
Ref. code: 25605822043898AVW

 

 

DEEP LEARNING FOR SHORT-TERM ELECTRICITY 

LOAD FORECASTING 

 

 

 

 

BY 

 

PYAE PYAE PHYO 

 

 

 

 

A THESIS SUBMITTED IN PARTIAL FULFILLMENT OF THE 

REQUIREMENTS FOR THE DEGREE OF MASTER OF SCIENCE 

(ENGINEERING AND TECHNOLOGY) 

SIRINDHORN INTERNATIONAL INSTITUTE OF TECHNOLOGY 

THAMMASAT UNIVERSITY 

ACADEMIC YEAR 2017



Ref. code: 25605822043898AVW

DEEP LEARNING FOR SHORT-TERM ELECTRICITY 

LOAD FORECASTING 

 

 

BY 

 

 PYAE PYAE PHYO 

 

 

 

 

 

 

 

 

 

 

A THESIS SUBMITTED IN PARTIAL FULFILLMENT OF THE 

REQUIREMENTS FOR THE DEGREE OF MASTER OF SCIENCE 

(ENGINEERING AND TECHNOLOGY) 

SIRINDHORN INTERNATIONAL INSTITUTE OF TECHNOLOGY 

THAMMASAT UNIVERSITY 

ACADEMIC YEAR 2017 





Ref. code: 25605822043898AVW

 

ii 

 

Abstract 

 

DEEP LEARNING FOR SHORT-TERM ELECTRICITY LOAD FORECASTING  

 

by 

 

 

PYAE PYAE PHYO 

 

 

Bachelor of Engineering (Electrical Power), Technological University (Mandalay), 

Myanmar, 2013 

Master of Science (Engineering and Technology), Sirindhorn International Institute of 

Technology, Thammasat University, 2017 

 

 Forecasting of the daily load demand is a complex problem as it is to solve 

nonlinearity with influenced external factors. Deep learning, machine learning and 

artificial intelligence techniques have been successfully employed in electric 

consumption load predictions, financial market predictions, and reliability predictions. 

In this paper, we propose to use deep neural network (DNN) and recurrent neural 

network (RNN) with long short-term memory (LSTM) for short-term load forecasting 

(STLF) to overcome nonlinearity problems and to achieve higher forecasting 

accuracy.  

 The historical data has been collected every 30 minutes for 24 hours from the 

Electricity Generating Authority of Thailand (EGAT). The proposed techniques are 

tested with cleaned data from 2012 to 2017 where holidays, bridging holidays, and 

outliers are replaced. The forecasting accuracy is measured by mean absolute 

percentage error (MAPE). 

 In this research, we propose two DNN forecasting structures, i.e., 1-period and 

48-periods structures are tested and compared by using the proposed model. The 

results show that 1-period forecasting structure give more accurate than 48-periods 

forecasting structure.  
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 Moreover, there are two different structures of training dataset including 

everyday training dataset and same day training dataset. The outcomes of deep neural 

network (DNN) are compared with artificial neural network (ANN) and support 

vector machines (SVM) with everyday training dataset. The empirical results reveal 

that the proposed DNN model outperforms ANN model and SVM model.  

 Moreover, the DNN model trained with same day training datasets provides 

better performance than DNN trained with everyday training dataset for weekends, 

bridging holidays, and Monday. In addition, the DNN using same day training 

datasets provides higher accuracies for December and January. Consequently, the 

DNN model provides better forecasting accuracy in power industrial management. 

  In addition, we train both DNN and RNN with LSTM using new collected 

data from 2013 to 2017. The empirical results show that RNN outperforms DNN to 

overcome time series data problems by keeping long data information at every time 

steps. From all mentioned above outcomes, deep learning models based on neural 

network provide reliable and robustness accuracy for STLF in power system 

management.  

 

Keywords: Short-Term Electricity Load Forecasting, Deep Learning, Deep Neural 

Network, Recurrent Neural Network, Long Short-Term Memory 
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Chapter 1 

Introduction 

1.1 Electricity Load Forecasting 

Electricity plays an important role in our daily lives and one of the most popular 

driving factors of a country’s economy. Load forecasting is indispensable section of 

designing, planning and operation of electric utilities, moreover, it is necessary to 

allocate considerable amount of electric energy to increase the economy significantly 

by electric power manufacturers. The electricity load forecasting that is a way of 

estimating what future electric load will be for a given perspective based on the 

available system information. Energy usage of load demand is one of major factor 

affecting on Thailand’s economics evaluated by Electricity Generating Authority 

Thailand (EGAT). The total amount of 2.1 billion THB was spent on the energy usage 

and there is an increase amount comparing with 2013 and 2014. This increment of 

energy consumption is caused by increasing in population, economics, transportation, 

and human facilities in both Bangkok region and metropolitan region.  

This load forecasting is generally classified according to time interval into 

three main categories. Moreover, there are two types of forecasting that are the 

subjective and objective forecasting methods. The first one is referred to methods that 

are used to measure either individual or group opinion. The better known subjective 

forecasting methods involve: 

❖ Scales force composites. 

❖ Customer survey. 

❖ Jury of executive opinion. 

❖ The Delphi method. 

Another one is the objective forecasting methods that may be classified on the 

basic of past history data into two groups as time series methods and regression. 

Regression models often integrate the previous history of other series; however, time 

series forecasting methods apply only for the past historical data of the series to be 

predicted. The latter one has the advantage of easily being combined into a computer 

program for updating and automatic forecasting. A casual model forecasts the 
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dependent variable based on the evolution of one or more other independent variables. 

The final goal of using time series forecasting is to find predictable and repeatable 

patterns including increasing or decreasing linear trend, curvilinear trend and seasonal 

fluctuations in historical past data. Nowadays, electricity load forecasting has 

developed into the majority research field in power engineering. It is basic 

requirement of power generation, commercial appropriation between plants, 

scheduling preservation, and networking with interconnected utilities. 

1.2 Types of Load Forecasting 

In this section, types of load forecasting are illustrated in Table 1.1 in details. The 

input load flow study or emergency analysis in the daily operation like energy transfer 

scheduling, and demand-side management is needed to consider for short term load 

forecasting. In order to correlate predicted advancement in demand, the medium and 

long-term forecasting are applied for enlargement of capacity of generation, 

transmission and distribution. Load forecasting is classified as long-term; medium-

term; and short-term forecasting according to time periods. Long-term load 

forecasting (LTLF) is more than one year and medium-term load forecasting (MTLF) 

ranges from one month to one year. Short-term load forecasting (STLF) can be 

regarded as minutes; hour; and day or week ahead predictions. 

Table 1.1: Types of Load Forecasting 

 Time 

Intervals 

Forecasted 

Values 

Accuracy Operation Planning 

STLF 24h–1 

week 

Load curves Fixed Load 

Curves 

Economic Load 

Dispatch 

Unit 

Commitment 

MTLF 1 week-1 

year 

Load curves Capacity>>Error Unit 

Commitment 

Reserve 

Planning 

LTLF >1year Energy 

needed 

Fixed Energy Power System 

Planning 

Future Capacity 

Expansion 

 

It has big challenge with the upward trend in the electricity market prices since 

forecasting accuracy is the basic requirement in energy field. Moreover, forecasting 

performance is important thing to balance between energy supply and consumption. 
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Therefore, electrical producers and authority expect to reduce the generating energy 

cost. As mentioned above, STLF has been emerged more and more important role in 

Energy Management System (EMS) with power markets development over the past 

decades. 

1.3 Factors Affecting on Electricity Load Forecasting 

Similarly, there are multiple influenced factors on the performance of load which can 

be analyzed as time, day, temperature, weather, random and economic factors. Among 

them, one of the most popular factors is temperature associated with meteorological 

situations for short term load forecasting. Selection of suitable variables for load 

forecasting is related to generalize mathematical model. The accuracy of such model 

depends on the quality of input information. Deterministic and stochastic are two 

different categories of variable. On the other hand, in general, the electric 

consumption load is based on human activities. Similarly, human activities are also 

depended on population and their economic status. Therefore, the variables are more 

or less interconnected to each other. For instance, as a result of changing the 

consumer’s comfort feeling for heaters (water, room) and air conditioner and so on, it 

causes the changes of weather conditions. 

 

Figure 1.1: Different Factor Affecting on Load Forecasting 
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In Figure 1.1, it is clear that there are many influencing factors affected on the 

electricity load demand. Firstly, time is one of the most popular factors that can be 

separated into midnight, morning, evening, night, lunch time and so on when we 

consider for one day. So, we can forecast next day electricity demand because we 

have different past data for one day. Similarly, we can consider seasonally, yearly, 

monthly, weekly and daily etc. Next, weather is also one important thing affected on 

load, for example, we can diverge temperature, cloud cover or sunshine, humidity and 

so on. Moreover, calendar can also be considered like seasonal variation, daily 

variation, weekly cyclic and holidays, hence we can get different data and predict 

different results. Likewise, the remaining things such as population, human facilities, 

economic for business and electricity prices are influenced on forecasting electricity 

load demand. 

1.4 Motivation 

First of all, it is difficult for predictors to choose the right technique to solve both 

linear and nonlinear process. Nowadays, neural network algorithms are the most 

popular in AI-based models for nonlinear time series problems. However, if there are 

multiple hidden layers, neural networks do not work very well because of back 

propagation method. It takes time too long, sometimes it gets poor local minimum and 

slow convergence due to randomly initialization. To overcome the complex machine 

learning problems, deep architectures are the best choice for STLF. Moreover, the 

historical data have been collected every 30 minutes for 24 hours, so that it looks like 

sequential data. Recurrent neural network is a great tool for modelling time series. 

Therefore, we use deep learning models such as deep neural network and recurrent 

neural network to predict daily load. 

1.5 Problem Statement 

Electricity load forecasting techniques are very prominent parts to execute the good 

accurate forecast results for generation and transmission planning of the utility and its 

related economic parts. The generating amount of electricity should be stabilized with 

the utilizing one by customers since there is no way of storing electrical energy and 



Ref. code: 25605822043898AVW

 

 

5 

 

producing it immediately. If the expected energy and generating energy are not 

balanced, it can cause unsatisfied conditions for the country’s economy. Therefore, 

electricity manufacturers must produce balanced electricity between generation, 

transmission, distribution and consumer services. In order to overcome problems, 

electricity load forecasting can help and reduce the extra cost over generating and 

end-user. The proposed deep learning methods are used in order to improve the 

forecasting accuracy performance. 

1.6 Objective 

The main objective of this research is to upgrade the forecasting accuracy 

performance by using different deep learning methods. Nowadays, artificial 

intelligence (AI) is everywhere based on knowledge around the world and machine 

learning (ML) which can learn from the data without explicitly programmed. 

However, it has many weakness points, i.e., back-propagation learning algorithms. To 

overcome learning and time series problems, deep learning methods were introduced.  

Moreover, this research work is conducted with a short-term load forecasting 

with external factors like temperature, day of week, month of year and calendar dates. 

Considering external factors and original data have to be included to enhance the 

accuracy. Furthermore, the objective of this research is to get the minimum error of 

1.9 percent for testing data by taking into account all these facts. Mean absolute 

percentage error (MAPE) is considered to calculate the forecasting error which is 

difference between the forecasted results and the actual load data from the Electricity 

Generating Authority Thailand (EGAT). 

1.7 Significance of Study 

To conquer the above-mentioned problems, there are various forecasting methods to 

have less than one percentage error in today’s world. After forecasting by using the 

historical past data, we can calculate the forecast error to check how many the 

forecast demand deviates from the actual data. This is one of essential roles in load 

forecasting. There are three ways which are commonly used to measure the forecast 

errors. 
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The first way is mean absolute deviation (MAD) that indicates how many units 

the forecasting is deviate from the actual demand. The following equation shows how 

to calculate the MADd for day d. 
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The second one is mean square error (MSE) which is similar to variance of 

random sample. MSE is computed without using absolute error terms. The equations 

for MSEd for day d is given below. 
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The last one is mean absolute percentage error (MAPE) that indicates how 

many units the forecasting is deviate from the actual demand. The last way is more 

popular than the others. Therefore, the MAPEd equation for each forecasting day d can 

be seen below because it is also needed to use in this paper. 

0
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However, this MAPE still could lead to extra costs, or could not afford the 

necessary amount of electricity for the consumers under the problem statement when 

the companies produce the large amount of electricity. In addition to this, over 

forecasts could cause extra costs for the utility companies. Therefore, precise 

accuracy of forecasting techniques is very prominent than by choosing single 

available technique. So, in this research, it is proposed to use different methods of 

deep learning to improve the forecasting accuracy performance from problem 

statement. 
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Chapter 2 

Literature Review 

2.1 Time Series Components 

There are many techniques to forecast accuracy for short-term interval. Typically, 

these can be divided into three main categories in literature techniques like similar 

day approach, simulation models and time series models. Time series component can 

be separated into four parts: trend, seasonal, cyclic and random. In trend component, 

it can be persistent and it indicates upward or downward trends. It can change due to 

technologies, population, age, culture, etc and it can occur generally within several 

years duration.  

In seasonal component, it is ordinary model of up and down variations and can 

cause due to climate, routines, etc. Normally, it can occur within a single year, for 

example, one-week period consists seven days. Likewise, for one month we can 

consider weekly and daily basis, however, weekly period is varied 4 to 4.5 weeks and 

daily also vary 28 to 31 days. Similarly, one year can be considered as four quarters, 

12 months and 52 weeks, etc. So, we can consider it as different season because we 

know each day has different demand patterns.  

Next, the cyclical patterns are persisting up or down motions affected by 

business cycle, governmental, and commercial factors during several years. And then 

random component patterns are unsystematic and ‘residual’ alternations due to 

random alteration or unexpected events. There is no repeating and it can occur during 

short duration period. Finally, there have been many techniques that can be seen from 

Figure 2.1. 

2.2 Classifications of forecasting models  

Forecasting techniques can be classified into two groups, i.e., traditional statistic 

models and artificial intelligence (AI) based models for STLF. Traditional statistical 

models include regression analysis, moving average, exponential smoothing, and 

stochastic time series models and so on. Machine learning, data mining, artificial 



Ref. code: 25605822043898AVW

 

 

8 

 

neural networks, genetic algorithms, fuzzy time series and expert systems are based 

on AI-based models. Figure 2.1 indicates various models of load forecasting.  

Neural networks algorithms are the most popular in AI-based models for 

nonlinear time series problems. However, if there are multiple hidden layers, neural 

networks do not work very well because of back propagation method. It takes time 

too long, sometimes it gets poor local minimum and slow convergence due to 

randomly initialization. To overcome the complex machine learning problems, deep 

architectures are the best choice for STLF. Therefore, we used deep learning models 

to predict daily load for one-month period. 

 

Figure 2.1: Different Load Forecasting Techniques 
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2.3 Related Works and Models 

Warren McCulloch and Walter Pitts prior approached artificial neural network (ANN) 

since 1943 (Mcculloch & Pitts, 1990). Many researchers have shown that ANN is an 

excellent tool to apply many areas including medicine, business, communications, and 

industrial process control. ANN is the most popular computational model that is 

influenced by the structure and functional aspects of biological neural networks. A 

neural network composes of an interconnected group of artificial neurons, and it 

computes the targets by processing information using a connection. During the 

learning process, an ANN is an adaptive system that can change its structure 

depending on external information flowing through the network. Modern neural 

networks are usually used to model complex relationships between inputs and outputs 

to find patterns in data. 

 In the late 1980’s and early 1990’s, ANN has been applied to forecast load 

demand in the electric power system (Bala, Yadav, Hooda, & Registrar, 2014; 

Hippert, Pedreira, & Souza, 2001; Park, El-Sharkawi, Marks, Atlas, & Damborg, 

1991). Jeenanunta and Abeyrathna adjusted the parameters of ANN to enhance the 

forecasting accuracy using a transfer function of ANN (Jeenanunta & Abeyrathna, 

2016). A feed-forward neural network with the Levenberg-Marquardt algorithm 

performs well to get a better forecasting accuracy for electricity load demand 

(Rodrigues, Cardeira, & Calado, 2014). ANN relies on many things such as the 

numbers of invisible layers, backpropagation algorithms and the selected input 

variables to improve accuracy requirements for STLF (Rui & El-Keib, 1995). Even 

ANN has become very popular among machine leaning techniques, however, there 

are drawbacks to train the model and obtain better forecasting results due to the 

weakness of the backpropagation algorithm (Krunic, Krcmar, & Rajakovic, 2000). 

Deep learning architectures become a vital role in the fields of pattern 

recognition, classification and complex prediction to solve the drawbacks of machine 

learning. The feedforward multilayer perceptron which is one of deep learning models 

was introduced for supervised learning algorithms. A deep belief network was 

approached to forecast load demand with the Macedonia hourly electricity 

consumption data (Dedinec, Filiposka, Dedinec, & Kocarev, 2016). Moreover, El-
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sharkh presented multilayer perceptron, radial basis and RNN with a parallel structure 

ANN which gave better results compared to usual time series methods (El-sharkh, 

2012). Rashid et. al approached a recurrent neural network (RNN) with the internal 

feedback structure for electricity load prediction and showed their results are reliable 

and robust (Rashid, Huang, Kechadi, & Gleeson, 2006). 

Deep neural network (DNN) is commonly based on ANN with multiple 

hidden layers and the approximation error can be reduced by adding hidden layers 

between the input and output layers. Deep architectures are relevant to detect higher 

level representation and capture higher level abstractions. Quan et al. applied an 

ensemble deep belief network with one artificial dataset and three regression datasets 

time series and regression predictions (Qiu, Zhang, Ren, Suganthan, & Amaratunga, 

2014). Moreover, a nonlinear auto-regressive RNN provided smoothly forecasted 

results, contrast with previous studies for hourly predictions of high resolution wave 

power (Hatalis, Pradhan, Kishore, Blum, & Lamadrid, 2014). 

The feedforward multilayer perceptron which is one of deep neural network 

models was introduced for supervised learning algorithms (Liu et al., 2017). A deep 

belief network was also applied to forecast load demand with the hourly electricity 

consumption data in Macedonia (Dedinec et al., 2016). Moreover, El-sharkh 

presented multilayer perceptron, radial basis and recurrent neural network (RNN) 

with a parallel structure ANN which gave better results compared to usual time series 

methods (El-sharkh, 2012). Rashid et. al proposed a RNN with the internal feedback 

structure for electricity load prediction and showed their results are reliable and robust 

(Rashid et al., 2006).  

Kelo and Dudul used a novel hybrid of wavelet and Elman network as a 

recurrent neural network to increase one-day ahead prediction accuracy in all seasons 

(Kelo & Dudul, 2012). A hybrid quantized elman recurrent neural network was 

proposed for hourly load predictions and provided an acceptable accuracy comparing 

with multilayer feedforward neural network (Li, Li, Xiong, Chai, & Zhang, 2014). 

Moreover, Siddarmeshwara conducted elman recurrent neural network which 

outperforms weather sensitive models and nonweather sensitive model 

(Siddarameshwara, 2010). A novel recurrent neural network (RNN) was approached 
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using extreme learning machine training method and obtained results were compared 

with traditional machine learning and linear regression model (Ertugrul, 2016). RNN 

could handle any type of activation functions in both forward and feedback loops and 

provide better performance than several computational methods. 

Kermanshahi proposed recurrent neural network and three layer feed forward 

back propagation to forecast one-year ahead and provided reasonable results for long-

term load forecasting (Kermanshahi, 1998). RNN executed better performance than 

time series models and computational intelligence methods (J. T. Connor, Atlas, & 

Martin, 1991). Marvuglia and Messineo showed the important correlation between 

electricity load demand and application of electronic devices for one-hour short-term 

forecasting (Marvuglia & Messineo, 2012). Recurrent wavelet network with a new 

orthogonal least square initialization method was applied to short-term special days 

over complex load forecasting problems (Baniamerian, Asadi, & Yavari, 2009). 

Training RNN on filtered data gave better accuracies than on unfiltered data (J. 

Connor, Martin, & Atlas, 1994). Vermaak and Botha applied the recurrent networks 

which provides higher dynamic load performance than normal networks. The more 

closely approximation model chose, the better expected results execute (Vermaak & 

Botha, 1998). 

Support vector machines was introduced for STLF and it outperformed 

autoregressive model by comparing outcomes based on root-mean-square errors 

(Mohandes, 2002). Moreover, Mohandes also studied that the improvement of 

performance of SVM depends on increasing the training dataset. Chen et. al presented 

that SVM with conceptual time series like seasonal could enhance the forecasting 

performance and temperature factor could not influence on mid-term load forecasting 

from other experiments (Chen, Chang, & Lin, 2004). SVM has the ability to 

accurately forecast time series data. Moreover, SVR outperformed other nonlinear 

models to solve nonlinear, non-stationary and not defined a-priori problems 

(Sapankevych & Sankar, 2009). A recurrent support vector machines combined with 

genetic algorithms (RVSVMG) which determines parameters of SVM was applied to 

forecast regional electricity load (Pai & Hong, 2005). The performance using a hybrid 

model obtained higher forecasting accuracies than using the regression model, SVM 
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model and ANN model (Fard & Akbari-Zadeh, 2014). Sometimes researchers applied 

many hybrid models with SVR to improve dynamic high-performance accuracy for 

STLF (Ao, Wang, & Zhang, 2017). 
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Chapter 3 

Methodology 

3.1 Deep Learning (DL) 

Deep learning (DL) has received a great success in the last couple of years. Many 

researchers have produced state-of-the-art results successfully in the fields of image 

classification, market predictions, automatic speech and face recognitions, natural 

language processing, and bioinformatics. There are various deep learning 

architectures such as long short-term memory (Hochreiter & Schmidhuber, 1997), 

recursive neural network (Urban et al., 2016), convolutional neural network (Urban et 

al., 2016), and deep belief network (Hinton, Osindero, & Teh, 2006). Most of them 

admit computational methods that are comprised of numerous hidden layers to learn 

representations of data with numerous abstraction levels. They also can detect 

complex structure in large data sets by using back propagation process to solve the 

drawbacks of machine learning. 

Many researchers presented that the ability of traditional machine-learning 

methods was restricted to process raw data. These methods are required to design 

manually the feature extractors converting from raw data by human engineering. 

However, deep learning models are representation or feature learning models that can 

detect automatically multiple levels of features for detection or classification. 

Moreover, it needs very little engineering by hand, so it can increase the amount of 

available data and computation. The current progress of new learning architectures 

and algorithms advance in deep neural networks. 

The main core of DL is a class of neural network models which have an input 

layer, an arbitrary number of hidden layers and an output layer. All layers are 

composed of neurons or neural units by sharing some similarities with the behavior of 

the neurons present in the human brain. For our cases, a neuron serves as a nonlinear 

function of the weighted sum of its inputs. Therefore, the neuron is really basic part of 

any DL model. 
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3.1.1 The Single Neuron Model 

To describe neural networks, firstly a single neuron model is shown in Figure 3.1. A 

single neuron is a function which maps an input vector {x1, x2, …, xt} with the weight 

vector {w1, w2, …, wt} to a scalar output y passing through a nonlinear function f. 

 

Figure 3.1: A Single Neuron Model 

 

The link function f takes weighted sum of input x and executes y. The function 

provides the nonlinearity between input and output which is known as an activation 

function. In this paper, we describe three types of activation function which are the 

most commonly used for neural networks. 

1. The sigmoid function: 
xe

xf



1

1
)(  

2. The hyperbolic tangent, or tanh function: 
xx

xx

ee

ee
xxf








 )tanh()(  

3. The rectified linear activation function: ),0max()( xxf   

In this study, the proposed model uses the rectified linear activation function. 

This activation function is different from sigmoid and tanh because it is not bounded 

or continuously differentiable. It is piece-wise linear and saturates at exactly 0 

whenever the input x is less than 0. Figure 3.2 represents three different activation 

functions. 
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Figure 3.2: Activation Functions 

 

3.1.2 Neural Network Model 

Neural network model is used as simple feed-forward neural network trained by a 

back-propagation algorithm. In the feed-forward process, the information is only 

moving to the forward direction from the input nodes x passing through the hidden 

nodes to the output nodes y without any cycling or looping in the network. The model 

uses simple sigmoid activation function (f) to produce output values (y). In Figure 3.3, 

suppose that wkj is the weight connection between input layer and hidden layer, and 

wij is the weight connection between hidden layer and output layer. 
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Figure 3.3: Neural network structure 

 

The output equation for the hidden layer is: 



K

k

kkii xwfh
1

)(  

The output equation for the output layer is: 



N

i

iijj hwfy
1

' )(  

The objective function is to minimize the error is written as: 



M

j

jj tyE
1

2)(
2

1
 

Afterwards, the network updates weights (w) using back propagation algorithm (Rui 

& El-Keib, 1995). 

3.1.3 Back Propagation Algorithm 

In back propagation algorithm, the predicted output values are compared with the 

target values to calculate the value of some predefined error-function. By feeding the 

error back through the network, the algorithm adjusts the weights of each connection 

to minimize error by some amount depending on specified learning rate. We start with 

the final output error (yj−tj) for the output neuron j and this error gets propagated 

backwards throughout the network in order to update the weights. To update weight 

value, we compute gradient descent using chain rule. The following equations are 

how to compute gradient and update weight. 
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The equation for the gradient: 
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The update weight equation: 
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 .  

This training back propagation process is repeated until the performance of the 

network is good enough and the network converges to a small error after repeating 

many training cycles. 

3.2 Deep Neural Network (DNN)  

In this study, deep learning is approached to train the model consisting of a large 

number of processing layers. Deep neural network is a class of neural network model 

that has an input layer, an output layer, and an arbitrary number of hidden layers. In 

Figure 3.4, the input x layer and the output y layer are referred by the bottom and the 

top layers respectively. The layers between x and y represents the hidden layers (h) for 

the network which perform as a black box. 

 

Figure 3.4: Deep Neural Network Structure 

 

The DNN model trains a feed-forward network to execute the 

corresponding output values throughout all invisible layers and neuron nodes in the 
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forward propagation. The following equation indicates that a nonlinear function f 

takes weighted sum of input x and returns y. 





k

i

t

i

l

ij xwfxwfy
1

)()(  

      where, 

y   = scalar output, 

xi    = the ith input, 

𝑤𝑖𝑗
𝑙

 = the weight between node i in layer (l-1) and node j in layer l, 

f    = activation function. 

The main core is to minimize an error term for the output layer after producing 

the corresponding output values. Therefore, the network compares predicted output 

values with the actual existing values. Next, the proposed model optimizes the 

minimum error using stochastic gradient descent (SGD) algorithm before updating 

weights (Bottou, 2010). 

3.2.1 Stochastic Gradient Descend (SGD) 

The objective of using SGD is to overcome speed convergence obstacles and getting 

stuck at a local minimum. At first, the training data are shuffled at each iteration of 

training network during SGD process. Next, the entire parameters are updated using 

only one sample or a few training samples. To reach a global minimum, SGD updates 

parameters frequently in the direction of the gradient of the loss function at every 

iteration. Unlike ordinary gradient descent, SGD selects a single data point instead of 

entire dataset to compute the gradient at each iteration. The following equation 

describes how to update weights in the SGD process. 

),;( )()( kkold

w

oldnew yxwJww    

where, 

wnew  = updated weight value, 

wold    = old weight value, 

J       = gradient value, 

η       = learning rate, 

      (x(k), y(k)) = a pair of training sample at k iteration. 
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There are many advantages to applying SGD over ordinary gradient descent. 

In general, most gradient optimization methods converge effectively in terms of using 

the full training set. 

1. SGD can converge much faster than ordinary gradient descent methods 

because of less memory intensive on behalf of using one data point at a time 

(Bottou, 2010).  

2. SGD has the ability to get a meaningful update without iterating over the 

entire dataset to overcome redundancy into datasets.   

3. If the loss function is convex, using SGD has a guarantee to find a global 

minimum. SGD can obtain better performance solutions for big learning 

models and large data sets. 

3.3 Recurrent Neural Network (RNN) 

Recurrent neural network (RNN) is a neural network model proposed in the 80’s for 

modelling time series. In a traditional neural network, all inputs and outputs are 

independent of each other. Therefore, neural network cannot handle for time series 

prediction (e.g., of financial series), time series production (e.g., motor control in non-

Markovian environments) and time series classification or labeling (e.g., rhythm 

detection in music and speech). RNN is a great tool for modelling sequential data that 

is dataset are depended on other points.  

The structure of the network is similar to feed-forward neural network, but it 

allows a recurrent hidden state whose activation at each time is dependent on that of 

the previous time (cycle). RNN is called recurrent because it performs the same task 

for every part of a sequence, with the output being depended on the previous 

computations. RNNs have a “memory” which captures information about what has 

been calculated so far. In theory RNNs can make use of information in arbitrarily long 

sequences, but in practice they are limited to looking back only a few steps. 
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Figure 3.5: Recurrent Neural Network Structure 

 

  Figure 3.5 indicates a RNN being unrolled (or unfolded) into a full network. 

For example, if the sequence is 5-time steps, the network would be unrolled into a 5-

layer neural network, one layer for each time steps. The formulas in a RNN are as 

follows: 

)( 1 ttt wsuxfs  

)tanh( tt vso   

According to the above equation, 𝑥𝑡 is the input at time step t, 𝑠𝑡 is the hidden 

state at time step and 𝑜𝑡 is the output at time step t. The recurrent model only has 

single layer, but it keeps a state to remember analysis. This state “recurs” back into 

the net with each input. The hidden layers and the output depend from previous states 

of the hidden layers. First of all, input data flow into the model’s single layer. 

Afterwards, data process like traditional net, but net also receives the state along with 

input. For the first state point, net use initial state which is depended on type of data. 

After processing, data is output with a new state that represents most recent state 

point. Then this new state is fed back into the net with next data and so on. The net 

repeats these steps until all data is processed. It can produce a different output for 

same input depending on a current state since the state changes at every step. 

Unlike a traditional deep neural network, which uses different parameters at 

each layer, a RNN shares the same parameters (U, V, and W above equation) across 

all steps. Training a RNN is similar to training a traditional Neural Network. But for 
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back-propagation algorithms, RNNs use the Back-propagation Through Time (BPTT) 

because the parameters are shared by all time steps in the network, the gradient at 

each output depends not only on the calculations of the current time step, but also the 

previous time steps. Consequently, vanilla RNNs trained with BPTT have difficulties 

learning long-term dependencies due to vanishing/exploding gradient problem. To 

overcome long-term dependencies problems, the solution is to use gating methods 

such as long short-term memory (LSTM) and gated recurrent unit (GRU). 

3.4 Long Short-Term Memory (LSTM) 

Long short-term memory (LSTM) was first proposed by Hochreiter & Schmidhuber 

(1997) and since then has been modified by many researchers (Hochreiter & 

Schmidhuber, 1997). The LSTM architecture consists of a set of recurrently 

connected subnets, known as memory blocks. Each memory block consists of: 

memory cell, input gate, forget gate and output gate. Unlike the traditional recurrent 

unit which overwrites its content each time step, the LSTM unit is able to decide 

whether to keep the existing memory via the introduced gates. LSTMs avoid 

explicitly the long-term dependency problem. They remember information for long 

periods of time, not something they struggle to learn. All RNNs have the form of a 

chain of repeating modules of neural network. In standard RNNs, this repeating 

module will have a very simple structure, such as a single tanh layer. LSTMs also 

have structure, but the repeating module has a different structure. Instead of having a 

single neural network layer, there are four interacting in a very special way. 

 

Figure 3.6: Long Short-Term Memory Structure 
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In Figure 3.6, each line carries an entire vector, from the output of one node to 

the inputs of others. The pink circles denote pointwise operations, like vector 

addition. The yellow boxes are learned neural network layers. Lines merging denotes 

concatenation, while a line forking denotes its content being copied and the copies 

going to different locations. The key to LSTMs is the cell state, the horizontal line 

running through the top of the diagram. It maintains information flowing along 

through it unchanged. The LSTMs are capable to remove or add information to the 

cell state by carefully regulating gates. Gates tend to optionally let information 

through. They are composed out of a sigmoid neural net layer and a pointwise 

multiplication operation. The sigmoid layer outputs numbers between zero and one, 

describing how much of each element should be let through. A value of zero means 

“forget everything,” while a value of one means “keep everything”. An LSTM has 

three gates to protect and control the cell state. 

The first step in LSTM is to decide what information need to throw away from 

the cell state by a sigmoid layer called the “forget gate layer.” It looks at previous 

hidden layer and input, and outputs a number between 0 and 1 for each number in the 

cell state. The next step is to decide what new information going to be stored in the 

cell state by combining two parts to create an update to the state. The first one is that a 

sigmoid layer called the “input gate layer” decides which values need to update. The 

second one is that a tanh layer creates a vector of new candidate values that could be 

added to the state. Next, multiplying old state by forgetting the things and adding new 

candidate’s values in order to update the old cell state into new cell state. Finally, the 

net executes the output which will be based on our cell state, but will be a filtered 

version. First, a sigmoid layer executes outputs using the cell state. Then, we put the 

cell state through tanh and multiply it by the output of the sigmoid gate, so that we 

only output the parts we decided to. 

3.5 Support Vector Machine 

Support vector machine (SVM) is one of the computational or mathematical model to 

solve complex problems between inputs and outputs (Mohandes, 2002). The SVM 

learning method can be used for regression, classification and other tasks. It also can 
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learn a fast algorithm and provide good results for many tasks. In the training process, 

a SVM uses linear or quadratic and even asymmetric loss functions. A support vector 

machine usually sets up a hyperplane or set of hyperplanes in a high- or infinite- 

dimensional space. The hyperplane might have the largest distance to the nearest 

training data points of functional margin in order to achieve good separation. The sets 

of hyperplanes separate nonlinearly in a finite dimensional space. 

 

Figure 3.7: Support Vector Machine Structure 

 

In order to solve this problem, the original finite-dimensional space 

approaches to map into a higher-dimensional space by making discrimination easier 

in that space. Therefore, in this study, we use two essential factors for the 

implementation of SVM. The first thing is the kernel model to get a large amount of 

solution space. Another one is the quadratic function to achieve SVM parameters in 

the entire training process. In the Figure 3.7, input x represents the input of training 

data and output y refers to a corresponding output value. The objective concept of 

SVM is to map the input data into a high dimensional space from a non-linear 

mapping and conduct a linear regression. 
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Chapter 4 

Design of Experiment 

4.1 Data Collection and Cleansing 

The collected 30 minutes load data from 1st March 2009 to 31st December 2013 are 

from the Electricity Generating Authority of Thailand (EGAT). This data has been 

collected from five different regions: Central, Bangkok and Metropolitan, South, 

North and North-East in Thailand. There is a low electricity demand with only one 

peak load curve at night in the three regions: South, North, and North-East. On the 

other hand, there is a high electricity demand with three peak load curves in two 

regions: Bangkok and Metropolitan, and Central. In this research, only Bangkok and 

Metropolitan areas are considered because of a large load demand value and high 

variations. 

4.1.1 Holidays and Bridging Holidays Replacement 

The original historical data must be cleaned because there are many holidays, missing 

values, and outliers. If these outliers are included in the training data, the accuracy 

performance of load predictions would be lower. We categorize load patterns into five 

patterns as Monday, weekday, weekend, holiday and bridging holiday as shown in 

Figure 4.1. For bridging holiday load pattern, for instance, if Thursday and Saturday 

are holidays, we consider Friday as a bridging holiday. To calculate average load for 

each category, for example, since there are eight days for weekends, we take the 

average load in each period from all weekends in January 2013, etc. It can be seen 

clearly that holiday and bridging holiday load patterns are totally different from 

regular any other load patterns. Consequently, we apply a weighted moving average 

method to replace the holidays and bridging holidays. Average load of N previous 

weeks of the day (d), at time period, t, is used to replace holidays and bridging 

holidays. Weighted moving average method is shown as below equation, 

)14()7()( 21  dLwdLwdL ttt  

The holiday’s data and bridging holiday’s data are replaced by selecting two 

days from recent previous two weeks. In the weighted moving average equation, we 



Ref. code: 25605822043898AVW

 

25 

 

give the weight w1 as 0.7 for the first previous week and the weight w2 as 0.3 for the 

previous two weeks. 

 

Figure 4.1: Load patterns for five categories 

 

4.1.2 Outliers Detection and Replacement 

Furthermore, we detect outliers by using time-window based filtering band as there is 

a similar pattern on the same time period and the same day of week. We arrange the 

dataset consisting of the same weekday and same time period to construct the filtering 

band of each weekday and each time period. We construct time-window based 

filtering band by using four weeks moving average and standard deviation using same 

time period and same day of week. After that, all of the data outside the filtering band 

are regarded as outliers and replaced by two weeks moving average. To regard the 

outliers, we use the following equation. 

1 2'
( 7), ( 14), ( ) ( )

( )
( ),

t t t t
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t
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L d

L d Otherwise

   
 


 

The time window for time t, of day d for p weeks is given as: 

)7(),...,7(),()( ''' pdLdLdLdV tttt  , 

where 𝑑′ refers the last 7 days in the selected data set and the variable p represents 

different days of the weeks which have different number of weeks within the sample 

data set. 

The k-period filtering band is written as: 
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where N denotes the width of the k-period filtering band. In this research, the variable 

N is set to be 1.6 which is optimum value. 

After detecting outliers using the k-period time window filtering band, they 

are replaced by moving average method. The detected outliers are replaced by using 

the average load data from similar time periods from similar days of previous two 

weeks.  

Moving average method for replacing outliers:  
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After cleansing the original data, they are ready to train the model. The data 

arrangement of using cleaned data for all models and training algorithms are 

discussed in the following sections. 
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4.2 Deep Neural Network 

4.2.1 Data Arrangement 

There are two types of data set, i.e., training and testing data sets. Each data also 

includes a pair of input and output. The data from 1st May 2012 to 31st May 2013 is 

selected as one-year training data set to train the model and forecast each day in 2013. 

Therefore, there are 388 pairs of training data set to forecast one day. There are 48-

time periods in one day. Consequently, the network has to be trained 388*48 times to 

predict each day in 2013. 

Table 4.1: Example of data arrangement of training and testing pair for 1st May 2013 in 1-
period forecasted model 

   Input Target 

Training 

Dataset 

No. Lt(d-7) Lt(d-1) Tt(d-1) Tt(d) DoW MoY Ft(d) 

1 
01/05/12 

(Tue) 

07/05/12 

(Mon) 

07/05/12 

(Mon) 

08/05/12 

(Tue) 
1 

5 

 

08/05/12 

(Tue) 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

388 
23/05/13 

(Fri) 

29/5/13 

(Thurs) 

29/5/13 

(Thurs) 

30/05/13 

(Fri) 
4 

5 

 

30/05/13 

(Fri) 

   Input Output 

Testing 

Dataset 

No. Lt(d-7) Lt(d-1) Tt(d-1) Tt(d) DoW MoY Ft(d) 

1 
24/04/13 

(Wed) 

30/04/13 

(Tue) 

30/04/13 

(Tue) 

01/05/13 

(Wed) 
2 

5 

 

01/05/13 

(Wed) 

 

The simplified forecasting equation for the model is; 

MoYDoWdTa

dTadLadLadF

t

tttt
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where, 

𝐹𝑡(𝑑)      = Forecasted load at period t, 

𝐿𝑡(𝑑 − 1) =Yesterday load at period t, 

𝐿𝑡(𝑑 − 7) = Previous week same day load at period t, 

𝑇𝑡(𝑑 − 1) = Yesterday’s temperature at period t, 

𝑇𝑡(𝑑)      = Forecasted day’s temperature at period t, 

t =1, 2, 3, …, 48 periods, and a1, …, a4 = coefficients of load and temperature. 
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DoW is the day of week, for instance, we put input as 1 for Monday, 2 for Tuesday 

and so on. Likewise, MoY is the month of year, for example, input is 4 for April, 5 for 

May, etc. Therefore, this paper uses six inputs training data set to test load demand on 

the networks. Table 4.1 is given as the example of the data arrangement for training 

data set and testing data set pair for 1st May 2013. Similarly, Fig. 3 illustrates the 48-

periods forecasting structure, where there are 194 inputs to forecast for 48 forecasted 

outputs for one day (because the data is collected every 30 minutes for one day). 

4.2.2 Study of Different Forecasting Structures for DNN 

We propose two forecasting structures of deep learning to predict the load demand. 

These are 1-period forecasting structures and 48-periods forecasting structure. In the 

1-period forecasting structure, there are six inputs to forecast one period in each 

model whereas in the 48-period forecasting structure, there are 194 inputs to forecast 

for 48 forecasted outputs for one day. Thus, there are 48 deep learning models to 

forecast one day for 1-period forecasting structure.  However, there is only one deep 

learning model to forecast one day for 48-period forecasting structure. Figure 4.2 

show the 1-period forecasting structure of the proposed deep learning model. The 

inputs are yesterday load, previous week same day load, yesterday temperature, 

forecasted day temperature, the day of week, and the month of year. Similarly, Figure 

4.3 illustrates the 48-periods forecasting structure, where there are 194 inputs to 

forecast for 48 forecasted outputs for one day (because the data is collected every 30 

minutes for one day). 

Deep Neural 

Network

1

2

3

4

5

6

Lt(d-1)

Lt(d-7)

Tt(d-1)

Tt(d)

DoW

MoY

1 Ft(d)

 

Figure 4.2: 1-Period Forecasting Structure 
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1
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L48(d-1)

L48(d-7)
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T48(d)

T1(d-1)
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F48(d)

1

48

49

. . .

97

144

96

193

145
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192
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. . .

. . .

. . .
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Figure 4.3: 48-Periods Forecasting Structure 

 

Both proposed forecasting structures are tested with 100, 200, and 300 hidden 

layers. After forecasting by using the proposed model, we need to calculate the error 

to check how many the load demand deviates from the actual data. Normally, most 

researchers use mean absolute percentage error (MAPE) to compute the forecasting 

accuracy. However, in this study, MAPEꞌ is used to measure the error between the 

cleaned load and the forecasted load. The following equation is utilized to get MAPEꞌ 

for monthly load predictions. 

For the mean absolute percentage error, 

,100
)(

)()(1
0

0

48

1
'

'

' 


 
t t

tt

dL

dFdL

t
MAPE  

 where,  

Lt
’= the cleaned load at period t,  

Ft = the forecasted load at period t,  

     t = the time period for one day (t = 1, 2, …, 48). 
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4.3 Study of Different Forecasting Models 

4.3.1 Data Arrangement for ANN, SVM, and DNN1 

The data is separated into two datasets, i.e., training and testing datasets. Both datasets 

are arranged as a pair of input and target to train and test the models. In this paper, we 

select one-year training dataset from 7th May 2012 to 30th May 2013 to train the 

models. Thus, there are 388 days in our training dataset. As a result, all models have 

to be trained with 388 datasets to test on one-day forecast. 

In DNN, ANN, and SVM models, there are six input variables as yesterday 

load, previous week same day load, yesterday temperature, forecasted day 

temperature, day of week (DoW) and month of year (MoY). The basic forecasting 

equation is given by; 

MoYDoWdTb

dTbdLbdLbdF

t

tttt
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where,  

      Ft (d)  = Forecasted load at period t for day d, 

      Lt (d-1)        = Load at period t for day d-1 (yesterday load), 

      Lt (d-7)        = Load at period t for d-7 (previous week same day), 

      Tt (d-1)        = Temperature at period t for d-1 (yesterday temperature), 

      Tt (d)           = Forecasted day temperature at period t for day d, 

      DoW           = Day of Week (1, 2, …, 7), 

      MoY            = Month of Year (1, 2, …, 12), 

t                 =1, 2, 3, …, 48 periods, 

b1, …, b5   = coefficients of load and temperature. 

According to the above equation, all models take six inputs to forecast the next 

day load demand. Table 4.2 shows that there are 388 pairs of training dataset from 

May 1 2012 to May 30 2013 to forecast June 1 2013. This data arrangement is noted 

as everyday training dataset. After completing the training, each model will be tested 

by one testing dataset. In this case, the target is to forecast June 1 2013. Once we 

complete the testing dataset, the models are trained with new rolling 388 pairs of 

dataset and they are tested to the next forecasting day, June 2 2013. 
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Table 4.2: Everyday training data arrangement for testing target 1st June 2013 

   Input Target 

Training 

Dataset 

No. Lt(d-7) Lt(d-1) Tt(d-1) Tt(d) DoW MoY Ft(d) 

1 
01/05/12 

(Tue) 

07/05/12 

(Mon) 

07/05/12 

(Mon) 

08/05/12 

(Tue) 
1 

5 

 

08/05/12 

(Tue) 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

388 
23/05/13 

(Fri) 

29/5/13 

(Thurs) 

29/5/13 

(Thurs) 

30/05/13 

(Fri) 
4 

5 

 

30/05/13 

(Fri) 

   Input Output 

Testing 

Dataset 

No. Lt(d-7) Lt(d-1) Tt(d-1) Tt(d) DoW MoY Ft(d) 

1 
25/05/13 

(Sat) 

31/05/13 

(Fri) 

31/05/13 

(Fri) 

01/06/13 

(Sat) 
5 

6 

 

01/06/13 

(Sat) 

 

4.3.2 Data Arrangement for DNN2 

In addition, we propose another data arrangement with five input variables. This data 

arrangement is called the same day training dataset and it is used with DNN. For this 

DNN model, we selected five input variables as yesterday load, previous week same 

day load, yesterday temperature, forecasted day temperature, and month of year 

(MoY). The basic forecasting equation is written as; 

1 2 3 4( ) ( 1) ( 7) ( 1) ( )t t t t tF d b L d b L d b T d b T d MoY         

where,  

      Ft (d)    = Forecasted load at period t for day d, 

      Lt (d-1) = Load at period t for day d-1 (yesterday load), 

      Lt (d-7) = Load at period t for d-7 (previous week same day), 

      Tt (d-1) = Temperature at period t for d-1 (yesterday temperature), 

      Tt (d)    = Forecasted day temperature at period t for day d, 

      MoY     = Month of Year (1, 2, …, 12), 

t           =1, 2, 3, …, 48 periods, 

       b1, …, b5   = coefficients of load and temperature. 

This second training dataset is arranged to use the same day for the target as 

shown in Table 4.3. In this table, all of the target is arranged to be only on Saturday. 
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The training dataset consists of 52 datasets. It also includes Friday load as a yesterday 

input when the model predicts Saturday load as shown in Table 4.3. 

Table 4.3: Same day training data arrangement for testing target 12th Jan 2013 

  Input Target 

Training 

Dataset 

No. Lt(d-7) Lt(d-1) Tt(d-1) Tt(d) MoY Ft(d) 

1 
07/01/12 

(Sat) 

13/01/12 

(Fri) 

13/01/12 

(Fri) 

14/01/12 

(Sat) 

1 

 

14/01/12 

 (Sat) 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

52 
22/12/12 

(Sat) 

28/12/12 

(Fri) 

28/12/12 

(Fri) 

29/12/12 

(Sat) 

12 

 

29/12/12 

(Sat) 

  Input Output 

Testing 

Dataset 

No. Lt(d-7) Lt(d-1) Tt(d-1) Tt(d) MoY Ft(d) 

1 
05/01/13 

(Sat) 

11/01/13 

(Fri) 

11/01/13 

(Fri) 

12/01/13 

(Sat) 

1 

 

12/01/13 

(Sat) 

 

4.4 Study of Different Deep Learning Models 

In this case, we use the 30 minutes new load data from Dec 2013 to July 2017 which 

has also been collected by the Electricity Generating Authority of Thailand (EGAT). 

The data is also separated into two datasets, i.e., training and testing datasets. Both 

datasets are arranged as a pair of input and target to train and test the models. In this 

paper, we select training dataset from December 2013 to July 2016 to train the 

models. As a result, all models have to be trained using two and half year’s datasets to 

test on one-day forecast. 

We propose deep neural network (DNN) and recurrent neural network (RNN) 

with long short-term memory (LSTM). In both models, there are five input variables 

as yesterday load, previous week same day load, yesterday temperature, forecasted 

day temperature, and month of year (MoY). For training and testing datasets, we apply 

training dataset from 2013 December to July 2016 and testing dataset from August 

2016 to July 2017. Same day training datasets is used as the data structures and then 

we train the models using same day dataset to test same day. The training data 

arrangement for both models is show in Table 4.4. 
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Table 4.4: Same day training data arrangement for testing target 6th Aug 2017 

  Input Target 

Training 

Dataset 

No. Lt(d-7) Lt(d-1) Tt(d-1) Tt(d) MoY Ft(d) 

1 
23/12/13 

(Sat) 

03/01/14 

(Fri) 

03/01/14 

(Fri) 

04/01/14 

(Sat) 

1 

 

04/01/14 

 (Sat) 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

52 
23/07/16 

(Sat) 

29/07/16 

(Fri) 

29/07/16 

(Fri) 

30/07/16 

(Sat) 

7 

 

30/07/16 

(Sat) 

  Input Output 

Testing 

Dataset 

No. Lt(d-7) Lt(d-1) Tt(d-1) Tt(d) MoY Ft(d) 

1 
30/07/16 

(Sat) 

05/08/16 

(Fri) 

05/08/16 

(Fri) 

06/08/16 

(Sat) 

8 

 

06/08/16 

(Sat) 

 

4.4.1 Training process in DNN model 

In DNN training process, we separated the data into training and testing datasets. In 

here, we use the 48-period forecasting structure which has 193 inputs to forecast for 

48 forecasted outputs for one day. There is only one deep learning model to forecast 

one day for the 48-period forecasting structure as shown in Figure 4.4. We trained the 

model passing through 100 hidden layers with rectified linear unit activation function. 

After performing the entire process, we train the networks to forecasting daily load. 

Deep Neural 

Network

L1(d-1)

Tt(d)

MoY

1

L1(d-7)

L48(d-1)

L48(d-7)

T48(d-1)

T48(d)

T1(d-1)

Ft(d)

F48(d)

1

48

49

. . .

97

144

96

193

145

192

48

. . .

. . .

. . .

. . .

 

Figure 4.4: 48-periods DNN structure 
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4.4.2 Training process in RNN with LSTM 

In RNN training process, we use all datasets from December 2013 to July 2017. At 

first, we split the data into training (70%) and testing (30%) individually. When 

activation functions, specifically the sigmoid or tanh are used in the training process, 

LSTMs are sensitive to the scale of the input data. Therefore, we rescale the data to 

the range of 0-to-1, also called normalizing. We can easily normalize the dataset using 

the MinMaxScaler preprocessing. In RNN with LSTM model, we need to look back 

to trace the memory of time series predictions. In this case, we set up 48 as look back 

at each time step to forecast load at each period. Figure 4.5 illustrates how to import 

the input in the RNN with LSTM model at each time step. After setting up the entire 

parameters, the model is ready to forecast load profile. 

 

Figure 4.5: Load input data for RNN at each time step 
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Chapter 5 

Results and Discussion 

5.1 Mean Absolute Percentage Error (MAPEꞌ) 

The main objective of all models is to minimize forecasting errors. In this research, we 

use cleaned data instead of original data to compare with forecasted values for the 

errors. Mean absolute percentage error (MAPEꞌ) is the accuracy measurement between 

the cleaned load and the forecasted load. 

Mean absolute percentage error (MAPEꞌ), 

,100
)(

)()(1
0

0

48

1
'

'

' 


 
t t

tt

dL

dFdL

t
MAPE                           

    where,  

       Ft (d)   = Forecasted load at period t for day d, 

      '

tL  (d)   = Cleaned load at period t for day d, 

              t    = 1, 2, 3, …, 48 periods. 

5.2 Result for deep neural network 

5.2.1 Case 1: Deep neural network 

In this study, the proposed structures of deep learning are used with cleaned data 

instead of original data to train and test the network. Afterwards, the proposed models 

are used to forecast load for each day in 2013. The summarized results for each month 

is shown in Table 5.1. There are six categories of MAPEꞌ including weekdays (WD), 

weekends (WK), holidays (H), bridging holidays (BH), Monday (Mon) and total 

average (TA) for both the structures. 

It can be seen that MAPEꞌ results for December are the highest for different 

categories because it has the lowest electricity consumption compared to other 

months. In addition, total averages for 1-period forecasting structure are better than 

those for 48-periods forecasting structure. Both the structures obtained higher MAPEꞌ 

for weekends compared to weekdays while the MAPEꞌ for holidays in both the 
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structures are similar to weekdays. Monday average results are the worst results 

among the six categories. 

Similarly, the proposed model is used to predict load using different hidden 

layers (HLs) size. Most of the MAPEꞌ results are similar for three different layers’ 

size. There is a higher MAPEꞌ for 100HLs with 1-period forecasting structure, but 

there is a higher MAPEꞌ for 300HLs with 48-periods forecasting structure for 

holidays. MAPEꞌ results for weekends are also not as good as that for weekdays and 

bridging holidays. If we increase more HLs size for 1-period forecasting structure, we 

get better performance for predictions. However, errors were steadily rising when we 

enhance HLs for 48-periods forecasting structure. 

The proposed model is also used to predict load using different hidden layers 

(HLs) size. Based on the experimental results, we found that when the number of HLs 

is increased, the MAPEꞌ is slightly increased. Therefore, prediction result does not 

only depend on the number of HLs and the number of neurons. It may also depend on 

other factors, e.g., activation functions, learning algorithms and selection of input 

variables. Hence, a fine-tuning of parameters might be required. 

 

Table 5.1: Monthly MAPE' for 48-period and 1-period Forecasting Structures with 100HLs, 

200HLs & 300HLs 

#HLs Month 
48-periods forecasting structure 1-period forecasting structure 

WD WK H BH Mon TA WD WK H BH Mon TA 

100 

Jan. 3.4046 7.6559 2.0878 - 6.6207 4.8742 2.5667 3.2849 2.0566 - 3.7512 2.8884 

Feb. 2.8766 7.2087 5.3490 2.5459 7.3890 4.6743 2.1164 3.8291 2.9940 3.2889 4.8777 2.9748 

Mar 3.2091 5.9577 - - 5.6893 4.4158 2.2313 2.7866 - - 3.4279 2.5648 

Apr 3.2936 5.2634 4.4016 3.0580 5.8884 4.1321 2.8369 2.3475 2.6515 1.8318 5.1315 2.9080 

May 3.2268 5.5091 4.7213 5.0233 4.3549 4.2514 3.0134 3.4442 3.0981 3.5437 2.3554 3.1715 

Jun 2.8833 4.5394 - 2.8860 5.0434 3.7235 2.9571 2.7828 - 1.4880 3.4678 2.9181 

Jul 2.9826 6.1876 5.8875 2.5320 9.7082 4.7271 2.4768 3.7718 3.2900 3.5407 3.4963 3.0227 

Aug 2.7007 4.5059 2.7260 1.4332 9.2843 3.8219 2.1366 2.7742 1.4314 1.6161 2.7074 2.3374 

Sep 2.3499 5.1202 - - 4.6338 3.5616 2.1508 2.7561 - - 3.4975 2.5569 

Oct 3.2412 6.1803 1.9085 - 5.6843 4.3137 2.8674 3.6634 1.8215 - 4.6251 3.2659 

Nov 2.3451 6.1803 - - 4.8273 3.8266 2.1873 3.9929 - - 2.7575 2.8050 

Dec 8.0776 9.7391 12.411 8.5933 11.724 8.6787 6.9367 5.9039 5.6978 5.4356 10.833 6.3317 

Mean 3.3826 6.1706 4.9365 3.7245 6.7373 4.5834 2.8731 3.4448 2.8801 2.9635 4.2440 3.1454 
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200 

Jan 3.7491 7.1804 2.1358 - 5.9980 4.8727 2.6233 3.1996 1.7952 - 3.9239 2.9131 

Feb 2.9756 6.6282 4.5213 2.4189 6.8570 4.4704 2.1415 3.6985 2.8276 2.8359 4.7308 2.9131 

Mar 3.2107 6.5518 - - 5.6017 4.5970 2.2461 2.9000 - - 3.3071 2.5939 

Apr 3.4454 6.2311 5.1460 3.5836 7.0235 4.6689 2.7402 2.1308 2.6770 1.9999 5.2347 2.8487 

May 3.2276 6.3494 4.8462 5.1828 4.7301 4.4944 2.9730 3.2199 3.8502 3.7499 1.8781 3.0738 

Jun 3.0377 5.6426 - 3.3601 5.6171 4.2607 2.9538 2.6971 - 1.9829 3.6635 2.9305 

Jul 3.1736 6.4512 6.2645 2.1982 11.528 5.0956 2.5178 3.8771 3.3731 3.3216 3.5525 3.0775 

Aug 3.0900 5.3117 4.0872 1.5096 11.659 4.5455 2.2152 2.7278 2.3941 1.2157 2.4619 2.3614 

Sep 2.4998 5.6176 - - 5.3337 3.9075 2.1074 2.8976 - - 3.2885 2.5413 

Oct 3.3963 6.6318 1.8778 - 5.7863 4.4907 2.6981 3.5903 1.5530 - 5.6010 3.2660 

Nov 2.4171 6.3946 - - 5.7401 4.0534 2.1187 4.1187 - - 2.9464 2.8291 

Dec 8.9863 10.049 11.455 10.466 9.9781 9.7567 7.3922 6.1908 5.3639 5.9837 12.315 6.6454 

Mean 3.6008 6.5867 5.0418 4.1028 7.1544 4.9345 2.8939 3.4374 2.9793 3.0128 4.4086 3.1662 

300 

Jan 3.6838 7.7800 1.7098 - 7.0086 5.1062 2.7053 3.4380 1.8879 - 4.0077 3.0361 

Feb 2.6381 7.1167 5.1293 2.8411 7.2801 4.5113 2.0326 3.7895 3.2200 3.0906 4.3729 2.8655 

Mar 2.8471 6.6579 - - 5.4917 4.4176 2.1141 2.6546 - - 3.1495 2.4221 

Apr 3.3300 6.1679 5.0988 3.1159 6.9532 4.5709 2.8173 2.5050 2.5826 2.1579 5.2071 2.9275 

May 3.3930 6.2335 4.9829 5.1020 4.6231 4.5510 3.0383 3.4274 3.0684 3.7555 2.5751 3.2086 

Jun 2.9992 5.6281 - 3.3727 5.6589 4.2426 2.8842 2.7659 - 1.3553 3.5827 2.8869 

Jul 3.1472 6.4986 5.5572 2.6229 11.583 5.0738 2.4809 3.8384 3.4998 4.0629 3.3095 3.0610 

Aug 3.1023 5.4598 3.8757 1.6219 11.390 4.5660 2.0827 2.6054 2.9488 1.8038 2.3133 2.2757 

Sep 2.6947 5.7028 - - 5.3618 4.0416 2.0859 2.7904 - - 3.2590 2.4928 

Oct 3.5489 6.9080 1.8215 - 5.8501 4.6569 2.6659 3.6310 1.9633 - 5.5500 3.2644 

Nov 2.6904 6.7970 - - 5.7460 4.3298 2.1532 3.9735 - - 3.0532 2.8193 

Dec 9.0272 11.025 13.398 9.8725 10.349 10.253 7.3330 6.8512 4.9387 5.7524 11.741 6.7312 

Mean 3.5918 6.8314 5.1967 4.0784 7.2746 5.0268 2.8661 3.5225 3.0137 3.1400 4.3434 3.1660 
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5.2.2 Case 2: Study of Different Forecasting Models 

In this research, we use DNN model with two different data structures to predict daily 

load demand. The first one is noted as DNN1 which is tested by using everyday 

training dataset. The second one is referred as DNN2 which applies the same day 

training dataset to train. All models including ANN and SVM use the cleaned data to 

train and test. In addition, ANN and SVM are using everyday training dataset. Table 

5.2 is the summarized monthly MAPEꞌ outcomes using four different forecasting 

models for each month in 2013. 

Table 5.2: Monthly MAPEꞌ in 2013 for ANN, SVM, DNN1, and DNN2. 

Month ANN SVM DNN1 DNN2 Number of holidays 

Jan 6.2233 6.8384 4.9290 4.1814 1 

Feb 4.8546 4.7640 3.5650 4.9687 1 

Mar 4.0913 4.6069 3.0386 3.7373 - 

Apr 5.2078 5.8053 4.3674 3.4356 7 

May 4.6311 5.3445 4.0751 4.0455 5 

Jun 3.6040 4.6400 3.2080 3.8653 - 

Jul 4.8488 5.8225 4.4771 4.1947 3 

Aug 3.2853 3.8207 2.4050 3.7734 1 

Sep 3.1977 3.9151 2.5414 4.0620 - 

Oct 3.9449 4.3180 3.1084 4.4549 1 

Nov 3.5938 4.1131 2.7328 4.5204 - 

Dec 11.9294 13.1251 12.3886 6.8291 4 

Total Average 4.9510 5.5928 4.2364 4.3390  

 

According to the Table 5.2, it is clear that the performance usage of DNN1 is 

better than the ANN and SVM models as the results produced less MAPEꞌ. The 

MAPEꞌ of December is significantly higher than the rest of the month due to higher 

fluctuation in load. The forecasted result is particularly different from the actual load 

results due to the Christmas Season and the unexpected amount of tourist presence in 

Thailand. Figure 5.1 shows the monthly average load for October, November, and 

December. The average loads in December are lower than other two months because 

of the lowest average temperature. The variation still continues in the month of 

January with unexpected tourists and New Year Celebrations. 
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Figure 5.1: Comparison of average load curves for October, November, and December, 2013 

 

Electricity consumptions are high from April to July due to high temperature. 

However, during the month of June, there are no holidays which results in similar 

pattern in the load. Fluctuations in the load are low during the months from August to 

November resulting in better forecasted results, thus low MAPEꞌ. Comparing between 

two data arrangements, DNN2 provides better accuracy than DNN1 for months which 

there are many holidays; April, May, July and December. Consequently, using the 

same day training dataset is good for predicting loads in months which have many 

holidays whereas everyday training dataset gives better performance for other months. 

Moreover, MAPEꞌ for DNN1 has almost twice percent error of DNN2 in December. 

Table 5.3: Comparing MAPEꞌ in 2013 for day type category of ANN, SVM, DNN1 and DNN2 

 ANN SVM DNN1 DNN2 

Weekdays 4.1471 4.3409 3.3206 5.2315 

Weekends 4.8538 5.7487 4.2273 3.1795 

Monday 5.6348 7.4658 4.5151 3.7454 

Holidays 10.2910 11.6927 10.6844 3.7034 

Bridging 

holidays 
6.2243 6.4526 5.9337 3.1571 

Total average 4.9649 5.6185 4.2544 4.3378 

 

Furthermore, we summarize the MAPEꞌ into six categories based on the load 

patterns including weekdays, weekends, Monday, holidays, bridging holidays, and 

total average to compare the results. According to Table 5.3, ANN, SVR and DNN1 
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get highest errors for holidays and bridging holidays because these load patterns are 

different from normal weekday load. The results of MAPEꞌ on Monday also have 

lower accuracy since we use Sunday as an input to forecast Monday. However, the 

load on Sunday are normally smooth and lower than the load on Monday. In addition 

to this, the results of MAPEꞌ on weekends are generally worse than weekdays for 

ANN, SVM and DNN1. This is also due to the same explanation that we use Friday as 

an input to forecast Saturday. By using the same day training dataset, it improves the 

forecasting accuracy for Monday, weekends, and bridging holidays. 

5.2.3 Case 3: Effect of Different Training Datasets 

The deep networks were trained by using different training datasets for 48-periods 

forecasting structure. In fig.9, horizontal axis represents date in May, while vertical 

axis denotes MAPE results by using different training datasets as same day and every 

day. Same day training datasets mean that only one-year Sunday datasets were used to 

predict Sunday in May. For example, if there are 51 Sunday in one year, we used 

51pairs of training inputs and targets to predict 4 Sunday in May. If there are 55 

Monday in one year, so we used 55 pairs for training and so on. On the other hand, 

everyday training datasets mean that the whole one year was used as training inputs 

and targets to predict all day in May. Results can be seen clearly in Table 5.4. From 

Table 5.4, we categorized as five groups: weekdays, weekends, holiday, Monday and 

total average. MAPE' results using same day data are significantly higher than using 

everyday data. As a result, forecasting using everyday training datasets can provide 

better performance for predictions. 
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Figure 5.2: MAPE' Curves by using Same Day and Everyday Training Datasets for May 

 

Table 5.4: MAPE' for Different Training Datasets 

 

Same Day Training 
Dataset 

Everyday Training 
Dataset 

Weekdays 4.3064 3.3650 

Weekends 8.2199 6.6333 

Holidays 9.1495 6.5979 

Monday 13.6502 9.4789 

Total Average 6.5741 5.0189 

 

Moreover, we predicted May by using different monthly training datasets. 

Figure 5.3 indicates MAPE results for five categories which are already mentioned 

above by using different monthly training datasets. In here, the nets were trained by 

different training datasets such as two months, four months, six months, eight months 

and ten months respectively. As a result, performance might be depended on training 

dataset. According to Figure 5.3, results are good for holidays and Monday. 

According to total average, results are getting gradually higher by increasing training 

months. Therefore, performance results might be depended on training datasets for 

forecasting. 
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Figure 5.3: MAPE' Curves by using different monthly training datasets 

 

Likewise, we predicted separate time period by using one-year separate time 

training datasets in May. We predicted load demand at 12:00AM, 11:00AM, 13:00PM 

and 17:00PM by using separate periods training datasets at 12:00AM, 11:00AM, 

13:00PM and 17:00PM respectively. Prediction curves for those periods are shown in 

following figures individually. All figures indicate that prediction curves are almost 

nearly as target curves except at 12:00AM. Therefore, our forecasting performance 

might also be depended on time periods because time is one of external factors 

affecting on load demand. 

 

Figure 5.4: Prediction Curve for 12:00AM in May 2013 
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Figure 5.5: Prediction Curve for 11:00AM in May 2013 

 

 

Figure 5.6: Prediction Curve for 13:00PM in May 2013  
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Figure 5.7: Prediction Curve for 17:00PM in May 2013 

 

5.2.4 Case 3: Effect of Different Activation Functions 

In our proposed model, we can also change many parameters during the training 

process. There are many activation functions to learn algorithms in the training 

process. These are sigmoid, tanh, rectified linear unit and drop out functions, etc. 

Some functions are good for regression, while some are good for classification. The 

networks can train by using hyper parameters and we used Rapidminer tool for deep 

neural network. In this tool, we can change parameters during training that it is shown 

in Figure 5.8. 
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Figure 5.8: Available Parameters during Training Process 

 

 

Figure 5.9: Prediction Curve using Different Activation Function 
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Figure 5.10: Prediction Curve for Different Hidden Layers using Tanh Activation Function 

 

 

Figure 5.11: Prediction Curve for Different Hidden Layers using Relu Activation Function 
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5.3 Results for Recurrent Neural Network 

In this study, the second proposed model of deep learning is recurrent neural network 

with long short-term memory. It is a great tool for modeling time series. Our original 

data have also been collected every 30minutes for 24hours. Therefore, RNNs seem to 

provide better performance for time series sequential data. During RNN training 

process, networks are used with cleaned data instead of original data to train and test 

the network. Afterwards, the proposed models are used to forecast load for each day 

in May 2013. The summarized results for each day are shown in the following figures 

individually. From all figures, horizontal axis and vertical axis represents time periods 

in minutes and load demand in MW. Time periods are depended on how many days in 

weekdays and weekends in May. For instance, there are four Monday, five 

Wednesday and four Sunday in May and so on. Prediction curves are divided into 

each day in weekdays and weekends.  

At first, Figure 5.12 shows prediction curve for Monday. It can be seen clearly 

that Monday load predictions are totally different from actual load demands. The next 

Figure 5.13 is prediction curve for Tuesday which can predict nearly as actual load. 

Next, predicted loads for Wednesday and Thursday are almost similar as actual load 

that are shown in Figure 5.14 and Figure 5.16 individually, otherwise Friday 

prediction curve is a little bit different from original. Moreover, Figure 5.17 and 

Figure 5.18 presents weekend’s prediction curves in May. Prediction curves in both 

Saturday and Sunday provides significantly overestimate of actual demand. As an 

overall result, load demands seem significantly dependent of different day of training 

and testing datasets. 
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Figure 5.12: Prediction Curve for Monday in May 2013 

 

 

Figure 5.13: Prediction Curve for Tuesday in May 2013 
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Figure 5.14: Prediction Curve for Wednesday in May 2013 

 

 

Figure 5.15: Prediction Curve for Thursday in May 2013 
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Figure 5.16: Prediction Curve for Friday in May 2013 

 

 

Figure 5.17: Prediction Curve for Saturday in May 2013 
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Figure 5.18: Prediction Curve for Sunday in May 2013 

 

Similarly, we also predicted separate time period by using one-year separate 

time training datasets in May. We predicted load demand at 12:00AM, 11:00AM, 

13:00PM and 17:00PM by using separate periods training datasets at 12:00AM, 

11:00AM, 13:00PM and 17:00PM respectively. Prediction curves for those periods 

are shown in following figures individually. All figures indicate that prediction curves 

are almost nearly as target curves except at 12:00AM. Therefore, our forecasting 

performance might also be depended on time periods because time is one of external 

factors affecting on load demand. 

 

Figure 5.19: Prediction Curve for 12:00AM in May 2013 
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Figure 5.20: Prediction Curve for 11:00AM in May 2013 

 

 

Figure 5.21: Prediction Curve for 13:00PM in May 2013 
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Figure 5.22: Prediction Curve for 12:00AM in May 2013 

 

5.4 Study of Different Deep Learning Models 

When we train both DNN and RNN with LSTM on new load and temperature data, 

both models provide sufficient performance for all months. According to the 

following result table, RNN with LSTM outperforms DNN because the data collected 

shows similarity with time series data collected for every 30 minutes and is shown in 

the Table 5.5 below. Though there are similar values for some months from both the 

models, the significant difference during certain months ensure the selection of RNN 

with LSTM is much better than the DNN model. Months like December and January, 

though showed errors with respect to the tourism influence, this proposed method 

clearly shows that the errors are reduced and the values are well presented. However, 

the month of April, shows similarity with results from DNN model along with the 

presence of seven holidays. 
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Table 5.5: Average Monthly MAPEꞌ for DNN and RNN with LSTM 

Months DNN RNN with LSTM 

Aug, 2016 6.7081 5.5765 

Sep, 2016 5.5765 4.6046 

Oct, 2016 5.4661 5.1345 

Nov, 2016 5.6945 5.2714 

Dec, 2016 7.3852 5.0978 

Jan, 2017 7.2926 5.1484 

Feb, 2017 6.4061 6.1342 

Mar, 2017 6.8167 5.1921 

Apr, 2017 5.7507 5.7545 

May, 2017 7.3764 5.9844 

Jun, 2017 7.8781 5.8278 

Jul, 2017 10.3636 9.1466 
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Chapter 6 

Conclusion 

In this research, we proposed the short-term electricity load forecasting using the deep 

neural network model. The original data from 2009 to 2013 is obtained from 

Electricity Generating Authority of Thailand (EGAT). The cleansed load data; 

temperature; day of week; and month of year are used as inputs. One-year training 

data sets are used to predict each daily load demand in 2013. We proposed two 

forecasting structures of deep neural network including 1-period forecasting structure 

and 48-periods forecasting structure with 100, 200, and 300 hidden layers and hidden 

nodes. The results show that deep neural network with 1-period forecasting structure 

provided higher accuracy than that with 48-periods forecasting structure. Finally, the 

proposed model provides more accurate load for time series predictions. 

Furthermore, we utilize three powerful forecasting techniques: deep neural 

network (DNN), artificial neural network (ANN) and support vector machine (SVM) 

to overcome nonlinear problems in STLF. All techniques are trained and tested using 

cleaned load data; temperature; day of week; and month of year to predict daily 

forecasts in 2013. The outcomes of DNN are compared with ANN and SVM with 

everyday training dataset. The empirical results reveal that the proposed DNN model 

outperforms ANN model and SVM model. 

There are two structures of training datasets, i.e., everyday training dataset and 

same day training dataset. All three models are trained with everyday training dataset 

that are used to predict each daily load demand for 2013. Moreover, the DNN model 

is also trained with the same day training dataset to compare the performance. The 

proposed DNN model with everyday training dataset obtains better forecasting 

performance compared to ANN model and SVM model for every month in 2013 

except December. Furthermore, DNN model also performs better for weekdays, 

weekends, Monday, and bridging holidays. This empirical result shows that DNN 

provides a promising model for electricity load forecasting in electric power industry. 

Additionally, we propose the DNN model using the same day training dataset 

to predict daily load. For this second training dataset, we use five inputs to train the 

model. After using same day training dataset, the DNN model improves MAPEꞌ 
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results for bridging holiday, Monday, and weekends. Moreover, it is also give higher 

accuracy for January and December where they normally have lowest accuracy 

comparing to other months of the year. It also provides better accuracy for months 

with many holidays. The forecast of December gets highest MAPEꞌ results since it has 

the lowest load demand because of the lowest temperature.  

Finally, we also propose RNN with LSTM to test on new data from December 

2013 to July 2017. After that, the outcomes of RNN with LSTM are compared to 

those of DNN. At that moment, RNN with LSTM outperforms DNN to solve time 

series problems for short-term load forecasting. For future research, different time 

series forecasting models or different arrangement of dataset may be applied to better 

forecasting performance. 
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Appendix A 

 

Python code: RNN with LSTM 

import numpy 

import matplotlib.pyplot as plt 

import pandas 

import math 

import pandas as pd 

 

from keras.models import Sequential 

from keras.layers import Dense, LSTM, Dropout 

from sklearn.preprocessing import MinMaxScaler 

from sklearn.metrics import mean_squared_error 

 

 

# convert an array of values into a dataset matrix 

 

def create_dataset(dataset, look_back=1): 

    dataX, dataY = [], [] 

    for i in range(len(dataset) - look_back-1): 

        a = dataset[i:(i + look_back), :] 

        dataX.append(a) 

        dataY.append(dataset[i + look_back, 4]) 

    return numpy.array(dataX), numpy.array(dataY) 

 

# fix random seed for reproducibility 

numpy.random.seed(7) 

 

 

# load the dataset 

dataframe = pandas.read_csv('TrainSun.csv', engine='python') 

dataset = dataframe.values 

 

#************************************************ 

 

train_size = int(len(dataset) * 0.72) 

test_size = len(dataset) - train_size 

train, test = dataset[0:train_size, :], dataset[train_size:len(dataset), :] 

print('train',train) 

print('test',test) 

 

 

# reshape into X=t and Y=t+1 

look_back = 48 

trainX, trainY = create_dataset(train, look_back) 

testX, testY = create_dataset(test, look_back) 

 

print('trainX',trainX) 

print('trainY',trainY) 

print('testX',testX) 

print('testY',testY) 

 

#*********************************************** 

 

# normalize the dataset 

scaler = MinMaxScaler(feature_range=(0, 1)) 

dataset = scaler.fit_transform(dataset) 

 

# split into train and test sets 

train_size = int(len(dataset) * 0.72) 

test_size = len(dataset) - train_size 
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train, test = dataset[0:train_size, :], dataset[train_size:len(dataset), :] 

 

# reshape into X=t and Y=t+1 

look_back = 48 

trainX, trainY = create_dataset(train, look_back) 

testX, testY = create_dataset(test, look_back) 

 

# reshape input to be  [samples, time steps, features] 

trainX = numpy.reshape(trainX, (trainX.shape[0], look_back, 5)) 

testX = numpy.reshape(testX, (testX.shape[0],look_back, 5)) 

 

# create and fit the LSTM network 

model = Sequential() 

model.add(LSTM(4, input_shape=(look_back,5))) 

model.add(Dense(1)) 

model.compile(loss='mean_squared_error', optimizer='adam') 

history= model.fit(trainX, trainY, epochs=100, batch_size=32) 

 

# make predictions 

trainPredict = model.predict(trainX) 

testPredict = model.predict(testX) 

 

# Get something which has as many features as dataset 

trainPredict_extended = numpy.zeros((len(trainPredict),5)) 

# Put the predictions there 

trainPredict_extended[:,4] = trainPredict[:,0] 

# Inverse transform it and select the 5rd column. 

trainPredict = scaler.inverse_transform(trainPredict_extended) [:,4] 

print('trainPredict',trainPredict) 

# Get something which has as many features as dataset 

testPredict_extended = numpy.zeros((len(testPredict),5)) 

# Put the predictions there 

testPredict_extended[:,4] = testPredict[:,0] 

# Inverse transform it and select the 5rd column. 

testPredict = scaler.inverse_transform(testPredict_extended)[:,4] 

print('testPredict',testPredict) 

 

trainY_extended = numpy.zeros((len(trainY),5)) 

trainY_extended[:,4]=trainY 

trainY=scaler.inverse_transform(trainY_extended)[:,4] 

 

testY_extended = numpy.zeros((len(testY),5)) 

testY_extended[:,4]=testY 

testY=scaler.inverse_transform(testY_extended)[:,4] 

 

# calculate root mean squared error 

trainScore = math.sqrt(mean_squared_error(trainY, trainPredict)) 

print('Train Score: %.2f RMSE' % (trainScore)) 

testScore = math.sqrt(mean_squared_error(testY, testPredict)) 

print('Test Score: %.2f RMSE' % (testScore)) 

print('train_size',train_size) 

print('test_size',test_size) 

# shift train predictions for plotting 

trainPredictPlot = numpy.empty_like(dataset) 

trainPredictPlot[:, :] = numpy.nan 

trainPredictPlot[look_back:len(trainPredict)+look_back, 4] = trainPredict 

 

# shift test predictions for plotting 

testPredictPlot = numpy.empty_like(dataset) 

testPredictPlot[:, :] = numpy.nan 
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testPredictPlot[len(trainPredict)+(look_back*2)+1:len(dataset)-1, 4] = 

testPredict 

## convert your array into a dataframe 

df = pd.DataFrame (trainPredict) 

dfTest = pd.DataFrame (testPredict) 

## save to xlsx file 

filepath = 'trainPredictSunday.xlsx' 

df.to_excel(filepath, index=False) 

testFile = 'testPredictSunday.xlsx' 

dfTest.to_excel(testFile, index=False) 

#plot 

serie,=plt.plot(scaler.inverse_transform(dataset)[:,4]) 

prediction_training,=plt.plot(trainPredictPlot[:,4],linestyle='--') 

prediction_test,=plt.plot(testPredictPlot[:,4],linestyle='--') 

plt.title('Electricity Load Forecasting') 

plt.ylabel('Load') 

plt.xlabel('Date') 

plt.legend([serie,prediction_training,prediction_test],['serie','Training','

test'], loc='upper right') 

plt.show() 

 

 


