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ABSTRACT

The simplex method starts at a basic feasible solution and moves along the edge

of a feasible region to the adjacent basic feasible solution until the optimal solution

is found. For some problems, if a basic feasible solution could not be found easily,

then artificial variables will be introduced for finding a basic feasible solution. Thus,

the problem has more variables causing more computational time. In this thesis, we

present the improvement of the simplex method for solving a linear programming prob-

lem without using artificial variables. By choosing an initial basis, if it gives a dual

infeasible solution, then primal variables which cause its dual infeasible are relaxed.

Then, the dual simplex method can be performed for finding the primal feasible solu-

tion. After the primal feasible solution is found, the relaxed variables will be restored

and the simplex method starts. From the computational results, the average number of

iterations solving by our method is less than the average number of iterations solving by

the two-phase simplex method. Moreover, the CPU time for our method is also faster

than the two-phase simplex method. So, our algorithm can reduce the computational

time.
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CHAPTER 1

INTRODUCTION

1.1 Linear programming problems

For some real-world problems such as assignment problems, transportation prob-

lems, and inventory problems can be formulated as a linear programming model which

containing three important components.

• Decision variables: physical quantities controlled by the decision maker and rep-

resented by mathematical symbols.

• Objective function: the criterion for evaluating the solution. It is a linear combi-

nation of the decision variables .

• Constraints: a set of linear equality or inequality functions that represent physical,

economic, technological, legal, ethical, or other restrictions on what numerical

values assigned to the decision variables.

Therefore, the linear programming model can be written as follows:

minimize or maximize z = cTx

subject to Ax = b, (1.1)

x ≥ 0,

where c ∈ Rn is a column vector of coefficients of the objective function,

x ∈ Rn is a column vector of decision variables,

b ∈ Rm is a column vector of parameters called the right-hand-side

vector,

A ∈ Rm×n is a coefficient matrix of constraints.
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For the model (1.1), let X = {x|Ax = b,x ≥ 0}. A vector x′ is said to be a

feasible solution or a feasible point if it satisfies all constraints, that is x′ ∈ X. A set

of all feasible points is called the feasible region. After we construct the model for

a linear programming problem, there are three possible outcomes that are summarized

below.

• Optimal solution: an optimal solution to a linear programming problem is a fea-

sible solution with the largest objective function value for maximization problem.

A linear programming problem may have multiple optimal solutions, but it has

only one optimal objective value.

• Unbounded optimal solution: A linear programming problem is unbounded if

the objective value can be increased along the feasible direction for maximization

problems or be decreased along the feasible direction for minimization problems.

• Empty feasible region or infeasible: A linear programming problem is infeasi-

ble if it has no feasible solutions, i.e., the feasible region is empty.

For getting three outcomes above, there are two popular methods for solving

a linear programming problem; the interior point method presented by Karmarkar [1]

and the simplex method presented by Dantzig [2]. The interior point method is suitable

for solving large problems with sparse matrix. On the other hand, the simplex method

is not suitable for large problems because the running time on the simplex method is

exponential, see example from Klee and Minty [3] in 1972. However, a small-medium

size problem and dense matrix, the simplex method is more efficient than the interior

point method for solving a linear programming problem. Therefore, the simplex method

is still in-used and improved. Many researchers have attempted to improve it in several

ways such as improving pivoting rule, elimination of the redundant constraint, solving

without using artificial variables.

Solving without using artificial variables is interesting because the problem size

does not increased. The simplex method starts at a vertex in the feasible region and
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move along the edge of the feasible region to the adjacent vertex in a feasible region

until the optimal solution is found. If the simplex method can not start at a vertex in the

feasible region, artificial variables are introduced as Figure 1.1.

Figure 1.1: The artificial variable is introduced

From Figure 1.1, the initial solution is out of the feasible region. Then, an

artificial variable is introduced for assuming this initial point feasible. Therefore, the

simplex method can start and moves to the adjacent vertex which is in the feasible

region.

However, adding artificial variables increases the number of variables and takes

longer time to solve. Consequently, many reseachers have tried to improve the simplex

method without using artificial variables.

1.2 Literature reviews

In 1997, Arsham [4] presented the simplex method without using artificial vari-

ables. In the first step, the basic feasible variable set (BVS) is determined to be the

empty set. Then, the nonbasic varible is chosen to be the basic variable one by one

until the BVS is full. After the problem has the complete BVS, the simplex method is

performed. However, this method has the mistake as shown by Enge and Huhn [5] in

1998.

In 2000, Pan [6] proposed the simplex method by avoiding artificial variables.
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The algorithm starts when the initial basis gives primal and dual infeasible solutions by

adjusting negative reduced costs to a single positive value. Then, the dual solution is

feasible and the dual simplex method is performed. After the optimal solution is found

in this step, the original reduced costs are restored and the simplex method is performed.

Later, in 2006, Corley et.al [7] constructed the relaxed problem for improving

the simplex method without using artificial variables. The cosine criterion is used for

choosing the suitable constraints to construct the relaxed problem. Then, it is solved

by the simplex method. After the optimal solution of the relaxed problem is found,

the relaxed constraints will be restored into the current tableau, and the dual simplex

method will be performed until the optimal solution is found. However, this algorithm

can solve only the problem which has all positive coefficients.

In 2007, Arsham [8] still improved the algorithm without using the artificial

variables by constructing the relaxed problem. The algorithm starts by relaxing greater-

than or equal to constraints to avoid the use of the artificial variable. After the optimal

solution of the relaxed problem is found, the relaxed constraints are restored, and the

simplex method is performed. However, if the problem contains only greater-than or

equal to constraints the perturbation simplex method will be used.

Later, in 2014, Boonperm and Sinapiromsaran [9] proposed the non-acute con-

straint relaxation technique that improves the simplex method without using artificial

variables, and it can reduce the start-up time to solve the initial relaxation problem.

The algorithm starts by relaxing the non-acute constraints which it can guarantee that

the relaxed problem is always feasible. So, the relaxed problem can be solved without

using artificial variables. After the optimal solution of the relaxed problem is found,

the relaxed constraints are restored, and the dual simplex method is used to solve it.

However, this algorithm is slow when the relaxed problem is unbounded.

Due to the above researches, to construct the relaxed problem without using

artificial variables is interested for improving the simplex method. Since the relaxed

problem can reduce variables or constriants, the computation can be reduced. More-
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over, if the optimal solution is found in the relaxed problem, then the computational

time can be reduced extremely. From the research of Arsham, the relaxed problem in

the primal problem is constructed but the algorithm starts at only the origin point which

is far from the optimal solution for some problems. Therefore, the research question

is that can we construct the relaxed problem without using artificial variables by con-

sidering the dual problem? Since the constraint in dual is associated to the variable in

primal, if the constraint in dual are relaxed, then the variable in primal will be relaxed

instead. Therefore, solving without using artificial variables and relaxing some vari-

ables in primal are the reduction of the problem size. Hence, in this thesis, we present

the improvement of the simplex method for a linear programming problem without us-

ing the artificial variables by relaxing some variables. First, we choose an initial basis.

If the initial basis gives primal and dual infeasible solutions, then variables which cause

its dual infeasible are relaxed. Then, the dual simplex method can be performed. By

this relaxing, we can aviod the use of artificial variables. Therefore, the aim of this

thesis is to reduce the computation time for solving linear programming problems.

1.3 Overviews

Our main purpose is to propose the algorithm for solving linear programming

problems by the simplex method without using artificial variables. Next, we are going

to decribe the contents of the thesis.

In chapter 2, definitions and theorems which are relevant to our algorithm are

presented. In addition, methods for solving a linear programming problems that are the

simplex method, the dual simplex method are decribed.

In chapter 3, the main idea and the step of our algorithm are presented.

In chapter 4, the efficiency of our algorithm is shown by testing with randomly

generated problems, and the computational time is presented.

In the last chapter, we conclude and discuss the findings.
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CHAPTER 2

PRELIMINARIES

In this chapter, we will divide the contents into two important parts that are the

theoretical part and methods for solving a linear programming problem. In the theoret-

ical part, the theory behind linear programming problems including the convex set, the

polyhedral set, extreme point, the representation of polyhedral set and optimality are

decribed. While, the well-known methods for solving a linear programming problem

that are the simplex method and the dual simplex method are described later.

2.1 Theoretical backgrounds

In this section, definitions and theorems which are the foundations for solving a

linear programming problem are explained.

2.1.1 Convex sets and convex functions

Definition 2.1.1. The set X ⊆ Rn is said to be convex if and only if for all x1,x2 ∈ X ,

we have λx1 +(1−λ)x2 ∈ X for all λ ∈ [0,1].

convex set non-convex set

Figure 2.1: Example of convex and non-convex sets
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Definition 2.1.2. Let x1, ...,xm ∈ Rm and λi ∈ [0,1] for all i = 1,2, ...,m with λ1 + ...+

λm = 1. A vecter

x = ∑
m
i=1 λixi = λ1x1 + ...+λmxm

is called a convex combination of x1, ...,xm. If λi ∈ (0,1) for all i = 1, ...,m, then it is

called a strict convex combination.

Definition 2.1.3. A function f : Rn −→ R is called a convex function if it satisfies:

f (λx1 +(1−λ)x2)≤ λ f (x1)+(1−λ) f (x2)

for all x1,x2 ∈ Rn and for all λ ∈ [0,1].

2.1.2 Polyhedral sets

Definition 2.1.4. Let a∈Rn be a constant vector and let b∈R be a constant scalar. The

set of points

H = {x ∈ Rn|aTx = b}

is called a hyperpane in n-dimensional space.

Definition 2.1.5. Let a∈Rn be a constant vector and let b∈R be a constant scalar. The

set of points

Hl = {x ∈ Rn|aTx≤ b},

Hu = {x ∈ Rn|aTx≥ b}

are called the half-spaces defined by the hyperplane aTx = b.

Definition 2.1.6. Let a1, ...,am ∈ Rn be constant vectors and let b1, ...,bm ∈ R be con-

stants. Consider the set of half-spaces:

Hi = {x ∈ Rn|aT
i x≤ bi}, i = 1,2, ...,m.
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Then, the set

P =
⋂m

i=1 Hi

is called a polyhedral set.

Definition 2.1.7. Let x0 ∈Rn be a point and let d ∈Rn be a vector called the direction.

Then the ray with vertex x0 and direction d is the collection of points

{x|x = x0 +λd,λ≥ 0}.

Theorem 2.1.1. Suppose that P⊆ Rn is a polyhedral set defined by

P = {x ∈ Rn|Ax≤ b,x≥ 0}.

If d is a direction of P, then the following holds:

Ad≤ 0,d≥ 0,d 6= 0.

2.1.3 Extreme points and extreme directions

Definition 2.1.8. Let C ∈ Rn be the convex set. A point x0 ∈ C is called an extreme

point of C if there are no points x1 and x2 so that

x0 = λx1 +(1−λ)x2 for some λ ∈ (0,1).

Definition 2.1.9. Let P⊆ Rn be a polyhedral set and suppose P is defined as:

P = {x ∈ Rn|Ax ≤ b}

where A ∈ Rm×n and b ∈ Rm. A point x0 ∈ P is called an extreme point of P if and

only if x0 lies on some n-linearly independent hyperplanes from the set defining P.

Definition 2.1.10. Let C ⊆ Rn be a convex set. Then a direction d of C is called an ex-

treme direction if there are no two other directions d1 and d2 of C and scalars λ1,λ2 > 0

so that d = λ1d1 +λ2d2.

Theorem 2.1.2. A direction d ∈ D is an extreme direction of D if and only if d is an

extreme point of D when D is taken as a polyhedral set.
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2.1.4 Representation of polyhedral sets

The representation of a polyhedral set is described in terms of extreme points

and extreme directions.

Theorem 2.1.3. Let P be a nonempty unbounded polyhedral set defined by:

P = {x ∈ Rn|Ax≤ b,x≥ 0}.

Suppose that P has extreme points x1, ...,xk and extreme directions d1, ...,dl .

If x ∈ P, then there exists constants λ1, ...,λk and µ1, ...,µl such that:

x = ∑
k
i=1 λixi +∑

l
j=1 µ jd j,

∑
k
i=1 λi = 1,

λi ≥ 0, i = 1,2, ...,k,

µ j ≥ 0, j = 1,2, ..., l.

Note: Every feasible point can be written as a linear combination of the extreme

points and extreme directions.

2.1.5 Optimality

Consider the following linear programming problem:

maximize cTx

subject to Ax≤ b, (2.1)

x≥ 0,

where A ∈ Rm×n, b ∈ Rm, rank(A) = m.

Theorem 2.1.4. If the problem (2.1) has an optimal solution, then the problem (2.1)

has an optimal extreme point.
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Corollary 2.1.5. Problem (2.1) has a nonempty feasible set and a finite-value optimal

solution if and only if cTdi ≤ 0 for all i = 1,2, ..., l when d1,d2, ...,dl are the extreme

directions of the polyhedral set. Otherwise, the optimal solution value is unbounded.

Corollary 2.1.6. Problem (2.1) has alternative optimal solutions if there are at least

two extreme points xp and xq so that cTxp = cTxq and so that xp is the extreme point

solution to the linear programming problem.

2.2 The Simplex method

The simplex method is a method that starts from a basic feasible solution (BFS)

of a linear programming problem expressed in the tableau form to another BFS, in such

a way as to continually increase (or decrease) the value of the objective function until

the optimal point is found.

2.2.1 Basic feasible solutions (BFS)

The basic feasible solution is defined as the following definition.

Definition 2.2.1. Consider the system

Ax = b,

x≥ 0,

where A is an m×n matrix, n > m, b is an m-vector.

Suppose that rank(A,b)= rank(A)=m. After possibly rearranging the columns

of A, let A= [B,N] where B is an m×m invertible matrix and N is an m×(n−m) matrix.

The solution x=

 xB

xN

 to the equation Ax = b, where xB =B−1b and xN = 0

is called a basic solution of the system.

• If xB = B−1b≥ 0, then x is called a basic feasible solution (BFS) of the system.
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• Here B is called the basic matrix (or simply the basis) and N is called the non-

basic matrix.

• The components of xB are called basic variables and the components of xN are

called nonbasic variables.

• If xB > 0, then x is called a nondegenerate basic feasible soultion, and if at

least one component of xB is zero, then x is called a degenerate basic feasible

solution.

Theorem 2.2.1. Let P={x ∈ Rn : Ax = b}. Then x is an extreme point of P if and only

if x is a basic feasible solution of P.

Since the extreme point is associated a basic feasible solution, the simplex

method starts by choosing a basic feasible solution only.

2.2.2 Algebra of the simplex method

Consider the following linear programming problem:

maximize z = cTx

subject to Ax = b,

x≥ 0,

where A ∈ Rm×n,b ∈ Rm,c ∈ Rn,x ∈ Rn and rank(A,b) = rank(A) = m.

Let A= [A:1,A:2, ...,A:n] and A= [B,N] where B∈Rm×m is a nonsigular matrix,

N ∈ Rm×(n−m), IB is an index set of basic variables and IN is an index set of nonbasic

variables.

Suppose that x =

 xB

xN

 =

 B−1b

0

is a basic feasible solution. So the ob-

jective value is z0 = cTx = [cT
B,c

T
N]

 xB

xN

= cT
BxB + cT

NxN = cT
BB−1b.
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Consider the constraints

Ax = [B,N]

 xB

xN

= b

BxB +NxN = b

xB +B−1NxN = B−1b

xB = B−1b−B−1NxN.

Consider the objective function,

z = cTx = [cT
B,c

T
N]

 xB

xN

= cT
BxB + cT

NxN.

Substitute xB = B−1b−B−1NxN in to the objective function, we get

z = cT
B(B

−1b−B−1NxN)+ cT
NxN

= cT
BB−1b− cT

BB−1NxN + cT
NxN

= cT
BB−1b− (cT

BB−1NxN− cT
NxN)

= cT
BB−1b− (cT

BB−1N− cT
N)xN

= cT
BB−1b − ∑

j∈IN

(cT
BB−1A: j− c j)x j.

Let y j = B−1A: j,z j = cT
By j where j ∈ IN, z0 = cT

BB−1b, and b = B−1b. So, the

linear programming problem can be written as follows:

maximize z = z0− ∑
j∈IN

(z j− c j)x j

subject to xB + ∑
j∈IN

(y j)x j = b, (2.2)

x j ≥ 0, j ∈ IN,xB ≥ 0.

Consider the value z j− c j, j ∈ IN.

• If z j−c j ≥ 0 for all j ∈ IN, then the objective value decreases when x j increases.

So x j should not be increased, that is the current basic feasible solution is the

optimal solution.
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• If zk − ck < 0 for some k ∈ IN, then the objective value increases when xk in-

creases. So xk should be increased.

Consider z = z0− (zk− ck)xk, how far to increase the entering basic variable xk

before stopping.

Consider the kth column of the constraints,

(yk)xk +xB = b,

where bT
= [b1,b2, ...,bm].

• If yk ≤ 0, then xBi increases when xk increases. So xk can be increased to infinity

because xBi is still nonnegative. Therefore, the problem is unbounded.

• If yik > 0 for some i = 1,2, ...,m, then xBi decreases when xk increases. So xk can

be increased for xBi = bi− yikxk ≥ 0, that is xk =
bi
yik

for yik > 0.

For feasibility, all variables must be nonnegative, xk should be as follows:

xk =
bi
yik

= minimum
1≤i≤m

{ bi
yik

: yik > 0}.

This is referred to as the minimum ratio test.

When we increase xk ≤ bi
yik

, xBi decreases to zero. So xk will enter to be a basic

variable called an entering variable and xBr will leave to be a nonbasic variable called

a leaving variable.

2.2.3 The simplex method in tableau format

Since the simplex method deals with the matrix in each iteration, for conve-

nience, it will be represented in the tableau format.
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Consider the following linear programming problem:

maximize z = cTx

subject to Ax = b,

x≥ 0,

where A ∈ Rm×n,b ∈ Rm,c ∈ Rn,x ∈ Rn.

Let A = [B,N] where B ∈ Rm×mis a nonsigular matrix,N ∈ Rm×(n−m) and sup-

pose that x =

 xB

xN

 =

 B−1b

0

 is a basic feasible solution. Then, the linear pro-

gramming problem can be rewritten as follows:

maximize z+ ∑
j∈IN

(z j− c j)x j = z0

subject to IxB + ∑
j∈IN

(y j)x j = bi,

xB ≥ 0,x j ≥ 0, j ∈ IN.

Fill all coefficients into the following tableau:

z xB xN RHS

1 0 z j− c j = cT
BB−1A: j− c j,∀ j ∈ IN z0 = cT

BB−1b

xB 0 I B−1N B−1b

This tableau is called the initial tableau for basis B. The simplex algorithm can be

summarized as follows:

The simplex method (maximization problem)

Initialization Step

Find an initial basic feasible solution with basis B and compute the initial tableau.

Main Step

1. Let zk− ck = minimum
j∈IN

{z j− c j} (Dantzig Pivot rule)
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(a) If zk− ck ≥ 0, then stop; the current solution is optimal.

(b) Otherwise, zk− ck < 0, examine yk in step 2.

2. Examine yk (coefficient in the kth column)

(a) If yk ≤ 0, then stop; the optimal objective value is unbounded.

(b) Otherwise, that is yk � 0, determine the index r as follows:

br
yrk

= minimum
1≤i≤m

{ bi
yik

: yik > 0}.

3. Update the tableau by pivoting at yrk. Update the basic and nonbasic vari-

ables where xk enters the basis and xBr leaves the basis, and repeat the main step.

Remark 2.2.2. For minimization problem, we change only in step 1 as follows:

1. Let zk− ck = maximum
j∈IN

{z j− c j} (Dantzig Pivot rule)

(a) If zk− ck ≤ 0, then stop; the current solution is optimal.

(b) Otherwise, zk− ck > 0, examine yk in step 2.

Example 2.2.3. Consider the following linear programming problem:

maximize x1 + 5x2 − 7x3

subject to x1 + x2 + x3 + x4 = 4

2x1 − x2 + x3 + x5 = 5

−5x1 − 2x2 + 4x3 + x6 = 10

x1, x2, x3, x4, x5, x6 ≥ 0.

From the above problem, we get

A =


1 1 1 1 0 0

2 −1 1 0 1 0

−5 −2 4 0 0 1

, b =


4

5

10

, cT =
[

1 5 −7 0 0 0
]
.

If we choose B = I = B−1 , then xB =


x4

x5

x6

, and B−1N =


1 1 1

2 −1 1

−5 −2 4

.
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Then, cT
BB−1N− cT

N =
[

0 0 0
]

B−1N−
[

1 5 −7
]
=
[
−1 −5 7

]

z0 = cT
BB−1b =

[
0 0 0

]
4

5

10

= 0.

Then, the initial tableau can be written as follows:

x1 x2 x3 x4 x5 x6 RHS

1 −1 −5 7 0 0 0 0

x4 0 1 1 1 1 0 0 4

x5 0 2 −1 0 0 1 0 5

x6 0 −5 2 0 0 0 1 10

By Dantzig pivot rule, the entering variable is x2 and the leaving variable is x4.

After the tableau is updated, we get

x1 x2 x3 x4 x5 x6 RHS

1 4 0 12 5 0 0 20

x2 0 1 1 1 1 0 0 4

x5 0 3 0 2 1 1 0 9

x6 0 −3 0 6 2 0 1 18

Since the z j−c j ≥ 0 for all j ∈ IN, the optimal solution is found at (x∗1,x
∗
2,x
∗
3) =

(0,4,0) with z∗ = 20.

�

2.2.4 The initial basic feasible solution

The simplex method starts with a basic feasible solution and moves to an im-

proved basic feasible solution until the optimal solution is reached, or unboundedness of

the objective function is verified. However, in order to initialize the simplex medthod,
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a basis B with b = B−1b≥ 0 must be available. We will show that the simplex method

can always be initiated with a very simple basis, namely, the identity.

Consider the following constraints:

Ax≤ b,

x≥ 0,

where b≥ 0.

By adding slack vector s, the constraints can be put in the following standard

form:

Ax+ Is = b,

x,s≥ 0.

The new constraint matrix is [A,I]. If we let B = I and N = A, then s = Ib =

b≥ 0,x = 0.

Then, the initial basic feasible solution is (x,s)T = (0,b)T ≥ 0 , that is x = 0 is

a feasible point, and the simplex method can start.

For some cases, the initial basis can not be found easily such as the problem has

the following constraints.

Ax≥ b,

x≥ 0,

where b � 0. The standard form can be written by subtracting the surplus vector s as

follows:

Ax− Is = b,

x,s≥ 0.
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The new constraint matrix is [A,-I] that is difficult to pick a basis B with

B−1b≥ 0. If we let B = -I and N = A, then s = -Ib = -b� 0.

Then, the (x,s)T = (0, -b)T is not a basic feasible solution , that is x = 0 is not

a feasible point, and the simplex method can not start.

For this case, we cannot pick a basis B from the standard form. Therefore, we

will introduce artificial variables to the problem to get a starting basic feasible solution

as follows:

Ax+ Ixa = b,

x,xa ≥ 0,

where xa is a vector of artificial variables. The new constraint matrix is [A,I]. If we let

B = I and N = A, then xa = Ib = b≥ 0,x = 0.

Then, the initial basic feasible solution is (x,xa)
T = (0,b)T ≥ 0 , that is x = 0

is a feasible point, and the simplex method can be performed.

The artificial variables are only a tool for getting the simplex method started.

However, we must guarantee that these variables will eventually drop to zero. The two

well-known techniques for eliminating artificial variables are the two-phase method

and the Big-M method.

2.2.5 Two-phase method

The two-phase method is a method to find an initial basic feasible solution of

the linear programming problem. The algorithm is separated into two phases.

Phase I: Solve the following a linear programming problem with the starting

basic feasible solution x = 0 and xa = b:
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minimize x0 = 1Txa

subject to Ax+xa = b, (2.3)

x,xa ≥ 0.

At optimality,

- If x∗a 6= 0, then the problem has no solution; the orginal problem is

infeasible.

-If x∗a = 0, there are two occurrences: x∗a = 0 is out of the basis and

x∗a = 0 is not out of the basis.

Case 1: x∗a = 0 is out of the basis.

We have identified a basic solution x = [xB,xN]
T where xB is the non-

zero basic elements (in x) and xN is the remainder of the elements (not in x∗a = 0). We

can then begin Phase II using this basic feasible solution.

Case 2: x∗a = 0 is not out of the basis.

We have identified a degenerate solution to the phase I problem. There-

fore, this basis move to phase II and assign the cofficients of the artificial variables to

zero.

Phase II: Solve the following linear programming problem by the simplex

method at the starting basic feasible solution xB = B−1b and xN = 0 from Phase I.

maximize z = cT
BxB + cT

NxN

subject to xB +B−1NxN = b,

xB,xN ≥ 0.
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Example 2.2.4. Consider the following linear programming problem:

maximize z = x1 + 2x2

subject to x1 − 2x2 + s1 = 4

x1 + 2x2 + s2 = 5

−4x1 + 3x2 + s3 = 6

x1 + x2 − s4 = 1

x1, x2, s1, s2, s3, s4 ≥ 0.

From this problem, we get A=


1 −2 1 0 0 0

1 2 0 1 0 0

−4 3 0 0 1 0

1 1 0 0 0 −1


, b =


4

5

6

1


, c=

[
1 2

]
.

We see that the initial basis is difficult to choose. So, we will add the artificial

variable to the constraint 4, we get

maximize z = x1 + 2x2

subject to x1 − 2x2 + s1 = 4

x1 + 2x2 + s2 = 5

−4x1 + 3x2 + s3 = 6

x1 + x2 − s4 + xa1 = 1

x1, x2, s1, s2, s3, s4, xa1 ≥ 0.

Phase I: we will solve the following linear programming problem:

minimize z1 = xa1

subject to x1 − 2x2 + s1 = 4

x1 + 2x2 + s2 = 5

−4x1 + 3x2 + s3 = 6

x1 + x2 − s4 + xa1 = 1

x1, x2, s1, s2, s3, s4, xa1 ≥ 0.
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We choose xT
B =

[
s1 s2 s3 xa1

]
to be an initial basic feasible solution.

Then, the initial tableau can be written as below:

x1 x2 s1 s2 s3 s4 xa1 RHS

1 1 2 0 0 0 −1 0 1

s1 0 1 −2 1 0 0 0 0 4

s2 0 1 2 0 1 0 0 0 5

s3 0 −4 3 0 0 1 0 0 6

xa1 0 1 1 0 0 0 −1 1 1

For the minimization problem, x2 will be chosen to be the entering variable, and

xa1 leaves the basis. After the tableau is updated, we get the following tableau.

x1 x2 s1 s2 s3 s4 xa1 RHS

1 1 0 0 0 0 −2 0 2

s1 0 3 0 1 0 0 −2 0 6

s2 0 −1 0 0 1 0 2 0 3

s3 0 −7 0 0 0 1 3 0 3

x2 0 1 1 0 0 0 −1 1 1

After steps of the simplex algorithm are repeated, we get

x1 x2 s1 s2 s3 s4 xa1 RHS

1 1.33 0 0 0 −0.33 0 −1 −2

s1 0 −1.67 0 1 0 0.67 0 0 8

s2 0 3.67 0 0 1 −0.67 0 0 1

s4 0 −2.33 0 0 0 0.33 1 −1 1

x2 0 −1.33 1 0 0 0.33 0 0 2
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Phase I ends. Since x∗a1
= 0, the basic feasible solution is found. Then, we can

go to Phase II. After we compute the tableau for this basic feasible solution, we get the

following tableau.

x1 x2 s1 s2 s3 s4 RHS

1 −3.67 0 0 0 0.67 0 2

s1 0 −1.67 0 1 0 0.67 0 8

s2 0 3.67 0 0 1 −0.67 0 1

s4 0 −2.33 0 0 0 0.33 1 1

x2 0 −1.33 1 0 0 0.33 0 2

Next, the entering variable is x1 and the leaving variable is s2, and the updated

tableau is as follows:

x1 x2 s1 s2 s3 s4 RHS

1 0 0 0 1 0 0 5

s1 0 0 0 1 0.5 0.33 0 8.5

x1 0 1 0 0 0.25 −0.17 0 0.25

s4 0 0 0 0 0.67 0 1 1.63

x2 0 0 1 0 0.33 0 0 2.38

Then, we found that the optimal solution is (x∗1,x
∗
2) = (0.25,2.38) with z∗ = 5.

�

Ref. code: 25605909031055KND



23

2.2.6 The Big-M method

The Big-M method is a technique for dealing with artificial variables by assigning

a very large coefficient for these artificial variables in the original objective fuction.

Consider the following linear programming problem:

P: maximize z = cTx

subject to Ax = b,

x≥ 0.

If no convenient basis is known, we can introduce the artificial vector xa, that

leads to the following system:

Ax+xa = b,

x,xa ≥ 0.

The starting basic feasible solution is given by xa = b. In order to the unde-

sirability of a nonzero artificial vector, the objective function is modified such that a

large penalty is assigned for such solution. More specifically, consider the folllowing

problem:

P(Big-M): maximize zBig−M = cTx−M1Txa

subject to Ax+xa = b,

x,xa ≥ 0,

where M is a very large positive number.

After solving it by the simplex method, one of the following two cases may

occur:

(i) We found the optimal solution of P(Big-M).

- The artificial variables are all equal to zeroes. In this case, the original
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problem is feasible and the optimal solution is found.

- Some artificial variables are positive. In this case, the original problem

is infeasible.

(ii) We found that the problem P(Big-M) has an unbounded solution. If all

artificial variables are zero, then the original problem is unbounded. Otherwise, the

original problem is infeasible.

Example 2.2.5. Consider the linear programming problem in Example 2.2.4. We will

solve the following problem.

P(Big-M): maximize z1 = x1 + 2x2 −Mxa1

subject to x1 − 2x2 +s1 = 4

x1 + 2x2 +s2 = 5

−4x1 + 3x2 +s3 = 6

x1 + x2 −s4 +xa1 = 1

x1, x2, s1, s2, s3, s4, xa1 ≥ 0.

When we choose xT
B =

[
s1 s2 s3 xa1

]
as the basic feasible solution, the

initial simplex tableau for Big-M method can be written as follows:

x1 x2 s1 s2 s3 s4 xa1 RHS

1 −1−M −2−M 0 0 0 M 0 −M

s1 0 1 −2 1 0 0 0 0 4

s2 0 1 2 0 1 0 0 0 5

s3 0 −4 3 0 0 1 0 0 6

xa1 0 1 1 0 0 0 −1 1 1

From the initial tableau, the entering variable is x2 and the leaving variable is

xa1 . After the tableau is updated, we get the following tableau.
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x1 x2 s1 s2 s3 s4 xa1 RHS

1 1 0 0 0 0 −2 2+M 2

s1 0 3 0 1 0 0 −2 2 6

s2 0 −1 0 0 1 0 2 −2 3

s3 0 −7 0 0 0 1 3 −3 3

x2 0 1 1 0 0 0 −1 1 1

After the steps of the simplex algorithm are repeated, we get the following two

tableaux.

x1 x2 s1 s2 s3 s4 xa1 RHS

1 −3.67 0 0 0 0.67 0 M 4

s1 0 −1.67 0 1 0 0.67 0 0 8

s2 0 3.67 0 0 1 −0.67 0 0 1

s4 0 −2.33 0 0 0 0.33 1 −1 1

x2 0 −1.33 1 0 0 0.33 0 0 2

x1 x2 s1 s2 s3 s4 xa1 RHS

1 0 0 0 1 0 0 M 5

s1 0 0 0 1 0.5 0.33 0 0 8.5

x1 0 1 0 0 0.25 −0.17 0 0 0.25

s4 0 0 0 0 0.67 0 1 −1 1.63

x2 0 0 1 0 0.33 0 0 0 2.38

From the last tableau, we found that the optimal solution is (x∗1,x
∗
2)= (0.25,2.38)

with z∗ = 5 since x∗a = 0.

�
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From Example 2.2.4 and Example 2.2.5, the number of iterations of both the

two-phase method and the Big-M method are three iterations. However, the large num-

ber M is computed in each iteration for the Big-M method while the two-phase is not.

2.2.7 Duality

For each linear programming problem, there is another associated linear pro-

gramming problem called the dual, and the original linear programming problem is

called primal. The dual linear programming problem possesses many important prop-

erties relative to the original primal linear programming problem. The variables in the

primal problem are equivalent to the constraints in the dual problem. Before we will

describe about the dual problem, we will introduce two important representations of

linear programming problems that are the canonical form and the standard form which

are defined as the following table.

TABLE 2.1: Standard form and canonical form

Minimization problem Maximization problem

Standard form minimize cTx maximize cTx

subject to Ax = b subject to Ax = b

x≥ 0 x≥ 0

Canornical form minimize cTx maximize cTx

subject to Ax≥ b subject to Ax≤ b

x≥ 0 x≥ 0

Since many linear programming problems in term of maximization or minimiza-

tion and variables may be nonnegative, unrestricted in sign or bounded which may not

match the standard or the canonical form and some algorithms deal with a specific form,

of linear programming problem, a problem must be manipulated to fit the required form.

For maximization and minimization problems, we can convert a maximization

problem to a minimization problem and conversely as follows:
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Max cTx≡−[Min − cTx],

Min cTx≡−[Max − cTx].

For inequality constraints, consider a constraint given by Ax ≤ b. This con-

straint can be transformed to an equality constraint as follows:

Ax+ IS = b,

S≥ 0,

where S is called a slack variable vector.

While a constraint given by Ax ≥ b can be converted to an equality constraint

as follows:

Ax− IS = b,

S≥ 0,

where S is called a surplus variable vector.

For equality constraints, if a constraint has an equation form, i.e., Ax = b, it

can be transformed into inequality constraints as follows:

Ax≥ b and Ax≤ b.

For nonnegativity of the variables, if the variables x j can be positive, zero or

negative, called unrestricted in sign, then it can be converted to two new nonnegative

variables as follows:

x j = x+j − x−j ,

x+j ,x
−
j ≥ 0.

For variables bounds, if x j ≥ l j or x j ≤ u j , then it can be converted to the new

nonnegative variable as follows:
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x′j = x j− l j ≥ 0 for x j ≥ l j and

x′j = u j− x j ≥ 0 for x j ≤ u j.

Next, we are back to the dual problem. The definition of the dual problem is

stated as the following definition.

Definition 2.2.2. Suppose that the primal problem is given in the (canonical) form:

P: maximize cTx

subject to Ax≤ b,

x≥ 0.

Then, the dual linear programming problem is defined by:

D: minimize bTw

subject to ATw≥ c,

w≥ 0.

From the manipulation, we can write the dual problem for a standard form as

below.

Suppose that the primal linear programming problem is given in the (standard)

form:

P: maximize cTx

subject to Ax = b,

x≥ 0.
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Then, this problem can be transformed to the canonical form as follows:

P: maximize cTx

subject to Ax≤ b,

−Ax≤−b,

x≥ 0.

Therefore, the dual linear programming problem is written by:

D: minimize bTw1−bTw2

subject to ATw1−ATw2 ≥ c.

w1,w2 ≥ 0.

If we let w = w1−w2 where w1,w2 ≥ 0, then we get the dual problem of the

standard form as follows:

D: minimize bTw

subject to ATw≥ c.

Example 2.2.6. Consider the following linear programming problem:

maximize x1 + 5x2 − 7x3

subject to x1 + x2 + x3 ≤ 4

2x1 − x2 + x3 ≤ 5

−5x1 − 2x2 + 4x3 ≤ 10

x1, x2, x3 ≥ 0.

We can write the dual problem for this problem as follows:

minimize 4w1 + 5w2 + 10w3

subject to w1 + 2w2 − 5w3 ≥ 1

w1 − w2 − 2w3 ≥ 5

w1 + w2 + 4w3 ≥ −7

w1, w2, w3 ≥ 0.
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Example 2.2.7. Consider the following linear programming problem:

maximize x1 + 5x2 − 7x3

subject to x1 + x2 + x3 = 4

2x1 − x2 + x3 = 5

−5x1 − 2x2 + 4x3 = 10

x1, x2, x3 ≥ 0.

The dual problem for this problem can be written as follows:

minimize 4w1 + 5w2 + 10w3

subject to w1 + 2w2 − 5w3 ≥ 1

w1 − w2 − 2w3 ≥ 5

w1 + w2 + 4w3 ≥ −7.

�

Consider the primal problem in the canonical form:

P: maximize cTx

subject to Ax≤ b,

x≥ 0.

Then, the dual linear programming problem is defined by:

D: minimize bTw

subject to ATw≥ c,

w≥ 0.

Lemma 2.2.8 (Weak Duality Property). If x0 and w0 be feasible solutions to problem

P and problem D respectively, then cTx0 ≤ bTw0 .
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Corollary 2.2.9. If x0 and w0 are feasible solutions to the primal and dual problems,

respectively, such that cTx0 = bTw0, then x0 and w0 are optimal solutions to their re-

spective problem.

Corollary 2.2.10. If the problem P is unbounded, then problem D is infeasible. Like-

wise, If problem D is unbounded, then problem P is infeasible.

Corollary 2.2.11. If the problem P is infeasible, then problem D is either unbounded

or infeasible. If problem D is infeasible, then problem P is unbounded or infeasible.

Lemma 2.2.12 (Strong Duality Property). If one problem possesses an optimal solu-

tion, then both problems possess optimal solutions and two optimal objective values are

equal.

Theorem 2.2.13 (Fundamental Theorem of Duality). Consider problem P and problem

D. Then, exactly one of the following statements is true:

1. Both problem P and problem D possess optimal solutions x∗ and w∗

respectively and cTx∗ = w∗Tb.

2. Problem P is unbounded and problem D is infeasible.

3. Problem D is unbounded and problem P is infeasible.

4. Both problems are infeasible.

2.2.8 The Karush-Kuhn-Tucker (KKT) optimality conditions

Consider a primal linear programming problem:

P: maximize z = cTx

subject to Ax≤ b,

x≥ 0.

Then, the dual linear programming problem is defined by:

D: minimize z = bTw
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subject to ATw≥ c,

w≥ 0.

Theorem 2.2.14 (The Karush-Kuhn-Tucker (KKT) Optimality Conditions). The opti-

mal conditions for a linear programming problem state that a necessary and sufficient

condition for x∗ to be an optimal point to problem (P) is that there exists a vector w∗

such that

1. Ax∗ ≤ b,x∗ ≥ 0 (Primal Feasibility),

2. ATw∗ ≥ c,w∗ ≥ 0 (Dual Feasibility),

3. w∗T(Ax∗−b)= 0 and (cT−ATw∗)x∗= 0 (Complementary Slackness).

From KKT conditions, condition 1 indicates that x∗ must be a feasible point for

the primal problem while condition 2 indicates that w∗ must be a feasible point for the

dual problem.

Condition 3 is checking cTx∗ = w∗Tb, that is the strong duality property is ver-

ified.

2.3 The dual simplex method

Consider the following linear programming problem:

maximize cTx

subject to Ax = b,

x≥ 0.

In a certain instance, it is difficult to find a basic solution that is feasible (that

is B−1b ≥ 0) to a linear programming problem without adding artificial variables. In

this same instance, it might be possible to find a starting basis which is not neccessary

feasible, but its dual is feasible (that is, all z j− c j ≥ 0 for a maximization problem).
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Consider cT
BB−1N− cT

N, that is wTA: j− c j for all j = 1,2, ...,n where

wT = cT
BB−1. If cT

BB−1N− cT
N ≥ 0, then wTA: j− c j ≥ 0 such that wTA: j ≥ c j for all

j = 1,2, ...,n. Therefore, wT is the feasible solution for the dual problem.

In such case, it is useful to develop a variant of the simplex method that would

produce the series of the simplex tableau that maintain dual feasibility and complemen-

tary slackness and strive toward primal feasibility.

The dual simplex method (maximization problem)

Initialization Step:

Find a basis B of the primal problem such that z j− c j ≥ 0 for all j = 1,2, ...,n.

Let y j = B−1A: j where j = 1, ...,n.

Main Step:

1. If b = B−1b≥ 0, then stop; the current solution is optimal. Otherwise, select

a pivot row r with br < 0; say

br = minimum
1≤i≤m

{bi}.

2. If yi j ≥ 0 for j = 1,2, ...,n, then stop; the dual is unbounded and the primal

is infeasible.

Otherwise, select the pivot column k by the following minimum ratio test:

zk−ck
|yrk| = minimum

1≤ j≤n
{ z j−c j
|yr j| : yr j < 0}

3. Pivot at yrk and return to Step 1.

Example 2.3.1. Consider the following linear programming problem:

maximize −x1 − 3x2 − 2x3

subject to x1 − 2x2 + x3 ≤ −2

−3x1 + 3x2 − 2x3 ≤ −3

x1, x2, x3 ≥ 0.

First, the problem must be converted to the standard form as follows:
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maximize −x1 − 3x2 − 2x3

subject to x1 − 2x2 + x3 + x4 = −2

−3x1 + 3x2 − 2x3 + x5 = −3

x1, x2, x3, x4, x5 ≥ 0.

When we choose IB = {4,5}, the initial tableau can be written as below.

z x1 x2 x3 x4 x5 RHS

1 0 4 1.33 0 0.33 −1

x4 0 1 −2 1 1 0 −2

x5 0 −3 3 −2 0 1 −3

We can see that the dual is feasible while the primal is not. So, we can use

the dual simplex method by choosing x5 as the leaving variable and x1 as the entering

variable. Then, the tableau is updated as follows:

Iteration 1:

z x1 x2 x3 x4 x5 RHS

1 0 4 1.33 0 0.33 −1

x4 0 0 −1 0.33 1 0.33 −3

x1 0 1 −1 0.67 0 −0.33 1

Next, x4 is the leaving variable and x2 is the entering variable. After updating

the tableau, we get the following tableau.

Iteration 2:

z x1 x2 x3 x4 x5 RHS

1 0 0 2.67 4 1.67 −13

x2 0 0 1 −0.33 −1 −0.33 3

x1 0 1 0 0.33 −1 −0.67 4

Ref. code: 25605909031055KND



35

From the above tableau, we found that the dual and primal problem are feasible.

Therefore, the optimal solution is found which (x∗1,x
∗
2,x
∗
3) = (4,3,0).

�

In conclusion, the simplex method starts when the primal problem has a basic

feasible solution while the dual simplex method starts when the dual problem has a

basic feasible solution. However, if both solutions of the primal problem and the dual

problem are infeasible, then we can not start the simplex method and the dual simplex

method. So in this thesis, we would like to construct the algorithm for solving the linear

programming problem when this case occurs.
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CHAPTER 3

THE PROPOSED METHOD

In this chapter, we will present the main idea of our method. Then, the algorithm

for solving linear programming problems is shown. In addition, some examples that

show the efficiency of our algorithm are proposed.

3.1 Negative relaxation of dual problem

We would like to construct the relaxed problem without using artificial variables

which are introduced when the primal solution can not be obtained easily. On the

other hand, if the dual problem is feasible while the primal is not, then we can solve the

problem by the dual simplex without using artificial variables. Therefore, if we have the

dual feasible point, then the simplex method can start without using artificial variables.

Consider Figure 3.1 which presents the feasible region of the dual problem:

Figure 3.1: Example of feasible region of the dual problem

From Figure 3.1, if we choose the initial solution as the marked point, we can

see that the constraint 4 is not satisfied, then the simplex method can not start. If we
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would like to start from this point, then an artificial variable will be added to constraint

4. Therefore, if we wolud like to obviate the use of an artificial variable, the constraint 4

would be relaxed as Figure 3.2. So, this solution is a feasible point of the dual problem.

Figure 3.2: The relaxed problem

Since the constraint 4 is associated with the variable in primal problem, if we

will relax this variable in primal then the dual simplex method can start without using

artificial variables. In general, the question arises that how can we identify the unsatis-

fied constraints in the dual problem?

Consider a linear programming problem in the standard form:

maximize z = cTx (3.1)

subject to Ax = b,

x≥ 0,

where c ∈ Rn, A ∈ Rm×n, x ∈ Rn, b ∈ Rm, and rank(A) = m.
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In this thesis, we will use the primal-dual relationships to construct the algo-

rithm. From (3.1), we can write the dual problem as follows:

maximize z = bTw (3.2)

subject to ATw≥ c,

where w ∈ Rm.

Let A= [A:1,A:2, ...,A:n] where A: j is the jth column of matrix A and A= [B,N]

where B ∈ Rm×m , N ∈ Rm×(n−m) and B is a nonsingular matrix. Let IB be an index set

of the basic variables and IN be an index set of the nonbasic variables.

For any basis B, the problem (3.1) can be written as follows:

maximize z+(cT
BB−1N− cT

N)xN = cT
b B−1b (3.3)

subject to xB +B−1NxN = B−1b,

xB,xN ≥ 0.

Therefore, we can write the initial tableau as follows:

z xB xN RHS

1 0 cT
BB−1N− cT

N z0 = cT
BB−1b

xB 0 I B−1N B−1b

From the initial tableau, we can consider the solution of primal and dual prob-

lems by considering the value of B−1b for the primal problem, and cT
BB−1N− cT

N for

the dual problem .

- For the primal problem, if B−1b ≥ 0 , then x =

 B−1b

0

 is the basic

feasible solution.

- For the dual problem, if cT
BB−1N− cT

N ≥ 0, then wT is the feasible solu-

tion for the dual problem where wT = cT
BB−1.
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Therefore, for any basis B, there are four cases for finding the optimal solution

as follows:

Case 1: If cT
BB−1N− cT

N ≥ 0 and B−1b≥ 0, then the primal and dual solutions

are feasible. Therefore, we get the optimal solution by KKT conditions.

Case 2: If cT
BB−1N− cT

N ≥ 0 and B−1b� 0. The dual solution is feasible while

the primal solution is infeasible. Then, the dual simplex method can be performed to

find the optimal solution.

Case 3: If cT
BB−1N− cT

N � 0 and B−1b ≥ 0, then the dual solution is an infea-

sible solution while the primal solution is feasible. Therefore, the simplex method can

be used to solve it.

Case 4: If cT
BB−1N− cT

N � 0 and B−1b � 0, then both solutions of the primal

and dual problems are infeasible. In this case, we can not start the simplex method and

the dual simplex method.

For Case 4, the simplex method can start when artificial variables are added.

So, the problem is bigger, and it may waste some computational time. Therefore, in

this thesis, we propose the improvement of the simplex method without using artificial

varibles by constructing the relaxed problem.

Form the problem (3.3), if B−1b � 0, then the primal solution is not satisfied

some constraints in the primal problem while if cT
BB−1N−cT

N� 0, then the dual solution

is not satisfied the constraints in the dual problem. If we wolud like to start the dual

simplex method, then we will relax the variables associated with the unsatisfied dual

constraints.

Let z j− c j = cT
BB−1A: j− c j for all j ∈ IN. For any basis B, we can rewrite the

initial tableau as follows:

z xB xN RHS

1 0 z j− c j = cT
BB−1A: j− c j,∀ j ∈ IN z0 = cT

BB−1b

xB 0 I B−1N B−1b
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Consider the initial tableau, if z j−c j < 0 for some j ∈ IN , then the dual solution

is infeasible. To make the dual solution feasible, the variables which correspond to

z j − c j < 0, for all j ∈ IN will be relaxed. So the dual simplex method can start. By

relaxing the negative values which corespond to the dual problem, this relaxeation is

called Negative Relaxation of Dual Problem.

After the relaxed problem is solved, the relaxed variables will be restored. Ac-

cording, we can conclude the steps of algorithm below.

3.2 Negative relaxation of dual problem algorithm

The steps of the algorithm can be summarized as follows:

Initial step:

Choose the initial basis B and compute the initial simplex tableau

(see section 2.3.4).

Let G = { j ∈ IN|z j− c j ≥ 0},

L = { j ∈ IN|z j− c j < 0},

and bmin = minimum
1≤i≤m

{bi} where b = B−1b.

Step 1:

If G 6=∅, then

if L 6=∅, then

if bmin ≥ 0, then the simplex method is performed.

else relax variables in L and perform

the dual simplex method.

if the optimal solution is found, then restore variables

in L and perform the simplex method, then stop.

else restore variables in L and go to Step 2.

else if bmin ≥ 0, then the optimal solution is found and stop.

Ref. code: 25605909031055KND



41

else the dual simplex method is performed, then stop.

else if bmin ≥ 0, then the simplex method is performed and then stop.

else go to Step 2.

Step 2: The perturbation simplex method [6] is performed.

Next, the Negative relaxation of dual problem algorithm can be written the

flowchart as Figure 3.3.
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Figure 3.3: The flowchart of Negative relaxation of dual problem algorithm.
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Example 3.2.1. Consider the following linear programming problem:

maximize z = 2x1 +2x3 −5x4

subject to x1 +x2 +x3 ≤ 8

−2x1 +x2 −3x3 +5x4 ≤−5

−x1 +2x2 +x3 ≤−6

3x1 +x2 −2x3 +5x4 ≤−4

x1, x2, x3, x4 ≥ 0.

Before the algorithm starts, we transform this problem to the standard form as

follows:

maximize z = 2x1 +2x3 −5x4

subject to x1 +x2 +x3 +x5 = 8

−2x1 +x2 −3x3 +5x4 +x6 =−5

−x1 +2x2 +x3 +x7 =−6

3x1 +x2 −2x3 +5x4 +x8 =−4

x1, x2, x3, x4, x5, x6, x7, x8 ≥ 0.

First, we will choose the initial basis B by using the cosine criterion. Then, the

indices correspondings to variables are α1 = 9.295, α2 = −4.913, α3 = 6.454, α4 =

−6.363, α5 = 8, α6 =−5, α7 =−6 and α8 =−4 respectively. So we choose the index

of a basic feasible solution as IB = {1,5,3,8}. Then, the initial tableau can be written

below:

z x1 x5 x3 x8 x2 x6 x7 x4 RHS

1 0 0 0 0 −1.6 −0.8 −0.4 1 6.4

x1 0 1 0 0 0 −1.4 −0.2 −0.6 −1 4.6

x5 0 0 1 0 0 1.8 0.4 0.2 2 4.8

x3 0 0 0 1 0 0.6 −0.2 0.4 −1 −1.4

x8 0 0 0 0 1 −2 −1 −1 0 7
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From the initial tableau, we get G= {4}, L= {2,6,7} and bmin =−1.4. So vari-

ables x2, x6,and x7 are relaxed. Hence, we can write the initial tableau for the relaxation

problem as follows:

z x4 x1 x5 x3 x8 RHS

1 1 0 0 0 0 6.4

x1 0 −1 1 0 0 0 4.6

x5 0 2 0 1 0 0 4.8

x3 0 −1 0 0 1 0 −1.4

x8 0 0 0 0 0 1 7

This relaxed problem can solve by the dual simplex method. After pivoting, we

get the following tableau.

z x4 x1 x5 x3 x8 RHS

1 0 0 0 1 0 5

x1 0 0 1 0 −1 0 6

x5 0 0 0 1 2 0 2

x4 0 1 0 0 −1 0 1.4

x8 0 0 0 0 0 1 7

We see that the optimal solution for the relaxed problem is found. Next, we will

restore variables in L and the tableau can be updated as follows:

z x4 x1 x5 x3 x8 x2 x6 x7 RHS

1 0 0 0 1 0 1 −1 0 5

x1 0 0 1 0 −1 0 −1 0 −1 6

x5 0 0 0 1 2 0 2 0 1 2

x4 0 1 0 0 −1 0 −1 0.2 −0.4 1.4

x8 0 0 0 0 0 1 0 −1 −1 7
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For the above tableau, the simplex method can start. After pivoting 2 iterations

to slove it, we get the following tableau.

z x4 x1 x5 x3 x8 x2 x6 x7 RHS

1 5 0 2 0 0 6 0 0 16

x1 0 0 1 0.5 0 0 0.5 0 −0.5 7

x3 0 0 0 0.5 1 0 1.5 0 0.5 1

x6 0 5 0 2.5 0 0 8.5 1 0.5 12

x8 0 5 0 2.5 0 1 6.5 0 −0.5 19

Therefore, the optimal solution is found that is (x∗1,x
∗
2,x
∗
3,x
∗
4) = (7,0,1,0)

with z∗ = 16. Moreover, the number of iterations and size of matrix are compared with

the two-phase simplex method are shown as below.

Our method Two-phase method

Dual simplex Primal simplex Phase I Phase II

The number of iterations 1 2 3 3

Size of matrix 4×5 4×8 4×11 4×8

From Example 3.2.1, we found that our method can reduce the number of itera-

tions. Additionally, the matrix size solved by our method is smaller than the matrix size

solved by two-phase simplex method.

�

The proposed algorithm can start when G is not empty, so the special case of

linear programming problems which can guarantee that the algorithm will be used is

the unrestricted variable problem. Since the unrestricted variables will be replaced by

the difference of two nonnegative variables, the negation of the cost vector c causing G

is not empty.
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Example 3.2.2. Consider the following linear programming problem:

maximize z = −7x1 + 9x2

subject to 6x1 − 8x2 ≤ 9

8x1 − 4x2 ≤ 7

−7x1 + x2 ≤ 6

8x1 + 9x2 ≤ −7

3x1 + 9x2 ≤ −1

x1, x2 are unrestricted variables.

First, we transform variables in this problem by letting x j = x+j − x−j for all

j = 1,2 where x+j ,x
−
j ≥ 0, then we get the following problem.

maximize z = −7x+1 +9x+2 +7x−1 −9x−2

subject to 6x+1 −8x+2 −6x−1 +8x−2 ≤ 9

8x+1 −4x+2 −8x−1 +4x−2 ≤ 7

−7x+1 +x+2 +7x−1 −x−2 ≤ 6

8x+1 +9x+2 −8x−1 −9x−2 ≤−7

3x+1 +9x+2 −3x−1 −9x−2 ≤−1

x+1 , x+2 , x−1 , x−2 ≥ 0

Then, the problem is converted to the standard form as below.

maximize z = −7x+1 +9x+2 +7x−1 −9x−2

subject to 6x+1 −8x+2 −6x−1 +8x−2 +x3 = 9

8x+1 −4x+2 −8x−1 +4x−2 +x4 = 7

−7x+1 +x+2 +7x−1 −x−2 x5 = 6

8x+1 +9x+2 −8x−1 −9x−2 x6 =−7

3x+1 +9x+2 −3x−1 −9x−2 x7 =−1

x+1 , x+2 , x−1 , x−2 , x3 x4, x5, x6, x7 ≥ 0.

Then, we will choose the initial basis B as IB = {3,4,5,6,7} that is identity

matrix. Then, the initial tableau can be written below:
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z x+1 x+2 x−1 x−2 x3 x4 x5 x6 x7 RHS

1 7 −9 −7 9 0 0 0 0 0 0

x3 0 6 −8 −6 8 1 0 0 0 0 9

x4 0 8 −4 −8 4 0 1 0 0 0 7

x5 0 −7 1 7 −1 0 0 1 0 0 6

x6 0 8 9 −8 −9 0 0 0 1 0 −7

x7 0 3 9 −3 −9 0 0 0 0 1 −1

From the initial tableau, we found that G and L are not empty and bmin = −7.

So variables in L are relaxed. Then, the initial tableau for the relaxed problem can be

written as follows:

z x+1 x−2 x3 x4 x5 x6 x7 RHS

1 7 9 0 0 0 0 0 0

x3 0 6 8 1 0 0 0 0 9

x4 0 8 4 0 1 0 0 0 7

x5 0 −7 −1 0 0 1 0 0 6

x6 0 8 −9 0 0 0 1 0 −7

x7 0 3 −9 0 0 0 0 1 −1

After the dual simplex method is performed that x−2 is the entering variable and

x6 is the leaving variable, the optimal tableau for the relaxed problem is found as below.
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z x+1 x−2 x3 x4 x5 x6 x7 RHS

1 15 0 0 0 0 1 0 −7

x3 0 13.11 0 1 0 0 0.89 0 2.78

x4 0 11.56 0 0 1 0 0.44 0 3.89

x5 0 −7.89 0 0 0 1 −0.11 0 6.78

x−2 0 −0.89 1 0 0 0 −0.11 0 0.78

x7 0 −5 0 0 0 0 −1 1 6

Next, variables x+2 and x−1 will be restored which the negation of coefficients of

x−2 and x+1 . Then, we get

z x+1 x−2 x3 x4 x5 x6 x7 x+2 x−1 RHS

1 15 0 0 0 0 1 0 0 −15 −7

x3 0 13.11 0 1 0 0 0.89 0 0 −13.11 2.78

x4 0 11.56 0 0 1 0 0.44 0 0 −11.56 3.89

x5 0 −7.89 0 0 0 1 −0.11 0 0 7.89 6.78

x−2 0 −0.89 1 0 0 0 −0.11 0 −1 0.89 0.78

x7 0 −5 0 0 0 0 −1 1 0 5 6

From the above tableau, x−1 is the entering variable and x5 is the leaving variable,

and the primal simplex is performed. Then, we get the optimal tableau as below.

z x+1 x−2 x3 x4 x5 x6 x7 x+2 x−1 RHS

1 0 0 0 0 1.90 0.78 0 0 0 5.89

x3 0 0 0 1 0 1.66 0.70 0 0 0 14.04

x4 0 0 0 0 1 1.46 0.28 0 0 0 13.82

x−1 0 −1 0 0 0 0.13 −0.01 0 0 1 0.86

x−2 0 0 1 0 0 0.11 −0.09 0 −1 0 0.01

x7 0 0 0 0 0 −0.63 −0.93 1 0 0 1.70
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Therefore, the optimal solution is found as (x∗1,x
∗
2) = (−0.86,−0.01) with

z∗= 5.89. Furthermore, the number of iterations and size of matrix which are compared

to the two-phase simplex method are shown below.

Our method Two-phase method

Dual simplex Primal simplex Phase I Phase II

The number of iterations 1 1 5 1

Size of matrix 5×7 5×9 5×11 5×9

From Example 3.2.2, we found that our method can reduce the number of itera-

tions. In addition, the matrix size solved by our method is smaller than the matrix size

solved by the two-phase simplex method.

�
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CHAPTER 4

EXPERIMENTAL RESULTS

In this chapter, the efficiency of our algorithm is presented by comparing the av-

erage number of iterations and the average CPU time solving generated tested problems

by the propsed method with respect to the two-phase simplex method. The linear pro-

gramming problem which is tested is in the following form:

maximize cTx

subject to Ax≤ b,

where A ∈ Rm×n, x,c ∈ Rn, b ∈ Rm and m≤ n.

All parameters are randomly generated according to these rules:

• vector c with range of values between ci ∈ [−9,9] for all i = 1,2, ...,n,

• range of values of ai j between ai j ∈ [−9,9] for all i = 1,2, ...,m and

for all j = 1,2, ...,n,

• vector b with range of values between bi ∈ [−9,9] for all i = 1,2, ...,m,

• 50 problems for each size of matrix,

• having around 50 percent of artificial variables in each problem,

• matrix A having size 10× 10, 10× 30, 20× 20, 20× 60, 40× 40, 40× 60, and

60×60.

For generated problems, we implemented our algorithm and two-phase method

by MATLAB R 2014 programming, and these tests were run in an Intel(R) Core(TM)

i5-460M 2.53 GHz and 2 GB of RAM. The algorithm started by adding slack variables

which were chosen to be basic variables.
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The average number of iterations for solving each problem and the average CPU

time for solving each problem by our algorithm and the two-phase simplex method are

shown as TABLE 4.1 and TABLE 4.2, respectively.

TABLE 4.1: The average number of iterations for solving each problem

Problem type Size of matrix Our algorithm Two-phase algorithm Our algorithm
Two-phase algorithm

1 10×10 11.12 13.02 0.85

2 10×30 12.76 14.52 0.88

3 20×20 24.04 26.00 0.92

4 20×60 28.76 30.76 0.93

5 40×40 57.84 70.92 0.82

6 40×60 77.76 80.70 0.96

7 60×60 112.20 125.86 0.89

Average total 46.35 51.68 0.89

TABLE 4.2: The average of CPU time for solving each problem

Problem type Size of matrix Our algorithm Two-phase algorithm Our algorithm
Two-phase algorithm

1 10×10 0.03173 s 0.04868 s 0.65

2 10×30 0.03306 s 0.04948 s 0.67

3 20×20 0.04010 s 0.05178 s 0.77

4 20×60 0.04902 s 0.07136 s 0.69

5 40×40 0.06124 s 0.18282s 0.33

6 40×60 0.06646 s 0.20468 s 0.32

7 60×60 0.10144 s 0.38336 s 0.26

Average total 0.055 0.141 0.39

From TABLE 4.1 and TABLE 4.2, they can be plotted with their standard devi-

ations as Figure 4.1 and 4.2, respectively.
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Figure 4.1: The average number of iterations for our method and

the two-phase simplex method

Figure 4.2: The average of CPU time for our method and

the two-phase simplex method
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From TABLE 4.1, we found that the average number of iterations solving by our

method is less than the average number of iterations solving by the two-phase method

for all problem sizes. Moreover, the maximum improvement is 18% for 40×40 matrix

A while the minimum improvement is 4% for 40×60 matrix A. However, the average

improvement is 11% which it means that we can reduce the number of iterations in

about 11%.

Additionally, we found that the average of CPU time solving by our method is

less than the average of CPU time solving by the two-phase method for all problem sizes

as TABLE 4.2. Furthermore, the maximum improvement is 74% for 60×60 matrix A

while the minimum improvement is 23% for 20× 20 matrix A. However, the average

improvement is 61% which it means that we can reduce the CPU time in about 61%.
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CHAPTER 5

CONCLUSIONS

In this thesis, we present the improvement of the simplex method for solving

a linear programming problem without using artificial varibles. Our algorithm starts

by choosing an initial basis. If it gives the primal and dual infeasible solutions, then

variables that cause its dual infeasible are relaxed, and the dual simplex method can be

performed.

From the computational results, it indicates that our algorithm is efficient than

the two-phase method. Both the average number of iterations and the average of CPU

time solved by our method are less than the two-phase method for every generated

problems. Since we solve the smaller relaxed problem for finding the primal feasible

solution while solving by the two-phase method maintains with full matrix for find-

ing the primal feasible solution, the computational time can be reduced. However, our

algorithm could not start when the reduced costs are negative which we will use the

perturbation simplex method to solved it. Nevertheless, unrestricted variable problems

could always be solved by our algorithm since the negation of c will be added for con-

verting it to the standard problem. So, the relaxed problem can be constructed certainly.

Since this algorithm starts by constructing the relaxed problem by choosing vari-

ables which associated the unsatisfied constraints in the dual problem. For the future

work, we will construct the relaxed problem by ignoring some constraints that are sat-

isfied the primal solution by starting at any basis. By this relaxation, the algorithm can

start without using artificial variables.
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