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Abstract 

MONITORING CROP HEALTH, GROWTH AND ITS STAND COUNT 
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TROPICAL FARMLAND OF THAILAND 

 

by 

SUMAN GHIMIRE  

 

Bachelor of Engineering in Geomatics Engineering, Kathmandu University, 2015 

Master of Science in Engineering and Technology, SIIT, Thammasat University, 2018 

 

 Unmanned aerial vehicle (UAV) equipped with multispectral sensor has 

become an active research topic for crop health monitoring and has been widely used 

across many regions. However, the high cost associated with multispectral sensors 

suggests us to shift to a cheaper alternative in order to be implemented by average 

farmers from developing countries. We evaluated the feasibility of a lightweight (38 

gm) mobius action camera with wide FOV in monitoring crop health through the 

removal of IR filter, and replacing it with Wratten 25A red filter. The research 

implements Structure from motion (SfM) for creating orthomosaic, and computes 

Normalized Difference Vegetation Index (NDVI). Finally, the results of NDVI from 

the modified camera was validated with the ground measurement of LAI carried using 

LI-COR LAI 2000, with a linear correlation that resulted in coefficient of determination 

of (R2) 0.843. The result demonstrates that the modified camera is potential in 

agricultural health monitoring. 

Likewise, this research also implemented SfM algorithm using UAV imagery 

supported with global positioning system (GPS) to generate multitemporal crop surface 
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models, which assessed crop growth throughout the growth season. Banana plantation 

which normally takes 9-12 months from sowing to harvesting the fruit, had been sowed 

on the first week of November, 2016 and harvested on the mid of September, 2017. The 

field data acquisition was performed three times, particularly on 25th January, 26th 

April & 16th September 2017 in an area of 0.186 sq.km,  with the area’s centroid 

coordinates at N 14O 15.133| E 100O 53.393| and Z 10 meters (WGS84). This study 

followed a methodology based on SfM to create a multitemporal surface models (DTM 

& DSM), followed by the difference method to generate canopy height model (CHM) 

which was used to assess crop growth. The growth ranged between 2.31-4.89 m for the 

period between Jan-Apr while the period between Apr-Sept demonstrated negative 

growth as a result of harvesting carried on September 10. The methodological 

framework adopted in this study will enable the spatial analysis of crop growth within 

banana plantation, enabling wide range of applications in the improvement of crop 

management. 

Furthermore, several studies has been performed for object detection from ground view 

perspective and has been the key topic of interest for computer vision communities, 

however very less has been explored in detecting objects in an aerial imagery. The 

convolutional neural network implemented in this study was based open source 

tensorflow  implementation of the darknet framework  named, Darkflow, which has 

been modified to a near real-time multi-scale detector implementing YOLOv2 object 

detection model to improve the performance on aerial imagery. To detect the palm trees, 

the YOLO v2. Neural Net was modified and fine-tuned on our dataset consisting 255 

images of palm trees, each of 4000 x 3000 resolution taken at 70m above the ground. 

The images were manually annotated which consisted of 595 annotations representing 

validation dataset, whereas 1000 annotations representing training dataset required for 

training and accuracy assessment of the ConvNet. The annotations were created in xml 

format, using a python script which takes the manual input from the user regarding the 

bounding box of the object to be detected. Likewise, we applied pre-trained weights 

and configuration files for the PASCAL VOC datasets, which was modified by 
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changing the no. of classes to 1 and the no. of filters in the last convolutional layer was 

modified to 30, which fits our purpose of detecting palm trees.  

Likewise, the batch size was set to 64, subdivisions to 8, learning rate to 0.0001 and the 

datasets were initially trained until 6500 iterations on GPU server consisting of 32 GB 

of NVidia Tesla P100-SXM2. Finally, the precision and recall for our object detection 

model was observed to be 45.59% and 65.87%, making our total accuracy to 55.23%, 

which requires further improvements before it could be directly applied for palm tree 

counting purpose. These initial results demonstrate that provided a large training dataset 

(approx. 5 times more than current) with good quality labeled images and intensive 

training time, YOLO v2 net can accurately detect palm trees in our project area. As for 

now, the training spends more time per epoch resizing than training due to large 

resolution images, therefore, to increase performance the future prospects of our work 

would focus on tiling the images into multiple sections of 666 x 500 pixel blocks using 

OpenCV, before actually feeding the images for training which is expected to optimize 

the network. 

 

 

 

Keywords: NDVI, Modified Infrared CMOS sensor, UAV Photogrammetry, Multi-

temporal CSM, Crop Growth, Deep-Learning, Object Detection, Crop Counting. 
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Chapter 1 

Introduction 

 

1.1 Background 

Remote sensing technologies has been providing timely and accurate information 

related to crop health and productivity;  and has been widely used in agricultural health 

monitoring (Atzberger (2013) at both regional and global scale since decades. One of 

the important characteristics for any agricultural health monitoring system is to timely 

disseminate information related to plant health, growth and yield to the farmers. With 

recent advancements in technology, light-weight airborne remote sensing (C. Zhang & 

Kovacs, 2012) equipped with multispectral sensors presents a unique advantage over 

traditional satellite borne  images (Lamb & Brown, 2001)  in terms of  high spatial & 

temporal resolution with reduced effect of cloud cover during data acquisition. 

However, the associated costs with such multispectral sensors are generally high which 

suggests researchers to focus on cheaper alternatives that could be financially 

implemented by farmers from developing countries. 

Numerous studies has been performed in the application of UAV based imagery in 

precision agriculture (Alexandridis et al., 2017; Allahyari, Mohammadzadeh, & Nastis, 

2016; Shaw, Lark, Williams, Chadwick, & Jones, 2016). All these studies suggest in 

improving georeferencing, image mosaicking algorithms and more concrete and 

automated workflows, as well as directly involve farmers in different design phases for 

better data interpretation and to provide good services to the farmers. The remote 

sensing platforms including air and space borne suffers atmospheric scattering in the 

blue & green region, consequently it is recommended using larger wavelength such as 

red and NIR for the purpose of agricultural applications (Nijland et al., 2014).  

Therefore, an inexpensive digital camera setup, with internal infrared filter removed 

and replaced with a blue blocking filter allowed blue channel to record the NIR light 
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with red recorded in its original channel (Hunt et al., 2010; Zigadlo, Holden, Schrader, 

& Vogel, 2001), resulting in a promising technique for agricultural monitoring. In 

recent years, a lot of research have implemented such modification of standard RGB 

digital camera to near infrared for assessment of crop health (Hunt, Cavigelli, Daughtry, 

Mcmurtrey, & Walthall, 2005; Hunt et al., 2010; Rabatel, Gorretta, & Labbe, 2014), 

but very less has been explored in CMOS based action camera model (Ghazal, Khalil, 

& Hajjdiab, 2015; J. Wijitdechakul, S. Sasaki, Y. Kiyoki, & C. Koopipat, 2016). For 

instance, (Hunt et al., 2010) studied the ability of CCD based digital color infrared 

photograph in crop monitoring using UAV. Their results in terms of green normalized 

vegetation index (GNDVI) was found to have a good correlation with leaf area index 

(LAI) suggesting their approach to be potential in providing accurate information 

related to crop health. Similarly, (J. Wijitdechakul et al., 2016) demonstrates a dual 

action camera model: one normal RGB camera while the other IR filter removed 

modified camera in UAV platform for real-time agricultural area management using 

SPA process. Their system was able to detect the healthy vs non-healthy plantations, 

and notify farmers about the unhealthy plantation area for improved decision making 

in agricultural practices. 

The action cameras offers a unique advantage in UAV photogrammetry due to its 

lightweight and low associated costs (Hastedt, Ekkel, & Luhmann, 2016). Significant 

number of research has been performed for testing the applicability of action cameras 

for UAV photogrammetry (Balletti, Guerra, Tsioukas, & Vernier, 2014; D’Agostino, 

Antuono, & Pepe; Hastedt et al., 2016). For instance, (Hastedt et al., 2016) highlights 

different camera calibration approaches on the GoPro Hero4 and evaluated the potential 

of a pre-correction in rectifying the initial distortion generated from the wide angle lens 

for the application in photogrammetric works. They also discussed on the challenges 

introduced by wide angle lens in terms of their short principal distance and high 

radiometric distortion, which causes diversion from the central projective model. An 

efficient method for image matching was applied (S. Agarwal et al., 2011), where they 

identified a small patches of features for each image using tree detection techniques 
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instead of matching all the image together which still preserved the features for 

structure from motion and significantly reduced the processing time. Similarly, linear 

time structure from motion was implemented for large scale image reconstruction (Wu, 

2013b) by introducing preemptive feature matching, which reduced the image matching 

process by 95%, and also recovered good feature description match for the 

reconstruction process. Likewise, (D. Turner, Lucieer, & Watson, 2012) presented an 

approach for robust radiometric and geometric calibration to implement UAV 

photogrammetry using SfM algorithm for the generation of image orthomosaic. The 

images were processed to generate a 3D point clouds in arbitrary space coordinates, 

which was later transformed into global coordinate system using; a. direct camera EXIF 

file, b. ground control points. Thus, the point cloud was used to create DTM which was 

followed by the creation of orthomosaic. Their results demonstrated an absolute spatial 

accuracy of 65-120 cm with direct georeferencing method while 10-15 cm using GCP 

technique. 

The banana plantation, originally from South-east Asian region is able to grow in 

variety of environments, and mostly favorable for hot & humid temperatures similar to 

Thailand; exhibits an important role as a staple diet and has been helping millions of 

farmers generate income. The conventional remote sensing technologies i.e. space 

borne systems offers nondestructive and remote estimation for crop monitoring; 

however, these systems are often limited to low spatial and temporal resolution making 

it less reliable for precision agriculture tool such as biomass estimation, early detection 

of disease and yield prediction (Chang, Jung, Maeda, & Landivar, 2017). Recent 

advancements in UAV and sensor platform presents a wide possibilities for overcoming 

the limitations of traditional remote sensing through its potential in generating high 

spatial & temporal resolution data (Wang Li et al., 2016; Malambo et al., 2018). The 

3D point cloud of the scene generated using structure from motion (SfM) techniques 

presents an opportunity for reliable crop height determination, which aided through 

automated preprocessing & robust image matching approach, enables the use of 
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inexpensive consumer cameras to be embedded on UAV platform for the applications 

in mapping and precision agriculture.  

An emerging remote sensing tool namely, light detection and ranging (LiDAR) enables 

the accurate representation of 3D properties of forest canopy and vegetation structure 

(Ghimire, Xystrakis, & Koutsias, 2017), and overcomes saturation problem due to its 

high penetration capabilities (Wang Li et al., 2016). Although the terrestrial laser 

scanner offers more detailed 3D point cloud, they are often limited to their scalability 

in large vegetation areas, while airborne laser scanning are most suitable for large scale 

crop monitoring but tend to overestimate canopy area and underestimate canopy height 

(Wang Li et al., 2016; Wang Li et al., 2015). Crop monitoring requires frequent data 

acquisition throughout the growing season which is not feasible using laser scanners 

due to its high cost; therefore, it is evident that the rapidly decreasing UAV systems 

offers cheap alternative to expensive laser scanners and carries huge possibilities in 

studying trends in precision agriculture (Leberl et al., 2010; Malambo et al., 2018). 

Significant number of research has been performed on the application of crop 

monitoring (Bendig, Bolten, & Bareth, 2013; J Bendig et al., 2013; Chang et al., 2017; 

Hunt et al., 2010) using the application of UAV photogrammetry. Numerous research 

has also been performed on the application of deep learning for robust object detection 

in a ground based imagery (LeCun, Bengio, & Hinton, 2015; Simonyan & Zisserman, 

2014; Tian, Luo, Wang, & Tang, 2015) . However, very less has been explored in object 

detection based on satellite and aerial imagery (Carlet & Abayowa, 2017; Weijia Li, 

Fu, Yu, & Cracknell, 2016; Puttemans, Van Beeck, & Goedemé, 2018), and is slowing 

grabbing huge research interests. For the deep neural network detectors to detect an 

object of interest, it is necessary to supply huge amount of data during the training 

phase, therefore it is very important to integrate deep learning with big data (Carlet & 

Abayowa, 2017). We aim to count the stand attributes in palm tree plantations using 

deep learning based on drone based imagery, which is highly advantageous to the 

farmers in providing valuable insights to their farmland including, yield prediction, 
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irrigation management, growth monitoring; and is considered as an important indicator 

in precision agriculture to assess valuable information related to biomass.  

 

1.2 Problem Identification  

Banana plantation exhibits an important part in ensuring food safety and 

financial assistance for millions of farmers in Thailand. It’s also a popular staple food 

which is rich in vitamins and minerals, and contributes approximately 2.3 million USD 

each year in the economy (Anupunt, 2002). However, the plantation is affected by 

several biotic and abiotic stress factors. Biotic stress includes fungi, bacteria, viruses, 

weeds and pests. Abiotic stress are caused by surrounding environment for example 

water, temperature. Specifically, the disease Black Sigatoka also termed as black leaf 

streak (Mobambo et al., 1993) affects banana plantation by blackening & decreasing 

the leaf area responsible for photosynthetic process which significantly reduces the 

yield.  Therefore, predicting plantation performance to crop stress conditions is vital for 

an enriched decision making tool to be used by farmers for developing better response 

mechanism and resilient agricultural systems.  

This study aims to enable the spatial analysis within banana plantation, enabling wide 

range of application in the improvement of plantation’s management & scheduling 

using modified infrared CMOS camera model. This study on monitoring the 

photosynthetic activity using NDVI indices in banana plantation, throughout the growth 

season, will provide farmers with valuable information regarding the crop 

health/disease of individual plantations to help prevent the loss in yield. Similarly, 

monitoring crop growth using SfM based multitemporal crop surface model (DTM, 

DSM); and stand count attributes using deep learning neural network framework 

implemented in tensor flow (Dark flow), and multi-scale detector (YOLOv2) will help 

farmers access important indicators in precision agriculture  such as crop yield, biomass 

and an estimate of plant health. Finally, the methodological workflow adapted in this 
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study presents an inexpensive crop health monitoring system for average farmers 

belonging from developing countries.  

 

1.3 Objectives 

In order to fill the existing gap in agricultural crop monitoring in developing 

countries, the objectives of this research are as follows:  

1. Monitoring crop health using modified infrared camera attached to UAV. 

2. Assessing plantation growth throughout the growth season, using SfM based 

multitemporal crop surface model (DSM and DTM), acquired using UAV. 

3. Assessing stand count attributes from aerial imagery using deep learning object 

detection models.  
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Chapter 2  

Literature Review 

The application of geospatial technologies coupled with sensor platform has given us 

tremendous opportunities to explore in the field of precision agriculture (C. Zhang & 

Kovacs, 2012).(Moran, Inoue, & Barnes, 1997) discussed the limitation of satellite 

imagery in terms of poor revisiting times, cloud coverage and coarse spatial resolution. 

However, the recent advancements in the field of UAV gives it the unique capabilities 

over satellite remote sensing in terms of high temporal resolution(Grenzdörffer, Engel, 

& Teichert, 2008).The use of UAV in agricultural monitoring can provide farmers with 

quick, low cost, real time and accurate data (Yue, Lei, Li, & Zhu, 2012). Their research 

adapted an improved SIFT algorithm for feature extraction and matching which yielded 

good results when creating mosaic. Afterwards they applied object oriented information 

extraction method using Feature Analyst 4.2 providing a terrain classification. Their 

results were significant and provided a quick and low cost methodology for monitoring 

crop pests. SIFT algorithm is capable of generating huge number of features that could 

be implemented as a tie-point, which in turn supplies tons of observations for entering 

bundle block adjustment process resulting in improved accuracy (Wu, 2011; Wu, 

Agarwal, Curless, & Seitz, 2011; Y. Zhang, Xiong, & Hao, 2011). (Wu, 2013a) 

introduced a preemptive feature matching based on SIFT algorithm that was able to 

increase accuracy as well as decrease processing time of the feature matches.  

Sustainable farm management strategies depends on accurate prediction of crop yield, 

which are normally generated from the computation over remotely-sensed data, i.e. 

vegetation indices. These indices combined with crop surface model, forms a more 

concrete methodology which has proven to improve the accuracy in for crop yield 

prediction (Geipel, Link, & Claupein, 2014). They gathered multitemporal RGB images 

using unmanned aerial vehicle from early to mid-growth phase, which was processed 

to simple vegetation index for crop classification, whereas crop height information was 

extracted from multitemporal crop surface models at multiple resolutions. Their results 
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demonstrated coefficient of determination (R2) value of 0.74, and best results were 

obtained at a spatial resolution of 0.04 m/pixel. Their results proved that combining 

vegetation indices with crop height information could form a more concrete 

methodology for predicting corn yield. 

Significant number of research has been performed for testing the applicability 

of action cameras for UAV photogrammetry (Balletti et al., 2014; Hastedt et al., 2016). 

Calibration of action camera namely GoPro Hero 3 for photogrammetric purpose has 

been evaluated (Balletti et al., 2014), with the recommendation of use of high spatial 

resolution during data acquisition. They applied chessboard pattern and OpenCV 

algorithms to generate distortion free images which significantly improved the accuracy 

in image registration. The accuracy of initial distorted images in alignment was 0.035 

m, which later halved to 0.015 m using undistorted images. An investigation on 

vegetation cover estimation using modified color infrared GoPro Hero 4 action camera 

and its NDVI imagery (Ghazal et al., 2015). However, their research doesn’t speak 

much about the validation of the obtained NDVI images. (Hastedt et al., 

2016)highlights the promising advantage of light weight cameras in UAV 

photogrammetry overcoming the restrictions in payload. They applied different camera 

calibration approaches on their wide angle GoPro Hero4 and evaluated the potential of 

a pre-correction in rectifying the initial distortion for the applicability in 

photogrammetric works. They further discussed on the challenges introduced by wide 

angle lens characterizing their short principal distance and high radiometric distortion, 

diverting from the central projective model. On a similar study made by Balletti et al 

2014 on GoPro Hero3 recommended the use of highest possible resolution during 

image acquisition. 

A camera setup, with infrared filter removed and replaced with a blue blocking filter 

allowed blue channel to record the NIR light (Zigadlo et al., 2001), forming a promising 

methodology in monitoring vegetation. Although other standard RGB digital camera 

has been modified to near infrared for assessment of crop health (Hunt et al., 2005; 
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Hunt et al., 2010; Rabatel et al., 2014), but very less has been explored in action camera 

series (Velasquez, Argueta, & Mazariegos, 2016; J. Wijitdechakul et al., 2016) for their 

potential in monitoring crop health. (Hunt et al., 2010) studied the ability of digital color 

infrared camera modified through the replacement of infrared filter with a red light 

blocking filter in crop health monitoring by embedding it on UAV platform. The 

acquisition was carried over two fields of winter wheat having different fertilization 

rate situated on Queen Anne’s County, Maryland, USA. Their results in terms of 

GNDVI taken at 210 m altitude over two different fertilization rate of  wheat was found 

to have good correlation with LAI, which suggested that their approach was potential 

in providing accurate information on crop health. Moreover, their camera setup (Hunt 

et al., 2010) had the advantage of being low cost, lightweight and compact which made 

it ideal for UAV, enabling high resolution images at low cost. The other advantage was 

the channels NIR-Green-Blue are inbuilt recognized by the camera, therefore it doesn’t 

require separate camera to record each channels which causes more trouble during 

registration which decreases the spatial and radiometric resolution when combined 

together. Similarly, this camera setup doesn’t require any post-processing and can be 

inspected immediately. The tarpaulins targets were measured using Field Spec Pro FR 

Spectroradiometer. A black dyed paper is in most cases reflective in the NIR region, 

which could be applied to test whether the cameras channels are sensitive to NIR light 

in the absence of Spectroradiometer (Hunt et al., 2010)  

In recent years, there have been an increasing amount of research studies in the 

application of UAV based imagery for precision agriculture (Alexandridis et al., 2017; 

Allahyari et al., 2016; Khanal, Fulton, & Shearer, 2017; Shaw et al., 2016). The 

applications of different types of unmanned aerial vehicle(UAV) with different remote 

sensors was reviewed by (Gago et al., 2015) to access water stress for precision 

agriculture. (J. Berni, Zarco-Tejada, Sepulcre-Cantó, Fereres, & Villalobos, 2009) 

mapped the canopy conductance and crop water stress index (CWSI) in olive applying 

high resolution thermal imaging. Their model took into account the parameters 

affecting the temperature difference between air and tree canopy like vapor pressure 
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deficit and wind speed while calculating CWSI. Their methodology enabled the 

analysis of water use spatially within orchards plantations, ultimately leading to 

improvement in irrigation management. Traditionally, four methods are used by 

growers to schedule irrigation: fixed irrigation intervals, judging plant condition by eye, 

determining soil water content, and estimating crop water use from meteorological data. 

Irrigation management can be drastically enhanced through constantly observing the 

crop water content properties,  instead of completely relying upon soil content 

properties or modeled evapotranspiration (Clarke, 1997). A major difficulty in applying 

infrared thermometry to irrigation management is the nadir viewing instruments cannot 

be used if exposed soil is within the sensors field of view. A dry bare soil can have a 

midday temperature that can be >20o C above air temperature and 30o C higher than a 

non-stressed canopy temperature (Herbert & Jackson, 1985). For reducing such 

abnormalities resulting from the  difference between the soil and canopies, the 

undesirable soil background effect is eliminated using the Soil adjusted vegetation 

index (SAVI) as mentioned in (Clarke, 1997). The application of Multispectral 

Airborne Sensors in detecting crop water stress was studied by (Clarke, 1997) using an 

empirical approach on drip-irrigated muskmelon. The CWSI is based on the fact that 

the plants receiving sufficient water has a functional transpiration through their leaves 

making the leaves cooler and as the water is deficit, the stomata in the leaves closes 

stopping the transpiration and leading to increased temperature at the leaves. Their 

methodology applied red and near infrared images together which eliminated 

undesirable soil background effect using the Soil adjusted vegetation index (SAVI). 

The combination of SAVI with paired radiant surface temperature from thermal 

imagery was aimed to reduce the error occurred during the data acquisition from a 

thermal sensor. The combination was also used to derive trapezoidal two dimensional 

index empirically which was able to detect water stress even with low percentage of 

canopy cover. 

(Bellvert, Zarco-Tejada, Girona, & Fereres, 2014) compared the accuracy in spatial 

characterization of the water status across their field plots between field measurements 
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and thermal remote sensing from UAV across an 11 hectare plantation. The canopy 

water stress was assessed from the temperature of the canopy, which had a good 

correlation with leaf water potential with R2 value of 0.83. The data acquisition time 

for the thermal camera were 07:30, 9:30 and 12:30 h. The data assessed on 07:30 was 

useless as it was impossible to distinguish soil with the vegetation canopy temperature. 

The results were highly correlated at 12:30 h and is suggested as most preferred period 

for the data acquisition of the thermal imagery. Their results from the thermal images 

was accurate in assessing the variable water status across their project area.  

Similarly, (Möller et al., 2007) applied the fusion of thermal & RGB images for 

the determination of crop water status in grapevine. Their study demonstrated that 

combination of thermal and visible imaging can significantly improve their accuracy. 

Likewise, (Shah) worked on image processing pipeline using thermal imaging to 

determine the water stress in Walnut trees. The backbone of their algorithm lies in the 

correction of images for lens distortion and brightness, image mosaicking algorithm 

following SIFT and RANSAC together with a nonlinear equation which converts 

radiometric data to surface temperature. (Labbé, Lebourgeois, Jolivot, & Marti) 

concluded that thermal images could be used to determine the water content of the 

vegetation for their application in irrigation management strategies. The images 

acquired from thermal sensors could help in irrigation monitoring if they can be 

combined with images in the visible and near infrared bands. Furthermore, the image 

needs to be geometrically and radiometrically calibrated to consider the drift and 

atmospheric conditions to yield better results.  

The identification of water stress condition in an orchard plantation using leaf 

measurement of chlorophyll fluorescence’s and PRI was investigated by (Zarco-Tejada, 

González-Dugo, & Berni, 2012) using a hyperspectral imagery and a thermal sensor. 

Their results demonstrated positive correlation between PRI and crown temperature 

from airborne platform with the ground measurement of stomatal conductance and 

water potential. They applied atmospheric correction methodology depending on 
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MODTRAN radiative modeling for obtaining surface temperature. They used a 

portable weather station to measure atmospheric condition like temperature, humidity 

and pressure during the flight to feed the data into the model. Their results showed that 

the atmospheric correction methods conducted with thermal camera was successful in 

estimating the surface temperature of the vegetation. (Ochoa et al., 2016) presented a 

hyperspectral imaging system with a highly sensitive visible and NIR camera, and 

additionally an optical spectrograph for detecting the disease named Black Sigatoka 

(BS), which as the name suggests creates a dark black dots in the leaves of banana 

impeding the photosynthesis process.  

Similarly, (J. A. Berni, Zarco-Tejada, Suárez, & Fereres, 2009), applied thermal 

& multispectral remote sensing for the purpose of monitoring vegetation. They applied 

helicopter based system which was embedded with an inexpensive thermal in the region 

7.5–13-μm with 40 cm resolution, and narrow band sensors in the region 400-800 nm 

with 20 cm resolution; and flight was taken over agricultural plots on summer of 2007. 

They implemented atmospheric correction with MODTRAN to obtain surface 

reflectance and temperature which helped in the estimation and validation of 

biophysical parameters such as leaf area index, and water stress using vegetation indices 

obtained using their hyperspectral and narrowband sensors such as NDVI, PRI and soil 

adjusted vegetation indices. The study on sensor web-enabled infrastructure was 

performed by (Geipel, Jackenkroll, Weis, & Claupein, 2015) for the application in 

precision farming. Their sensor infrastructure was based on (Bröring et al., 2011) and 

constitutes of 4 layers mainly: 1.Sensor, 2.Integration, 3.Web Interface and 4. 

Application Interface. Their infrastructure enabled the users and systems to read the 

sensor data in a robust way giving the functionality of build applications over the web 

services. 

 There are various challenges for obtaining optimum processing of multispectral 

images, for instance, (Laliberte, Goforth, Steele, & Rango, 2011) described some of the 

challenges and solutions associated with obtaining radiometrically and geometrically 
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calibrated orthomosaic for accurately classifying rangeland vegetation. They applied 

object-based image classification approach, and automated batch processing to generate 

species-wise classification with an accuracy of 87 %. Their results obtained good 

correlation between ground spectral reflectance and spectral reflectance from 

airborne/satellite data for their selected vegetation/soil targets, with an accuracy of R2 

= 0.92. (Honkavaara et al., 2012) investigated on the applications of UAV embedded 

with a hyperspectral camera and high resolution RGB based camera for precision 

agriculture. They developed an image processing pipeline for robust production of high 

density point clouds and integrated the orthomosaic with the hyperspectral reflectance, 

which was applied in the process of biomass estimation.  They also discussed on the 

factors such as image quality, processing framework, surface models which highly 

affects the accuracy of biomass estimation. Their results confirmed that it is possible to 

apply light weight, low cost imaging for UAV remote sensing and proved to be 

powerful and cost efficient technology for possible remote sensing applications.  

(N. Agarwal, 2009) applied an efficient method for image matching where he identified 

small amount of feature match for each images, instead of matching all the image to 

each other which still preserved enough feature matches for structure from motion 

increasing efficiency in terms of time. (Wu, 2013a) studied on the large scale image 

reconstruction from linear time structure from Motion. They introduced a preemptive 

feature matching that was able to reduce the image pair match by 95%, and still 

recovered to detect good feature match for the reconstruction process. They were able 

to examine the complexities in time for the gradient bundle adjustment methods. Their 

results show that many sub steps in the process of image reconstruction like feature 

detection, matching, filtering and stitching required O (n), where n being the number of 

images in the function of time using their novel bundle adjustment strategy which 

previously required O (n4) in the function of time. Their method also maintained high 

level of precision through regularizing the triangulation phase across the feature 

matches, until every feature map are triangulated. 
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(D. Turner et al., 2012) presented an approach for robust radiometric and geometric 

calibration to enable accurate UAV photogrammetry using SfM algorithm. The flight 

images were processed to create a 3D point clouds in an arbitrary coordinate system, 

which was later transferred into real world coordinate system using two techniques, 

either with direct georectification approach that utilized the estimated camera 

coordinates through camera EXIF file, or through a Ground Control Point (GCP). The 

point cloud was used to produce DTM which was required for the correction of the 

images, and subsequently producing an orthomosaic of the project area. An absolute 

spatial accuracy of 65-120 cm was achieved using direct georectification, whereas a 

more accurate results were obtained with GCP technique of 10-15 cm. Similarly, the 

comparison between two approach for determining the crop height determination 

namely, 1.difference method and 2. statistical method has been compared by 

(Grenzdörffer, 2014), with recommendation on difference method due to its simple and 

accurate results when supplied a high resolution reference DTM whereas the statistical 

approach doesn’t necessarily requires a reference DTM for computation of CHM. 

Likewise, (Juan et al., 2016) studied the application of UAV for plant 

phenotyping analysis using two different UAV platforms, mainly an octacopter and a 

quadcopter for the purpose of monitoring plant growth, cover and yield forecasting in 

tomato & potato plantation. The octacopter was embedded with two sensors, namely, 

12 Megapixel RGB camera and Tetracam multispectral camera recording RGNIR 

wavelengths. The flight was taken on March 17, 2016 at an altitude of 30 m, 

maintaining an effective front and side overlap of 80% and 70% respectively. These 

data were processed using SfM algorithm to generate an orthomosaic and surface 

models which resulted in the extraction of crop height, cover and plant health using 

vegetation indices acquired using Tetracam multispectral camera for their entire field 

plots. Similarly, the application of cheap modified infrared cameras with the IR mirror 

filters disassembled from a normal RGB camera and replaced with two band pass filters 

will be particularly tested for its application in monitoring plant health in banana 

plantations (Hunt et al., 2010).   
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(Krizhevsky, Sutskever, & Hinton, 2012) trained a deep ConvNet, which 

comprised of 60 M parameters having five convolution layers & subsequently, maxpool 

layers together with two fully connected layers, on the ImageNet datasets consisting of 

millions of dataset to classify 1000 classes.  They implemented an efficient GPU 

framework and a regularization technique for the rapid performance and prevent 

overfitting during the training phase. Another popular dataset, namely, MS COCO (Lin 

et al., 2014) is comprised of 2.5 M labelled dataset captured from 328 K ground based 

images that is able to accurately classify 91 different object types. Likewise, there is 

another publicly accessible dataset namely, PASCAL VOC (Everingham, Van Gool, 

Williams, Winn, & Zisserman, 2010) has been trained from 20k ground based training 

images, and is able to classify 20 different object types.  

 (Carlet & Abayowa, 2017) presented an improved the performance of YOLOv2 

detector for the purpose of fast vehicle detection in an aerial imagery which performs 

cutting edge detection at 4x speed. Their dataset included several aerial imagery which 

are publicly available, some of them are: Vehicle Detection in Aerial Imagery 

(VEDAI), AFVID and DLR3k etc. They made their neural net shallower to increase its 

output resolution and changed the net shape to match the aspect ratio of data, which 

increased the speed making it near real time object detector for aerial imagery. 

However, their precision and recall (Carlet & Abayowa, 2017) when compared to faster 

RCNN (Ren, He, Girshick, & Sun, 2015) is still slower. Unlike Yolov2, many 

literatures has also implemented region proposal based neural networks (Girshick, 

2015; Ren, He, Girshick, & Sun, 2017) for the purpose of real time object detection 

applications (Gavrila & Philomin, 1999; Redmon, Divvala, Girshick, & Farhadi, 2016; 

Ren et al., 2017). For instance, (Ren et al., 2015) implemented region proposal based 

approach, where they applied 300 regions proposal/image, and achieved an accuracy in 

terms of detection of 73.2% mean average pixel (mAP) for VOC 2007 dataset and 

70.4% mAP for 2012 dataset. Likewise, (He, Zhang, Ren, & Sun, 2016) implemented 

the residual learning approach for training the deeper neural net, on ImageNet dataset 

(Krizhevsky et al., 2012) with their network consisting of 152 layers, which is nearly 8 
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times larger than some popular networks like VGG net (Simonyan & Zisserman, 2014), 

yet manage to attain minimal complexities. Their result achieved minimal error 

percentage of 3.57%, when trained on ImageNet dataset, likewise, achieved 28% 

improved results on COCO dataset; as a result of which it managed to score first 

position in ILSVRC 2015 classification competition (He et al., 2016). On other hand, 

(Simonyan & Zisserman, 2014) applied convolutional approach to train a deep neural 

network for the purpose of large scale detection, where their network comprised of 19 

layers implemented with 3 x 3 kernels which demonstrated good results on both 

localization and classification.  

Unlike region proposal based object detection algorithms (Ren et al., 2015), 

Single Shot Multibox Detector (Liu et al., 2016a) as the name suggests follows a unified 

detection approach implementing a sole deep neural network. Their approach estimates 

a predefined set of bounding boxes which could be scaled over different aspect ratio 

depending on the objects to detect. This method also terminates the creation of region 

based proposals, together with other resampling techniques and integrates all workflow 

in a sole neural net, making the overall procedure simple and uncomplicated. Their 

results (Liu et al., 2016a) were tested on VOC 2007 dataset (Everingham et al., 2010), 

and attained 74.3% mAP for an input image dimension of 300x300, whereas, an 

accuracy of 76.9% mAP for input dimension of 512x512, both at 58 frames/second. 

The results from the conventional SSD was impressive, however (Jeong, Park, & Kwak, 

2017) further enhanced the performance of the detector by swapping the VGGNet 

(Sujana, Abisheck, Ahmed, & Chandran, 2017)  in original detector to ResNet (Targ, 

Almeida, & Lyman, 2016). This modification further improved the performance, which 

when trained with VOC dataset (Everingham et al., 2010) resulting in 78.5% mAP with 

input image dimension 300x300 at 35 frames/second, whereas the accuracy further 

improved with 512x512 input dimension at 80.8% mAP but with 16.6 frames/second. 

Similarly, (Girshick, Donahue, Darrell, & Malik, 2014) integrated the region proposal 

technique with the convolutional implementation, referred as RCNN, which enhanced 

the performance by boosting the precision by 30% i.e. attained mAP 53.3% when 
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trained on VOC dataset (Everingham et al., 2010). They also suggested in applying 

transfer learning in cases where there are insufficient training dataset which was 

followed by fine tuning to significantly improve the overall performance.  

Furthermore, (Puttemans et al., 2018) performed research in finding an optimal 

algorithm for automated and robust detection on aerial images consisting palm tree 

plantation, where they applied object detection algorithm based on (Viola & Jones, 

2001) which followed the principle of boosted cascade of simple features. With 

significant reduction in computation costs and the addition of robust deep learning 

architectures which performs well on both classification and detection; it has become 

feasible for solving the complex task of quick and real time object detection and 

classification in an aerial imagery. Furthermore, they (Puttemans et al., 2018) 

mentioned that many other pretrained network such as Caffe model zoo (Jia et al., 2014) 

might serve as an alternative to their approach.  

YOLO object detection algorithm (Redmon & Farhadi, 2017), uses a single 

neural network that predicts the class probabilities and bounding box directly for the 

input full images in one evaluation; enabling this architecture to work extremely fast 

(Redmon et al., 2016). This algorithm helps neural network output precise bounding 

box. Likewise, with the implication of a finer grids like (19 x 19) (Redmon & Farhadi, 

2017) decreases the chance of assigning same grid to multiple objects, and also allows 

neural network to output the bounding box in any aspect ratio which aren’t dictated by 

striding size as in sliding window classifiers (Girshick, 2015) as well as outputs much 

precise coordinates. Furthermore, the algorithm is a convolutional implementation 

ie.we are supplying all the grids in  a full size image  as a single convolutional network, 

which makes the network pretty fast and enables real time object detection (Redmon et 

al., 2016; Redmon & Farhadi, 2017).  

One of the main concerns in deep learning is subjected to the training data and 

the hardware for computation, and without large amount of data, our research focused 
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on transfer learning, where we utilized existing deep learned models which was trained 

on large dataset such as Pascal VOC (Everingham et al., 2010) for adapting to our task 

of object detection through  fine tuning the weights of the convolutional neural network 

onto our single new object class (i.e. Palm trees) . All the above literatures are very 

significant and outlines proposed methodologies together with the limitations which 

will be vital in adapting a methodological workflow for our research. These literatures 

suggests that it is possible to apply the modified near infrared remote sensing, 

multitemporal crop surface models and deep learning  for monitoring crop health, 

growth and stand count attributes. The purpose of this study is to highlight and discuss 

related literatures, which can be highly potential in their ability of producing accurate, 

faster and efficient results to be adapted in the workflow of our project. 
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Chapter 3 

Materials and Methods 

3.1 Monitoring crop health using modified infrared action camera. 

3.1.1 Study Site  

The study area consists of Musa acuminata plantation, a species native to Southeast 

Asian region; which covers an area of 0.186 sq.km as represented by the red polygons 

in Figure 3.1. The area’s center is located at N 14O 15.133| E 100O 53.393| and Z 10 

meters (WGS84) in Pathumthani province, Thailand. The area in yellow polygon 

covering an area of 0.0445 sq.km indicates the dedicated area for the comparison and 

validation of NDVI results with the field estimates of LAI using LI-COR LAI 2000 

Plant Canopy Analyzer. 

 

Figure 3.1: The study area in Pathumthani province, Thailand. The red polygon 

represents the distribution of banana farm while the yellow polygon 

represents the area for the validation of the NDVI values. 
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The field data collection was carried on 7th July, 2017 at 12:30 hr. in a bright sunny 

day. The flight plan was performed in DJI Ground Station Pro with flight parameters 

description as shown in the Table 3.1 along with the flight plan and unmanned aerial 

system presented in Figure 3.2  

 

(a)                                                                  (b) 

Figure 3.2: (a) Unmanned aerial system design for field data collection, (b) Flight 

overview 

 

Table 3.1: Flight plan description  

Parameters Value 

Shooting angle Parallel to main path 

Capture mode Hover and capture 

Flight course mode Inside 

Speed 5.8 m/s 

Altitude 200 meters 

Ground sampling 

distance 
8.7 cm/pix 

Front overlap 80% 

Side overlap 80% 
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3.1.2 Modified Camera System  

The camera system used for the research was a lightweight (39 gm.) mobius action 

camera with the dimension of (5 cm * 2.5 cm * 2.5 cm) which is a CMOS based camera 

sensor with spectral response as shown in Figure 3.4. Further details on the camera 

sensor are given in Table 3.2. 

Table 3.2: Camera Specification 

 

 

 

 

 

 

The spectral sensitivity of the mobius action camera was observed in a completely dark 

room using Black Comet C-200 TEC Stellar Net Spectrometer as shown in Figure 3.3. 

After the removal of infrared blocking filter, the images were illuminated with 850 nm 

monochromatic led light and the results demonstrates that the mobius action camera 

was more sensitive to near infrared spectrum in its blue channel and least in red channel 

as shown in Figure 3.6. Likewise, the spectral response of the CMOS based camera is 

demonstrated in Figure 3.4. 

Lens A lens (870 FOV)  

Resolution 
2304 * 1536 

pixels  

Sensor Type CMOS Mobius 

Focal Length 2.1mm 

Sensor Width 5.07mm 

Sensor Height 3.38 mm 

Sensor Size 1/2.7 inch 
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Figure 3.3: Spectrometer (Black Comet C-200 TEC ranging from 200-1100nm) 

 

                              

Figure 3.4: Spectral response of CMOS based camera sensor            

((LoopTechnology, 2009)) 

    

Since, the sensitivity of NIR was higher at camera’s blue channel, the camera 

was modified by replacing the IR filter with Wratten 25 A red filter whose transmission 

properties are presented in Figure 3.5, which is a gelatin filter that restricts the blue and 

green bands ranging (440- 600 nm) while allows the red (550-850nm) and near infrared 

(800-1000 nm) (Velasquez et al., 2016). Thus, the camera sensor records Red-Green-

NIR configuration with NIR recorded in the camera’s blue channel. The configuration 
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further requires calibration to correct the NIR wavelength leakage into the red channel 

which is discussed under preprocessing section below.  

 

Figure 3.5: Transmission properties of the Wratten 25A Filter (red) ((Fastie, 2013) 

 

     

Figure 3.6: Spectral sensitivity of mobius action camera illuminated with 

monochromatic light of 850 nm. 
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3.1.3 Methodological Framework 

The methodological workflow has been presented in Figure 3.7. First, the multiple 

images are captured using modified mobius action camera embedded in unmanned 

aerial system, which are then preprocessed and calibrated before running Sfm algorithm 

based on (LLC, 2017). The output of the Sfm algorithm yields an orthomosaic, using 

which we compute vegetation index, NDVI. Finally the field validation of NDVI was 

carried out by computing LAI. 

 

Figure 3.7: Workflow for modified infrared CMOS sensor 

 

Ref. code: 25605922040232UJF



 

 

25 

  

3.1.3.1 Geometric calibration of wide angle lens 

The imaging system, in most of the action camera with wide angle lens deviates 

from central projective model. Additionally, the CMOS sensors in action camera 

doesn’t follow global shutter camera models which forms the basis for structure from 

motion (SFM) approach (Hedborg, Forssén, Felsberg, & Ringaby, 2012). Therefore, it 

is desired to apply pre-correction in the image for producing images close to central 

projective model (Hastedt et al., 2016). An initial correction step was implemented, 

where each images collected in the field were carefully examined manually and initial 

correction was applied. The correction for the remaining distortion was estimated using 

standard checkerboard, implementing the pre calibration approach similar to (Harwin, 

Lucieer, & Osborn, 2015). For the correction of lens distortion, Brown’s distortion 

model (Duane, 1971; Hastedt et al., 2016; Kelcey & Lucieer, 2012) has been 

implemented which computes the tangential as well as the radial sections of the lens 

distortion. A set of 8 images of the checkerboard kept in fixed position was taken from 

various angles and the images were loaded into the Agisoft Lens. The freely available 

Lens software then generates camera orientation parameters and lens distortion 

coefficients using brown’s model (Duane, 1971) based on bundle adjustment of the 

matched corners of the checkerboard pattern. The generated parameters were exported 

to xml file format which was later supplied into Agisoft Photoscan to calibrate the field 

images.  

 

3.1.3.2 Radiometric Calibration 

The goal of calibration is to convert the pixel value of each channel of photo to 

reflectance. For the calibration of the images, we implemented the plugin (Horning, 

2013) which works with Fiji image processing software (Schindelin et al., 2012). First, 

the plugin is used to calculate the camera calibration variables and thus uses those 

variables on other multiple images. The image which requires correction should have 

same camera properties such as ISO, shutter speed as the image which was applied to 
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determine the camera calibration parameters. The plugin allows flexibility in 

subtracting required percentage of NIR channel’s pixel values from the visible ones. 

That is because after modification, some percentage of NIR light gets mixed in all the 

visible channel. The value to subtract will be determined by taking an image over 850 

nm LED illumination and carefully studying the histogram of each channels. The plugin 

also supports removing the effect of the gamma correction (Lebourgeois et al., 2008) 

that is normally applied when the image is converted to a JPEG inside the camera to 

make the camera sensor mimic the response of a human eye. The camera sensor records 

light intensity linearly but our eyes are more sensitive to low-light conditions than they 

are to brighter lighting so a gamma correction was applied. The linear regression was 

correlated between average pixel value for red band VS the reference reflectance 

recorded by standard reflectance target at 600 nm and similar for NIR but at 850 nm. 

Finally, the slope and aspect of the linear equation was applied using gain offset method 

on each bands to produce the reflectance image. 

 

3.1.3.3 Feature Detection, Matching and Alignment 

Image matching is one of the most time taking process in structure from motion 

algorithms (SfM) (Geert Verhoeven, 2011). To reduce processing time, the 

implemented Sfm algorithm (Javernick, Brasington, & Caruso, 2014; LLC, 2017) 

firstly detects the pair of image which share the same view and creates a set of 

descriptors for each points and finally detects its equivalence points across the images 

based on a similar approach to SIFT (Lowe, 2004) as mentioned in (Sona, Pinto, 

Pagliari, Passoni, & Gini, 2014). Furthermore, the value of 50,000 and 5,000 were 

supplied as the number of key points and tie points to be extracted from each image, 

i.e. the algorithm (LLC, 2017) extracts 50,000 points out of which it selects 5000 best 

points from each image for alignment process which helps reduce the associated 

processing time. These descriptors and its correspondence across the image allows the 

creation of 3D sparse point cloud reconstruction (G. Verhoeven, Doneus, Briese, & 
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Vermeulen, 2012) and camera positions (Hartley & Zisserman, 2004; Ullman, 1979) as 

shown in the Figure 3.8. 

 

Figure 3.8: Image Alignment where, the blue polygons on the top represents each 

camera positions. 

 

3.1.3.4 3D Reconstruction, Textured Mesh and Orthomosaic 

This step applies the camera calibration parameters previously obtained from Agisoft 

Lens (LLC, 2017) using brown’s distortion model (Duane, 1971) and mentioned in 

(Ridolfi, Buffi, Venturi, & Manciola, 2017) to remove the lens distortion before further 

processing of 3D reconstruction (Geert Verhoeven, 2011). Given a set of aligned sparse 

point clouds and calibration coefficients, the algorithm applies classic bundle 

adjustment (Bendig et al., 2015; Sona et al., 2014) to generate densely populated point 

clouds. The dense reconstruction utilizes all pixel value (Scharstein & Szeliski, 2002) 

which allows handling of even small details of the scene represented as a mesh (Geert 

Verhoeven, 2011). Furthermore, the mesh were textured using the multiple images. 

Since our modified camera model didn’t have GPS embedded within the system, the 

dense reconstructed textured mesh is still in an arbitrary space. To transform to absolute 
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coordinate space, we collected 8 ground control points (GCP) using a GPS whose 

coordinates has been presented in Table 3.3. 

Table 3.3: Details of ground control points in decimal degree (WGS 84)   

 

 

 

 

 

 

 

After the set of GCP were supplied and identified manually in the interface, the 

algorithm (LLC, 2017) computes seven parameters Helmert Transformation (Javernick 

et al., 2014; G. Verhoeven et al., 2012) which can be represented by equation 3.1-3.3. 

         XA= CX + (1+ s x 10-6). (XL – RZ .YL+ RY.ZL)                                                                 3.1     

         YA= CY + (1+ s x 10-6). (RZ.XL +YL – RX.ZL)                                                                     3.2 

         ZA= CZ + (1+ s x 10-6). (– RZ .XL + RX.YL +ZL)                                                                   3.3 

Where,  

S= scale factor 

CX, CY, CZ = translation matrix 

RX, RY, RZ = rotation matrix 

Label  N E Z 

B 14.251748 100.891241 17.502 

C 14.253361 100.889043 8.996 

D 14.251846 100.889074 8.245 

G 14.25157 100.891255 15.216 

H 14.251544 100.890993 12.860 

I 14.252313 100.891231 19.706 

J 14.252908 100.889062 9.938 

K 14.252137 100.889055 8.133 
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XA, YA, ZA = absolute coordinate system of the matched feature points 

XL, YL, ZL = image coordinate of the matched feature points 

The Helmert transformation parameters like scale factor, translation and rotation matrix 

were prior computed using matched feature points and GCP (D. Turner et al., 2012). 

The concluding phase for the process was to merge the images into a single orthomosaic 

covering whole project location. As all the images were georectified, it was a simplified 

step to generate the orthomosaic applying a simple orthomosaic algorithm implemented 

in (LLC, 2017). 

 

3.1.3.5 NDVI  

  NDVI (Tucker et al., 2001) is an indicator that provides an estimate of plant 

health using the visible and near-infrared channels from a multispectral camera 

platform. NDVI, has found a wide application (Meng, Du, & Wu, 2013) in vegetation 

performance studies, as it enables farmers to predict their crop yield, access plant 

health, estimate biophysical characteristics like LAI and many others. As suggested in 

many literatures (Bravo, Moshou, West, McCartney, & Ramon, 2003; L.-y. Fan, Y.-z. 

Gao, H. Brück, & C. Bernhofer, 2009; Marti, Bort, Slafer, & Araus, 2007), NDVI has 

positive correlation with biophysical vegetation parameters, like, plant’s photosynthetic 

activity, leaf area and the biomass. NDVI is given by the equation 3.4. 

NDVI = (NIR-RED) / (NIR+RED)                                                                   3.4 

These indices takes on values between -1 and 1 with -1 being no vegetation (rock, water, 

bare soil) and 1 being the healthy and highly photosynthetic vegetation. 
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3.2 Monitoring crop growth using multitemporal crop surface model. 

3.2.1 Data Acquisition 

The project area in the tropical farmland of Thailand (N 14.25 E100.89, decimal degree-

WGS84) consists of Musa acuminata plantation; covering an area of 0.186 sq.km as 

represented in Figure 3.9. The data acquisition was carried on January 15, April 26 and 

September 16 at 12:30 hr. in a bright sunny day. The flight plan was performed with 

DJI Ground Station Pro with flight parameters description as shown in the Table 3.4. 

 

 

Figure 3.9: The study area in Pathumthani province, Thailand represented by yellow 

polygons. The GCPs are represented by 7 small red markers, and the plots 

represented by six small 3x 3 m square plots. 
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Table 3.4: Description of Flight Plan  

Parameters  Value 

Shooting angle Parallel to main path 

Capture mode  Hover and capture  

Flight course Inside  

Speed  5.8 m/s 

Altitude  100 meters 

Resolution  4.78 cm/pix 

Front overlap 75% 

Side Overlap 70% 

 

3.2.2 Methodological Framework 

The methodological framework adapted in this study has been demonstrated in Figure 

3.10. Firstly, the multiple images captured from UAV were processed for its automatic 

interior and exterior orientation calibration, before extracting features for the matching 

process. After the images were aligned, the algorithm (Malambo et al., 2018)  computes 

bundle adjustment  to generate a sparse point cloud of the scene.  

 

Prior to data acquisition phase, we setup seven uniformly distributed ground 

control points (GCP’s) in the project area as demonstrated in Figure 3.9, which allows 

to generate accurate geocorrection and referencing of the UAV data. This is because 

the approximate locations stored onboard GPS wasn’t accurate enough for direct 

georeferencing (Chang et al., 2017). The GCP’s were manually detected in the raw 

images and their respective coordinates were supplied. The processing of the 89 raw 

images for each dates were carried on CPU: Intel(R) Core(TM) i7-3770 CPU @ 

3.40GHz with RAM: 7GB and  GPU: Intel(R) HD Graphics 400, taking 49 minutes for 

entire processing. 
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Figure 3.10: Framework for crop growth monitoring. 

 

The algorithm applied in this study follows an iterative bundle adjustment with 

better image matching approach (Westoby, Brasington, Glasser, Hambrey, & Reynolds, 

2012) such as scale invarient feature matching (Lowe, 1999) for accurate  dense terrain 

reconstruction. Following the dense reconstruction and orthomosaic, digital surface 

model (DSM) raster were generated using inversed distance weights method together 

with sharp noise filtering and surface smooothing (Tuominen et al., 2015). Although 

the flight plan were consistent accross different acquisition dates, the generated 

orthomosaic and surface models may result in slight difference in spatial resolution 

depending on weather conditions and accuracy of GPS (Chang et al., 2017). The 

resolution of the surface models ranged between 3.78-4.78 cm/pixel but for the purpose 

of maintaining consistent resolution accross dates, the data were resampled to 5 

cm/pixel.  
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The representation of ground surface using DTM was achieved by normalizing the 

point clouds from discrete ground points. The discrete ground points were interpolated 

using natural neighbour algorithm(Chang et al., 2017) based on Voronoi tessellation of 

the data resulting in a smoother surface reconstruction (Ledoux & Gold, 2005). Finally, 

the canopy height model (CHM) was generated by substracting the DSM from DTM 

using a difference method. The major advantage using this method is that with accurate 

DTM, the crop height is accurately reliable throughout the growing season 

(Grenzdörffer, 2014). Now that we have the multitemporal CHM data accross different 

acquisition dates, it is straightforward to monitor crop growth by comparing CHM. In 

this study, we assessed the crop growth between the dates January- April, 2017 and 

April-September, 2017, to provide valuable insights to crop growth  throughout the 

growth season.  

 

3.3 Palm tree counting in an aerial imagery using deep learning. 

3.3.1 Training Dataset 

The project area consists of palm tree plantation, which covers an area of 0.062 sq.km. 

The area’s center is located at N 14O 3 | 40.6 || E 100O 8| 10.3|| (WGS84) in Nakhon 

Pathom province, Thailand. A total of 255 images were collected from the plantation 

area using UAV on 8th February, 2018 at an altitude of 70 meters from the ground. 

These images were used to generate the training dataset, together with the validation 

dataset for the purpose of training our deep neural network. A total of 1595 annotations 

were created manually, out of which 1000 annotations were provided as training dataset 

and 595 were provided as validation and test datasets. The project area has been 

demonstrated in Figure 3.11. 
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Figure 3.11: The study area consisting of palm plantations in Nakhon Pathom 

province, Thailand.  

  

3.3.2 Methodological Framework 

The methodological workflow has been described in Figure 3.12. The high resolution         

( 4000 x 3000)  aerial images of palm trees collected using  UAV were manually annotated which 

consisted of 595 annotations representing validation dataset, whereas 1000 annotations 

representing training dataset  which are required for the purpose of  training the ConvNet, and 

subsequently for accuracy assessment of the network. The convolutional neural network 

implemented in this study was based open source tensorflow (Abadi et al., 2016) implementation 

of the darknet framework (Redmon, 2013) named, darkflow (Trieu, 2017). The variables of CNN 

are continuously adjusted accross many layers until the best overall accuracy is achieved when 

compared to the 595 annotations of validation dataset . The modified version of YOLO (Redmon 

Ref. code: 25605922040232UJF



 

 

35 

  

& Farhadi, 2017) comes with pretrained weights and models which were initially trained on 

Pascal VOC dataset (Everingham et al., 2010) and MS COCO (Lin et al., 2014), however  for 

detecting smaller objects, such as Palm trees in aerial imagery with a single number of classes, 

the network must be modified and finely tuned (Carlet & Abayowa, 2017), which has been 

described in sections below.   

 

 

Figure 3.12: Methodological workflow for palm tree counting using deep learning 

framework.  
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3.3.2.1 Network Architecture 

The network architecture follows an approach similar to (Carlet & Abayowa, 2017)    

and has been demonstrated in the Figure 3.13. The architecture consists of 23 

convolutional networks, with the kernel size ranging between 3 x 3 and 1 x 1. The 

striding (s) and padding (p) were made consistent in each of the 23 ConvNet, with the 

value of 1. The activation function for the (n-1) layers were leaky ReLU (Redmon et 

al., 2016) while the last ConvNet had a linear activation function. A total of 6 maxpool 

layers with kernel size 2 x 2 and s = 2 has also been introduced in the architecture, 

which follows with increase in number of channels and decrease in net resolution. 

 

Figure 3.13: Network Architecture 

 

The output of the network is a 13 x 13 x 30 tensor, which is a modified version 

of YOLO v2 object detection which supports localization of smaller objects through its 

fine grained feature map (Redmon & Farhadi, 2017)  compared to the earlier version 

which supports detection in 7 x 7 grid as in (Redmon et al., 2016). Likewise, we 

implemented Route and Reorg in 7th operation of the network, which brings feature 

from previous layer at 26 x 26 x 512 mentioned in (Carlet & Abayowa, 2017). This 

added layer binds and stacks the higher resolution features to the lower ones, 

demonstrating similar architecture to identity mapping in ResNet (He et al., 2016). This 
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adder layer modifies the 26 x 26 x 512 feature map to 13 x 13 x 2048 feature map giving 

1% rise in performance (Redmon & Farhadi, 2017). Similarly, the improved version of 

YOLOv2 (Redmon & Farhadi, 2017) added batch normalization (Ioffe & Szegedy, 

2015; Zhuang, Wang, Yamins, & Hu, 2017) after each convolutional layer which 

improved the convergence of the model and terminated the need of any other 

regularization including dropout layer (Srivastava, Hinton, Krizhevsky, Sutskever, & 

Salakhutdinov, 2014); increasing mean average precision (mAP) by 2%. Furthermore, 

the model classfier was pretrained at 224 x 224 on Pascal VOC (Everingham et al., 

2010) for classfication, while later increments its resolution to 416 x 416 for detection, 

which makes the network robust and can be adjusted for higher resolution. This 

modification of higher resolution classifiers increases the mAP by 4 % (Redmon & 

Farhadi, 2017).  

 

3.3.2.2 YOLO Object Detection Algorithm 

      You Look Only Once, abbreviated as YOLO is a near real time object detector 

whose improved version YOLOv2 launched in late 2016 surpassed all other detection 

methods for instance, Faster R-CNN (Ren et al., 2015) and SSD (Liu et al., 2016b) in 

terms of both speed and detection (Redmon & Farhadi, 2017). The mAP of 76.8 was 

achieved on VOC dataset at 67 FPS, while the fine version at 544 x 544 achieved even 

more accuracy of 78.6 mAP at 40 FPS. The detailed statistiscs on detection accuracy 

of state-of-the-art YOLOv2 compared to other object detection models has been 

presented in Table 3.5. 
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Table 3.5: Accuracy comparison between different object detection models. 

 

                                           Source: (Redmon & Farhadi, 2017) 

 

This algorithm (Redmon et al., 2016) combines methodologies using a single neural 

network that predicts the class probabilities & bounding box directly for full size images 

in one look; which makes this architecture work extremely fast. For each of the 13 x 13 

grid cells, we defined the output vector y given by equation 3.5. 

 

                                             y =                                                                               3.5 

  

Where, pc = probability for object’s occurrence i.e.> if pc = 0 (no object 

(background)) and if pc = 1 (object detected which in our case is Palm tree), and bx, by, 

bh and bw are the parameters to describe the bounding box of the predicted objects which 

are assigned relative to their grid cell. The bounding boxes are then normalized 

(Redmon et al., 2016)  respect to the grid which makes the values of bx and by falls 

between 0 and 1, whereas bh and bw can be greater than 1. 

 The Yolo algorithm then takes the midpoint of the object, and assigns the object 

to the grid cell containing the midpoint, and if the object extends to other grid cells, it 

pc 

bx 

by 

bh 

bw 
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pretends as if the other grids has no part of that object (Redmon et al., 2016). 

Furthermore, we applied pre-trained weights and configuration files from the PASCAL 

VOC datasets, which was fine-tuned by changing the number of classes to 1, fitting our 

purpose of detecting palm trees. Likewise, the number of filters in the last convolutional 

layer was changed to 30 based on the equation 3.6 where, number of anchors was set 

to 5 and coords represent the 4 parameters namely, bx, by, bh and bw used to define the 

bounding boxes; an approach similar to (Carlet & Abayowa, 2017). 

      No. of filters (f) = number of anchors (classes + coords +1)                                3.6         

While training, we optimized the loss function as the sum of squared error between our 

ground truth validation (y) dataset and neural network prediction (ỳ). We train the 

network until the loss function is minimized. Let’s suppose we have n parameters for 

our feature vector y, then the loss function (Redmon et al., 2016) is given by equation 

3.7 

 

 L (ỳ - y)   = (ỳ1 – y1)
2 + (ỳ2 – y2)

2 +…+ (ỳn – yn)
 2,   if y1 = 1 

                   = (ỳ1 – y1)
2,                                                if y1 = 0                               3.7      

 

(1) Intersection over Union (IoU)  

 This IoU function (Redmon et al., 2016; Redmon & Farhadi, 2017) defines the 

measure for determining the accuracy of our object localization algorithm. This 

function compares the predicted bouding box from deep learned architechture with the 

ground truth. In our case, we judge the bounding box to be accurate if IoU threshold >= 

0.5 similar to (Carlet & Abayowa, 2017). Finally, the most accurate localization results 

are obtained if both the bounding boxes overlaps perfectly i.e. IoU =1. An example of 

object localization is demonstrated in Figure 3.14, where IoU is given by equation 3.8. 
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Figure 3.14: Object localization example, where the green polygon represents the 

ground labelled truth, while the red polygon represents the algorithm 

detected bounding box. 

 

                              3.8 

 

(2) Non-max suppression  

One of the problem of object detection is that our algorithm may find multiple detection 

of the same object (i.e.  Detecting same object twice) which is the reason we implement 

non-max suppression (Huang, Yang, Deng, & Yu, 2015; Redmon et al., 2016) to make 

sure our algorithm detects each object only once.  The algorithm is described below:  

1. Discard all boxes with pc <= 0.6 

 

For each grid in 13 x 13 i.e. 169 positions, we output bounding boxes together 

with the probability of that bounding box being a good one. Finally, we discard 

all the low probability bounding boxes.  

 

2. WHILE, any remaining boxes: 

• Pick the box with largest pc, and output that as a prediction. 

 

IoU  =                         

(Size of intersection between two bounding boxes) 

  (Size of union between the two bounding boxes) 
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• Discard any remaining box with IoU >= 0.5 with the box output in the 

previous step.  

The while loop continues until there are still any remaining bounding boxes to be fed 

into this loop. In short, non-max suppression cleans up multiple detections based on 

probability pc associated with each of the detections. This technique further adds 2-3 % 

in mAP (Redmon et al., 2016). 

(3) Anchor Boxes 

Object detection sometimes encounters two or more objects appearing in the same grid 

cell, hence we use anchor boxes to solve such complexities which also allows the 

learning algorithm to specialize better. This problem is especially encountered if we 

use coarse grid cells (7 x 7) rather than fine resolution grid cells (19 x19) as two objects 

having the same midpoint is comparatively rare in fine grained resolution (Redmon & 

Farhadi, 2017). However, for aerial imagery as objects are comparatively smaller 

therefore, we applied 5 anchor boxes, which were computed from k-means approach 

on bounding boxes in VOC dataset, similar to (Carlet & Abayowa, 2017; Luo, Peng, 

Zhu, & Li, 2018).  
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Chapter 4  

Results and Discussions 

4.1 Monitoring crop health using modified infrared action camera. 

4.1.1 Alignment Accuracy  

An approach similar to (Balletti et al., 2014) has been implemented for the 

alignment of the 30 images using algorithm  defined in (LLC, 2017). First of all, the 

images were corrected for the initial distortion using Agisoft Lens (LLC, 2017), the 

results of which are presented in Table 4.1, where k1, k2, k3 represents radial distortion 

coefficients and p1, p2 being tangential coefficients, generated in Lens. Before applying 

the calibration parameters, a pre-correction step(Balletti et al., 2014; Hastedt et al., 

2016) was introduced to increase the accuracy, reliability, and provide valid parameters 

to correct the wide angle images into central projective mathematical model applied in 

most of the  Sfm algorithms using GIMP 2.8 (Distortion, 2013). 

 

After the pre-correction step, the images were aligned using Agisoft Photoscan 

1.2.4 (LLC, 2017) using generic image pair selection supplying the key point and tie 

point limit of 50,000 and 5,000 respectively. The medium accuracy was chosen for the 

alignment process which subsequently reduced the matching and alignment time to 49 

seconds and 25 seconds respectively. The accuracy (Root mean square reprojection 

error) of the alignment process improved significantly from 0.0975 m to 0.0365 m with 

the mean key point size and effective overlap of 6.89094 pixel and 2.7732 respectively, 

after the introduction of the precorrection step.  
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Table 4.1: Camera orientation & lens distortion coefficients  

      Results Std. error 

f   (mm) 2.5 0.1650 

cx  (mm) 1161.14 0.4224 

cy  (mm) 800.322 0.3503 

k1 -0.0614605 0.0015 

k2 0.0010953 0.00388 

k3 -0.0131311 0.00319 

p1 -0.00049972 6.912E-05 

p2 0.00107982 6.0737E-05 

 

4.1.2 Spectral calibration of the modified camera 

The spectral calibration of the modified mobius camera was performed with 4 

calibration targets using Black Comet C-200 TEC Stellar Net Spectrometer as shown 

in Figure 4.1. The calibration process was carried on July 7, 2017 simultaneous to the 

drone flight data acquisition, to maintain same atmospheric conditions. The 

spectrometer readings of % reflectance were then linearly correlated with the 

normalized image pixel values (DN) collected using modified camera during same time 

of the day , in a plugin (Horning, 2015) where % reflectance the reflectance values were 

supplied using a csv file. The reference spectrum for visible (red) had a good correlation 

with image pixel values at 600 nm with R2 value of 0.9059, and near-infrared spectrum 

had a better correlation particularly at 850 nm with R2 value of 0.8652. The plugin 

(Horning, 2013) then applies the calibration parameters of regression model to the 

directory of images for the calibration of modified infrared camera. Finally, the 

calibrated image is used for the calculation and validation of NDVI results, which has 

been described in the sections below. 
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Figure 4.1: Setup of the calibration targets for the spectral calibration of the lens. 

  

4.1.3 NDVI 

NDVI (Tucker et al., 2001) is an indicator that uses the visible and near-infrared 

channels to predict plant performance. NDVI has found a wide application (Meng et 

al., 2013) in vegetative studies as it has been widely used to estimate crop yields, access 

plant health, estimate biophysical characteristics like LAI and many others. As 

mentioned in many literatures (Bravo et al., 2003; L.-y. Fan et al., 2009; Marti et al., 

2007), NDVI has positive correlation with field estimates of leaf area index and 

biomass. These indices takes on values between -1 and 1; with -1 being no vegetation 

(rock, water, bare soil) and 1 being the healthy and highly photosynthetic vegetation. 

The result of NDVI has been demonstrated in Figure 4.2. 
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.  

Figure 4.2: NDVI computation from modified infrared camera after calibration. 

 

Finally, we designed 6 square plots, each measuring a length of 5m distributed 

in an area of 0.0455 sq.km for the validation of NDVI. The field measurement of LAI 

followed a nondestructive approach by using LI-COR LAI 2000 Canopy Analyzer as 

shown in Figure 4.3. Simultaneous to the ground measurements, aerial image with 

modified near-infrared camera was recorded at an altitude 60 m, directly above the plot 

center in each individual plots. 

 At an altitude of 60 m, there occurs banana plantation with smaller pixel sizes, 

which means there will be more pure banana pixels, pure bare-soil pixels, and less 

mixed pixels. Therefore, NDVI can be estimated using only the pure banana pixels 

captured through the modified camera system over the field plot. Particularly 5 different 

images captured during the validation process over each field plot were radiometrically 

calibrated using  (Horning, 2013) plugin, and the calibrated images were used to 

compute NDVI, which were averaged before correlating with the field measurements 
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of LAI. The linear relationship between NDVI and field measured LAI was investigated 

to validate the results from our modified infrared camera;  following a similar approach 

as mentioned in (Hunt et al., 2010). This is based on the literature (L. Fan, Y. Gao, H. 

Brück, & C. Bernhofer, 2009) which demonstrated NDVI as a good estimator of LAI. 

Some of the plots encountered saturation in NDVI values above the LAI of 4.5 (D. W. 

Turner, Fortescue, & Thomas, 2007), which was based on the fact that most of the 

vegetation indices suffer saturation at some point of LAI which has been mentioned in 

(Gitelson, Kaufman, & Merzlyak, 1996; Hunt et al., 2010). The plots sufferings from 

saturation were removed as suggested in (Hunt et al., 2010), resulting in an improved 

correlation with coefficient of determination (R2) of 0.843 shown in Figure 4.4, where 

the relationship between the two variables was expressed linearly as: LAI = 4.0374 

NDVI + 0.8066, with the data demonstrated in Table 4.2. Finally, the result indicates 

that our modified CMOS camera could potentially be applied for agricultural health 

monitoring.  

 

Figure 4.3: Field measurements with LI-COR LAI 2000 Plant Canopy Analyzer. 
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Figure 4.4: Scatterplot depicting the linear relationship between field estimate of LAI 

and NDVI result from modified infrared camera. 

 

Table 4.2: NDVI measurements from modified camera and field measurements of 

LAI for validation of the result 

 

Plot 

Coordinates 

(WGS84, Decimal 

degree) 

 

NDVI 

 

LAI 

(90) 

 

Std. 

error 

N E Z 

8 14.25139 100.8903 8 0.621 3.33 0.19     
0.681 3.92 0.25     
0.534 2.72 0.07 

9 14.25224 100.8899 9.7 0.798 4.01 0.3     
0.821 4.21 0.29 

    0.776 3.9 0.12 

10 14.25221 100.8899 8.9 0.782 3.57 0.2     
0.865 4.16 0.18     
0.511 2.92 0.25 

11 14.25218 100.8896 8.4 0.723 3.876 0.08     
0.875 4.34 0.12     
0.506 2.53 0.05 

13 14.25215 100.8893 6.4 0.922 5.99 0.02     
0.918 6.24 0.15 

15 14.25214 100.8891 7.5 0.698 3.75 0.14     
0.592 3.554 0.2 
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Many different approaches has been applied for the correction introduced by wide angle 

lens in CMOS sensors and their applications for UAV photogrammetry. For instance, 

calibration of action camera namely, GoProHero3 for photogrammetric purpose has 

been evaluated (Balletti et al., 2014), with the recommendation of use of high spatial 

resolution during data acquisition. They applied chessboard pattern and OpenCV 

algorithms to generate distortion free images which significantly improved the accuracy 

in image registration. The accuracy of initial distorted images in alignment was 0.035 

m, which later halved to 0.015 m using undistorted images. An algorithm for robust and 

automatic camera calibration using chessboard pattern has been presented by 

(Douterloigne, Gautama, & Philips, 2009). They further discussed on the fluctuation on 

the camera parameters, especially on the second order un-distortion parameters, which 

was explained by different random camera positions giving more weight to one area of 

image than another. As a result, they concluded on using as much views as possible for 

correction and generating accurate results. One must pay great attention towards image 

capture of the checkerboard pattern to get rid of bad lighting, low luminance and gloss 

effect when imaging from different viewing angles which might create confusion & 

block the algorithm from creating proper match between images (Balletti et al., 2014). 

The advantages of light weight action camera in UAV photogrammetry has been 

highlighted by (Hastedt et al., 2016), particularly through evaluation of GoPro Hero4 

using different acquisition modes. Their results suggests on using the pre-corrected 

images together with pre-calibrated interior orientation parameters which provided 

valid parameters and most reliable and accurate results. They have recommended the 

use of GoPro Studio for applying pre correction of image and Agisoft Lens for 

generating statistical information with chessboard pattern related to the orientation 

parameters. Our methodological framework followed similar approach as mentioned 

by (Balletti et al., 2014; Hastedt et al., 2016). However, our results were less accurate 

but in acceptable region compared to their results because their study area didn’t include 

dense vegetation, where the automated feature detection and matching algorithm 

introduces some blunders (Remondino, Barazzetti, Nex, Scaioni, & Sarazzi, 2011). 
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Furthermore, it is highly recommended to have sufficient overlap (~80-90%) between 

each consecutive image for feature matching and 3D reconstruction. Similarly, the 

sufficient ground control points must be introduced and distributed throughout the 

project area, particularly around the periphery to ensure accurate and reliable 

calibration results for UAV photogrammetry. The data from our modified action 

camera was free from Jello Effect (vibration, damping) due to the use of Image 

Stabilizing Gimbal especially designed for Mobius Action Camera (Quanum 3-axis 

brushless Gimbal). Further, the acquisition altitude was 200 m covering large area 

which supplied enough feature matches for SfM algorithm. 

 

Various methods and protocols have been developed to test the feasibility of a modified 

camera system in agricultural health monitoring. For instance, (Hunt et al., 2010) 

studied the ability of digital color infrared camera modified through replacement of 

infrared filter with red blocking filter in crop monitoring using UAV. The acquisition 

was carried out over winter wheat with two different fertilization rate in Queen Anne’s 

County, Maryland, USA. Their results in terms of green normalized vegetation index 

(GNDVI) was found to have good correlation (R2= 0.85) with LAI suggesting their 

approach to be potential in providing accurate information on crop health. They 

collected imagery at 105 m and 210 m altitude and applied Tarpaulins of various color 

to check the spectral and radiometric properties of the modified camera system. The 

application of a dual camera system for agricultural health monitoring has been 

presented by (Jinmika Wijitdechakul, Shiori Sasaki, Yasushi Kiyoki, & Chawan 

Koopipat, 2016), however this dual system decreases the spatial and radiometric 

accuracy while registering the images due to intrinsic difference of grey level 

distribution between NIR and visible images(Hunt et al., 2010; Rabatel et al., 2014). A 

study on the potential of digital camera has been performed by (Lebourgeois et al., 

2008) for allowing its  potential use  as multispectral sensors to monitor crop by 

examining a sequence of radiometric corrections to minimize the distortion subjected 
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to camera optics and environmental phenomena. Their results suggested the use of 

preprocessing of the raw images and correction of vignetting effect for the modified 

infrared camera. Similarly, (Lelong et al., 2008) applied the combination of digital 

camera and spectral filters to design multispectral sensor for the application in precision 

farming. The images were computed for NDVI, which was compared with field 

measurement of LAI. Their results demonstrated a moderate correlation between NDVI 

results and LAI with R2 of 0.82 and root squared error of 0.57; concluding that their 

results from standard cameras is potential for precision agriculture; and further suggests 

researchers on simplifying and improving preprocessing step to establish more accurate 

results. Our calibration approach followed an approach similar to (Bourgeon, Paoli, 

Jones, Villette, & Gée, 2016) with direct measurements using spectroradiometer in the 

field under sunlight conditions  to convert DN to reflectance measurements for the 

calculation of NDVI. Similar to their results, we observed the variations of light 

intensity with some saturation in the white calibration targets (DN >250) and some 

calibration targets having strong sensitivity to light along with some effects of 

environmental conditions and noise. It is therefore suggested to optimize the 

radiometric calibration; and one must carefully select the number of required calibration 

targets with excluding targets with high saturation (in our case white target has been 

excluded). 

 

4.2 Monitoring crop growth using multitemporal crop surface model 

4.2.1 SfM Accuracy 

A similar approach (Malambo et al., 2018) has been implemented for multiview 3D 

reconstruction from multiple UAV images. A total of 83 images were processed for 

each date with 56988 key point extraction per image. Furthermore, the difference of 

7.01% was observed between initial and optimized internal camera parameters with 

16621 matches per calibrated image. The uncertainties in camera position and 

orientation parameters has been presented in Table 4.3. 
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Table 4.3: Uncertainties in camera’s positional & orientation parameters. 

 X Y Z Omega Phi Kappa 

Absolute  0.145 0.145 0.353 0.370 0.178 0.070 

Relative  0.007 0.007 0.008 0.008 0.0012 0.002 

 

The results of bundle block adjustment demonstrates root mean projection error of 

0.278 pixels where, 1623558 and 552470, number of 2D and 3D point’s observations 

were supplied for the adjustment process. 

4.2.2 Surface Modeling 

The raster representation of the terrain elevation data including both surface and 

ground elevation for the data acquisition on January, 2017 has been demonstrated in 

Figure 4.5 and Figure 4.6. The surface models were generated using inverse distance 

weighting with spacing of 100 cm and ground sampling distance of 4.78 cm/pixel. The 

total processing time for DSM and DTM were 9 minutes and 2 minutes respectively. 

Finally, the CHM were generated by applying the difference between the generated 

surface models --namely, DSM and DTM.  
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Figure 4.5: Digital Terrain Model (DTM) Raster 

 

 

Figure 4.6: Digital Surface Model (DSM) Raster 

 

4.2.3 Crop Growth Statistics 

The plot wise investigation of crop growth was carried out by subtracting the 

generated multitemporal CHM across different acquisition dates. The multitemporal 

orthomosaic across three different acquisition dates has been presented in Figure 4.7-

Figure 4.9. The statistical analysis within each plots were carried out using zonal 
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statistics function within QGIS 2.18.12 Las Palmas ((2017), 2017), where CHM 

between different acquisition dates i.e. (Apr-Jan) and (Sept-Apr), were subtracted to  

access the crop growth within our 6 plots as demonstrated in  

Table 4.4 and Table 4.5. 

 

 

Figure 4.7: Orthomosaic, captured on January 25, 2017 
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     Figure 4.8: Orthomosaic, captured on April 26, 2017 

 

 

Figure 4.9: Orthomosaic, captured on September 16, 2017 
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Table 4.4: Crop growth statistics (Jan-Apr, 2017)  

Plots Mean Med. Std. Min Max Range 

1 2.423 2.657 1.882 -0.526 4.83 6.157 

2 0.803 0.807 0.421 -0.338 2.494 2.832 

  3 3.296 3.753 1.207 -2.287 4.285 7.423 

4 2.106 1.966 1.173 0.046 4.644 4.597 

5 3.219 3.534 0.968 0.209 4.479 4.27 

6 1.778 2.132 2.105 -2.264 4.419 6.683 

 

Table 4.5: Crop growth statistics (Apr-Sept, 2017)  

Plots Mean Med. Std. Min Max Range 

1 -3.149 -3.235 2.131 -5.641 -3.561 6.406 

2 -0.373 -0.646 0.804 -2.448 -1.906 4.268 

  3 -1.531 -1.792 1.788 -5.215 -3.780 6.184 

4 -2.917 -2.817 1.308 -4.895 -3.871 4.143 

5 -0.766 -0.374 1.881 -4.895 -3.256 6.610 

6 -1.701 -1.633 2.918 -4.967 -2.916 9.741 

 

 

The plotwise monitoring for the crop growth was based on the assumption of 

subtracting the maximum values of CHM in each plots as represented in Figure 3.9  

across various acquisition dates i.e. (Apr-Jan) and (Sept-Apr). The maximum value 

corresponding to each plot represents the actual growth within banana plantation 

between the periods. The maximum crop growth between the growth periods (Jan-Apr, 

2017) was observed in plot 1, with the value corresponding to 4.83 m whereas the 

minimum growth was observed in plot 2 with the value corresponding to 2.492 m.  
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Furthermore, the plots in our project area were so designed that it contains a single 

banana tree per plot, with additional grasses growing in the periphery. The period in 

April 26, represents matured plantation where the plots are entirely covered with the 

banana’s canopy as represented in Figure 4.8. The minimum values in the Table 4.4 & 

Table 4.5 appears to have abnormalities due to the canopy covering entire plot area 

during the April period, and the minimum Z value in CHM was confused to be one of 

the lowest canopy, which is the result behind unpredictable results in the minimum 

section and also due to presence of other grasses around the periphery of the plot. Our 

assumption was only to take into consideration the maximum values of CHM within 

each plot across different acquisition dates, therefore, we simply ignore other variables 

for instance, minimum,  from the Table 4.4 & Table 4.5, which is also supported by the 

fact that minimum Z values makes no sense while monitoring crop growth.  

 

The observations on the phase (Apr-Sept, 2017) demonstrated the negative 

banana growth as a result of harvesting carried out on September 10. The orthomosaic 

in Figure 4.9, captured on September 16 visually demonstrates the post-harvest 

situation, where most of the banana plantations from the field plot were cut down for 

the plantation of pineapple plantation. Likewise, the post-harvest yield of the plot 2 was 

subsequently lower compared to other plots which could be effect of several biotic and 

abiotic stress factors such as fungi, bacteria and water deficiency (Wairegi, van Asten, 

Tenywa, & Bekunda, 2010). On careful field investigation of plot 2, we observed black 

spots on the leaves of banana plantation, which suggests the presence of black sigatoka 

disease (Stover, 1980). The black spots as represented by the red circles in Figure 4.10, 

reduces the photosynthesis contributing leaf area and affects the yield within the 

plantation (Chillet, Abadie, Hubert, Chilin-Charles, & de Lapeyre de Bellaire, 2009). 

The image was taken with a modified infrared camera during the field data acquisition 

on July 15, 2017. Furthermore, the crop growth across different growth phases has been 

spatially represented in Figure 4.11 and Figure 4.12. 
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Figure 4.10: Pictorial representation of black spots observed in Plot 2. 

 

 

 

Figure 4.11: Spatial representation of crop growth between the periods Jan-Apr, 2017. 
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Figure 4.12: Spatial representation of crop growth between the periods Apr-Sept, 

2017. 

 

The validation of SfM based elevation model was carried out in SIIT, Bangkadi 

Campus with the area’s centroid at 130 58.836 | N, 1000 33.280 | E as it was not possible 

to carry out field validation in banana plantation due to the harvesting carried out on 

1st week of September . The digital elevation model of the area is represented by  Figure 

4.13 

             

Figure 4.13: Digital Elevation Model (Raster) of Bangkadi Campus Area. 
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We accessed the car park shed height using SfM dense point clouds as 

demonstrated in the Figure 4.14, where the obtained result had the height of 3.34 m. 

This result was validated with the field measurements using tape which resulted in a 

height of 3.29 m as demonstrated in Figure 4.15.  

 

 

Figure 4.14: Assessing the height of car parking shed using SfM point clouds.  

 

 

 

Figure 4.15: Field measurements with a measuring tape for validation of the result.  
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Various photogrammetric techniques has been developed and validated to 

extract vital information related to crop growth and biomass using stereo UAV images. 

For instance, (Malambo et al., 2018) validated a methodological framework for 

extracting plant height over time using SfM based surface models  generated from high 

resolution UAV images with an accuracy (R2 = 0.88-0.97) when compared with TLS 

measurements.  Likewise, an estimation of above-ground biomass through UAV 

generated CSM on barley has demonstrated an accuracy of R2 = 0.82, while comparing 

with their ground measurement of dry biomass (Bendig et al., 2014). Furthermore, our 

methodology followed a very similar difference method approach for generating CHM 

from UAV imagery as in (Chang et al., 2017). Their results demonstrated root mean 

squared error (RMSE) of 0.33 m when compared with field measurements of crop 

height.  

 

Many literatures suggests the need of a quick, robust methodology for the estimation 

of biomass which is the key indicator for assessing the food security, enhanced decision 

making, and food threats management (Becker-Reshef, Vermote, Lindeman, & Justice, 

2010; Wang Li et al., 2016).  The field based direct estimation of biomass comprises a 

costly, time consuming and tedious workflow consisting destructive sampling of plants 

and oven drying to constant weight which is challenging to scale over large areas (Wang 

Li et al., 2016). Therefore, the UAV derived estimate of biomass seems promising 

methodology and has huge potential for its application by farmers in rapid assessment 

for carbon financing and predicting yield. Although the UAV photogrammetry 

demonstrates promising results , there are various factors associated to uncertainties in 

generation of  DTM, georeferencing and unpredictable data acquisition conditions 

(Chang et al., 2017). Wind (Mesas-Carrascosa et al., 2015) acts as a major source of 

uncertainty in acquisition of high quality images as the crop movement during data 

acquisition introduces discrepancy  in feature matching process within SfM algorithm 

resulting in positional error; ultimately generating underestimation of actual crop 

height. Finally, it is highly recommended to take into account the wind speed and other 
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weather conditions; prior to field data acquisition. Likewise, the distribution of GCP 

was carried throughout the study area with the available accuracy of 1m, however, it is 

preferred to use more accurate DGPS for accurate CHM measurements. All the above 

literatures suggests SfM as cheap and robust alternative for assessing plant growth 

which if assessed over time with other agro-ecological attributes like biomass is 

potential in accessing the physiological traits & environmental influence on crop 

performance (Araus & Cairns, 2014; Ghanem, Marrou, & Sinclair, 2015).  

 

4.3 Palm tree counting in an aerial imagery using deep learning  

 4.3.1 Accuracy of Classification  

The accuracy of our model was determined by the 595 validation datasets which were 

manually annotated using our high resolution aerial imagery of palm tree plantations, 

while the training was carried with 1000 samples. Likewise, our model consisted of 23 

convolution layers, with kernel size of 3x3 and 1x1, whereas consistent maxpooling of 

kernel size 2x2 has been maintained across the model. The model had the batch size of 

64 and subdivisions of size 8 i.e. the model loaded 64 images for each iterations and 

splits the image into mini-batches consisting 8 images per mini-batch. Furthermore, we 

modified the parameters such as, number of classes to 1 and number of filters in the last 

convolution to 30 for the purpose of detecting the one class of palm plantation in aerial 

imagery. The average loss function of our CNN model was significantly lower at 6500 

iterations, and the classification was stopped resulting in R2 0.9582 as demonstrated in 

Figure 4.16. 
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Figure 4.16: Scatterplot representing the loss function of the CNN model.  

 

4.3.2 Accuracy of Object Detection 

To assess the accuracy of our object detection model, we calculated two metrics, 

namely, Precision and Recall, as mentioned in (Carlet & Abayowa, 2017; Weijia Li et 

al., 2016; Puttemans et al., 2018). Precision, can be referred to as probability that the 

detected tree is valid, whose relationship is given by equation 4.1, whereas recall, also 

referred as detection rate is probability that tree is detected in ground truth, whose 

relationship is given by equation 4.2. The total accuracy is defined by the average of 

both the precision and recall.  

Precision =    
No. of correct detection of Palm trees (NC) 

Total Palm trees detected (NT) 

Recall    = 
No. of correct detection of Palm trees (NC) 

Total Palm trees in Field Measurement (NGT) 

Furthermore, each of our 13 x 13 grid cells is responsible for predicting the output 

vector (y) which contains the bounding box (bx, by, bh and bw) and confidence scores 

4.1 

4.2 
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(Redmon et al., 2016), which is given by the relation described in equation 4.3 as 

follows: 

          Confidence Score = Pc (Object) x IoU based truth                                                 4.3 

If the grid cell detects no object i.e. Pc = 0, then the confidence score must be 

zero, whereas, if the object is detected i.e. Pc=1, then confidence score must be equal to 

the IoU between the model predicted and ground truth. Finally, the precision and recall 

for our object detection model was observed to be 45.59% and 65.87%, making our 

total accuracy to 55.23%, which requires further improvements before it could be 

applied for palm tree counting purpose, and is discussed in section below. The result of 

object localization and detection using our architecture has been demonstrated in Figure 

4.17, where, red polygon represents machine detected, green polygon represents human 

labeled and machine detected whereas, yellow represents the training dataset. 

       

Figure 4.17: Initial results of palm tree detection using Yolov2 detector. 

 

A very few research studies have applied deep learning to count palm 

plantations on satellite and aerial imagery (Weijia Li et al., 2016; Puttemans et al., 

2018). A study on robust detection of coconut plantation in aerial images (Puttemans et 

al., 2018) has been performed based on the principle of boosted cascade of weak 
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classifiers based on approach recommended by (Viola & Jones, 2001), and integral 

channels by (Dollár, Tu, Perona, & Belongie, 2009); which yield accurate tree 

detection. Their cascade classifiers had the average precision of 94.56 %, whereas their 

deep learned model achieved an accuracy of 97.4%. Their future prospects of the 

research discussed on combining their deep learning network with region proposal 

networks such as (Ren et al., 2015) which will make the entire pipeline work even 

faster. Similarly, the application of deep learning for robust palm tree counting in a high 

resolution aerial imagery has been studied by (Weijia Li et al., 2016) in Malaysia. They 

trained and optimized their ConvNet using manually annotated samples of palm trees 

in remote sensed images, and later applied sliding window approach for object 

detection. Their object detector was able to localize palm trees with a remarkable 

accuracy of 96 % when compared to ground truth labels.  

The aerial imagery used for the object detection purpose had the resolution of 

4000 x 3000 pixels, which causes the training phase to spend more time per epoch 

resizing our input images than the actual training. Our architecture during the training 

phase resizes the images to 416 x 416, which means that the palm trees are resized down 

by almost a factor of 10. Therefore, the future prospect of this research would focus on 

tiling the images into multiple sections of 666 x 500 pixel blocks using script in 

OpenCV, before actually feeding the images for training which is expected to optimize 

the network. Likewise, the number of training dataset used in our neural network was 

significantly lower, compared to other similar studies involving palm tree counting such 

as (Weijia Li et al., 2016; Puttemans et al., 2018).  

 

Hence, the future work would also focus on:  

• Increasing the training dataset 5x times with proper quality labeled 

images.  

• Applying finer grid size of 19x19 which would support better 

localization of smaller objects in aerial imagery as mentioned in 

(Redmon & Farhadi, 2017). 
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• Implementing the boosted cascade approach for accurate object 

localization and detection, based on  (Viola & Jones, 2001), and integral 

channels by (Dollár et al., 2009) which demonstrated promising results 

for palm tree counting in a research by (Puttemans et al., 2018).  

• Combining our architecture with region proposal based on (Ren et al., 

2015) and sliding window approach based on (Weijia Li et al., 2016) to 

further improve the performance.  
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Chapter 5 

Conclusions and Recommendations 

 

This study assessed the feasibility of inexpensive modified infrared CMOS based action 

camera mounted on DJI Phantom 3 Professional in monitoring the crop health in banana 

plantations. The action camera modified by replacing the infrared filter with blue 

blocking filter had the camera configuration of R-G-NIR, out of which R and NIR 

channels were selected for further processing of NDVI; which was tested and validated 

against the field measurement of LAI. There was a moderate correlation between the 

NDVI results from the modified camera and the field estimates of LAI with an R2 value 

of 0.843. Moreover, this system could potentially serve as an effective monitoring tool; 

however, further research needs to focus on effective band separation for the modified 

camera by choosing a more suited band pass filters to achieve accurate results. This 

study is expected to assist farmers in agricultural decision making by constantly 

monitoring crop health throughout the growth season. Finally, the further studies need 

to focus on automation of SfM algorithm, reducing the complexities in preprocessing, 

distortion and radiometric calibration and simplified workflow to provide fast and 

accurate output to the end users. 

The proposed methodology for crop growth monitoring with UAV across different 

dates has great potential to enable the assessment of valuable information related to 

crop yield, biomass and estimate of crop health. This study is expected to assist farmers 

in monitoring crop growth throughout their farm to help increase management practices 

and site specific agricultural decision making. Finally, the future prospects of our work 

involves:  

• Correlating the crop height from SfM based surface modeling with field 

measurement of biomass to help better understand crop vitality and 

predict yield. 
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• Comparing & validating the SfM based measurement of crop height 

with more accurate estimates from terrestrial and airborne based laser 

scanners. 

There is a huge advantage of counting plantations, which can provide farmers valuable 

insights to their farmland including, yield prediction, irrigation management, growth 

monitoring; ultimately helping improve farm productivity and maximizes profit. The 

implemented deep learning architecture has demonstrated some potential in palm tree 

counting, however for direct implementation the accuracy of the classifier must be 

improved. There is a huge trade-off in choosing an object detection algorithms in terms 

of speed and accuracy. The implemented object detector namely, YOLOv2 detector 

outperforms all other approaches such as sliding window and boosted cascade 

techniques in terms of speed and achieves near-real time speed; while underperforms 

in terms of accuracy i.e. precision and recall, when compared to sliding window based 

region proposal techniques. Our primary purpose was to detect palm trees on the fly for 

fertilizer spraying purpose, which requires detector to perform at near real time, 

therefore speed was one of the major concern. Hence, our future work intends to 

increase the training dataset (5x times), and use fine grids (19x19) for better object 

localization; which is expected to increase the performance without having to 

compromise with the speed. Moreover, the future prospects of this research would focus 

on exploring different classification and object detection approach, and integrate 

together to maximize the performance in terms of both accuracy and speed.  
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