuracy for short-term interval. Typically,

these can be divided into three main categories in literature techniques like similar

day approach, simulation models and time series models. Time series component can

be separated into four parts: trend, seasonal, cyclic and random. In trend component,

it can be persistent and it indicates upward or downward trends. It can change due to

technologies, population, age, culture, etc and it can occur generally within several

years duration.

In seasonal component, it is ordinary model of up and down variations and can

cause due to climate, routines, etc. Normally, it can occur within a single year, for

example, one-week period consists seven days. Likewise, for one month we can

consider weekly and daily basis, however, weekly period is varied 4 to 4.5 weeks and

daily also vary 28 to 31 days. Similarly, one year can be considered as four quarters,

12 months and 52 weeks, etc. So, we can consider it as different season because we

know each day has different demand patterns.

Next, the cyclical patterns are persisting up or down motions affected by

business cycle, governmental, and commercial factors during several years. And then

random component patterns are unsystematic and ‘residual’ alternations due to

random alteration or unexpected events. There is no repeating and it can occur during

short duration period. Finally, there have been many techniques that can be seen from

Figure 2.1.

2.2 Classifications of forecasting models

Forecasting techniques can be classified into two groups, i.e., traditional statistic

models and artificial intelligence (AI) based models for STLF. Traditional statistical

models include regression analysis, moving average, exponential smoothing, and

stochastic time series models and so on. Machine learning, data mining, artificial

Ref. code: 25605822043898AVW

8

neural networks, genetic algorithms, fuzzy time series and expert systems are based

on AI-based models. Figure 2.1 indicates various models of load forecasting.

Neural networks algorithms are the most popular in AI-based models for

nonlinear time series problems. However, if there are multiple hidden layers, neural

networks do not work very well because of back propagation method. It takes time

too long, sometimes it gets poor local minimum and slow convergence due to

randomly initialization. To overcome the complex machine learning problems, deep

architectures are the best choice for STLF. Therefore, we used deep learning models

to predict daily load for one-month period.

Figure 2.1: Different Load Forecasting Techniques

Ref. code: 25605822043898AVW

9

2.3 Related Works and Models

Warren McCulloch and Walter Pitts prior approached artificial neural network (ANN)

since 1943 (Mcculloch & Pitts, 1990). Many researchers have shown that ANN is an

excellent tool to apply many areas including medicine, business, communications, and

industrial process control. ANN is the most popular computational model that is

influenced by the structure and functional aspects of biological neural networks. A

neural network composes of an interconnected group of artificial neurons, and it

computes the targets by processing information using a connection. During the

learning process, an ANN is an adaptive system that can change its structure

depending on external information flowing through the network. Modern neural

networks are usually used to model complex relationships between inputs and outputs

to find patterns in data.

 In the late 1980’s and early 1990’s, ANN has been applied to forecast load

demand in the electric power system (Bala, Yadav, Hooda, & Registrar, 2014;

Hippert, Pedreira, & Souza, 2001; Park, El-Sharkawi, Marks, Atlas, & Damborg,

1991). Jeenanunta and Abeyrathna adjusted the parameters of ANN to enhance the

forecasting accuracy using a transfer function of ANN (Jeenanunta & Abeyrathna,

2016). A feed-forward neural network with the Levenberg-Marquardt algorithm

performs well to get a better forecasting accuracy for electricity load demand

(Rodrigues, Cardeira, & Calado, 2014). ANN relies on many things such as the

numbers of invisible layers, backpropagation algorithms and the selected input

variables to improve accuracy requirements for STLF (Rui & El-Keib, 1995). Even

ANN has become very popular among machine leaning techniques, however, there

are drawbacks to train the model and obtain better forecasting results due to the

weakness of the backpropagation algorithm (Krunic, Krcmar, & Rajakovic, 2000).

Deep learning architectures become a vital role in the fields of pattern

recognition, classification and complex prediction to solve the drawbacks of machine

learning. The feedforward multilayer perceptron which is one of deep learning models

was introduced for supervised learning algorithms. A deep belief network was

approached to forecast load demand with the Macedonia hourly electricity

consumption data (Dedinec, Filiposka, Dedinec, & Kocarev, 2016). Moreover, El-

Ref. code: 25605822043898AVW

10

sharkh presented multilayer perceptron, radial basis and RNN with a parallel structure

ANN which gave better results compared to usual time series methods (El-sharkh,

2012). Rashid et. al approached a recurrent neural network (RNN) with the internal

feedback structure for electricity load prediction and showed their results are reliable

and robust (Rashid, Huang, Kechadi, & Gleeson, 2006).

Deep neural network (DNN) is commonly based on ANN with multiple

hidden layers and the approximation error can be reduced by adding hidden layers

between the input and output layers. Deep architectures are relevant to detect higher

level representation and capture higher level abstractions. Quan et al. applied an

ensemble deep belief network with one artificial dataset and three regression datasets

time series and regression predictions (Qiu, Zhang, Ren, Suganthan, & Amaratunga,

2014). Moreover, a nonlinear auto-regressive RNN provided smoothly forecasted

results, contrast with previous studies for hourly predictions of high resolution wave

power (Hatalis, Pradhan, Kishore, Blum, & Lamadrid, 2014).

The feedforward multilayer perceptron which is one of deep neural network

models was introduced for supervised learning algorithms (Liu et al., 2017). A deep

belief network was also applied to forecast load demand with the hourly electricity

consumption data in Macedonia (Dedinec et al., 2016). Moreover, El-sharkh

presented multilayer perceptron, radial basis and recurrent neural network (RNN)

with a parallel structure ANN which gave better results compared to usual time series

methods (El-sharkh, 2012). Rashid et. al proposed a RNN with the internal feedback

structure for electricity load prediction and showed their results are reliable and robust

(Rashid et al., 2006).

Kelo and Dudul used a novel hybrid of wavelet and Elman network as a

recurrent neural network to increase one-day ahead prediction accuracy in all seasons

(Kelo & Dudul, 2012). A hybrid quantized elman recurrent neural network was

proposed for hourly load predictions and provided an acceptable accuracy comparing

with multilayer feedforward neural network (Li, Li, Xiong, Chai, & Zhang, 2014).

Moreover, Siddarmeshwara conducted elman recurrent neural network which

outperforms weather sensitive models and nonweather sensitive model

(Siddarameshwara, 2010). A novel recurrent neural network (RNN) was approached

Ref. code: 25605822043898AVW

11

using extreme learning machine training method and obtained results were compared

with traditional machine learning and linear regression model (Ertugrul, 2016). RNN

could handle any type of activation functions in both forward and feedback loops and

provide better performance than several computational methods.

Kermanshahi proposed recurrent neural network and three layer feed forward

back propagation to forecast one-year ahead and provided reasonable results for long-

term load forecasting (Kermanshahi, 1998). RNN executed better performance than

time series models and computational intelligence methods (J. T. Connor, Atlas, &

Martin, 1991). Marvuglia and Messineo showed the important correlation between

electricity load demand and application of electronic devices for one-hour short-term

forecasting (Marvuglia & Messineo, 2012). Recurrent wavelet network with a new

orthogonal least square initialization method was applied to short-term special days

over complex load forecasting problems (Baniamerian, Asadi, & Yavari, 2009).

Training RNN on filtered data gave better accuracies than on unfiltered data (J.

Connor, Martin, & Atlas, 1994). Vermaak and Botha applied the recurrent networks

which provides higher dynamic load performance than normal networks. The more

closely approximation model chose, the better expected results execute (Vermaak &

Botha, 1998).

Support vector machines was introduced for STLF and it outperformed

autoregressive model by comparing outcomes based on root-mean-square errors

(Mohandes, 2002). Moreover, Mohandes also studied that the improvement of

performance of SVM depends on increasing the training dataset. Chen et. al presented

that SVM with conceptual time series like seasonal could enhance the forecasting

performance and temperature factor could not influence on mid-term load forecasting

from other experiments (Chen, Chang, & Lin, 2004). SVM has the ability to

accurately forecast time series data. Moreover, SVR outperformed other nonlinear

models to solve nonlinear, non-stationary and not defined a-priori problems

(Sapankevych & Sankar, 2009). A recurrent support vector machines combined with

genetic algorithms (RVSVMG) which determines parameters of SVM was applied to

forecast regional electricity load (Pai & Hong, 2005). The performance using a hybrid

model obtained higher forecasting accuracies than using the regression model, SVM

Ref. code: 25605822043898AVW

12

model and ANN model (Fard & Akbari-Zadeh, 2014). Sometimes researchers applied

many hybrid models with SVR to improve dynamic high-performance accuracy for

STLF (Ao, Wang, & Zhang, 2017).

Ref. code: 25605822043898AVW

13

Chapter 3

Methodology

3.1 Deep Learning (DL)

Deep learning (DL) has received a great success in the last couple of years. Many

researchers have produced state-of-the-art results successfully in the fields of image

classification, market predictions, automatic speech and face recognitions, natural

language processing, and bioinformatics. There are various deep learning

architectures such as long short-term memory (Hochreiter & Schmidhuber, 1997),

recursive neural network (Urban et al., 2016), convolutional neural network (Urban et

al., 2016), and deep belief network (Hinton, Osindero, & Teh, 2006). Most of them

admit computational methods that are comprised of numerous hidden layers to learn

representations of data with numerous abstraction levels. They also can detect

complex structure in large data sets by using back propagation process to solve the

drawbacks of machine learning.

Many researchers presented that the ability of traditional machine-learning

methods was restricted to process raw data. These methods are required to design

manually the feature extractors converting from raw data by human engineering.

However, deep learning models are representation or feature learning models that can

detect automatically multiple levels of features for detection or classification.

Moreover, it needs very little engineering by hand, so it can increase the amount of

available data and computation. The current progress of new learning architectures

and algorithms advance in deep neural networks.

The main core of DL is a class of neural network models which have an input

layer, an arbitrary number of hidden layers and an output layer. All layers are

composed of neurons or neural units by sharing some similarities with the behavior of

the neurons present in the human brain. For our cases, a neuron serves as a nonlinear

function of the weighted sum of its inputs. Therefore, the neuron is really basic part of

any DL model.

Ref. code: 25605822043898AVW

14

3.1.1 The Single Neuron Model

To describe neural networks, firstly a single neuron model is shown in Figure 3.1. A

single neuron is a function which maps an input vector {x1, x2, …, xt} with the weight

vector {w1, w2, …, wt} to a scalar output y passing through a nonlinear function f.

Figure 3.1: A Single Neuron Model

The link function f takes weighted sum of input x and executes y. The function

provides the nonlinearity between input and output which is known as an activation

function. In this paper, we describe three types of activation function which are the

most commonly used for neural networks.

1. The sigmoid function:
xe

xf

1

1
)(

2. The hyperbolic tangent, or tanh function:
xx

xx

ee

ee
xxf

)tanh()(

3. The rectified linear activation function:),0max()(xxf

In this study, the proposed model uses the rectified linear activation function.

This activation function is different from sigmoid and tanh because it is not bounded

or continuously differentiable. It is piece-wise linear and saturates at exactly 0

whenever the input x is less than 0. Figure 3.2 represents three different activation

functions.

Ref. code: 25605822043898AVW

15

Figure 3.2: Activation Functions

3.1.2 Neural Network Model

Neural network model is used as simple feed-forward neural network trained by a

back-propagation algorithm. In the feed-forward process, the information is only

moving to the forward direction from the input nodes x passing through the hidden

nodes to the output nodes y without any cycling or looping in the network. The model

uses simple sigmoid activation function (f) to produce output values (y). In Figure 3.3,

suppose that wkj is the weight connection between input layer and hidden layer, and

wij is the weight connection between hidden layer and output layer.

Ref. code: 25605822043898AVW

16

Figure 3.3: Neural network structure

The output equation for the hidden layer is:

K

k

kkii xwfh
1

)(

The output equation for the output layer is:

N

i

iijj hwfy
1

')(

The objective function is to minimize the error is written as:

M

j

jj tyE
1

2)(
2

1

Afterwards, the network updates weights (w) using back propagation algorithm (Rui

& El-Keib, 1995).

3.1.3 Back Propagation Algorithm

In back propagation algorithm, the predicted output values are compared with the

target values to calculate the value of some predefined error-function. By feeding the

error back through the network, the algorithm adjusts the weights of each connection

to minimize error by some amount depending on specified learning rate. We start with

the final output error (yj−tj) for the output neuron j and this error gets propagated

backwards throughout the network in order to update the weights. To update weight

value, we compute gradient descent using chain rule. The following equations are

how to compute gradient and update weight.

Ref. code: 25605822043898AVW

17

The equation for the gradient:

 M

j

kiiijjjjj

ki

xhhwyyty
w

E

1

').1(].).1().[(

The update weight equation:
ki

old

ki

new

ki
w

E
ww

 .

This training back propagation process is repeated until the performance of the

network is good enough and the network converges to a small error after repeating

many training cycles.

3.2 Deep Neural Network (DNN)

In this study, deep learning is approached to train the model consisting of a large

number of processing layers. Deep neural network is a class of neural network model

that has an input layer, an output layer, and an arbitrary number of hidden layers. In

Figure 3.4, the input x layer and the output y layer are referred by the bottom and the

top layers respectively. The layers between x and y represents the hidden layers (h) for

the network which perform as a black box.

Figure 3.4: Deep Neural Network Structure

The DNN model trains a feed-forward network to execute the

corresponding output values throughout all invisible layers and neuron nodes in the

Ref. code: 25605822043898AVW

18

forward propagation. The following equation indicates that a nonlinear function f

takes weighted sum of input x and returns y.

k

i

t

i

l

ij xwfxwfy
1

)()(

 where,

y = scalar output,

xi = the ith input,

𝑤𝑖𝑗
𝑙

 = the weight between node i in layer (l-1) and node j in layer l,

f = activation function.

The main core is to minimize an error term for the output layer after producing

the corresponding output values. Therefore, the network compares predicted output

values with the actual existing values. Next, the proposed model optimizes the

minimum error using stochastic gradient descent (SGD) algorithm before updating

weights (Bottou, 2010).

3.2.1 Stochastic Gradient Descend (SGD)

The objective of using SGD is to overcome speed convergence obstacles and getting

stuck at a local minimum. At first, the training data are shuffled at each iteration of

training network during SGD process. Next, the entire parameters are updated using

only one sample or a few training samples. To reach a global minimum, SGD updates

parameters frequently in the direction of the gradient of the loss function at every

iteration. Unlike ordinary gradient descent, SGD selects a single data point instead of

entire dataset to compute the gradient at each iteration. The following equation

describes how to update weights in the SGD process.

),;()()(kkold

w

oldnew yxwJww

where,

wnew = updated weight value,

wold = old weight value,

J = gradient value,

η = learning rate,

 (x(k), y(k)) = a pair of training sample at k iteration.

Ref. code: 25605822043898AVW

19

There are many advantages to applying SGD over ordinary gradient descent.

In general, most gradient optimization methods converge effectively in terms of using

the full training set.

1. SGD can converge much faster than ordinary gradient descent methods

because of less memory intensive on behalf of using one data point at a time

(Bottou, 2010).

2. SGD has the ability to get a meaningful update without iterating over the

entire dataset to overcome redundancy into datasets.

3. If the loss function is convex, using SGD has a guarantee to find a global

minimum. SGD can obtain better performance solutions for big learning

models and large data sets.

3.3 Recurrent Neural Network (RNN)

Recurrent neural network (RNN) is a neural network model proposed in the 80’s for

modelling time series. In a traditional neural network, all inputs and outputs are

independent of each other. Therefore, neural network cannot handle for time series

prediction (e.g., of financial series), time series production (e.g., motor control in non-

Markovian environments) and time series classification or labeling (e.g., rhythm

detection in music and speech). RNN is a great tool for modelling sequential data that

is dataset are depended on other points.

The structure of the network is similar to feed-forward neural network, but it

allows a recurrent hidden state whose activation at each time is dependent on that of

the previous time (cycle). RNN is called recurrent because it performs the same task

for every part of a sequence, with the output being depended on the previous

computations. RNNs have a “memory” which captures information about what has

been calculated so far. In theory RNNs can make use of information in arbitrarily long

sequences, but in practice they are limited to looking back only a few steps.

Ref. code: 25605822043898AVW

20

Figure 3.5: Recurrent Neural Network Structure

 Figure 3.5 indicates a RNN being unrolled (or unfolded) into a full network.

For example, if the sequence is 5-time steps, the network would be unrolled into a 5-

layer neural network, one layer for each time steps. The formulas in a RNN are as

follows:

)(1 ttt wsuxfs

)tanh(tt vso

According to the above equation, 𝑥𝑡 is the input at time step t, 𝑠𝑡 is the hidden

state at time step and 𝑜𝑡 is the output at time step t. The recurrent model only has

single layer, but it keeps a state to remember analysis. This state “recurs” back into

the net with each input. The hidden layers and the output depend from previous states

of the hidden layers. First of all, input data flow into the model’s single layer.

Afterwards, data process like traditional net, but net also receives the state along with

input. For the first state point, net use initial state which is depended on type of data.

After processing, data is output with a new state that represents most recent state

point. Then this new state is fed back into the net with next data and so on. The net

repeats these steps until all data is processed. It can produce a different output for

same input depending on a current state since the state changes at every step.

Unlike a traditional deep neural network, which uses different parameters at

each layer, a RNN shares the same parameters (U, V, and W above equation) across

all steps. Training a RNN is similar to training a traditional Neural Network. But for

Ref. code: 25605822043898AVW

21

back-propagation algorithms, RNNs use the Back-propagation Through Time (BPTT)

because the parameters are shared by all time steps in the network, the gradient at

each output depends not only on the calculations of the current time step, but also the

previous time steps. Consequently, vanilla RNNs trained with BPTT have difficulties

learning long-term dependencies due to vanishing/exploding gradient problem. To

overcome long-term dependencies problems, the solution is to use gating methods

such as long short-term memory (LSTM) and gated recurrent unit (GRU).

3.4 Long Short-Term Memory (LSTM)

Long short-term memory (LSTM) was first proposed by Hochreiter & Schmidhuber

(1997) and since then has been modified by many researchers (Hochreiter &

Schmidhuber, 1997). The LSTM architecture consists of a set of recurrently

connected subnets, known as memory blocks. Each memory block consists of:

memory cell, input gate, forget gate and output gate. Unlike the traditional recurrent

unit which overwrites its content each time step, the LSTM unit is able to decide

whether to keep the existing memory via the introduced gates. LSTMs avoid

explicitly the long-term dependency problem. They remember information for long

periods of time, not something they struggle to learn. All RNNs have the form of a

chain of repeating modules of neural network. In standard RNNs, this repeating

module will have a very simple structure, such as a single tanh layer. LSTMs also

have structure, but the repeating module has a different structure. Instead of having a

single neural network layer, there are four interacting in a very special way.

Figure 3.6: Long Short-Term Memory Structure

Ref. code: 25605822043898AVW

22

In Figure 3.6, each line carries an entire vector, from the output of one node to

the inputs of others. The pink circles denote pointwise operations, like vector

addition. The yellow boxes are learned neural network layers. Lines merging denotes

concatenation, while a line forking denotes its content being copied and the copies

going to different locations. The key to LSTMs is the cell state, the horizontal line

running through the top of the diagram. It maintains information flowing along

through it unchanged. The LSTMs are capable to remove or add information to the

cell state by carefully regulating gates. Gates tend to optionally let information

through. They are composed out of a sigmoid neural net layer and a pointwise

multiplication operation. The sigmoid layer outputs numbers between zero and one,

describing how much of each element should be let through. A value of zero means

“forget everything,” while a value of one means “keep everything”. An LSTM has

three gates to protect and control the cell state.

The first step in LSTM is to decide what information need to throw away from

the cell state by a sigmoid layer called the “forget gate layer.” It looks at previous

hidden layer and input, and outputs a number between 0 and 1 for each number in the

cell state. The next step is to decide what new information going to be stored in the

cell state by combining two parts to create an update to the state. The first one is that a

sigmoid layer called the “input gate layer” decides which values need to update. The

second one is that a tanh layer creates a vector of new candidate values that could be

added to the state. Next, multiplying old state by forgetting the things and adding new

candidate’s values in order to update the old cell state into new cell state. Finally, the

net executes the output which will be based on our cell state, but will be a filtered

version. First, a sigmoid layer executes outputs using the cell state. Then, we put the

cell state through tanh and multiply it by the output of the sigmoid gate, so that we

only output the parts we decided to.

3.5 Support Vector Machine

Support vector machine (SVM) is one of the computational or mathematical model to

solve complex problems between inputs and outputs (Mohandes, 2002). The SVM

learning method can be used for regression, classification and other tasks. It also can

Ref. code: 25605822043898AVW

23

learn a fast algorithm and provide good results for many tasks. In the training process,

a SVM uses linear or quadratic and even asymmetric loss functions. A support vector

machine usually sets up a hyperplane or set of hyperplanes in a high- or infinite-

dimensional space. The hyperplane might have the largest distance to the nearest

training data points of functional margin in order to achieve good separation. The sets

of hyperplanes separate nonlinearly in a finite dimensional space.

Figure 3.7: Support Vector Machine Structure

In order to solve this problem, the original finite-dimensional space

approaches to map into a higher-dimensional space by making discrimination easier

in that space. Therefore, in this study, we use two essential factors for the

implementation of SVM. The first thing is the kernel model to get a large amount of

solution space. Another one is the quadratic function to achieve SVM parameters in

the entire training process. In the Figure 3.7, input x represents the input of training

data and output y refers to a corresponding output value. The objective concept of

SVM is to map the input data into a high dimensional space from a non-linear

mapping and conduct a linear regression.

Ref. code: 25605822043898AVW

24

Chapter 4

Design of Experiment

4.1 Data Collection and Cleansing

The collected 30 minutes load data from 1st March 2009 to 31st December 2013 are

from the Electricity Generating Authority of Thailand (EGAT). This data has been

collected from five different regions: Central, Bangkok and Metropolitan, South,

North and North-East in Thailand. There is a low electricity demand with only one

peak load curve at night in the three regions: South, North, and North-East. On the

other hand, there is a high electricity demand with three peak load curves in two

regions: Bangkok and Metropolitan, and Central. In this research, only Bangkok and

Metropolitan areas are considered because of a large load demand value and high

variations.

4.1.1 Holidays and Bridging Holidays Replacement

The original historical data must be cleaned because there are many holidays, missing

values, and outliers. If these outliers are included in the training data, the accuracy

performance of load predictions would be lower. We categorize load patterns into five

patterns as Monday, weekday, weekend, holiday and bridging holiday as shown in

Figure 4.1. For bridging holiday load pattern, for instance, if Thursday and Saturday

are holidays, we consider Friday as a bridging holiday. To calculate average load for

each category, for example, since there are eight days for weekends, we take the

average load in each period from all weekends in January 2013, etc. It can be seen

clearly that holiday and bridging holiday load patterns are totally different from

regular any other load patterns. Consequently, we apply a weighted moving average

method to replace the holidays and bridging holidays. Average load of N previous

weeks of the day (d), at time period, t, is used to replace holidays and bridging

holidays. Weighted moving average method is shown as below equation,

)14()7()(21 dLwdLwdL ttt

The holiday’s data and bridging holiday’s data are replaced by selecting two

days from recent previous two weeks. In the weighted moving average equation, we

Ref. code: 25605822043898AVW

25

give the weight w1 as 0.7 for the first previous week and the weight w2 as 0.3 for the

previous two weeks.

Figure 4.1: Load patterns for five categories

4.1.2 Outliers Detection and Replacement

Furthermore, we detect outliers by using time-window based filtering band as there is

a similar pattern on the same time period and the same day of week. We arrange the

dataset consisting of the same weekday and same time period to construct the filtering

band of each weekday and each time period. We construct time-window based

filtering band by using four weeks moving average and standard deviation using same

time period and same day of week. After that, all of the data outside the filtering band

are regarded as outliers and replaced by two weeks moving average. To regard the

outliers, we use the following equation.

1 2'
(7), (14), () ()

()
(),

t t t t

t

t

w L d w L d if L d B d
L d

L d Otherwise

The time window for time t, of day d for p weeks is given as:

)7(),...,7(),()(''' pdLdLdLdV tttt ,

where 𝑑′ refers the last 7 days in the selected data set and the variable p represents

different days of the weeks which have different number of weeks within the sample

data set.

The k-period filtering band is written as:

Ref. code: 25605822043898AVW

26

))((

)]7([

)(1 dVSDN
K

idL

dB t

K

i

t

t

 ,

where N denotes the width of the k-period filtering band. In this research, the variable

N is set to be 1.6 which is optimum value.

After detecting outliers using the k-period time window filtering band, they

are replaced by moving average method. The detected outliers are replaced by using

the average load data from similar time periods from similar days of previous two

weeks.

Moving average method for replacing outliers:

N

idL

dL

N

i

t

t

 1

)7(

)(

After cleansing the original data, they are ready to train the model. The data

arrangement of using cleaned data for all models and training algorithms are

discussed in the following sections.

Ref. code: 25605822043898AVW

27

4.2 Deep Neural Network

4.2.1 Data Arrangement

There are two types of data set, i.e., training and testing data sets. Each data also

includes a pair of input and output. The data from 1st May 2012 to 31st May 2013 is

selected as one-year training data set to train the model and forecast each day in 2013.

Therefore, there are 388 pairs of training data set to forecast one day. There are 48-

time periods in one day. Consequently, the network has to be trained 388*48 times to

predict each day in 2013.

Table 4.1: Example of data arrangement of training and testing pair for 1st May 2013 in 1-
period forecasted model

 Input Target

Training

Dataset

No. Lt(d-7) Lt(d-1) Tt(d-1) Tt(d) DoW MoY Ft(d)

1
01/05/12

(Tue)

07/05/12

(Mon)

07/05/12

(Mon)

08/05/12

(Tue)
1

5

08/05/12

(Tue)

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

388
23/05/13

(Fri)

29/5/13

(Thurs)

29/5/13

(Thurs)

30/05/13

(Fri)
4

5

30/05/13

(Fri)

 Input Output

Testing

Dataset

No. Lt(d-7) Lt(d-1) Tt(d-1) Tt(d) DoW MoY Ft(d)

1
24/04/13

(Wed)

30/04/13

(Tue)

30/04/13

(Tue)

01/05/13

(Wed)
2

5

01/05/13

(Wed)

The simplified forecasting equation for the model is;

MoYDoWdTa

dTadLadLadF

t

tttt

)(

)1()7()1()(

4

321

where,

𝐹𝑡(𝑑) = Forecasted load at period t,

𝐿𝑡(𝑑 − 1) =Yesterday load at period t,

𝐿𝑡(𝑑 − 7) = Previous week same day load at period t,

𝑇𝑡(𝑑 − 1) = Yesterday’s temperature at period t,

𝑇𝑡(𝑑) = Forecasted day’s temperature at period t,

t =1, 2, 3, …, 48 periods, and a1, …, a4 = coefficients of load and temperature.

Ref. code: 25605822043898AVW

28

DoW is the day of week, for instance, we put input as 1 for Monday, 2 for Tuesday

and so on. Likewise, MoY is the month of year, for example, input is 4 for April, 5 for

May, etc. Therefore, this paper uses six inputs training data set to test load demand on

the networks. Table 4.1 is given as the example of the data arrangement for training

data set and testing data set pair for 1st May 2013. Similarly, Fig. 3 illustrates the 48-

periods forecasting structure, where there are 194 inputs to forecast for 48 forecasted

outputs for one day (because the data is collected every 30 minutes for one day).

4.2.2 Study of Different Forecasting Structures for DNN

We propose two forecasting structures of deep learning to predict the load demand.

These are 1-period forecasting structures and 48-periods forecasting structure. In the

1-period forecasting structure, there are six inputs to forecast one period in each

model whereas in the 48-period forecasting structure, there are 194 inputs to forecast

for 48 forecasted outputs for one day. Thus, there are 48 deep learning models to

forecast one day for 1-period forecasting structure. However, there is only one deep

learning model to forecast one day for 48-period forecasting structure. Figure 4.2

show the 1-period forecasting structure of the proposed deep learning model. The

inputs are yesterday load, previous week same day load, yesterday temperature,

forecasted day temperature, the day of week, and the month of year. Similarly, Figure

4.3 illustrates the 48-periods forecasting structure, where there are 194 inputs to

forecast for 48 forecasted outputs for one day (because the data is collected every 30

minutes for one day).

Deep Neural

Network

1

2

3

4

5

6

Lt(d-1)

Lt(d-7)

Tt(d-1)

Tt(d)

DoW

MoY

1 Ft(d)

Figure 4.2: 1-Period Forecasting Structure

Ref. code: 25605822043898AVW

29

Deep Neural

Network

L1(d-1)

Tt(d)

DoW

MoY

1

L1(d-7)

L48(d-1)

L48(d-7)

T48(d-1)

T48(d)

T1(d-1)

Ft(d)

F48(d)

1

48

49

. . .

97

144

96

193

145

194

192

48

. . .

. . .

. . .

. . .

Figure 4.3: 48-Periods Forecasting Structure

Both proposed forecasting structures are tested with 100, 200, and 300 hidden

layers. After forecasting by using the proposed model, we need to calculate the error

to check how many the load demand deviates from the actual data. Normally, most

researchers use mean absolute percentage error (MAPE) to compute the forecasting

accuracy. However, in this study, MAPEꞌ is used to measure the error between the

cleaned load and the forecasted load. The following equation is utilized to get MAPEꞌ

for monthly load predictions.

For the mean absolute percentage error,

,100
)(

)()(1
0

0

48

1
'

'

'

t t

tt

dL

dFdL

t
MAPE

 where,

Lt
’= the cleaned load at period t,

Ft = the forecasted load at period t,

 t = the time period for one day (t = 1, 2, …, 48).

Ref. code: 25605822043898AVW

30

4.3 Study of Different Forecasting Models

4.3.1 Data Arrangement for ANN, SVM, and DNN1

The data is separated into two datasets, i.e., training and testing datasets. Both datasets

are arranged as a pair of input and target to train and test the models. In this paper, we

select one-year training dataset from 7th May 2012 to 30th May 2013 to train the

models. Thus, there are 388 days in our training dataset. As a result, all models have

to be trained with 388 datasets to test on one-day forecast.

In DNN, ANN, and SVM models, there are six input variables as yesterday

load, previous week same day load, yesterday temperature, forecasted day

temperature, day of week (DoW) and month of year (MoY). The basic forecasting

equation is given by;

MoYDoWdTb

dTbdLbdLbdF

t

tttt

)(

)1()7()1()(

4

321

where,

 Ft (d) = Forecasted load at period t for day d,

 Lt (d-1) = Load at period t for day d-1 (yesterday load),

 Lt (d-7) = Load at period t for d-7 (previous week same day),

 Tt (d-1) = Temperature at period t for d-1 (yesterday temperature),

 Tt (d) = Forecasted day temperature at period t for day d,

 DoW = Day of Week (1, 2, …, 7),

 MoY = Month of Year (1, 2, …, 12),

t =1, 2, 3, …, 48 periods,

b1, …, b5 = coefficients of load and temperature.

According to the above equation, all models take six inputs to forecast the next

day load demand. Table 4.2 shows that there are 388 pairs of training dataset from

May 1 2012 to May 30 2013 to forecast June 1 2013. This data arrangement is noted

as everyday training dataset. After completing the training, each model will be tested

by one testing dataset. In this case, the target is to forecast June 1 2013. Once we

complete the testing dataset, the models are trained with new rolling 388 pairs of

dataset and they are tested to the next forecasting day, June 2 2013.

Ref. code: 25605822043898AVW

31

Table 4.2: Everyday training data arrangement for testing target 1st June 2013

 Input Target

Training

Dataset

No. Lt(d-7) Lt(d-1) Tt(d-1) Tt(d) DoW MoY Ft(d)

1
01/05/12

(Tue)

07/05/12

(Mon)

07/05/12

(Mon)

08/05/12

(Tue)
1

5

08/05/12

(Tue)

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

388
23/05/13

(Fri)

29/5/13

(Thurs)

29/5/13

(Thurs)

30/05/13

(Fri)
4

5

30/05/13

(Fri)

 Input Output

Testing

Dataset

No. Lt(d-7) Lt(d-1) Tt(d-1) Tt(d) DoW MoY Ft(d)

1
25/05/13

(Sat)

31/05/13

(Fri)

31/05/13

(Fri)

01/06/13

(Sat)
5

6

01/06/13

(Sat)

4.3.2 Data Arrangement for DNN2

In addition, we propose another data arrangement with five input variables. This data

arrangement is called the same day training dataset and it is used with DNN. For this

DNN model, we selected five input variables as yesterday load, previous week same

day load, yesterday temperature, forecasted day temperature, and month of year

(MoY). The basic forecasting equation is written as;

1 2 3 4() (1) (7) (1) ()t t t t tF d b L d b L d b T d b T d MoY

where,

 Ft (d) = Forecasted load at period t for day d,

 Lt (d-1) = Load at period t for day d-1 (yesterday load),

 Lt (d-7) = Load at period t for d-7 (previous week same day),

 Tt (d-1) = Temperature at period t for d-1 (yesterday temperature),

 Tt (d) = Forecasted day temperature at period t for day d,

 MoY = Month of Year (1, 2, …, 12),

t =1, 2, 3, …, 48 periods,

 b1, …, b5 = coefficients of load and temperature.

This second training dataset is arranged to use the same day for the target as

shown in Table 4.3. In this table, all of the target is arranged to be only on Saturday.

Ref. code: 25605822043898AVW

32

The training dataset consists of 52 datasets. It also includes Friday load as a yesterday

input when the model predicts Saturday load as shown in Table 4.3.

Table 4.3: Same day training data arrangement for testing target 12th Jan 2013

 Input Target

Training

Dataset

No. Lt(d-7) Lt(d-1) Tt(d-1) Tt(d) MoY Ft(d)

1
07/01/12

(Sat)

13/01/12

(Fri)

13/01/12

(Fri)

14/01/12

(Sat)

1

14/01/12

 (Sat)

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

52
22/12/12

(Sat)

28/12/12

(Fri)

28/12/12

(Fri)

29/12/12

(Sat)

12

29/12/12

(Sat)

 Input Output

Testing

Dataset

No. Lt(d-7) Lt(d-1) Tt(d-1) Tt(d) MoY Ft(d)

1
05/01/13

(Sat)

11/01/13

(Fri)

11/01/13

(Fri)

12/01/13

(Sat)

1

12/01/13

(Sat)

4.4 Study of Different Deep Learning Models

In this case, we use the 30 minutes new load data from Dec 2013 to July 2017 which

has also been collected by the Electricity Generating Authority of Thailand (EGAT).

The data is also separated into two datasets, i.e., training and testing datasets. Both

datasets are arranged as a pair of input and target to train and test the models. In this

paper, we select training dataset from December 2013 to July 2016 to train the

models. As a result, all models have to be trained using two and half year’s datasets to

test on one-day forecast.

We propose deep neural network (DNN) and recurrent neural network (RNN)

with long short-term memory (LSTM). In both models, there are five input variables

as yesterday load, previous week same day load, yesterday temperature, forecasted

day temperature, and month of year (MoY). For training and testing datasets, we apply

training dataset from 2013 December to July 2016 and testing dataset from August

2016 to July 2017. Same day training datasets is used as the data structures and then

we train the models using same day dataset to test same day. The training data

arrangement for both models is show in Table 4.4.

Ref. code: 25605822043898AVW

33

Table 4.4: Same day training data arrangement for testing target 6th Aug 2017

 Input Target

Training

Dataset

No. Lt(d-7) Lt(d-1) Tt(d-1) Tt(d) MoY Ft(d)

1
23/12/13

(Sat)

03/01/14

(Fri)

03/01/14

(Fri)

04/01/14

(Sat)

1

04/01/14

 (Sat)

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

52
23/07/16

(Sat)

29/07/16

(Fri)

29/07/16

(Fri)

30/07/16

(Sat)

7

30/07/16

(Sat)

 Input Output

Testing

Dataset

No. Lt(d-7) Lt(d-1) Tt(d-1) Tt(d) MoY Ft(d)

1
30/07/16

(Sat)

05/08/16

(Fri)

05/08/16

(Fri)

06/08/16

(Sat)

8

06/08/16

(Sat)

4.4.1 Training process in DNN model

In DNN training process, we separated the data into training and testing datasets. In

here, we use the 48-period forecasting structure which has 193 inputs to forecast for

48 forecasted outputs for one day. There is only one deep learning model to forecast

one day for the 48-period forecasting structure as shown in Figure 4.4. We trained the

model passing through 100 hidden layers with rectified linear unit activation function.

After performing the entire process, we train the networks to forecasting daily load.

Deep Neural

Network

L1(d-1)

Tt(d)

MoY

1

L1(d-7)

L48(d-1)

L48(d-7)

T48(d-1)

T48(d)

T1(d-1)

Ft(d)

F48(d)

1

48

49

. . .

97

144

96

193

145

192

48

. . .

. . .

. . .

. . .

Figure 4.4: 48-periods DNN structure

Ref. code: 25605822043898AVW

34

4.4.2 Training process in RNN with LSTM

In RNN training process, we use all datasets from December 2013 to July 2017. At

first, we split the data into training (70%) and testing (30%) individually. When

activation functions, specifically the sigmoid or tanh are used in the training process,

LSTMs are sensitive to the scale of the input data. Therefore, we rescale the data to

the range of 0-to-1, also called normalizing. We can easily normalize the dataset using

the MinMaxScaler preprocessing. In RNN with LSTM model, we need to look back

to trace the memory of time series predictions. In this case, we set up 48 as look back

at each time step to forecast load at each period. Figure 4.5 illustrates how to import

the input in the RNN with LSTM model at each time step. After setting up the entire

parameters, the model is ready to forecast load profile.

Figure 4.5: Load input data for RNN at each time step

Ref. code: 25605822043898AVW

35

Chapter 5

Results and Discussion

5.1 Mean Absolute Percentage Error (MAPEꞌ)

The main objective of all models is to minimize forecasting errors. In this research, we

use cleaned data instead of original data to compare with forecasted values for the

errors. Mean absolute percentage error (MAPEꞌ) is the accuracy measurement between

the cleaned load and the forecasted load.

Mean absolute percentage error (MAPEꞌ),

,100
)(

)()(1
0

0

48

1
'

'

'

t t

tt

dL

dFdL

t
MAPE

 where,

 Ft (d) = Forecasted load at period t for day d,

 '

tL (d) = Cleaned load at period t for day d,

 t = 1, 2, 3, …, 48 periods.

5.2 Result for deep neural network

5.2.1 Case 1: Deep neural network

In this study, the proposed structures of deep learning are used with cleaned data

instead of original data to train and test the network. Afterwards, the proposed models

are used to forecast load for each day in 2013. The summarized results for each month

is shown in Table 5.1. There are six categories of MAPEꞌ including weekdays (WD),

weekends (WK), holidays (H), bridging holidays (BH), Monday (Mon) and total

average (TA) for both the structures.

It can be seen that MAPEꞌ results for December are the highest for different

categories because it has the lowest electricity consumption compared to other

months. In addition, total averages for 1-period forecasting structure are better than

those for 48-periods forecasting structure. Both the structures obtained higher MAPEꞌ

for weekends compared to weekdays while the MAPEꞌ for holidays in both the

Ref. code: 25605822043898AVW

36

structures are similar to weekdays. Monday average results are the worst results

among the six categories.

Similarly, the proposed model is used to predict load using different hidden

layers (HLs) size. Most of the MAPEꞌ results are similar for three different layers’

size. There is a higher MAPEꞌ for 100HLs with 1-period forecasting structure, but

there is a higher MAPEꞌ for 300HLs with 48-periods forecasting structure for

holidays. MAPEꞌ results for weekends are also not as good as that for weekdays and

bridging holidays. If we increase more HLs size for 1-period forecasting structure, we

get better performance for predictions. However, errors were steadily rising when we

enhance HLs for 48-periods forecasting structure.

The proposed model is also used to predict load using different hidden layers

(HLs) size. Based on the experimental results, we found that when the number of HLs

is increased, the MAPEꞌ is slightly increased. Therefore, prediction result does not

only depend on the number of HLs and the number of neurons. It may also depend on

other factors, e.g., activation functions, learning algorithms and selection of input

variables. Hence, a fine-tuning of parameters might be required.

Table 5.1: Monthly MAPE' for 48-period and 1-period Forecasting Structures with 100HLs,

200HLs & 300HLs

#HLs Month
48-periods forecasting structure 1-period forecasting structure

WD WK H BH Mon TA WD WK H BH Mon TA

100

Jan. 3.4046 7.6559 2.0878 - 6.6207 4.8742 2.5667 3.2849 2.0566 - 3.7512 2.8884

Feb. 2.8766 7.2087 5.3490 2.5459 7.3890 4.6743 2.1164 3.8291 2.9940 3.2889 4.8777 2.9748

Mar 3.2091 5.9577 - - 5.6893 4.4158 2.2313 2.7866 - - 3.4279 2.5648

Apr 3.2936 5.2634 4.4016 3.0580 5.8884 4.1321 2.8369 2.3475 2.6515 1.8318 5.1315 2.9080

May 3.2268 5.5091 4.7213 5.0233 4.3549 4.2514 3.0134 3.4442 3.0981 3.5437 2.3554 3.1715

Jun 2.8833 4.5394 - 2.8860 5.0434 3.7235 2.9571 2.7828 - 1.4880 3.4678 2.9181

Jul 2.9826 6.1876 5.8875 2.5320 9.7082 4.7271 2.4768 3.7718 3.2900 3.5407 3.4963 3.0227

Aug 2.7007 4.5059 2.7260 1.4332 9.2843 3.8219 2.1366 2.7742 1.4314 1.6161 2.7074 2.3374

Sep 2.3499 5.1202 - - 4.6338 3.5616 2.1508 2.7561 - - 3.4975 2.5569

Oct 3.2412 6.1803 1.9085 - 5.6843 4.3137 2.8674 3.6634 1.8215 - 4.6251 3.2659

Nov 2.3451 6.1803 - - 4.8273 3.8266 2.1873 3.9929 - - 2.7575 2.8050

Dec 8.0776 9.7391 12.411 8.5933 11.724 8.6787 6.9367 5.9039 5.6978 5.4356 10.833 6.3317

Mean 3.3826 6.1706 4.9365 3.7245 6.7373 4.5834 2.8731 3.4448 2.8801 2.9635 4.2440 3.1454

Ref. code: 25605822043898AVW

37

200

Jan 3.7491 7.1804 2.1358 - 5.9980 4.8727 2.6233 3.1996 1.7952 - 3.9239 2.9131

Feb 2.9756 6.6282 4.5213 2.4189 6.8570 4.4704 2.1415 3.6985 2.8276 2.8359 4.7308 2.9131

Mar 3.2107 6.5518 - - 5.6017 4.5970 2.2461 2.9000 - - 3.3071 2.5939

Apr 3.4454 6.2311 5.1460 3.5836 7.0235 4.6689 2.7402 2.1308 2.6770 1.9999 5.2347 2.8487

May 3.2276 6.3494 4.8462 5.1828 4.7301 4.4944 2.9730 3.2199 3.8502 3.7499 1.8781 3.0738

Jun 3.0377 5.6426 - 3.3601 5.6171 4.2607 2.9538 2.6971 - 1.9829 3.6635 2.9305

Jul 3.1736 6.4512 6.2645 2.1982 11.528 5.0956 2.5178 3.8771 3.3731 3.3216 3.5525 3.0775

Aug 3.0900 5.3117 4.0872 1.5096 11.659 4.5455 2.2152 2.7278 2.3941 1.2157 2.4619 2.3614

Sep 2.4998 5.6176 - - 5.3337 3.9075 2.1074 2.8976 - - 3.2885 2.5413

Oct 3.3963 6.6318 1.8778 - 5.7863 4.4907 2.6981 3.5903 1.5530 - 5.6010 3.2660

Nov 2.4171 6.3946 - - 5.7401 4.0534 2.1187 4.1187 - - 2.9464 2.8291

Dec 8.9863 10.049 11.455 10.466 9.9781 9.7567 7.3922 6.1908 5.3639 5.9837 12.315 6.6454

Mean 3.6008 6.5867 5.0418 4.1028 7.1544 4.9345 2.8939 3.4374 2.9793 3.0128 4.4086 3.1662

300

Jan 3.6838 7.7800 1.7098 - 7.0086 5.1062 2.7053 3.4380 1.8879 - 4.0077 3.0361

Feb 2.6381 7.1167 5.1293 2.8411 7.2801 4.5113 2.0326 3.7895 3.2200 3.0906 4.3729 2.8655

Mar 2.8471 6.6579 - - 5.4917 4.4176 2.1141 2.6546 - - 3.1495 2.4221

Apr 3.3300 6.1679 5.0988 3.1159 6.9532 4.5709 2.8173 2.5050 2.5826 2.1579 5.2071 2.9275

May 3.3930 6.2335 4.9829 5.1020 4.6231 4.5510 3.0383 3.4274 3.0684 3.7555 2.5751 3.2086

Jun 2.9992 5.6281 - 3.3727 5.6589 4.2426 2.8842 2.7659 - 1.3553 3.5827 2.8869

Jul 3.1472 6.4986 5.5572 2.6229 11.583 5.0738 2.4809 3.8384 3.4998 4.0629 3.3095 3.0610

Aug 3.1023 5.4598 3.8757 1.6219 11.390 4.5660 2.0827 2.6054 2.9488 1.8038 2.3133 2.2757

Sep 2.6947 5.7028 - - 5.3618 4.0416 2.0859 2.7904 - - 3.2590 2.4928

Oct 3.5489 6.9080 1.8215 - 5.8501 4.6569 2.6659 3.6310 1.9633 - 5.5500 3.2644

Nov 2.6904 6.7970 - - 5.7460 4.3298 2.1532 3.9735 - - 3.0532 2.8193

Dec 9.0272 11.025 13.398 9.8725 10.349 10.253 7.3330 6.8512 4.9387 5.7524 11.741 6.7312

Mean 3.5918 6.8314 5.1967 4.0784 7.2746 5.0268 2.8661 3.5225 3.0137 3.1400 4.3434 3.1660

Ref. code: 25605822043898AVW

38

5.2.2 Case 2: Study of Different Forecasting Models

In this research, we use DNN model with two different data structures to predict daily

load demand. The first one is noted as DNN1 which is tested by using everyday

training dataset. The second one is referred as DNN2 which applies the same day

training dataset to train. All models including ANN and SVM use the cleaned data to

train and test. In addition, ANN and SVM are using everyday training dataset. Table

5.2 is the summarized monthly MAPEꞌ outcomes using four different forecasting

models for each month in 2013.

Table 5.2: Monthly MAPEꞌ in 2013 for ANN, SVM, DNN1, and DNN2.

Month ANN SVM DNN1 DNN2 Number of holidays

Jan 6.2233 6.8384 4.9290 4.1814 1

Feb 4.8546 4.7640 3.5650 4.9687 1

Mar 4.0913 4.6069 3.0386 3.7373 -

Apr 5.2078 5.8053 4.3674 3.4356 7

May 4.6311 5.3445 4.0751 4.0455 5

Jun 3.6040 4.6400 3.2080 3.8653 -

Jul 4.8488 5.8225 4.4771 4.1947 3

Aug 3.2853 3.8207 2.4050 3.7734 1

Sep 3.1977 3.9151 2.5414 4.0620 -

Oct 3.9449 4.3180 3.1084 4.4549 1

Nov 3.5938 4.1131 2.7328 4.5204 -

Dec 11.9294 13.1251 12.3886 6.8291 4

Total Average 4.9510 5.5928 4.2364 4.3390

According to the Table 5.2, it is clear that the performance usage of DNN1 is

better than the ANN and SVM models as the results produced less MAPEꞌ. The

MAPEꞌ of December is significantly higher than the rest of the month due to higher

fluctuation in load. The forecasted result is particularly different from the actual load

results due to the Christmas Season and the unexpected amount of tourist presence in

Thailand. Figure 5.1 shows the monthly average load for October, November, and

December. The average loads in December are lower than other two months because

of the lowest average temperature. The variation still continues in the month of

January with unexpected tourists and New Year Celebrations.

Ref. code: 25605822043898AVW

39

Figure 5.1: Comparison of average load curves for October, November, and December, 2013

Electricity consumptions are high from April to July due to high temperature.

However, during the month of June, there are no holidays which results in similar

pattern in the load. Fluctuations in the load are low during the months from August to

November resulting in better forecasted results, thus low MAPEꞌ. Comparing between

two data arrangements, DNN2 provides better accuracy than DNN1 for months which

there are many holidays; April, May, July and December. Consequently, using the

same day training dataset is good for predicting loads in months which have many

holidays whereas everyday training dataset gives better performance for other months.

Moreover, MAPEꞌ for DNN1 has almost twice percent error of DNN2 in December.

Table 5.3: Comparing MAPEꞌ in 2013 for day type category of ANN, SVM, DNN1 and DNN2

 ANN SVM DNN1 DNN2

Weekdays 4.1471 4.3409 3.3206 5.2315

Weekends 4.8538 5.7487 4.2273 3.1795

Monday 5.6348 7.4658 4.5151 3.7454

Holidays 10.2910 11.6927 10.6844 3.7034

Bridging

holidays
6.2243 6.4526 5.9337 3.1571

Total average 4.9649 5.6185 4.2544 4.3378

Furthermore, we summarize the MAPEꞌ into six categories based on the load

patterns including weekdays, weekends, Monday, holidays, bridging holidays, and

total average to compare the results. According to Table 5.3, ANN, SVR and DNN1

Ref. code: 25605822043898AVW

40

get highest errors for holidays and bridging holidays because these load patterns are

different from normal weekday load. The results of MAPEꞌ on Monday also have

lower accuracy since we use Sunday as an input to forecast Monday. However, the

load on Sunday are normally smooth and lower than the load on Monday. In addition

to this, the results of MAPEꞌ on weekends are generally worse than weekdays for

ANN, SVM and DNN1. This is also due to the same explanation that we use Friday as

an input to forecast Saturday. By using the same day training dataset, it improves the

forecasting accuracy for Monday, weekends, and bridging holidays.

5.2.3 Case 3: Effect of Different Training Datasets

The deep networks were trained by using different training datasets for 48-periods

forecasting structure. In fig.9, horizontal axis represents date in May, while vertical

axis denotes MAPE results by using different training datasets as same day and every

day. Same day training datasets mean that only one-year Sunday datasets were used to

predict Sunday in May. For example, if there are 51 Sunday in one year, we used

51pairs of training inputs and targets to predict 4 Sunday in May. If there are 55

Monday in one year, so we used 55 pairs for training and so on. On the other hand,

everyday training datasets mean that the whole one year was used as training inputs

and targets to predict all day in May. Results can be seen clearly in Table 5.4. From

Table 5.4, we categorized as five groups: weekdays, weekends, holiday, Monday and

total average. MAPE' results using same day data are significantly higher than using

everyday data. As a result, forecasting using everyday training datasets can provide

better performance for predictions.

Ref. code: 25605822043898AVW

41

Figure 5.2: MAPE' Curves by using Same Day and Everyday Training Datasets for May

Table 5.4: MAPE' for Different Training Datasets

Same Day Training
Dataset

Everyday Training
Dataset

Weekdays 4.3064 3.3650

Weekends 8.2199 6.6333

Holidays 9.1495 6.5979

Monday 13.6502 9.4789

Total Average 6.5741 5.0189

Moreover, we predicted May by using different monthly training datasets.

Figure 5.3 indicates MAPE results for five categories which are already mentioned

above by using different monthly training datasets. In here, the nets were trained by

different training datasets such as two months, four months, six months, eight months

and ten months respectively. As a result, performance might be depended on training

dataset. According to Figure 5.3, results are good for holidays and Monday.

According to total average, results are getting gradually higher by increasing training

months. Therefore, performance results might be depended on training datasets for

forecasting.

0.0000

5.0000

10.0000

15.0000

20.0000

1
-M

ay

3
-M

ay

5
-M

ay

7
-M

ay

9
-M

ay

11
-M

ay

13
-M

ay

15
-M

ay

17
-M

ay

19
-M

ay

21
-M

ay

23
-M

ay

25
-M

ay

27
-M

ay

29
-M

ay

31
-M

ay

M
A

P
E

Date

Different Training Dataset

SameDay Everday

Ref. code: 25605822043898AVW

42

Figure 5.3: MAPE' Curves by using different monthly training datasets

Likewise, we predicted separate time period by using one-year separate time

training datasets in May. We predicted load demand at 12:00AM, 11:00AM, 13:00PM

and 17:00PM by using separate periods training datasets at 12:00AM, 11:00AM,

13:00PM and 17:00PM respectively. Prediction curves for those periods are shown in

following figures individually. All figures indicate that prediction curves are almost

nearly as target curves except at 12:00AM. Therefore, our forecasting performance

might also be depended on time periods because time is one of external factors

affecting on load demand.

Figure 5.4: Prediction Curve for 12:00AM in May 2013

0.0000

1.0000

2.0000

3.0000

4.0000

5.0000

Weekdays Weekends Monday Holidays Total Average

M
A

P
E

Category

Different Training Data

2months 4months 6months 8months 10months

0

5000

10000

1
-M

ay

3
-M

ay

5
-M

ay

7
-M

ay

9
-M

ay

11
-M

ay

13
-M

ay

15
-M

ay

17
-M

ay

19
-M

ay

21
-M

ay

23
-M

ay

25
-M

ay

27
-M

ay

29
-M

ay

31
-M

ay

Lo
ad

Date

12:00AM

Target Predictions

Ref. code: 25605822043898AVW

43

Figure 5.5: Prediction Curve for 11:00AM in May 2013

Figure 5.6: Prediction Curve for 13:00PM in May 2013

0
2000
4000
6000
8000

10000
12000

1-
M

ay

3-
M

ay

5-
M

ay

7-
M

ay

9-
M

ay

11
-M

ay

13
-M

ay

15
-M

ay

17
-M

ay

19
-M

ay

21
-M

ay

23
-M

ay

25
-M

ay

27
-M

ay

29
-M

ay

31
-M

ay

Lo
a
d

Date

11:00AM

Target Predictions

0

2000

4000

6000

8000

10000

1-
M

ay

3-
M

ay

5-
M

ay

7-
M

ay

9-
M

ay

1
1

-M
ay

1
3

-M
ay

1
5

-M
ay

1
7

-M
ay

1
9

-M
ay

2
1

-M
ay

2
3

-M
ay

2
5

-M
ay

2
7

-M
ay

2
9

-M
ay

3
1

-M
ay

lo
a
d

Date

13:00PM

Target Predictions

Ref. code: 25605822043898AVW

44

Figure 5.7: Prediction Curve for 17:00PM in May 2013

5.2.4 Case 3: Effect of Different Activation Functions

In our proposed model, we can also change many parameters during the training

process. There are many activation functions to learn algorithms in the training

process. These are sigmoid, tanh, rectified linear unit and drop out functions, etc.

Some functions are good for regression, while some are good for classification. The

networks can train by using hyper parameters and we used Rapidminer tool for deep

neural network. In this tool, we can change parameters during training that it is shown

in Figure 5.8.

0

2000

4000

6000

8000

10000

1-
M

ay

3-
M

ay

5-
M

ay

7-
M

ay

9-
M

ay

11
-M

ay

13
-M

ay

15
-M

ay

17
-M

ay

19
-M

ay

21
-M

ay

23
-M

ay

25
-M

ay

27
-M

ay

29
-M

ay

31
-M

ay

LO
A
D

DATE

17:00PM

Target Predictions

Ref. code: 25605822043898AVW

45

Figure 5.8: Available Parameters during Training Process

Figure 5.9: Prediction Curve using Different Activation Function

0
1
2
3
4
5
6

Weekdays Weekends Monday Holidays Total
Average

M
A

P
E

Different Categories

Tanh Vs Relu

300HLs-Tanh 300HLs-Relu

Ref. code: 25605822043898AVW

46

Figure 5.10: Prediction Curve for Different Hidden Layers using Tanh Activation Function

Figure 5.11: Prediction Curve for Different Hidden Layers using Relu Activation Function

0

1

2

3

4

5

6

150HLs-Tanh 300HLs-Tanh 450HLs-Tanh 600HLs-Tanh 750HLs-Tanh

M
A

P
E

Different Layers

Average MAPE

Weekdays Weekends Monday Holidays Total Average

0

1

2

3

4

5

150HLs-Relu 300HLs-Relu 450HLs-Relu 600HLs-Relu 750HLs-Relu

M
A

P
E

Different Layers

Average MAPE

Weekdays Weekends Monday Holidays Total Average

Ref. code: 25605822043898AVW

47

5.3 Results for Recurrent Neural Network

In this study, the second proposed model of deep learning is recurrent neural network

with long short-term memory. It is a great tool for modeling time series. Our original

data have also been collected every 30minutes for 24hours. Therefore, RNNs seem to

provide better performance for time series sequential data. During RNN training

process, networks are used with cleaned data instead of original data to train and test

the network. Afterwards, the proposed models are used to forecast load for each day

in May 2013. The summarized results for each day are shown in the following figures

individually. From all figures, horizontal axis and vertical axis represents time periods

in minutes and load demand in MW. Time periods are depended on how many days in

weekdays and weekends in May. For instance, there are four Monday, five

Wednesday and four Sunday in May and so on. Prediction curves are divided into

each day in weekdays and weekends.

At first, Figure 5.12 shows prediction curve for Monday. It can be seen clearly

that Monday load predictions are totally different from actual load demands. The next

Figure 5.13 is prediction curve for Tuesday which can predict nearly as actual load.

Next, predicted loads for Wednesday and Thursday are almost similar as actual load

that are shown in Figure 5.14 and Figure 5.16 individually, otherwise Friday

prediction curve is a little bit different from original. Moreover, Figure 5.17 and

Figure 5.18 presents weekend’s prediction curves in May. Prediction curves in both

Saturday and Sunday provides significantly overestimate of actual demand. As an

overall result, load demands seem significantly dependent of different day of training

and testing datasets.

Ref. code: 25605822043898AVW

48

Figure 5.12: Prediction Curve for Monday in May 2013

Figure 5.13: Prediction Curve for Tuesday in May 2013

.0

2000.0

4000.0

6000.0

8000.0

10000.0

1

11 21 31 41 51 61 71 81 91

10
1

11
1

12
1

13
1

14
1

15
1

16
1

17
1

18
1

19
1

Lo
a
d

Time

Monday

Actual Forecast

.0

2000.0

4000.0

6000.0

8000.0

10000.0

12000.0

1

1
1

2
1

3
1

4
1

5
1

6
1

7
1

8
1

9
1

10
1

11
1

12
1

13
1

14
1

15
1

16
1

17
1

18
1

19
1

Lo
a
d

Time

Tuesday

Actual Forecast

Ref. code: 25605822043898AVW

49

Figure 5.14: Prediction Curve for Wednesday in May 2013

Figure 5.15: Prediction Curve for Thursday in May 2013

.0

2000.0

4000.0

6000.0

8000.0

10000.0

12000.0

1

13 25 37 49 61 73 85 97

10
9

12
1

13
3

14
5

15
7

16
9

18
1

19
3

20
5

21
7

22
9

Lo
a
d

Time

Wednesday

Actual Forecast

.0

2000.0

4000.0

6000.0

8000.0

10000.0

12000.0

1

13 25 37 49 61 73 85 97

10
9

12
1

13
3

14
5

15
7

16
9

18
1

19
3

20
5

21
7

22
9

Lo
a
d

Time

Thursday

Actual Forecast

Ref. code: 25605822043898AVW

50

Figure 5.16: Prediction Curve for Friday in May 2013

Figure 5.17: Prediction Curve for Saturday in May 2013

.0

2000.0

4000.0

6000.0

8000.0

10000.0

12000.0

1

13 25 37 49 61 73 85 97

10
9

12
1

13
3

14
5

15
7

16
9

18
1

19
3

20
5

21
7

22
9

Lo
ad

Time

Friday

Actual Forecast

.0

2000.0

4000.0

6000.0

8000.0

10000.0

1

11 21 31 41 51 61 71 81 91

10
1

11
1

12
1

13
1

14
1

15
1

16
1

17
1

18
1

19
1

Lo
a
d

Time

Saturday

Actual Forecast

Ref. code: 25605822043898AVW

51

Figure 5.18: Prediction Curve for Sunday in May 2013

Similarly, we also predicted separate time period by using one-year separate

time training datasets in May. We predicted load demand at 12:00AM, 11:00AM,

13:00PM and 17:00PM by using separate periods training datasets at 12:00AM,

11:00AM, 13:00PM and 17:00PM respectively. Prediction curves for those periods

are shown in following figures individually. All figures indicate that prediction curves

are almost nearly as target curves except at 12:00AM. Therefore, our forecasting

performance might also be depended on time periods because time is one of external

factors affecting on load demand.

Figure 5.19: Prediction Curve for 12:00AM in May 2013

.0

2000.0

4000.0

6000.0

8000.0

10000.0

1

1
1

2
1

3
1

4
1

5
1

6
1

7
1

8
1

9
1

10
1

11
1

12
1

13
1

14
1

15
1

16
1

17
1

18
1

19
1

Lo
a
d

Time

Sunday

Actual Forecast

0

2000

4000

6000

8000

10000

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31

Lo
a
d

Date

12:00AM

Actual Forecast

Ref. code: 25605822043898AVW

52

Figure 5.20: Prediction Curve for 11:00AM in May 2013

Figure 5.21: Prediction Curve for 13:00PM in May 2013

0

2000

4000

6000

8000

10000

12000

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31

Lo
a
d

Date

11:00AM

Actual Forecast

0

2000

4000

6000

8000

10000

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31

Lo
a
d

Date

13:00PM

Actual Forecast

Ref. code: 25605822043898AVW

53

Figure 5.22: Prediction Curve for 12:00AM in May 2013

5.4 Study of Different Deep Learning Models

When we train both DNN and RNN with LSTM on new load and temperature data,

both models provide sufficient performance for all months. According to the

following result table, RNN with LSTM outperforms DNN because the data collected

shows similarity with time series data collected for every 30 minutes and is shown in

the Table 5.5 below. Though there are similar values for some months from both the

models, the significant difference during certain months ensure the selection of RNN

with LSTM is much better than the DNN model. Months like December and January,

though showed errors with respect to the tourism influence, this proposed method

clearly shows that the errors are reduced and the values are well presented. However,

the month of April, shows similarity with results from DNN model along with the

presence of seven holidays.

0

2000

4000

6000

8000

10000

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31

Lo
a
d

Date

17:00PM

Actual Forecast

Ref. code: 25605822043898AVW

54

Table 5.5: Average Monthly MAPEꞌ for DNN and RNN with LSTM

Months DNN RNN with LSTM

Aug, 2016 6.7081 5.5765

Sep, 2016 5.5765 4.6046

Oct, 2016 5.4661 5.1345

Nov, 2016 5.6945 5.2714

Dec, 2016 7.3852 5.0978

Jan, 2017 7.2926 5.1484

Feb, 2017 6.4061 6.1342

Mar, 2017 6.8167 5.1921

Apr, 2017 5.7507 5.7545

May, 2017 7.3764 5.9844

Jun, 2017 7.8781 5.8278

Jul, 2017 10.3636 9.1466

Ref. code: 25605822043898AVW

55

Chapter 6

Conclusion

In this research, we proposed the short-term electricity load forecasting using the deep

neural network model. The original data from 2009 to 2013 is obtained from

Electricity Generating Authority of Thailand (EGAT). The cleansed load data;

temperature; day of week; and month of year are used as inputs. One-year training

data sets are used to predict each daily load demand in 2013. We proposed two

forecasting structures of deep neural network including 1-period forecasting structure

and 48-periods forecasting structure with 100, 200, and 300 hidden layers and hidden

nodes. The results show that deep neural network with 1-period forecasting structure

provided higher accuracy than that with 48-periods forecasting structure. Finally, the

proposed model provides more accurate load for time series predictions.

Furthermore, we utilize three powerful forecasting techniques: deep neural

network (DNN), artificial neural network (ANN) and support vector machine (SVM)

to overcome nonlinear problems in STLF. All techniques are trained and tested using

cleaned load data; temperature; day of week; and month of year to predict daily

forecasts in 2013. The outcomes of DNN are compared with ANN and SVM with

everyday training dataset. The empirical results reveal that the proposed DNN model

outperforms ANN model and SVM model.

There are two structures of training datasets, i.e., everyday training dataset and

same day training dataset. All three models are trained with everyday training dataset

that are used to predict each daily load demand for 2013. Moreover, the DNN model

is also trained with the same day training dataset to compare the performance. The

proposed DNN model with everyday training dataset obtains better forecasting

performance compared to ANN model and SVM model for every month in 2013

except December. Furthermore, DNN model also performs better for weekdays,

weekends, Monday, and bridging holidays. This empirical result shows that DNN

provides a promising model for electricity load forecasting in electric power industry.

Additionally, we propose the DNN model using the same day training dataset

to predict daily load. For this second training dataset, we use five inputs to train the

model. After using same day training dataset, the DNN model improves MAPEꞌ

Ref. code: 25605822043898AVW

56

results for bridging holiday, Monday, and weekends. Moreover, it is also give higher

accuracy for January and December where they normally have lowest accuracy

comparing to other months of the year. It also provides better accuracy for months

with many holidays. The forecast of December gets highest MAPEꞌ results since it has

the lowest load demand because of the lowest temperature.

Finally, we also propose RNN with LSTM to test on new data from December

2013 to July 2017. After that, the outcomes of RNN with LSTM are compared to

those of DNN. At that moment, RNN with LSTM outperforms DNN to solve time

series problems for short-term load forecasting. For future research, different time

series forecasting models or different arrangement of dataset may be applied to better

forecasting performance.

Ref. code: 25605822043898AVW

57

References

Ao, L., Wang, Y., & Zhang, Q. (2017). New Zealand Journal of Agricultural

Application of a hybrid model on short ‐ term load forecasting based on support

vector machines (SVM), 8233(April 2015), 37–41.

https://doi.org/10.1080/00288230709510324

Bala, A., Yadav, N. K., Hooda, N., & Registrar, D. (2014). Implementation of

Artificial Neural Network for Short Term Load Forecasting. Current Trends in

Technology and Science, 3(4), 247–251.

Baniamerian, A., Asadi, M., & Yavari, E. (2009). Recurrent wavelet network with

new initialization and its application on short-term load forecasting. EMS 2009 -

UKSim 3rd European Modelling Symposium on Computer Modelling and

Simulation, 379–383. https://doi.org/10.1109/EMS.2009.41

Bottou, L. (2010). Large-Scale Machine Learning with Stochastic Gradient Descent.

Proceedings of COMPSTAT’2010, 177–186. https://doi.org/10.1007/978-3-

7908-2604-3_16

Chen, B.-J., Chang, M.-W. M.-W., & Lin, C.-J. C.-J. (2004). Load Forecasting Using

Support Vector Machines: A Study on EUNITE Competition 2001. IEEE

Transactions on Power Systems, 19(4), 1821–1830.

https://doi.org/10.1109/TPWRS.2004.835679

Connor, J., Martin, R., & Atlas, L. (1994). Recurrent Neural Networks and Robust

Time Series Prediction. Neural Networks, IEEE …, 5(2), 240–254.

https://doi.org/10.1109/72.279188

Connor, J. T., Atlas, L. E., & Martin, D. (1991). Recurrent Neural Networks and Load

Forecasting.

Dedinec, A., Filiposka, S., Dedinec, A., & Kocarev, L. (2016). Deep belief network

based electricity load forecasting: An analysis of Macedonian case. Energy, 115,

1688–1700. https://doi.org/10.1016/j.energy.2016.07.090

El-sharkh, M. Y. (2012). Forecasting Electricity Demand Using Dynamic Artificial

Neural Network Model, 1691–1694.

Ertugrul, Ö. F. (2016). Forecasting electricity load by a novel recurrent extreme

learning machines approach. International Journal of Electrical Power and

Energy Systems, 78, 429–435. https://doi.org/10.1016/j.ijepes.2015.12.006

Fard, A. K., & Akbari-Zadeh, M.-R. (2014). A hybrid method based on wavelet, ANN

and ARIMA model for short-term load forecasting. Journal of Experimental &

Theoretical Artificial Intelligence. Taylor & Francis.

https://doi.org/10.1080/0952813X.2013.813976

Hatalis, K., Pradhan, P., Kishore, S., Blum, R. S., & Lamadrid, A. J. (2014). Multi-

step forecasting of wave power using a nonlinear recurrent neural network. PES

General Meeting | Conference & Exposition, 2014 IEEE, 1–5.

https://doi.org/10.1109/PESGM.2014.6939370

Hinton, G. E., Osindero, S., & Teh, Y.-W. (2006). A Fast Learning Algorithm for

Deep Belief Nets. Neural Computation, 18(7), 1527–1554.

https://doi.org/10.1162/neco.2006.18.7.1527

Hippert, H. S., Pedreira, C. E., & Souza, R. C. (2001). Neural networks for short-term

load forecasting: a review and evaluation. IEEE Transactions on Power Systems,

Ref. code: 25605822043898AVW

58

16(1), 44–55. https://doi.org/10.1109/59.910780

Hochreiter, S., & Schmidhuber, J. (1997). Long Short-Term Memory. Neural

Computation, 9(8), 1735–1780. https://doi.org/10.1162/neco.1997.9.8.1735

Jeenanunta, C., & Abeyrathna, K. D. (2016). The Study of Artificial Neural Network

Parameters for Electricity Forecasting, 1–7.

Kelo, S., & Dudul, S. (2012). A wavelet Elman neural network for short-term

electrical load prediction under the influence of temperature. International

Journal of Electrical Power and Energy Systems, 43(1), 1063–1071.

https://doi.org/10.1016/j.ijepes.2012.06.009

Kermanshahi, B. (1998). Recurrent neural network for forecasting next 10 years loads

of nine Japanese utilities. Neurocomputing, 23(1–3), 125–133.

https://doi.org/10.1016/S0925-2312(98)00073-3

Krunic, M. S. S., Krcmar, I., & Rajakovic, N. (2000). An improved neural network

application for short-term load forecasting in power systems. Electric Power

Components and Systems, 28(8), 703–721.

https://doi.org/10.1080/07313560050082703

Li, P., Li, Y., Xiong, Q., Chai, Y., & Zhang, Y. (2014). Application of a hybrid

quantized Elman neural network in short-term load forecasting. International

Journal of Electrical Power and Energy Systems, 55, 749–759.

https://doi.org/10.1016/j.ijepes.2013.10.020

Liu, W., Wang, Z., Liu, X., Zeng, N., Liu, Y., & Alsaadi, F. E. (2017). A survey of

deep neural network architectures and their applications. Neurocomputing,

234(November 2016), 11–26. https://doi.org/10.1016/j.neucom.2016.12.038

Marvuglia, A., & Messineo, A. (2012). Using recurrent artificial neural networks to

forecast household electricity consumption. Energy Procedia, 14, 45–55.

https://doi.org/10.1016/j.egypro.2011.12.887

Mcculloch, W. S., & Pitts, W. (1990). A logical calculus nervous activity. Bulletin of

Mathematical Biology, 52(l), 99–115. https://doi.org/10.1007/BF02478259

Mohandes, M. (2002). Support vector machines for short-term electrical load

forecasting. International Journal of Energy Research, 26(4), 335–345.

https://doi.org/10.1002/er.787

Pai, P. F., & Hong, W. C. (2005). Forecasting regional electricity load based on

recurrent support vector machines with genetic algorithms. Electric Power

Systems Research, 74(3), 417–425. https://doi.org/10.1016/j.epsr.2005.01.006

Park, D. C., El-Sharkawi, M. a., Marks, R. J., Atlas, L. E., & Damborg, M. J. (1991).

Electric load forecasting using an artificial neural network. IEEE Transactions

on Power Systems, 6(2), 442–449. https://doi.org/10.1109/59.76685

Qiu, X., Zhang, L., Ren, Y., Suganthan, P., & Amaratunga, G. (2014). Ensemble deep

learning for regression and time series forecasting. IEEE SSCI 2014 - 2014 IEEE

Symposium Series on Computational Intelligence - CIEL 2014: 2014 IEEE

Symposium on Computational Intelligence in Ensemble Learning, Proceedings,

(December). https://doi.org/10.1109/CIEL.2014.7015739

Rashid, T., Huang, B. Q., Kechadi, M. T., & Gleeson, B. (2006). Auto-regressive

recurrent neural network approach for electricity load forecasting. International

Journal of Computational Intelligence, 3(1), 36–44.

Rodrigues, F., Cardeira, C., & Calado, J. M. F. (2014). The Daily and Hourly Energy

Consumption and Load Forecasting Using Artificial Neural Network Method: A

Ref. code: 25605822043898AVW

59

Case Study Using a Set of 93 Households in Portugal. Energy Procedia, 62,

220–229. https://doi.org/10.1016/j.egypro.2014.12.383

Rui, Y., & El-Keib, a. a. (1995). A Review of ANN-based Short-Term Load

Forecasting Models The BP network structures. System Theory, 1995.,

Proceedings of the Twenty-Seventh Southeastern Symposium, 78–82.

https://doi.org/10.1109/SSST.1995.390613

Sapankevych, N., & Sankar, R. (2009). Time series prediction using support vector

machines: A survey. IEEE Computational Intelligence Magazine, 4(2), 24–38.

https://doi.org/10.1109/MCI.2009.932254

Siddarameshwara, N. (2010). Electricity Short term Load Forecasting using Elman

Recurrent Neural Network. https://doi.org/10.1109/ARTCom.2010.44

Urban, G., Geras, K. J., Kahou, S. E., Aslan, O., Wang, S., Caruana, R., …

Richardson, M. (2016). Do Deep Convolutional Nets Really Need to be Deep

and Convolutional? https://doi.org/10.1038/nature14539

Vermaak, J., & Botha, E. C. (1998). Recurrent neural networks for short-term load

forecasting. IEEE Transactions on Power Systems, 13(1), 126–132.

https://doi.org/10.1109/59.651623

Glorot, X., Bordes, A., & Bengio, Y. (2011, June). Deep sparse rectifier neural

networks. In Proceedings of the Fourteenth International Conference on

Artificial Intelligence and Statistics (pp. 315-323).

Bengio, Y., Lamblin, P., Popovici, D., & Larochelle, H. (2007). Greedy layer-wise

training of deep networks. In Advances in neural information processing systems

(pp. 153-160).

LeCun, Y., Boser, B. E., Denker, J. S., Henderson, D., Howard, R. E., Hubbard, W.

E., & Jackel, L. D. (1990). Handwritten digit recognition with a back-

propagation network. In Advances in neural information processing systems (pp.

396-404).

Bengio, Y., Ducharme, R., Vincent, P., & Jauvin, C. (2003). A neural probabilistic

language model. Journal of machine learning research, 3(Feb), 1137-1155.

Ref. code: 25605822043898AVW

60

Appendix

Ref. code: 25605822043898AVW

61

Appendix A

Python code: RNN with LSTM

import numpy

import matplotlib.pyplot as plt

import pandas

import math

import pandas as pd

from keras.models import Sequential

from keras.layers import Dense, LSTM, Dropout

from sklearn.preprocessing import MinMaxScaler

from sklearn.metrics import mean_squared_error

convert an array of values into a dataset matrix

def create_dataset(dataset, look_back=1):

 dataX, dataY = [], []

 for i in range(len(dataset) - look_back-1):

 a = dataset[i:(i + look_back), :]

 dataX.append(a)

 dataY.append(dataset[i + look_back, 4])

 return numpy.array(dataX), numpy.array(dataY)

fix random seed for reproducibility

numpy.random.seed(7)

load the dataset

dataframe = pandas.read_csv('TrainSun.csv', engine='python')

dataset = dataframe.values

#**

train_size = int(len(dataset) * 0.72)

test_size = len(dataset) - train_size

train, test = dataset[0:train_size, :], dataset[train_size:len(dataset), :]

print('train',train)

print('test',test)

reshape into X=t and Y=t+1

look_back = 48

trainX, trainY = create_dataset(train, look_back)

testX, testY = create_dataset(test, look_back)

print('trainX',trainX)

print('trainY',trainY)

print('testX',testX)

print('testY',testY)

#***

normalize the dataset

scaler = MinMaxScaler(feature_range=(0, 1))

dataset = scaler.fit_transform(dataset)

split into train and test sets

train_size = int(len(dataset) * 0.72)

test_size = len(dataset) - train_size

Ref. code: 25605822043898AVW

62

train, test = dataset[0:train_size, :], dataset[train_size:len(dataset), :]

reshape into X=t and Y=t+1

look_back = 48

trainX, trainY = create_dataset(train, look_back)

testX, testY = create_dataset(test, look_back)

reshape input to be [samples, time steps, features]

trainX = numpy.reshape(trainX, (trainX.shape[0], look_back, 5))

testX = numpy.reshape(testX, (testX.shape[0],look_back, 5))

create and fit the LSTM network

model = Sequential()

model.add(LSTM(4, input_shape=(look_back,5)))

model.add(Dense(1))

model.compile(loss='mean_squared_error', optimizer='adam')

history= model.fit(trainX, trainY, epochs=100, batch_size=32)

make predictions

trainPredict = model.predict(trainX)

testPredict = model.predict(testX)

Get something which has as many features as dataset

trainPredict_extended = numpy.zeros((len(trainPredict),5))

Put the predictions there

trainPredict_extended[:,4] = trainPredict[:,0]

Inverse transform it and select the 5rd column.

trainPredict = scaler.inverse_transform(trainPredict_extended) [:,4]

print('trainPredict',trainPredict)

Get something which has as many features as dataset

testPredict_extended = numpy.zeros((len(testPredict),5))

Put the predictions there

testPredict_extended[:,4] = testPredict[:,0]

Inverse transform it and select the 5rd column.

testPredict = scaler.inverse_transform(testPredict_extended)[:,4]

print('testPredict',testPredict)

trainY_extended = numpy.zeros((len(trainY),5))

trainY_extended[:,4]=trainY

trainY=scaler.inverse_transform(trainY_extended)[:,4]

testY_extended = numpy.zeros((len(testY),5))

testY_extended[:,4]=testY

testY=scaler.inverse_transform(testY_extended)[:,4]

calculate root mean squared error

trainScore = math.sqrt(mean_squared_error(trainY, trainPredict))

print('Train Score: %.2f RMSE' % (trainScore))

testScore = math.sqrt(mean_squared_error(testY, testPredict))

print('Test Score: %.2f RMSE' % (testScore))

print('train_size',train_size)

print('test_size',test_size)

shift train predictions for plotting

trainPredictPlot = numpy.empty_like(dataset)

trainPredictPlot[:, :] = numpy.nan

trainPredictPlot[look_back:len(trainPredict)+look_back, 4] = trainPredict

shift test predictions for plotting

testPredictPlot = numpy.empty_like(dataset)

testPredictPlot[:, :] = numpy.nan

Ref. code: 25605822043898AVW

63

testPredictPlot[len(trainPredict)+(look_back*2)+1:len(dataset)-1, 4] =

testPredict

convert your array into a dataframe

df = pd.DataFrame (trainPredict)

dfTest = pd.DataFrame (testPredict)

save to xlsx file

filepath = 'trainPredictSunday.xlsx'

df.to_excel(filepath, index=False)

testFile = 'testPredictSunday.xlsx'

dfTest.to_excel(testFile, index=False)

#plot

serie,=plt.plot(scaler.inverse_transform(dataset)[:,4])

prediction_training,=plt.plot(trainPredictPlot[:,4],linestyle='--')

prediction_test,=plt.plot(testPredictPlot[:,4],linestyle='--')

plt.title('Electricity Load Forecasting')

plt.ylabel('Load')

plt.xlabel('Date')

plt.legend([serie,prediction_training,prediction_test],['serie','Training','

test'], loc='upper right')

plt.show()

