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ABSTRACT

In this thesis, we propose the algorithm for starting the simplex algorithm

without using artificial variables. The proposed algorithm starts by considering the sum

of all constraints in the standard form for identifying the solution or constructing the

initial basis. If the largest coefficient of the sum of all constraints is negative, then this

algorithm can report infeasibility. Otherwise, it starts with an empty basic variable set,

then a nonbasic variable is chosen into the basic variable set one by one by considering

the sum of unoccupied rows with the minimum ratio until the basic variable set is full

or the infeasibility is reported. If the basic variable set is full, then the simplex method

can start. This algorithm can guarantee that a basic feasible variable set is found, or

infeasibility is reported. Since it obviates the use of artificial variables and it can report

the infeasibility immediately for some problems, the computational time of the simplex

algorithm can be reduced. From computational results, we found that the average num-

ber of iterations solving by the proposed algorithm is less than the average number of

iterations solving by Gao’s algorithm.

Keywords: Artificial variable, Basic variable set, Linear programming problem, Sim-

plex algorithm
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CHAPTER 1

INTRODUCTION

1.1 Backgrounds

Linear programming models are mathematical models that attempt to model

a real-life situation. It can be viewed as a generalization of solving simultaneous linear

equations or inequalities. All linear programming problems consist of three compo-

nents: constraints, decision variables and the objective function. For constraints, these

are conditions which limit the values of variable. The unknowns are called decision

variables which the quantities are used for determining. The objective function will

be optimized which is determined by the decision variables. The linear programming

model is written as follows:

min or max z = c1x1 + c2x2 + · · · + cnxn

subject to a11x1 + a12x2 + · · · + a1nxn = b1

a21x1 + a22x2 + · · · + a2nxn = b2
...

...
...

...

am1x1 + am2x2 + · · · + amnxn = bm

x1, x2, . . . , xn ≥ 0,

(1.1.1)

where coefficients c1,c2, . . . ,cn are the cost coefficients and x1,x2, . . . ,xn are the de-

cision variables. The coefficients ai j for i = 1, ...,m and j = 1, ...,n are called the

technological coefficients. The linear function c1x1 + c2x2 + · · ·+ cnxn is called the

objective function which is minimized or maximized and denoted by z. The equations

and the restriction of decision variables are denoted as the constraints.

Denote the following column vectors c and x of size n, b of size m and

m×n matrix A,
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c =


c1

c2
...

cn


, x =


x1

x2
...

xn


, b =


b1

b2
...

bm


and A =


a11 a12 a13 · · · a1n

a21 a22 a23 · · · a2n
...

...
... . . . ...

am1 am2 am3 · · · amn


Values of the variables x1,x2, . . . , xn satisfying all constraints are called a

feasible point or a feasible solution. The set of all such points constitutes the feasible

region or the feasible space.

The problem (1.1.1) can be written in the matrix form as follows:

min or max z = cT x

s.t. Ax = b,

x ≥ 0,

(1.1.2)

where c ∈ Rn is a column vector of cost coefficients,

x ∈ Rn is a column vector of decision variables,

b ∈ Rm is a column vector of right-hand-side value,

and A ∈ Rm×n is a coefficient matrix of constraints.

The solution of a linear programming problem depends on the constraints

and the objective function. There are three possible situations which is infeasible if it

has no feasible solution, unbounded if the objective value can be increased along the

feasible direction for maximization or be decreased along the feasible direction for min-

imization, and it has an optimal solution which maximizes or minimizes the objective

function. We can use a variety of techniques and algorithms for solving a linear pro-

gramming problem such as the graphical method, the simplex method, and the interior

point method. The graphical method is appropriate for the linear programming prob-

lem in two or three dimensions which it can be plotted. For a large linear programming

problem that cannot be plotted a graph, we will use the simplex method or the interior

point method for solving it. For the simplex method, it was created by Dantzig [1] in

1947 which is the iterative method for a general linear programming problem. It starts
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by choosing the matrix B which is chosen m columns from A. The matrix B is called

the basic matrix or basis which is an m×m invertible matrix. If B−1b ≥ 0, then the

basic feasible solution is found and the simplex method can start. However, a matrix

B with B−1b ≥ 0 may not be obviously identified. Thus, artificial variables are added

for choosing B = I which it can guarantee that the problem has a basic feasible solu-

tion for b≥ 0. However, artificial variables will be forced to leave from the basis since

they are not legitimate variables. Two well-known methods which can drive the arti-

ficial variables out of basis are two-phase method and big-M method. After the basic

feasible solution is found, it moves to an adjacent basic feasible solution until the op-

timal solution is found. Although the simplex method is still the dominant procedure

for solving a linear programming problem, a weak point for solving the large linear

programming problem is that the worst-case running is exponential. Therefore, another

method for solving a linear programming problem is invented called the interior point

method developed by Karmarkar [2] in 1984. The interior point method starts with an

initial interior point, this method moves through the interior of the feasible point along

some direction to another interior point until it converges to the optimal boundary point.

Nevertheless, the interior point method is slow for solving a linear programming prob-

lem with a dense matrix and cannot use post-optimality for analysis [12]. Thus, several

researches have been interested in improvement of the simplex algorithm instead of the

interior point method.

The simplex method sometimes starts with artificial variables which are

introduced for constructing the basic feasible solution. However, a large matrix size

needs more computing time when artificial variables are added. By this reason, the

research question arises that the simplex method may start without using the artificial

variable. Will it be possible to avoid the use of artificial variable? Later, the researchers

have been proposing new methods for solving a linear programming problem without

using artificial variables.
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1.2 Literature reviews

In 1997, Arsham [3] created the artificial-free simplex algorithm for con-

structing a basic variable set consisting of two phases. In Phase I, it begins with the

empty basic variable set, then a nonbasic variable is chosen into the basic variable set

one by one using the coefficient of nonbasic variables in the objective function and the

minimum ratio. This phase can report that a problem is infeasibility or the basic variable

set is full. After Phase I ends, if the basic variable set is full, Phase II is used to find the

optimal solution by the ordinary simplex method. The strong points of this method are

the avoidance of artificial variables and the protection of cycling for choosing the vari-

ables into the basic variable set. However, Enge and Huhn [4] gave a counterexample,

in which Arsham’s Phase I algorithm declares the infeasibility of a feasible problem.

The mistake of Arsham’s algorithm occurs when the variables are already chosen into

the basic variable set, then other variables with the minimum ratio cannot be replaced

them. Thus, sometimes a basic feasible variable set cannot be found.

In 2015, Gao [5] improved the Phase I of Arsham’s algorithm in two vari-

ants. Both start when Arsham’s algorithm stops, and it cannot construct the basic fea-

sible variable set, and the nonbasic variable with minimum ratio is not in the basic

variable set. For Variant 1, other nonbasic variables with minimum ratio are allowed to

replace the previous variable in the basic variable set. However, Gao’s improvement has

a mistake in Variant 1. The selection of a nonbasic variable into the basic variable set

by considering the absolute of technical coefficients, some problems are reported the

infeasibility for the feasible problem. For Variant 2, the summation of coefficient ma-

trix of unoccupied rows which no basic variable is in these rows is considered. It starts

by adding a constraint which is the summation of coefficient matrix of all unoccupied

rows. Then, the nonbasic variable is chosen into the basic variable set by considering

the largest coefficient of the added constraint. Nevertheless, Variant 2 is used when

Arsham’s algorithm reports that the problem is infeasible and a nonbasic variable with
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the minimum ratio is not chosen into the basic variable set. Although both variants

give the basic feasible variable set, this algorithm still has disadvantages. First, it can

start when Arsham’s algorithm ends. It wastes the calculation time by using Arsham’s

algorithm for checking infeasiblity before Gao’s method starts. Second, Gao’s algo-

rithm will leave a basic variable which should not be in the basic variable set chosen by

Arsham’s algorithm to enter the basic variable set before a nonbasic variable with the

minimum ratio will replace it. Thus, the number of iterations increase.

Due to Variant 2 of Gao’s algorithm, it can identify the infeasibility of a

linear programming problem by considering the summation of coefficient matrix of

unoccupied rows from Arsham’s algorithm. So, the key research question of this study

was to use the sum of unoccupied rows which is all constraints for starting the simplex

method first. Since the sum of unoccupied rows can identify the solution for some

linear programming problems, and it is equivalent to the reduced cost of the initial

tableau of Phase I in the two-phase method, in this thesis, we will use the sum of

unoccupied rows to identify its solution without calling Arsham’s algorithm. Because

all constraints of the linear programming problem are a linear system, if we can find

a nonnegative solution of the linear system, then it is also the feasible solution of the

linear programming problem. In addition, the sum of unoccupied rows is equivalent

to the reduced cost in the initial tableau of Phase I in the two-phase method which

is the technique for finding a feasible solution. Therefore, we will use the sum of

unoccupied rows for starting the simplex algorithm and reporting the infeasibility. If

the largest coefficient of the sum of unoccupied rows is negative, then the infeasibility

is reported. Otherwise, it starts with the empty basic variable set, then the first nonbasic

variable is chosen into the basic variable set by considering the largest coefficient of

the sum of unoccupied rows. After there exists a variable in the basic variable set,

the next nonbasic variable is chosen into the basic variable set by considering the sum

of unoccupied rows with minimum ratio until the basic variable set is full. Next, the

simplex method is used for finding the optimal solution. The proposed algorithm is
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separated into two algorithms; nonhomogeneous linear programming algorithm for

a nonzero right-hand side vector and homogeneous linear programming algorithm

for a zero right-hand-side vector.

The aim of this thesis is to design the algorithm which can reduce the num-

ber of iterations or time to solve a linear programming problem with respect to Gao’s

algorithm. The efficiency of the proposed method is presented by the computational

results which tested by randomly generated linear programming problems.

1.3 Overview

From the previous section, our main objective is proposed. Then we are

going to describe the contents of the thesis.

In Chapter 2, we first introduce definitions and theorems of vector and ma-

trix in order to lay the basic idea of our thesis. Next, a linear programming problem and

its possible solutions are presented. Another problem which is an associated linear pro-

gramming problem is proposed called the dual problem. Additionally, many methods

for solving a linear programming problem such as the simplex method, the two-phase

method, Arsham’s algorithm, and Gao’s algorithm are presented.

In Chapter 3, we describe the sum of unoccupied rows which is the im-

portance idea of our algorithm. Then, the proposed algorithms are separated into two

algorithms, the steps of our algorithm and the illustrative examples are presented.

In Chapter 4, we test the efficiency of the proposed algorithm by imple-

menting the proposed algorithm and Gao’s algorithm. Their number of iterations and

computation time are compared. Then, results of our algorithm will be analyzed.

In the last chapter, the conclusions of our results is presented.
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CHAPTER 2

FOUNDATIONS

This chapter devotes to recall some definitions, theorems, and examples of

linear algebra and a linear programming problem which are foundations of our proposed

algorithm. First, we will start by describing some basic linear algebra followed by a lin-

ear programming problem. Then, some recent methods for solving linear programming

problems are presented.

2.1 Vectors and matrices

Some basic properties of vectors and matrices is proposed in this section.

Definition 2.1.1. An nnn-column vector is a column array of n numbers.

x =


x1

x2
...

xn


whose entries are real numbers, called the components of x. The set of all n-vectors

is denoted by Rn and is called n-dimensional space. The vector x can be written as

(x1,x2, . . . ,xn).

Definition 2.1.2. The zero vector is a vector with all components equal to zero, denoted

by 0.

Definition 2.1.3. An iiith unit vector is a vector with all zero components, except for a

1 in the ith position, denoted by ei.
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Definition 2.1.4. Let a1, a2 ∈ Rn be the vectors of n-dimentional space:

a1 = (a11,a21, ...,an1) and a2 = (a12,a22, ...,an2).

Then, the addition of vectors a1 and a2, denoted by a1 +a2, is the following vector:

a1 +a2 = (a11 +a12,a21 +a22, ...,an1 +an2).

Definition 2.1.5. Let a be a vector in Rn and k be a scalar. Then, the scalar multiplied

vector is defined as ka = (ka1,ka2, ...,kan).

Definition 2.1.6. Any two n-dimentional vectors a and b can be multiplied. The result

of this multiplication is a real number called the inner product of the two vectors. It is

defined as follows:

ab = a1b1 +a2b2 + · · ·+anbn =

n

∑
j=1

a jb j.

Definition 2.1.7. A nonempty subset V of Rn is called a subspace for Rn if the follow-

ing properties are satisfied.

1. If x and y are any vectors in V , then x + y is in V .

2. If r is any real number and x is any vector in V, then rx is in V.

Definition 2.1.8. A vector v in Rn is said to be a linear combination of vectors v1, v2,

..., vk ∈ Rn, if it can be written as

v = c1v1 + c2v2 + · · ·+ ckvk

where c1,c2, ...,ck are real numbers.

Example 2.1.1. Let

v =


4

7

2

, v1 =


1

2

−1

, and v2 =


2

3

4


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The vector v is a linear combination of v1 and v2, since there are real numbers c1 and

c2 such that

c1v1 + c2v2 = v

or

c1


1

2

−1

 + c2


2

3

4

 =


4

7

2


where c1 = 2 and c2 = 1.

�

Definition 2.1.9. Let S = {v1,v2, ...,vk} be a set of vectors in a subspace V of Rn. The

set S spans V , or V is spanned by S, if every vector in V is a linear combination of the

vectors in S.

Definition 2.1.10. Let S = {v1,v2, ...,vk} be a set of distinct vectors in a subspace V of

Rn. The set S is said to be linearly dependent if we can find constants c1,c2, ...,ck not

all zeroes, such that

c1v1 + c2v2 + · · ·+ ckvk = 0. (2.1.1)

Otherwise, S is said to be linearly independent. That is, S is linearly independent if

Equation (2.1.1) can be satisfied only with

c1 = c2 = . . .= ck = 0.

Example 2.1.2. Let

v1 =


1

2

0

1


, v2 =


0

1

1

2


, and v3 =


1

1

−1

1


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Consider

c1v1 + c2v2 + c3v3 = 0

which yields the linear system

c1 + c3 = 0

2c1 + c2 + c3 = 0

+ c2 − c3 = 0

c1 + 2c2 + c3 = 0

Since this linear system has only the solution c1 = c2 = c3 = 0, we conclude that S =

{v1,v2,v3} is linearly independent.

�

Definition 2.1.11. A set of vectors S = {v1,v2, ...,vk} in a subspace V of Rn is called a

basis for V if S spans V and S is linearly independent.

Theorem 2.1.1. If S = {v1,v2, ...,vk} is a basis for a subspace V of Rn, then every

vector x in V can be written in one and only one way as a linear combination of the

vectors in S.

Since linear algebra is concerned with matrices and vectors, we will intro-

duce some of the basic ideas about matrices as below.

Definition 2.1.12. An m× n matrix A is a rectangular array of mn numbers arranged

in m horizontal rows and n vertical columns:

A =


a11 a12 a13 · · · a1n

a21 a22 a23 · · · a2n
...

...
... . . . ...

am1 am2 am3 · · · amn


(2.1.2)

The iiithrow of A denoted by Ai: is
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Ai: =
[
ai1 ai2 ai3 · · · ain

]
(1≤ i≤ m)

formed from the rows of A called the row vector of A.

The jjjthcolumn of A denoted by A: j is

A: j =


a1 j

a2 j
...

am j


(1≤ j ≤ n)

formed from the columns of A called the column vector of A.

The number in the ith row and jth column of A is denoted by ai j, and is

called the ijthelement of A, or the (i, j) entry of A, and we often write (2.1.2) as

A = [ai j].

The m×n matrix A is said to be square of order n if m = n. In this case,

the numbers a11,a22, ...,ann form the main diagonal elements of A.

We now turn to the definition of several operations on matrices. These

operations will enable us to apply to matrices later.

Definition 2.1.13. Two m× n matrices A= [ai j] and B= [bi j] are said to be equal if

ai j = bi j for each choice of i and j, where 1≤ i≤ m, 1≤ j ≤ n.

Definition 2.1.14. If A= [ai j] and B= [bi j] are m×n matrices, then the sum of A and

B is the matrix C= [ci j], defined by

ci j = ai j +bi j (1≤ i≤ m, 1≤ j ≤ n).

Definition 2.1.15. If A= [ai j] and B= [bi j] are m× n matrices, then the difference

A−B is the matrix D= [di j], defined by

di j = ai j−bi j (1≤ i≤ m, 1≤ j ≤ n).
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Proposition 2.1.2. (Properties of Matrix Addition)

1. A+B = B+A for all m×n matrices A and B.

2. A+(B+C) = (A+B)+C for all m×n matrices A, B and C.

3. There is a unique m×n matrix 0, called the m×n zero matrix, such that

A+0 = A for any m×n matrix A.

4. For each m×n matrix A, there is a unique matrix, denoted by −A, such that

A+(−A) = 0.

The matrix−A is called the negative of A. The i jth element of−A is−ai j, where

A= [ai j].

Definition 2.1.16. Let A= [ai j] be an m× p matrix and B= [bi j] be an p× n matrix.

The product of A and B is the m×n matrix C= [ci j], defined by

ci j = ai1b1 j +ai2b2 j + · · ·+aipbp j (1≤ i≤ m, 1≤ j ≤ n).

Proposition 2.1.3. (Properties of Matrix Multiplication)

Let A, B and C be matrices of the following sizes m× n, n× p, and n× p. Then the

following assertions hold.

1. A(BC) = (AB)C.

2. A(B + C) = AB + AC.

3. (A + B)C = AC + BC.

Definition 2.1.17. Let A= [ai j] be an m×n matrix and r be a real number. The scalar

multiple of A by r, denoted by rA, is an m× n matrix B = [bi j], where bi j = rai j

(1≤ i≤ m, 1≤ j ≤ n).
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Proposition 2.1.4. (Properties of Scalar Multiplication)

Let r and s be real numbers, A and B be m×n and n× p matrices. Then the following

assertions hold.

1. r(sA) = (rs)A.

2. (r+ s)A = rA+ sA.

3. r(A+B) = rA+ rB.

4. A(rB) = r(AB).

Definition 2.1.18. Let A= [ai j] be an m×n matrix. The n×m matrix AT = [bi j], where

bi j = a ji (1≤ i≤ m, 1≤ j ≤ n),

is called the transpose of A. Thus, the transpose of A is obtained by merely interchang-

ing the rows and columns of A.

Proposition 2.1.5. (Properties of the Transpose)

Let r be a scalar, A and B be m×n matrices. Then the following assertions hold.

1. (AT )T = A.

2. (A+B)T = AT +BT .

3. (AB)T = BT AT .

4. (rA)T = rAT .

Definition 2.1.19. A matrix can be subdivided or partitioned into smaller matrices, is

called partitioned matrix.

Example 2.1.3. Let

A=


a11 a12 a13 a14

a21 a22 a23 a24

a31 a32 a33 a34

a21 a22 a23 a24


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The matrix A is partitioned as 

a11 a12 a13 a14

a21 a22 a23 a24

a31 a32 a33 a34

a21 a22 a23 a24


then we can define the matrices

A1=

a11 a12

a21 a22

 A2=

a13 a14

a23 a24


A3=

a31 a32

a21 a22

 A4 =

a33 a34

a23 a24


and write A as

A=

A1 A2

A3 A4


�

Definition 2.1.20. The n× n matrix In, all of whose diagonal elements are 1 and the

rest of entries are zero, is called the identity matrix of order n. If A is an m×n matrix,

then

ImA = AIn = A.

Definition 2.1.21. An n×n matrix A is called nonsingular or invertible if there exists

an n×n matrix B such that

AB = BA = In.

The matrix B is called the inverse of A. If no such matrix B exists, then A is called

singular or noninvertible. If the inverse of A exists, we shall write it as A−1. Thus

AA−1 = A−1A = In.
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Proposition 2.1.6. (Properties of Inverse)

1. If A is nonsingular, then A−1 is nonsingular and

(A−1)−1 = A.

2. If A and B are nonsingular, then AB is nonsingular and

(AB)−1 = B−1A−1.

3. If A is nonsingular, then AT is nonsingular and

(AT )−1 = (A−1)T .

2.1.1 Elementary row operations

Since the rows of an augmented matrix correspond to the equations in the

associated system, these three operations correspond to the following operations on the

rows of the augmented matrix:

1. Interchange two rows.

2. Multiply a row by a nonzero constant.

3. Add a nonzero constant times one row to another row.

These are called elementary row operations on a matrix.

Definition 2.1.22. The elementary row operations on an m× n matrix A = [ai j] are

defined as follows.

Type I. Interchange rows r and s of A. That is, the elements ar1,ar2, ...,arn

replace the elements as1,as2, ...,asn and the elements as1,as2, ...,asn replace the elements

ar1,ar2, ...,arn.
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Type II. Multiply row r of A by c 6= 0. That is, the elements ar1,ar2, ...,arn

are replaced by the elements car1,car2, ...,carn.

Type III. Add a multiple nonzero constant d of row r of A to row s of A,

writing the result in row s. That is, the elements as1 + dar1,as2 + dar2, ...,asn + darn

replace the elements as1,as2, ...,asn .

2.1.2 Gaussian elimination

In this section, we will present the procedure for solving a linear system.

The procedure is based on the idea of performing certain operations on rows of the

augmented matrix for the system that simplifies it.

Definition 2.1.23. A matrix is in reduced row echelon form if it satisfies the following

properties:

1. If a row does not consist entirely of zeros, then the first nonzero number in the

row is a 1. We call this a leading 1.

2. If there are any rows that consist entirely of zeros, then they are grouped together

at the bottom of the matrix.

3. In any two successive rows that do not consist entirely of zeros, the leading 1 in

the lower row occurs farther to the right than the leading 1 in the higher row.

4. Each column that contains a leading 1 has zeros everywhere else in that column.

The procedure we have just described for reducing a matrix to reduced row

echelon form is called Gauss-Jordan elimination.

Theorem 2.1.7. Every m× n matrix can be transformed to reduced row echelon form

by a finite sequence of elementary row operations.
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Definition 2.1.24. An m×n matrix A is said to be row equivalent to an m×n matrix B

if B can be obtained from A by applying a finite sequence of elementary row operations

to A.

Example 2.1.4. Let

A =


3 −2 2 5

1 2 0 3

4 2 3 −4


Adding the first row of A to the third row of A, we obtain

B =


3 −2 2 5

1 2 0 3

7 0 5 1


So, B is row equivalent to A.

�

Definition 2.1.25. The rank of an m×n matrix A is the number of nonzero rows in the

matrix in reduced row echelon form that is row equivalent to A.

Example 2.1.5. Let

A =


1 0 −1 7 −2

0 1 0 −3 2

0 0 0 0 0

0 0 0 0 0


Since A is in reduced row echelon form, the rank of A is 2.

�
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2.1.3 Linear systems

In this section, we describe about the linear system which we will use to

construct the proposed algorithm. More generally, a linear system of m equations in

n variables that can be expressed in the form of the linear system of m equations in n

unknowns stated as follows:

a11x1 + a12x2 + a13x3 + · · · + a1nxn = b1

a21x1 + a22x2 + a23x3 + · · · + a2nxn = b2
...

...
...

...
...

am1x1 + am2x2 + am3x3 + · · · + amnxn = bm

(2.1.3)

We can be written the problem (2.1.3) in the matrix form by letting

A =


a11 a12 a13 · · · a1n

a21 a22 a23 · · · a2n
...

...
... . . . ...

am1 am2 am3 · · · amn


, x =


x1

x2
...

xn


, and b =


b1

b2
...

bm


Then, the equation (2.1.3) can be written as Ax = b. The matrix A is called the coeffi-

cient matrix of the linear system, and the matrix

[A : b] =


a11 a12 a13 · · · a1n b1

a21 a22 a23 · · · a2n b2
...

...
... . . . ...

...

am1 am2 am3 · · · amn bm


obtained by adjoining b to A, is called the augmented matrix.

Theorem 2.1.8. Let Ax = b and Cx = d be two linear systems, each consisting of

m equations in n unknowns. If the augmented matrices [A : b] and [C : d] are row

equivalent, then both linear systems have no solutions or they have exactly the same

solutions.
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Definition 2.1.26. (Homogeneous Linear Systems).

The linear system of the following form:

a11x1 + a12x2 + a13x3 + · · · + a1nxn = 0

a21x1 + a22x2 + a23x3 + · · · + a2nxn = 0
...

...
...

...
...

am1x1 + am2x2 + am3x3 + · · · + amnxn = 0

(2.1.4)

called a homogeneous linear system.

Observe that a homogeneous system (2.1.4) always has the solution x1 =

x2 = · · · = xn = 0, which is called the trivial solution. A homogeneous linear sys-

tem may also have a solution in which not all xi are zero. Such a solution is called a

nontrivial solution.

2.2 Linear programming problems

In this section, we describe the general formats of a linear programming

problem. The possible solutions of a linear programming problem is presented in this

section. Another problem which is corresponded with the linear programming problem

is proposed.

2.2.1 Linear programming formats

There are two formats for representing a linear programming problem. That

are a standard form and a canonical form.

A linear programming problem is said to be in standard form if all con-

straints are equal type and all variables are nonnegative as the following form:

min or max z = cT x

subject to Ax = b

x ≥ 0.
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A minimization problem is in canonical form if all variables are nonnega-

tive and all constraints are of the ≥ type as the following form:

min z = cT x

subject to Ax ≥ b

x ≥ 0.

A maximization problem is in canonical form if all the variables are non-

negative and all constraints are of the ≤ type as the following form.

max z = cT x

subject to Ax ≤ b

x ≥ 0.

2.2.2 Problem manipulations

In many methods, the algorithm was designed to deal with the problem in

the standard form. Thus, we have to change the problem to another problem which is a

corresponding problem as below.

• Minimization problem as maximization problem

Another problem manipulation is to convert a maximization problem into a

minimization problem and conversely. Note that over any region,

min
n

∑
j=1

c jx j = −max (−
n

∑
j=1

c jx j)

Hence, a maximization (minimization) problem can be converted into a minimization

(maximization) problem by multiplying the coefficients of the objective function by

constant (-1). After the optimization of the new problem is completed, the objective

value of the old problem is -1 times the optimal objective value of the new problem.
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• Reversing an inequality constraints

An inequality with a negative right-hand-side value can be transformed into

an inequality with a positive right-hand-side value. To illustrate, consider the ith con-

straint given by

n

∑
j=1

ai jx j ≥ −bi.

If we multiply the inequality by -1, we obtain the inequality

−
n

∑
j=1

ai jx j ≤ bi.

• Changing an inequality to an equality constraints

An inequality can be transformed into an equation. To illustrate, consider

the constraint given by

n

∑
j=1

ai jx j ≥ bi.

This constraint can be put in an equation form by subtracting the nonnegative surplus

variable, denoted by si, which is leading to

n

∑
j=1

ai jx j − si = bi and si ≥ 0.

Also the constraint

n

∑
j=1

ai jx j ≤ bi

can be put in an equation form by adding the nonnegative slack variable, denoted by

si, which is leading

n

∑
j=1

ai jx j + si = bi and si ≥ 0.
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• Changing an equality to an inequality constraints

An equality can be transformed into an inequality. To illustrate, consider

the constraint given by

n

∑
j=1

ai jx j = bi.

This equation can be transformed into the two inequalities

n

∑
j=1

ai jx j ≤ bi and
n

∑
j=1

ai jx j ≥ bi.

• Nonnegativity of the variables

The variable x j is called unrestricted in sign if it can be positive, zero or

negative. If a variable x j is unrestricted in sign, then it can be converted to two new

nonnegative variables as follows:

x j = x+j − x−j , where x+j , x−j ≥ 0.

• Variable bounds

If x j ≥ l j, then the new variable x
′
j = x j− l j is automaticcally nonneg-

ative. Also, if a variable x j is restricted such that x j ≤ u j, where u j ≤ 0, then the

substitution x
′
j = u j− x j produces a nonnegative variable x

′
j.

2.2.3 Solution to linear programming problems

The solution of a linear programming problem depends on the constraints

and the objective function. There are three possible outcomes for a linear programming

problem which are stated in this section.

Definition 2.2.1 (Feasible solution). A vector x ∈ Rn satisfying the constraints of a

linear programming problem is called a feasible solution. A feasible solution which

maximizes or minimizes the objective function of a linear programming problem is

called an optimal solution.
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Definition 2.2.2 (Unbounded optimal solution). A linear programming problem is un-

bounded if the value of the objective function increases along the feasible direction of

the maximization linear programming problem and if the value of the objective function

decreases along the feasible direction of the minimization linear programming problem.

Definition 2.2.3 (Infeasible or empty feasible region). A linear programming problem

is infeasible if it has no feasible solution.

We can conclude the solution to every problem as the following theorem.

Theorem 2.2.4. Every linear programming problem either:

1. is infeasible,

2. is unbounded,

3. has a unique optimal solution value.

For a unique optimal solution value, it may have multiple optimal solutions having the

same objective function value.

2.2.4 Duality

For every linear programming problem, there is another associated linear

programming problem. This new linear programming problem satisfies some very im-

portant properties. We shall call the original linear programming problem as the primal

linear programming problem, and we shall call this related linear programming problem

as the dual linear programming problem. We can write the dual problem as below.

Definition 2.2.5 (Canonical form of duality). Suppose that the primal problem is given

in the (canonical) form:

P: max cT x

subject to Ax ≤ b

x ≥ 0.
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Then the dual problem is defined by:

D: min bT w

subject to AT w ≥ c

w ≥ 0.

Definition 2.2.6 (Standard form of duality). Suppose that the primal problem is given

in the (standard) form:

P: max cT x

subject to Ax = b

x ≥ 0.

Then, the dual problem is defined by:

D: min bT w

subject to AT w ≥ c

w unrestricted.

Both the primal and dual problems can be solved by using various methods.

But, the well-known methods are the graphical method, the simplex method, or the

interior point method. Since we would like to improve the simplex method, it will be

described in details in the next section.

2.3 Methods for solving a linear programming problem

In this section, we present many methods for solving a linear programming

problem, starting by the simplex algorithm. Then, other methods which improve the

simplex method is proposed.

2.3.1 Simplex method

The simplex method is used for solving a linear programming problem

which was developed by Dantzig [1]. It is an iterative process which makes the use
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of Gauss-Jordan elimination techniques. The goal of the simplex method is to obtain a

feasible solution to the objective function satisfying all constraints.

The simplex method starts at a basic feasible solution and moves to the

another basic feasible solution until the optimal solution is found. The basic feasible

solution can be defined below.

Definition 2.3.1. (Basic Feasible Solution)

Consider a linear programming problem in the standard form:

max cT x

subject to Ax = b

x ≥ 0,

(2.3.1)

where A ∈ Rm×n, b ∈ Rm, and c,x ∈ Rn.

Suppose that rank (A, b) = rank(A) = m. After possibly rearranging the

columns of A, let A = [B, N] where B is an m×m invertible matrix and N is an m×

(n−m) matrix. The solution x =

xB

xN

 to the equations Ax = b, where

xB = B−1b and xN = 0

is called a basic solution of the system Ax = b. If xB ≥ 0, then x is called a basic

feasible solution of the system (2.3.1). Here B is called the basic matrix or basis and

N is called the nonbasic matrix. The components of xB are called basic variables and

the components of xN are called nonbasic variables.

2.3.2 Algebra of the simplex method

Let A = [A:1,A:2, ...,A:n] = [B,N] where A: j ∈ Rm is a column vector j of

matrix A, B ∈ Rm×m, N ∈ Rm×(n−m). Assume that IB, IN are the index sets of basic

variables and nonbasic variables, respectively. Then, the problem (2.3.1) can be written
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as follows:
max z = cT

BxB + cT
NxN

subject to BxB +NxN = b

xB,xN ≥ 0.

(2.3.2)

Suppose that we have a basic feasible solution x =

xB

xN

 =

B−1b

0

 whose

objective value z0 is given by

z0 = cT x =
[
cT

B,c
T
N

]xB

xN

=
[
cT

B,c
T
N

]B−1b

0

= cT
BB−1b. (2.3.3)

Consider the constraint

Ax = b[
B, N

]xB

xN

 = b

BxB +NxN = b.

Multiplying the last equation by B−1 and rearranging the terms, we get

xB = B−1b−B−1NxN. (2.3.4)

Consider the objective function denoted by z :

z = cT x =
[
cT

B,c
T
N

]xB

xN

 = cT
BxB + cT

NxN

= cT
B(B

−1b−B−1NxN)+ cT
NxN

= cT
BB−1b− cT

BB−1NxN + cT
NxN

= cT
BB−1b− (cT

BB−1NxN− cT
NxN)

= cT
BB−1b− (cT

BB−1N− cT
N)xN

= cT
BB−1b− ∑

j∈IN

(cT
BB−1A: j− c j)x j

Let y j = B−1A: j, z j = cT
By j where j ∈ IN , b = B−1b and z0 = cT

BB−1b. Then, the
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problem (2.3.2) can be written as follows:

max z = z0− ∑
j∈IN

(z j− c j)x j

subject to xB + ∑
j∈IN

(y j)x j = b

x j ≥ 0, j ∈ IN ,xB ≥ 0

(2.3.5)

The key result is the value of z j− c j which is called the reduced cost. If

z j− c j ≥ 0 for all j ∈ IN , then the objective value decreases when x j increases. Thus,

x j should not be increased, that is, the current basic feasible solution is optimal. But if

there is at least one zk− ck < 0 for k ∈ IN , then the objective value increases when xk

increases. Thus, xk should be increased.

Consider z = z0− (zk− ck)xk, to determine the increasing value of the en-

tering basic variable xk before stopping.

Consider the kth column of the constraints

xB +(yk)xk = b

xB1

xB2

...

xBr

...

xBm


+



y1k

y2k
...

yrk
...

ymk


xk =



b1

b2
...

br
...

bm


We rearrange the terms, we get

xB1

xB2

...

xBr

...

xBm


=



b1

b2
...

br
...

bm


-



y1k

y2k
...

yrk
...

ymk


xk
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If yk ≤ 0, then xBi increases as xk increases, and so xk can be increased to

infinity because xBi is always nonnegative. Thus, the solution for this case is unbounded.

If yik > 0 for some i = 1, ...,m, then xBi will decrease as xk increases. Thus,

xk can be increased as xBi = bi− yikxk ≥ 0, that is xk ≤
bi

yik
, yik > 0.

For feasibility, we can increase xk until:

xk =
br

yrk
= minimum

1≤i≤m

{
bi

yik
: yik > 0

}
.

These calculations are referred to as the minimum ratio test.

When we can increase xk =
br

yrk
, then xBi will decrease to zero. Thus, xk

will enter to be a basic variable called an entering variable and xBi will leave to be a

nonbasic variable called a leaving variable.

The problem (2.3.5) can be rewritten as follows:

max z+ ∑
j∈IN

(z j− c j)x j = z0

subject to xB + ∑
j∈IN

(y j)x j = b

x j ≥ 0, j ∈ IN , xB ≥ 0.

(2.3.6)

Here, we think of z as a (basic) variable to be maximize. The objective row

will be referred to as row 0 and the remaining rows are rows 1 through m. The right-

hand-side column (RHS) will denote the values of the basic variables. The current basic

feasible solution is represented by basis B in the following tableau.

z xB xN RHS

1 0 cT
BB−1N− cT

N cT
BB−1b

xB 0 I B−1N B−1b

The steps of the simplex algorithm can be summarized as follows:
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The Simplex Method in Tableau Format (Maximization Problem)

Initialization Step

Find an initial basic feasible solution with basis B. Form the following ini-

tial tableau:

z xB xN RHS

1 0 cT
BB−1N− cT

N cT
BB−1b

xB 0 I B−1N B−1b

Main Step

1. Let zk− ck = min{z j− c j : j ∈ IN}, where z j− c j = cT
BB−1N: j− c j.

(a) If zk− ck ≥ 0, then the current tableau is optimal and ends.

(b) Otherwise, zk− ck < 0, examine yk in step 2.

2. Examine yk (coefficient in the kth column)

(a) If yk ≤ 0, then the linear programming problem is unbounded and ends.

(b) Otherwise, That is yk � 0, determine the index row r (minimum ratio test)

as follows:

br

yrk
= minimum

1≤i≤m

{
bi

yik
: yik > 0

}
3. Update the tableau by pivoting at yrk. Update the basic and nonbasic variables

where xk enters the basis and xBr leaves the basis. That is, yrk is divided by itself

to change to 1 and other entries in the kth column are updated to be 0 by using

row operation. Then, repeat the main step.
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Example 2.3.1. Consider the following linear programming problem:

maximize z = 8x1 + 9x2 + 5x3

subject to x1 + x2 + 2x3 ≤ 2

2x1 + 3x2 + 4x3 ≤ 3

6x1 + 6x2 + 2x3 ≤ 8

x1, x2, x3 ≥ 0.

We first convert the problem to standard form by adding slack variables x4,x5,x6 as

follows:

maximize z = 8x1 + 9x2 + 5x3

subject to x1 + x2 + 2x3 + x4 = 2

2x1 + 3x2 + 4x3 + x5 = 3

6x1 + 6x2 + 2x3 + x6 = 8

x1, x2, x3, x4, x5, x6 ≥ 0.

We can choose an initial basis as B = [A:4,A:5,A:6] = I3 and b =


2

3

8

 > 0. Then we

have B−1b = b ≥ 0 which is a basic feasible solution. Thus, we can start the simplex

method. The initial tableau is as below.

z x1 x2 x3 x4 x5 x6 RHS

1 −8 −9 −5 0 0 0 0

x4 0 1 1 2 1 0 0 2

x5 0 2 3 4 0 1 0 3

x6 0 6 6 2 0 0 1 8

Since min{z j−c j : j ∈ {1,2,3}}= z2−c2 =−9 < 0, x2 is the entering variable. Then,

we examine y2 and determine the index row r:

br

yr2
= minimum

1≤i≤3

{
b1

y12
,

b2

y22
,

b3

y32

}
= min

{
2
1
,
3
3
,
8
6

}
.
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Thus, x5 is the leaving variable. We update the tableau by pivoting at y22 and the basic

and nonbasic variables where x2 enters the basis and x5 leaves the basis. We get the

following tableau.

z x1 x2 x3 x4 x5 x6 RHS

1 −2 0 7 0 3 0 9

x4 0 1/3 0 2/3 1 −1/3 0 1

x2 0 2/3 1 4/3 0 1/3 0 1

x6 0 2 0 −6 0 −2 1 2

Since min{z j−c j : j ∈ {1,3,5}}= z1−c1 =−2 < 0, x1 is the entering variable. Then,

we examine y1 and compute the minimum ratio:

br

yr1
= minimum

1≤i≤3

{
b1

y11
,

b2

y21
,

b3

y31

}
= min

{
1

1/3
,

1
2/3

,
2
2

}
.

Thus, x6 is the leaving variable. We update the tableau by pivoting at y31 and the basic

and nonbasic variables where x1 enters the basis and x6 leaves the basis. We get the

following tableau.

z x1 x2 x3 x4 x5 x6 RHS

1 0 0 1 0 1 1 11

x4 0 0 0 5/3 1 0 −1/6 2/3

x2 0 0 1 10/3 0 1 −1/3 1/3

x1 0 1 0 −3 0 −1 1/2 1

This is the optimal tableau since zk− ck ≥ 0 for all nonbasic variables. The optimal

solution is given by

x∗1 = 1, x∗2 =
1
3

, x∗3 = 0 with z∗ = 11.

�
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By the previous example, we see that we can pick B = I easily and start the

simplex method immediately due to the feasibility of the origin point. However, the

basic feasible solution which is constructed by B may not be easily found. Thus, we

will add the artificial variables for picking B = I to start the simplex method.

Suppose that the constraints are of the following form:

Ax = b

x ≥ 0,
(2.3.7)

where A is an m×n matrix and b is a nonnegative m vector. Furthermore, suppose that

A has no identity submatrix which we have no obvious starting basic feasible solution.

In this case, we shall add artificial vector xa leading to the system:

Ax + xa = b

x, xa ≥ 0.
(2.3.8)

Note that by adding the artificial vector, we created an identity matrix (I) corresponding

to the artificial vector. Then, the new constraint matrix is [A, I] and the basic feasible

solution of the new system is found immediately, namely, xa = b and x= 0. Therefore,

the initial basic feasible solution is [x,xa]
T = [0,b]T ≥ 0. Now, we have a starting basic

feasible solution and the simplex method can be applied.

For a linear programming problem with adding artificial variables, there

are many methods for solving it which deals with artificial variables. But, there are two

well-known methods, that are, two-phase method and Big-M method.

2.3.3 Two-phase method

There are various methods that can be used to eliminate artificial variables.

One of these methods is to minimize the sum of artificial variables, subject to the con-

straints
Ax + xa = b

x, xa ≥ 0.
(2.3.9)
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If the original problem has a feasible solution, then the optimal value of this problem

is zero, where all artificial variables drop to zero (xa = 0). Then, other variables enter

instead artificial variables. The basis consists of other variables which except the arti-

ficial variable. In other words, we get a basic feasible solution for the original system

(2.3.7) and the simplex method can start with the original objective function cT x. On

the other hand, after solving this problem we have a positive artificial variable, then

the original problem has no feasible solution. This procedure is called the two-phase

method which is summarized as follows:

Phase I

In this phase, we reduce artificial variables to zero or conclude that the

original problem has no feasible solutions.

The algorithm starts by solving the following linear programming problem

starting with the basic feasible solution x = 0 and xa = b:

min x0 = 1T xa

subject to Ax + xa = b

x, xa ≥ 0.

(2.3.10)

At optimality, if x∗a 6= 0, then stop; the original problem has no feasible

solutions. Otherwise, let the basic and nonbasic variables be xB and xN and proceed to

Phase II.

Phase II

Solve the following linear programming problem starting with the basic

feasible solution xB = B−1b and xN = 0:

min or max z = cT
BxB + cT

NxN

subject to xB +B−1NxN = B−1b

xB, xN ≥ 0.

(2.3.11)
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Analysis of the two-phase Method

At the end of Phase I, either x∗a 6= 0 or x∗a = 0. These two cases are discussed

in details below.

Case A: x∗a 6= 0

If x∗a 6= 0, then the original problem has no feasible solution, because if

there is an x ≥ 0 with Ax = b, then

x

0

 is a feasible solution of the Phase I problem

and 0(x) + 1(0) = 0 < 1T x∗a , violating optimality of x∗a.

Case B: x∗a = 0

This case is divided into two subcases.

Subcase B1: All artificials are out of the basis

In this subcase, we have identified a basic feasible solution x = [xB,xN]
T .

Simply allow the non-zero basic element (in x) to be xB and the remainder of the el-

ements (excluding xa) are in xN. Then, we can start Phase II using the basic feasible

solution.

Subcase B2: Some artificials are in the basis at zero values

In this subcase, we have identified a degenerate solution to the Phase I

problem. We may proceed directly to Phase II, assigning 0 coefficients to artificial

variables as long as we ensure that no artificial variable ever becomes positive again.
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Example 2.3.2. Consider the following linear programming problem:

max 3x1 + x2 − 4x3

subject to x1 + x2 − x3 = 1

x2 ≥ 2

x1, x2, x3 ≥ 0.

Phase I

After introducing the slack variable s1 and artificial variables xa1 , xa2 the following

problem is obtained:

min xa1 + xa2

subject to x1 + x2 − x3 + xa1 = 1

x2 − s1 + xa2 = 2

x1, x2, x3, s1, xa1, xa2 ≥ 0.

We can choose an initial basis as B = [A:5,A:6] = I2 and fill coefficeint matrix into the

tableau:

z x1 x2 x3 s1 xa1 xa2 RHS

1 0 0 0 0 −1 −1 0

xa1 0 1 1 −1 0 1 0 1

xa2 0 0 1 0 −1 0 1 2

Since xa1 and xa2 are in basis, their reduced cost are zero. Then, the initial tableau is as

below.

z x1 x2 x3 s1 xa1 xa2 RHS

1 1 2 −1 −1 0 0 3

xa1 0 1 1 −1 0 1 0 1

xa2 0 0 1 0 −1 0 1 2
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Since max{z j−c j : j ∈ {1,2,3,4}}= z2−c2 = 2> 0, x2 is the entering variable. Then,

we examine y2 and compute the minimum ratio:

br

yr2
= minimum

1≤i≤2

{
b1

y12
,

b2

y22

}
= min

{
1
1
,
2
1

}
.

Thus, xa1 is the leaving variable. We update the tableau by pivoting at y12 and the basic

and nonbasic variables where x2 enters the basis and xa1 leaves the basis. We get the

following tableau.

z x1 x2 x3 s1 xa1 xa2 RHS

1 −1 0 1 −1 −1 0 1

x2 0 1 1 −1 0 1 0 1

xa2 0 −1 0 1 −1 −1 1 1

Since max{z j−c j : j ∈ {1,3,4,5}}= z3−c3 = 1> 0, x3 is the entering variable. Then,

we examine y3 and compute the minimum ratio:

br

yr3
= minimum

1≤i≤2

{
b2

y23

}
= min

{
1
1

}
.

Thus, xa2 is the leaving variable. We update the tableau by pivoting at y23 and the basic

and nonbasic variables where x3 enters the basis and xa2 leaves the basis. We get the

following tableau.

z x1 x2 x3 s1 xa1 xa2 RHS

1 0 0 0 0 −1 −1 0

x2 0 0 1 0 −1 0 1 2

x3 0 −1 0 1 −1 −1 1 1

Since xa1,xa2 = 0, Phase II starts with the current basic feasible solution.

Phase II

In this phase, the original objective is used. Thus, the reduced cost of start-

ing tableau of Phase II as below:
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z x1 x2 x3 s1 RHS

1 1 0 0 3 −2

x2 0 0 1 0 −1 2

x3 0 −1 0 1 −1 1

This is the optimal tableau since zk− ck ≥ 0 for all nonbasic variables. The optimal

solution is given by

x∗1 = 0, x∗2 = 2, x∗3 = 1, and s∗1 = 0 with z =−2.

�

By the above examples, both the simplex method and the two-phase start if

there is a basic feasible solution from choosing the basic matrix. But if we cannot select

the basic matrix, then artificial variables are added for picking the basic matrix easily. It

can guarantee that the basic feasible solution can be certainly found. However, adding

artificial variables will enlarge the size of the computational matrix, and the calculation

time is higher. Later, many researchers proposed many methods for finding the basic

feasible solution without using artificial variables. These method are proposed in the

next section.

2.3.4 Arsham’s algorithm

Arsham’s algorithm proposed by Arsham [3] in 1997. It is constucted for

solving the linear programming problem. This algorithm avoids the use of artificial

variables. It consists of two phases. In Phase I, it begins with the empty basic vari-

able set, then a nonbasic variable is chosen into the basic variable set one by one by

considering the coefficient of nonbasic variables in the objective function including the

minimum ratio. This phase can report that a problem is infeasible or the basic variable
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set is full. After Phase I ends, if the basic variable set is full, Phase II is used to find the

optimal solution by the ordinary simplex method.

Before the algorithm starts, the linear programming problem must be con-

verted into the following form:

max cT x

subject to Ax = b

x ≥ 0.

(2.3.12)

Process of Arsham’s algorithm

All coefficients are filled as the following tableau.

BVS x RHS C/R

− c j − −

? A b

where the column C/R is the column of ratios for finding the minimum ratio.

PHASE 1: BVS AUGMENTATION PHASE

Step 1. Construct the initial tableau which is always considered to have

empty basic variable set as the above tableau.

Step 2. Is the basic variable set complete?

- If yes, go to Phase 2.

- Otherwise, continue the pivot column selection in Step 3.

Step 3. A candidate to enter into the basic variable set is a nonbasic variable

with the largest c j.

Step 4. Compute the column ratio C/R . Is the smallest nonnegative C/R in

an unoccupied row?



Ref. code: 25605909031022BTZ

39

- If yes, the unoccupied row is the pivot row. Continue to enter

the variable into basic variable set by performing the Guass-Jordan

row operations, and return to Step 2.

- If not, go to Step 5.

Step 5. Is there any other nonbasic variable as a candidate to enter?

- If not, the problem is infeasible.

- Otherwise, choose the next pivot column with the largest c j and

go to Step 4.

PHASE 2: OPTIMALITY (SIMPLEX) PHASE

Step 6. Are all c j ≤ 0 in the current tableau?

- If yes, go to step 8.

- Otherwise, go to step 7.

Step 7. Apply the simplex method rules for entering and exiting variables to

and form the basic variable set. Go to step 6.

Step 8. This is an optimal tableau.

Next, we shall demonstrate steps of Arsham’s algorithm using a below ex-

ample.

Example 2.3.3. Consider the following linear programming problem:

max x1 + x2

subject to x1 + x2 ≥ 4

x1 ≤ 3

x2 ≤ 3

x1, x2 ≥ 0.

We first convert the problem to the standard form by adding surplus variable s1 and

slack variables s2 and s3 as follows.
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max x1 + x2

subject to x1 + x2 − s1 = 4

x1 + s2 = 3

x2 + s3 = 3

x1, x2, s1, s2, s3 ≥ 0.

Phase 1

The initial tableau can be written as follows:

BVS x1 x2 s1 s2 s3 RHS

c j − 1 1 0 0 0 −

? 1 1 −1 0 0 4

? 1 0 0 1 0 3

? 0 1 0 0 1 3

Since c1 is the largest coefficient, x1 enters the basic variable set. Then, compute the

column ratio C/R as follows:

BVS x1 x2 s1 s2 s3 RHS C/R

c j − 1 1 0 0 0 −

? 1 1 −1 0 0 4 4

? 1 0 0 1 0 3 3

? 0 1 0 0 1 3 −

At the second row, there is the minimum C/R. So, we bring x1 into the basic variable

set in the second row. Then, we get the following tableau.
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BVS x1 x2 s1 s2 s3 RHS

c j − 0 1 0 −1 0 −

? 0 1 −1 −1 0 1

x1 1 0 0 1 0 3

? 0 1 0 0 1 3

The next variable to enter the basis is x2. Performing the iteration, we get the following

tableau.

BVS x1 x2 s1 s2 s3 RHS

c j − 0 0 1 0 0 −

x2 0 1 −1 −1 0 1

x1 1 0 0 1 0 3

? 0 0 1 1 1 2

Next, the nonbasic variable s1 is entered into the basic variable set. Performing the

iteration, we get the following tableau.

BVS x1 x2 s1 s2 s3 RHS

c j − 0 0 0 −1 −1 −

x2 0 1 0 0 1 3

x1 1 0 0 1 0 3

s1 0 0 1 1 1 2

Since the basic variable set is full, we go to Phase 2.

Phase 2

Now, all c j are negative. Thus, the current tableau is optimal. Then, the

optimal solution is x∗1 = 3, x∗2 = 3 with z∗ = 6.

�
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Although Arsham’s algorithm avoids the use of artificial variables, it makes

a mistake which Enge and Huhn [4] gave a counterexample, in which Arsham’s phase

1 algorithm declares the infeasibility of a feasible problem. The mistake of Arsham’s

algorithm is that if the variable is already chosen into the basic variable set, then other

variables with minimum ratio cannot be replaced them. Thus, sometimes a basic fea-

sible variable set cannot be found. Then, Arsham’s algorithm reports infeasibility for

a feasible problem. Next, Arsham’s algorithm is improved by Gao [5] in 2015. In the

next section, Gao’s algorithm is presented.

2.3.5 Gao’s algorithm

By the mistake of Arsham’s algorithm, Gao [5] improved the Phase I of Ar-

sham’s algorithm in two variants called variant 1 and variant 2. Gao’s algorithm starts

when Arsham’s algorithm reports infeasibility and the nonbasic variable with minimum

ratio is not in the basic variable set. We first introduce the variant 1. It allows other non-

basic variables with minimum ratio to replace the previous variable in the basic variable

set. The selection of a nonbasic variable into the basic variable set by considering the

absolute of technical coefficients is still a mistake, since the infeasibility is sometimes

reported for a feasible problem. For variant 2, it uses an adding constraint which is

the sum of all unoccupied rows after passing Arsham’s algorithm. Then, the nonbasic

variable is chosen into the basic variable set by considering the largest coefficient of the

added constraint. Next, we describe details of both variants as below.

• Variant 1

Allowing the nonbasic variable with the smallest nonnegative C/R into the

basic variable set which is occupied row.
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Example 2.3.4. Consider the following linear programming problem:

max 3x1 + x2 − 4x3

subject to x1 + x2 − x3 = 1

x2 ≥ 2

x1, x2, x3 ≥ 0.

We first convert the problem to standard form by adding surplus variables s1 obtaining:

max 3x1 + x2 − 4x3

subject to x1 + x2 − x3 = 1

x2 − s1 = 2

x1, x2, x3, s1 ≥ 0.

Phase I:

After Arsham’s algorithm ends, we get the following tableau.

BVS x1 x2 x3 s1 RHS

c j − 0 −2 −1 0 −

x1 1 1 −1 0 1

? 0 1 0 −1 2

Then, the Arsham’s algorithm reports infeasibility. At this point, the variants can be

used to follow on, instead of declaring the infeasibility of the problem. Next, we choose

the nonbasic variable to enter the basic variable set. We examine the nonbasic variables

s1 and x3, but both candidates cannot enter the basic variable set. Thus, x2 is the last

nonbasic variable for consideration.

BVS x1 x2 x3 s1 RHS C/R

c j − 0 −2 −1 0 −

x1 1 1 −1 0 1 1

? 0 1 0 −1 2 2
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At the first row, there is the minimum C/R. So, x1 is replaced by x2 into the basic

variable set in the row, we get the following tableau.

BVS x1 x2 x3 s1 RHS

c j − 2 0 −3 0 −

x2 1 1 −1 0 1

? −1 0 1 −1 1

Next, the nonbasic variable x3 is chosen to enter the basic variable set. After the tableau

is updated, we get the following tableau.

BVS x1 x2 x3 s1 RHS

c j − −1 0 0 −3 −

x2 0 1 0 −1 2

x3 −1 0 1 −1 1

Since the basic variable set is full, we go to Phase 2.

Phase 2:

Now, all c j are negative. Thus, the current tableau is optimal. Then, the

optimal solution is x∗1 = 0, x∗2 = 2, x∗3 = 1 with z∗ =−2.

�

• Variant 2

After Arsham’s algorithm ends and reports infeasibility, the sum of all un-

occupied rows produces a new constraint, and it is added to the tableau. The following

example is illustrated the step of variant 2.
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Example 2.3.5. Consider the following linear programming problem:

max x1 + 5x2

subject to − x1 + x2 ≤ 1

x1 − x2 ≥ 1

x1 − x2 ≥ 2

x1 − x2 ≤ 4

x1, x2 ≥ 0.

We first convert the problem to the standard form by adding slack variables s1,s4 and

surplus variables s2,s3 obtaining:

max x1 + 5x2

subject to − x1 + x2 + s1 = 1

x1 − x2 − s2 = 1

x1 − x2 − s3 = 2

x1 − x2 + s4 = 4

x1, x2, s1, s2, s3, s4 ≥ 0.

Phase I:

After Arsham’s algorithm ends, we get the following tableau.

BVS x1 x2 s1 s2 s3 s4 RHS

c j − 6 0 −5 0 0 0 −

x2 −1 1 1 0 0 0 1

? 0 0 1 −1 0 0 2

? 0 0 1 0 −1 0 3

s4 0 0 1 0 0 1 5

Then, the Arsham’s algorithm reports infeasibility. At this point, the variants can be

used to follow on, instead of declaring the infeasibility of the problem. Next, we choose

the nonbasic variable to enter into the basic variable set by considering the constraints
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associated with unoccupied rows which is the sum of all unoccupied rows denoted by

SUM.

BVS x1 x2 s1 s2 s3 s4 RHS

c j − 6 0 −5 0 0 0 −

x2 −1 1 1 0 0 0 1

? 0 0 1 −1 0 0 2

? 0 0 1 0 −1 0 3

s4 0 0 1 0 0 1 5

SUM ? 0 0 2 −1 −1 0 5

In the added constraint, s1 has the largest coefficient. Thus, s1 is chosen to enter the

basic variable set.

BVS x1 x2 s1 s2 s3 s4 RHS C/R

c j − 6 0 −5 0 0 0 −

x2 −1 1 1 0 0 0 1 1

? 0 0 1 −1 0 0 2 2

? 0 0 1 0 −1 0 3 3

s4 0 0 1 0 0 1 5 5

SUM ? 0 0 2 −1 −1 0 5 5/2

At the first row, there is the minimum C/R. So, x2 is replaced by s1 into the basic variable

set in the row, we get the following tableau.
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BVS x1 x2 s1 s2 s3 s4 RHS

c j − 1 5 0 0 0 0 −

s1 −1 1 1 0 0 0 1

? 1 −1 0 −1 0 0 1

? 1 −1 0 0 −1 0 2

s4 1 −1 0 0 0 1 4

SUM ? 2 −2 0 −1 −1 0 3

Next, the nonbasic variable x1 is chosen to enter the basic variable set. After the tableau

is updated, we get the following tableau.

BVS x1 x2 s1 s2 s3 s4 RHS

c j − 0 6 0 1 0 0 −

s1 0 0 1 −1 0 0 2

x1 1 −1 0 −1 0 0 1

? 0 0 0 1 −1 0 1

s4 0 0 0 1 0 1 3

SUM ? 0 0 0 1 −1 0 1

Next, the nonbasic variable s2 is chosen to enter the basic variable set. After the tableau

is updated, we get the following tableau.

BVS x1 x2 s1 s2 s3 s4 RHS

c j − 0 6 0 0 1 0 −

s1 0 0 1 0 −1 0 3

x1 1 −1 0 0 −1 0 2

s2 0 0 0 1 −1 0 1

s4 0 0 0 0 1 1 2

SUM ? 0 0 0 0 0 0 0
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Now, the added constraint becomes zero and the basic variable set is full. Thus, Phase

2 can start.

Phase 2:

Now, all c j are not negative. Thus, the current tableau is not optimal. We

apply the simplex method rules for entering and exiting variables to the basic variable

set. But c2 is the largest coefficient, x2 is considered for being the entering variable

which there is no the minimum ratio. Consequently, the problem is unbounded.

�

Since variant 2 of Gao’s algorithm can identify the infeasibility of a linear

programming problem by considering the sum of unoccupied rows from Arsham’s al-

gorithm, we will use the sum of unoccupied rows which is all constraints for starting

the simplex method first. In the next chapter, we describe the proposed algorithm.
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CHAPTER 3

THE PROPOSED ALGORITHM

In this chapter, we present the idea of constructing our algorithm which we

use the sum of unoccupied rows for starting the simplex method without using artificial

variables. First, the sum of unoccupied rows is described. Then, we separate linear pro-

gramming problems into different types which are homogeneous and nonhomogeneous

linear programming problems. The proposed algorithm for solving both is presented.

3.1 The sum of unoccupied rows

Consider the following linear programming model:

max z = c1x1 + c2x2 + · · · + cnxn

subject to a11x1 + a12x2 + · · · + a1nxn = b1

a21x1 + a22x2 + · · · + a2nxn = b2
...

...
...

...

am1x1 + am2x2 + · · · + amnxn = bm

x1, x2, . . . , xn ≥ 0,

(3.1.1)

where n is the number of decision variables,

m is the number of constraints,

c j is the coefficient of objective function for each j = 1, ...,n,

ai j is the coefficients of constraints for i = 1, ...,m, j = 1, ...,n,

bi is a nonnegative right-hand-side value for each i = 1, ...,m,

and x j is a nonnegative decision variable for each j = 1, ...,n.
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For the problem (3.1.1), we can use the two-phase method for finding a fea-

sible solution by adding artificial variables for constructing the basic variable set when

the basic feasible solution cannot be found easily. The two-phase method is separated

into two phases. For Phase I, it finds the basic feasible variable set by minimizing of the

summation of artificial variables. For Phase II, it uses the simplex method by starting

at the basic variable set from Phase I for finding the optimal solution. The two-phase

method can conclude as follows:

Phase I: Minimize the summation of artificial variables

min z1 = xa1 + xa2 + · · · + xam

subject to a11x1 + · · · + a1nxn + xa1 = b1

a21x1 + · · · + a2nxn + xa2 = b2
...

... . . . ...

am1x1 + · · · + amnxn + xam = bm

x1, . . . , xn, xa1, . . . , xam ≥ 0.

Therefore, we have

A=


a11 · · · a1n 1 0 · · · 0

a21 · · · a2n 0 1 · · · 0
... . . . ...

...
... . . . ...

am1 · · · amn 0 0 · · · 1


, b =


b1

b2
...

bm


, x =



x1
...

xn

xa1

...

xam


=

 x

xa

 , c=

0

1

,

where 0 ∈ Rn and 1 ∈ Rm.

If we choose B = I to be a basis and N =


a11 a12 · · · a1n

a21 a22 · · · a2n
...

... . . . ...

am1 am2 · · · amn


, then

xB = xa, xN = x , cT
B = 1T , cT

N = 0T .

The initial tableau of any basis B can be computed as the following tableau:
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z1 xB xN RHS

1 0 cT
BB−1N− cT

N cT
BB−1b

xB 0 I B−1N B−1b

Then, the reduced cost can be computed as follows:

cT
BB−1N− cT

N = 1T I−1


a11 a12 · · · a1n

a21 a22 · · · a2n
...

... . . . ...

am1 am2 · · · amn


- 0T

=

[ m

∑
i=1

ai1

m

∑
i=1

ai2 · · ·
m

∑
i=1

ain

]

and the objective value is as follows:

cT
BB−1b = 1T I−1


b1

b2
...

bm


=

m

∑
i=1

bi.

Thus, the initial tableau becomes

z1 x1 x2 · · · xn xa1 xa2 · · · xam RHS

z1 1
m

∑
i=1

ai1

m

∑
i=1

ai2 · · ·
m

∑
i=1

ain 0 0 · · · 0
m

∑
i=1

bi

xa1 0 a11 a12 · · · a1n 1 0 · · · 0 b1

xa2 0 a21 a22 · · · a2n 0 1 · · · 0 b2
...

...
...

...
...

...
... . . . ...

...

xam 0 am1 am2 · · · amn 0 0 · · · 1 bm
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The two-phase method will choose nonbasic variables into the basis and

try to leave artificial variables out the basis. Thus, we will not consider columns of

all artificial variables and start the algorithm from an empty basic variable set. Then,

nonbasic variables are selected to replace the rows which have artificial variables, and

the artificial variables in that row are left from the basis. Therefore, we need not add

artificial variables, and the size of the problem can be reduced.

Consider the row zero of the initial tableau, we get the equation( m

∑
i=1

ai1

)
x1 +

( m

∑
i=1

ai2

)
x2 + · · ·+

( m

∑
i=1

ain

)
xn =

m

∑
i=1

bi (3.1.2)

Thus, the equation (3.1.2) is called the sum of all constraints.

First, we start by setting the empty basic variable set, and the initial tableau

of the proposed algorithm can reduce as the following tableau.

BVS x1 x2 · · · xn RHS

SUM −
m

∑
i=1

ai1

m

∑
i=1

ai2 · · ·
m

∑
i=1

ain

m

∑
i=1

bi

? a11 a12 · · · a1n b1

? a21 a22 · · · a2n b2
...

...
...

...
...

? am1 am2 · · · amn bm

Then, a nonbasic variable is chosen one by one into a row of the BVS

column which is basic variable set. If a row in the BVS column has a basic variable,

then it is called an occupied row. Otherwise, it is called an unoccupied row. Thus,

the equation (3.1.2) can be called a sum of unoccupied rows which it can identify the

existence of the solution of a linear system. Therefore, we use the equation (3.1.2) for

constructing the basic feasible solution or identifying the solution.
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Let α j =

m

∑
i=1

ai j for each j = 1, ...,n and β =

m

∑
i=1

bi. Then, the equation

(3.1.2) can be written below

α1x1 +α2x2 + · · ·+αnxn = β. (3.1.3)

By considering the value of β in (3.1.3), we can saperate the linear pro-

gramming problem in two different types of the problem. If β = 0, then the problem

(3.1.1) is a homogeneous linear programming problem. Otherwise, it is a nonhomo-

geneous linear programming problem. We describe the algorithm for solving both in

details below.

3.2 Nonhomogeneous linear programming problems

A nonhomogeneous linear programming problem is a problem which has

the nonzero right-hand-side vector which it can identify when β > 0. Its solution can be

many possible situations: optimal solution, infeasible or unbounded. We will use the

sum of unoccupied rows for finding its solution by considering the largest coefficient in

the equation (3.1.3) defined as follows:

αmax = max
1≤ j≤n

{α j}.

Thus, two cases are distinguished to construct the algorithm below.

3.2.1 Case: αmax ≤ 0

Since αmax ≤ 0 and β > 0, α j < 0 for all j = 1, ...,n in (3.1.3) . However,

the value of x j is only positive or zero for all j = 1, ...,n. Thus, there is no x j which

satisfies (3.1.3). We can conclude the solution as the following lemma.
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Lemma 3.2.1. Consider the linear programming model (3.1.1). Let α j =

m

∑
i=1

ai j for

each j = 1, ...,n, αmax = max
1≤ j≤n

{α j} and β =

m

∑
i=1

bi. If αmax ≤ 0 and β > 0, then the

problem (3.1.1) is infeasible.

Proof. Suppose that αmax ≤ 0 and β > 0. Assume that the problem is feasible. Thus,

there is a solution x j ≥ 0 for all j = 1, ...,n which α1x1+ · · ·+αnxn = β. Since αmax≤ 0,

α j ≤ 0 for all j = 1, ...,n. Since α j ≤ 0 and x j ≥ 0 for all j = 1, ...,n, α jx j ≤ 0 for all

j = 1, ...,n. So, α1x1 + · · ·+αnxn ≤ 0 6= β > 0. This is a contradiction. Therefore, the

problem is no solution or infeasible.

3.2.2 Case: αmax > 0

In this case, we can choose a nonbasic variable xk which associate to αmax

to enter into the basic variable set since there is at least one coefficient in column k as

aik > 0 for some i = 1, ...,m. Thus, there exists the ith row for calculating the minimum

ratio, and the variable xk is chosen to enter the basic variable set. After the basic variable

set is not empty, we would like to use the sum of unoccupied rows to identify the

solution or choose the remaining nonbasic variables to enter the basis.

Next, we will use the sum of unoccupied rows to consider the existence of

the solution.

Consider the following model:

LP: max cT x

s.t. Ax = b,

x ≥ 0.

(3.2.1)

where A ∈ Rm×n, c, x ∈ Rn, b ∈ Rm , b≥ 0 and rank(A) = m.

For constructing the basic feasible variable set of the problem (3.2.1), we

will use the equation αααT x = β where ααα is a column vector of coefficient of the sum of
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all constraints and β is the sum of all right-hand-side values. Then, the initial tableau of

the proposed algorithm can be presented as follows:

BVS x RHS

SUM − α β

? A b

After some nonbasic variables enter the basic variable set, we let IB be an

index set of basic variables in occupied rows which |IB| = l,1 ≤ l ≤ m, and IN be an

index set of nonbasic variables which |IN| = k = n− l. Assume that xB is the basic

variable vector in the occupied rows where xB = [xBi], i ∈ IB and xN is the nonbasic

variable vector where xN = [xNi], i ∈ IN.

Assume that

A =

 B N

AuB AuN

, αααT =
[
αααT

B αααT
N

]
, and b =

bo

bu


where B ∈ Rl×l is a basic invertible matrix which each column

coressponds to the index set IB and each row corresponds

to occupied rows,

N ∈ Rl×(n−l) is a nonbasic matrix which each column coressponds to

the index set IN and each row corresponds to occupied

rows,

AuB ∈ R(m−l)×l is a submatrix of A which each row associates with un-

occupied rows and each column associates with IB,

AuN ∈R(m−l)×(n−l) is a submatrix of A which each row associates with un-

occupied rows and each column associates with IN,

αααT
B is a basic row vector of coefficients of the sum of all

constaints associated with IB,

αααT
N is a nonbasic row vector of coefficients of the sum of all

constaints associated with IN,



Ref. code: 25605909031022BTZ

56

cT
B is a row vector of cT associated with IB,

cT
N is a row vector of cT associated with IN,

bo is a column vector of right-hand-side values in occupied rows,

and bu is a column vector of right-hand-side values in unoccupied rows.

So, the problem (3.2.1) can be written as follows:

LP: max cT
BxB + cT

NxN

s.t. BxB + NxN = bo

AuBxB + AuNxN = bu

xB, xN ≥ 0.

(3.2.2)

So, the tableau of the proposed algorithm when xB is chosen to enter the basic variable

set is as follows:

BVS xB xN RHS

SUM − αT
B αT

N β

xB B N bo

? AuB AuN bu

Consider the constraints which is occupied rows:

BxB +NxN = bo. (3.2.3)

Multiply the equation (3.2.3) by B−1, we get

xB +B−1NxN = B−1bo or xB = B−1bo−B−1NxN. (3.2.4)

Consider the constraints which is unoccupied rows:

AuBxB +AuNxN = bu

AuB(B
−1bo−B−1NxN)+AuNxN = bu

AuBB−1bo−AuBB−1NxN +AuNxN = bu

AuBB−1bo− (AuBB−1N−AuN)xN = bu

(AuN−AuBB−1N)xN = bu−AuBB−1bo.
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Consider the equation αααT x = β, we get

αααT
BxB +αααT

NxN = β

αααT
B(B

−1bo−B−1NxN)+αααT
NxN = β

αααT
BB−1bo−αααT

BB−1NxN +αααT
NxN = β

(αααT
N−αααT

BB−1N)xN = β−αT
BB−1bo.

So, the problem (3.2.2) can be written as follows:

LP: max cT
BxB + cT

NxN

s.t. IlxB +B−1NxN = B−1bo

(AuN−AuBB−1N)xN = bu−AuBB−1bo

xB, xN ≥ 0.

(3.2.5)

Then, the updated tableau of our algorithm is as follows:

BVS xB xN RHS

SUM − 0 αααT
N−αααT

BB−1N β−αααT
BB−1bo

xB Il B−1N B−1bo

? 0 AuN−AuBB−1N bu−AuBB−1bo

where Il is an identity l× l matrix.

By the above tableau, we wolud like to show that αααT
N−αααT

BB−1N is the sum

of unoccupied rows.

Let

B =


a1B1 a1B2 · · · a1Bl

a2B1 a2B2 · · · a2Bl

...
... . . . ...

alB1 alB2 · · · alBl


, N =


a1N1 a1N2 · · · a1Nk

a2N1 a2N2 · · · a2Nk

...
...

...

alN1 alN2 · · · alNk


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AuB =


al+1B1 al+1B2 · · · al+1Bl

al+2B1 al+2B2 · · · al+2Bl

...
... . . . ...

amB1 amB2 · · · amBl


, and AuN =


al+1N1 al+1N2 · · · al+1Nk

al+2N1 al+2N2 · · · al+2Nk

...
... . . . ...

amN1 amN2 · · · amNk


where N j ∈ IN for j = 1, ...,k and Bi ∈ IB for i = 1, ..., l.

Consider αααT
N−αααT

BB−1N

=
[
αN1 αN2 · · · αNk

]
-
[
αB1 αB2 · · · αBl

]
B−1N

=
[ m

∑
i=1

aiN1

m

∑
i=1

aiN2 · · ·
m

∑
i=1

aiNk

]
-
[ m

∑
i=1

aiB1

m

∑
i=1

aiB2 · · ·
m

∑
i=1

aiBl

]
B−1N

= 1T



a1N1 a1N2 · · · a1Nk

...
...

...

alN1 alN2 · · · alNk

al+1N1 al+1N2 · · · al+1Nk

...
...

...

amN1 amN2 · · · amNk


- 1T



a1B1 a1B2 · · · a1Bl

...
...

...

alB1 alB2 · · · alBl

al+1B1 al+1B2 · · · al+1Bl

...
...

...

amB1 amB2 · · · amBl


B−1N

= 1T

( N

AuN

 -

 B

AuB

 B−1N

)

= 1T

( N

AuN

 -

 N

AuBB−1N

)
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= 1T

 0

AuN−AuBB−1N

 .

= 1T
[
AuN−AuBB−1N

]
, where 1 ∈ Rm.

Therefore, αααT
N−αααT

BB−1N is the sum of all rows of AuN−AuBB−1N, that is,

αααT
N−αααT

BB−1N is the sum of unoccupied rows.

Next, we would like to show that the sum of the right-hand-side values of

unoccupied rows is β−αααT
BB−1bo.

Let

bo =


b1

b2
...

bl


and bu =


bl+1

bl+2
...

bm


Consider

β−αααT
BB−1bo =

m

∑
i=1

bi -
[ m

∑
i=1

aiB1

m

∑
i=1

aiB2 · · ·
m

∑
i=1

aiBl

]
B−1bo

= 1T



b1
...

bl

bl+1
...

bm


- 1T



a1B1 a1B2 · · · a1Bl

...
...

...

alB1 alB2 · · · alBl

al+1B1 al+1B2 · · · al+1Bl

...
...

...

amB1 amB2 · · · amBl


B−1bo
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= 1T

bo

bu

 - 1T

 B

AuB

B−1bo

= 1T

(bo

bu

 -

 bo

AuBB−1bo

 )

= 1T

 0

bu−AuBB−1bo



= 1T
[
bu−AuBB−1bo

]
.

Therefore, β−αααT
BB−1bo is the summation of right-hand-side values of un-

occupied rows.

Lemma 3.2.2. Consider the problem (3.2.1). Let IB be an index set of basic variables

in occupied rows which |IB|= l,1≤ l ≤m, and IN be an index set of nonbasic variables

which |IN|= k = n− l, xB = [xBi], i ∈ IB and xN = [xNi], i ∈ IN. Let

A =

 B N

AuB AuN

 and b =

bo

bu

,

where B ∈ Rl×l is a basic invertible matrix which each column

coressponds to the index set IB and each row corresponds

to occupied rows,

N ∈ Rl×(n−l) is a nonbasic matrix which each column coressponds to

the index set IN and each row corresponds to occupied

rows,

AuB ∈ R(m−l)×l is a submatrix of A which each row associates with un-

occupied rows and each column associates with IB,
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AuN ∈R(m−l)×(n−l) is a submatrix of A which each row associates with un-

occupied rows and each column associates with IN,

bo is a column vector of right-hand-side values in occupied

rows,

and bu is a column vector of right-hand-side values in unoccu-

pied rows.

Consider the following system:

(AuN−AuBB−1N)xN = bu−AuBB−1bo

xN ≥ 0.
(3.2.6)

If the system (3.2.6) is infeasible, then the problem (3.2.1) is infeasible.

Proof. Suppose that the problem LP is feasible. Thus, there exists x≥ 0 and Ax = b.

By rearranging the index of variables x as in x =

xB

xN

, we get

Ax = b B N

AuB AuN

 xB

xN

 =

bo

bu


Then,

BxB +NxN = bo and AuBxB +AuNxN = bu.

Since xB = B−1bo−B−1NxN, (AuN−AuBB−1N)xN = bu−AuBB−1bo.

So, there exists xN which satisfies the system (3.2.6). Thus, the system (3.2.6) is feasi-

ble. Therefore, if the system (3.2.6) is infeasible, then the problem LP is also infeasi-

ble.

By the above lemma, if we found that the largest coefficient of sum of

unoccupied rows is negative, then we can conclude that the problem with unoccupied

rows is infeasible. Therefore, the original problem is infeasible. In other word, if the
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basic variable set is not full, then we can conclude that the problem is infeasible as the

next lemma.

Lemma 3.2.3. If a basic variable set is not full when the algorithm ends, then the linear

programming problem is infeasible.

Proof. Suppose that the basic variable set is not full. Thus, the largest coefficient of sum

of unoccupied rows is negative. So, the problem with unoccupied rows is infeasible. By

Lemma 3.2.2, we can conclude that the solution of the original problem is infeasible.

Next, we design our algorithm for solving a nonhomogeneous linear pro-

gramming problem.

Steps of Nonhomogeous Linear Programming Algorithm

Phase I: find the basic variable set

Step 1 Let IB =∅ and IN = {1,2, ...,n}. Construct an initial tableau and add

the following sum of unoccupied rows,

α1x1 +α2x2 + · · ·+αnxn = β

in the SUM row.

Step 2 If β > 0, then let k = argmax
j∈IN

{α j}, where IN is an index set of non-

basic variables.

- If αk > 0, then xk is chosen into the basic variable set and go to

Step 2.1.

- Otherwise, the problem is infeasible and stop.

Step 2.1 Compute the minimum ratio by

br

yrk
= min

1≤i≤m

{
bi

yik
: yik > 0

}
.
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- If the rth row is occupied by xBr , then IB = IB−{Br} and

IN = IN∪{Br}−{k}.

- Otherwise, IB = IB∪{k} and IN = IN−{k}.

Step 2.2 Bring xk into the rth row, by using Gauss-Jordan row oper-

ations.

Step 2.3 - If |IB|= m, then phase II starts.

- Otherwise, go back to Step 2.

else (β = 0)

For i ∈U , where U is an index set of unoccupied rows.

Let k = argmax
j∈IN

{|ai j|}, where IN is a set of index of nonbasic

variables.

- If aik 6= 0, then bring xk into the ith row, by using Gauss-

Jordan row operations.

- Otherwise, the ith row is deleted.

Go to Phase II.

Phase II: Solving the original problem by the simplex algorithm

We get the basic feasible solution from Phase I. Then, the the simplex algo-

rithm can start for finding the optimal solution.

Next, we give two illustrative examples for showing the efficiency of our

algorithm.

Example 3.2.1. Consider the following linear programming problem:

max x1 + 5x2 + 2x3 + 4x3

subject to − 3x1 + 5x2 − 4x3 − 3x4 ≥ 2

x1 + 4x2 + 2x3 − x4 ≤ −3

− 2x1 + x2 − 3x3 − 2x4 ≥ 4

3x1 − 6x2 + x3 + x4 = 6

x1, x2, x3, x4 ≥ 0.
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We first convert the problem to the standard form. Then, we obtain as follows:

max x1 + 5x2 + 2x3 + 4x3

subject to − 3x1 + 5x2 − 4x3 − 3x4 − s1 = 2

− x1 − 4x2 − 2x3 + x4 − s2 = 3

− 2x1 + x2 − 3x3 − 2x4 − s3 = 4

3x1 − 6x2 + x3 + x4 = 6

x1, x2, x3, x4 s1, s2, s3 ≥ 0.

Phase I: The initial tableau of the problem is as below:

BVS x1 x2 x3 x4 s1 s2 s3 RHS

SUM − −3 −4 −8 −3 −1 −1 −1 15

? −3 5 −4 −3 −1 0 0 2

? −1 −4 −2 1 0 −1 0 3

? −2 1 −3 −2 0 0 −1 4

? 3 −6 1 1 0 0 0 6

By considering the above tableau, the sum of unoccupied rows is

−3x1−4x2−8x3−3x4− s1− s2− s3 = 15 (3.2.7)

We have α1 =−3, α2 =−4, α3 =−8, α4 =−3, α5 = α6 = α7 =−1 and β = 15. Since

αmax = α5 =−1≤ 0 and β = 15 > 0, the problem is infeasible.

Example 3.2.2. (A counterexample of Arsham’s algorithm by Enge and Huhn [4]).

Consider the following linear programming problem:

max 3x1 + x2 − 4x3

subject to x1 + x2 − x3 = 1

x2 ≥ 2

x1, x2, x3 ≥ 0.
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We first convert the problem to the standard form by substracting surplus variable s1

obtained as follows:

max 3x1 + x2 − 4x3

subject to x1 + x2 − x3 = 1

x2 − s1 = 2

x1, x2, x3, s1 ≥ 0.

Phase I

The initial tableau of the problem is as below:

BVS x1 x2 x3 s1 RHS

SUM − 1 2 −1 −1 3

? 1 1 −1 0 1

? 0 1 0 −1 2

By considering the above tableau, the sum of unoccupied rows is

x1 +2x2− x3− s1 = 3. (3.2.8)

We have α1 = 1, α2 = 2, α3 = −1, α4 = −1, and β = 3. Then, αmax = α2 = 2 ≥ 0.

Thus, x2 is chosen into the basic variable set. Compute the minimum ratio for choosing

the leaving variable, we get the following tableau.

BVS x1 x2 x3 s1 RHS Ratio

SUM − 1 2 −1 −1 3

? 1 1 −1 0 1 1/1

? 0 1 0 −1 2 2/1

Next, the nonbasic variable x2 enters the basic variable set in the first row. Perform

Gauss-Jordan row operations, we get the following tableau:
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BVS x1 x2 x3 s1 RHS

SUM − −1 0 1 −1 1

x2 1 1 −1 0 1

? −1 0 1 −1 1

Now, the sum of unoccupied rows is updated below

− x1 + x3− s1 = 1. (3.2.9)

We have α1 =−1, α3 = 1, α4 =−1, and β = 1. Then, αmax = α3 = 1≥ 0. Thus, x3 is

chosen into the basic variable set. The current tableau is updated as follows:

BVS x1 x2 x3 s1 RHS

SUM − 0 0 0 0 0

x2 0 1 0 −1 2

x3 −1 0 1 −1 1

Since the number of elements of the basic variable set is equal to the number of all

constraints in the original problem, then phase II starts.

Phase II

The initial tableau of Phase II is as follows:

x1 x2 x3 s1 RHS

z j− c j 1 0 0 3 −2

x2 0 1 0 −1 2

x3 −1 0 1 −1 1

Since all reduced costs of the current tableau are positive, this is the optimal tableau.

The basic feasible variable set is {x2,x3} and the optimal solution is x∗1 = 0, x∗2 = 2,

x∗3 = 1, and s∗1 = 0.
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From Example 3.2.2, we found that we use 2 iterations while Gao’s algo-

rithm uses 3 iterations to solve it.

Afterwards, we will use the sum of unoccupied rows for finding the solution

of the homogeneous linear programming problem.

3.3 Homogeneous linear programming problems

Consider the following linear programming model:

max z = c1x1 + c2x2 + · · · + cnxn

subject to a11x1 + a12x2 + · · · + a1nxn = 0

a21x1 + a22x2 + · · · + a2nxn = 0
...

...
...

...

am1x1 + am2x2 + · · · + amnxn = 0

x1, x2, . . . , xn ≥ 0

(3.3.1)

is called the homogeneous linear programming problem which it has all elements of

the right-hand-side being zero (β = 0). Its solution are only three possible solutions:

trivial solution, multiple solutions or unboundedness. If we solve it by the simplex

method, then both artificial variables are added and the degeneracy appears. So, we

will use the sum of unoccupied rows for finding or identifying the solution of (3.3.1).

Consider the sum of unoccupied rows for the homogeneous linear program-

ming problem

α1x1 +α2x2 + · · ·+αnxn = 0, (3.3.2)

where α j =

m

∑
i=1

ai j for each j = 1, ...,n.

Let

αmax = max
1≤ j≤n

{α j}.

By considering the value of αmax , we can distinguish following three cases.
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3.3.1 Case: αmax < 0

For case αmax < 0, that is, α j < 0 for all j = 1, ...,n in (3.3.2), but the

value of x j is only positive or zero for all j = 1, ...,n. Thus, the solution of (3.3.1) is

trivial solution.

Lemma 3.3.1. Consider the linear programming model (3.3.1). Let α j =

m

∑
i=1

ai j for

each j = 1, ...,n, and αmax = max
1≤ j≤n

{α j}. If αmax < 0, then the solution of the prob-

lem (3.3.1) is only trivial.

Proof. Suppose that αmax < 0. Then, α j < 0 for all j = 1, ...,n. Assume that the

solution is not trivial, there exists at least one x j which x j > 0 for some j = 1, ...,n.

Then, α jx j < 0 for some j = 1, ...,n. That is,
n

∑
j=1

α jx j < 0. This is a contradiction. The

solution of the problem is only trivial.

3.3.2 Case: αmax = 0 and it is a unique value

In this case, we can identify the solution of (3.3.1) by the following lemma.

Lemma 3.3.2. Consider the linear programming model (3.3.1). Let α j =

m

∑
i=1

ai j for

each j = 1, ...,n, and αk = αmax = max
1≤ j≤n

{α j}. If αmax = 0 and it is a unique value,

then the solution of the problem (3.3.1) is either

1. trivial solution if ck < 0 ,

2. multiple solutions if ck = 0,

3. unbounded if ck > 0.

Proof. Suppose that αk = αmax = 0 and it is a unique value. Then, the sum of unoc-

cupied rows is
n

∑
j=1, j 6=k

α jx j + 0xk = 0. If there exists at least one of x j which x j > 0
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for some j ∈ {1, ...,n}− {k}, then
n

∑
j=1, j 6=k

α jx j + 0xk 6= 0. Thus, x j = 0 for all j ∈

{1, ...,n}−{k}. Since xk ≥ 0, xk can be either xk = 0 or xk > 0.

Consider the objective function, z = c1x1 + c2x2 + · · ·+ ckxk + · · ·+ cnxn.

Since x j = 0 for all j ∈ {1, ...,n}−{k}, the objective function becomes z = ckxk.

Case ck < 0: If xk > 0, then z = ckxk < 0. Since the problem is the maxi-

mization problem, xk = 0. If xk = 0, then z = 0.

Case ck = 0: If xk = 0, then z = 0. If xk > 0, then the problem has multiple

solutions.

Case ck > 0: If xk = 0, then z = 0. If xk > 0, then we can see that z increases

when xk increases. Therefore, the problem is unbounded.

3.3.3 Case: αmax = 0 and it is not a unique value or αmax > 0

For this case, we cannot use the sum of unoccupied rows in the original

problem for finding the solution directly. Because the degeneracy occurs if the problem

is solved by the simplex method. Thus, we will change the original problem to another

problem. Associated with each linear programming problem, as (3.1.1), there is another

linear programming problem called the dual. The dual problem of (3.1.1) can be written

as the following form:

min 0y1 + 0y2 + · · · + 0ym

subject to a11y1 + a21y2 + · · · + am1ym ≥ c1

a12y1 + a22y2 + · · · + am2ym ≥ c2
...

...
...

...

a1ny1 + a2ny2 + · · · + amnym ≥ cn,

y1, y2, . . . , ym are unrestricted.

(3.3.3)

We will find a feasible solution of this problem. For the simplex method,

we will convert the problem to the standard form. Since y1,y2, ...,ym are unrestricted,
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we can let yi = y+i − y−i , where y+i ,y
−
i ≥ 0 for i = 1, ...,m. Thus, the dual problem in

the standard form is as follows:

min 0(y+1 − y−1 ) + · · ·+ 0(y+m− y−m)

subject to a11(y+1 − y−1 ) + · · ·+ am1(y+m− y−m) − s1 = c1

a12(y+1 − y−1 ) + · · ·+ am2(y+m− y−m) − s2 = c2
...

...
...

a1n(y+1 − y−1 ) + · · ·+ amn(y+m− y−m) − sn = cn

y+1 ,y
−
1 , . . . ,y

+
m,s1, . . . ,sn ≥ 0.

(3.3.4)

For some constraints, if there is some c j < 0 for some j = 1, ...,n, then we

convert it to positive value by multiplying the constraint by -1. In this case, we can

recall the algorithm which is used to solve the nonhomogeneous linear programming

problem to solve it.

By the equivalent of the primal and dual problem, we use the dual problem

for finding the solution of the primal problem (3.3.1). Since the sum of unoccupied

rows consideration cannot give the solution directly in this case, the dual problem of

(3.3.3) is used for solving the problem (3.3.1). Since the solution of the primal homo-

geneous linear programming problem is only unbounded or trivial, the solution of the

dual problem is only infeasible or optimal. If the dual problem is feasible, then the pri-

mal problem is optimal which the optimal value is zero. Otherwise, the primal problem

can be concluded that it is unbounded since the dual problem is infeasible.

By the above idea, we can use the sum of unoccupied rows in the dual

problem for identifying the solution of the homogeneous linear programming problem

as the following steps.
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Steps of Homogeneous Linear Programming Algorithm

Phase I: find the basic variable set

Step 1 Compute the sum of unoccupied rows of the problem (3.3.1)

α1x1 +α2x2 + · · ·+αnxn = 0.

Step 2 Let k = argmax
1≤ j≤n

{α j}.

If αk < 0, then the solution of the problem (3.3.1) is trivial.

Else if αmax = 0 and it is a unique value,

if ck < 0, then the optimal solution is trivial.

Else if ck = 0, then x j = 0 for all j = 1, ...,n, j 6= k and

xk ≥ 0.

- Otherwise, the optimal solution is unbounded.

Else, the dual is used for finding the solution, and the nonhomoge-

neous linear programming problem algorithm is used.

- if the dual problem is feasible, then the optimal objective

value is zero.

- Otherwise, the original problem is unbounded.

Example 3.3.1. Consider the following linear programming problem:

max 3x1 + x2 + 2x3

subject to − x1 − 3x2 + 2x3 = 0

− 3x1 + 2x2 − x3 = 0

4x1 + x2 − x3 = 0

x1, x2, x3 ≥ 0.

Since the problem is in the standard form, we get the sum of unoccupied rows

0x1 +0x2 +0x3 = 0. (3.3.5)

We have α1 = α2 = α3 = 0, and β = 0. We see that, the largest coefficients of (3.3.5) is

zero which it is not unique. Thus, we cannot identify the solution by considering only
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the sum of all constraints of the primal problem. So, the dual of this problem is used

for finding the solution. The dual problem is

min 0y1 + 0y2 + 0y3

subject to − y1 − 3y2 + 4x3 ≥ 3

− 3y1 + 2y2 + y3 ≥ 1

2y1 − y2 − y3 ≥ 2

y1, y2, y3 unrestricted.

Since y1,y2,y3 are unrestricted, we let yi = y+i − y−i , where y+i ,y
−
i ≥ 0 for i = 1,2,3.

Thus, the standard form of the dual problem can be written as follows:

min 0(y+1 − y−1 ) + 0(y+2 − y−2 ) + 0(y+3 − y−3 )

subject to −(y+1 − y−1 ) − 3(y+2 − y−2 ) + 4(y+3 − y−3 ) − s1 = 3

−3(y+1 − y−1 ) + 2(y+2 − y−2 ) + (y+3 − y−3 ) − s2 = 1

2(y+1 − y−1 ) − (y+2 − y−2 ) − (y+3 − y−3 ) − s3 = 2

y+1 , y−1 , y+2 , y−2 , y+3 , y−3 , s1, s2, s3 ≥ 0.

This is a nonhomogeous linear programming problem. Construct the initial

tableau and add the sum of unoccupied rows in the SUM row as the following tableau:

BVS y+1 y−1 y+2 y−2 y+3 y−3 s1 s2 s3 RHS

SUM − −2 2 −2 2 4 −4 −1 −1 −1 6

? −1 1 −3 3 4 −4 −1 0 0 3

? −3 3 2 −2 1 −1 0 −1 0 1

? 2 −2 −1 1 −1 1 0 0 −1 2

Consider the initial tableau, we get the sum of unoccupied rows as

−2y+1 +2y−1 −2y+2 +2y−2 +4y+3 −4y−3 − s1− s2− s3 = 6. (3.3.6)

Thus, y+3 is chosen into the basic variable set. Consider a row for entering y+3 by com-

puting the minimum ratio as the following tableau.
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BVS y+1 y−1 y+2 y−2 y+3 y−3 s1 s2 s3 RHS Ratio

SUM − −2 2 −2 2 4 −4 −1 −1 −1 6

? −1 1 −3 3 4 −4 −1 0 0 3 3/4

? −3 3 2 −2 1 −1 0 −1 0 1 1/1

? 2 −2 −1 1 −1 1 0 0 −1 2 −

Next, the nonbasic variable y+3 is entered into the basic variable set in the first row.

Perform Gauss-Jordan row operation, we get the following tableau.

BVS y+1 y−1 y+2 y−2 y+3 y−3 s1 s2 s3 RHS

SUM − −1 1 1 −1 0 0 0 −1 −1 3

y+3 −0.25 0.25 −0.75 0.75 1 −1 −0.25 0 0 0.75

? −2.75 2.75 2.75 −2.75 0 0 0.25 −1 0 0.25

? 1.75 −1.75 −1.75 1.75 0 0 −0.25 0 −1 2.75

Now, the sum of unoccupied rows is updated as below:

− y+1 + y−1 + y+2 − y−2 − s2− s3 = 3. (3.3.7)

Thus, y−1 is chosen into the basic variable set. The tableau is updated as follows:

BVS y+1 y−1 y+2 y−2 y+3 y−3 s1 s2 s3 RHS

SUM − 0 0 0 0 0 0 −0.09 −0.63 −1 2.91

y+3 0 0 −1 1 1 −1 −0.27 0.09 0 0.73

y−1 −1 1 1 −1 0 0 0.09 −0.36 0 0.09

? 0 0 0 0 0 0 −0.09 −0.63 −1 2.91

Now, the sum of unoccupied row is updated as below:

−0.09s1−0.63s2− s3 = 2.91. (3.3.8)
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Since the largest coefficient of (3.3.8) is zero, the solution of the dual problem is in-

feasible. By the relationship of the primal and dual problem, we can conclude that the

solution of the original problem is unbounded.

�

3.4 The equivalent movement of the proposed algorithm

and the two-phase method

From section 3.2, we found that the initial tableau of the proposed algorithm

has the same reduced costs with the initial tableau of Phase I in the two-phase method.

If the same pivot rule is used for both algorithms, then the movement of basic feasible

solutions using the sum of unoccupied row behaves similar to Phase I in the two-phase

method. Next, we present the movement of Phase I in the proposed method and the

two-phase method as the following example.

Example 3.4.1. Consider the following linear programming problem:

max − x1 + 2x2

subject to x1 + x2 ≥ 2

− x1 + x2 ≥ 1

x2 = 3

x1, x2 ≥ 0.

The proposed algorithm:

We first convert the problem to the standard form by substracting surplus

variables s1 and s2 obtained as follows:
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Figure 3.1: The basic variable set is empty

max − x1 + 2x2

subject to x1 + x2 − s1 = 2

− x1 + x2 − s2 = 1

x2 = 3

x1, x2, s1, s2 ≥ 0.

Phase I

The initial tableau of the problem is as below. The movement starts at the origin point

as Figure 3.1.

BVS x1 x2 s1 s2 RHS

SUM − 0 3 −1 −1 6

? 1 1 −1 0 2

? −1 1 0 −1 1

? 0 1 0 0 3

Since max{α j : j ∈ {1,2,3,4}}=α2 = 3> 0 and β= 6> 0, x2 is the entering variable.

Then, we examine y2.

br

yr2
= minimum

1≤i≤3

{
b1

y12
,

b2

y22
,

b3

y32

}
= min

{
2
1
,
1
1
,
3
1

}
.
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Figure 3.2: The graph after x2 is entered into the basic variable set

Thus, x2 is entered into the second row. We update the tableau by pivoting at y22. We

get the following tableau and the graph as Figure 3.2.

BVS x1 x2 s1 s2 RHS

SUM − 3 0 −1 2 3

? 2 0 −1 1 1

x2 −1 1 0 −1 1

? 1 0 0 1 2

Since the basic variable set is not full, the next nonbasic variable is chosen to enter the

basic variable set. Consider max{α j : j ∈ {1,3,4}}= α1 = 3 > 0 and β = 3 > 0. Thus,

x1 is the entering variable. Then, we examine y1.

br

yr1
= minimum

1≤i≤3

{
b1

y11
,

b3

y31

}
= min

{
1
2
,
2
1

}
.

Thus, x1 is entered into the first row. We update the tableau by pivoting at y11. We get

the following tableau and the graph as Figure 3.3.
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Figure 3.3: The graph after x1 is entered into the basic variable set

BVS x1 x2 s1 s2 RHS

SUM − 0 0 1/2 1/2 3/2

x1 1 0 −1/2 1/2 1/2

x2 0 1 −1/2 −1/2 3/2

? 0 0 1/2 1/2 3/2

Next, we will choose the nonbasic variable to enter the basic variable set until the basic

variable set is full. Consider max{α j : j ∈ {3,4}}= α3 =
1
2
> 0 and β =

3
2
> 0. Thus,

s1 is the entering variable. Then, we examine y3

br

yr3
= minimum

1≤i≤3

{
b3

y33

}
= min{3}.

Thus, s1 is entered into the third row. We update the tableau by pivoting at y33. We get

the following tableau and the graph as Figure 3.4.

BVS x1 x2 s1 s2 RHS

SUM − 0 0 0 0 0

x1 1 0 0 1 2

x2 0 1 0 0 3

s1 0 0 1 1 3
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Figure 3.4: The graph after s1 is entered into the basic variable set

Now, the basic variable set is full. Thus, the Phase I of the proposed algorithm ends.

The two-phase method

We convert the problem to the standard form by substracting surplus vari-

ables s1,s2 and adding artificial variables xa1 ,xa2,xa3 and the objective function mini-

mize the summation of artificial variables obtained as follows:

Phase I

min xa1 + xa2 + xa3

subject to x1 + x2 − s1 + xa1 = 2

− x1 + x2 − s2 + xa2 = 1

x2 + xa3 = 3

x1, x2, s1, s2 xa1 xa2 xa3 ≥ 0.

We can choose an initial basis as B = [A:5,A:6,A:7] = I3 and fill coefficeint matrix into

the tableau:
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Figure 3.5: All artificial variables are in the basic variable set

z x1 x2 s1 s2 xa1 xa2 xa3 RHS

1 0 0 0 0 −1 −1 −1 0

xa1 0 1 1 −1 0 1 0 0 2

xa2 0 −1 1 0 −1 0 1 0 1

xa3 0 0 1 0 0 0 0 1 3

Since xa1,xa2 and xa3 are in basis, their reduced cost are zero. Then, the initial tableau

is as below. The movement starts at the origin point as Figure 3.5.

z x1 x2 s1 s2 xa1 xa2 xa3 RHS

1 0 3 −1 −1 0 0 0 6

xa1 0 1 1 −1 0 1 0 0 2

xa2 0 −1 1 0 −1 0 1 0 1

xa3 0 0 1 0 0 0 0 1 3

Since max{z j−c j : j ∈ {1,2,3,4,5,6,7}}= z2−c2 = 3> 0, x2 is the entering variable.

Then, we examine y2.

br

yr2
= minimum

1≤i≤3

{
b1

y12
,

b2

y22
,

b2

y32

}
= min

{
2
1
,
1
1
,
3
1

}
.
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Figure 3.6: The graph after x2 is entered into the basic variable set

Thus, xa2 is the leaving variable. We update the tableau by pivoting at y22. Then, we

get the following tableau and the graph as Figure 3.5.

z x1 x2 s1 s2 xa1 xa2 xa3 RHS

1 3 0 −1 2 0 −3 0 3

xa1 0 2 0 −1 1 1 −1 0 1

x2 0 −1 1 0 −1 0 1 0 1

xa3 0 1 0 0 1 0 −1 1 2

Since max{z j− c j : j ∈ {1,3,4,5,6,7}}= z1− c1 = 3 > 0, x1 is the entering variable.

Then, we examine y1.

br

yr1
= minimum

1≤i≤3

{
b1

y11
,

b2

y31

}
= min

{
1
2
,
1
1
,
2
1

}
.

Thus, xa1 is the leaving variable. We update the tableau by pivoting at y11, and the

variable x2 enters the basis and xa1 leaves the basis. We get the following tableau and

the graph as Figure 3.6.
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Figure 3.7: The graph after x1 is entered into the basic variable set

z x1 x2 s1 s2 xa1 xa2 xa3 RHS

1 0 0 1/2 1/2 −3/2 −3/2 0 3/2

x1 0 1 0 −1/2 1/2 1/2 −1/2 0 1/2

x2 0 0 1 −1/2 −1/2 1/2 1/2 0 3/2

xa3 0 0 0 1/2 1/2 −1/2 −1/2 1 3/2

Since max{z j− c j : j ∈ {3,4,5,6,7}} = z3− c3 =
1
2
> 0, s1 is the entering variable.

Then, we examine y3.

br

yr3
= minimum

1≤i≤3

{
b3

y33

}
= min{3}.

Thus, xa3 is the leaving variable. We update the tableau by pivoting at y33 where s1

enters the basis and xa3 leaves the basis. We get the following tableau and the graph as

Figure 3.7.
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Figure 3.8: The graph after s1 is entered into the basic variable set

z x1 x2 s1 s2 xa1 xa2 xa3 RHS

1 0 0 0 0 −1 −1 −1 0

x1 0 1 0 0 1 0 −1 1 2

x2 0 0 1 0 0 0 0 1 3

s1 0 0 0 1 1 −1 −1 2 3

Now, the summation of artificial variables is zero. Thus, Phase I of the two-phase

method ends.

By comparison of both algorithms, we found that the movement of the pro-

posed algorithm behaves similar to Phase I in the two-phase method.
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CHAPTER 4

COMPUTATIONAL RESULTS

In this chapter, we do further computational study to test the efficiency of

the proposed algorithm comparing to the Gao’s algorithm. It is given some indication of

the performance of the two algorithms on the 100 randomly tested problems in each size

of matrices which the value of elements in matrix A and c are in [-9,9] and each element

in b is in [-9,9]. The proposed algorithm and the Gao’s algorithm were implemented by

MATLAB R2014a and run on an Intel(R) Core(TM) i5-2410M 2.30 GHz and 4.00 GB

of RAM. The computational results consisting of the average number of iterations and

the average computational time are reported as the following table.

TABLE 4.1: The average number of iterations and computational time for m×n matrices

Size of Matrices
The average number of iterations The average computational time

LC algorithm Gao’s algorithm LC algorithm Gao’s algorithm

10×20 12.49 17.28 0.01554 0.08008

10×40 16.41 22.00 0.01614 0.08391

10×60 16.86 22.12 0.01702 0.08746

20×40 27.38 39.46 0.02035 0.09917

20×60 37.14 46.15 0.02307 0.10614

From TABLE 4.1, the average number of iterations of the proposed algo-

rithm is less than the average number of iterations of Gao’s algorithm for all sizes of

tested problem. Moreover, the average computational time of the proposed algorithm is

less than Gao’s algorithm in all sizes of matrices.
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Figure 4.1: The average number of iterations for each size of problems

By observing the standard deviations in Figure 4.1, we found that Gao’s

algorithm has the high standard deviations for 10×40, 10×60, and 20×60 matrices,

it means that the number of iterations is spread out. However, it is low for 10×20 and

20× 40 matrices which can indicate that the number of iterations tends to be close to

its mean while the proposed algorithm has the low standard deviations for every size of

tested matrices. That means the number of iterations of the proposed algorithm tends to

be close to its mean.
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Figure 4.2: The average computational time for each size of problems

From Figure 4.2, we found that the average computational time of both

algorithm is more different for every size of tested matrices. The average computational

time of the proposed algorithm is less than the average computational time of Gao’s

algorithm for all sizes of tested problems.

By observing the standard deviations in Figure 4.2, we found that Gao’s

algorithm has the high standard deviations for 10×60 matrices, it means that the com-

putational time is spread out. While, for 10×20, 10×40, 20×20, 20×40, and 20×60

matrices, Gao’s algorithm has the low standard deviations which can indicate that the

computational time tends to be close to the mean. However, the proposed algorithm has

the low standard deviations for every size of tested matrices which can indicate that the

computational time tends to be close to its mean.
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Figure 4.3: The average computational time for each size of problems

TABLE 4.2: The average number of iterations and computational time for n×n matrices

Size of Matrices
The average number of iterations The average computational time

LC algorithm Gao’s algorithm LC algorithm Gao’s algorithm

10×10 5.83 8.20 0.01378 0.07415

20×20 12.23 17.64 0.01612 0.08208

30×30 19.32 28.52 0.01980 0.09607

From TABLE 4.2, the average number of iterations of the proposed algo-

rithm is less than the average number of iterations of Gao’s algorithm for all sizes of

tested problem. Moreover, the average computational time of the proposed algorithm is

less than Gao’s algorithm in all sizes of matrices.

By observing the standard deviations in Figure 4.3, we found that both al-

gorithm has the low standard deviations for all sizes of tested matrices, it means the

number of iterations tends to be close to their mean.
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Figure 4.4: The average computational time for each size of problems

By observing the standard deviations in Figure 4.4, we found that both al-

gorithm has the low standard deviations for all sizes of tested matrices, it means the

computational time tends to be close to their mean.

By all figures, we see that both the average number of iterations and com-

putational time of the proposed algorithm are less than Gao’s algorithm in all size of

matrices. Moreover, the difference of the average computational time is more when

the size of matrices is bigger. That is, the average computational time of the proposed

algorithm is less than Gao’s algorithm.
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CHAPTER 5

CONCLUSIONS

In this thesis, we propose the algorithm for starting the simplex algorithm

without using artificial variables. First, we use the sum of all constraints for starting

the simplex method since it can be used for identifying the existence of the solution to

a linear programming problem. By considering the sum of all constraints, if its largest

coefficient is negative, then the infeasibility is reported immediately. Otherwise, the

proposed method starts with an empty basic variable set. Then, a nonbasic variable

with the largest coefficient is chosen to be a basic variable and is added into the row

which has the minimum ratio and Gauss-Jordan row operations are performed. If the

row has a basic variable, then it is called an occupied row. Otherwise, it is called an

unoccupied row. Next, we choose other nonbasic variables one by one into the basic

variable set by considering the sum of unoccupied rows until the basic variable set is

full or the infeasibility is reported. In each iteration, the proposed algorithm can detect

infeasibility by considering the largest coefficient of the sum of unoccupied rows which

is negative. Thus, the proposed algorithm has more efficiency for checking an infeasible

problem.

By observing the movement of basic feasible solutions in two-dimension

problem, we found that graphs of the proposed algorithm behaves similar to Phase I

in the two-phase method. Moreover, if the reduced costs of the initial tableau of the

proposed algorithm is the same the initial tableau of Phase I in the two-phase method,

then the graph in each iteration is also identical.

From the computational results, we found that both the average number of

iterations and the computational time of the proposed algorithm are less than Gao’s

algorithm in all sizes of tested problems. Because Gao’s algorithm needs to perform

Arsham’s algorithm first and Arsham’s algorithm reported infeasibility. Therefore, by
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the results, the proposed algorithm can reduce both the number of iterations and the

computational time.

Although the average number of iterations and the computational time of

the proposed algorithm are less than Gao’s algorithm, we can develope the efficiency

of the proposed algorithm by changing the pivot rule. Since we consider the largest

positive coefficient of the sum of unoccupied rows to choose an entering variable which

is similar to Dantzig’s rule, we can use other pivot rules to choose an entering variable

from all nonbasic variables which have the positive coefficient of the sum of unoccupied

rows. According to these results, the number of iterations and the computational time

might be reduced.
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