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ABSTRACT

The simplex method is used to solve a linear programming problem which starts

at an initial basic feasible solution corresponding to an initial basis which is chosen

first. If the chosen initial basis gives a primal or dual feasible solution, then the sim-

plex method or the dual simplex method can start, respectively. Otherwise, artificial

variables are introduced to start the simplex method requiring more variables and needs

more computation. The perturbation simplex method was presented when an initial ba-

sis gives primal and dual infeasible solutions without using artificial variables. It starts

by perturbing the reduced costs of the objective function for the dual feasible, then the

dual simplex method is used. However, an appropriate perturbation value is not men-

tioned which it effects the choice of an entering variable. In this thesis, we propose

the zero-perturbation value for a selected entering variable. We start by choosing an

entering variable according to some pivot rule, then its reduced cost is set to zero. Next,

a leaving variable is chosen using the maximum ratio. From the computational results,

we found that determining the zero-perturbation value to the entering variable accord-

ing to some chosen pivot rule causes the number of iterations. Therefore, the efficiency

of the zero-perturbation simplex method depends on the pivot rule.

Keywords: Perturbation Simplex Method, Artificial Variable, Pivot Rule
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CHAPTER 1

INTRODUCTION

1.1 Linear programming problems

In the real-world problems, there are many problems seeking for their minimum

costs or maximum profits. They can be expressed as the functions of some certain

variables under some limitations. The mathematical programming algorithm is the pro-

cedure for searching the best solution from available solutions for the objective function

of the problem. Then, it can be defined as the following model.

max f (x)

s.t. gi(x) 6 0, i = 1, ...,m,
(1.1.1)

where f (x) is the objective function,

x is a vector of decision variables,

gi(x) is the function of ith constraint,

m is the number of constraints.

From (1.1.1), we would like to find the value of vector x such that f (x) attains

the maximum value subject to all constraints gi(x)6 0, ∀ i ∈ {1, ...,m}. If the decision

variable vector x satisfies all constraints, then x is called a feasible solution. The set of

all feasible solutions is called the feasible region. If the feasible region of the problem

is empty, then we say that the problem is infeasible.

One important case of the mathematical programming is a linear programming

which consists of a linear objective function under linear equality or inequality con-

straints and the sign restriction on each variable. For each variable x j, the sign restric-

tion can either say: x j > 0, x j 6 0, or x j unrestricted where j = 1, ...,n. Then, we can

write the maximization model of a general linear programming problem as follows:
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max c1x1 + c2x2 + · · · + cnxn

s.t. a11x1 + a12x2 + · · · + a1nxn 6 b1

a21x1 + a22x2 + · · · + a2nxn 6 b2
...

...
...

...

am1x1 + am2x2 + · · · + amnxn 6 bm

x1,x2, . . . ,xn > 0.

(1.1.2)

From (1.1.2), we let

c =


c1

c2
...

cn


, x =


x1

x2
...

xn


, b =


b1

b2
...

bm


, and A =


a11 a12 · · · a1n

a21 a22 · · · a2n
...

... · · · ...

am1 am2 · · · amn


.

Then, we can rewrite the linear programming model in the matrix form as fol-

lows:
max cT x

s.t. Ax 6 b,

x > 0,

(1.1.3)

where c is a column vector of coefficients of the objective function,

x is a column vector of decision variables,

b is a column vector of parameters which is called right-hand-side vector,

A is a coefficient matrix of constraints.

The solution to a linear programming problem depends on the objective function

and constraints. There are three possibilities of a solution for a linear programming

problem as follows:

1. A linear programming problem has the optimal solution which maximizes or

minimizes the objective function. For some cases, it has multiple optimal solu-

tions, but there is only one optimal objective value.
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2. A linear programming problem is unbounded when it has a feasible solution

made infinitely large of the objective value for the maximization problem or made

infinitely small of the objective value for the minimization problem.

3. If a linear programming problem has no solution, then it is infeasible.

There are plenty of methods which can solve a linear programming problem

such as the graphical method, the interior point method [1], the simplex method [2]

and the criss-cross algorithm [16]. For the graphical method, we start from drawing a

graph corresponding to all constraints. So, it is suitable for solving only two or three

dimensional linear programming problem. The simplex method and the interior point

method have been popularly used to solve multidimensional linear programming prob-

lems. The interior point method was presented by Karmarkar [1] in 1984. This method

is effective for solving a large problem with the sparse matrix and it guarantees that the

number of iterations is less than one hundred (see in [15]) while the simplex method is

effective for solving small and medium problems. However, the simplex method is also

appropriate for post-optimality analysis even though Klee and Minty [3] had shown the

worst case running time. As a result, many researchers are interested in improving the

performance of the simplex method.

1.2 Literature reviews

The simplex method was published by Dantzig [2], in 1947. It starts from a basic

feasible solution. If the origin point is feasible, then the simplex algorithm starts at this

point. Otherwise, artificial variables will be added to obtain the initial basic feasible

solution, so the number of variables is increased. Consequently, the following question

arises: can we solve such problems without using artificial variables? By this question,

many researchers have been attempting to improve the simplex algorithm by avoiding

the use of artificial variables.

In 1997, Arsham [7, 8] proposed the algorithm without using artificial variables.
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This algorithm composes of two phases; phase 1 searches for a basic feasible solution

while phase 2 starts the simplex method at a basic feasible solution from phase 1. How-

ever, in 1998, Enge and Hunh [9] presented a counterexample that Arsham’s algorithm

notified the infeasibility of a feasible linear programming problem.

In 2000, Pan [10] proposed an algorithm for solving a linear programming prob-

lem without using artificial variables. It starts by choosing an initial basis. If the basis

exhibits primal and dual infeasible solutions, then the reduced cost of the objective

function in the primal problem will be perturbed by a positive value to gain the dual

feasibility, and the dual simplex method will be performed. However, the appropriate

perturbation value was not mentioned.

In 2006, Arsham [11, 13] still proposed a new algorithm for solving a general

linear programming problem without introducing artificial variables. This algorithm

starts at the origin point with all nonnegative right-hand-side values when there exists

at least one 6 constraint, and all violated > constraints are relaxed. After the optimal

solution of the relaxed problem is found, the > constraints are restored to the relaxed

problem, and the dual simplex method is performed. However, if the problem does

not have the 6 constraint, then the original positive costs are changed to zero for dual

feasibility, and the dual simplex method is used. This step is similar to the perturbation

simplex method. Since this algorithm perturbs all reduced costs to zero, the degeneracy

occurs for the dual simplex method causing more iterations.

In that year, Corley et al. [12] presented the algorithm which is similar to Ar-

sham’s algorithm. Their algorithm starts by solving the sequence of the relaxed linear

programming problems until the optimal solution of the original problem was found.

The relaxed problem consists of the original objective function subject to a single con-

straint that makes the minimum cosine angle with the gradient vector of the objective

function. For each iteration, the relaxed constraint which has the smallest cosine angle

with the gradient vector of the objective function among those constraints will be added

and the dual simplex method is used. However, the limitation of this algorithm is that
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all parameters of the linear programming problem must be positive.

Later, in 2014, Boonperm and Sinapiromsaran [15] presented the artificial-free

simplex algorithm based on the non-acute constraint relaxation. This algorithm starts

by separating constraints into two groups; the group of acute constraints and the group

of non-acute constraints. Then, the relaxed problem is constructed by relaxing the non-

acute constraints which is called the non-acute constraint relaxation problem. They

proved that this relaxed problem is always feasible. So, artificial variables are not used.

After the relaxed problem is solved by the simplex method, the non-acute constraints

will be restored to find the optimal solution. However, for some cases, if the relaxed

problem is unbounded, then a constraint in the group of non-acute constraints is re-

stored into the problem one by one. If the solution satisfies all constraints, then it is

unbounded. Otherwise, the current basis gives the primal and dual infeasible solutions,

and the perturbation simplex method is used to solve the problem by perturbing all neg-

ative reduced costs to 10−6. From their computational results, they concluded that the

algorithm is slow when the relaxed problem is unbounded.

According to the above researches, the perturbation simplex method is used to

solve a linear programming problem when a basis gives primal and dual infeasible so-

lutions. However, a perturbation value of each work was proposed differently. So, the

central question in this thesis is how can we examine the suitable value for the per-

turbation simplex method. Since a perturbation value affects the choice of an entering

variable when the dual simplex method is used, an appropriate value for the perturba-

tion simplex method is examined. For choosing an entering variable of the dual simplex

method, it is done by the minimum ratio test, and the smallest value of the minimum

ratio is zero. Therefore, if we know that the nonbasic variable is suitable for entering

a basis, then we will set its reduced cost to zero while other negative reduced costs of

nonbasic variables are set to some positive constants. So, the suitable nonbasic variable

is always chosen to be an entering variable.

Consequently, in this thesis, we propose the zero perturbation value for the per-
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turbation simplex method. Our algorithm starts by choosing an entering variable ac-

cording to the pivot rule. Then, its reduced cost is set to zero while the others are set

to some positive values. Next, a leaving variable is chosen by using the maximum ratio

for maximum increased value of the chosen entering variable. The aim of the thesis

is to design the algorithm for solving a linear programming problem without using the

artificial variables, and it can reduce the computation for the simplex method.

1.3 Overviews

In this thesis, we design an algorithm for solving linear programming problems

without using the artificial variables. Before the proposed algorithm is described, we

acquaint the necessary geometric properties for comprehending the theory of a linear

programming problem such as a convex set, a polyhedral set, and a basic feasible so-

lution in Chapter 2. In addition, we present some current solution methods which are

used to solve linear programming problems such as the graphical method, the simplex

method and the perturbation simplex method. Moreover, we present the pivot rules

which are the criterions to choose a nonbasic variable for entering a basis, and a basic

variable leaves a basis.

In Chapter 3, we introduce the proposed method called the zero-perturbation

simplex method which improves Pan’s algorithm [10]. Furthermore, the illustrative

examples are presented.

Next, in Chapter 4, the efficiency of our algorithm by comparing the number

of iterations between our algorithm, the simplex method and the perturbation simplex

method is shown, and the results are discussed. Finally, we will conclude the findings

and present the future works.
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CHAPTER 2

SOLUTION METHODS

In this chapter, we will give some important definitions and theorems behind lin-

ear programming problems including the current and well-known methods for solving

linear programming problems. However, before the algorithm was designed, the format

of linear programming would be described. So, we first start by introducing the formats

of a linear programming problem.

2.1 Formats of a linear programming problem

Two general formats of a linear programming problem are the standard form

and the canonical form. For the simplex algorithm, it is designed to deal with the

standard form which is defined as follows:

Table of Standard Form

Maximization problem Minimization problem

max cT x min cT x

s.t. Ax = b s.t. Ax = b

x> 0 x> 0

Table of Canonical Form

Maximization problem Minimization problem

max cT x min cT x

s.t. Ax6 b s.t. Ax> b

x> 0 x> 0

Generally, an algorithm is designed to solve the problem in the specific form.

Hence, we need the ways to change the problem according to the required format of the

algorithm. So, we give the following techniques to convert it.
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Manipulation of a linear programming problem

A linear programming problem can be in many forms, and some algorithms deal

with the specified form. Then, we must manipulate the problem from one form to suit

the required form. The details of each manipulation are as follows:

1. Convert a minimization problem to maximization problem and vice versa:

min cT x ≡ −[ max −cT x],

max cT x ≡ −[ min −cT x].

2. Transform inequality constraints to equality constraints:

(a) We can transform an inequality constraint
n
∑
j=1

ai jx j 6 bi for i = 1, ...,m to an

equality constraint by adding a slack variable (si):
n

∑
j=1

ai jx j + si = bi, si > 0.

(b) We can transform an inequality constraint
n
∑
j=1

ai jx j > bi for i = 1, ...,m to an

equality constraint by subtraction a surplus variable (si):
n

∑
j=1

ai jx j− si = bi, si > 0.

3. Transform an equality constraint
n
∑
j=1

ai jx j = bi for i = 1, ...,m into two inequality

constraints:
n

∑
j=1

ai jx j 6 bi and
n

∑
j=1

ai jx j > bi.

4. If the variable x j can be negative, positive or zero, it is called unrestricted in

sign, then it is separated into two new variables as:

x j = x+j − x−j , x+j , x−j > 0.

Now, we have the techniques to change a linear programming problem to the

standard form which is appropriate to start the simplex method. Before the simplex

method is explained, we have to know about the important definitions and theorems of

a linear programming problem.
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2.2 Theoretical backgrounds

The following definitions and theorems are useful for the proposed method and

the simplex method.

2.2.1 Geometry of a linear programming problem

Definition 2.2.1 (Convex Set). The set X ⊆ Rn is called convex if and only if for all

x1,x2 ∈ X, we have λx1 +(1−λ)x2 ∈ X for all λ ∈ [0,1].

Figure 2.1: Example of convex and non-convex sets

For a linear programming problem, the convex set is important since its feasible

set is the convex set called polyhedral set which is the intersection of half-spaces. Then,

we begin with introducing a hyperplane and half-space.

Definition 2.2.2 (Hyperplane). Let a ∈ Rn be a constant vector in the n-dimensional

space Rn, and let b ∈ R be a constant scalar. The set of points

H = {x ∈ Rn|aT x = b}

is called a hyperplane in the n-dimensional space Rn. A vector a is called the normal

gradient vector of hyperplane H.

Definition 2.2.3 (Half-Space). Let a ∈ Rn be a constant vector in the n-dimensional
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space and let b ∈ R be a constant scalar. The set of points

Hl = {x|aT x6 b},

Hu = {x|aT x> b}

are called the half-spaces defined by the hyperplane aT x = b.

Definition 2.2.4 (Polyhedral Set). Let a1, ...,am ∈Rn be constant vectors and let b1, ...,bm ∈

R be constants. The set

P =
m⋂

i=1

Hi,

where

Hi = {x|aT
i x6 bi},

is called a polyhedral set.

Therefore, a polyhedral set is a set of the intersection of finite half-spaces. If it

is nonempty and bounded, then it is called a polytope. Every polytope has at least one

vertex on its corner, called an extreme point, which is defined below.

Definition 2.2.5 (Extreme Point of a Convex Set). Let C⊆Rn be a convex set. A point

x0 ∈ C is called an extreme point of C if there are no points x1 and x2 (x1 6= x0 or

x2 6= x0) in C such that x0 = λx1 +(1−λ)x2 for some λ ∈ (0,1).

Example 2.2.6. Consider the following inequalities

3x1− x2 > 5,

−2x1 +3x2 6 6,

−2x1 +9x2 > 5,

3x1 +5x2 > 48,

x1,x2 > 0.

The inequalities are half-spaces, and the set of the intersection forms the poly-

hedral set which is the shadowed region in Figure 2.2.

Moreover, we can see that x1 = [2 1]T , x2 = [3 4]T , x3 = [6 6]T , and x4 = [11 3]T

are the corners of the polytope. They are all the extreme points. �
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Figure 2.2: Polyhedral set of the example 2.2.6

Definition 2.2.7. Let P⊆ Rn be a polyhedral set defined by

P = {x ∈ Rn : Ax6 b}

where A ∈ Rm×n and b ∈ Rm. A point x0 ∈ P is an extreme point of P if and only if x0

lies on some n linearly independent hyperplanes from the set defining P.

Since all extreme points are the corners of the feasible region, they are possible

solutions of such problem. One important property of the extreme point can be stated

as the following theorem.

Theorem 2.2.8. If the feasible region is bounded, then there exists an optimal solution

that is an optimal extreme point.

From Theorem 2.2.8, we know that there will be the optimal solution which is

the extreme point. Thus, the simple technique that can use to find the optimal solution

is determining from all the extreme points. Then, their objective values are compared.

By this computing, the number of solved system for all possible extreme points is Cm,n

which wastes the time for searching all of them. So, many researchers have tried to

design the algorithms that is not necessary to consider all extreme points for solving

the problem. The simplex method is one of these method which starts at some extreme

point. The details will be explained.
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Next, we will describe the important theorem which can identify the solution of

linear programming problems. Since this theorem mentions about the dual problem, the

dual problem will be explained in the next section.

2.2.2 Duality

A linear programming problem always has an associated problem which is called

the dual problem, and the original linear programming problem is called the primal

problem. The primal and dual problems have the same set of parameters. One impor-

tant property of duality is that we can identify the solution of the original problem by

solving its dual. The dual problem is defined below.

Definition 2.2.9 (The Dual Problem). Consider the primal problem P in the canonical

form:
P : max cT x

s.t. Ax 6 b,

x > 0,

(2.2.1)

and its dual problem D can be written as the following:

D : min bT w

s.t. AT w 6 c.

w > 0,

(2.2.2)

where A ∈ Rm×n, c,x ∈ Rn, b ∈ Rm and w ∈ Rm which is called the dual variable.

Since the simplex method deals with the standard form, we can use the manip-

ulation of a linear programming problem to convert the standard form to the canonical

form as follows.

Consider the following primal problem P in the standard form:

P : max cT x

s.t. Ax = b,

x > 0.

(2.2.3)
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Then, the problem (2.2.3) is converted to the canonical form as the following:

P : max cT x

s.t. Ax 6 b,

−Ax 6 −b,

x > 0,

(2.2.4)

and its dual problem D can be written as follows:

D : min bT w1−bT w2

s.t. AT w1−AT w2 > c,

w1,w2 > 0.

(2.2.5)

Let w = w1−w2 where w1, w2 > 0. Then, the dual problem (2.2.5) can be

rewritten as the following:

D : min bT w

s.t. AT w > c,
(2.2.6)

where A ∈ Rm×n, c,x ∈ Rn, b ∈ Rm and w ∈ Rm.

Example 2.2.10. Consider the following linear programming problem in the standard

form:
max z = 13x1 +9x2

s.t. 3x1 +5x2 + s1 = 120

2x1 +2x2 +s2 = 160

x1 +s3 = 35

x1,x2,s1,s2,s3 > 0.

(2.2.7)

Since the problem (2.2.7) is in the standard form, the dual problem is written as

follows:
min 120w1 +160w2 +35w3

s.t. 3w1 +2w2 +w3 > 13

5w1 +2w2 > 9

w1,w2,w3 unrestricted.

(2.2.8)
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Consider the following primal problem P in the canonical form:

P : max cT x

s.t. Ax = b,

x > 0.

(2.2.9)

and its dual problem D is as follows:

D : min bT w

s.t. AT w 6 c.

w > 0,

(2.2.10)

where A ∈ Rm×n, c,x ∈ Rn, b ∈ Rm and w ∈ Rm.

Then, we can summarize the relationships between the primal and dual prob-

lems as below.

Lemma 2.2.11. Let x0 and w0 be feasible solutions of the primal problem P and the

dual problem D, respectively. Then,

cT x0 6 bT w0.

This is called the weak duality property.

Corollary 2.2.12. If x0 and w0 are feasible solutions of the primal problem P and the

dual problem D, respectively such that cT x0 = bT w0, then x0 and w0 are the optimal

solutions of the primal problem P and the dual problem D, respectively.

Corollary 2.2.13. If the primal problem P is unbounded, then the dual problem D is

infeasible. Similarly, if the dual problem D is unbounded then the primal problem P is

infeasible.

Corollary 2.2.14. If the primal problem P is infeasible, then the dual problem D is

either infeasible or unbounded. If the dual problem D is infeasible, then the primal

problem P is either infeasible or unbounded.
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Lemma 2.2.15. If a linear programming problem has the optimal solution, then both the

primal and dual problems have the optimal solutions (there exist the optimal solutions

x∗ and w∗, respectively) and

cT x∗ = bT w∗.

This is called the strong duality property

Moreover, if we have the optimal solution of the primal or the dual problem, then

we can always find the optimal solutions of the associated problem by the following

theorem called Karush-Kuhn-Tucker Optimality Conditions.

Theorem 2.2.16 (The Karush-Kuhn-Tucker Optimality Conditions (KKT conditions)).

Consider a linear programming problem:

P : max cT x

s.t. Ax = b,

x > 0,

(2.2.11)

where A ∈ Rm×n, b ∈ Rm, x ∈ Rn and c ∈ Rn. Then, x∗ ∈ Rn is an optimal solution to

the problem P if and only if there exists a vector w∗ ∈ Rm so that:

1. (Primal Feasibility)

Ax∗ = b

x∗ > 0,

2. (Dual Feasibility)

AT w∗ > c

w∗ unrestricted,

3. (Complementary Slackness)

w∗T (Ax∗−b) = 0

(cT −w∗T A)x∗ = 0.

By the KKT conditions, in condition 1 means that x∗ must be the feasible solu-

tion of the primal problem, condition 2 indicates that w∗ must be the feasible solution
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of the dual problem, and condition 3 requires that the objective values of the primal and

the dual problems are equal. Thus, if we have the optimal solution to the dual problem

w∗ then we can guarantee that the optimal solution of the primal problem exists by KKT

conditions.

2.3 Solution methods

After we know about the theory behind the linear programming problem, we will

present the methods for solving linear programming problems. First, we begin with the

graphical method.

2.3.1 Graphical method

Figure 2.3: Example of the graphical method

The graphical method is used to solve a small linear programming problem

which can plot a graph of the feasible region, and its steps are as follows:

1. Construct a graph and plot all constraint lines.
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2. Determine the valid side of each constraint line and specify the feasible region.

3. Plot the objective function line which is orthogonal with the coefficient of objec-

tive function vector to determine the direction of improvement.

4. Find the most attractive corner. The most attractive corner is the last point in the

feasible region touched by a line that is parallel to the objective function line.

5. Determine the optimal solution by algebraically calculating coordinates of the

most attractive corner.

6. Determine the value of the objective function for the optimal solution.

Example 2.3.1. Consider a linear programming problem:

min −3x1− x2

s.t. −3x1 + x2 6 3

2x1−4x2 6 4

x1 + x2 6 5

x1,x2 > 0.

(2.3.1)

From this example, we can plot a graph as Figure 2.4, and the shadowed area

is the feasible region. Then, we can see that the optimal solution is (x∗1,x
∗
2) = (4,1) with

the objective value z∗=−5. �

Although a linear programming problem which has more than 3 dimensions

cannot be solved by the graphical method because it is difficult to plot a graph, it can

be solved by the simplex method which is a popular method for solving a linear pro-

gramming problem. Additionally, we would like to improve the simplex method. So,

the simplex method will be described in details.

2.3.2 The simplex method

Before we give the details of the simplex method, we first give the definition of

a basic feasible solution that plays the key role in the simplex method.
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Figure 2.4: Feasible region of the linear programming problem in Example 2.3.1.

Definition 2.3.2. Consider a linear programming problem in the standard form:

P : max cT x

s.t. Ax = b,

x > 0,

(2.3.2)

where A ∈ Rm×n, x, c ∈ Rn and b ∈ Rm.

Let A = [B N] where B ∈Rm×m which B is a nonsingular matrix called a basic

matrix or basis and N ∈ Rm×(n−m) is called a nonbasic matrix. Then, the vector of

decision variables x is separated into 2 parts which are the basic variable vector xB ∈Rm

and the nonbasic variable vector xN ∈ Rn−m.

Let xN = 0. Then, the solution

xB = B−1b,

is called a basic solution of the system Ax = b.

If xB =B−1b> 0 and xN = 0, then the solution [xB xN ]
T is called a basic feasible

solution.
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From the previous section, we know that an extreme point can be the optimal

solution to the problem from Theorem 2.2.8. Thus, the relationship between the extreme

point and the basic feasible solution is given in to the following theorem.

Theorem 2.3.3. Let P= {x ∈ Rn : Ax = b, x > 0} where A ∈ Rm×n and b ∈ Rm, then

x is an extreme point of P if and only if x is a basic feasible solution of P.

Since a basic feasible solution is an extreme point which can be the optimal

solution, there exists a basic feasible solution which is optimal. Thus, the simplex

method will visit a basic feasible solution representing the associated extreme point

to search for the optimal solution. It starts with a basic feasible solution and moves

to the adjacent basic feasible solution which gives the better objective value until the

optimal solution is found. For each iteration, it chooses a nonbasic variable to enter the

set of basic variables called an entering variable. Next, a basic variable is chosen to

leave the set of basic variables called a leaving variable. After that, the optimality will

be verified until the optimal solution is found. The details of the simplex method are

explained below.

Before solving a linear programming problem by the simplex method, the prob-

lem must be in the standard form as follows:

max cT x

s.t. Ax = b,

x > 0,

(2.3.3)

where A ∈ Rm×n, x, c ∈ Rn and b ∈ Rm.

Next, the simplex tableau can be constructed by considering the problem (2.3.3).

First, we start with introducing a new variable z and let A = [B N] where B ∈ Rm×m,

N ∈ Rm×(n−m), and x = [xB xN ]
T > 0 where xB ∈ Rm, xN ∈ Rn−m. Then, the problem

(2.3.3) can be rewritten as follows:

max z = cT
BxB + cT

NxN

s.t. BxB +NxN = b,

xB,xN > 0.

(2.3.4)
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From the constraints of problem (2.3.4), we multiply B−1:

xB +B−1NxN = B−1b. (2.3.5)

Next, we can multiply this Equation (2.3.5) by cT
B :

cT
BxB + cT

BB−1NxN = cT
BB−1b. (2.3.6)

If we add this Equation (2.3.6) to the equation z− cT
BxB− cT

NxN = 0, then we have:

z+0T xB + cT
BB−1NxN− cT

NxN = cT
BB−1b, (2.3.7)

where 0 is the zero vector of the appropriate size. This Equation (2.3.7) can be written

as:

z+0T xB +(cT
BB−1N− cT

N)xN = cT
BB−1b (2.3.8)

Now, we can rewrite the problem (2.3.3) in the following form:

max z = cT
BB−1b− (cT

BB−1N− cT
N)xN

s.t. IxB +B−1NxN = B−1b,

xB,xN > 0.

(2.3.9)

From the problem (2.3.9), we can see that if we need to increase the value z

then we can consider the vector cT
BB−1N− cT

N . If cT
BB−1N− cT

N � 0, then the value of

some nonbasic variables can be increased. Otherwise, if we increase the value of some

nonbasic variable, then the value z may be decreased. So, the optimal solution is found

when cT
BB−1N− cT

N > 0. Then, we can represent the problem (2.3.9) as the following

tableau.

z xB xN RHS

z 1 0 cT
BB−1N− cT

N cT
BB−1b Row 0

xB 0 I B−1N B−1b Row 1 through m

It is called the initial tableau.

Let y j = B−1A: j where A: j is a column vector jth of A, z j = cT
By j and b = B−1b

where j ∈ IN , and z j−c j is called the reduced cost. Then, we illustrate the steps of the

simplex method as below.
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Main Steps of the Simplex Method

1. Let K = { j ∈ IN | z j− c j < 0}.

(a) If K =∅, then stop. The current solution is optimal.

(b) Otherwise, choose k ∈K and go to step 2.

2. Choose a leaving variable by examining yk where yk = B−1A.k.

(a) If yk 6 0, then the problem is unbounded.

(b) Otherwise, determine the index r as follows:

br

yrk
= min

16i6m

{
bi

yik
: yik > 0

}
.

This is called the minimum ratio test.

3. Update the tableau by pivoting at yrk called pivot element. Update the basic and

nonbasic variables where xk enters the basis and xBr leaves the basis, and repeat

the main steps.

Remark 2.3.4. For the minimization problem, we can solve by changing only step 1,

that is, let K = { j ∈ IN | z j− c j > 0}

Next, we will show the illustrative example which is solved by the simplex

method.

Example 2.3.5. Consider the following linear programming problem:

max z = 2x1 +6x2− x3

s.t. 3x1 + x2− x3 + s1 = 120

x1 +2x2 +2x3 +s2 = 160

x1,x2,x3,s1,s2 > 0.

(2.3.10)
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From the problem (2.3.10), we get

A=

 3 1 −1 1 0

1 2 2 0 1

 , b=

 120

160

 , cT =
[

2 6 −1 0 0
]

and x=



x1

x2

x3

s1

s2


.

It is easy to choose an initial basic feasible solution for starting the simplex

method because we have a set of slack variables s1 and s2. If we choose these variables

to be a basic feasible solution, then we have a basic matrix as an identity matrix which

is a simple way to choose a basic feasible solution. Then, we can construct the initial

simplex tableau with this basic feasible solution as follows:

z x1 x2 x3 s1 s2 RHS

z 1 -2 -6 1 0 0 0

s1 0 3 1 -1 1 0 120

s2 0 1 2 2 0 1 160

From the above tableau, we have K = {1 ,2}. Since K 6= ∅, we can choose

k ∈ K, that is, either x1 or x2 can be chosen an entering variable. Suppose that x1 is

chosen as the entering variable. Then, the column vector y1 is examined. Since there

exists yi2 > 0 for some i = 1,2, the minimum ratio test is used to determine a leaving

variable xBr as follows:

xBr =
br

yr1
= min

16i62

{
b1

y11
=

120
3

= 40,
b2

y21
=

160
1

= 160
}
.

The minimum ratio is 40 corresponding to r = 1, that is, s1 is chosen as the

leaving variable. So, the tableau is updated by pivoting at y11 as follows:

z x1 x2 x3 s1 s2 RHS

z 1 0 -16/3 1/3 2/3 0 80

x1 0 1 1/3 -1/3 1/3 0 40

s2 0 0 5/3 5/3 -1/3 1 120
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Next, the main steps are repeated until the optimal solution is found. Now, the

set K = {2} which is nonempty set. Then, x2 is chosen to be the entering variable,

and the column vector y2 is examined. Since there exists yi2 > 0 for some i = 1,2, the

minimum ratio test is used to determine a leaving variable as the following:

xBr =
br

yr2
= min

16i62

{
b1

y12
=

40
1/3

= 120,
b2

y22
=

120
5/3

= 72
}
.

Then, s2 is chosen to be the leaving variables. So, the updated tableau becomes:

z x1 x2 x3 s1 s2 RHS

z 1 0 0 39/5 -2/5 16/5 464

x1 0 1 0 -4/5 2/5 -1/5 16

x2 0 0 1 7/5 -1/5 3/5 72

From this tableau, the set K = {4} which is a nonempty set. Then, s1 is chosen

to be the entering variable, and there exists only y14 > 0. So, x1 is chosen to be the

leaving variable. The tableau is updated as follows:

z x1 x2 x3 s1 s2 RHS

z 1 1 0 7 0 3 480

s1 0 5/2 0 -2 1 -1/2 40

x2 0 1/2 1 1 0 1/2 80

From the above tableau, it has all nonnegative reduced costs. Then, the optimal

solution is found, and it is (x∗1,x
∗
2,x
∗
3,s
∗
1,s
∗
2) = (0,80,0,40,0) with z∗ = 480. The total

number of iterations is three. �
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From Example 2.3.5, we can see that x1 and x2 can enter the basis. The next

example is shown that the variable x2 is chosen to be an entering variable first.

Example 2.3.6. From the Example 2.3.5, the initial simplex tableau is constructed as

follows:

z x1 x2 x3 s1 s2 RHS

z 1 -2 -6 1 0 0 0

s1 0 3 1 -1 1 0 120

s2 0 1 2 2 0 1 160

ratio

120/1 = 120

160/2 = 80

Suppose that x2 is chosen as the entering variable, and s2 is chosen as a leaving

variable by the minimum ratio. Thus, the tableau is updated as follows:

z x1 x2 x3 s1 s2 RHS

z 1 1 0 7 0 3 480

s1 0 5/2 0 -2 1 -1/2 40

x2 0 1/2 1 1 0 1/2 80

Now, the current tableau has all nonnegative reduced costs. Therefore, we found

the optimal solution which is (x∗1,x
∗
2,x
∗
3,s
∗
1,s
∗
2) = (0,80,0,40,0) with z∗ = 480 from this

tableau. The total number of iterations is one. �

From Example 2.3.5 and Example 2.3.6, the orders of choosing the entering

variables are different. We can see that the total numbers of iterations of these examples

are also different. Thus, the order of choosing an entering variable affects to the number

of iterations. So, many researchers proposed the criterion for choosing an entering

variable called the pivot rule.

2.3.3 Pivot rules

The operation for moving a basic feasible solution to an adjacent basic feasible

solution is called the pivot rule. It starts by choosing a nonzero pivot element in a

nonbasic column. If the row contains this element, then it is divided by itself to change
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this element to 1. Then, the other entries in the column are updated to be 0. The variable

corresponding to the pivot column enters the set of basic variables called the entering

variable, and the variable being replaced leaves the set of basic variables called the

leaving variable. In addition, the set of basic variables is changed one by one element.

The criterion for choosing the nonbasic variable to enter a basis is important since it

affects the number of iterations.

There are many pivot rules for the simplex method. In this thesis, we focus

on only three rules, that are the Dantzig rule, the cosine rule and the largest-distance

pivot rule for choosing an entering variable. The details of each pivot rule are described

below.

I Dantzig Rule

Dantzig rule is a classic pivot rule for choosing an entering variable because it

considers only the reduced costs. For the maximization linear programming problems,

we choose a nonbasic variable which has the minimum negative reduced cost as an en-

tering variable. By this choice, the maximum rate for increasing the value of a nonbasic

variable is considered. In addition, the classical simplex method and the original pertur-

bation simplex method use this pivot rule to choose an entering variable. The example

of the simplex method with the Dantzig rule can see in the Example 2.3.6.

I Cosine Rule

The cosine rule proposed by Yeh and Corley [16] which is used to modify

the choice of the entering variable. It uses the primal-dual relationship by considering

primal variables which associate to dual constraints. Since many researches [2, 3, 4,

10] stated that the intersection between the constraints which are closest in angle to

the objective function gives the optimal solution or the nearby optimal solution, the

angles between the gradient vectors of each dual constraint and the gradient vector of

the dual objective function are considered. From Figure 2.5, we can see that the gradient
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vectors of constraints 2 and 3 are closest in angle to the gradient vector of the objective

function. Then, we choose these constraints to consider the intersection between them.

We observe that this intersection is the optimal solution of the dual problem. Thus, if

we choose the primal variables corresponding to these dual constraints enter the basis

then the optimal solution of the primal is found at this basis.

Figure 2.5: Graph of the dual problem

Consider the following linear programming problem:

P : max cT x

s.t. Ax = b,

x > 0.

(2.3.11)

Then, the dual problem can be written as follows:

D : min bT w

s.t. AT w > c,

w unrestricted .

(2.3.12)
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For each angle, we can compute as the following formula:

θ j = arccos
AT
· j ·b

‖A· j‖ · ‖b‖
,

where θ j is the angle between the gradient vector of the dual constraint j and the gradi-

ent vector of the dual objective function, and ‖·‖ is the Euclidean norm. After θ j for all

j = 1, ...,n are computed, the variable x j associated with the dual constraint j is chosen

to enter the basis. Their computational results showed that this rule is quite effective.

Next, we will show the example for the selection of an entering variable by the cosine

rule, and a leaving variable by the minimum ratio. Furthermore, the θ j for all j = 1, ...,n

are calculated only once at first and are used until the optimal solution is found.

Then, the steps of the simplex method according to the cosine rule are stated as

follows:

1. Let K = { j ∈ IN | z j− c j < 0}.

(a) If K =∅, then stop. The current solution is optimal.

(b) Otherwise, compute θ j for all j = 1, ...,n as the following:

θ j = arccos
AT
· j ·b

‖A· j‖ · ‖b‖
,

and go to step 2.

2. Choose k = argmin{θ j | j ∈ IN}.

3. Choose a leaving variable by examining yk where yk = B−1A.k.

(a) If yk 6 0, then the problem is unbounded.

(b) Otherwise, determine the index r as follows:

br

yrk
= min

16i6m

{
bi

yik
: yik > 0

}
.

This is called the minimum ratio test.
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4. Update the tableau by pivoting at yrk called pivot element. Update the basic

and nonbasic variables where xk enters the basis and xBr leaves the basis. Set

K = { j ∈ IN | z j− c j < 0}.

(a) If K =∅, then stop. The current solution is optimal.

(b) Otherwise, go to step 2.

Example 2.3.7. Consider the following linear programming problem:

max z = 2x1 +6x2− x3

s.t. 3x1 + x2− x3 + s1 = 120

x1 +2x2 +2x3 +s2 = 160

x1,x2,x3,s1,s2 > 0.

(2.3.13)

From this example, we construct the simplex tableau with a basic feasible solu-

tion xB = [s1 s2]
T as follows:

z x1 x2 x3 s1 s2 RHS

z 1 -2 -6 1 0 0 0

s1 0 3 1 -1 1 0 120

s2 0 1 2 2 0 1 160

Then, we have K = {1, 2} which is a nonempty set. Next, θ j for all j = 1, ...,n

are computed as follows:

Table 2.3.1: angle of each variable

x1 x2 x3 s1 s2

θ j (degree) 34.69 10.31 63.44 53.13 36.87

Since the dual problem of this problem can be plotted, the angles between the

gradient vector of each dual constraint and the gradient vector of the dual objective

function is exhibited as the following Figure 2.6:

Next, the entering variable xk is chosen by k = argmin{θ1, θ2, θ3}. From table

2.3.1, we have θ2 is the minimum value, that is, k = 2. Then, x2 is chosen to be the
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Figure 2.6: Graph of the Example 2.3.7

entering variable. Since there exists yi2 > 0 for some i = 1,2, the minimum ratio test is

used to determine a leaving variable as follows:

xBr =
br

yr2
= min

16i62

{
b1

y12
=

120
1

= 120,
b2

y22
=

160
2

= 80
}
.

The minimum ratio is 80 corresponding to r = 2. Then, s2 is chosen to be the

leaving variable. The updated tableau is as follows:

z x1 x2 x3 s1 s2 RHS

z 1 1 0 7 0 3 480

s1 0 5/2 0 -2 1 -1/2 40

x2 0 1/2 1 1 0 1/2 80

A basis of this tableau gives the primal and dual feasible solutions. Therefore,

the optimal solution is found at this tableau. �
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I Largest-Distance Pivot Rule

The largest-distance pivot rule is the pivot rule based on the normalized reduced

cost. The formula of this rule is given by:

β j =
z j− c j

‖A· j‖
,

where j ∈ IN and ‖·‖ is the Euclidean norm.

The variable x j for j ∈ IN which has the minimum value of β j is chosen as an

entering variable in each iteration.

For this pivot rule, the distance between the current basis and violated con-

straints in the dual problem is considered, and a primal variable corresponding to the

dual constraints which has the largest distance is chosen as an entering variable.

The steps of the simplex method according to the largest-distance pivot rule are

stated as the following:

1. Let K = { j ∈ IN | z j− c j < 0}.

(a) If K =∅, then stop. The current solution is optimal.

(b) Otherwise, compute β j for j ∈ IN as follows:

β j =
z j− c j

‖A· j‖
.

Choose k = argmin{β j| j ∈ IN} and go to step 2.

2. Choose a leaving variable by examining yk where yk = B−1A.k.

(a) If yk 6 0, then the problem is unbounded.

(b) Otherwise, determine the index r as follows:

br

yrk
= min

16i6m

{
bi

yik
: yik > 0

}
.

This is called the minimum ratio test.
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3. Update the tableau by pivoting at yrk called pivot element. Update the basic and

nonbasic variables where xk enters the basis and xBr leaves the basis, and go to

step 1.

For more understanding, we will demonstrate this rule by the following exam-

ple.

Example 2.3.8. Consider the following linear programming problem:

max z = 2x1 +6x2− x3

s.t. 3x1 + x2− x3 + s1 = 120

x1 +2x2 +2x3 +s2 = 160

x1,x2,x3,s1,s2 > 0.

(2.3.14)

From this example, we construct the simplex tableau with a basic feasible solu-

tion xB = [s1 s2]
T as follows:

z x1 x2 x3 s1 s2 RHS

z 1 -2 -6 1 0 0 0

s1 0 3 1 -1 1 0 120

s2 0 1 2 2 0 1 160

Then, the set K = {1,2} which is a nonempty set, and β j for j ∈ IN = {1,2,3}

is calculated as the following table:

x1 x2 x3

β j -0.63 -2.68 0.45

Next, the entering variable xk is chosen by k = argmin{β1, β2, β3}. Since β2 is

the minimum value, k = 2. So, x2 is chosen to be the entering variable, and there exists

yi2 > 0 for some i = 1,2. The minimum ratio test is used to determine a leaving variable

as follows:

xBr =
br

yr2
= min

16i62

{
b1

y12
=

120
1

= 120,
b2

y22
=

160
2

= 80
}
.
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Figure 2.7: Graph of the Example 2.3.8

The minimum ratio is 80 that corresponds to r = 2. Thus, s2 is chosen as the

leaving variable. The updated tableau is as follows:

z x1 x2 x3 s1 s2 RHS

z 1 1 0 7 0 3 480

s1 0 5/2 0 -2 1 -1/2 40

x2 0 1/2 1 1 0 1/2 80

From this tableau, the basis gives the primal and dual feasible solutions, that is,

we gain the optimal solution at this tableau. �

Since the dual problem of this example can be visualized a graph, the graph is

plotted as Figure 2.7:

From Figure 2.7, we can see that the current basis is associated with the ori-

gin point, and the violated constraints are the constraints 1 and 2. Then, the violated

constraint which is the largest distance from the origin point is the constraint 2. Thus,

we choose the primal variable x2 which corresponds to this constraint as an entering

variable, and the optimal solution is found.



Ref. code: 25605909031014SXI

33

2.3.4 Artificial variables

From the simplex method, it starts at a basic feasible solution. A simple basis

to get a basic feasible solution is an identity matrix when the right-hand-side vector is

nonnegative. However, some problem is difficult to choose an initial basis to start the

simplex method. Then, new variables are introduced for constructing the identity basis

to start the simplex method. The new variables are called artificial variables.

Consider the following linear programming problem in the standard form:

P : max cT x

s.t. Ax = b,

x > 0,

(2.3.15)

where b> 0.

Suppose that each constraint Ai:x = bi where Ai: is the row ith of matrix A

associates with an artificial variable xai . We can add the artificial variable xai to the ith

constraint as follows:

Ai:x+ xai = bi, (2.3.16)

Since bi > 0, we will require xai > 0. If xai = 0, then this is simply the original

constraint. Thus, if we can find values for the legitimate decision variables x and xai =

0, then constraint i is satisfied. If all artificial variables are zero, then the modified

constraints described by Equation (2.3.16) are satisfied, and we have identified an initial

basic feasible solution.

Theorem 2.3.9. Let x∗, x∗a be an optimal feasible solution to the problem. The problem

is feasible if and only if x∗a = 0 and Ax∗ = b, x∗ > 0.

After artificial variables are added into the problem, there are two popular meth-

ods for solving the problem that are the two-phase method and the big-M method.
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2.3.5 Two-phase simplex method

The two-phase simplex method is used to solve a linear programming problem

when artificial variables are introduced, and it composes of two phases:

Phase I finds a basic feasible solution,

Phase II starts the simplex method at the basic feasible solution from Phase I.

Obviously, we would like to make all artificial variables zero because we want

to identify an initial basic feasible solution. So, we write a new linear programming

problem as follows:

P1 : min 1T xa

s.t. Ax+ Imxa = b,

x, xa > 0,

(2.3.17)

where 1, xa ∈ Rm and Im ∈ Rm×m is an identity matrix.

Phase I is a linear programming problem. After we solve the problem (2.3.17),

there are two possible solutions for this phase. If x∗a 6= 0 appears in the solution of

Phase I, then the original problem is infeasible. Otherwise, that is x∗a = 0, there are two

possibilities:

1. If x∗a = 0 and is out of a basis, then the current basis at optimality of Phase I has only

vector x. Thus, we can specify a basic feasible solution x= [xB xN ]
T . Thereupon,

we can start Phase II with using this basic feasible solution.

2. If x∗a = 0 and within a basis at least one, then we begin Phase II with the opti-

mal tableau from Phase I which contains artificial variables. Moreover, we can

guarantee that no artificial variable will be assigned as an entering variable.



Ref. code: 25605909031014SXI

35

Now, we can solve a linear programming problem containing artificial variables

by using the two-phase method as the following steps.

The Steps of the Two-Phase Simplex Method

1. Convert maximization (or minimization) problem into the standard form:

max cT x

s.t. Ax = b,

x > 0,

(2.3.18)

with b> 0.

2. Introduce artificial variables xa and solve the Phase I problem:

min 1T xa

s.t. Ax+ Imxa = b,

x,xa > 0,

(2.3.19)

where 1, xa ∈ Rm and Im ∈ Rm×m is an identity matrix.

3. If x∗a = 0, then an initial basic feasible solution has been indicated. This solution

can be converted into a basic feasible solution and go to step 4. Otherwise, there

is no solution to the problem (2.3.18).

4. Start the simplex algorithm to solve the original problem by using the basic fea-

sible solution without assigning artificial variables to enter the basis which is

identified in step 3.

Example 2.3.10. Consider a linear programming problem:

max z =−x1−2x2

s.t. x1 +2x2 > 12

2x1 +3x2 > 20

x1,x2 > 0.

(2.3.20)
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Convert the problem to the standard form by substraction two surplus variables:

max z =−x1−2x2

s.t. x1 +2x2− s1 = 12

2x1 +3x2 −s2 = 20

x1,x2,s1,s2 > 0.

(2.3.21)

We see that it is difficult to choose an initial basic feasible solution. Obviously,

we cannot set x1 = x2 = 0 because surplus variables s1 = −12 and s2 = −20 which is

not feasible. Then, we will add two artificial variables (xa1 and xa2) into the problem

and construct the new problem as follows:

min xa1 + xa2

s.t. x1 +2x2− s1 +xa1 = 12

2x1 +3x2 −s2 +xa2 = 20

x1,x2,s1,s2,xa1,xa2 > 0.

(2.3.22)

Then, the problem (2.3.22) is solved by the simplex method. First, we choose

[xa1 xa2]
T to be an initial basic feasible solution. Therefore, we have

xB =

 xa1

xa2

 , xN =


x1

x2

s1

s2


, B =

 1 0

0 1

 , N =

 1 2 −1 0

2 3 0 −1

 ,

b =

 12

20

 , cT
B =

[
1 1

]
, and cT

N =
[

0 0 0 0
]
.

Compute cT
BB−1N− cT

N =
[

1 1
] 1 0

0 1

 1 2 −1 0

2 3 0 −1

−[ 0 0 0 0
]

=
[

3 5 −1 −1
]
,

B−1N =

 1 0

0 1

 1 2 −1 0

2 3 0 −1

=

 1 2 −1 0

2 3 0 −1

 ,
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B−1b =

 1 0

0 1

 12

20

=

 12

20

 ,

and cT
BB−1b =

[
1 1

] 1 0

0 1

 12

20

= 32.

Then, the initial tableau can be written as follows:

z x1 x2 s1 s2 xa1 xa2 RHS

z 1 3 5 -1 -1 0 0 32

xa1 0 1 2 -1 0 1 0 12

xa2 0 2 3 0 -1 0 1 20

In this case, we can choose either x1 or x2 as an entering variable. Suppose that

we choose x1 as the entering variable and compute the minimum ratio test:

z x1 x2 s1 s2 xa1 xa2 RHS

z 1 3 5 -1 -1 0 0 32

xa1 0 1 2 -1 0 1 0 12

xa2 0 2 3 0 -1 0 1 20

ratio

12/1 = 12

20/2 = 10

Then, xa2 is chosen to leave the basis. Thus, the updated tableau is as follows:

z x1 x2 s1 s2 xa1 xa2 RHS

z 1 0 1/2 -1 1/2 0 -3/2 2

xa1 0 0 1/2 -1 1/2 1 -1/2 2

x1 0 1 3/2 0 -1/2 0 1/2 10

Next, x2 is chosen as the entering variable and compute the minimum ratio test:

z x1 x2 s1 s2 xa1 xa2 RHS

z 1 0 1/2 -1 1/2 0 -3/2 2

xa1 0 0 1/2 -1 1/2 1 -1/2 2

x1 0 1 3/2 0 -1/2 0 1/2 10

ratio

2/(1/2) = 4

10/(3/2) = 20/3
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From the minimum ratio test, we have xa1 is the leaving variable and the updated

tableau becomes:

z x1 x2 s1 s2 xa1 xa2 RHS

z 1 0 0 0 0 -1 -1 0

x2 0 0 1 -2 1 2 -1 4

x1 0 1 0 3 -2 -3 2 4

From the above tableau, both artificial variables have been eliminated from the

basis and we have indicated the initial basic feasible solution to the original problem:

x1 = 4,x2 = 4,s1 = 0 and s2 = 0.

Then, we can use this initial basic feasible solution to start the simplex method,

and the simplex tableau becomes:

z x1 x2 s1 s2 RHS

z 1 0 0 1 0 -12

x2 0 0 1 -2 1 4

x1 0 1 0 3 -2 4

From this tableau, it is the optimal tableau, and the optimal solution to the orig-

inal problem is (x∗1,x
∗
2,s
∗
1,s
∗
2) = (4,4,0,0) with z∗ =−12. �

This is a simple example for solving a problem by the two-phase method. Fur-

thermore, we have another one popular method for solving a linear programming prob-

lem with artificial variables that is the big-M method.

2.3.6 Big-M method

The big-M method is used to solve a linear programming problem when artificial

variables are added like the two-phase simplex method. But, it is not necessary to

separate into two phases.

For the big-M method, after adding artificial variables, problem P (2.3.15) will
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be modified as follows:

PM : max cT x−M1T xa

s.t. Ax+ Imxa = b,

x, xa > 0,

(2.3.23)

where M is a large positive constant, and A ∈ Rm×n, x, c ∈ Rn, b, 1, xa ∈ Rm and

Im ∈ Rm×m is an identity matrix.

Remark 2.3.11. In the case of a minimization problem, the objective function in the

big-M method becomes:

min cT x+M1T xa, (2.3.24)

where M is a large positive constant, x, c ∈ Rn, and 1, xa ∈ Rm.

The problem PM can be solved by the simplex method when the initial basis is

the identity. So, we can conclude the solution after solving PM as follows:

- If the problem PM attains the optimal solution, then

I if x∗a = 0, then the optimal solution of the problem P is found.

I if x∗a 6= 0, then the problem P is infeasible.

- If the problem PM is unbounded, then

I if x∗a = 0, then the problem P is unbounded.

I if x∗a 6= 0, then the problem P is infeasible.

For more understanding, the example for solving by the big-M method is illus-

trated.

Example 2.3.12. Consider a linear programming problem:

min z = x1 +2x2

s.t. x1 +2x2 > 12

2x1 +3x2 > 20

x1,x2 > 0.

(2.3.25)
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Convert the problem to the standard form by subtraction two surplus variables:

min z = x1 +2x2

s.t. x1 +2x2− s1 = 12

2x1 +3x2 −s2 = 20

x1,x2,s1,s2 > 0.

(2.3.26)

Since this problem is the minimization problem, a new problem for the big-M

method becomes:

min z = x1 +2x2 +M1xa1 +M2xa2

s.t. x1 +2x2− s1 +xa1 = 12

2x1 +3x2 −s2 +xa2 = 20

x1,x2,s1,s2,xa1,xa2 > 0,

(2.3.27)

where M is a large positive number.

Let xa1 and xa2 be an initial basic feasible solution, then we construct the initial

tableau as follows:

z x1 x2 s1 s2 xa1 xa2 RHS

z 1 3M-1 5M-2 -M -M 0 0 32M

xa1 0 1 2 -1 0 1 0 12

xa2 0 2 3 0 -1 0 1 20

ratio

12/1 = 12

20/2 = 10

From the above tableau, x1 and x2 can enter a basis. Suppose that we choose x1

as the entering variable and xa2 as the leaving variable by minimum ratio test. Then, the

updated tableau becomes:

z x1 x2 s1 s2 xa1 xa2 RHS

z 1 0 (M-1)/2 -M (M-1)/2 0 -(3M-1)/2 2M+10

xa1 0 0 1/2 -1 1/2 1 -1/2 2

x1 0 1 3/2 0 -1/2 0 1/2 10

ratio

2/0.5 = 4

10/1.5 = 20/3

Next, we choose x2 as the entering variable and xa1 as the leaving variable. We

can update the tableau as follows:
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z x1 x2 s1 s2 xa1 xa2 RHS

z 1 0 0 -1 0 −M −M 12

x2 0 0 1 -2 1 2 -1 4

x1 0 1 0 3 -2 -3 2 4

From the above tableau, it is the optimal tableau and the optimal solution to the

original problem is (x∗1,x
∗
2,s
∗
1,s
∗
2) = (4,4,0,0) with z∗ = 12. �

From the previous examples, the simplex method can start when artificial vari-

ables are added first. Nevertheless, if we have the basis which gives the dual feasible

solution, then we do not need to add artificial variables into the problem. In addition,

we can use the method called the dual simplex method to solve this problem.

2.3.7 The dual simplex method

The dual simplex method is used when an initial basis gives the dual feasible

solution while the primal solution is infeasible.

Now, we have the dual feasible solution. From the KKT conditions, we need to

find the primal feasible solution.

Consider the following linear programming problem:

P : max cT x

s.t. Ax = b

x > 0,

(2.3.28)

where A ∈ Rm×n, x, c ∈ Rn and b ∈ Rm.

Let A = [B N] where B∈Rm×m is a nonsingular matrix and N∈Rm×(n−m), and

x= [xB xN ]
T where xB ∈Rm, xN ∈Rn−m. The initial simplex tableau can be constructed

as the following tableau.

z xB xN RHS

z 1 0 cT
BB−1N− cT

N cT
BB−1b Row 0

xB 0 I B−1N B−1b Row 1 through m
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Consider the dual problem of the problem P as follows:

D : min bT w

s.t. AT w > c,

w unrestricted .

(2.3.29)

From the initial simplex tableau, we can consider cT
BB−1N− cT

N . Let wT =

cT
BB−1, z j − c j = wT A: j − c j for j ∈ IN . If z j − c j > 0 for all j ∈ IN , then we get

wT A: j− c j > 0 that is wT A: j > c j for all j ∈ IN . It implies that the dual solution is

feasible.

Next, the steps of the dual algorithm can be summarized below.

The Steps of the Dual Simplex Algorithm

1. Choose an initial basis B which cT
BB−1A· j−c j > 0 for all j ∈ IN , where IN is the

index set of nonbasic variables to construct the initial simplex tableau.

2. If b = B−1b> 0, then the optimal solution is found and stop.

Otherwise, the dual problem is feasible ( since z j− c j > 0 ). Go to step 3.

3. Choose a leaving variable xBr by selecting the pivot row r where

br = min {bi < 0 | i = 1, ...,m}.

4. Examine yr j < 0 for j ∈ IN to choose the entering variable xk by using the follow-

ing minimum ratio test:

zk− ck

|yrk|
= min

{
z j− c j

|yr j|
: j ∈ IN ,yr j < 0

}
.

5. If no an entering variable can be selected, then the dual problem is unbounded

and the primal problem is infeasible and stop. Otherwise, pivot on element yrk,

xk enters and xBr leaves the basis, and return to step 2.
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Example 2.3.13. Consider the following linear programming problem:

max z =−x1− x2

s.t. 2x1 + x2− s1 = 4

x1 +2x2 −s2 = 2

x1,x2,s1,s2 > 0.

(2.3.30)

We can construct the initial simplex tableau for the dual simplex algorithm as

follows:

z x1 x2 s1 s2 RHS

z 1 1 1 0 0 0

s1 0 -2 -1 1 0 -4

s2 0 -1 -2 0 1 -2

From the initial tableau, the dual solution is feasible while the primal solution

is infeasible. So, we can use the dual simplex method. First, we can choose a leaving

variable which is either s1 or s2. Then, the most negative value is chosen as the leaving

variable, say s2. Then, an entering variable is chosen by computing:

z1− c1

|a21|
=

1
|−1|

and
z2− c2

|a22|
=

1
|−2|

.

Clearly, x2 is the entering variable. After we update the tableau, we get the following

tableau.

z x1 x2 s1 s2 RHS

z 1 1/2 0 0 1/2 -1

s1 0 -3/2 0 1 -1/2 -3

x2 0 1/2 1 0 -1/2 1

From this tableau, the dual problem is still feasible while the primal problem is

infeasible. Then, we choose s1 as the leaving variable. From the minimum ratio test,

we will choose x1 to enter the basis, and the final tableau is as follows:
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z x1 x2 s1 s2 RHS

z 1 0 0 1/3 1/3 -2

x1 0 1 0 -2/3 1/3 2

x2 0 0 1 1/3 -2/3 0

This tableau is optimal since we have achieved primal and dual feasibilities and

the complementary slackness. �

2.3.8 The perturbation simplex method

From the dual simplex method, it is used to solve a problem without using ar-

tificial variable when an initial basis gives the dual feasible solution while the primal

solution is infeasible. For some problem, an initial basis gives both the primal and dual

infeasible solutions, so the dual simplex method cannot used to solve this case. How-

ever, Pan [10] proposed the method to solve this case without using artificial variables

called the perturbation simplex method, and the details of this method are described

below.

Consider a linear programming problem:

P : max cT x

s.t. Ax = b,

x > 0.

(2.3.31)

When an initial basis B gives the primal and dual infeasible solutions, that is,

there are some negative reduced cost and bi < 0 for i = 1, ...,m. Then, let

d = min{bi | i = 1, ...,m} and p = min{z j− c j | j = 1, ...,n}.

So, the perturbation simplex method is used when both d < 0 and p < 0. Then,

the main steps of this method can be stated as follows:
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The Steps of the Perturbation Simplex Method

1. Perturb the negative reduced costs to a single positive constant.

2. Perform the dual simplex method until the primal feasible solution is found.

3. Restore the original objective function and perform the simplex method to find

the optimal solution.

Example 2.3.14. Consider a linear programming problem:

min z =−4x1− x2

s.t. −x1 +4x2 +x3 = −4

−2x1−5x2 +x4 = −18

2x1− x2 +x5 = 22

x1,x2,x3,x4,x5 > 0.

(2.3.32)

First, we choose IB = {3,4,5} as the index set of the initial basis and construct

the initial simplex tableau.

z x1 x2 x3 x4 x5 RHS

z 1 -4 -1 0 0 0 0

x3 0 -1 4 1 0 0 -4

x4 0 -2 -5 0 1 0 -18

x5 0 2 -1 0 0 1 22

We see that d = −18 and p = −4. So, the initial basis of this tableau gives the

primal and dual infeasible solutions. First, the negative reduced costs of x1 and x2 are

set to a single positive constant. Suppose that this constant is 1, then the new tableau is

as follows:

z x1 x2 x3 x4 x5 RHS

z 1 1 1 0 0 0 0

x3 0 -1 4 1 0 0 -4

x4 0 -2 -5 0 1 0 -18

x5 0 2 -1 0 0 1 22
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Then, the dual simplex method can be performed. Suppose that we choose x4 as

the leaving variable. Then, we see that x1 and x2 can enter the basis because y21 < 0 and

y22 < 0. If we use the Dantzig rule to choose an entering variable, it depends on only

coefficients of a leaving variable. Then, x2 is chosen as the entering variable. After the

tableau is updated , we get the following tableau.

z x1 x2 x3 x4 x5 RHS

z 1 0.6 0 0 0.2 0 -3.6

x3 0 -2.6 0 1 0.8 0 -18.4

x2 0 0.4 1 0 -0.2 0 3.6

x5 0 2.4 0 0 -0.2 1 25.6

From this tableau, the basis does not give the primal feasible solution then the

dual simplex method is used to continue solving the problem. Then, x3 and x1 are

chosen to be the leaving variable and the entering variable, respectively. So, the updated

tableau is as follows:

z x1 x2 x3 x4 x5 RHS

z 1 0 0 0.23 0.39 0 -7.85

x1 0 1 0 -0.39 -0.31 0 7.08

x2 0 0 1 0.15 -0.08 0 0.77

x5 0 0 0 0.92 0.54 1 8.62

From the above tableau, we can see that the basis gives both the primal and dual

feasible solutions. Then, the coefficients of the original objective function are restored

into the tableau. The updated tableau is as follows:

z x1 x2 x3 x4 x5 RHS

z 1 0 0 -1.39 -1.31 0 29.08

x1 0 1 0 -0.39 -0.31 0 7.08

x2 0 0 1 0.15 -0.08 0 0.77

x5 0 0 0 0.92 0.54 1 8.62
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Afterward, the simplex method is performed in 3 iterations. Then, the optimal

tableau attains:

z x1 x2 x3 x4 x5 RHS

z 1 0 0 0.86 0 2.43 50

x1 0 1 0 0.14 0 0.57 12

x2 0 0 1 0.29 0 0.14 2

x5 0 0 0 1.71 1 1.86 16

Therefore, the optimal solution of the original problem is found in 5 iterations. It

is (x∗1,x
∗
2,x
∗
3,x
∗
4,x
∗
5) = (12,2,0,0,16) with z∗ = 50. �

Since this method perturbs the negative reduced costs to a single positive con-

stant, the entering variable will depend on only coefficients of a leaving variable. For

some cases, choosing the inappropriate entering variable will cause more iterations and

computation. So, in this thesis, we propose the appropriate selection for the perturbation

simplex method according to the effective pivot rule.
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CHAPTER 3

THE ZERO-PERTURBATION SIMPLEX METHOD

In this chapter, we will present the algorithm that is used to solve a linear pro-

gramming problem without using artificial variable. This algorithm is improved from

Pan’s algorithm [10] by perturbing the reduced cost of the chosen entering variable to

zero called the zero-perturbation value and choosing a leaving variable by the maximum

ratio. Then, we begin with the zero-perturbation value.

3.1 The zero-perturbation value

Consider the following linear programming problem:

max cT x

s.t. Ax = b,

x > 0,

(3.1.1)

where A ∈ Rm×n, x, c ∈ Rn, and b ∈ Rm.

Let A = [A:1,A:2, ...,A:n] = [B N] where B ∈ Rm×m which is a nonsingular

matrix, N ∈ Rm×(n−m), and x = [xB xN ]
T where xB ∈ Rm, xN ∈ Rn−m. Let IB and IN be

the index sets of basic variables and nonbasic variables, respectively. First, the problem

(3.1.1) can be written as follows:

max z = cT
BxB + cT

NxN

s.t. BxB +NxN = b,

xB, xN > 0.

(3.1.2)

Let y j = B−1A: j, z j = cT
By j where j ∈ IN , b = B−1b and z0 = cT

BB−1b. Then,
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the problem (3.1.2) can be rewritten as follows:

max z+ ∑
j∈IN

(z j− c j)x j = z0

s.t. xB + ∑
j∈IN

(y j)x j = b,

xB > 0, x j > 0, j ∈ IN .

(3.1.3)

Next, we will consider the existence of a basic feasible solution for the problem

(3.1.3) by letting

P = {i | bi < 0, i = 1, ...,m}, (3.1.4)

D = { j | z j− c j < 0, j ∈ IN}. (3.1.5)

From the dual simplex section, we show that the dual solution is feasible when

z j− c j > 0 for all j ∈ IN . Therefore, both the dual and primal problems of (3.1.3) have

basic feasible solutions when D and P are empty. Assume that neither the primal nor the

dual problems of (3.1.3) have basic feasible solutions, then the simplex method and the

dual simplex method cannot start. However, the primal-perturbation simplex method

can start for solving the problem without using artificial variable. This algorithm starts

by perturbing the negative reduced costs of the objective function for the dual feasibility

as the following value.

Let

z′j− c′j =

 δ j, j ∈ D,

z j− c j, j ∈ IN/D
(3.1.6)

where δ j is a positive constant.

Then, the dual simplex method is performed until the primal feasible solution

will be found. Since this method perturbs the negative reduced costs to a single positive

constant, the choosing entering variable can be chosen randomly among all negatives

of z row. For some cases, if the entering variable is inappropriate then it causes more

iterations. So, if we know the suitable nonbasic variable, we should choose this variable

to enter the basis in order to gain the speed, and the number of iterations might be

decreased. Therefore, the algorithm starts by selecting an entering variable according

to the chosen pivot rule: say xk.
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Next, we will revise the Equation (3.1.6) as follows:

z′j− c′j =


0, j = k,

δ j, j ∈ D/{k},

z j− c j, j ∈ IN/D,

(3.1.7)

where δ j is a positive constant.

Obviously, the dual problem of (3.1.3) has a basic feasible solution. Then, we

can use the dual simplex method to solve it, and no need to use any artificial variable.

Since we improve the perturbation simplex method by perturbing the chosen reduced

cost to zero, this procedure is called the zero-perturbation simplex method.

3.2 The maximum ratio

For the dual simplex method, it can choose any leaving variable which its bi < 0

for some i = 1, ...,m. Since the problem (3.1.1) requires to increase the objective value,

the increased maximum value of the chosen entering variable xk is examined. This

maximum value of xk can be considered from the ratio between bi < 0 and yik < 0 as

follows:
br

yrk
= max

16i6m

{ bi

yik
: bi, yik < 0

}
, (3.2.1)

This is called the maximum ratio, and the leaving variable xBr is chosen by this

ratio.

After we have the entering variable xk and the leaving variable xBr , the simplex

tableau is pivoted at yrk. This complete a single iteration. Next, these steps are repeated

until bi > 0 for all i = 1, ...,m. After that, the optimal solutions for the problem (3.1.1)

can be recovered by restoring the original coefficients of the objective function. Since

such substitution does not affect to the right-hand-side values, the primal problem re-

mains feasible. Thus, if z j− c j > 0 for all j ∈ IN then the optimal solution is already

found. Otherwise, we continue solving with the simplex method.
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In summary, before the algorithm starts, the basis B is chosen. Then, the simplex

tableau can be constructed as the follows:

z xB xN RHS

z 1 0 cT
BB−1N− cT

N cT
BB−1b

xB 0 I B−1N b

(3.2.2)

The initial simplex tableau can indicate that a basis gives the primal or dual

infeasible solution, that is, there exist some negative reduced cost or bi < 0 for some

i = 1, ...,m.

Let p be the minimum value of the right-hand-side values corresponding to basic

variable xB:

p = min
i∈{1,...,m}

{bi}, (3.2.3)

and d be the minimum value of the reduced costs:

d = min
j∈{1,...,n}

{z j− c j}. (3.2.4)

Then, we notice the problem can be solved by considering values of p and d as

the following four cases:

Table 3.2.1: all possible cases for the basis

cases p d Primal Problem Dual Problem Method

1 > 0 > 0 feasible feasible Optimal solution found

2 > 0 < 0 feasible infeasible Simplex method

3 < 0 > 0 infeasible feasible Dual simplex method

4 < 0 < 0 infeasible infeasible Zero-perturbation

simplex method

From Table 3.2.1, in case 1 means that the initial basis gives the primal and

dual feasible solutions. Thus, the optimal solution is found. In case 2, p > 0 and

d < 0 indicate that an initial basis gives the primal feasible solution while the dual

solution is infeasible. Then, the simplex method is performed. Next case, an initial
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basis gives the dual feasible solution, but the primal solution is infeasible. So, we

continue solving with the dual simplex method. In the last case, both d and p are less

than zero, that is, an initial basis gives both the primal and dual infeasible solutions.

Then, the zero-perturbation simplex method is used to solve the problem without using

artificial variables. This method starts by selecting the effective pivot rule to choose an

entering variable and set its reduced cost as zero while other negative reduced costs are

set to a single positive value. By this setting, we ensure that the appropriate nonbasic

variable will always enter the basis since zero is the possible minimum value of the

minimum ratio. In addition, a leaving variable will be chosen by the maximum ratio

to increase the value of the chosen entering variable as possible. Then, the steps are

repeated until the primal is feasible. After that, the original coefficients of the objective

function are restored, and the simplex method is performed until the optimal solution

will be found. All steps of this algorithm will be summarized in the next section.

3.3 The steps of algorithm

Before our algorithm starts, the linear programming problem must be set to the

maximization problem in the standard form. Then, the main steps of our algorithm can

be summarized as follows:

Step 1: Choose the initial basis B and construct the initial simplex tableau.

Step 2: Set p = min
i∈{1,...,m}

{bi} and d = min
j∈{1,...,n}

{z j− c j}.

Case 1: If p > 0 and d > 0, then the optimal solution is found and stop the

algorithm.

Case 2: If p> 0 and d < 0, then perform the simplex method until the optimal

solution is obtained.

Case 3: If p < 0 and d > 0, then perform the dual simplex method until the

optimal solution is found.
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Case 4: If p < 0 and d < 0, then perform the zero-perturbation simplex method.

Sub-algorithm of the zero-perturbation simplex method

4.1: Let I′N = IN and n = |I′N |.

4.2: Choose an entering variable according to the pivot rule: say xk.

4.3: Examine yk = B−1A:k.

- If yik < 0 for i = 1, ...,m, then choose a leaving variable by the maximum ratio

is given by:
br

yrk
= max

16i6m

{
bi

yik
: bi,yik < 0

}
and go to step 4.4.

- Otherwise,

- if n 6= 0, then set n = n−1, I′N = I′N−{k} and go to step 4.2.

- Otherwise, the problem is infeasible and stop the algorithm.

4.4: Update the simplex tableau with pivot element yrk.

4.5: If there exists bi < 0 for i = 1, ...,m, then set I′N = IN , n = |IN | and go to step 4.2.

Otherwise, go to step 4.6.

4.6: Restore the original coefficient of the objective function by computing z j− c j =

wT A: j− c j for all j which is perturbed. Perform the simplex method until the

optimal solution is found and stop the algorithm.

3.4 Illustrative examples

The following two examples are shown the step by step of the proposed algo-

rithm with the cosine rule and the largest-distance pivot rule, respectively.
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Example 3.4.1. Consider a linear programming problem:

max z = 4x1 + x2

s.t. −x1 +4x2 +x3 = −4

−2x1−5x2 +x4 = −18

2x1− x2 +x5 = 22

x1, x2, x3, x4, x5 > 0

(3.4.1)

First, we choose IB = {3,4,5} to be an index of the initial basis and construct

the initial simplex tableau as follows:

z x1 x2 x3 x4 x5 RHS

z 1 -4 -1 0 0 0 0

x3 0 -1 4 1 0 0 -4

x4 0 -2 -5 0 1 0 -18

x5 0 2 -1 0 0 1 22

From this tableau, we have P= {1, 2} and D= {1, 2}which are nonempty sets,

and p =−18 < 0 and d =−4 < 0. It means that the initial basis gives both the primal

and dual infeasible solutions. Thus, we can use the zero-perturbation simplex method

to solve this problem. In this example, we use the cosine rule to choose an entering

variable. First, θ j for all j = 1, ...,n are extracted as the following table.

x1 x2 x3 x4 x5

θ j 12.84 73.74 98.05 129.05 39.65

Since IN = {1,2}, we set I′N = IN = {1,2} and n = |I′N | = 2. From the above

table, we can see that x1 has the minimum value of θ j for j ∈ IN , so it is chosen to be

the entering variable, and set z1− c1 = 0. Moreover, there exists z2− c2 = −1 < 0 in

the initial tableau, so we set z2−c2 = 1. After that, the maximum ratio is computed for

choosing a leaving variable which is as follows:



Ref. code: 25605909031014SXI

55

z x1 x2 x3 x4 x5 RHS

z 1 0 1 0 0 0 0

x3 0 -1 4 1 0 0 -4

x4 0 -2 -5 0 1 0 -18

x5 0 2 -1 0 0 1 22

ratio

(−4)/(−1) = 4

(−18)/(−2) = 9

-

From this tableau, the maximum ratio is in x4’s row. Then, we choose x4 as the

leaving variable and update the tableau as follows:

z x1 x2 x3 x4 x5 RHS

z 1 0 1 0 0 0 0

x3 0 0 6.5 1 -0.5 0 5

x1 0 1 2.5 0 -0.5 0 9

x5 0 0 -6 0 1 1 4

From table 4, the basis which has an index set IB = {3, 1, 5} gives the primal

feasible solution. Then, the original coefficients of the objective function are restored

into the simplex tableau, and this tableau becomes:

z x1 x2 x3 x4 x5 RHS

z 1 0 9 0 -2 0 36

x3 0 0 6.5 1 -0.5 0 5

x1 0 1 2.5 0 -0.5 0 9

x5 0 0 -6 0 1 1 4

We see that the reduced costs of the current tableau have a negative value. Then,

the simplex method is used by choosing x4 as the entering variable and x5 as the leaving

variable. So, the new tableau becomes:

z x1 x2 x3 x4 x5 RHS

z 1 0 -3 0 0 2 44

x3 0 0 3.5 1 0 0.5 7

x1 0 1 -0.5 0 0 0.5 11

x4 0 0 -6 0 1 1 4
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Next, x2 is chosen as the entering variable and x3 as the leaving variable. The

tableau is updated as follows:

z x1 x2 x3 x4 x5 RHS

z 1 0 0 0.9 0 2.4 50

x2 0 0 1 0.3 0 0.1 2

x1 0 1 0 1 0 0.6 12

x4 0 0 0 1.7 1 1.9 16

From this tableau, all values of the zero row and right-hand-side values are non-

negative value, that is, the current basis gives the primal and dual feasible solutions. So,

it is the optimal tableau, and the optimal solution is (x∗1,x
∗
2,x
∗
3,x
∗
4,x
∗
5) = (12,0,0,16,0)

with z∗= 50. �

From the above example, we also use the original perturbation simplex method

and the simplex method to solve this problem. Then, the results of these method are

shown in the following table.

Table 3.4.1: Comparison of the number of iterations between the zero-perturbation

simplex method, the perturbation simplex method and the simplex method.

Method the size of

matrix

operation

the

number of

iterations

the total

number of

iterations

The zero-perturbation simplex method 4×6 3 3

The perturbation simplex method 4×6 5 5

The two-phase simplex method Phase I 4×8 2

Phase II 4×6 3 5

From this table, we can see that the total number of iterations for the zero-

perturbation simplex method is 3 which is less than other methods. In addition, the size
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of matrix operation of the zero-perturbation simplex method is smaller than the phase I

of the simplex method. Thus, we can reduce the number of iterations.

Next, the zero-perturbation simplex method according to the largest-distance

pivot rule is demonstrated as the following example.

Example 3.4.2. Consider a linear programming problem:

max z = 2x1 +3x2−12x3−12x4−40x5−41.25x6−45.6x7

s.t. 2x1 + x2 +4x3− x4−8x5−7.7x6−7.6x7 + x8 =−2

x1 +3x2−3x3−2x4−5x5−5.5x6−6x7 + x9 =−2

x1, x2, x3, x4, x5, x6, x7, x8, x9 > 0

First, we choose IB = {8, 9} to be an index set of initial basis and construct the

initial simplex tableau as follows:

z x1 x2 x3 x4 x5 x6 x7 x8 x9 RHS

z 1 -2 -3 12 12 40 41.25 45.6 0 0 0

x8 0 2 1 4 -1 -8 -7.7 -7.6 1 0 -2

x9 0 1 3 -3 -2 -5 -5.5 -6 0 1 -2

Since IN = {1, 2, 3, 4, 5, 6, 7}, we set I′N = IN = {1, 2, 3, 4, 5, 6, 7} and

n= |IN |= 7. From this tableau, we have P= {1, 2} and D= {1, 2}which are nonempty

sets, and p =−2 < 0 and d =−3 < 0. That is, the initial basis gives the primal and dual

infeasible solutions. Thus, the zero-perturbation method is used to solve this problem.

For this example, we use the largest-distance pivot rule to choose an entering variable.

Then, the values of β j for j ∈ IN are computed as the following table.

x1 x2 x3 x4 x5 x6 x7

β j -0.89 -0.95 2.4 5.37 4.24 4.36 4.71

In this table, the minimum value of β j is j = 2 that is x2 will be chosen to be

the entering variable, but its column vector y2 > 0. Thus, it cannot enter the basis.

Since n = 7 6= 0, we can choose the new entering variable and set n = n−1 = 6, I′N =

{1, 2, 3, 4, 5, 6, 7}−{2} = {1, 3, 4, 5, 6, 7}. The next nonbasic variable that has
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the minimum value is x1, but the column vector y1 is also greater than or equal to zero.

It cannot enter a basis, and we can choose the new variable since n = 6 6= 0. Next, we

set n = 6− 1 = 5, I′N = {1, 3, 4, 5, 6, 7}−{1} = {3, 4, 5, 6, 7}. After we consider

the next minimum value of β j for j ∈ IN , we get β3 is the minimum value. So, x3 is

chosen as the entering variable since there exists y23 < 0. Then, we set its reduced cost

to zero while other negative reduced costs are set as positive constants. After that, we

will choose a leaving variable by the maximum ratio test as follows:

z x1 x2 x3 x4 x5 x6 x7 x8 x9 RHS

z 1 2 3 0 12 40 41.25 45.6 0 0 0

x8 0 2 1 4 -1 -8 -7.7 -7.6 1 0 -2

x9 0 1 3 -3 -2 -5 -5.5 -6 0 1 -2

ratio

-

(−2)/(−3) = 0.67

From this tableau, we can see that there is only x9 can leave the basis. Then, it

is chosen to be the leaving variable, and the updated tableau is as follows:

z x1 x2 x3 x4 x5 x6 x7 x8 x9 RHS

z 1 2 3 0 12 40 41.25 45.6 0 0 0

x8 0 3.33 5 0 -3.67 -14.67 -15.03 -15.6 1 1.33 -4.67

x3 0 -0.33 -1 1 0.67 1.67 1.83 2 0 -0.33 0.67

From the current tableau, there exists b1 < 0 then we set I′N = IN = {1, 2, 4, 5, 6, 7, 9},

n = 7 and choose the next entering variable by recalculating the β j, j ∈ IN as the fol-

lowing table:

x1 x2 x4 x5 x6 x7 x9

β j 0.6 1.77 1.07 1.35 1.27 1.37 2.91

In this table, x1 has the minimum value of β j, but its column vector which

bi < 0 is nonnegative. Thus, it cannot enter the basis. Then, we will determine the new

entering variable by the next minimum value of β j, and we get x4 which corresponds

to this value. Since there exists y14 < 0, x4 is chosen to be the entering variable. In

addition, x8 is the only basic variable which can leave the basis. So, the new tableau

becomes:
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z x1 x2 x3 x4 x5 x6 x7 x8 x9 RHS

z 1 2 3 0 0 40 41.25 45.6 0 0 0

x4 0 -0.91 -1.36 0 1 4 4.1 4.25 1.09 5.45 1.27

x3 0 0.27 -0.09 1 0 -1 -0.9 -0.84 0.18 -0.09 -0.18

Since the above tableau exists b2 < 0, we set I′N = IN , n = 7 and compute new

β j for j ∈ IN . Then, we get x6 as the entering variable and x3 is the leaving variable. So,

the updated tableau is as the follows:

z x1 x2 x3 x4 x5 x6 x7 x8 x9 RHS

z 1 2 3 0 0 40 0 45.6 0 0 0

x4 0 0.33 -1.78 4.56 1 -0.56 0 0.44 0.56 -0.78 0.44

x6 0 -0.3 0.1 -1.11 0 1.11 1 0.93 -0.2 0.1 0.2

From the above tableau, we can see that b > 0 then the basis gives the primal

feasible solution. Then, the original objective function is restored, and the simplex

method is performed until the optimal solution will be found. After the problem in this

example was solved, the total number of iterations is 3. If we solve this problem by

the two-phase simplex method and the original perturbation simplex method, then the

results are concluded in the following table.
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Table 3.4.2: Comparison of the number of iterations between the zero-perturbation

simplex method, the perturbation simplex method and the simplex method.

Method the size of

matrix

operation

the

number of

iteration

the total

number of

iteration

The zero-perturbation simplex method 3×10 3 3

The perturbation simplex 3×10 3 3

The two-phase simplex Phase I 3×12 2

Phase II 3×10 4 6

From this table, we can see that the total number of iterations of the zero-

perturbation simplex method is 3 which is less than or equal to the total number of

the other methods. In addition, the size of matrix operation of the zero-perturbation

simplex method is smaller than the phase I of the simplex method. Thus, we can reduce

the computation.
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CHAPTER 4

EXPERIMENTAL RESULTS AND DISCUSSION

In chapter 3, we designed the algorithm for solving linear programming prob-

lems without using artificial variable. In this chapter, we would like to test the efficiency

of this algorithm. Then, we implemented the zero-perturbation simplex method, the

original perturbation simplex algorithm and the two-phase simplex algorithm by using

the Matlab program. In addition, the randomly generated problems were tested, and the

average number of iterations of each algorithm were compared.

4.1 The tested problems

Consider the linear programming problem:

max cT x

s.t. Ax 6 b,

x > 0,

(4.1.1)

where A ∈ Rm×n, x, c ∈ Rn, and b ∈ Rm.

For testing the efficiency of our algorithm, we randomly generated 100 tested

problems of each size of the coefficient matrix A which are m× n = 10× 10, 10×

20, 10×30, 20×20, 20×30, 20×50, 30×10, 30×20, 30×30, and 40×40 accord-

ing to this limitations:

1. a vector c with range of values between c j ∈ [−9,9] where j = 1, ...,n,

2. an element of the coefficient matrix with range of values between ai j ∈ [−9,9]

where i = 1, ...,m and j = 1, ...,n,

3. a solution vector x∗ with range of values between x∗j > 0 where j = 1, ...,n,

4. a vector b computed by b = Ax∗.
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In addition, our tested problems have the number of artificial variables around

50 percent. The problem (4.1.1) is converted in the standard form by adding slacks

variables which are chosen to be the initial basis. We used the Matlab program in

version R2016b, 64-bit (maci64) for implementation the algorithm. These tests were

run in MacBook Pro 8 GB 1867 MHz. We implemented the zero-perturbation simplex

method according to three pivot rules that are the cosine rule, the largest-distance pivot

rule and the Dantzig rule.

For the cosine rule, we modified the formula by computing α j =
AT
· j·b
‖A· j‖ , for all j =

1, ...,n instead of θ j = arccos
AT
· j·b

‖A· j‖·‖b‖ , to choose an entering variable which has the

maximum value first. Since the inverse function of cosine is a decreasing function, we

can consider the maximum value of
AT
· j·b

‖A· j‖·‖b‖ where it is between−1 and 1. In addition,

since ‖b‖ is a constant for j = 1, ...,n, we can reduce the computation by considering

the maximum value of the formula as follows:

α j =
AT
· j ·b
‖A· j‖

,

where j = 1, ...,n.

Furthermore, we determined the reduced cost of the chosen entering variable;

say xk to zero and other negative reduced costs to δ j = 1, for all j ∈ IN−{k}.

4.2 Computational results

According to the designed problems, we will show the comparison of the aver-

age number of iterations, the standard deviations of iterations, the ratio of the average

number of iterations for the zero-perturbation simplex method according to three pivot

rules to the average number of iterations for the simplex method and the original pertur-

bation simplex method, and bar charts of the average number of iterations with standard

deviations are presented.

First, the average number of iterations for the zero-perturbation simplex method

according to three pivot rules, the original perturbation simplex method and the simplex
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method are shown in the following table.

Table 4.1: The average number of iterations for m×n with standard deviations.

The average number of iterations with standard deviations

Size ZC ZL ZD OP CS

A B A B A B A B A B

10x10 14.72 3.62 7.41 2.67 7.61 2.61 11.17 3.31 13.64 3.33

10x20 18.52 5.84 6.41 3.89 7.55 3.53 13.68 4.01 15.42 3.16

10x30 16.80 5.11 5.85 3.69 6.77 3.24 13.09 3.79 14.69 2.71

20x20 39.01 8.55 23.07 7.13 23.15 7.55 29.30 6.91 37.55 8.13

20x30 58.93 15.11 30.80 11.37 31.35 10.54 36.27 10.34 42.88 10.10

20x50 42.46 10.88 17.48 6.63 16.56 7.87 31.83 7.99 39.88 6.83

30x10 16.86 3.58 8.27 3.68 8.32 3.90 17.50 3.86 37.08 8.68

30x20 58.86 8.49 28.19 9.96 26.58 9.21 41.36 8.36 58.64 9.64

30x30 92.49 15.42 42.48 12.49 41.76 12.60 56.47 14.68 75.87 13.27

40x40 198.98 67.77 69.74 18.61 70.54 16.86 82.56 23.62 116.26 19.78

where A is the average number of iterations,

B is the standard deviation,

ZC is the zero-perturbation simplex method according to the cosine rule,

ZL is the zero-perturbation simplex method according to the largest-distance

pivot rule,

ZD is the zero-perturbation simplex method according to the Dantzig rule,

OP is the original perturbation simplex method,

CS is the two-phase simplex method.

From Table 4.1, we can see that most of the minimum average number of iter-

ations appear in the column of the zero-perturbation simplex method according to the

largest-distance pivot rule while most of the maximum average number of iterations

appear in the column of the zero-perturbation simplex method according to the cosine

rule. Then, we can notice that the proposed method according to the largest-distance

pivot rule is more effective than the other methods.
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After that, the bar charts of the average number of iterations for all methods are

plotted with standard deviations as Figure 4.1-4.4.

Figure 4.1: The average number of iterations for the zero-perturbation simplex method

with the cosine rule, the original perturbation simplex method and the simplex method.

From Figure 4.1, we can see that the small tested problems have the low standard

deviations. This implies that the average number of iterations is a good representation

of the number of iterations. While the medium-sized tested problems have the high

standard deviations, that is, the numbers of iterations may vary from the average. In

this chart, most bars of the zero-perturbation simplex method are higher than other

methods. It means that there are large variation using the cosine rule for these tested

problems.

From Figure 4.2 and 4.3, we can see that all bars of the zero-perturbation sim-

plex method according to the largest-distance pivot rule and the Dantzig rule are lower

than the bars of other methods. That is, the average number of iterations for the zero-

perturbation simplex method according to these pivot rules is less than other methods.

Then, our method can reduce the number of iterations for these tested problems. For

the small tested problem, we see that the standard deviations is low. It implies that the

number of iterations for the small tested problems is not vary from the average. Then,
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Figure 4.2: The average number of iterations for the zero-perturbation simplex method

with the largest-distance pivot rule, the original perturbation simplex method and the

simplex method.

Figure 4.3: The average number of iterations for the zero-perturbation simplex method

with the Dantzig rule, the original perturbation simplex method and the simplex method.
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the average number of iterations for the small problems is a good representation of the

number of iterations while the average number of iterations for the medium-size tested

problems is an inadequate representation of the number of iterations.

Figure 4.4: The average number of iterations for the zero-perturbation simplex method

with three pivot rules.

From Figures 4.4, it shows the average number of iterations for the zero-perturbation

simplex method according to three pivot rules. We can see that all bars of this method

according to cosine rule are taller than other pivot rules, and most bars of this method

according to the largest-distance pivot rule are shorter than other pivot rules. It means

that our method according to the largest-distance pivot rule is effective than other pivot

rules for these tested problems.
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Table 4.3: The ratio of the average number of iterations.

Two-phase Simplex Method Original Perturbation Simplex Method

Problems ZC/CS ZL/CS ZD/CS Problems ZC/OP ZL/OP ZD/OP

10x10 1.0792 0.5433 0.5579 10x10 1.3178 0.6634 0.6813

10x20 1.2010 0.4157 0.4896 10x20 1.3538 0.4686 0.5519

10x30 1.1436 0.3982 0.4609 10x30 1.2834 0.4469 0.5172

20x20 1.0389 0.6144 0.6165 20x20 1.3314 0.7874 0.7901

20x30 1.3743 0.7183 0.7311 20x30 1.6248 0.8492 0.8644

20x50 1.0647 0.4383 0.4152 20x50 1.3340 0.5492 0.5203

30x10 0.4472 0.2194 0.2207 30x10 0.9525 0.4672 0.4701

30x20 1.0038 0.4807 0.4533 30x20 1.4231 0.6816 0.6426

30x30 1.2191 0.5599 0.5504 30x30 1.6379 0.7523 0.7395

40x40 1.7115 0.5999 0.6067 40x40 2.4101 0.8447 0.8544

Average of total 1.2322 0.5297 0.5310 Total 1.6724 0.7189 0.7204

From Table 4.3, we can see that the ratios of the zero-perturbation simplex meth-

ods according to the largest-distance pivot rule and the Dantzig rule to the simplex

method and the original perturbation simplex method are less than one. It means that

the average number of iterations of such methods are less than the average number of

iterations of the simplex method and the original perturbation simplex method. How-

ever, both ratios of the zero-perturbation simplex method with the cosine rule to the

simplex method and the original perturbation simplex method are larger than one, that

is, their average number of iterations are greater than the average number of iterations

of the simplex method and the original perturbation simplex method.

From the average number of total iterations, we can see that our method accord-

ing to the largest-distance pivot rule has more effective than the others.
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4.3 Discussion

From the computational results, the average number of iterations for the zero-

perturbation simplex method according to the cosine rule of all tested problems is

greater than that of other pivot rules. Since the cosine rule considers the closest an-

gle of constraints to the objective function in the dual problem, if such problem has

a redundant constraint that is closest in angle to the objective function, then the pri-

mal entering variable corresponding to this redundant constraint is chosen first. Since

the primal variable associated with the redundant constraint in the dual problem which

should not be the nonbasic variable is chosen to enter the basis, the optimal solution is

found slowly. This may be the reason why the number of iterations for the proposed

method according to the cosine rule is greater than other pivot rules.

For Dantzig rule and the largest-distance pivot rule, the average numbers of

iterations for the proposed method according to these pivot rules are similar since these

pivot rules focus on the reduced costs. Dantzig rule considers only the reduced costs

while the largest-distance pivot rule considers the normalized reduced costs. This might

be the reason why the average numbers of iterations for these pivot rules are similar.

Next, we give the illustrative example for the reason why the cosine rule has low

efficiency than the largest-distance pivot rule and Dantzig rule for the problem which

its dual has redundant constraints.

Example 4.3.1. Consider the following linear programming problem.

max −2x1−3x2 +2x3 +9x4 +8x5−9x6

s.t. 6x1−5x2 +9x3−9x4−8x5−2x6 +x7 = −68

9x1− x2 +2x3 +9x4 +9x5 +7x6 +x8 = 200.

(4.3.1)

First, we solve this problem with the zero-perturbation simplex method accord-

ing to the cosine rule. We choose IB = {7, 8} as the index set of basic variables and

construct the initial simplex tableau as follows:
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z x1 x2 x3 x4 x5 x6 x7 x8 RHS

z 1 2 3 -2 -9 -8 9 0 0 0

x7 0 6 -5 9 -9 -8 -2 1 0 -68

x8 0 9 -1 2 9 9 7 0 1 200

Next, the α j for j = 1, ...,n is computed as the following table.

x1 x2 x3 x4 x5 x6 x7 x8

α j 128.69 27.46 -22.99 189.51 194.66 210.99 -68 200

Then, x6 has the maximum value of α j, so it is chosen to be the entering variable.

After that, x7 is chosen to be the leaving variable by the maximum ratio. The updated

tableau becomes:

z x1 x2 x3 x4 x5 x6 x7 x8 RHS

z 1 2 3 2 9 8 0 0 0 0

x6 0 -3 2.5 -4.5 4.5 4 1 -0.5 0 34

x8 0 30 -18.5 33.5 -22.5 -19 0 3.5 1 -38

Next, x5 and x8 are chosen to be the entering and leaving variables, respectively.

The updated tableau is as follows:

z x1 x2 x3 x4 x5 x6 x7 x8 RHS

z 1 2 3 2 9 0 0 0 0 0

x6 0 3.32 -1.39 2.55 -0.24 0 1 0.24 0.21 26

x5 0 -1.58 0.97 -1.76 1.18 1 0 -0.18 -0.05 2

From this tableau, the primal feasible is found. Then, the original coefficients

of the objective function are restored into this tableau, and the simplex method is

performed. Afterward, the sequence of the simplex path to the optimal solution is:

IB = {1, 5}, IB = {3, 5} and IB = {3, 4}, respectively. Then, the dual problem of this

example can be plotted as Figure 4.5. In addition, we can see the movement of the

sequence of basis that corresponds to the dual constraints also in Figure 4.5, that is, the
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basis starts at the origin point and moves to point A, B, C, D and the optimal point,

respectively.

From Figure 4.5, we can see that three dash lines are redundant constraints. If

we can remove them, for the cosine rule, we will use only 2 iterations to solve this

problem.

Figure 4.5: The sequence of basis of the zero-perturbation simplex method according

to the cosine rule.

For the largest-distance pivot rule, we also choose IB = {7, 8} as the index set

of basic variables and construct the initial simplex tableau as follows:

z x1 x2 x3 x4 x5 x6 x7 x8 RHS

z 1 2 3 -2 -9 -8 9 0 0 0

x7 0 6 -5 9 -9 -8 -2 1 0 -68

x8 0 9 -1 2 9 9 7 0 1 200

Then, we compute the β j for j ∈ IN as the following table.
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x1 x2 x3 x4 x5 x6

β j 0.18 0.59 -0.22 -0.71 -0.66 1.24

From the above table, x4 has the minimum value of β j so it is chosen to be the

entering variable. After the minimum ratio is computed, x7 is chosen to be the leaving

variable. Thus, the updated tableau is as follows:

z x1 x2 x3 x4 x5 x6 x7 x8 RHS

z 1 2 3 2 0 8 9 0 0 0

x4 0 -0.67 0.56 -1 1 0.89 0.22 -0.11 0 7.56

x8 0 15 -6 11 0 1 5 1 1 132

From this tableau, the basis gives the primal feasible solution. Then, the original

coefficients of the objective function are restored, and the simplex method is performed.

Afterward, x3 and x8 are chosen to be the entering and leaving variables, respectively.

The updated tableau is as follows:

z x1 x2 x3 x4 x5 x6 x7 x8 RHS

z 1 11 2 3 0 1 16 0 1 200

x4 0 0.7 0.01 0 1 0.98 0.68 -0.02 0.09 19.56

x3 0 1.36 -0.55 0 0 0.09 0.455 0.09 0.09 12

From this tableau, we can see that the basis gives the primal and dual feasible so-

lutions. So, it is the optimal tableau, and the optimal solution is (x∗1, x∗2, x∗3, x∗4, x∗5, x∗6)=

(0, 0, 12, 19.56, 0, 0) with z∗= 200. In addition, we can see the movement of sequence

of all basis corresponding to the dual constraints as Figure 4.6, that is, the initial basis

starts at origin point and moves to point A and the optimal solution.

From Figure 4.6, we can see that the redundant constraints do not affect the

number of iterations. However, the weak point of the largest-distance pivot rule is the

new computation β j for all j ∈ IN in each iteration while the cosine rule computes at

once in the first iteration.
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Figure 4.6: The sequence of basis the zero-perturbation simplex method according to

the largest-distance rule.

For the Dantzig rule, we also choose IB = {7, 8} as the index set of basic vari-

ables and the initial simplex tableau is constructed as follows:

z x1 x2 x3 x4 x5 x6 x7 x8 RHS

z 1 2 3 -2 -9 -8 9 0 0 0

x7 0 6 -5 9 -9 -8 -2 1 0 -68

x8 0 9 -1 2 9 9 7 0 1 200

Dantzig rule consider the minimum reduced cost to enter the basis. Then, x4 is

chosen to be an entering variable first, and x7 is chosen to be a leaving variable by the

minimum ratio test. The tableau is updated as follows:
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z x1 x2 x3 x4 x5 x6 x7 x8 RHS

z 1 2 3 2 0 8 9 0 0 0

x4 0 -0.67 0.56 -1 1 0.89 0.22 -0.11 0 7.56

x8 0 15 -6 11 0 1 5 1 1 132

From the above tableau, the basis gives the primal feasible solution. Then, the

original coefficients of the objective function are restored, and the simplex method is

performed. After that, x3 and x8 are chosen to be the entering and leaving variables,

respectively. The updated tableau is as follows:

z x1 x2 x3 x4 x5 x6 x7 x8 RHS

z 1 11 2 3 0 1 16 0 1 200

x4 0 0.7 0.01 0 1 0.98 0.68 -0.02 0.09 19.56

x3 0 1.36 -0.55 0 0 0.09 0.455 0.09 0.09 12

From this tableau, we can see that the basis gives the primal and dual feasible so-

lutions. So, it is the optimal tableau, and the optimal solution is (x∗1, x∗2, x∗3, x∗4, x∗5, x∗6)=

(0, 0, 12, 19.56, 0, 0) with z∗ = 200. In addition, we can see that the movement of se-

quence of all basis is similar to the largest-distance pivot rule. Then, we can see that the

redundant constraints in the dual problem do not also affect the number of iterations.

Therefore, the average numbers of iterations for the proposed method according to the

largest-distance pivot rule and Dantzig rule are similar.



Ref. code: 25605909031014SXI

74

CHAPTER 5

CONCLUSIONS

In this thesis, we present the algorithm which improves Pan’s algorithm [10] for

solving a linear programming problem without using artificial variable. It will be used

to solve a problem when an initial basis gives the primal and dual infeasible solutions

called the zero-perturbation simplex method. The proposed method starts by choosing

an entering variable according to a pivot rule, then its reduced cost is set to zero while

the other negative reduced costs are set to a single positive value. Next, a leaving

variable is chosen by the maximum ratio.

The zero-perturbation simplex method is an artificial-free method. Thus, the

size of matrix operations of this method is smaller than the simplex method. Moreover,

the proposed method does not need to update the row zero. From computational results,

we found that the efficiency of the zero-perturbation simplex method depends on the

pivot rule. Especially, the proposed method according to the largest-distance pivot rule

and Dantzig rule can reduce the number of iterations.

For the future works, we would like to find the condition for eliminating the

redundant constraints since the cosine rule is an effective pivot rule when a problem has

no redundant constraint which is closest in angle to the objective function. In addition,

we would like to design the effective pivot rule for the simplex method which it affects

to choose an entering variable. Therefore, if we have the effective pivot rule, then we

will find the optimal solution faster, and the number of iterations can be reduced.
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