

PRODUCT DEVELOPMENT OF BENCHALOKAWICHIAN AND MANGOSTEEN FOR SKIN INFECTION AND CANCER TREATMENT

ΒY

MISS THANA JUCKMETA

A DISSERTATION SUBMITTED IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF DOCTOR OF PHILOSOPHY IN MEDICAL SCIENCES FACULTY OF MEDICINE THAMMASAT UNIVERSITY ACADEMIC YEAR 2018 COPYRIGHT OF THAMMASAT UNIVERSITY

PRODUCT DEVELOPMENT OF BENCHALOKAWICHIAN AND MANGOSTEEN FOR SKIN INFECTION AND CANCER TREATMENT

ΒY

MISS THANA JUCKMETA

A DISSERTATION SUBMITTED IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF DOCTOR OF PHILOSOPHY IN MEDICAL SCIENCES FACULTY OF MEDICINE THAMMASAT UNIVERSITY ACADEMIC YEAR 2018 COPYRIGHT OF THAMMASAT UNIVERSITY

THAMMASAT UNIVERSITY FACULTY OF MEDICINE

DISSERTATION

ΒY

MISS THANA JUCKMETA

ENTITLED

PRODUCT DEVELOPMENT OF BENCHALOKAWICHIAN AND MANGOSTEEN FOR SKIN INFECTION AND CANCER TREATMENT

was approved as partial fulfillment of the requirements for the degree of Doctor of Philosophy in Medical Sciences

on July 11, 2018

Chairman

S. Gesadanont.

(Associate Professor Sukanya Jesadanont, Ph.D.) Armourn Ilhara

(Associate Professor Arunporn Itharat, Ph.D.) Rathanan Asushtjanit

(Associate Professor Rathapon Asasutjarit, Ph.D.)

(Associate Professor Napaporn Youngvises, Ph.D.)

lam

(Dr. Sumalee Panthong, Ph.D.)

Pontly

Dikk Al

5

(Associate Professor Dilok Piyayotai, MD.)

Member and Advisor

Member

Member

Member

Dean

Dissertation Title	PRODUCT DEVELOPMENT OF
	BENCHALOKAWICHIAN AND MANGOSTEEN FOR
	SKIN INFECTION AND CANCER TREATMENT
Author	Miss Thana Juckmeta
Degree	Doctor of Philosophy
Major Field/Faculty/University	Medical Sciences
	Faculty of Medicine
	Thammasat University
Dissertation Advisor	Associate Professor Arunporn Itharat, Ph.D.
Academic Years	2018

ABSTRACT

Benchalokawichian (BLW) remedy as a Thai Traditional medicine preparation, consist of five plant roots as follows: Ficus racemosa Linn., Capparis micracantha DC., Clerodendrum petasites S. Moore., Harrisonia perforata Merr., Tiliacora triandra Diels.. Water extract and ethanolic extracts of individual plants and Benchalokawichain remedy were tested for in vitro cytotoxic activity against three lung cancers (A549, COR-L23, H226), oropharynx and larynx cancer cell lines (KB, Hep2). All of the water extracts showed no cytotoxic activity ($IC_{50}>50 \mu g/mL$). Four of ethanolic extracts which were FR, CM, CP, HP also showed the same result. The ethanolic extract of Tiliacora triandra (TTE) inhibited the growth of all types of respiratory system (three lung cancer, oropharynx and larynx) cancer cell lines with IC₅₀ values in range of 19.5-45.2 µg/mL. In the same way, the 95%EtOH extract of Benchalokawichien (BLWE) showed in vitro cytotoxic activity against A549, COR-L23, H226, KB, Hep2 cell lines with IC_{50} values in the range of 10.1-33.7 μ g/mL. Both of them showed specific cytotoxicity against H226 compared with other cell lines. In addition, BLWE showed higher cytotoxicity against the skin cancer (C32) cell line than TTE with IC₅₀ values of 29.1 and 37.9 µg/mL, respectively.

The results of this research suggest that the *Tiliacora triandra* ethanolic extract (TTE) would be a good marker for cytotoxic activity of BLW remedy, so it was

investigated using a bioassay-guided fractionation technique. Following VLC method, five fractions (TTF1-TTF5) were collected, a percentage of yield was calculated. TTF4 was the most abundant compound (48.4%) followed by TTF5, TTF2, TTF3, TTF1 (24.1%, 4.6%, 3.82%, 0.1%). The result showed that TTF4 like TTE exhibited *in vitro* cytotoxic activity against all cancer cell lines. Surprisingly, TTF5 showed specific against H226 with an IC₅₀ value of 33.02 μ g/mL. TTE1 was isolated from the TTF4 ethanolic extract of *Tiliacora triandra*. This is first report of tiliacoric acid [4-((35,5*R*)-5-decyl-4-oxo-1,2-dioxolan-3-yl) butanoic acid] a new compound whose structure was elucidated by spectroscopy (NMR, MS, IR, UV). CPE1 compound which was isolated from the *Clerodendrum petisites* ethanolic extract was identified as oleanolic acid acetate. The main compound of *Harrisonia perforata* was HPE1, identified as perforatic acid. Compound BLWE1-3 was isolated from the chloroform fraction of crude BLW ethanolic extract. By comparison of ¹H and ¹³C NMR data with previous studies, BLWE1-BLWE3 were identified as **β**-sitosterol, pectolinarigenin and perforatin A or *O*-methylalloptaeroxylin, respectively.

Cytotoxic activity of isolated compounds against two lung cancer cell lines, melanoma, and a normal cell line were investigated. The TTE1 inhibited the growth of two lung cancer cell lines, A549 and H226, with IC₅₀ values of 6.49 and 13.98 μ g/mL, which was better than TTE (IC₅₀=33.65 and 19.48 μ g/mL). Notably, TTE1 showed no toxicity in a normal cell line (HaCaT). CPE1 also showed strong cytotoxic activity against A549 and H226 with IC₅₀ values of 1.24 and 1.95 μ g/mL whereas CPE wasn't active (>50 μ g/mL). Although HPE1 was the main compound from *Harrisonia perforata* and Benchalokawichian remedy, it showed no cytotoxic activity in SRB assay (>50 μ g/mL). In contrast, BLWE2 was cytotoxic to two lung cancer cell lines (A549, H226) and melanoma cancer cell line (C32) with IC₅₀ values of 7.76, 6.25, and 6.78 μ g/mL respectively. However, BLWE2 also showed toxicity in a normal cell line.

From literature reviews, pectolinarigenin and α -mangostin were used as the markers of mixed extract (Benchalokawichian or BLW and *Garcinia mangostana* or GM) in our research. Comparison of GM yield in various solvent extractions, the ethanolic extract showed the highest yield 21.38%, following soxhlet extraction with methanol, chloroform and hexane were 20.82%, 4.35%, 0.92%, respectively. The results showed

that BLWE inhibited *S. aureus* MRSA and *S. aureus* at a concentration 5 mg/mL, but it wasn't killing them at the same dose (MBC >5mg/ml). In similarly, BLWE exhibited antimicrobial activity against *S. pyogenes* at a concentration 400 μ g/mL (MBC >400 μ g/mL). In an investigation of the antimicrobial activities against *S. aureus* MRSA, GMC showed the highest activity follow by GMH, GME, MIX 1:2 and MIX 1:1 (MIC values 0.78, 1.56, 3.13, 6.25, 12.5 μ g/mL, respectively). Alpha-mangostin exhibited higher antibacterial activity against MRSA than vancomycin (MIC=0.19, 0.78 μ g/mL, MBC=0.39, 0.78 μ g/mL, respectively) while gentamicin and clindamycin were not active (MIC > 100 μ g/mL). The GMH extract showed highest anti-inflammatory activity, followed by GMC (IC₅₀ values 6.24 , 7.84 μ g/mL). Nevertheless, they also showed toxicity at a concentration of 30 μ g/mL. Both MIX1:1 and GMM showed moderate anti-inflammatiory activity (IC₅₀ = 34.70, 37.84 μ g/mL), and they showed no toxicity at a concentration of 50 μ g/mL. It is possible that BLWE can reduce toxicity of GME.

The biological activities and chemical fingerprint of the mixed extract was investigated in an attempt to improve their efficacy over long-term periods. Samples were placed in a stability incubator at 40 celsius degree, with RH 75% for 6 months. The HPLC chemical analysis of the extracts showed that the alpha-mangostin was decreasing over time while pectolinarigenin was increasing. However, they showed a barely different but not significant change in relative concentration (p-value < 0.05). Inhibitory effect on the release of nitric oxide induced by lipopolysaccharide (LPS) and toxicity of mix extract in various days (D0-D180) were not different. The effect of antimicrobial activity against S. aureus MRSA were influenced by oxidation and acid hydrolysis in preformulation study. We found that the Rx4 formulation which provided moisturizer and soothing skin might be useful to develop a product. As the result of antimicrobial activity, 0.3% of mixed extract was added in the cream formulation. The triplicate of formulated creams extracted by methanol, yields were average in range 4.51-5.88%. Alpha-mangostin which represented the major chemical compound in the mixed cream was analyzed using HPLC, but the compound concentration various days showed no significant difference. The research showed that the cream preparation was stable and can be kept for periods up to two years.

Keywords: product development, Benchalokawichian, mangosteen, isolation, cytotoxic, compounds

ACKNOWLEDGEMENTS

There are many people who kindly support me. First of all, I would like to express my sincere gratitude and appreciation to Associate Professor Dr. Arunporn Itharat for giving me many opportunities during my study which are learning new things, develop new skills, making decision to grow up in this occupation and supporting me until success.

I express to thanks Professor Raymond J. Andersen, Department of Chemistry and Earth, Ocean & Atmospheric Sciences, University of British Columbia (UBC) who kindly accepted me to be a visiting student in UBC and be patient to teach me to isolation and elucidation compounds, supported all facilities and advised me during six months there. In addition, he also gave me a chance to take English course to improve my skill and make more friends when I lived in Vancouver. I am so grateful to other staffs from Department of Chemistry; Dr. Zhicheng (Paul) Xia, NMR facilities manager and her assistant Dr. Maria Ezhova for providing NMR facility, teaching me to transfer data by using topspin program and helping from any issues; Elena Polishchuk, Biological laboratory director and her technician Jessie Chen for kindhearted allowed me to do my work and provided cell cultures; Michael LeBlanc for promptly provide any supplies in laboratory; David Williams for helping me purify my last one and finished dataset for elucidation compound. I truly appreciate nice friends, Wuttichai Jaidee and Josiane Monteiro de Oliveira for a guide and helping me elucidation compounds.

I would like to express my gratitude to all these people who are my teacher in each different expertise; Dr. Weerachai Pipatrattanaseree for teaching me to be courageous using HPLC, and analyzed their results; Dr. Sumalee Panthong for teaching all antimicrobial assays; Dr. Srisopa Ruangnoo for teaching cytotoxic activity SRB assay; Dr. Sunita Makchuchit for teaching anti-inflammatory and Dr. Pakakrong Thongdeeying for teaching isolation of compounds from plant extracts and basic elucidation. I really appreciate Miss Janjira Inprasit, Miss Kriyapa Lairungruang, Miss Supaluck Nuaeissara, Miss Patsorn Worawattananutai, Miss Hongrat Pikoojung, Miss Kittiya Yangthaworn, Miss Suchada Naknarin, Miss Pranporn Kuropakornpong for all things you have done to serving and helping me accomplish my work.

Thanks for encouragement from other teachers and staffs of Applied Thai Traditional Medicine and Graduate school, Faculty of Medicine, Thammasat University and I would like to thanks the National Research University Project of Thailand (NRU), Office of Higher Education Commission of Thammasat University and Center of Excellence in Applied Thai Medicine Research (CEATMR) and Ph.D. Scholarship of Thammasat University for financial support.

I would also like to thank you Associate Professor Dr. Sukanya Jesadanont, Associate Professor Dr. Rathapon Asasutjarit, Associate Professor Dr. Napaporn Youngvises, Dr. Sumalee Panthong, for taking their time to be a chairman and committee and gave me the valuable suggestions.

Lastly, this work will not be accomplished without a great support from my mother. Because of you, I have done.

Miss Thana Juckmeta

TABLE OF CONTENTS

ABSTRACT	Page (1)
ACKNOWLEDGEMENTS	(5)
LIST OF TABLES	(11)
LIST OF FIGURES	(14)
LIST OF ABBREVIATIONS	(15)
CHAPTER 1 INTRODUCTION	1
1.1 Research Problems	5
1.2 Objectives	5
1.3 Keywords	6
CHAPTER 2 REVIEW OF LITERATURE	7
2.1 Benchalokawichian remedy	7
2.1.1 Clerodendrum petasites/ Clerodendrum indicum	9
2.1.1.1 Chemical constituents of Clerodendrum indicum	10
2.1.2 Capparis micracantha	12
2.1.2.1 Chemical constituents of Caper species	13
2.1.3 Harrisonia perforata	15
2.1.4 Ficus racemosa	17
2.1.5 Tiliacora triandra	19
2.1.5.1 Chemical constituents of Tiliacora triandra	21
2.2 Garcinia mangostana	23

2.2.1 Anti-allergic, Antioxidant and Anti-inflammatory Activities	23
2.2.2 Antimicrobial and antiplasmodial activities	25
CHAPTER 3 RESEARCH METHODOLOGY	27
3.1 Conceptual framework	27
3.2 Plant materials and Preparation of crude extracts	28
3.2.1 Determination of Plant Extract Yield	28
3.3 Determination of Cytotoxic activity	29
3.3.1 Principle	29
3.3.2 Cytotoxic activity using Sulphorhodamine B (SRB) assay	29
3.4 Determination of Antimicrobial activity	31
3.4.1 Disc diffusion assay	31
3.4.2 Minimal Inhibitory Concentration (MIC) and Minimal	31
Bactericidal Concentration (MBC)	
3.5 Determination of Anti-inflammatory activity	33
3.5.1 Principle	33
3.5.2 Inhibitory effect on NO production and cytotoxicity test in	ı 33
RAW264.7 cells	
3.6 Isolation using Bioassay-guided fractionation	35
3.6.1 General Experimental Procedures	35
3.6.2 Isolation of <i>Tiliacora triandra</i> extract (TTE)	36
3.6.3 Isolation of <i>Cleodendrum petasites</i> extract (CPE)	38
3.6.4 Isolation of <i>Harrisonia perforata</i> extract (HPE)	39
3.6.5 Isolation of Benchalokawichian remedy (BLWE)	40
3.7 Development of product	42
3.7.1 Stability study of combination extracts	42
3.7.2 Force degradation study of combination extracts	42
3.7.3 Product formulation	43
3.7.4 Stability testing of product	44

3.8 Determination of quantification and qualification by using High	45
Performance Liquid Chromatography (HPLC) technique	
CHAPTER 4 RESULTS AND DISCUSSION	46
4.1 Cytotoxic activity of the water and ethanolic extract of	46
individual plant, Benchalokawichian remedy and its	
compounds using SRB assay	
4.1.1 Cytotoxic activity of crude extracts	46
4.1.2 Cytotoxic activity of Tiliacora triandra fractions	50
4.1.3 Isolated compound from Tiliacora triandra	52
4.1.3.1 Compound TTE1	52
4.1.4 Isolated compound from Cleodendrum petesites	55
4.1.4.1 Compound CPE1	55
4.1.5 Isolated compound from Harrisonia perforata	60
4.1.5.1 Compound HPE1	60
4.1.6 Isolated compound from Benchalokawichian	62
4.1.6.1 Compound BLWE1	62
4.1.6.2 Compound BLWE2	65
4.1.6.3 Compound BLWE3	67
4.1.7 Cytotoxic activity of pure compounds	69
4.1.8 Structure-activity relationships (SAR)	72
4.2 Finding the appropriately ratio of extract for product development	76
treatment skin diseases involve infection and cancer.	
4.2.1 Antibactericial activity	77
4.2.1.1 Disc duffusion	77
4.2.1.2 Minimal Inhibitory Concentration (MIC) and Minimal	79
Bactericidal Concentration (MBC)	
(1) MIC and MBC results against <i>S. aureus</i>	79
(2) MIC and MBC results against <i>S. aureus</i> MRSA	79
(3) MIC and MBC results against <i>S. epidermidis</i>	82

(4) MIC and MBC results against <i>S. pyogenes</i>	82
4.2.2 Anti-inflammatory activity	86
4.2.3 Quantitative and Qualitative analysis of MIX remedy using	88
HPLC technique	
4.2.3.1 Selectivity	88
4.2.3.2 Linearity	89
4.2.3.3 Precision	89
4.2.3.4 Accuracy	89
4.2.3.5 LOD and LOQ	89
4.2.4 Stability testing of mix extract	91
4.2.4.1 HPLC technique for quantitative evaluation	91
4.2.4.2 Antimicrobial activity (MIC, MBC)	92
4.2.4.3 Anti-inflammatory activity using inhibitory release	93
nitric oxide (NO) and MTT assay	
4.2.5 Pre-formulation study	94
4.2.6 Product development	95
CHAPTER 5 CONCLUSIONS AND RECOMMENDATIONS	99
5.1 Cytotoxic activity and compounds isolation	99
5.2 Product development for skin diseases	101
REFERENCES	103
APPENDICES	
APPENDIX A Spectrums for Structure Elucidation	121
APPENDIX B Chemical Reagents and Preparation	133
APPENDIX C Summary of Plants: Literature Reviews	138
BIOGRAPHY	193

LIST OF TABLES

Tables	Page
2.1 Chemical constituents found in Clerodendrum indicum	10
2.2 Chemical constituents found in <i>Caper sp.</i>	13
2.3 Chemical constituents found in Tiliacora triandra	21
3.1 Ingredients and their functions of cream formula	43
4.1 %Cytotoxic activity of the water and ethanolic extract at	48
concentration 50 g/ml against five cell lines in respiratory system	
4.2 Cytotoxic activity of the water and 95%EtOH extract of five plants	49
from Benchalokawichian, BLW remedy and two compounds against	
seven cell lines (three types of lung, two types of larynx and skin	
cancer cell lines, and a normal cell line)	
4.3 Percentage yield of five fractions from the TT ethanolic extract	50
using VLC technique	
4.4 %Cytotoxic of four fractions at concentration 50 μ g/ml against five	51
cell lines in respiratory system	
4.5 Cytotoxic activity show IC $_{50}$ (µg/ml) of fraction TTF2-5 and Tiliacora	51
triandra (Mean \pm SEM, n=3)	
4.6 The 1 H (600MHz), 13 C (150 MHz) NMR and HMBC spectral data of	54
TTE1	
4.7 The 1 H (600MHz), 13 C (150 MHz) NMR and HMBC spectral data of	56
CPE1	
4.8 Comparison of 13 C and 1 H NMR data between CPE1 and oleanolic	58
acid acetate (recorded in CDCl ₃)	
4.9 Comparison of 13 C and 1 H NMR data between HPE1 (recovered in	61
DMSO) and perforatic acid (recorded in CDCl ₃ +MeOD)	
4.10 The ^1H NMR data for mixture of CPE1 and BLWE1 compare with	63
their references (recorded in CDCl3)	
4.11 Comparison of 13 C and 1 H NMR data between BLWE2 (recorded in	66
DMSO) and pectolinarigenin (recorded in CDCl ₃)	

4.12 Comparison of 13 C and 1 H NMR data between BLWE3 (recorded in	68
DMSO) and perforatin A (recorded in CDCl ₃)	
4.13 Cytotoxic activity of isolated compounds compare their crude	70
extracts against two lung cancers, melanoma and a normal cell	
line with IC ₅₀ (µg/ml) ± SEM	
4.14 Yield percentage of the ethanolic extract of Benchalokawichain	76
(BLWE) and Garcinia mangostana (GME) and various organic	
extracts of GM	
4.15 The inhibition zone (mm) of disc diffusion against S. aureus,	78
S. aureus MRSA, S. epidermidis, S. pyogenes	
4.16 The minimal inhibitory concentration (MIC) and minimal	80
bactericidal concentration (MBC) against S. aureus	
4.17 The minimal inhibitory concentration (MIC) and minimal	81
bactericidal concentration (MBC) against S. aureus MRSA	
4.18 The minimal inhibitory concentration (MIC) and minimal	83
bactericidal concentration (MBC) against S. epidermidis	
4.19 The minimal inhibitory concentration (MIC) and minimal	84
bactericidal concentration (MBC) against S. pyogenes	
4.20 The results of minimal inhibitory concentration (MIC) and minimal	85
bactericidal concentration (MBC) against S. aureus, S. aureus MRSA,	
S. epidermidis, S. pyogenes, Mean (µg/ml, n=3)	
4.21 Anti-inflammatory activity of the ethanolic extracts, combination	86
extracts in ratio (1:1, 1:2) and organic extracts of GM shown in	
%inhibition, %survival at various concentration and IC $_{50}$ (µg/ml, n=3).	
4.22 Linear equation, correlation coefficients (R^2), LOD and LOQ of	88
Two compounds	
4.23 Precision and accuracy of pectolinarigenin and alpha-mangostin	90
4.24 The results of minimal inhibitory concentration (MIC) and minimal	92
bactericidal concentration (MBC) of MIX1:1 extract D0-D180	
against S. aureus, S. aureus MRSA showed in concentration	
(µg/ml), n=3	

4.25 Anti-inflammatory activity of mix extract (D0-D180) with	93
IC ₅₀ (µg/ml)	
4.26 Force degradation study of mix extract	94
4.27 Various formulation ingredients of cream (Rx1-Rx5)	95
4.28 Physical properties of the topical cream formulations	96
4.29 Weight of stability cream extraction and percentage of yield	97
(mean±SEM, n=3)	

LIST OF FIGURES

Figures	Page
2.1 Two compounds found from BLW remedy	8
2.2 Selected chemical constituents of Clerodendrum indicum	11
2.3 Selected compounds of Tiliacora triandra from root and leave	22
2.4 Xanthones ($lpha$ -mangostin and γ -mangostin) main constituents	24
of G. mangostana	
3.1 Conceptual framework divided into two parts	27
3.2 Isolation of TTE1 from ethanolic extract of <i>Tiliacora triandra</i>	37
3.3 Isolation of CPE1 from ethanolic extract of Cleodendrum petasites	39
3.4 Isolation of BLWE1-BLWE3 from chloroform fraction of BLW extract	41
4.1 Chemical structure of TTE1	52
4.2 COSY and HMBC correlations of TTE1	53
4.3 Selected HMBC correlations of CPE1	55
4.4 Chemical structure of HPE1	60
4.5 Chemical structure of BLWE1	62
4.6 TLC spots of mixed compound (B, in middle) compared to	62
BLWE1(A, left) and CPE1(C, right) in 30%EtOAc: hexane system	
4.7 Chemical structure of BLWE2	65
4.8 Chemical structure of BLWE3	67
4.9 The structure of TTE1 from Tiliacora triandra, HPE1 from	71
Harrisonia perforata, CPE1 from Cleodendrum petasites, and	
BLWE1, BLWE2, BLWE3 from Benchalokawichian remedy	
4.10 Total amounts of alpha-mangostin and pectolinarigenin in	91
stability extract	
4.11 Chart illustrated weight and %yield of cream extract	97
4.12 Cream stability of analysis using HPLC presented by	98
area under curve of alpha-mangostin.	

(14)

LIST OF ABBREVIATIONS

Symbols/Abbreviations

Terms

3D	Three dimensions
ASA	Acetylsalicylic acid
BHI	Brain Heart Infusion
BLW	Benchalokawichian
CAT	Catalase
СС	Column chromatography
CCl ₄	Carbon tetrachloride
CDCl ₃	Deuterated chloroform
CH ₂ Cl ₂	Dichloromethane
CHCl ₃	Chloroform
cm ⁻¹	centimeters
CO ₂	Carbondioxide
COSY	correlation spectroscopy
COX-1	Cyclooxygenase-1
COX-2	Cyclooxygenase-2
DCM	Dichloromethane
DMSO	Dimethyl sulfoxide
DPPH	α , α -diphenyl-β-picrylhydrazyl
EC ₅₀	Half maximal effective concentration
ESIMS	Electrospray Ionization Mass Spectroscopy
FBS	Fetal Bovine Serum
GM	Garcinia mangostana
gm	Gram
GSH	Glutathione
НМВС	Heteronuclear Multiple Bond Correlation

Symbols/Abbreviations	Terms
HMQC	Heteronuclear Multiple Quantum
	Coherence
HPLC	High-performance liquid chromatography
IC ₅₀	Half maximal inhibitory concentration
IR	Infrared spectroscopy
LOD	Limit of Detection
LOQ	Limit of Quantification
LPS	Lipopolysaccharide
m/z	Mass-to-charge ratio
MBC	Minimum Bactericidal Concentration
МНА	Mueller-Hinton agar
МНВ	Mueller-Hinton broth
Me ₂ CO	Acetone
MeOD	Deuterated methanol
МеОН	Methanol
mg	Milligram
MIC	Minimum Inhibitory Concentration
mm	Millimeters
MS	Mass Spectroscopy
nm	Nanometer
NMR	Nuclear Magnetic Resonance Spectroscopy
NO	Nitric oxide
NT	Not test
PBS	Phosphate Buffer Saline
rpm	Round per minute
Rx	Recipe
SAR	Structure-Activity Relationships
SD	Standard Deviation
SEM	Standard Error of Mean

Symbols/Abbreviations	Terms
SGOT	Serum Glutamic Oxaloacetic Transaminase
SGPT	Serum Glutamate-Pyruvate Transaminase
SOD	Superoxide Dismutase
SRB	Sulforhodamine B
ТСА	Trichloroacetic acid
TLC	Thin Layer chromatography
TPC	Total Phenolic Content
UV	Ultraviolet spectroscopy
VLC	Vacuum liquid chromatography
w/w	Weight by weight
°C	Degree celsius
%	Percent
>	More than
<	Less than
- 12/200	Equal
/	Per
α	Alpha
β	Beta
γ	Gamma
&	And
μg	Microgram
µg/ml	Microgram per milliliter
μί	Microliter
μΜ	Micromolar

CHAPTER 1 INTRODUCTION

Ministry of public health of Thailand reported the statistic of number and rates of out-patients from the health service units per 1000 persons in 2009-2014 that showed the infectious and parasitic diseases had high rated as more than one-hundred in each year. In addition, the incidence rates of patients who diagnosed as the neoplasms and tumors were increasing. The first cause of mortality in Thailand is cancer, the incidence of cancer in 2005 showed 98,852 new patients (48,596 males and 50,256 females). In 2012 mortality of cancer patients in Thailand are 61,082 patients and trend to increasingly. National Cancer Institute of Thailand reported that cancer in respiratory systems (bronchus and lung cancer) was top three in both men and women (NCI, 2013). Additionally, Thai society of clinical oncology concerned about 300-400 new patients of skin cancer was annually reported and trend to increased (TSCO, 2013). About 2 in 3 of causes inducing cancer relative with smoking, foods, behavior, environment, lack of exercises and infections. As bacterial infection wasn't the major cause of cancer but their mechanisms can lead to provide the cancer (Parsonnet, 1995). Traditional methods for cancer treatment are including chemotherapy, radiotherapy, surgery, and immunotherapy, however, many anticancer drugs also showed various side effects such as fatigue, weight loss, nausea, vomiting, bleeding etc. Not only the mechanism of infection and cancer but their drugs for treatment were also relavance. Many anticancer drugs exhibited antimicrobial activity are classified as an "antitumor antibiotic" for examples, the anthracycline group such as doxorubicin and quinone group such as mitomycin. In the same way, macrolide antibiotic as clarithromycin which is traditionally used for bacterial infections is repurposing to be a cancer drug (Van Nuffel et al., 2015)

There are several types of skin infection, the three main causes are bacteria, virus, and fungi. According to the New York State Department of Health, the two most common are Staphylococcus aureus and Streptococcus. The most symptoms depend on causes of infection for example; redness, rash, cellulitis, swelling etc. Staphylococcus aureus (Staph. aureus or "Staph") is a bacterium that is carried on the skin or nasal lining of up to 30 percent of healthy individuals. When skin is damaged, Staph can cause many problems from a mild pimple to severe illness, especially in young children, older adults, and people with a weakened immune system. The first drug of choice for treatment is penicillin. In the 1950s, many infections became resistant to penicillin and methicillin (related drug were developed to treat these germs such as oxacillin, nafcillin, dicloxacillin). More than 70 percent of the bacteria that cause of these infections are resistant to at least one of the antibiotics commonly used to treat them. By 1990, some strains of Straph became resistant to methicillin and other similar antibiotics called "MRSA" which can't cure by traditional drugs (Lui et al., 2011). Vancomycin, a new synthesis drug, was generated and recommended for treatment of MRSA infection. As the prevalence of MRSA is high, the document report susceptibility of S. aureus to vancomycin was changing in May 1996. Center of Disease Control and Prevention (CDC) definitions for classifying isolates of S. aureus with reduced susceptibility to vancomycin are based on the laboratory breakpoints established by the Clinical and Laboratory Standards Institute (CLSI). In 2009, CLSI classify 3 types as follow; vancomycin-susceptible S. aureus (VSSA) showed MIC value $\leq 2 \mu g/ml$, vancomycin-intermediate *S. aureus* (VISA) showed MIC value = 4-8 $\mu g/ml$. and vancomycin-resistant S. aureus (VRSA) showed MIC value ≥16 µg/ml (Division of Healthcare Quality Promotion Centers for Disease Control and Prevention, 2015). Treatment of skin infection depend on the cause of infection and severity. The good personal hygiene is an important for cure skin diseases, in some cases topical medications was added such as anti-inflammatory and antibiotic drugs. In severe cases, the combination oral antibiotics or possibly intravenous medication may be needed (Krucik, 2014).

The alternative medicines which are meditation, yoga, Chakra, Reiki, massage, acupuncture, homeopathy, herbal medicines commonly used for treatment in several diseases, the most of them are purpose of recovery the body, mind, and spirit. From literature reviews, the many sources of western medicines were developed from natural, especially plants. Anticancer drugs as "vincristine and vinblastine" are alkaloids which were found from *Catharanthus roseus* or Madagascar periwinkle (Tadeusz Aniszewski, 2007). *Garcinia mangostana* is a source of xanthones which well-known as strongly antibacterial and anti-inflammatory properties (Chomnawong *et al.,* 2005; Chen *et al.,* 2007; Al-Massarani *et al.,* 2013; Tewtrakul *et al.,* 2009), the traditional medicine used the pericarp for treatment of diarrhea, dysentery, infected wound, and chronic ulcer (Chaverri et al., 2008).

Benchalokawichian (BLW) or Ha-Rak remedy as a Thai Traditional medicine preparation, consist of five plant roots as follows: Ficus racemosa Linn., Capparis micracantha DC., Clerodendrum petasites S. Moore., Harrisonia perforata Merr., Tiliacora triandra Diels. It is commonly used to reduce fever (Rehabilitation Foundation for the Promotion of traditional Thai medicine. Ayurvedic College (Cheevakakomalapaj, 2001). Folk doctors appropriately used by adjust the ratios of plants according to the symptoms for the example, C. petasites was added high ratio in case of fever with thirsty nausea and vomiting, C. micracantha and H. perforata were added in case of fever with blister rashes and F. racemosa was added in case of fever with diarrhea. There are few reports of this remedy. Many researchers studied based on traditional usage, for example, the powder of roots showed antipyretic efficacy in the animal models (Konsue et al., 2008; Jongchanapong et al., 2010). The roots have used the components of remedy, thus Singharachai et al., (2008) studied on the morphological and anatomical characteristic or pharmacognostic evaluation. They found that the stems and roots showed similar appearances. Moreover, stem adulteration was commonly founded in commercial BLW capsules (Nutmakul et al., 2013). Preliminary in vitro studies, the ethanolic extract showed moderate antiinflammatory, anti-allergic, antibacterial and cytotoxic activities whereas the water extract showed no activities (Chartsuwan et al., 2009; Suranart et al., 2009; Sangrapee et al., 2009; Tabpueng et al., 2009;). Although, the BLW extract showed moderate

antibacterial activity (Nuaeissara *et al.,* 2011). Interestingly, the combination of BLW remedy and *Garcinia mangostana* which inhibited against *Staphylococcus aureus* MRSA registered the petty patent in Thailand no.10082. The combination of extract inhibited against 3 types MRSA which were isolated from the blood of infected patients with MIC values 6.25-31.25 μ g/ml. Recent year, two compounds as pectolinarigenin and *O*-methyllaloptaeroxyrin were isolated from BLW remedy and showed higher antiallergic activity than the crude of BLW ethanolic extract (Juckmeta *et al.,* 2014). Furthermore, the development and validation of RP-HPLC method to determine antiallergic compound (pectolinarigenin) in BLW remedy was investigated (Sakpakdeejaroen *et al.,* 2014).

Therefore, the aims of this research were divided into two parts. Initially, the BLW remedy and its components were extracted and studied on cytotoxic activity against 5 types of the respiratory systems cancer cell lines (including A549, H226, COR-L23, KB, and Hep2) and a skin melanoma cell line (C32). The most effective extract was further studied to isolate the pure compound for being a marker of cytotoxic activity. In addition, the principal chemical constituents of BLW also investigated. The isolated compounds were elucidated and identified by using spectroscopy techniques including NMR, MS, IR, UV. Then, they were examined cytotoxicity by SRB assay as same as their crude extract. Another part, the development of a product from Benchalokawichian (BLW) remedy and Garcinia mangostana (GM) were studied base on a petty patent of mixed extract for the skin infection. GM was extracted in various organic solvents using soxhlet method and traditional maceration, the GM ethanolic extract was combined with BLW ethanolic extract in 2 ratios to obtain MIX1:1 and MIX1:2. All extracts were studied on antimicrobial activity against 4 gram-positive bacteria, i.e. Staphylococcus aureus, S. aureus MRSA, S. epidermidis and Streptococcus pyogenes. Likewise, the inhibitory effect against nitric oxide production of all extracts were considered an anti-inflammation activity whereas toxicity by MTT assay also studied. According to the review of literature, pectolinarigenin and alpha-mangostin were promoted to be a marker of BLW and GM. Thus, these two compounds were verified their efficiency on the antimicrobial and anti-inflammatory activities. Additionally, development and validation of pectolinarigenin and alpha-mangostin was

studied using RP-HPLC the modified method according to quality control of ICH guidelines. Stability of mixed extract was studied on chemical and biological activities before designed the product development. Following the results of force degradation, we produced the topical cream for skin treatment. An objective of the cream product was formulated to prevent skin infection and reduce skin inflammation. Percentage of mixed extract which added on cream formula was decided by the concentration of antimicrobial activity. The quality control of cream product was examined by HPLC analysis using the alpha-mangostin as a marker of mixed extract, moreover, *in vitro* antimicrobial activity against *S.aureus* MRSA was tested.

1.1 Research Problems

Benchalokawichian or Ha-Rak (BLW) remedy as a Thai Traditional medicine preparation is commonly used to reduce fever and skin treatment. The previous studied on anti-inflammatory, anti-allergy and antimicrobial activities provide information to support their treatment. There are few previous reports on cytotoxic activity of Benchalokawichian remedy. *Garcinia mangostana* (GM) and major compounds as alpha-mangotsin have many reports antimicrobial and antiinflammatory activities, but it will not launched be product for antibiotic drug. Moreover, there has been no report on active compounds for cytotoxic and antimicrobial activities of Benchalokawichian remedy.

- 1.1.1 Do the Benchalokawichian remedy and its compounds show cytotoxic activity?
- 1.1.2 Is it possible to develop combination extracts from BLW and GM to be an alternative instead of antibiotic for treatment of drug resistance bacteria strain?

1.2 Objectives

1.2.1 To investigate the cytotoxic activity of water extracts and ethanolic extracts from Benchalokawichian (BLW) remedy and each plant

- 1.2.2 To isolate the active compounds for cytotoxic activity against cancer cells from Benchalokawichian (BLW) remedy
- 1.2.3 To investigate antimicrobial activity of formulary from combination Benchalokawichian (BLW) remedy and extracts from *Garcinia mangostana*
- 1.2.4 To develop the antibacterial product from Benchalokawichian (BLW) remedy combined with *Garcinia mangostana* extract for skin infection treatment
- 1.2.5 To determine the quality control of Benchalokawichian (BLW) remedy, combination of BLW and GM for cytotoxic and antimicrobial activities by using High Performance Liquid Chromatography (HPLC) technique

1.3 Keywords

Benchalokawichian (BLW, Harak), *Garcinia mangostana* (GM), cytotoxic activity, antimicrobial activity, anti-inflammatory activity, product development

CHAPTER 2 REVIEW OF LITERATURE

2.1 Benchalokawichian remedy

Benchalokawichian remedy is widely used as an antipyretic and skin treatment by many traditional practitioners in Thailand. Root powder of BLW formula showed the antipyretic efficacy by using a Baker's yeast-induced fever model in rats (Konsue et al., 2008). Antipyretic and antinociceptive activity of ethanolic extract, all doses of BLW 25-400mg/kg significantly (p<0.05) attenuated the increased rectal temperature produced by LPS injection and were found to be as potent as ASA. BLW (400 mg/kg) produced a significant analgesic response in the hot-plate test, while all doses of BLW, except the lowest dose (25mg/kg), produced significant analgesic responses in the tail-flick test. For acetic acid-induced writhing models in mice, BLW doses of 200 and 400 mg/kg significantly (p<0.05) decreased the mean writhing response compared to vehicle controls (Jongchanapong et al., 2010). For Identification of adulteration, Singharachai et al., (2008) recommended identification of five roots base on the morphological characters including macroscopic examination of whole plant, microscopic investigation of transverse section and powder of root crude drugs examination. Their result showed that the main distinguishing features of five root species were obtained from the morphological and histological characters as well as 3D-HPLC chromatogram. Another research, they found that the stems and roots of each plant presented similar appearances, especially C. micracantha and F. racemosa, which were similar in both morphological and anatomical characters. Thin Layer Chromatography Technique used for distinguishes adulterate comparing authentic root and stem. Results of TLC technique, stem adulteration was commonly found in commercial capsule of BLW remedy (Nutmakul et al., 2013). In vitro study, its ethanolic extract showed moderate anti-inflammatory, anti-allergic, antibacterial and cytotoxic activity whereas the water extract showed no all activities (Chartsuwan et al., 2009; Suranart et al., 2009; Sangrapee et al., 2009; Tabpueng et al., 2009; Nuaeissara et al., 2011; Juckmeta & Itharat, 2012). Pectolinarigenin and O-methylalloptaeroxylin were

founded in this remedy, which showed higher anti-allergic activity ($IC_{50}=6.3$, 14.2 µg/ml) than chlorpheniramine ($IC_{50}=16.2 µg/ml$) as a positive control and crude BLW extract ($IC_{50}=39.8 µg/ml$) (Juckmeta *et al.*, 2014). Studied on development and validation of RP-HPLC method determined anti-allergic compound in BLW remedy. Pectolinarigenin was absorption at wavelength 331 nm for quantification, the spectra of peak was detected at a retention time at 21.49 min. Based on the HPLC analysis, pectolinarigenin was a minor compound with a content of 0.18% w/w (Sakpakdeejaroen *et al.*, 2014)

perforatin A or O-mthyllaloptaeroxyrin

Figure 2.1 Two compounds found from BLW remedy

2.1.1 Clerodendrum petasites/ Clerodendrum indicum

Clerodendrum petasites has two botanical synonyms as *Clerodendrum petasites* and *Clerodendrum indicum* in the family Verbanaceae or Lamiaceae, the local name are Thao yai mom (Central, Chanthaburi); Kasalong, Charto phra thorani, Dok khan (Yala); Thao yai mom pa (Ubon Ratchathani); Ping khom, Ping luang (Northern); Phaya rak diao, Phaya leng chon, Leng chon tai, Phom phi (Udon Thani), Pho-kwo (Karen-Kamphaeng Phet), Phin phi (Loei), Pho phing (Ratchaburi) Mai thao ruesi (Northern, Peninsular), Ya lin chon (Prachuap Khiri Khan) in Thailand (Thai Biodiversity, 2012).

Microscopic study stems had a pericyclic band of sclerenchyma, and lignified parenchyma and sclereids lining around hollow pith, which absented in the root (Nutmakul et al., 2013). Anti HIV-1 Integrase of aqueous aerial extract exhibited activity with IC₅₀ value 43.5 µg/ml whereas the ethanolic extract showed no activity, IC₅₀ > 100µg/ml (Bunluepuech & Tewtrakul, 2009). The methanol and ethanolic extract showed anti-inflammatory in animal model and inhibit NO effect in RAW264.7 cell line with IC₅₀ value 51.5, 46.6 µg/ml (Panthong et al., 2003; Suranart et al., 2009; Juckmeta & Itharat, 2012). The ethanolic and water extracts also showed no antioxidant with DPPH scavenging assay and no cytotoxic activity on COR-L23, MCF-7, MRC5 cell line (Chartsuwan et al., 2009; Juckmeta & Itharat, 2012). For anti-allergy, the ethanolic extract from its roots exhibited effect against release β -hexosaminidase with IC₅₀ value 90.0, 57.8 µg/ml (Tabpueng et al., 2009; Juckmeta et al., 2014). The ethanolic extract inhibited all gram negative and positive bacteria except *C. albicans*. The water extract showed no activity against all microbes (Nuaeissara et al., 2011). Moreover, the ethanolic extract was tested to evaluate the spasmolytic activity on isolated guineapig tracheal smooth muscle. The crude extract (2.3–9.0 mg/ml) dose-dependently caused relaxation of tracheal smooth muscle which was contracted by exposure to histamine. The active principle was isolated and identified as the flavonoid hispidulin $(EC_{50}=3.0\times10^{-5}M, 9 \mu g/ml)$, which showed more effective than asthma drug; aminophylline as positive control with EC_{50} values 26 µg/ml (Hazekamp *et al.*, 2001).

2.1.1.1 Chemical constituents of *Clerodendrum petasites/ indicum* The Isolated chemical constituents from *Clerodendrum petasites* or *indicum* which were reported showed in Table 2.1 and Figure 2.2.

Part of plant	Chemical constituents	References
aerial	hispidulin (1)	Hazekamp <i>et</i>
		<i>al.,</i> 2001
root	3b-hydroxy-D:B-friedo-olean-5-ene (2)	Somwong <i>et</i>
	oleanolic acid-3-acetate (3)	<i>al.,</i> 2015
	taraxerol (4)	
	lupeol (5)	
	(22E)-stigmasta-4,22,25-trien-3-one (6)	
	stigmasta-4,25-dien-3-one	
	stigmasta-4,22-dien-3-one	
	22-dehydroclerosterol	
	clerosterol (7)	
	stigmasterol	
	22-dehydroclerosterol-3-O-β-D-glucopyranoside	
	Clerosterol-3-O- ß -D-glucopyranoside (8)	
	Stigmasterol-3-Ο-β-D-glucopyranoside	
	pectolinarigenin (9)	
	Hispidulin	

Table 2.1 Chemical constituents found in Clerodendrum indicum

(7)

HO

GlcO

(8)

Figure 2.2 Selected chemical constituents of Clerodendrum indicum

2.1.2 Capparis micracantha

Capparis micracantha DC. (CAPPARACEAE) has two botanical synonyms *Capparis odorata* Blanco (1837), *Capparis myrioneura* Hallier f. (1906). It has vernacular names in various countries which are Indonesia: balung, kledung (Javanese), sanek (Madurese). Malaysia: kaju tuju. Philippines: salimbagat (Tagalog), tarabtab (Iloko), salimomo (Bisaya). Cambodia: kanchoen bai dach. Laos: say sou. Thailand: chingchee (central), kradaat khaao (central), nuat maeo daeng (northern). Vietnam: b[uf]ng ch[ef], c[as]p gai nh[or].

The ethanolic extract showed moderate antioxidant activity by DPPH assay with EC₅₀ value 42.91, 61.35 µg/ml (Chartsuwan *et al.,* 2009; Juckmeta & Itharat, 2012), weak anti-inflammatory activity inhibit NO effect with IC₅₀ value 95.79, 61.37 µg/ml (Suranart et al., 2009; Juckmeta & Itharat, 2012), antimicrobial activity against general pathogen such as S. aureus, MRSA, B. subtilis (Nuaeissara et al., 2011), but its ethanolic extract showed no cytotoxic against lung, breast cancer and normal lung cell [COR-L23, MCF-7, MRC5 respectively] (Chartsuwan et al., 2009). The aqueous and ethanolic extracts of CM wood showed no HIV-1 Integrase activity ($IC_{50} > 100 \mu g/ml$). The water extract exhibited no anti-inflammatory, anti-allergic, antioxidant, in contrast, it had better inhibited microbes such as A. buamannei, K. pneumoniae and Shigella species (except S. sonnei) than the ethanolic extracts (Nuaeissara et al., 2011). The macromicroscopic study, stems and roots presented similar appearances. Capparis micracantha stems had marked lignified sclereids, arranged in pericyclic band underneath rhytidome, groups in cortex and densely packed in secondary phloem. On the contrary, the roots had few groups of sclereids scattered in cortex and secondary phloem (Nutmakul et al., 2013). The chemical constituents of Caper spp. were reported, but there is no research which studied on isolation compounds from CM.

2.1.2.1 Chemical constituents of *Caper* species

The Isolated chemical constituents from *Caper* Species which were reported showed in Table 2.2. Most of them are alkaloids and flavonoids. However, there is no report of chemical constituents from *C. micracantha*.

Resources	Part of plant	Chemical constituents	References
C. aphylla	fresh root	cappariline	Manzoor-i-Khuda &
		capparine	Jeelani, 1968
		capparinine	
C. himalayensis	whole plant	capparin A	Li <i>et al.,</i> 2008
		capparin B	
C. decidua	root bark	a spermidine alkaloid, capparisine	Ahmad <i>et al.,</i> 1986
C. decidua	root bark	a spermidine alkaloid,	Ahmad <i>et al.,</i> 1989
		isocodonocarpine	
C. decidua	root	15-N-acetyl capparisine	Ahmad <i>et al.,</i> 1992
C. decidua	root bark	capparasinine	Ahmad <i>et al.,</i> 1987
C. decidua	bark, root	capparidisine	Ahmad <i>et al.,</i> 1985
C. spinosa	aerial	kaemp-ferol-7-rhamnoside,	Sharaf <i>et al.,</i> 1997
		flavonoid glycosides	
C. spinosa	fruit	(6S)-hydroxy-3-oxo- α -ionol	Calis <i>et al.,</i> 1999
		glucosides	
C. spinosa	fruit	stachydrine	Afsharypuor <i>et al.,</i>
			1999
C. spinosa	aerial	3-0-[6- α -L-rhamnosyl-6"-β-D-	Sharaf <i>et al.,</i> 2000
		glycosyl]-ß-D-glucoside, flavonoid	
C. spinosa	fruit	1H-indole-3-acetonitrile glycosides	Calis <i>et al.,</i> 2002
C. spinosa		cadabicine	Khanfar <i>et al.,</i>
			2003
C. spinosa	young shoot	glucocapperin	Matthaus &Özcan,
	and bud	glucosinolate	2002

 Table 2.2 Chemical constituents found in Caper sp.

Resources	Part of plant	Chemical constituents	References
C. spinosa	root	cadabicine 26-0-ß-D-glucoside	Fu <i>et al.,</i> 2008
		hydrochloride	
		capparispine	
C. spinosa	fruit	capparisine A	Yang <i>et al.,</i> 2010
		Capparisine B	
		Capparisine C	
		2-(5-Hydroxymethyl-2-	
		formylpyrrol-1-ol) propionic acid	
		lactone	
		N-(3'-Maleimidyl)-5-	
		hydroxymethyl-2-pyrrole	
		formaldehyde	
C. tomentosa	root	14-N-acetylisocodonocarpine	Dekker <i>et al.,</i> 1987

2.1.3 Harrisonia perforata

Harrisonia perforata Merr. (SIMARUBACEAE) has two botanical synonyms Harrisonia paucijuga Oliv. (1868) and Harrisonia bennettii Benn. (1875). It has vernacular names in various countries which are Indonesia: sesepang (Lampung), garut (Sundanese), ri kengkeng (Javanese). Malaysia: kait-kait (Murut, Sabah). Philippines: asimau, mamikil (Tagalog), muntani (Bisaya). Laos: dok kin ta. Thailand: khonthaa (Central), naam chee (Northern) (Flora of Thailand (various editors), 1970). Vietnam: s[aa]n, da da, h[ar]i s[ow]n (Pételot, 1952-1954).

Characteristic of dried stems and roots presented similar appearances. H. perforata stems had tangential bands of lignified fibers arranged in secondary phloem and area of pith whereas the roots had small-scattered groups of lignified fibers in secondary phloem and absented pith area (Nutmakul et al., 2013). HP, which was extracted with organic solvent, showed antimicrobial activity against both gram-positive (S. aureus, MRSA, S. pyrogenes, S. mutans, B. subtilis,) and negative bacteria (S. dysenteriae, A. buamannei) (Limsong et al., 2004; Chea et al., 2007; Nuaeissara et al., 2011). Cytotoxic activity, the ethanolic extract inhibited against cervical cancer cells (Hela), normal lung fibroblast (MRC-5), normal African green monkey kidney (Vero) cell, lung carcinoma cell line (COR-L23) and breast cancer cell line (MCF-7) (Nguyen-Pouplin et al., 2007; Prayong et al., 2008; Chartsuwan et al., 2009). The water extract showed no cytotoxic and anti-inflammatory activity, but it exhibited anti-HIV-1 IN activity (IC₅₀ = 2.3 μ g/ml) higher than that of suramin, a positive control (IC₅₀ = 3.4 μ g/ml). Moreover, water extract of HP at the oral doses treated did not cause either acute (at the dose of 5,000 mg/kg) or subchronic toxicities in rats (Sireeratawong et al., 2009). Noticeable, Juckmeta et al., (2014) presented that ethanolic extract exhibited stronger anti-allergy activity than Tabpueng *et al.*, (2009) with $IC_{50} = 14.5$ and 84.4 µg/ml, respectively.

The chemical constituents of branches found peucenin-7-methyl ether, Omethylalloptaeroxylin, perforatic acid, perforamone A, B, C, eugenin, saikochromone A, perforamone D, greveichromenol, most of compounds inactived antiplasmodial activity. Only O-methylalloptaeroxylin also showed antiplasmodial with EC₅₀ value 10.5 µg/ml and antimicrobial activity with MIC value 100 µg/ml. The MIC value of perforamone B and perforamone D showed highest antimicrobacterial activity (25 µg/ml) following by peucenin-7-methyl ether and greveichromenol (50 µg/ml), compound O-methylalloptaeroxylin and eugenin (100 µg/ml), perforamone A and C (200 µg/ml), respectively (Thadaniti et al., 1994; Tuntiwachwuttikul et al., 2006). Its stems and leaves were extracted by organic solvent and were isolated compounds such as perforatinolone, (a tetranortriterpenoid with an A, D-ring seco-limonoid structure, which is closely related to perforatin), gallic acid, sitosterol, 3-O-fl-Dglucopyranosyl sitosterol, haperforine A, haperforine E, 12-Desacetylhaperforine, haperforins C2, F, and G, harrisotone A, harrisotone B, harrisotone C, harrisotone D, harrisotone E, harrisonol A. Three structures (harrisotone A, harrisotone C and harrisonol A) exhibited significant cytotoxic activity against P-388 tumor cell line with IC₅₀ values of 1.56, 2.35, and 0.27 μ M, respectively. Harrisotone A and harrisonol A also showed moderate activity against lung cancer cell (A-549) with IC₅₀ of 24.5 and 26.6 μ M, pseudolaric acid B15 as positive control showed IC₅₀ values as 0.74 and 1.99 μ M against P-388 and A-549, respectively. (Sung et al., 1995; Khuong-Huu et al., 2000; Khuong-Huu et al., 2001; Yin et al., 2009). Isolated compound from its fruits and roots were 5,6-dehydrodesepoxyharperforin C2, harrpernoid B, harrpernoid C, harperforin C2, perforin A, 12b-acetoxyharrisonin, 11b,12b-diacetoxyharrisonin, rutaevine, umtatin, greveichromenol, one triterpene, pachymic acid, one lignan, pinoresinol, gallic acid, methyl gallate. Only harrpernoid B showed very weak cytotoxicity against human lung cancer and human leukemia (A-549 and HL-60) cell lines. Harperfolide exhibited stronger potent anti-inflammatory activity by suppressing nitric oxide (NO) production from activated murine macrophages J774.A1 cells than indomethacin (IC₅₀ value of 6.51, 28.42 µM). Harrisolanol A, harperamone, peucenin-7-methyl ester, perforatic acid methyl ester, O-methylalloptaeroxylin, obacunone showed antiinflammatory activity at IC₅₀ in range 31.04-83.61 µM. (Yan *et al.,* 2011; Choodej *et al.,* 2013).
2.1.4 Ficus racemosa

Ficus racemosa Linn. (MORACEAE) has two botanical synonyms *Ficus glomerata* Roxb. and *Ficus vesca*. (Lassak & McCarthy, 1997). It is a moderate to largesized spreading tree (Anonymous, 1952). It has vernacular names in various countries which are cluster fig, red river fig (En). Indonesia: elo (Javanese), loa (Sundanese), arah (Madurese). Singapore: atteeka. Burma: atti, umbar. Cambodia: lovië. Laos: düa kiengz. Thailand: duea kliang (central, northern), duca nam (peninsular). Vietnam: sung. It is distributed in North-eastern Africa, India to Indo-China, Malaysia to north Western Australia (Jansen *et al.,* 1991), India, Sri Lanka, Thailand, Myanmar, Laos, Vietnam and Cambodia (Vo Van Chi, 1998).

F. racemosa Linn. is a moderate-sized avenue tree found throughout India either wild or cultivated for its fruits eaten by villagers. It is popular in Indigenous System of Medicine like Ayurveda, Siddha, Unani and Homoeopathy. In the Traditional System of Medicine, various plant parts such as bark, root, leaves, fruits and latex are used in dysentery, diarrhoea, diabetes, bilious affections, stomachache, menorrhage, haemoptysis, piles and as carminative and astringent (Paarakh, 2009). The fruits used for laxative, digestive, aphthae, menorrhagia, hemoptysis and gargling for sore throat. The leaves mixed with honey used for bilious affection, which are curing juandice, billious remittants and all varieties of disease generated by an unnatural condition of involving organ. The bark used for diabetes, cooling, gonorrhea, ulcers, skin diseases, scabies, hiccup, vomiting. The roots used for dysentery, infusion with oil used external treatment for excema, leprosy, rheumatism. In India contemporary ethnomedical commonly used decoction fruits for gripping gastralgia, root juice (sap) for stomachic and fresh leaf juice for pneumonia (Lansky et al., 2008). Its was found tannins, kaempferol, rutin, arabinose, bergapten, psoralenes, flavonoids, ficusin, coumarins, phenolic glycosides (Baruah & Gohain, 1992).

In vitro antioxidant properties, extract/fractions from F. glomerata were studied for TPC, AOA, RP, DPPH, O⁻², OH scavenging activities and LPO. Among all the extract/fractions, ethyl acetate fraction (FEF) has shown potent antioxidant activity and was also found effective in protecting oxidative DNA damage. The in vivo evaluation of oxidative stress (LPO) and antioxidant defenses (concentration of GSH, as well as CAT and SOD activities) were measured in CCl₄ induced toxic rats. FEF was found to inhibit the toxicity as seen from the decreased LPO and increased GSH, SOD and CAT levels. FEF has higher phenolic content and showed the presence of gallic, chlorogenic and ellagic acid. Based on these results, it is concluded that F. glomerata protects tissues from oxidative stress and these effects are probably related to the antioxidant properties (Verma et al., 2010). Another research, ethanolic extract showed stronger antioxidant activity study in DPPH and OH scavenging assay (Manian et al., 2008; Juckmeta & Itharat, 2012). Petroleum ether extract from leaves (400 mg/kg, p.o.) exhibited a significant reduction in the CCl₄ induced increase in the levels of SGOT, SGPT, alkaline phosphatase and serum bilirubin. However, treatment with Neutrosec (a popular liver tonic) also better reversed the hepatotoxicity than the extract significantly (Mandal et al., 1999). In vivo, the extract of FR showed anti-diarrhoeal, anti-inflammatory, antipyretic, antidiabetes, antitussive, antihyperglycemic, chemoprotective and gastroprotective activity (Mukherjee et al., 1998; Mandal et al., 1999; Mandal et al., 2000; Rao et al., 2002; Rao et al., 2002; Rao et al., 2003; Khan & Sultana, 2005; Rao et al., 2008; Ahmed & Urooj, 2008; Chomchuen et al., 2010) Subacute toxicity study of an aqueous extract of FR bark in rats. Indicated that administration of the aqueous extract of herb for 15 to 21 days (incremental as well as fixed, in dose 30 mg/100 gm and 20 mg/ 100 gm up to 320 mg/100 gm of body weight) in subacute toxicity study showed definitive liver damage. Hepatotoxicity is appeared to be reversible. Histopathologicaly renal damage was not marked. Serum creatinine and blood urea were increased significantly (Panwar et al., 2010). The ethanolic extract of F. racemosa inhibited S. typhimurium, A. buamannei, S. pyrogenes and B. subtilis with inhibition zone 9.0, 8.5, 11.7 and 8.2 mm, respectively. The water extract showed no activity agianst all microbacterial in Nuaeissara et al., (2011).

2.1.5 Tiliacora triandra

Tiliacora triandra (Colebr.) Diels, is in the family of Menispermaceae. It is a species of flowering plant native to mainland Southeast Asia, and is widespread in the northeast of Thailand. Yanang is named differently from region to region in Thailand. In the north, it has been called Joy-Nang whilst it is known as Toa-Ya-Nanag, Toa-Wan-Keaw and Toa-Pakinee in central Thailand; in the south, Yanang is known as Wan-Yo (Smitinand & Larsen, 1991).

The characteristic of dry stems and roots presented similar appearances. T. triandra stems had broad vascular bundles alternating with narrow medullary rays, contrast to the roots, which had narrow vascular bundles alternating with broad medullary rays (Nutmakul et al., 2013). Nanasombat & Teckchuen (2009) found that methanolic extract of leaves had the antioxidant activity with an EC₅₀ of 3,903.9 mg extract/ mg DPPH (AE = 25.6×10^{-5}) and contained the content of phenolic compounds (13.3 mg GAE/mg dry extract). Ethanolic of *T. triandra* roots showed strong antioxidant in DPPH assay with EC₅₀ value 23.35, 15.38 µg/ml (Chartsuwan et al., 2009; Juckmeta & Itharat, 2012) nearly the previous study. Tabpueng et al., (2009) presented good antiallergic activity with IC₅₀=10.3 µg/ml, in contrast, Juckmeta et al., (2014) showed no activity (IC₅₀ >100 µg/ml). Root ethanolic extracts inhibited S. aureus, B. subtilis, E. coli and C. albicans with inhibition zone 11.2, 13.8, 9.5 and 20.5 mm, respectively. The residue extracted inhibited C. albicans (9mm) whereas the water extract showed no activity (Sangrapee et al., 2009). In the same way, ethanolic extract showed most effective activity against E. coli strains, Shigella species, A. buamannei, gram-positive bacteria and C. albican except P. aeruginosa and K. pneumoniae. On the other hand, the water extract only inhibited S. aureus, S. aureus MRSA and C. albican with the inhibition zone 6.7, 7.3 and 10.8, respectively (Nuaeissara et al., 2011). However, the water extract does not cause acute or subchronic toxicities in either male or female rats (Sireeratawong et al., 2008).

Tiliacolinine, tiliacorine and nortiliacorinine A, were isolated from root of *T. triandra* which showed antimalarial activity with IC₅₀ values 3533 ng/ml, 675 ng/ml and 558 ng/ml, respectively (Mahidol *et al.,* 1994). Antimycobacterial activity of bisbenzylisoquinoline alkaloids from TT against 59 clinical isolates of multidrug-resistant *Mycobacterium tuberculosis* (MDR-MTB) found that tiliacorinine and 2'-nortiliacorinine showed stronger inhibition than tiliacorine (Sureram *et al.,* 2012). Additionally, oxonanolobine which isolated from the methanol extract from leaves possessed moderate activity against lung cancer (NCI-H187) with IC₅₀ value of 27.6 \pm 4.30 µg/ml whereas showed no cytotoxic activity against oral cavity cancer and breast cancer (KB and MCF-7, IC50 > 50 µg/ml). (Rattana *et al.,* 2016)

2.1.5.1 Chemical constituents of *Tiliacora triandra*

The chemical constituents of roots from *Tiliacora triandra* reported as alkaloids while leaves reported fatty acids showed in Table2.3 and Figure 2.3.

Part	Chemical constituents	References
root	tiliandrine	Paris <i>et al.,</i> 1967
root	tiliacorine (10)	Wiriyachitra <i>et al.,</i>
	tiliacorinine (11)	1981
	nortiliacorinine A	
	tiliacorinine 2'-N-oxide	
root	tlianangine	Pachaly <i>et al.,</i>
	15,1'S-bisbenzylisoquinoline alkaloid yanangine	1986
	1R,1'S-dinklacorine	
root	noryanangine	Pachaly <i>et al.,</i>
	norisoyanangine	1988
	tilitriandrine	
root	tiliacolinine	Mahidol <i>et al.,</i>
	tiliacorine	1994
	nortiliacorinine A	
root	tiliacorine	Saiin <i>et al.,</i> 2003
	tiliacorinine	
root	tiliacorinine	Sureram <i>et al.,</i>
	2'-nortiliacorinine	2012
	tiliacorine	
leave	hexadecanoic acid (12)	Kaewpiboon <i>et</i>
	octadecanoic acid (13)	<i>al.,</i> 2014
	(Z)-6-octadecenoic acid (14)	

Table 2.3 Chemical constituents found in *Tiliacora triandra*

Figure 2.3 Selected compounds of *Tiliacora triandra* from root and leave

2.2 Garcinia mangostana

Garcinia mangostana Linn. (GM) belongs to the family of Guttiferae and is named "the queen of fruits". It is cultivated in the tropical rainforest of some Southeast Asian nations like Indonesia, Malaysia, Sri Lanka, Philippines, and Thailand. Traditional medicine has used the pericarp (peel, rind, hull or ripe) of GM for the treatment of abdominal pain, diarrhea, dysentery, infected wound, suppuration, and chronic ulcer (Pedraza-Chaverri *et al.,* 2008). Many researchers investigated antioxidant, antitumoral, anti-allergic, anti-inflammatory, antibacterial, and antiviral activities of the GM extract. Surprisingly, xanthone derivatives are major compounds, a group of oxygen-containing heterocyclic compounds including alpha-mangostin, gamma-mangostin, mangosteen extract which provide remarkable and diverse pharmacological effects (Jindarat *et al.,* 2014).

2.2.1 Anti-allergic, Antioxidant and Anti-inflammatory Activities

All GM extracts (100%, 70%, 40% ethanol and water) potently inhibited A23187-induced prostaglandin E2 synthesis in C6 rat glioma cells while Rubus suavissimus, positive control, had no effect. The 40% ethanol of GM extract (100, 300 mg/ml) showed more than 80% inhibition in a concentration-dependent manner of the histamine release. In contrast, the water extract from Rubus suavissimus significantly inhibited the histamine release only at the concentration of 300 mg/ml. Major constituents of mangosteen α - and γ -mangostin had no effect on IgE-mediated histamine release (Nakatani et al., 2002). The ethanolic extract of G. mangostana (GM) showed the best antioxidant activity using DPPH assay and could inhibit 50% of free radicals at the concentration of 6.13 μ g/ml (r² =0.9992). *G. mangostana* significantly reduced the ROS production with the highest inhibitory ratio at 77.80±1.28% (Chomnawang et al., 2007). GM ethanolic extract possessed potent inhibitory effect on NO release, LPS-stimulated PGE₂, TNF- α and IL-4 releases with an IC₅₀ value of 1.0, 6.0, 10.6 and 19.8 μ g/ml. Two xanthones (α -and γ -mangostin) also better possessed inhibitory against NO with IC₅₀ 3.1 and 6.0 μ M, respectively than indomethacin with IC₅₀ value 25 μ M (Tewtrakul *et al.*, 2009). Similarly, α -and γ -mangostin, which were isolated

from 70% acetone of fresh hulls, inhibited NO production with IC₅₀ value 12.4 and 10.1 μ M (Chen *et al.*, 2008). In addition, γ -mangostin had stronger efficacy reduce PGE₂ production than α -mangostin in a dose-dependent manner in the same way with previous reports (Tewtrakul *et al.*, 2009; Chen *et al.*, 2008; Nakatani *et al.*, 2002). Both xanthones at concentration 5.0 μ g/ml weakly inhibited iNOS activity in activated RAW264.7 with 4.24% and 28.69%. On the other hand, L-NAME (positive control) significantly inhibited nitrite accumulation by more than 50% at 200 μ M (Chen *et al.*, 2008). α -mangostin higher inhibited than γ -mangostin inhibitory effect on LPS-stimulated TNF- α and IL-4 releases with IC₅₀ value in range 31.8-64.8 μ M, (Tewtrakul *et al.*, 2009). In enzyme assay in *vitro*, γ -mangostin inhibited the activities of both constitutive COX (COX-1) and inducible COX (COX-2) in a concentration-dependent manner, with the IC₅₀ values of about 0.8 and 2 μ M, respectively (Nakatani *et al.*, 2002).

In animal model, α -mangostin and sulindac treatment (20mg/kg) showed significant acute anti-inflammatory on paw edema inhibition when compared with control group at 3 h and 5 h, respectively whereas γ -mangostin did not. Interestingly, on-set time of α -Mangostin was more quickly than that of sulindac (Chen *et al.*, 2008).

alpha-mangostin

gamma-mangostin

Figure 2.4 Xanthones (α -mangostin and γ -mangostin) main constituents of *G.* mangostana

2.2.2 Antimicrobial and antiplasmodial activities

Many reports studied on antimicrobial activities against microorganism of GM differential extracts. MIC values of GM extract were the same (0.039 mg/ml) for both bacterial species and the MBC values were 0.039 and 0.156 mg/ml against Propionibacterium acnes and Staphylococcus epidermidis, respectively (Chomnawang et al., 2005). The crude CH_2Cl_2 extract (> 0.53 mg/disc) exhibited a favorable activity against L. monocytogenes. Furthermore, MIC and MBC of antibacterial against strain were 8.50 and 17.00 mg/ml, which MBC was two-fold higher than the corresponding MIC. The GM extract at conc. 17 mg/ml treated to cells and studied by Transmission Electron Microscopy (TEM). There was some loss and change of the membrane and cytoplasm in cells of the bacterium following exposure to crude extract. This may be due to the yield of α -mangostin content about 316.40 µg/mg of dry matter of extract (31.64%) from dried inner mangosteen hull extraction with CH₂Cl₂ (Tangwatcharin et al., 2012). The ethyl acetate extract showed no antiprotozoal activity at all, a pronounced inhibitory effect (IC₅₀) was obtained with the dichloromethane extract against Plasmodium falciparum (IC₅₀ 2.7 μ g/mL) and Trypanosoma brucei (IC₅₀ 0.5 μg/mL), but only with acceptable selectivity (SI) for *T. brucei* (SI 18.8). **α**-mangostin could be indicated against B. subtilis and S. aureus (MIC 1.6 and 3.2 µg/mL) and the Mycobacterium species (MIC 1.5 µg/mL), selectivity was quite low in view of the observed cytotoxicity on MRC-5 cells (IC₅₀ 7.5 µM). Moreover, not at all was found against C. albicans, E. coli and P. aeruginosa (IC₅₀ >200 µg/mL) (Al-Massarani et al., 2013). Reports in same year, the MeOH extract of its bark and pericarp showed the highest inhibition against Listeria monocytogenes and Staphylococcus aureus, both water and ethanolic extracts showed high effective inhibition in high acidity (pH4) (Palakawong et al., 2013). The 70% ethanolic extract of pericarps, leaf and resin (100mg) showed inhibition against Staphylococcus aureus and Escherichia coli strains at clear zone 10, 5, 1mm, respectively. The GM leaf extract inhibited cytotoxic activity against mouse melanoma B16 - F10 cells with IC₅₀=0.04 mg/ml (Cunha et al., 2014).

Mangostanaxanthones I, and II displayed promising antioxidant activity with IC₅₀ 12.07 and 14.12 μ M, respectively using DPPH assay. α -mangostin and mangostanaxanthones II had weak to moderate activity against Staphylococcus aureus with MICs 0.79, and 1.0 mg/mL, respectively. All compounds were inactive against Candida albican (Mohamed et al., 2014). Sakagami et al., (2005) investigated combination of conventional drug with natural substances. $oldsymbol{lpha}$ -mangostin was found to be active against vancomycin resistant Enterococci (VRE) and methicillin resistant Staphylococcus aureus (MRSA), with MIC values of 6.25 and 6.25 to 12.5 μ g/ml, respectively. β mangostin showed low inhibitory effect against VRE and MRSA with MIC values more than 25 and 100 µg/ml, respectively. Surprisingly, the study showed synergism between α -mangostin and gentamicin (GM) against VRE, and α -mangostin and vancomycin hydrochloride (VCM) against MRSA might be useful in controlling VRE and MRSA infections. Recently, the 90%ethanol extract of husk was isolated two compounds (α , δ -mangostin). They found that α -mangostin was more active against the resistant *Plasmodium falciparum* chloroquine-resistant (FCR3) strain (IC₅₀= 0.2μ M) than δ -mangostin (IC₅₀ = 121.2 μ M) (Upegui *et al.,* 2015).

CHAPTER 3

RESEARCH METHODOLOGY

3.1 Conceptual framework

Figure 3.1 Conceptual framework divided into two parts

3.2 Plant materials and Preparation of crude extracts

Five plant roots were collected from Suphanburi in Thailand. They were dried, grounded and homogeneous provided an equal propotion as Benchalokawichian remedy (BLW). *Garcinia mangostana* (GM) were bought from the market at Pathumthani province. The pulps of GM were collected, dried and divided to three portions. Benchalokawichian remedy, GM and combination of BLW: GM (1:1) were macerated with 95% ethanol, then filtered and concentrated by rotary evaporator (under reduced pressure) to obtain the ethanolic extracts. Another portion of GM were continuously extracted with hexane, chloroform and methanol in Soxhlet extractor. For cytotoxic activity, the water and ethanolic extracts of Benchalokawichian remedy and each plant were supported from Miss Supaluck Noaeissara.

3.2.1 Determination of Plant Extract Yield

The yield of dried extracts based on dry weight will be calculated from the following equation:

% Yield = (W2 / W1) × 100

W1 was the weight of the plant materials.

W2 was the weight of the extract after the solvent evaporation.

3.3 Determination of Cytotoxic activity

Five types of cancer cell lines in respiratory system included human lung carcinoma COR-L23 (ECACC 92031919), human lung adenocarcinoma A549 (ATCC CCL-185), human lung squamous carcinoma NCI-H226 (ATCC CRL-5826), Hep-2 (ATCC CCL-23), epidermoid carcinoma KB (ATCC CCL-17), human amelanotic melanoma C32 (ATCC CRL-1585), human keratinocyte HaCaT (CLS-300493), and human fibroblast MRC-5 (ATCC CCL-171) cell lines were used to determine cytotoxic activity. The ethanolic extracts were dissolved in sterile dimethylsulfoxide (DMSO), the water extracts were filtered with 0.22 microns membrane and dissolved in water sterile. All of them were prepared to concentration 10 mg/ml. For screening, the concentration 50 μ g/ml of sample were tested. The sample which showed more than 50 percent of inhibition were further studied, the various percentage of each concentration were determined the value IC₅₀ of cytotoxic activity.

3.3.1 Principle

The anti-proliferative SRB assay is perform to assess growth inhibition by a colorimetric assay. SRB dye bind to protein components of cells that have been fixed to tissue culture by trichloroacetic acid (TCA). The estimates cell number is directly by staining total cellular protein with the dye SRB (Skehan *et al.,* 1990).

3.3.2 Cytotoxic activity using Sulphorhodamine B (SRB) assay

Cytotoxic activity using SRB assay followed by Itharat *et al.*, 2014. Cancer cell lines were cultured in appropriately media; RPMI medium or MEM medium supplemented with 10% fetal bovine serum (FBS), 1% penicillin/streptomycin, 1%sodium pyruvate. Monolayer of cell culture in 75 cm³ flask were washed with phosphate buffer saline (PBS) and detached with trypsin-EDTA to make a single cell suspension. The densities of each cancer cell line were provided according to their growth profiles. For A549, COR-L23, HL-226, Hep-2, KB, C32 and Hacat were determined to be 1×10^3 , 1×10^3 , 1×10^3 , 2×10^3 , 1.5×10^3 , 2×10^3 , 8×10^3 cells/well, respectively. 100 µl per well of monolayer culture of each cell line were seeded in 96 well-plate and incubated at 37 °C in a 5% CO₂ atmosphere with 95% humidity for 24 hours. The sample were prepared at least 4 concentrations (100-1 µg/ml) in medium. 100 µl

medium of cell culture were added for control of media, 2%DMSO were added for control of solvent. Then, 100 μ l of sample were added and incubated for the exposure time at 72 hours. After that, the medium in 96 well-plate were removed and washed with calcium free phosphate buffer saline (PBS) 200 μ l. Freshly medium with supplement were added 200 μ l and incubated 72 hours for recovery period. Finally, cells culture was fixed by 100 μ l of ice-cold 40% trichloroacetic acid and incubated at 4 $^{\circ}$ C for 1 hour. After plates were washed five times with tap water and drained off to dry in air. SRB solution 50 μ l were added to 96 well-plate and left at room temperature for 30 minutes. Excess dye was removed and washed with 1%acetic acid before air drying. 100 μ l of 10 mM Tris base [tris (hydroxy methyl) aminomethane, pH 10.5] were added to each well to solubilise the dye. The colors were detected at a wavelength of 492 nm. According to National Cancer Institute (NCI) guidelines (Suffness and Pezzuto, 1990) crude extracts with an IC₅₀ values < 30 μ g/ml were considered as "active".

Calculation: % inhibition = $(OD \text{ control- } OD \text{ sample}) \times 100$ OD control

3.4 Determination of Antimicrobial activity

In this study, we investigated four stains bacteria which cause of skin infections. *Staphylococcus aureus* (ATCC 25923), *S.aureus* MRSA (DMST 20651), *S. epidermidis* (ATCC 12228) were inoculated on Nutrient Agar (NA), while *Streptococcus pyogenes* (ATCC 19615) were inoculated under anaerobic condition for 18-24 hours at 37 °C. Differential extracts from *Garcinia mangostana*, Benchalokawichian remedy and combination remedy were determined.

3.4.1 Disc diffusion assay

Agar disc diffusion method was used to determine all of extracts, followed by Lorian (1996). The extracts were dissolved in DMSO at concentration 500 mg/ml. 10 µl of solution were applied on 6 mm sterile paper disc. Air-dried disc were placed on inoculated Mueller-Hinton agar (MHA) for *S. aureus, S. aureus MRSA, S. epidermidis* and Brain Heart Infusion agar (BHI) surface for *S. pyogenes*, then incubated at 37°C for 18-24 h. The triplicate inhibition zone (clear zone) were calculated by measuring the diameter (mm). The positive control are gentamicin and ampicillin.

3.4.2 Minimal Inhibitory Concentration (MIC) and Minimal Bactericidal Concentration (MBC)

The minimal inhibitory concentration (MIC) values were determined using microdilution assay by Sarker *et al.*, (2007). The extracts from maceration and soxhlet extract which were dissolved in Dimethylsulfoxide (DMSO), were prepared at concentration 400 mg/ml. 50 μ l of sample solution were added in 96 well-plates and prepared serial two-fold dilution with broth medium. After 18-24 hours culture of *S. aureus, S. aureus* MRSA, *S. epidermidis,* the inoculums were adjusted turbidity equal to 0.5 McFarland standard and diluted with sterile Mueller-Hinton Broth (MHB) at 1:200 to give a final concentration of 5 x 10⁵ CFU/ml. 50 μ l of inoculums were added, the 96 well-plates covered with plastic wrap. They were mixed well using a plate shaker and incubator at 37 °C. For *S. pyogenes* was adjusted turbidity equal to 0.5 McFarland standard under anaerobic condition. After 18-24 hours, 10 μ l of 1 mg/ml resazurin solution (blue dye) were added into 96 well-plates and incubated 37 °C for 2-3 hours.

The irreversible reaction of resazurin (blue) to resorufin (pink) is proportional to aerobic respiration. Thus, the last wells that presented blue color were reported as Mininal Inhitibitory Concentration (MIC). The assays were repeated in triplicate. Positive control, negative control and viable control are included. An aliquot of 100 μ l from each well which were blue (no bacterial growth) after MIC determination were streaked onto the media agar (MHA, BHI) and incubated at 37 °C for 18-24 hours. The lowest concentration which showed not any colonies growth was considered as the minimal bactericidal concentration (MBC).

3.5 Determination of Anti-inflammatory activity

3.5.1 Principle

Nitric oxide (NO) is representative inflammatory mediators produced by macrophages under inflammatory conditions (Ding *et al.*, 1988). Nitric oxide production is a critical step in modulation of NO-mediated diseases (Jung *et al.*, 2006). The Griess reagent use to determine the nitrite, which is a stable end product of nitric oxide in cell culture supernatants. The end product evaluated by spectrophotometry (Cho *et al.*, 2000)

3.5.2 Inhibitory effect on NO production and cytotoxicity test in RAW264.7 cells using NO assay and MTT assay (Worawattananutai *et al.,* 2014)

Inhibitory effect on NO production by Mouse Macrophage Leukemia-like RAW264.7 cells were evaluated using a method, as previously reported (Worawattananutai *et al.*, 2014). RAW 264.7 cell line were cultured in RPMI medium supplemented with 10% fetal bovine serum (FBS), penicillin (100 units/ml) and streptomycin (100 µg/ml). The cells were seeded in 96-well plate (cell concentration 1×10^5 cells/well) and incubated in CO₂ incubator at 37°C for 24 hours. 100 µl/well of RPMI medium containing 100 µg/ml of LPS were added into control and sample wells, whereas only RPMI medium were added into a blank well. 100µl/well of different sample concentrations (100, 50, 30, 10, 1 µg/ml) were added into sample wells and their corresponding blank sample wells. Then cells were incubated at 37°C for 24 hours. Supernatant (100µl) were added in another 96-well plate and followed by the addition of 100 µl/well of Griess reagent. The color detected at a wavelength of 570 nm.

Cytotoxicity were also determined using the MTT method. After 48 h incubation with the test samples, MTT solution (10 μ l, 5 mg/ml in PBS) were added to the wells and incubated at 37°C for 2 hours. The medium was removed, and isopropanol containing 0.04 M HCl were added to dissolve the formazan production in the cells. The formazan solution was measured with a micro-plate reader at 570 nm. The test sample were considered to be cytotoxic when the optical density of the sample-treated group were less than 70-80% of that in the control (vehicle-treated)

group. Indomethacin was used as positive control. %Inhibition and IC_{50} values were calculated from the Prism program.

%Inhibition =
$$\frac{A - B}{A - C} \times 100$$

Control (A) : LPS (+), Test sample (-) Sample (B) : LPS (+), Test sample (+) Blank (C) : LPS (-), Test sample (-)

3.6 Isolation using Bioassay-guided fractionation

3.6.1 General Experimental Procedures

HPLC was performed on a Waters 1525 HPLC pump system, equipped with a Waters 2487 dual λ absorbance detector using the following column: Phenomenax Luna 5u C₈ column (10 × 250 mm) and CHIRALCEL OD-H column (4.6 × 250 mm). Quick column chromatography (QCC) and column chromatography (CC) were carried out on silica gel 100 (63–200 µm, SiliCycle[®] Inc.). Waters 10 g Sep-Pak's C18 were used for reversed-phase flash chromatography. Sephadex LH-20 was also used for CC. Precoated plates of silica gel 60 F254 were used for analytical purposes. UV-vis spectra were recorded with a Varian Cary 5000 UV-vis-NIR spectrophotometer. The NMR spectra were recorded using Bruker Avance 600 MHz spectrometers. Chemical shifts are reported in parts per million (δ), and the coupling constants (*J*) are expressed in hertz. HREIMS, and EIMS spectra were obtained on a Bruker-Hewlett-Packard 1100 Esquire-LC system mass spectrometer. The IR spectra were recorded using a Perkin-Elmer FTS FT-IR spectrophotometer.

3.6.2 Isolation of *Tiliacora triandra* exthanolic extract (TTE)

The pure compounds of TTE separated by the following modified method Itharat *et al.,* (2014). An aliquot of TTE were separated by vacuum liquid chromatography (VLC), using five systems of solvent from non-polarity to polarity; Hexane, Hexane: CHCl₃ (1:1), CHCl₃, CHCl₃: MeOH (1:1) and MeOH as TTF1-TTF5. Each fraction was evaporated and the percentage of yield were calculated shown on Figure 3.2.

The fractions (TTF2-TTF5) of extract were preliminary studied for cytotoxic activity, the fraction TTF4 showed cytotoxic activity against all cell lines as KB, Hep2, A549, COR-L23 and H226 with IC_{50} values 27.71, 34.96, 35.72, 28.33, 26.08, respectively. All chromatography techniques including CC, TLC, HPLC were used for isolation and investigation. Then, the pure compounds were elucidated and identified the chemical structures by spectroscopy methods as NMR, MS, IR and UV.

Fraction TTF4 (2g) was subjected to column chromatography (CC) on sephadex using 20%DCM: MeOH isocratic solvent system, 20ml of diluent was collected then five fractions (TTA-TTE) were classified by TLC analysis.

TTB (112.5 mg) was chromatographed using CC on silica gel 60 and eluted by Me₂CO: hexane (1:9) to give three subfractions (B1-B3).

Then, B2 (6.5 mg) was purified by HPLC (column) using isocratic as diluent (flow rate 10 ml/min.) to afford TTE1.

Figure 3.2 Isolation of TTE1 from ethanolic extract of *Tiliacora triandra*

3.6.3 Isolation of *Cleodendrum petasites* extract (CPE)

The ethanolic extract of *Clerodendrum petisites* (2 g) was separated by sephadex LH-20 with dichrolomethane and methanol (ratio 2:8) to give seven fractions (CPA-CPG). Fraction CPC was separated by sep-pack C18 eluting start with 10%methanol and water, then decreasing polarity to 100% methanol afford five subfractions (C1-C5). The C5 (164.5 mg) was washed from methanol which gave a compound as CPE1, the colorless crystal (3.5mg, 0.18%w/w). By comparison of their ¹H and ¹³C NMR data with those previously reported data, CPE1 was identified as oleanolic acid acetate (Hichri *et al.,* 2003; Hwang *et al.,* 2014).

3.6.4 Isolation of Harrisonia perforata extract (HPE)

The ethanolic extract of *Harrisonia perforata* was separated by vacuum liquid chromatography (VLC) to give five fractions (A-E), All fractions were investigated by high-performance liquid chromatography. The dominant peak at retention time of 26.4 minutes was collected following the HPLC method, then further purified with increasing polarity of dichloromethane: methanol by CC to give HPE1 as yellow wax, 6.3 mg. The ¹H and ¹³C NMR were indicated as perforatic acid which found from *Harrisonia perforata* as previous study (Thadathiti *et al.,* 1994), and the result of IR and ESIMS were confirmed.

Notes: DCM = Dichloromethane, MeOH = Methanol, Me_2CO = Acetone, and %w/w = %w/w of crude extract

Figure 3.3 Isolation of CPE1 from ethanolic extract of *Cleodendrum petasites*

3.6.5 Isolation of Benchalokawichian remedy (BLWE)

The chloroform fraction of crude BLW ethanolic extract was supported from Miss Supaluck Nuaeissara. The F3 (CHCl₃ fraction) was separated by VLC elution start with hexane increasing polarity with chloroform and acetone to give seven fractions (A-G). Each fraction was dried and obtained yield as shown in Figure 3.4.

Subfraction C (890.5 mg) was further separated by CC eluting with 5% acetone: hexane to afford 5 subfractions (C1-C5). Recrystallization of C4 using hexane-MeOH afforded CPE1 and BLWE1 as colorless crystals and white powders (30.3mg, 0.51%w/w), the ¹H NMR data indicated the mixture of oleanolic acid acetate and β -sitosterol (Hichri *et al.,* 2003; Sayeed *et al.,* 2016). In addition, C5 was washed with MeOH to give colorless crystals as CPE1 (0.5 mg, 0.01%w/w).

Subfraction D (1231.9 mg) was washed with Me₂CO-MeOH to obtain BLWE2 as light-yellow crystals (15.4mg, 0.26%w/w). By comparison of ¹H and ¹³C NMR data with previous study, BLWE2 was identified as pectolinarigenin (Hase *et al.*, 1995)

Subfraction F (315.5 mg) was further separated by CC eluting with Me₂CO: hexane (8:2) to obtain 6 fractions (F1-F6). Further PLC separation of F6 with EtOAc: hexane (8:2) to afford BLWE3 as white/yellow wax (2.2mg, 0.04%w/w), data of NMR spectra was confirmed with the previously reported data as perforatin A or *O*-methylalloptaeroxylin (Thadanithi *et al.*, 1994).

Notes: DCM = Dichloromethane, MeOH = Methanol, Me₂CO = Acetone, EtOAc = Ethyl acetate

Figure 3.4 Isolation of BLWE1-BLWE3 from chloroform fraction of BLW extract

3.7 Development of product

3.7.1 Stability study of combination extracts

The accelerated stability testing was performed according to guidelines for stability testing of pharmaceutical product, WHO, (1996). The stability testing was carried out in triplicate using transparent vials. Stability studies were undertaken at 40±2°C with 75±5% RH duration 6 months as accelerated condition. The extracts were stored in vials under conditions for 15, 30, 60, 90, 120, 150, 180 days and control samples (Day 0) were kept at -20°C. After accelerated conditions, the extracts were evaluated chemical using HPLC analysis and biological testing included anti-microbial and anti-inflammatory activities comparison with control samples.

3.7.2 Force degradation study of combination extracts

The extracts were weighted to 50 mg and placed in tube. Heat, humidity, acid hydrolysis, and oxidation were tested the typical tests. The samples were determined for antimicrobial activity assay.

Moisture hydrolysis - Three drops of deionized water of 3 drops were added and heated up at 80 $^{\circ}$ C for 3 hours was performed.

Temperature forced degradation - The sample were heated it at 80 °C for 3 hours and then placed to cool down to room temperature.

Acid hydrolysis - Three drops of 3N hydrochloric acid were added and heated up at 80 $^{\circ}$ C for 3 hours was performed.

Alkaline hydrolysis - Three drops of 3N sodium hydroxide were added and heated up at 80 $^{\circ}$ C for 3 hours was performed.

Oxidation – Three drops of 3N hydrogenperoxide were added and heated up at 80 $^{\circ}\mathrm{C}$ for 3 hours was performed.

3.7.3 Product formulation

Variation of components were applied for finding the best formulation which is appropriate to use for skin topical cream. Individual ingredients were weighed and separated into two phases. Sepigel, sodium EDTA, propylene glycol, glycerine, uniphen and bronidox were dissolved in water phase (A). Liqiud paraffin light, isopropyl myristate, glyceryl sterate, cetyl alcohol, steryl alcohol, cremophor A25, cremophor A6, lanolin anhydrous were melted to be oil phase (B).

Phase A was heated at 80 °C and phase B also heated in water bath at 70 °C. Placed phase A into phase B under stirring and cooling down to get a cream formulation. General appearance including color, odor and pH determination were recorded. The extract was added to the best formula which was considered a good for being a topical cream.

phase	ingredient	function
А	sepigel	emulsifier, thickener
	sodium EDTA	chelator agent, stabilizer
	propylene glycol	humectant, solubilizer
	glycerine	humectant, solubilizer
	uniphen	preservative
	bronidox	preservative
	water	solubilizer
В	liqiud paraffin light	occlusive
	isopropyl myristate	emollient, emulsifier
	glyceryl sterate, GMS	emulsifier, thickener
	cetyl alcohol	emollient, thickener
	steryl alcohol	emollient, thickener
	cremophor A25 (powder)	emulsifier
	cremophor A6 (hard)	emulsifier
	lanolin anhydrous	moisturizer

Table 3.1 Ingredients and their functions of cream formula	Table 3.1	Ingredients	and t	their	functions	of	cream	formul
---	-----------	-------------	-------	-------	-----------	----	-------	--------

3.7.4 Stability testing of product

The accelerated stability testing was also performed according to WHO guidelines, (1996) as same as the extracts. The stability testing was carried out in triplicate using plastic tubes. Stability studies were undertaken at 40±2°C with 75±5% RH duration 6 months as accelerated condition. Cream tubes were stored under conditions for 15, 30, 60, 90, 120, 150, 180 days and control samples (Day 0) were kept at 4°C before further study. All sample were extracted by 7 ml of MeOH centrifuged 3500 rpm for 5 min., then filtrated the suspension through the glass tubes. The 2 ml of MeOH were added and repeated procedure once, the filtrate was evaporated to obtain cream extracts.

Yield of cream extracts were calculated and also presented by percentage. For HPLC analysis, extract of cream was dissolved in MeOH and prepared in concentration 50 mg/ml. The area under curve of alpha-mangostin was examined for determination of stability preparation.

3.8 Determination of quantification and qualification by using High Performance Liquid Chromatography (HPLC) technique

Studied on validate method of two compounds, pectolinarigenin and alpha-mangostin, from Benchalokawichien (BLW) and *Garcinia mangostana* (GM). Pectolinarigenin, which showed cytotoxic activity in our study as same as previous reports (Bonesi *et al.,* 2008 and Tundis *et al.,* 2005), was used for marker of BLW. Morover, pectolinarigenin also showed anti-inflammatory and anti-allergic activities in the recent report (Juckmeta, 2012 and Juckmeta *et al.,* 2014). Alpha-mangostin is well known for antibacterial activity, and also showed their activity against *S. aureus* MRSA better than some positive control in this research. There is no research study on validation method of this remedy. Thus, determination of quantification and qualification followed by ICH guidelines and modified according previous study This research modified method from Sakpakdeejaroen *et al.,* (2014), Aisha A. *et al.,* (2012) and Yodhnu *et al.,* (2009). Following ICH guidelines, the parameters which are selectivity, linearity, precision and accuracy, limit of detection (LOD) and limit of quantification (LOQ) were examined.

The HPLC instrument (Agilent® LC 1100/1200 system) consists of a quaternary pump (model G1311A), an automatic injector (model G1329A), a photodiode array (PDA) detector (model G1315D). Chromatographic fingerprint was constructed using a reverse-phase C18 column (Phenomenex® Luna, 5 μ m, 250 mm x 4.6 mm). The mobile phase composed of 0.1% ortho phosphoric acid(A) and acetonitrile (B). Chemical constituents in sample were gradiently eluted with flow rate of 1.0 ml/min using the following program: 0 – 30 min., 95%A; 30 – 35 min., 5%A; and 35 – 40 min., 95% A. Stock solution of extract was prepared at concentration 10 mg/ml whereas pectolinarigenin and alpha-mangostin at concentration 1, 2 mg/ml were stocked, respectively. Sample injected for 10 μ l and the spectra were collected at 331 nm. Data were analyzed by ChemStation® software.

CHAPTER 4

RESULTS AND DISCUSSION

4.1 Cytotoxic activity of the water and ethanolic extract of individual plant, Benchalokawichian remedy and its compounds using SRB assay

4.1.1 Cytotoxic activity of crude extracts

For screening of cytotoxic activity using SRB assay against KB, Hep2 and three types of lung cancer ; A549, CORL23, H226 at concentration 50 μ g/mL (n=2), the extract which showed >50% cytotoxic were further studied in serial dilution for finding IC₅₀. Following the results, all of water extract showed percent inhibition less than 50 which were classified no cytotoxic activity. Only Benchalokawichien (BLW) and *Tiliacora triandra* (TT) ethanolic extract which showed percentage of toxicity more than 50 (Table 4.1).

IC₅₀ of TTE and BLWE were investigated after screening test, the results showed on Table 4.2. The ethanolic extract of *Tiliacora triandra* (TTE) exhibited oropharynx cancer cell line (KB) as well as larynx cancer cell line (Hep2) with IC₅₀ 42.1 and 45.2 µg/mL. As the same result, BLWE showed moderate cytotoxic activity against KB and Hep2 with IC₅₀ values 32.1 and 32.7 µg/mL. For non-small lung cancer cell, BLW showed cytotoxic activity against epithelial lung adenocarcinoma (A549) quite similar value as TTE with IC₅₀ = 32.3, 33.7 µg/mL, respectively. Furthermore, TTE exhibited lung carcinoma (COR-L23) better than BLWE (IC₅₀= 25.7 and 33.7, respectively). Both of them showed specific cytotoxic against squamous lung cancer (H226) better than others cell lines, BLWE showed IC₅₀ value 10.1 µg/mL whereas TTE as 19.5 µg/mL. In addition, BLWE showed higher cytotoxic against skin cancer (C32) cell line than TTE with IC₅₀ value 29.1 and 37.9 µg/mL, respectively. Nevertheless, their activity was not better than NCI standard (<30 µg/mL). So, the active compound from TT was interesting to investigate.

Two compounds which were isolated from BLW extract in previously report also studied. Pectolinarigenin exhibited cancer cell in respiratory system better than TT and BLW extract with IC_{50} value in range1.91-9.12 µg/mL while *O*methyllaloptaeroxyrin show no cytotoxic activity in all types of cancer cell lines (>50 µg/mL). Obviously, pectolinarigenin showed cytotoxic against normal cell line (HaCaT) with $IC_{50}11.5$ µg/mL whereas BLWE and TTE were less toxic ($IC_{50} = 64.5$, 79.9 µg/mL).

Dlants	Extract	Codo	%Cytotoxic (Mean ± SEM)				
Plants		COUE	KB	Hep2	A549	COR-L23	H226
llorrisopio porforato	Ethanol	HPE	0.93 ± 6.00	6.39 ± 0.55	12.35 ± 1.91	53.46 ± 16.67	32.99 ± 9.00
Hamsonia perjorata	Water	HPW	-17.90 ± 11.26	0.59 ± 3.33	3.89 ± 2.82	19.42 ± 8.27	-4.48 ± 15.68
Conneris misroconthe	Ethanol	CME	3.22 ± 5.31	7.94 ± 0.99	7.23 ± 0.14	17.29 ± 0.99	61.47 ± 4.68
Cappans micracantha	Water	CMW	-22.60 ± 4.48	1.92 ± 4.22	-1.33 ± 2.08	10.42 ± 8.26	-4.52 ± 24.31
Claadandrum natasitas	Ethanol	CPE	-0.50 ± 4.05	10.02 ± 0.14	4.54 ± 1.26	40.56 ± 1.46	33.43 ± 8.70
Cleodenarum petesites	Water	CPW	-12.51 ± 12.28	2.38 ± 4.73	-0.80 ± 1.36	25.54 ± 7.62	10.06 ± 2.40
	Ethanol	FRE	3.05 ± 2.53	8.25 ± 0.91	7.97 ± 3.41	17.33 ± 1.16	29.73 ± 5.92
FICUS TUCETTIOSU	Water	FRW	-6.33 ± 3.40	12.33 ± 6.78	3.86 ± 0.30	31.18 ± 0.39	-6.53 ± 0.04
Tiliacara triandra	Ethanol	TTE	67.97 ± 5.45	50.90 ± 5.73	89.89 ± 0.84	83.29 ± 11.91	86.28 ± 0.32
	Water	TTW	7.40 ± 7.90	6.14 ± 0.80	4.31 ± 0.38	18.12 ± 1.47	33.43 ± 3.61
Ponchalakawichian	Ethanol	BLWE	90.54 ± 1.52	89.76 ± 4.27	94.26 ± 0.66	89.11 ± 2.93	82.57 ± 6.72
	Water	BLWW	-11.22 ± 10.32	10.57 ± 3.85	3.22 ± 1.07	23.16 ± 11.36	-2.81 ± 2.86

Table 4.1 %Cytotoxic activity of the water and ethanolic extract at concentration 50 µg/mL against five cell lines in respiratory system

Sample -	Cytotoxic activity, IC_{50} (µg/mL) ± SEM							
	KB	Hep2	A549	COR-L23	H226	C32	HaCaT	
HPE	>50	>50	>50	>50	>50	>50	NT	
HPW	>50	>50	>50	>50	>50	>50	NT	
CME	>50	>50	>50	>50	>50	>50	NT	
CMW	>50	>50	>50	>50	>50	>50	NT	
CPE	>50	>50	>50	>50	>50	>50	NT	
CPW	>50	>50	>50	>50	>50	>50	NT	
FRE	>50	>50	>50	>50	>50	>50	NT	
FRW	>50	>50	>50	>50	>50	>50	NT	
TTE	42.09 ± 4.55	45.24± 7.09	33.65 ± 0.58	25.71 ± 7.87	19.48 ± 1.43	37.95 ± 0.36	79.97 ± 4.49	
TTW	>50	>50	>50	>50	>50	>50	NT	
BLWE	32.05 ± 0.02	32.74 ± 2.06	32.26 ± 0.71	33.65 ± 0.92	10.11 ± 2.85	29.09 ± 4.01	64.35 ± 9.21	
BLWW	>50	>50	>50	>50	>50	>50	NT	
O-methyllaloptaeroxyrin	>50	>50	>50	>50	>50	NT	NT	
Pectolinarigenin	6.19 ± 1.71	1.91 ± 0.56	7.76 ± 0.20	9.12 ± 0.74	NT	NT	11.48±0.95	

Table 4.2 Cytotoxic activity of the water and 95%EtOH extract of five plants from Benchalokawichian, BLW remedy and twocompounds against seven cell lines (three type of lung, two types of larynx and skin cancer cell lines, and normal cell lines)

4.1.2 Cytotoxic activity of Tiliacora triandra fractions

The compounds from *Tiliacora triandra* (TTE) was interesting to be a marker for cytotoxic activity of BLW remedy. Isolation of compound was investigated using bioassay guided fractionation technique. Vacuum Liquid Chromatography (VLC), TT extract was weighed 10.22 g homogenous mixing with the silica gel no. 0.7734. The non-polar solvent was used to elude from the column increasing the polarity for 5 fractions (Hexane, Hexane: CHCl₃, CHCl₃, CHCl₃: MeOH, MeOH). The five fractions (TTF1-TTF5) were collected and calculated percentage of yield shown in Table 4.3. The fraction 4, TTF4, showed highest yield with 48.43%.

Table 4.3 Percentage yield of five fractions from the TT ethanolic extract using VLC technique

CODE	Fraction	Weight (g)	%yield
TTF1	Hexane	0.01	0.10%
TTF2	Hexane: CHCl ₃	0.47	4.60%
TTF3	CHCl ₃	0.39	3.82%
TTF4	CHCl ₃ : MeOH	4.95	48.43%
TTF5	MeOH	2.46	24.07%

Screening of cytotoxic activity against five cell lines in respiratory system at concentration 50 μ g/mL shown on Table 4.4, fraction 2-3 (TTF2-3) showed no cytotoxic activity with percentage lower than 50. The fraction 4 (CHCl₃: MeOH, TTF4) showed high percentage of cytotoxic against all cell lines (in range 79.93-95.73%). The fraction 5 (MeOH, TTF5) showed 70% cytotoxic at concentration 50 μ g/mL against H226.

Sample -	%cytotoxic (Mean ± SEM, n = 2)						
	KB	Hep2	A549	COR-L23	H226		
TTF2	0.10 ± 0.95	5.57 ± 0.39	-1.77 ± 0.72	28.68 ± 8.12	14.17 ± 6.58		
TTF3	7.19 ± 0.42	10.50 ± 3.02	0.95 ± 5.59	43.43 ± 2.09	22.15 ± 6.65		
TTF4	85.02 ± 6.25	79.93 ± 6.72	80.98 ± 2.61	95.73 ± 0.05	81.73 ± 6.79		
TTF5	39.03 ± 8.10	34.97 ± 3.22	27.96 ± 0.44	44.92 ± 7.85	70.51 ± 9.29		

Table 4.4 %Cytotoxic of four fractions at concentration 50 µg/mL against five cell lines in respiratory system

The result found that TTF4 also showed the cytotoxic activity as same as ethanolic extract (TTE). The fraction4 or TTF4 also exhibited against KB and Hep2 cell lines better than TTE with IC_{50} value 27.71, 34.96 and 42.09, 45.24 µg/mL, respectively. On the other hand, TTE showed higher cytotoxic activity against three types of lung cancer cell lines than TTF4. Surprisingly, the fraction 5 (TTF5) showed specific against H226 with IC_{50} value 33.02 µg/mL.

Table 4.5 Cytotoxic activity show IC_{50} (µg/mL) of fraction TTF2-5 and *Tiliacora triandra* (Mean ± SEM, n=3)

Cample	Cytotoxic activity, IC_{50} (µg/ml) ± SEM					
Sample	KB	Hep2	A549	COR-L23	H226	
TTF2	>50	>50	>50	>50	>50	
TTF3	>50	>50	>50	>50	>50	
TTF4	27.71 ± 7.25	34.96 ± 3.11	35.72 ± 0.96	28.33 ± 1.05	26.08 ± 4.36	
TTF5	>50	>50	>50	>50	33.02 ± 2.10	
TTE	42.09 ± 4.55	45.24 ± 7.09	33.65 ± 0.58	25.71 ± 7.87	19.48 ± 1.43	

4.1.3 Isolated compound from Tiliacora triandra

4.1.3.1 Compound TTE1

Figure 4.1 Chemical structure of TTE1

The ¹H NMR spectrum of TTE1 showed oxymethine protons resonating at $\delta_{\rm H}$ 5.07 (¹H, m) and 5.13 (¹H, m). A terminal methyl group was observed as triplet at $\delta_{\rm H}$ 0.90 (³H, t). A broad hump between $\delta_{\rm H}$ 1.30–2.80 showed the presence of seven methylene groups. The ¹³C NMR and DEPT spectra showed eighteen signals comprising one methyl, twelve methylene, two methine, and two quaternary carbons. It showed the presence of a ketone at $\delta_{\rm c}$ 203.59 (s) and a carboxyl at $\delta_{\rm c}$ 179.27 (s), respectively. The two downfield oxymethine carbons at $\delta_{
m C}$ 89.2 (d) and 91.2 (d), comparing with NMR the data of urticic acid $\delta_{
m C}$ 91.2 (d) and 89.1 (d) from *Leucas* urticifolia (Fatima et al., 2008). HMBC correlations from $\delta_{\rm H}$ 5.07 (¹H, m) and 5.13 (¹H, m) to $\delta_{\rm C}$ 203.59 (s) indicated the presence of a five-membered 4-oxo-1,2-dioxolane molety. The COSY correlations from H7 (δ 5.13, m), to H8 (δ 2.00, m), H8' (δ 2.00, m) to H₂-9 (δ 1.40, m), combined with HMBC correlations from H-17 (δ 0.90, t) to C-16 (δ 22.8) and C-15 (δ 31.5) confirmed the presence of a longchain of methylene carbons. Another fragment which showed COSY correlations from H-2 (δ 2.43, t) to H-3 (δ 1.78, m), H-3' (δ 1.78, m) to H-4/H-4' (δ 2.07, m), combined with HMBC correlations from H-2 (δ 2.43, t) and H-3 (δ 1.78, m) to C-1, H-2 (δ 2.43, t) to C-4 (δ 27.7), H-3 (δ 1.78, m) to C-5 (δ 89.2) confirmed the presence of pentanoic acid. The key COSY correlations from H-4 (δ 2.07, m) to H-5 (δ 5.07, m) and H7 (δ 5.13, m), to H-8/H-8' (δ 2.00, m) combined with HMBC correlations from H-5 (δ 5.07, m) and H7 (δ 5.13, m) to C-6 (δ 203.6) and H-7 (δ 5.13, m) to C-8 (δ 28.5) implied that two fragments were attached
to 4-oxo-1,2-dioxolane moiety (Figure 4.2). Thus, the planar structure of TTE1 was established as 4-((3S,5R)-5-decyl-4-oxo-1,2-dioxolan-3-yl) butanoic acid.

Figure 4.2 COSY and HMBC correlations of TTE1

position	TTE1			
	δ _c	$\delta_{\!\scriptscriptstyle extsf{H}}$ (/ in Hz)	HMBC ($\delta_{H} \rightarrow \delta_{C}$)	
1	179.27			
2	32.8	2.43 (t)	C-1, C-4	
3	23.54	1.78 (m)	C-1, C-5	
4	27.77	2.07 (m)	C-2	
5	89.21	5.07 (m)	C-3, C-6, C-7	
6	203.59	151		
7	91.21	5.13 (m)	C-5, C-6, C-8	
8	28.51	2.00 (m)	C-7	
9	28.71	1.40 (m)	C-7	
10	28.95	100		
11	28.80	1		
12	29.06	MA VS		
13	29.26	Man		
14	29.22	S. WY	-//	
15	31.50	1.30 (m)	-//	
16	22.80	1.30 (m)		
17	13.71	0.90 (t)	C-15, C-16	

Table 4.6 The 1 H (600MHz), 13 C (150 MHz) NMR and HMBC spectral data of TTE1

4.1.4 Isolated compound from *Cleodendrum petesites* 4.1.4.1 Compound CPE1

The ¹H NMR (600 MHz, CDCl₃) spectrum revealed seven tertiary methyl peaks as singlets at δ 1.15, 0.96, 0.95, 0.93, 0.89, 0.87, 0.78 that are assigned to Me-27, Me-25, Me-30, Me-23, Me-24, Me-29, Me-26, respectively. An olefinic proton resonance at $\delta_{\rm H}$ 5.30 and a methine proton resonance at $\delta_{\rm H}$ 4.51 were attributed to H-12 and H-3, respectively. A methine double doublet at δ_{H} 2.84 (J=12 Hz) was assigned to H-18 and a singlet was observed at $\delta_{
m H}$ 2.07 assigned to OAc. There are 32 carbon signals revealed in the ¹³C NMR (125 MHz, CDCl₃). Carbonyl resonances at presented at $\delta_{
m C}$ 170.68 and 182.83 were assigned to acetate ester and carboxylic acid functionality, respectively. The olefenic carbon resonances at $\delta_{
m C}$ 122.17 and 143.20 were attributed to C12-C13. HMBC correlations (Figure 4.3) were observed between the proton resonance at 2.84 (dd) and carbons resonance assigned to C-12 (δ 122.7), C-13 (δ 143.2), C-17 (δ 46.1), C-28 (δ 182.8). The olefenic proton resonance at δ 5.32 showed HMBC correlations with C-9 (δ 47.1), and C-18 (δ 4.1). Moreover, the proton resonance at 4.51 (m) was correlated with carbon resonances assigned to C-23 (δ 27.6), C-4 (δ 37.6), CH₃COO (δ 170.7). Furthermore, the IR spectrum exhibited absorption peaks at 3208, 2944, 2899, 1723, 1252, 1368, 1178, 819 cm⁻¹. Based on all data and comparison with literature data (Hichri et al., 2003). The molecular formula was proposed to be C₃₂H₅₀O₄ as determined by ESI mass spectra that gave [m-H]⁻ =497.3.

Figure 4.3 Selected HMBC correlations of CPE1

position	CPE1			
	$\delta_{\rm C}({\rm CDCl}_3)$	$\delta_{ extsf{H}}$, J in Hz	HMBC ($\delta_{H} \rightarrow \delta_{C}$)	
1	37.3			
2	25.5			
3	80.5	4.51, 1H, m	C-3a, C-4, C-23	
4	37.6			
5	54.8	1100		
6	17.7	1-1-2 b 2		
7	32.1			
8	38.8			
9	47.1			
10	36.5			
11	23.0			
12	122.2	5.30, 1H, m	C-9, C-18	
13	143.2		2011	
14	45.4			
15	27.2			
16	23.1	//01000		
17	46.1	110.1		
18	41.1	2.84, dd, 12	C-11, C-12, C-13, C-17, C-28	
19	40.5			
20	30.3			
21	33.4			
22	32.7			
23	27.6	0.93, 3H, s		
24	16.2	0.89, 3H, s		
25	15.0	0.96, 3H, s		
26	16.7	0.78, 3H, s		
27	23.2	1.15, 3H, s		

Table 4.7 The 1 H (600MHz), 13 C (150 MHz) NMR and HMBC spectral data of CPE1

position	CPE1				
	$\delta_{\rm C}$ (CDCl ₃)	$\delta_{\scriptscriptstyle \! H}$, J in Hz	HMBC ($\delta_{H} \rightarrow \delta_{C}$)		
28	182.8				
29	32.0	0.87, 3H, s			
30	22.5	0.95, 3H, s			
<u>CH</u> ₃COO	20.9	2 ∩7 3⊔ c			
CH <u>3C</u> OO	170.7	2.07, 211, 5			

	CF	PE1	Hichri <i>et</i>	al., 2003
position	$\delta_{\rm C}({\rm CDCl}_{\rm 3})$	$\delta_{\scriptscriptstyle \! H}$, J in Hz	$\delta_{\rm C}({\rm CDCl}_{\scriptscriptstyle 3})$	$\delta_{\scriptscriptstyle extsf{H}}$, J in Hz
1	37.3		38.0	
2	25.5		27.7	
3	80.5	4.51, 1H, m	80.9	4.42, 1H, m
4	37.6	11.2.3	39.0	
5	54.8	1-1-2 67	55.3	
6	17.7		18.1	
7	32.1		32.8	
8	38.8	1000/20		
9	47.1		48.0	
10	36.5		37.7	
11	23.0	10100	24.0	
12	122.2	5.30, 1H, m	122.5	5.19, 1H, m
13	143.2		143.6	
14	45.4		41.5	
15	27.2	//01/02/2	28.0	
16	23.1	1 (18) \$1	23.4	
17	46.1	UN	46.6	
18	41.1	2.84, dd, 12		2.78, 1H, m
19	40.5			
20	30.3		30.7	
21	33.4		33.8	
22	32.7			
23	27.6	0.93, 3H, s	29.7	0.88, 3H, s
24	16.2	0.89, 3H, s	16.7	0.87, 3H, s
25	15.0	0.96, 3H, s	15.5	1.05, 3H, s
26	16.7	0.78, 3H, s	172	0.67, 3H, s

Table 4.8 Comparison of ¹³C and ¹H NMR data between CPE1 and oleanolic acid acetate (Hichri *et al.,* 2003 recorded in CDCl₃)

58

CPE1			Hichri <i>et</i>	al., 2003
position	$\delta_{\rm C}$ (CDCl ₃)	$\delta_{\scriptscriptstyle \! H}$, J in Hz	$\delta_{\rm C}$ (CDCl ₃)	$\delta_{\scriptscriptstyle extsf{H}}$, J in Hz
27	23.2	1.15, 3H, s		1.18, 3H, s
28	182.8		178.6	
29	32.0	0.87, 3H, s	33.1	
30	22.5	0.95, 3H, s	23.6	0.79, 3H, s
<u>CH</u> ₃COO	20.9		22.8	1.00, 3H, s
CH <u>3C</u> OO	170.7	2.07, 3H, s	171.0	2.06, 3H, s

4.1.5 Isolated compound from Harrisonia perforata

4.1.5.1 Compound HPE1

Figure 4.4 Chemical structure of HPE1

Perforatic acid was isolated as a yellow solid. ESIMS showed an $[m+H]^+$ ion at m/z 303.1 which was consistant with a molecular formula of C₁₆ H₁₄O₆ (MW=302.1). The IR spectrum exhibited absorption peaks at 3377, 2923, 2853, 1618, 1375, 1329, 1203, 1118, 998 cm⁻¹. The ¹H (600 MHz; DMSO-*d*₆) NMR spectrum contained two methyl resonances at δ_{H} 2.40 (6H, s), 1.43 (6H, s), methoxy proton at δ_{H} 3.47 (3H, s), three olefinic proton at δ_{H} 6.71 (1H, d, *J*=12Hz), 7.74 (1H, d, *J*=12Hz) and 7.48 (1H, s), and aromatic ring proton at δ_{H} 7.38 (C6-H, s). The comparison of ¹H and ¹³C NMR spectral data with the previously reported (Thadathiti *et al.*, 1994) showed on Table 4.9.

	HPE1			Thadathiti <i>et al.,</i> 1994		
position	δ_{C} (DMSO)	$\delta_{ extsf{H}}$, J in Hz	$\delta_{\text{C}}(\text{CDCl}_3+\text{MeOD})$	$\delta_{\scriptscriptstyle extsf{H}}$, J in Hz		
2	161.0		159.8			
3	113.1	7.48, s	113.1	6.89, s		
4	178.2	711-275	179.5			
4a	103.2		102.5			
5			153.6			
6	97.5	7.38, s	96.4	6.29, s		
7	154.5	86867	155.5			
8	109.7		108.2			
8a	158.3		158.4			
1'	28.8	2.40, s	27.4	1.43, s, 6H		
2'	78.9		77.9			
3'	115.7	6.71, d, 12	114.6	5.54, d, 10		
4'	128.6	7.74, d, 12	126.8	6.88, d, 10		
CH ₃ -2'	28.8		27.4			
OCH ₃	57.1	3.47, s	55.4	3.89, s		
СООН	162.4		165.5			

Table 4.9 Comparison of ¹³C and ¹H NMR data for HPE1 (recorded at 600 MHz in DMSO) and perforatic acid (Thadathiti *et al.,* 1994 in 300MHz recorded in CDCl₃+MeOD)

4.1.6 Isolated compound from Benchalokawichian

4.1.6.1 Compound BLWE1

Figure 4.5 Chemical structure of BLWE1

The ¹H NMR (600 MHz, CDCl₃) spectrum revealed that the sample was a mix structure of BLWE1 and CPE1 as oleanolic acid acetate as showed on Table 4.10. The singlet methyl peaks at $\delta_{\rm H}$ 0.66, 0.82, 0.84, 0.92, 1.04 were assigned to Me-19, Me-27, Me-29, Me-21, Me-18, respectively. However, complex unresolved multiplet resonances were observed at $\delta_{\rm H}$ 0.96-1.02, 1.11-1.31, 1.41-1.53, 1.75-1.83, 2.10-2.24. From these data, compound BLWE1 was tentatived as β -sitosterol (Sayeed *et al.*, 2016).

Figure 4.6 TLC spots of mixed compound (B, in middle) compared to BLWE1(A, left) and CPE1(C, right) in 30%EtOAc: hexane system

position	CPE1 $\delta_{ extsf{H}}$ (CDCl ₃ ; 600MHz)	Oleanolic acid acetate Hichri <i>et al.,</i> 2003 δ_{H} (CDCl ₃ ; 400MHz)	BLWE1 $\delta_{ extsf{H}}$ (CDCl ₃ ; 600MHz)	eta-sitosterol Sayeed et al., 2016 $\delta_{ extsf{H}}$ (CDCl3; 400MHz)
1				
2		Sole		
3	4.42, 1H, m	4.42, 1H, m	3.45, 1H, m	3.53, 1H, m
4	, ,			, ,
5	//2.57	801 24	5.00, 1H, m	5.36, 1H, m
6	1256			
7	~ 2		1	
8	94 C 14		24	
9		and the	-	
10		2000000	12-15	
11	1		12ml	
12	5.34, 1H, m	5.19, 1H, m	STATISTICS IN	
13		AS WAR	2.75	
14			No.5	
15		10.000		
16		SAT UN		
17				
18	2.74, 1H, m	2.78, 1H, m	1.04, 3H, s	1.01, 3H,s
19			0.66, 3H, s	0.68, 3H, s
20				
21			0.92, 3H, s	0.93, 3H, s
22				
23	0.86, 3H, s	0.88, 3H, s		
24	0.84, 3H, s	0.87, 3H, s		
25	0.92, 3H, s	1.05, 3H, s		
26	0.77, 3H, s	0.67, 3H, s		0.83, 3H, s
27	1.04, 3H, s	1.18, 3H, s	0.82, 3H, s	0.81, 3H, s

Table 4.10 The ¹H NMR data for mixture of CPE1 and BLWE1 (recorded at 600MHz inCDCl₃) compared with their references (recorded at 400 MHz in CDCl₃)

position	CPE1	Oleanolic acid acetate Hichri <i>et al.,</i> 2003	BLWE1	β-sitosterol Sayeed <i>et al.,</i> 2016
	$\delta_{\scriptscriptstyle H}$ (CDCl3;	$\delta_{\scriptscriptstyle H}$ (CDCl ₃ ; 400MHz)	$\delta_{ extsf{H}}$ (CDCl3;	$\delta_{ extsf{H}}$ (CDCl3; 400MHz)
	600MHz)		600MHz)	
28				
29	0.78, 3H, s	0.79, 3H, s	0.84, 3H, s	0.84, 3H, s
30	0.93, 3H, s	1.00, 3H, s		
<u>CH</u> ₃COO	1073U c	206 34 6		
CH <u>3C</u> OO	1.9 <i>1</i> , <i>S</i> ⊓, S	2.00, 50, 5		

4.1.6.2 Compound BLWE2

Figure 4.7 Chemical structure of BLWE2

The molecular formula was proposed to be $C_{17}H_{14}O_6$ as deduced from ESI mass spectra [m-H]⁻ 313.1, ¹H NMR (600 MHz, DMSO- d_6) and the ¹³C NMR (125 MHz, DMSO- d_6) data. The ¹³C NMR spectrum showed 17 carbon signals observed; 9 of which correspond with 12 protons and 2-OH as observed from the HMQC spectrum (Table 4.11).

The HMBC spectrum showed a pattern of correlations consistent with a flavonone derivative in which a *para*-methoxyphenyl was located at C-2 (δ 163.7). H-2' and H-6' (δ 7.93, dd, J = 6) were correlated with C-2 (δ 163.7) and C-4'(δ 162.2), and one aromatic proton resonance at δ 6.66 (s) was correlated with C-4 (δ 182.5), C-2 (δ 163.7) and C-1' (δ 123.1). The chelated hydroxyl group (δ 13.13, s) at C-5 (δ 152.7) of chomone moiety showed a correlation with with carbonyl group at C-4 (δ 182.5), one methoxyl proton (δ 4.13, s) at C-6 which was confirmed by HMQC and HMBC experiment. Therefore, BLWE2 was assigned as 5,7-dihydroxy-6-methoxy-2-(4methoxyphenyl)-4H-chromen-4-one or pectolinarigenin (Hase *et al.*, 1995).

	BLV	VE2	Hase <i>et al.,</i> 1995	
position	$\delta_{\!\scriptscriptstyle m C}$ (DMSO)	$\delta_{\!\scriptscriptstyle extsf{H}}$, J in Hz	$\delta_{ m C}$ (CDCl ₃)	$\delta_{\!\scriptscriptstyle extsf{H}}$, J in Hz
2	163.7		163.3	
3	104.0	6.66, s	103.0	6.87, s
4	182.5		182.1	
5	152.7		152.7	
6	129.9	1000	131.4	
7	154.5		157.4	
8	93.2	6.68, s	94.3	6.62, s
9	151.7		152.4	
10	105.3	1001/5	104.1	
1	123.1		122.9	
2	128.1	7.93, d, 6	128.3	8.03, d, 9
3'	114.7	7.10, d, 6	114.5	7.10, d, 9
4"	162.2		162.3	
5	114.7	7.10, d, 6	114.5	7.10, d, 9
6'	128.1	7.93, d, 6	128.3	8.03, d, 9
6-OH		13.13, s		13.00, s
7-OMe	61.0	4.13, s	59.9	3.86, s
4'-OMe	55.9	3.98, s	55.5	3.75, s

Table 4.11 Comparison of ¹³C and ¹H NMR data between BLWE2 (recorded at 600Mhz in DMSO) and pectolinarigenin (recorded in CDCl₃)

4.1.6.3 Compound BLWE3

Figure 4.8 Chemical structure of BLWE3

Compound BLWE3 gave a molecular formula $C_{16}H_{16}O_4$ as determined by ESIMS that gave a [M+H]⁺ ion at m/z 273.11. The ¹H (600 MHz; DMSO- d_6) NMR data showed the presence of three methyls at δ_H 2.28 (3H, s), 1.43 (6H, s), methoxy proton at δ_H 3.78 (3H, s), two olefinic protons at δ_H 5.74 (1H, d, J=10Hz) and 6.68 (1H, d, J=10Hz), 5.95 (C3-H, s), and an aromatic ring proton at δ_H 6.42 (C6-H, s). An aromatic proton resonance at δ 6.42 (s) was correlated to the C-6 resonance of δ 96.9 in the HMQC sprectrum. H-6 showed HMBC correlations with C-5 (δ 157.6), C-8 (δ 108.0), C-7 (δ 160.6) and C-4a (δ 101.8); an aromatic proton resonance at δ 5.95 (s) was correlated with C-4 (δ 163.5) and C-8 (δ 108.0); and the two aromatic proton resonances of the pyran ring at δ 6.69 (d, J=12 Hz, H-4') and δ 5.74 (d, J=12 Hz, H-3') showed the correlations with C-2'(δ 78.5), C-5 (δ 157.6), C-4a (δ 101.8). Thus, the NMR data was consistent with BLWE3 being perforatin A or *O*-methylalloptaeroxylin. The comparison of the ¹H and ¹³C NMR spectral data with the previously reported data of perforatin A (Thadanithi *et al.*, 1994) shown in Table 4.12 confirmed the assignment.

	BLWE3		Thadathiti <i>et al.,</i> 1994	
position	$\delta_{ m c}$ (DMSO)	$\delta_{\scriptscriptstyle \! extsf{H}}$, J in Hz	$\delta_{\text{C}}(\text{CDCl}_3+\text{MeOD})$	$\delta_{\scriptscriptstyle \! H}$, J in Hz
2	164.1	2.28, s, 3H	163.3	2.29, s, 3H
3	111.2	5.95, s	112.3	6.00, s
4	163.5		178.3	
4a	101.8		103.0	
5	157.6	0123	155.0	
6	96.9	6.42, s	97.0	6.29, s
7	160.6		158.0	
8	108.0		109.0	
8a	160.6		161.0	
1'	28.5	1.43, s, 6H	28.8	1.48, s, 6H
2'	78.5		78.5	
3'	128.1	5.74, d, 12	115.8	5.57, d, 12
4'	115.3	6.69, d, 12	127.9	6.70, d, 12
CH ₃ -2'	28.3		28.8	
CH ₃ -2	22.5		20.2	
OCH ₃	56.5	3.78, s	57.0	3.92, s

Table 4.12 Comparison of 13 C and 1 H NMR data between BLWE3 (recorded at600MHz in DMSO) and perforatin A (recorded at 300MHz in CDCl₃+MeOD)

4.1.7 Cytotoxic activity of pure compounds

Three different types of cancer cells, which were epithelial lung cancer (A549), squamous lung cancer cell (H226), and skin melanoma (C32) were selected to investigate the cytotoxic activity of isolated compounds from Benchalokawichian remedy. The toxicity of a normal skin cell line also studied (Table 4.13).

Following the previous result, HPE and CPE showed no cytotoxic activity with $IC_{50} > 50 \ \mu$ g/mL. HPE1, which was isolated from *Harrisonia perforata*, gave the same results as their crude extract. On the contrary, CPE1 showed strong cytotoxic activity against two lung cancer cell lines (A549 and H226 with IC_{50} values 1.2 and 1.9 μ g/mL) and moderate cytotoxicity against skin melanoma (C32, IC_{50} = 40.1 μ g/mL) while CPE wasn't active. The ethanolic extract of *Tiliacora triandra*, TTE inhibited the growth of several types of cancer cell lines (with IC_{50} in range 19.5-37.9 μ g/mL) in contrast to the TTE1 compound which showed specific toxicity against lung cancer cell lines (A549 and H226 with IC_{50} =6.5 and 13.9 μ g/mL, respectively). However, both TTE and TTE1 showed less cytotoxicity to normal cells (IC_{50} > 50 μ g/mL). BLWE showed moderate cytotoxic activity against A549 and C32 but particular activity against H226 although two compounds from BLWE were different. BLWE2 displayed good cytotoxic effects against A549, H226 and C32 with IC_{50} 7.8, 6.3 and 6.8 μ g/mL but no toxicity to a normal cell line (HaCaT, IC_{50} >50 μ g/mL). Moreover, BLWE3 revealed no cytotoxic activity (IC_{50} >50 μ g/mL).

Sample	Cytotoxic activity, IC ₅₀ (µg/mL) \pm SEM, µM				
Sample	A549	H226	C32	HaCaT	
TTE1	6.5 ± 4.8	13.9 ± 2.9	>50	>50	
CPE1	1.2 ± 0.0	1.9 ± 0.1	40.1 ± 0.6	48.6 ± 0.3	
HPE1	NT	NT	>50	NT	
BLWE2	7.8 ± 0.2	6.3 ± 3.2	6.8 ± 1.2	11.5 ± 0.9	
BLWE3	>50	>50	NT	NT	
TTE	33.7 ± 0.6	19.5 ± 1.4	37.9 ± 0.4	79.9 ± 4.5	
CPE	>50	>50	>50	NT	
HPE	>50	>50	>50	NT	
BLWE	32.4 ± 0.7	10.1 ± 2.9	29.1 ± 4.0	64.4 ± 9.2	

Table 4.13 Cytotoxic activity of isolated compounds compare their crude extracts against two lung cancer, melanoma and normal cell lines with IC_{50} (µg/mL) ± SEM

Figure 4.9 The structure of TTE1 from *Tiliacora triandra*, HPE1 from *Harrisonia perforata*, CPE1 from *Cleodendrum petasites,* and BLWE1, BLWE2, BLWE3 from Benchalokawichian remedy

4.1.8 Structure-activity relationships (SAR)

Six isolated compounds isolated from the plants of BLW remedy included the cyclic peroxide (TTE1), chromones (HPE1 and BLWE3), the triterpenoid (CPE1), sterol (BLWE1), and the flavonoid (BLWE2). This is the first report of TTE1, a new compound tiliacoric acid [4-((3S,5R)-5-decyl-4-oxo-1,2-dioxolan-3-yl) butanoic acid]. It exhibited *in vitro* cytotoxic activity against two types of lung cancer cell lines (A549 and H226) while it showed no toxicity against a skin melanoma cell line and a normal cell line by SRB assay (C32 and Hacat, IC₅₀ >50 µg/mL).

Two chromones, perforatic acid (HPE1) and perforatin A (BLWE3), were found in our study. A literature review showed that BLWE3 has been isolated from several plants, for example, the heartwood of *Cedrelopsis grevei* (Dean & Robinson 1971), the bark of *C. gracilis* (Mulholland *et al.*, 2004), the wood of *Ptaeroxylon obliquum* (Langenhover *et al.*, 1988), the stems of *Cneorum tricoccum* (Gonzales *et al.*, 1984), iranian oil of *Rosmarinus officinalis* (Jalali-Heravi *et al.*, 2011), and branches of *Harrisonia perforata* (Tuntiwachwuttikul *et al.*, 2006). It has been reported to possess antihypertensive, antiplasmodial, antimycobacterial and anti-allergy activity (Langenhover *et al.*, 1988; Tuntiwachwuttikul *et al.*, 2006; Juckmeta *et al.*, 2014). *In vivo* toxicity of BLWE3 has been tested, and it was safe in a rat model with a highest dose of 300 mg/kg (Irwin *et al.*, 1968). HPE1 was isolated from *H. perforata* a long time ago (Wang *et al.,* 1984; Tanaka *et al.,* 1995) and found to be inactive in antiplasmodial and antimycobacterial assays (Tuntiwachwuttikul *et al.,* 2006). Both chromones HPE1 and BLWE3 have the same core structure, differing only in the substituent at C-2 (-Me and -COOH), which didn't affect the in *vitro* cytotoxic activity.

Oleanolic acid or OA has a similar structure to ursolic acid or UA (Jesus *et al.,* 2015; Jamal *et al.,* 2015; Kang *et al.,* 2008). Addition of an acetyl group to the C-3 hydroxyl of the pentacyclic triterpenoid OA gives CPE1 or oleanolic acid acetate (OAA) that improved activity in the type-II collagen-induced arthritis mice model compared with OA (Choi *et al.,* 2016). The cytotoxicity of synthesized oleanolic acid saponins was reported using a panel of human tumor cell lines, including promyelotic leukemia cell line (HL-60), non-small cell lung cancer cell line (A549) and melanoma cancer cell lines (A375), and most of the compounds showed strong cytotoxic activity (Lui *et al.,*

2013). Our results listed in Table4.13 showed the same trend. It is possible that the core structure alone promoted the cytotoxic effect, however, adding C-OOMe at C-3 increased the effect.

Pectolinarigenin, BLWE2, is a flavonoid which has been reported from several plants and in propolis from bees. In previous studies, it was isolated from Scrophulariaceae, Compositae, Bignoniaceae, Fabaceae, Lamiaceae and Verbanaceae (Tundis et al., 2005; Bonesi et al., 2008; Lim et al., 2008; Yoo et al., 2008; Yin et al., 2008; Nugroho et al., 2013; Hase et al., 1995; He et al., 1996; Zaidi et al., 1998; Grayer et al., 2001; Vieira et al., 2003; Pal et al., 1989). Researchers have studied the isolation and identification of the structure of this compound and its analysis by HPLC (He et al., 1996). In addition, they have studied its biological activity. BLWE2 was isolated from Linaria reflexa (Scrophulariaceae) which exhibited strong in vitro cytotoxic activity against colorectal adenocarcinoma (Caco-2), lung large cell carcinoma (COR-L 23), renal cell adenocarcinoma (ACHN), amelanotic melanoma (C32), lung carcinoma (A459), malignant melanoma (A375) with IC_{50} values of 5.3, 4.1, 15.2, 7.0, 5.6 and 8.2 μ M whereas it showed no activity against human hepatocellular carcinoma (Huh-7D12) and human skin fibroblast (142BR, IC₅₀ >100 μ M) cell lines (Tundis *et al.*, 2005; Bonesi et al., 2008). In the same study, pectolinarigenin exhibited activity against all respiratory system cancer cell lines such as KB, Hep2, COR-L23, A549 with IC₅₀ values 6.1, 1.9, 7.8, 9.1 µg/mL, respectively.

Additionally, pectolinarigenin (BLWE2) found from *Cirsium chanroenicum* (Compositae) was evaluated for anti-inflammatory activity. BLWE2 strongly inhibited

COX-2 mediated PGE2 and 5LOX-mediated LT production at >1 μ M, indicating that it is a dual inhibitor of COX-2/5-LOX. An *in vivo* study reported similar inhibitory activities against several animal models of inflammation/allergy: arachidonic acid-induced mouse ear edema, carrageenan-induced mouse paw edema and passive cutaneous anaphylaxis (Lim *et al.*, 2008). BLWE2 which was isolated from Compositae family (*Cirsium setidens*) exhibited hepatoprotective activity mainly *via* an SOD antioxidant mechanism in a rat model of hepatic injury caused by D-galactosamine (GalN) (Yoo *et al.*, 2008).

BLWE2 which was isolated from plants not only exhibited *in vitro* cytotoxic activity against cell lines but also showed effective anti-inflammatory activity *in vitro and vivo*. Hispidulin was reported to have many activities including anti-inflammation, anti-allergy and antitumor activity *in vivo* and *vitro* (Syrov *et al.,* 1985; Liu *et al.,* 1985; *Abdalla et al.,* 1988; *Anulakanapakorn et al.,* 1987; Hazekamp *et al.,* 2001). Following the structures, hispidulin is an analog of BLWE2, differing only in the substituent at C-4' (-OH and -OMe). Thus, the data suggests that core structure directly causes the anti-inflammatory and cytotoxic activities.

4.2 Finding the appropriately ratio of extract for product development treatment skin diseases involve infection and cancer.

Preliminary in previous study, the ethanolic extract of BLW and TT showed cytotoxic activity against all cell lines including five types cell lines in respiratory system and skin cancer cell line. Moreover, pectolinarigenin which was isolated from BLWE showed cytotoxic activity in our study (4.1) and also showed anti-allergic activity in previous study (Juckmeta *et al.,* 2014). In literature reviews, α -mangostin is main contents of *Garcinia mangostana* which showed the high ability of antibacterial and anti-inflammatory. Interestingly, it is possibly to develop two extract for skin treatment.

The plants were extracted in the different method and mixing appropriately. All extracts were determined antibacterial, anti-inflammatory and cytotoxic activity involving skin diseases. The stability was tested for approving their efficiency and suitability preparation of product development.

 Table 4.14 Yield percentage of the ethanolic extract of Benchalokawichain (BLWE)

 and Garcinia mangostana (GME) and various organic extracts of GM

Sample	Method	Solvent	Code	%Yield
Benchalokawichien or Harak	Maceration	95%EtOH	BLWE	3.18
	Maceration	95%EtOH	GME	21.38
Garcinia	Souplat	Hexane	GMH	0.92
mangostana	Souther	Chloroform	GMC	4.35
	extraction	Methanol	GMM	20.82
	Mixing	95%EtOH +	MIX 1:1	-
DLVVE + GIVIE	iviixing	95%EtOH	MIX 1:2	-

The ethanolic extract of BLW and GM showed yield as 3.18% and 21.38%. Comparison of yield percentage of GM in various solvent extractions, the ethanolic extract showed the highest yield 21.38%, following soxhlet extraction with methanol, chloroform and hexane were 20.82%, 4.35%, 0.92%, respectively.

4.2.1 Antibacterial activity

We focused on four types of bacteria (*S. aureus* ATCC 25923, *S. aureus* MRSA DMST 25923, *S. epidermidis* ATCC 12228, *S. pyogenes* ATCC 19615) which is the most common of skin infection. Disc diffusion were preliminary determined for antibacterial activity, positive control were gentamicin, clindamycin and ampicillin. The minimal inhibitory concentration (MIC) and minimal bactericidal concentration (MBC) which the lower concentration can inhibit or kill bacteria, were also determined. Gentamicin, clindamycin and vancomycin were positive control.

4.2.1.1 Disc duffusion

The screening antimicrobial activity by disc diffusion against *S. aureus, S. aureus* MRSA, *S. epidermidis, S. pyogenes* showed that MIX1:1 and MIX1:2 exhibited greater antimicrobial activity than GME and BLWE. The extract of GM with methanol (GMM) showed higher antimicrobial activity than ethanol extract (GME) against all microbes in our study. Interestingly, all extract showed inhibition zone against *S. aureus* MRSA while positive control as gentamicin, clindamycin and ampicillin didn't. Three of the top, which showed high inhibition zone against *S. aureus* MRSA, were MIX1:2, following GMC and GME (11.67, 11.00 and 9.67 mm, respectively). However, MIX1:1 also exhibited *S. aureus* MRSA with clear zone 9.0 mm. Overall the results of disc diffusion were shown in Table 4.15.

	Disc diffusion, Inhibition zone (mm)								
Sample		Mean ±SD, n=3							
	S. aureus	S. aureus MRSA	S. epidermidis	S. pyogenes					
BLWE	7.33 ± 0.58	8.00 ± 1.00	NI	11.00 ± 1.73					
GME	11.33 ± 0.58	9.67 ± 0.58	12.00 ± 0.00	11.33 ± 0.58					
MIX 1:1	10.67 ± 0.58	9.00 ± 0.00	11.33 ± 0.58	13.00 ± 1.00					
MIX 1:2	12.67 ± 3.79	11.67 ± 0.58	12.33 ± 0.58	12.00 ± 0.00					
GMH	9.67 ± 1.53	7.67 ± 0.58	10.50 ± 0.71	10.00 ± 0.00					
GMC	9.33 ± 0.58	9.67 ± 0.58	11.33 ± 0.58	10.00 ± 0.00					
GMM	12.00 ± 0.00	11.00 ± 0.00	13.33 ± 1.15	12.00 ± 0.00					
Gentamicin (10µg)	22.67 ± 2.08	NI	27.00 ± 0.00	21.00 ± 0.00					
Clindamycin (2µg)	25.33 ± 1.53	NI	30.67 ± 3.21	25.00 ± 0.00					
Ampicillin (10µg)	29.00 ± 2.00	NI	16.00 ± 1.73	35.00 ± 0.00					

 Table 4.15 The inhibition zone (mm) of disc diffusion against S. aureus, S. aureus MRSA, S. epidermidis, S. pyogenes

*NI= No inhibition Zone

4.2.1.2 Minimal Inhibitory Concentration (MIC) and Minimal Bactericidal Concentration (MBC)

(1) MIC and MBC results against S. aureus

The MIC and MBC results of all BLWE and GM in various solvent extracts including Mix extract and their compounds against *S. aureus* displayed on Table 4.16. BLWE showed lowest antimicrobial activity with MIC value 5 mg/mL (MBC >5mg/mL). Pectolinarigenin at concentration 100 µg/mL showed no inhibitory effect. GMC exhibited moderate level of antimicrobial effects with MIC value 3.13 µg/mL, followed by GME which was as well as GMH (MIC values 6.25, 6.25 µg/mL), and GMM (MIC =15.6 µg/mL). The minimum inhibitory concentration of mix1:2 were 15.63 µg/mL whereas mix1:1 was 62.5 µg/mL, as the same result minimal of bactericidal concentration of mix 1:2 was better than mix1:1. Although, the positive control as clindamycin and gentamicin showed high effective against *S. aureus* with MIC values 0.0.9 and 0.19 µg/mL. Nonetheless, alpha-mangostin revealed the stronger antimicrobial activity against *S. aureus* than vancomycin with MIC 0.39 and 0.78 µg/mL, respectively.

(2) MIC and MBC results against S. aureus MRSA

The antimicrobial activity of methicillin-resistant reported on Table 4.17. The MIC and MBC results of BLWE and pectolinarigenin against MRSA were same as *S. aureus*. Surprisingly, the most samples showed bactericidal activity against MRSA while gentamicin and clindamycin didn't. The highest inhibitory potentials were GMH and GMC with MIC of 1.56 and 1.56 μ g/mL. GME presented good antimicrobial activity, MIC and MBC values were similar (3.13 μ g/mL). Likewise, MIC of mix1:2 was better than mix1:2 twice values (6.25 and 12.5 μ g/mL). Additionally, alpha-mangostin showed greater antimicrobial activity than vancomycin with MIC values 0.19 and 0.78 μ g/mL, respectively.

Campala		MBC			
Sample -	n1	n2	n3	Mean, n=3	Mean, n=3
BLWE	5 mg/mL	5 mg/mL	5 mg/mL	5 mg/mL	>5 mg/mL
GME	6.25	6.25	12.5	6.25	25
MIX 1:1	31.25	62.50	62.50	62.50	125
MIX 1:2	15.63	15.63	15.63	15.63	62.50
GMH	6.25	3.13	6.25	6.25	12.50
GMC	3.13	6.25	3.13	3.13	>50
GMM	15.63	15.63	31.25	15.63	>1 mg/mL
Gentamicin	0.19	0.39	0.19	0.19	1.56
Clindamycin	0.09	0.19	0.09	0.09	0.19
Vancomycin	0.78	0.78	0.78	0.78	1.56
Alpha-mangostin	0.39	0.78	0.39	0.39	0.78
Pectolinarigenin	>100	>100	NT	>100	NT

 Table 4.16 The minimal inhibitory concentration (MIC) and minimal bactericidal concentration (MBC) against S. aureus

Camala		MBC			
Sample -	n1	n2	n3	Mean, n=3	Mean, n=3
BLWE	5 mg/mL	5 mg/mL	5 mg/mL	5 mg/mL	>5 mg/mL
GME	3.13	3.13	3.13	3.13	3.13
MIX 1:1	12.50	6.25	12.50	12.50	50
MIX 1:2	6.25	3.13	6.25	6.25	>100
GMH	1.56	0.05	1.56	1.56	1.56
GMC	1.56	3.13	1.56	1.56	6.25
GMM	50	6.25	50	50	>50
Gentamicin	>100	NT	NT	>100	NT
Clindamycin	>100	NT	NT	>100	NT
Vancomycin	0.78	0.78	0.78	0.78	0.78
Alpha-mangostin	0.19	0.39	0.19	0.19	0.39
Pectolinarigenin	>100	>100	NT	>100	NT

Table 4.17 The minimal inhibitory concentration (MIC) and minimal bactericidal concentration (MBC) against S. aureus MRSA

(3) MIC and MBC results against S. epidermidis

Although, alpha-mangostin showed the highest antimicrobial potentials with MIC 0.39 μ g/mL of *S. epidermidis*, clindamycin and gentamicin were better (MIC = 0.04 and 0.09 μ g/mL). GMC inhibited *S. epidermidis* as equal as vancomycin with MIC value 0.78 μ g/mL however vancomycin exhibited bactericidal activity better than GMC (MBC=1.56 and 3.13 μ g/mL, respectively). GMH also showed strong antimicrobial against *S. epidermidis* with MIC of 1.56 μ g/mL and MBC of 3.13 μ g/mL. Both GMM and GME showed inhibitory activity with MIC value 3.13 μ g/mL. In the same manner the MIC of mix1:1 and mix1:2 were 6.25 μ g/mL. Notably, BLWE and pectolinarigein revealed no antimicrobial activity agaist *S. epidermidis* (MIC >5mg/mL and > 100 μ g/mL, respectively).

(4) MIC and MBC results against S. pyogenes

None of them exhibited antimicrobial activity better than positive control which were clindamycin, vancomycin and gentamicin (MIC values 0.09, 0.19, and 0.78 µg/mL, respectively). BLWE at concentration 400 µg/mL showed inhibitory effect against *S. pyogenes* but couldn't kill it. The potent concentration to inhibit and kill *S. pyogenes* of GMH and GMC were 12.5 µg/mL. Both of GMM and GME showed the same MIC value as 25.5 µg/mL while the bactericidal concenteration of them were slightly different. In addition, the results of mix1:1 and mix1:2 were similar with MIC value 50 µg/mL.

Camala		MBC			
Sample	n1	n2	n3	Mean, n=3	Mean, n=3
BLWE	>5 mg/mL	>5 mg/mL	NT	>5 mg/mL	>5 mg/mL
GME	3.13	1.56	3.13	3.13	25
MIX 1:1	6.25	12.50	6.25	6.25	50
MIX 1:2	6.25	3.13	6.25	6.25	25
GMH	1.56	1.56	1.56	1.56	3.13
GMC	0.78	1.56	0.78	0.78	3.13
GMM	3.13	6.25	3.13	3.13	25
Gentamicin	0.09	0.19	0.09	0.09	0.39
Clindamycin	0.04	0.04	0.04	0.04	0.78
Vancomycin	0.78	0.78	0.78	0.78	1.56
Alpha-mangostin	0.39	0.09	0.39	0.39	0.39
Pectolinarigenin	>100	NT	NT	>100	NT

Table 4.18 The minimal inhibitory concentration (MIC) and minimal bactericidal concentration (MBC) against *S. epidermidis*

Sample		MBC			
Sample	n1	n2	n3	Mean, n=3	Mean, n=3
BLWE	400	>400	400	400	>400
GME	25	25	25	25	50
MIX 1:1	50	50	50	50	50
MIX 1:2	50	25	50	50	50
GMH	12.50	3.13	12.50	12.50	12.50
GMC	12.50	6.25	12.50	12.50	12.50
GMM	25	25	25	25	25
Gentamicin	0.78	1.56	0.78	0.78	3.13
Clindamycin	0.09	0.19	0.09	0.09	0.78
Vancomycin	0.19	0.39	0.19	0.19	0.78

 Table 4.19 The minimal inhibitory concentration (MIC) and minimal bactericidal concentration (MBC) against S. pyogenes

Sample	S. a	S. aureus S. aureus MRSA		us MRSA	S. epia	lermidis	S. pyogenes	
	MIC	MBC	MIC	MBC	MIC	MBC	MIC	MBC
	(µg/mL)	(µg/mL)	(µg/mL)	(µg/mL)	(µg/mL)	(µg/mL)	(µg/mL)	(µg/mL)
BLWE	5 mg/mL	>5 mg/mL	5 mg/mL	>5 mg/mL	>5 mg/mL	>5 mg/mL	400	>400
GME	6.25	25	3.13	3.13	3.13	25	25	50
MIX 1:1	62.50	125	12.50	50	6.25	50	50	50
MIX 1:2	15.63	62.50	6.25	>100	6.25	25	50	50
GMH	6.25	12.50	1.56	1.56	1.56	3.13	12.50	12.50
GMC	3.13	>50	1.56	6.25	0.78	3.13	12.50	12.50
GMM	15.63	>1	50	>50	3.13	25	25	25
Gentamicin	0.19	1.56	>100	NT	0.09	0.39	0.78	3.13
Clindamycin	0.09	0.19	>100	NT	0.04	0.78	0.09	0.78
Vancomycin	0.78	1.56	0.78	0.78	0.78	1.56	0.19	0.78
Alpha-mangostin	0.39	0.78	0.19	0.39	0.39	0.39	NT	NT
Pectolinarigenin	NT	NT	>100	>5 mg/mL	>100	>5 mg/mL	>400	NT

Table 4.20 The results of minimal inhibitory concentration (MIC) and minimal bactericidal concentration (MBC) against *S. aureus, S. aureus*MRSA, *S. epidermidis, S. pyogenes,* (n=3)

The summary results of antimicrobial (MIC and MBC) against *S. aureus, S. aureus* MRSA, *S. epidermidis, S. pyogenes* showed on Table 4.20. BLWE inhibited *S. aureus* MRSA and *S. aureus* at concentration 5 mg/mL, but in the same dose wasn't killing them (MBC > 5 mg/mL). In similarly, BLWE exhibited against *S. pyogenes* at concentration 400 μ g/mL (MBC > 400 μ g/mL). In the study on antimicrobial activity against *S. aureus* MRSA, GMC showed highest antibacterial activity follow by GMH, GME, MIX 1:2 and MIX 1:1 (MIC values 0.78, 1.56, 3.13, 6.25, 12.5 μ g/mL), respectively. Alphamangostin exhibited higher antibacterial activity by MIC and MBC method than vancomycin (MIC = 0.19, 0.78 μ g/mL, MBC = 0.39, 0.78 μ g/mL, respectively) while gentamicin and clindamycin were not active (MIC > 100 μ g/mL).

4.2.2 Anti-inflammatory activity

The extract which showed highest anti-inflammatory activity were GMH, followed by GMC (IC₅₀ values 6.24 , 7.84 μ g/mL). Nevertheless, they also showed toxicity at concentration 30 μ g/mL. Although, the GME and MIX 1:2 exhibited inhibitory effect of nitric oxide production with IC₅₀ values 18.90, 26.67 μ g/mL, they also showed toxicity with %survival less than 70% at concentration 50 μ g/mL. Both MIX1:1 and GMM showed moderate anti-inflammatiory activity (IC₅₀ = 34.70, 37.84 μ g/mL), they showed no toxicity at concentration 50 μ g/mL. It is possibly that BLWE can reduce toxicity of GME. So, the MIX1:1 is appropriately to be develop the product for reduce inflammatory mechanism.

			IC ₅₀				
Sample							(µg/mL)
	100	50	30	10	1	0.1	
BLWE	48.65 ± 10.20	17.43 ± 6.85					>100
	89.37 ± 16.76	98.85 ± 8.86					
GME	97.38 ± 0.65	98.80 ± 1.41	85.47 ± 7.47	19.26 ± 5.10	-0.78 ± 6.32		18.90 ± 0.73
	9.91 ± 2.01	12.53 ± 4.09	65.14 ± 20.60	115.50 ± 6.38	107.97 ± 5.40		
MIX 1:1	99.30 ± 0.59	75.07 ± 6.50	29.47 ± 3.52	-5.42 ± 6.85	-19.77 ± 2.83		34.70 ± 3.51
	10.47 ± 0.67	84.87 ± 9.91	116.62 ± 1.56	108.05 ± 2.76	98.86 ± 6.02		
MIX 1:2	97.70 ± 1.29	96.20 ± 2.43	43.46 ± 2.80	0.62 ± 4.16	-15.24 ± 2.03		26.67 ± 6.94
	9.38 ± 0.87	30.10 ± 2.36	115.47 ± 3.07	107.23 ± 3.61	99.65 ± 5.77		
GMH		99.65 ± 3.84	104.60 ± 5.02	72.69 ± 9.50	-2.24 ± 21.52	-18.67 ± 7.76	6.24 ± 2.52
		11.44 ± 1.88	11.33 ± 1.39	106.84 ± 16.87	100.26 ± 8.28	94.08 ± 5.54	
GMC		95.98 ± 0.29	100.27 ± 0.88	72.72 ± 5.52	-18.45 ± 3.21	-23.20 ± 2.59	7.84 ± 0.49
		10.21 ± 0.95	10.69 ± 1.44	96.40 ± 14.36	99.31 ± 3.22	104.49 ± 1.96	
GMM	85.70 ± 10.56	64.45 ± 12.31	40.87 ± 11.37	12.32 ± 10.59	-0.30 ± 8.72		37.84 ± 9.24
	14.85 ± 0.76	119.71 ± 14.07	117.25 ± 10.24	114.92 ± 3.60	95.24 ± 2.83		

Table 4.21 Anti-inflammatory activity of the ethanolic extracts, combination extracts in ratio (1:1, 1:2) and different solvent extracts of GM shown in %inhibition, %survival at various concentration and IC_{50} (µg/mL, n=3).

%survival showed more than 70% , it means no toxicity.

4.2.3 Quantitative and Qualitative analysis of MIX remedy using HPLC technique

Studied on validate method of two compounds, pectolinarigenin and alpha-mangostin, from Benchalokawichian (BLW) and *Garcinia mangostana* (GM). Pectolinarigenin, which showed cytotoxic activity in our study as same as previous reports (Bonesi *et al.,* 2008 and Tundis *et al.,* 2005), was used for marker of BLW. Moreover, pectolinarigenin also showed anti-inflammatory and anti-allergic activities in the recent study (Juckmeta *et al.,* 2012 and Juckmeta *et al.,* 2014). Alpha-mangostin is well known for antibacterial activity, and also showed their activity against *S. aureus* MRSA better than some positive control in this research. There is no research study on validation method of this mix remedy. This research modified method from Sakpakdeejaroen *et al.,* (2014), Aisha A. *et al.,* (2012) and Yodhnu *et al.,* (2009), results showed on Table 4.22 and 4.23.

4.2.3.1 Selectivity

The selectivity of this method was confirmed by comparison of mix extract and standard (pectolinarigenin and alpha-mangostin). Spectra of compounds which found from mix extract were identity as same as standard.

Table 4.22 Linear equation, correlation coefficients (R²), LOD and LOQ of two compounds

parameters	pectolinarigenin	alpha-mangostin
concentration (µg/mL)	10-200	50-1000
linear equation	y= 45.25x + 42.02	y= 18.05x + 236.98
linearity (R ²)	0.9999	0.9999
LOD (µg/mL)	0.4	0.64
LOQ (µg/mL)	0.16	0.49
4.2.3.2 Linearity

Pectolinarigenin was prepared the concentration 10-200 μ g/mL, alpha-mangostin was prepared the concentration 50-1000 μ g/mL. Standard of two compounds in 5 concentrations were mixed and injected in triplicate. The correlation coefficients (R²) of them were 0.9999.

4.2.3.3 Precision

The average %RSD of pectolinarigenin and alpha-mangostin in the intra-day data were 0.78% and 2.17% whereas inter-day were 1.4% and 2.7%

4.2.3.4 Accuracy

Two standard compounds which pectolinarigenin (10, 50, 100 μ g/mL) and alpha-mangostin (50, 250, 500 μ g/mL) were evaluated at 3 concentrations. The percentage of recovery were presented their accuracy.

4.2.3.5 LOD and LOQ

The LOD represent the lowest concentration that can detected whereas the LOQ represents the lowest concentration that can determined with acceptable precision and accuracy by using this instrument and method. Results of LOD and LOQ were revealed on Table 4.23

pectolinarigenin						
Intra-day (n=3)		Inter-day (n = 9)		Recovery (n=3)		
Measured Conc. %RSD Measured Conc. %RSD		%RSD	Mean (%)	%CV		
(µg/mL)		(µg/mL)				
92.55 ± 1.07	1.16	95.42 ± 4.17	4.37	93.51 ± 0.25	0.28	
45.13 ± 0.37	0.83	46.55 ± 1.80	3.87	91.87 ± 0.69	0.74	
9.67 ± 0.03	0.33	9.79 ± 0.21	2.11	100.27 ± 1.62	1.61	
	Ban	alpha-mangostin	S. 1			
oncentration Intra-day (n=3)		Inter-day (n = 9)		Recovery (n=3)		
Measured Conc.	%RSD	Measured Conc.	%RSD	Mean (%)	%CV	
(µg/mL)		(µg/mL)				
514.39 ± 2.63	0.51	504.46 ± 17.50	3.46	96.85 ± 2.59	2.67	
242.77 ± 4.94	2.04	246.41 ± 5.63	2.28	97.43 ± 2.68	2.75	
65.88 ± 2.61	3.96	60.33 ± 11.67	19.35	93.83 ± 5.26	5.60	
	Intra-day Measured Conc. $(\mu g/mL)$ 92.55 ± 1.07 45.13 ± 0.37 9.67 ± 0.03 Intra-day Measured Conc. $(\mu g/mL)$ 514.39 ± 2.63 242.77 ± 4.94 65.88 ± 2.61	Intra-day (n=3)Measured Conc.%RSD $(\mu g/m L)$ 92.55 ± 1.071.1692.55 ± 1.071.1645.13 ± 0.370.839.67 ± 0.030.33Intra-day (n=3)Measured Conc.%RSD $(\mu g/m L)$ 514.39 ± 2.630.51242.77 ± 4.942.0465.88 ± 2.613.96	Intra-day (n=3) Inter-day (n Measured Conc. %RSD Measured Conc. $(\mu g/mL)$ $(\mu g/mL)$ $(\mu g/mL)$ 92.55 ± 1.07 1.16 95.42 ± 4.17 45.13 ± 0.37 0.83 46.55 ± 1.80 9.67 ± 0.03 0.33 9.79 ± 0.21 Intra-day (n=3) Inter-day (n Measured Conc. %RSD Measured Conc. $(\mu g/mL)$ $(\mu g/mL)$ Inter-day (n 514.39 ± 2.63 0.51 504.46 ± 17.50 242.77 ± 4.94 2.04 246.41 ± 5.63 65.88 ± 2.61 3.96 60.33 ± 11. 67	pectolinarigeninIntra-day (n=3)Inter-day (n = 9)Measured Conc.%RSDMeasured Conc.%RSD(µg/mL)(µg/mL)(µg/mL)4.3792.55 ± 1.071.1695.42 ± 4.174.3745.13 ± 0.370.8346.55 ± 1.803.879.67 ± 0.030.339.79 ± 0.212.11alpha-mangostinIntra-day (n=3)Intra-day (n=3)Inter-day (n = 9)Measured Conc.%RSDMeasured Conc.%RSD(µg/mL)(µg/mL)(µg/mL)3.46242.77 ± 4.942.04246.41 ± 5.632.2865.88 ± 2.613.9660.33 ± 11. 6719.35	pectolinarigeninIntra-day (n=3)Inter-day (n = 9)RecoveryMeasured Conc.%RSDMeasured Conc.%RSDMean (%)(µg/mL)(µg/mL)(µg/mL)93.51 ± 0.2593.51 ± 0.2592.55 ± 1.071.1695.42 ± 4.174.3793.51 ± 0.2592.55 ± 1.070.8346.55 ± 1.803.8791.87 ± 0.699.67 ± 0.030.339.79 ± 0.212.11100.27 ± 1.629.67 ± 0.030.339.79 ± 0.212.11100.27 ± 1.62Inter-day (n=3)Inter-day (n=3)RecoveryMeasured Conc.%RSDMeasured Conc.%RSDMean (%)(µg/mL)(µg/mL)(µg/mL)9.685 ± 2.593.4696.85 ± 2.59242.77 ± 4.942.04246.41 ± 5.632.2897.43 ± 2.6865.88 ± 2.613.9660.33 ± 11.6719.3593.83 ± 52.61	

 Table 4.23 Precision and accuracy of pectolinarigenin and alpha-mangostin

4.2.4 Stability testing of mix extract

The extract was studied on both biological activities and chemical fingerprint for approve their efficacy in long term period. The samples were placed into stability incubator 40 celsius degree, with RH 75% for 6 months. Three samples were randomly collected in each day 0, 15, 30, 60, 90, 120, 150, 180.

4.2.4.1 HPLC technique for quantitative evaluation

The quantitative of two compounds analyze by HPLC technique. The extracts showed that the alpha-mangostin was decreasing on the other hand pectolinarigenin was increasing. They show less different but not significantly (p- value < 0.05). However, the biological activity is also necessary.

Figure 4.10 Total amounts of alpha-mangostin and pectolinarigenin in stability extract

4.2.4.2 Antimicrobial activity (MIC, MBC)

All extracts also showed not different in *S. aureus* with the MIC in the range of 50-100 μ g/mL. The inhibitory effect of mix1:1 extract against *S. aureus* MRSA was decreased after 30 days (MIC from 12.5 to 25 μ g/mL) then stable within 90 days before it was decreasing again.

Table 4.24 The results of minimal inhibitory concentration (MIC) and minimal bactericidal concentration (MBC) of MIX1:1 extract D0-D180 against *S. aureus, S. aureus* MRSA showed in concentration (μ g/mL), n=3

MIX1:1 extract	S. aureus		S. aureus MRSA	
12-6	MIC	MBC	MIC	MBC
D0	50	>100	12.5	100
D15	50	>100	12.5	50
D30	50	>100	25	100
D60	100	>100	25	100
D90	50	>100	25	>100
D120	100	>100	50	>100
D150	50	>100	25	>100
D180	100	>100	50	>100

4.2.4.3 Anti-inflammatory activity using inhibitory release nitric

oxide (NO) and MTT assay

Inhibitory effect releasing nitric oxide induced by lipopolysaccharide (LPS) and survival of extract in various days were determined, IC_{50} showed in range 21.0-36.8 µg/ml, Table 4.25. As the result, the samples were not significantly different (*p*-value < 0.05).

MIX1.1 ovtract	IC ₅₀ (µg/mL)
MIALL EXUACT	Mean ± SEM, n=3
D0	21.02 ± 1.13
D15	26.23 ± 13.75
D30	25.02 ± 10.12
D60	32.30 ± 0.64
D90	30.74 ± 1.11
D120	23.74 ± 7.44
D150	36.75 ± 4.71
D180	22.09 ± 2.81

Table 4.25 Anti-inflammatory activity of mix extract (D0-D180) with IC_{50} (μ g/mL)

4.2.5 Pre-formulation study

Force degradation of preparation extract were studied before product development. The extracts were weighted to 50 mg and placed in glass tube. Heat, humidity, acid hydrolysis, and oxidation were tested the typical tests. The sample were determined for antimicrobial activity assay.

Antimicrobial activity against *S. aureus* MRSA were influenced by oxidation and acid hydrolysis. In addition, alkaline also showed minor effect on antimicrobial activity. So, the process for product development should be aware and avoid these three factors.

Cample	S. aureus MRSA			
Sample	MIC (µg/mL)	MBC (µg/mL)		
Control	6.25	12.5		
Oxidation	>100	>100		
Acid hydrolysis	>100	>100		
Alkaline hydrolysis	25	25		
Moisture hydrolysis	6.25	12.5		
Temperature forced degradation	6.25	12.5		

Table 4.26 Force degradation study of mix extract

4.2.6 Product development

The Ingredients were varied and providing five formulations (Rx1-Rx5) showed on Table 4.27. For the topical herbal (mix1:1) cream formulation, we decided to use preservative as less as possible which might not be effect on antimicrobial activity. Rx1-4 were white opaque, smoothness, moisturizer and pH suitable while Rx5 was not homogeneity and texture like balsam.

In succession to	Concentration %w/w				
ingredients	Rx1	Rx2	Rx3	Rx4	Rx5
Sepigel	1.5	1	1.5	1.5	1.5
Sodium EDTA	0.1	0.1	0.1	0.1	0.1
Propylene glycol	5	5	5	5	5
Glycerine	5.7	5	5	5	5
Uniphen	0.5		0.3	-	-
Bronidox	- / (0.3	125	-	-
Liqiud paraffin light	1	1.5	1.5	1.5	5
Isopropyl myristate	2	1.5	1.5	1.5	5
GMS	2	2	2	2	2
Cetyl alcohol	2	2	1.5	1.5	2
Steryl alcohol	1	1	0	1	0
Cremophor A25 (powder)	2	2	1.5	2	0
Cremophor A6 (hard)	2	1	1.5	2	0
Lanolin anhydrous	0.5	0.2	0.5	0.5	0.1
Water			q.s.100		

Table 4.27 Various formulation ingredients of cream (Rx1-Rx5)

Rx4 formulation which provide moisturizer, soothing skin and film formed after dry is possible to develop product. After the Rx4 showed good stability by using heating-cooling method, 0.3% of extract was added for skin infection product. Cream preparation was filled into tubes, then placed in stability incubator 40 celsius degree, with RH 75% for 6 months.

Rx	рΗ	color	Physical	Homogeneity	texture	Phase	Immediate
			appearance	(LED)	5	separation	skin feels
1	5.5	white	opaque	good	smooth	no	light& dry,
							not greasy
2	5.5	white	opaque	good	smooth	no	fluid,
							not greasy
3	5.5	white	opaque	good	smooth	no	viscous,
							slightly greasy
4	5.5	white	opaque	good	smooth	no	film formed
							after dry,
							slightly thicky
5	5.5	white	opaque and	not good	non-	yes	oily like
			transaparent	The second	smooth		balsam

 Table 4.28 Physical properties of the topical cream formulations

Figure 4.11 Chart illustrated weight and %yield of cream extract

Triplicate samples were weighed into tube, the average weight in range 1200-1600 mg. They were extracted by methanol, centrifuged then filtrated (repeated it twice) to obtain the cream extract. Average of base cream 1248.9 mg provided the percentage of yield as 4.84 (62.4 ± 25.2 mg). Similarly, formulated creams (D0-D180) were extracted and calculated percentage of yield, the results of weight and %yield showed on Table 4.29 and Figure 4.10.

Table 4.29 Weight of stability cream extraction and percentage of yield (Mean±SEM,n=3)

Cream	Weight (mg)	Extract weight (mg)	%Yield
base	1248.97 ± 322.55	62.40 ± 25.23	4.84 ± 121
D0	1382.50 ± 189.86	73.70 ± 12.17	5.51 ± 1.02
D15	1474.23 ± 278.71	77.93 ± 13.78	5.78 ± 1.52
D30	1497.47 ± 123.78	85.10 ± 13.79	5.64 ± 0.57
D60	1587.03 ± 371.72	67.47 ± 23.70	4.20 ± 1.16
D90	1269.83 ± 200.19	69.87 ± 13.36	5.45 ± 0.38
D120	1375.57 ± 185.83	68.40 ± 15.00	5.00 ± 0.82
D150	1351.27 ± 188.79	60.37 ± 16.25	4.51 ± 0.96
D180	1405.90 ± 201.76	79.47 ± 2.87	5.88 ± 0.81

Figure 4.12 Cream stability of analysis using HPLC presented by area under curve of alpha-mangostin.

As the result, area under curve of alpha-mangostin which was used to be an active compound of sample were not difference (p-value < 0.05). It assumed that cream preparation was stability and can kept within two years.

98

CHAPTER 5

CONCLUSIONS AND RECOMMENDATIONS

5.1 Cytotoxic activity and compounds isolation

Water extract and ethanolic extract of individual plants and Benchalokawichian remedy were tested cytotoxic activity against three lung cancer cells (A549, COR-L23, H226), oropharynx and larynx cancer cell lines (KB, Hep2). All of water extract showed no cytotoxic activity (IC₅₀>50 µg/mL). Four of ethanolic extracts which were FR, CM, CP, HP also showed activity. The ethanolic extract of *Tiliacora triandra* (TTE) exhibited all types of respiratory system (three lung cancer, oropharynx and larynx) cancer cell lines with IC₅₀ in range 19.5-45.2 µg/mL. In the same way, the 95%EtOH of Benchalokawichian (BLWE) extract showed cytotoxic activity against A549, COR-L23, H226, KB, Hep2 with IC₅₀ in range 10.1-33.7 µg/mL. Both of them showed specific cytotoxic with H226 better than others cell lines. In addition, BLWE showed higher cytotoxic against skin cancer (C32) cell line than TTE with IC₅₀ value 29.1 and 37.9 µg/mL, respectively.

Tiliacora triandra ethanolic extract (TTE) was interesting to be a marker for cytotoxic activity of BLW remedy, so it was isolated based on bioassay guided fractionation technique. Following VLC method, five fractions (TTF1-TTF5) were collected. Yield percentage were calculated, TTF4 was the highest yield (48.4%) followed by TTF5, TTF2, TTF3, TTF1 (24.1%, 4.6%, 3.82%, 0.1%). Screening of cytotoxic activity against five cell lines in respiratory system at concentration 50 µg/ml, fraction 2-3 (TTF2-3) showed no cytotoxic activity with percentage lower than 50. The fraction 4 (CHCl₃: MeOH, TTF4) showed high percentage of cytotoxic against all cell lines (in range 79.93-95.73%). The fraction 5 (MeOH, TTF5) showed 70% cytotoxic at concentration 50 µg/mL against H226. The result showed that TTF4 exhibited cytotoxic activity as same as TTE. Surprisingly, the fraction 5 (TTF5) showed specific against H226 with IC₅₀ value 33.02 µg/ml. Isolation compound from TTF4 of ethanolic extract of *Tiliacora triandra* was TTE1, the ¹H and ¹³C NMR spectrum and COSY, HMBC correlations were proven as 4-((35,5*R*)-5-decyl-4-oxo-1,2-dioxolan-3-yl) butanoic acid.

The ethanolic extract of *Clerodendrum petisites* was separated by sephadex LH-20, and further isolated by sep-pack C18 decreasing polarity to 100% methanol. Compound as CPE1, a colorless crystal was participated by methanol. Base on ¹H, ¹³C NMR (600 and 125 MHz, CDCl₃) spectrum all data and comparative their reference, CPE1 was identified as oleanolic acid acetate. Moreover, the main compound was isolated from *Harrisonia perforata* which was HPE1 as the yellow wax. The ¹H NMR and ¹³C were indicated as perforatic acid.

The chloroform fraction of crude BLW ethanolic extract was separated by VLC elution start with hexane increasing polarity with chloroform and acetone to give seven fractions (A-G). Recrystallization of C4 using hexane-MeOH afforded CPE1 and BLWE1 as colorless crystals and white powders, the ¹H NMR data indicated the mixture of oleanolic acid acetate and β -sitosterol. BLWE2 was washed with Me₂CO-MeOH to obtain as light-yellow crystals. By comparison of ¹H and ¹³C NMR data with previous study, BLWE2 was identified as pectolinarigenin. BLWE3 as white/yellow wax which was isolated by PLC, data of NMR spectra was confirmed with the previously reported data as perforatin A or *O*-methylalloptaeroxylin.

Cytotoxic activity of isolated compounds against two lung cancer, melanoma and normal cell lines were investigated. The TTE1 exhibited two lung cancer cell lines, A549 and H226, betther than TTE with IC_{50} 6.49, 13.98 and 33.65, 19.48 µg/mL, respectively. Notably, TTE1 showed no toxicity in normal cell line (HaCaT). CPE1 also showed strong cytotoxic activity against A549 and H226 with 1.24 and 1.95 µg/mL whereas CPE weren't. Although HPE1 was the main compound of *Harrisonia perforata* and Benchalokawichian remedy, it showed no cytotoxic activity in SRB assay as same as BLWE3 (>50 µg/mL). In contrast, BLWE2 exhibited against two lung cancers (A549, H226) and malenoma cancer cell lines (C32) with IC_{50} 7.76, 6.25 6.78, µg/mL respectively. Though, BLWE2 also showed toxicity in normal cell line.

5.2 Product development for skin diseases

From review literature, pectolinarigenin and α -mangostin which were represented the be a marker of mixed extract. Comparison of yield percentage of GM in various solvent extractions, the ethanolic extract showed the highest yield 21.38%, following soxhlet extraction with methanol, chloroform and hexane were 20.82%, 4.35%, 0.92%, respectively. The results showed that BLWE inhibited S. aureus MRSA and *S. aureus* at concentration 5 mg/mL, but in the same dose wasn't killing them (MBC > 5mg/mL). In similarly, BLWE exhibited against S. pyogenes at concentration 400 μ g/mL (MBC > 400 μ g/mL). In the study on antimicrobial activity against *S. aureus* MRSA, GMC showed highest antibacterial activity follow by GMH, GME, MIX 1:2 and MIX 1:1 (MIC values 0.78, 1.56 ,3.13, 6.25, 12.5 µg/mL), respectively. Alpha-mangostin exhibited higher antibacterial activity by MIC and MBC method than vancomycin (MIC=0.19, 0.78 µg/mL, MBC=0.39, 0.78 µg/mL, respectively) while gentamicin and clindamycin weren't active (MIC > 100 μ g/mL). The GMH extract showed highest antiinflammatory activity, followed by GMC (IC₅₀ values 6.24, 7.84 μ g/mL). Nevertheless, they also showed toxicity at concentration 30 µg/mL. Both MIX1:1 and GMM showed moderate anti-inflammatiory activity ($IC_{50} = 34.70, 37.84 \, \mu g/mL$), they showed no toxicity at concentration 50 µg/mL. It is possibly that BLWE can reduce toxicity of GME. Mixed extract was studied on both biological activities and chemical fingerprint for approve their efficacy in long term period.

Validation method of mix extract was developed, pectolinarigenin and alpha-mangostin were investigated based on HPLC analysis, five concentration of compounds provided reliable linearity (R^2 = 0.9999). Intra-day and inter-day repeatability were calculated and presented in average %RSD which were refer to the precision. Pectolinarigenin were 0.78% and 2.17% whereas alpha-mangostin were 1.4% and 2.7%, respectively. Both of them revealed an accuracy with %recovery more than 95.

The sample was collected into stability incubator 40 celsius degree, with RH 75% for 6 months. HPLC analysis according to validation method, the extracts showed that the alpha-mangostin was decreasing on the other hand pectolinarigenin

was increasing. However, they show less different but not significantly (*p*-value < 0.05). Inhibitory effect releasing nitric oxide induced by lipopolysaccharide (LPS) and survival of mix extract in various day were not differented.

The extracts were weighed to 50 mg for pre-formulation before product development. Antimicrobial activity against *S. aureus* MRSA were influenced by oxidation and acid hydrolysis. So, the process for product development should be aware and avoid these three factors. Rx4 formulation which provided moisturizer and soothing skin is possible to develop product. The cream formulations were extracted by methanol in triplicate, the percentage of yields were averaged of 4.51-5.88. Alpha-mangostin which was the chemical compound of mixed cream was analyzed using HPLC analysis, the compound in various days showed not difference. It assumed that cream preparation was stability and can kept within two years. Nevertheless, the cream extract should be confirmed the biological activity which is an antimicrobial activity as same way with their extract.

REFERENCES

Books and Book Articles

- Anonymous. (1952). The Wealth of India-A Dictionary of Indian Raw Materials, Vol 4. New Delhi: CSIR. p. 35-36.
- Anynomous (1992). The Useful Plants of India, Publication and Information Directorate, CSIR, New Delhi, pp 132.
- Atal CK and Kapur BM (ed)(1982). Cultivation and Utilization of Medicinal Plants, Regional Research Laboratory, CSIR, Jammu-Tawi, pp.514-519.
- Boyed, MR. 1997. The NCI *in vitro* anticancer drug discovery screen. In Teicher, B.(Ed.). Anticancer drug development guide; preclinical screening, clinical trials and approval, Humana Press, Totowa, p.30.
- Chopra RN, Chopra IC, Handa KL, Kapur LD. (1985). Indigenous Drugs of India, 2nd ed. Calcutta: Academic Publisher, p. 508.
- Condemi, J. John., Dykewicz, S. Mark., Bielory, Leonard., Burks, Wesley A., Fischer, J. Thomas., Ledford, K. Dennis., Leung, Y.M. Donald., Li, T.C. James., Schwartz, B. Lawrence., White, V. Martha. (1997). Allergy and Immunology (p.18,23). 2nd ed., USA; American college of physicians.
- Comeau, MR., Ziegler, SF. (2009). The influence of TSLP on the allergic response. Nature public group. p. 138.
- Deb, D.B. (Ed.), 1983. The Flora of Tripura State, vol. II. Today & tomorrow's printers and publishers, p. 109.
- Farnsworth, N.R., Bunyapraphattsara, N. (1992). Thai medicinal plants. Prachachon Co., Ltd., Bangkok, Thailand.
- Flora of Thailand (various editors), (1970). The Forest Herbarium, Royal Forest Department, Bangkok, Thailand.
- Goldsby, R. A., Kindt, T. J., Osborne, B. A., Kuby, J. (2002). Immunology, 5th ed.; W.H. Freeman and Company: New York, 361–370.

Henryi Matsum Capparis. (1899). Bot. Mag. Tokyo 13: 33.

Henryi Var. (Matsum.) (1965). Jacobs in Blumea 12(3): 470.

- Hsiao, JY., Lin, ML. (1995). A Chemotaxonomic study of essential oils from the leaves of genus *Clerodendrum* (Verbenaceae) native to Taiwan. *Botany Bulletin Academica Sinica,* 36, 247-251.
- Jansen, P.C.M., Jukema, J., Oyen, L.P.A. & van Lingen, T.G., (1991). *Ficus racemosa* L. In: Verheij, E.W.M. and Coronel, R.E. (Editors). Plant Resources of South-East Asia No. 2: Edible fruits and nuts. Pudoc, Wageningen, The Netherlands, p. 335.
- Kiew, R., (2001). Harrisonia perforata (Blanco) Merr.In: van Valkenburg, J.L.C.H. and Bunyapraphatsara, N. (Editors). Plant Resources of South-East Asia No. 12(2): Medicinal and poisonous plants 2. Backhuys Publisher, Leiden, The Netherlands, p. 290.
- Kirtikar KR, Basu BD. (1975). Bishen Singh Mahandra Pal Singh, Ind. Med. Plants, 2nd ed. 3, 2327-2328.
- Kottegoda, S.R. (Ed.), 1994. Flowers of Sri Lanka. The Royal Asiatic Society of Sri Lanka, Colombo, p. 56.
- Lassak, E.V., McCarthy, T., (1997). Australian Medicinal Plants. Reed Books Australia, Vic., Australia.
- Lorian, V, (1996). Antibiotics in laboratory medicine, fourth ed. Williams and Wilkins, Baltimore, 14-32.
- Liu & Liao. (1976). Flora Taiwan 2: 667. p. 441.
- Nadkarni KM, Nadkarni AK, Chopra RN. (1996). Mumbai: Popular Prakashan, p. 548-50.
- Perry, L.M., (1980). Medicinal plants of East and Southeast Asia. Attributed properties and uses. MIT Press, Cambridge, Massachusetts, United States & London, United Kingdom. *6*, 68-9, 20.
- Pételot, A., (1952-1954). Les plantes médicinales du Cambodge, du Laos et du Vietnam [The medicinal plants of Cambodia, Laos and Vietnam]. 4 volumes. Centre National de Recherches Scientifiques et Techniques, Saigon, Vietnam.
- Phan Phuc Thich, Duong Kim Phung, Tran Quoc Khuyen, (1981). Preliminary studies on antibacterial activity and chemical composition of 'da da' plant. Thong bao Duoc lieu [Bulletin of Materia Medica], 13 (2), 11-17.

- Phan Phuc Thich, Duong Kim Phung & Tran Quoc Khuyen, (1983). Preliminary study of the antibacterial property and chemical composition of *Harrisonia perforata* (Blanco) Merrill. *Tap chi Duoc hoc (in Vietnamese), 5*, 5-7.
- Rehabilitation Foundation for the Promotion of traditional Thai medicine. Ayurvedic College (Cheevakakomalapaj), (2001). Thai Traditional medical texts (medical assistance). 2nd ed., Samja-reunpanich.
- Smitinand, T., & Larsen, K. (1991). Flora of Thailand (Vol. 5 Part 3). Bangkok: The Forest Herbarium, Royal Forest Department.
- Stephen, T Holgate., Martin, K Church., Lawrence, M Lichtenstein. (2006). Allergy (p.3,12). 3rd ed., Elservie.
- Suffness M, Pezzuto JM. Assays related to cancer drug discovery. In: Hostettmann, K. (Ed.), Methods in Plant Biochemistry: Assays for Bioactivity, vol. 6. Academic Press, London 1991: pp.71-133., pp. 71–133.
- The Hospital of National Medicine Thanh Hoa. Nhung cay con va khoang vat lam thuoc [Plants, animals and minerals to be used as medicine]. (1987). Thanh Hoa, Thanh Hoa Publishing House, p. 218-219.
- Tiangburanatham, V., (1996). Dictionary of Thai Medicinal Plants. Prachumtong Publishing, Bangkok, p. 377–380.
- Vo Van Chi. Cay rau lam thuoc [Vegetable plants for medicine]. (1998). Dong Thap Publishing House. Vietnam, p.225-227.
- Vo Van Chi. Nhung cay thuoc thong thuong [Popular medicinal plants]. (1988). Dongthap, Dongthap Publishing House, p. 273-274.
- Windadri, F.I., (2001). *Capparis micracantha* DC. In: van Valkenburg, J.L.C.H. and Bunyapraphatsara, N. (Editors). Plant Resources of South-East Asia No. 12(2): Medicinal and poisonous plants 2.
- World Health Organization WHO Technical Report Series, No. 863, (1996). WHO, p.65-75.

Articles

- Afsharypuor S, Jeiran K, Jazy AA. (1998). First investigation of the flavor profiles of leaf, ripe fruit and root of *Capparis spinosa* var. *mucronifolia* from Iran. *Pharmaceutica Acta Helvetiae*, 72, 307–9.
- Ahmed, F., Urooj, A. (2008). Antihyperglycemic activity of *Ficus glomerata* stem bark in streptozotocin-induced diabetic rats. *Global Journal of Pharmacology, 2,* 41-5.
- Ahmad, VU., Ismail, N., Amber AUR. (1989). Isocodonocarpine from *Capparis decidua*. *Phytochemistry, 28,* 2493–5.
- Ahmad, VU., Ismail, N., Arif, S., Amber AUR. (1992). Two new N-acetylated spermidine alkaloides from *Capparis decidua*. *Journal of Natural Products*, 55, 1509–12.
- Al-Massarani, S.M., El Gamal, A.A., Al-Musayeib, N.M., Mothana, R.A., Basudan, O.A., Al-Rehaily, A.J., Farag, M., Assaf, M.H., El Tahir, K.H., Maes, L. (2013). Phytochemical, antimicrobial and antiprotozoal evaluation of *Garcinia mangostana* pericarp and alpha-mangostin, its major xanthone derivative. *Molecules*, 18(9), 10599-608.
- Arunachalam, A., Venkatesan, N., Senthilraj, R., Vijayakumar, G., Karthikeyan, M., Ashutoshkumar. (2010). Phytopharmacosnostical properties of *Ficus racemosa* Linn. (Research article). *International journal of comprehensive pharmacy, 5,* 1-3.
- Baruah KK, Gohain AK. (1992). Chemical composition and nutritive value of Dimaru (*Ficus glomerata* Roxb.) leaves. *Indian Journal of Animal Nutrition, 9,* 107-8.
- Blois, M.S. (1958). Antioxidant determinations by the use of a stable free radical. *Nature*,181, 1199-1200.
- Braun-Fahrländer, C., Gassner, M. Grize, L., Neu, U., Sennhauser, FH., Varonier, HS., Vuille, JC. W**ü**thrich, B. (1999). Prevalence of hay fever and allergic sensitization in farmer's children and their peers living in the same rural community. *Clinical and experimental allergy*, 29, 28–34.
- Bunluepuech, K., Tewtrakul, S. (2009). Anti-HIV-1 integrase activity of Thai Medicinal Plants. *Songklanakarin Journal of Science and Technology, 31* (3), 289-292.

- Dekker, TG., Fourie, TD., Matthee, E., Snyckers, FO. (1987). An oxindole from the roots of *Capparis tomentosa*. *Phytochemistry*, *26*, 1845–6.
- Calis I, KuruuzumA, Lorenzetto PA, Ruedi P. (2002). (6S)-hydroxy-3-oxo-**α**-ionol glucosides from *Capparis spinosa* fruits. *Phytochemistry*, 59,451–7.
- Calis I, Kuruuzum A, Ruedi P. (1999). 1H-indole-3-acetonitrile glycosides from *Capparis spinosa* fruits. *Phytochemistry*, *50*, 1205–8.
- Chandrashekhar CH, Latha KP, Vagdevi HM, Vaidya VP. (2008). Anthelmintic activity of the crude extracts of *Ficus racemosa*. *International Journal of Green Pharmacy*, 2, 100-103.
- Chartsuwan, J., Sinsomboon, O., Ruangnoo, S., Itharat, A. (2009). Study on cytotoxic and antioxidant activities of Thai medicinal plants in Benjalokawichian [Abstract]. *Journal of Thai Traditional & Alternative Medicine*, 7, 118.
- Chea, A., Jonville, MC., Bun, SS., Laget, M., Elias, R., Duménil, G., Balansard, G. (2007). *In vitro* antimicrobial activity of plants used in Combodian Traditional Medicine. *The American journal of Chinese medicine, 35*(5), 867-73.
- Chen, LG., Yang, LL., Wang, CC. (2008). Anti-inflammatory activity of mangostins from *Garcinia mangostana*. *Food and Chemical Toxicology*, 48(2), 688-93.
- Cheong, H., Choi, EJ., Yoo, GS., Kim, KM., Ryu, SY. (1998). Desacetylmatricarin, an antiallergic component from Taraxacum platycarpum. *Planta Medica*, 64, 577–578.
- Chin, YW., Jung, HA., Chai, H., Keller, WJ., Kinghorn, AD. (2008). Xanthones with quinone reductase-inducing activity from the fruits of *Garcinia mangostana* (Mangosteen). *Phytochemistry*, 69(3), 754-8.
- Cho, JY., Baik, KU., Jung, JH., Park, MH., (2000). *In vitro* anti-inflammatory effects of cynaropicrin, a sesquiterpene lactone, from *Saussurea lappa*. *European Journal of Pharmacology* 398, 399-407.
- Cho, Y-C., Kim, HJ., Kim, Y-J., Lee, KY., Choi, HJ., Lee, I-S., Kang, BY. (2008). Differential anti-inflammatory pathway by xanthohumol in IFN-**γ** and LPS activated macrophages. *International immunopharmacology* 8, 567-573.
- Choi, YH., Yan, GH. (2009). Anti-allergic effects of scoparone on mast cells mediated allergy model. *Phytomedicine*, 16(12), 1089-1094.

- Chomchuen S., Singharachai C., Ruangrungsi N., Towiwat P. (2010). Antipyretic effect of the ethanolic extract of *Ficus racemosa* in rats. *Journal of Health Research*, 24(1): *23-28*.
- Chomnawang, MT., Surassmo, S., Nukoolkarn, VS., Gritsanapan, W. (2005). Antimicrobial effects of Thai medicinal plants against acne-inducing bacteria. *Journal of Ethnopharmacology*, 101(1-3), 330-333.
- Chomnawang, MT., Surassmo, S., Nukoolkarn VS., Gritsanapa, W. (2007). Effect of *Garcinia mangostana* on inflammation caused by *Propionibacterium acnes*. *Fitoterapia*, 78(6), 401-8.
- Choodej, S., Sommit, D., Pudhom, K. (2013). Rearranged limonoids and chromones from *Harrisonia perforata* and their anti-inflammatory activity. *Bioorganic & Medicinal Chemistry Letters, 23,* 3896–3900.
- Ding, A., Nathan, CF., Stuehr, DJ. (1988). Release of reactive nitrogen intermediates and reactive oxygen intermediates from mouse peritoneal macrophages. *Journal of Immunology* 141, 2407-2418.
- Falcone, FH., Haas, H., Gibbs, BF. (2000). The human basophil: a new appreciation of its role in immune responses. *Blood*, 96, 4028-4038.
- Fu, XP., Wu, T., Abdurahim, M., Su, Z., Hou, XL., Aisa, HA., Wu, H. (2008). New spermidine alkaloids from *Capparis spinosa* roots. *Phytochemistry Letters*, *1*, 59-62.
- Hazekamp, A., Verpoorte, R., Panthong, A. (2001). Isolation of a bronchodilator flavonoid from the Thai medicinal plant *Clerodendrum petasites*. *Journal of Ethnopharmacology, 78,* 45-49.
- Iinuma, M., Tosa, H., Tanaka, T., Asai, F., Kobayashi, Y., Shimano, R., Miyauchi, K. (1996). Antibacterial activity of xanthones from guttiferaeous plants against methicillinresistant *Staphylococcus aureus. Journal of Pharmacy and Pharmacology*, 48(8), 861-5.
- Ingkaninan, K., Temkitthawon, P., Chuenchom, K., Yuyaem, T., Thongnoi, W. (2003). Screening for acetylcholinesterase inhibitory activity in plants used in Thai traditional rejuvenating and neurotonic remedies. *Journal of Ethnopharmacology*, 89, 261–264.

- Itharat, A., Thongdeeying, P., Ruangnoo, S. (2014). Isolation and characterization of a new cytotoxic dihydrophenanthrene from *Dioscorea membranacea* rhizomes and its activity against five human cancer cell lines. *Journal of Ethnopharmacology*, 156, 130-134.
- Jindarat, S. (2014). Xanthones from mangosteen (*Garcinia mangostana*): multi-targeting pharmacological properties. *Journal of Medicinal Association of Thailand, 97(2),* 196-201.
- Jongchanapong, A., Singharachai, C., Palanuvej, C., Ruangrungsi, N., Towiwat, P. (2010). Antipyretic and Antinociceptive effects of Ben-Cha-Lo-Ka-Wi-Chian Remedy. *Journal of Health Research, 24(1),* 15-22.
- Juckmeta, T., Itharat, A. (2012). Anti-inflammatory and antioxidant activities of Thai Traditional remedy called "Ya-Ha-Rak". *Journal of Health Research, 26*(4), 205-210.
- Juckmeta, T., Thongdeeying, P., Itharat, A. (2014). Inhibitory effect on betahexosaminidase release from RBL-2H3 cells of extracts and some pure constituents of Benchalokawichian, a Thai Herbal Remedy. *Evidence-Based Complementary and Alternative Medicine,* Article ID 828760, Online available http://dx.doi.org/10.1155/2014/828760.
- Jung, KK., Lee, HS., Cho, JY., Shin, WC., Rhee, MH., Kim, TG., Kang, JH., Kim, SH., Hong, S., Kang, SY. (2006). Inhibitory effect of curcumin on nitric oxide production from lipopolysaccharide-activated primary microglia. *Life sciences*, 79, 2022-2031.
- Jung, KH., Ha, E., Kim, MJ., Won, HJ., Zheng, LT., Kim, HK., Hong, SJ., Chung, JH., Yim SV. (2007). Suppressive effects of nitric oxide (NO) production and inducible nitric oxide synthase (iNOS) expression by *Citrus reticulata* extract in RAW 264.7 macrophage cells. *Food and Chemical Toxicology*, 45, 1545-1550.
- Kanchanapoom T, Chumsri P, Kasai R, Otsuka H, Yamasaki K. (2005). A new iridoid diglycoside from *Clerodendrum chinense*. *Journal of Asian Natural Products Research* 7, 269-272.

- Khan, N., Sultana, S. (2005). Chemomodulatory effect of *Ficus racemosa* extract against chemically induced renal carcinogenesis and oxidative damage response in Wistar rats. *Life Sciences*, *77*, 1194–1210.
- Khuong-Huu, Q., Chiarona, A., Riche, C., Nguyen-Ngoc, H., Nguten-Viet, K., Khuong- Huu,
 F. (2000). New rearranged limonoids from *Harrisonia perforata. Journal of Natural Products, 63,* 1015–8.
- Khuong-Huu, Q., Chiaroni, A., Riche, C., Nguyen-Ngoc, H., Nguyen-Viet, K., Khuong-Huu,F. (2001). New rearranged limonoids from *Harrisonia perforata* III. *Journal of Natural Products, 64,* 634–37.
- Konsue, A., Sattayasai, J., Puapairoj, P., Picheansoonthon, C. (2008). Antipyretic effects of Bencha-Loga-Wichien herbal drug in rats. *Thai Journal of Pharmaceutical Sciences, 29(1),* 79-82.
- Kou, PC., Schroder, RA. (1995). The emerging multifacated roles of nitric oxide. *Annals* of Surgery, 221, 220–235.
- Lal, S., Lata, K., (1980). Plants used by the Bhat community for regulating fertility. *Economic Botany, 34,* 273–275.
- Lantz, RC., Chen, GJ., Solyom, AM., Jolad, SD., Timmermann, BN. (2005). The effect of turmeric extracts on inflammatory mediator production. *Phytomedicine*, 12, 445-452.
- Lansky, EP., Paavilainen, HM., Pawlus, AD., Newman, RA. (2008). *Ficus spp.* (fig): Ethnobotany and potential as anticancer and anti-inflammatory agents. *Journal of Ethnopharmacology, 119,* 195–213.
- Li, RW., Myers, SP., Leach, DN., Lin, GD., Leach, G. (2003). A cross-cultural study: antiinflammatory activity of Australian and Chinese plants. *Journal of Ethnopharmacology, 85,* 25–32.
- Li, RW., Leach, DN., Myers, SP., Lin, GD., Leach, GJ., Waterman, PG. (2004). A New Anti-Inflammatory Glucoside from *Ficus racemosa* L. (Abstract). *Planta Medica, 70(5),* 421-426.
- Limsong, J., Benjavongkulchai, E., Kuvatanasuchati, J. (2004). Inhibitory effect of some herbal extracts on adherence of *Streptococcus mutans. Journal of Ethnopharmacology*, 92, 281–89.

- Lui, C., Bayer, A., Cosgrove, SE., Daum, RS., Fridkin, SK., Gorwitz, RJ., Kaplan, SL., Karchmer, AW., Levine, DP., Murray, BE., Rybak, MJ., Talan, DA., Chambers, HF. (2011). Clinical Practice Guidelines by the Infectious Diseases Society of America for the Treatment of Methicillin-Resistant *Staphylococcus Aureus* Infections in Adults and Children. *Clinical Practice Guidelines*, 52, 1-38, DOI: 10.1093/cid/ciq146
- Liu, WJ., Jiang, JF., Xiao, D., Ding, J. (2002). Down-regulation of telomerase activity via protein phosphatase 2A activation in salvicine-induced human leukemia HL-60 cell apoptosis. *Biochemical Pharmacology, 64*, 1677–1687.
- MacMicking, J., Xie, QW., Nathan, C. (1997). Nitric oxide and macrophage function. Annual Review of Immunology, 15, 323–50.
- Mahidol, C., Sahakitpichan, P., Ruchirawat, S. (1994). Bioactive natural products from Thai plants. *Journal of Pure and Applied Chemistry, 66,* 2353–2356.
- Mandal, SC., Mukherjee, PK., Saha, K., Pal, M., Saha, BP. (1997). Antidiarrhoeal evaluation of *Ficus racemosa* Linn leaf extract. *Natural Product Sciences, 3,* 100-3.
- Mandal, SC., Mukherjee, PK., Das, J., Pal, M., Saha, BP. (1997). Hypoglycaemic activity of *Ficus racemosa* L. (Moraceae) leaves on strepozotocin-induced diabetic rats. *Natural Product Sciences, 3,* 38-41.
- Mandal, SC., Maity, TK., Das, J., Pal, M., Saha, BP. (1999). Hepatoprotective activity of *Ficus racemosa* leaf extract on liver damage caused by carbon tetrachloride in rats. (short communication). *Phytotherapy Research, 13,* 430–2.
- Mandal, SC., Maity, TK., Das, J., Saba, BP., Pal, M. (2000). Anti-inflammatory evaluation of *Ficus racemosa* Linn. leaf extract. *Journal of Ethnopharmacology*, 72, 87– 92.
- Mandal, SC., Saha, BP., Pal, M., (2000). Studies on antibacterial activity of *Ficus* racemosa Linn. *Phytotherapy Research 14,* 278–280.
- Manian, R., Anusuya, N., Siddhuraju, P., Manian, S. (2008). The antioxidant activity and free radical scavenging potential of two different solvent extracts of *Camellia sinensis* (L.) O. Kuntz, *Ficus bengalensis* L. and *Ficus racemosa* L. *Food Chemistry, 107,* 1000–7.

- Matsuda, H., Tewtrakul, S., Morikawa, T., Nakamura, A., Yoshikawa, M. (2004). Antiallergic principles from Thai zedoary: structural requirements of curcuminiods for inhibition of degranulation and effect release of TNF-**α** and IL-4 in RBL-2H3 cells. *Journal of Bioorganic and Medicinal Chemistry, 12,* 5891-5898.
- Matsuda, H., Tewtrakul, S., Morikawa, T., Yoshikawa, M. (2004). Anti-allergic activity of stilbenes from Korean rhubarb (*Rheum undulatum* L.): structure requirements for inhibition of antigen-induced degranulation and their effects release of TNF α and IL-4 in RBL-2H3 cells. *Journal of Bioorganic and Medicinal Chemistry*, 12, 4871-4876.
- Matthaus, B., Özcan, M. (2002). Glucosinolate composition of young shoots and flower buds of capers (*Capparis* species) growing wild in Turkey. *Journal of agricultural and food chemistry*, 50, 7323–5.
- Mohamed, GA., Ibrahim, SR., Shaaban, MI., Ross, SA. (2014). Mangostanaxanthones I and II, new xanthones from the pericarp of *Garcinia mangostana*. *Fitoterapia*. 98, 215-21.
- Moilanen, E., Vapaatalo, H. (1995). Nitric oxide in inflammation and immune response. Annals of Medicine, 27, 359–67.
- Moncada, S., Palmer, RM., Higgs, EA. (1991). Nitric oxide: Physiology, pathophysiology, and pharmacology. *Pharmaceutical Review*, 43, 109–142.
- Moncada, S., Higgs, A. (1993). The L-arginine-nitric oxide pathway. *The New England journal of medicine, 329,* 2002–12.
- Mukherjee, PK., Saha, K., Murugesan, T., Mandal, SC., Pal, M., Saha, BP., (1998). Screening of anti-diarrhoeal profile of some plant extracts of a specific region of West Bengal, India. *Journal of Ethnopharmacology, 60*, 85–89.
- Nakatani, K., Nakahata, N., Arakawa, T., Yasuda, H., Ohizumi, Y. (2002). Inhibition of cyclooxygenase and prostaglandin E2 synthesis by gamma-mangostin, a xanthone derivative in mangosteen, in C6 rat glioma cells. *Biochemical pharmacology*, 63(1), 73-9.
- Nakatani, K., Atsumi, M., Arakawa, T., Oosawa, K., Shimura, S., Nakahata, N., Ohizumi, Y. (2002). Inhibitions of histamine release and prostaglandin E2 synthesis by

mangosteen, a Thai medicinal plant. *Biological and Pharmaceutical Bulletin,* 25(9), 1137-41.

- Nanasombat, S., Teckchuen, N. (2009). Antimicrobial, antioxidant and anticancer activities of Thai local vegetables. *Journal of Medicinal Plants Research, 3*(5), 443-49.
- Nathan, C., Xie, QW. (1994). Regulation of biosynthesis of nitric oxide. *Journal of Biological Chemistry*, *269*, 13725-8.
- Nguyen-Pouplin, J., Tran, H., Tran, H., Phan, TA., Dolecek, C., Farrar, J., Tran, TH., Caron, P., Bodo, B., Grellier, P. (2007). Antimalarial and cytotoxic activities of ethnopharmacologically selected medicinal plants from South Vietnam. *Journal of Ethnopharmacology, 109,* 417–27.
- Nuaeissara, S., Kondo, S., Itharat, A. (2011). Antimicrobial activity of the extracts from Benchalokawichian remedy and its components. *Journal of the Medicinal Association of Thailand, 94(7), S*172-7.
- Nutmakul, T., Saralamp, P., Prathanturarug, S. (2013). An effective method for the identification of stem adulteration in Bencha-Loga-Wichian, a Thai Traditional preperation. *Journal of Health Research. 27*(5), 307-314.
- Paarakh, PM. (2009). Ficus racemosa Linn.-An overview. Natural Product Radiance, 8(1), 84-90.
- Palakawong, C., Sophanodora, P., Toivonen, P., Delaquis, P. (2013). Optimized extraction and characterization of antimicrobial phenolic compounds from mangosteen (*Garcinia mangostana* L.) cultivation and processing waste. *Journal of the Science of Food and Agriculture, 93(15)*, 3792-800.
- Panthong, D., Kanjanapothi, T., Taesotikul, T., Wongcomea, V. (2003). Anti-inflammatory and antipyretic properties of *Clerodendrum petasites* S. Moorea. *Journal of Ethnopharmacology, 85,* 151-156.
- Pan, J. P., Li, Z. L., Hu, C. Q., Chen, K., Chang, J. J., Lee, K. H. (1990). The cytotoxic principles of *Pseudolarix kaempferi*: pseudolaric acid-A and -B and related derivatives. *Planta Medica*, *56*, 383–385.

- Panwar, A., Chavda, J., Chavda, N., Saurabh, M., Yadav, P. (2010). Subacute toxicity study of an aqueous extract of *Ficus racemosa* Linn. bark in rats. *Journal of Pharmacy Research, 3*(4), 814-7.
- Pedraza-Chaverri, J., Cárdenas-Rodríguez, N., Orozco-Ibarra, M., Pérez-Rojas, JM. (2008). Medicinal properties of mangosteen (*Garcinia mangostana*). *Food and Chemical Toxicology, 46,* 3227-39.
- Pie, S.J., (1985). Preliminary study of ethnobotany in Xishuangbanna. People's Republic of China. *Journal of Ethnopharmacology*, *13*, 121–137.
- Prayong, P., Barusrux, S., Weerapreeyakul, N. (2008). Cytotoxic activity screening of some indigenous Thai plants. *Fitoterapia*, *79*, 598–601.
- Rao, RB., Anupama, K., Swaroop, KR., Murugesan, T., Pal, M., Mandal, SC. (2002). Evaluation of anti-pyretic potential of *Ficus racemosa* bark. *Phytomedicine*, *9*, 731–3.
- Rao, RB., Murugesan, T., Sinha, S., Saha, BP., Pal, M., Mandal, SC. (2002). Glucose Lowering Efficacy of *Ficus racemosa* Bark Extract in Normal and Alloxan Diabetic Rats. *Phytotherapy Research*, 16, 590–92.
- Rao, BR., Murugesan, T., Pal, M., Saha, BP., Mandal, SC. Antitussive potential of methanol extract of stem bark of *Ficus racemosa* Linn. (short communication). *Phytotherapy Research*, 17, 1117–8.
- Rao, ChV., Verma, AR, Vijayakumar, M., Rastogi, S. (2008). Gastroprotective effect of standardized extract of *Ficus glomerata* fruit on experimental gastric ulcers in rats. *Journal of Ethnopharmacology, 115,* 323–6.
- Saiin, C., Markmee, S. (2003). Isolation of anti-malaria active compound from Yanang (*Tiliacora triandra* Diels.). *Kasetsart Journal (Natural Science), 37,* 47 51.
- Sakagami, Y., linuma, M., Piyasena, KG., Dharmaratne, HR. (2005). Antibacterial activity of alpha-mangostin against vancomycin resistant Enterococci (VRE) and synergism with antibiotics. *Phytomedicine*, *12(3)*, 203-8.
- Sakpakdeejaroen, I., Juckmeta, T., Itharat, A. (2014). Development and Validation of RP-HPLC Method to Determine Anti-allergic Compound in Thai Traditional Remedy Called Benjalokawichien. *Journal of Medicinal Association of Thailand, 97 (S.8),* S76-80.

- Sangrapee, C., Khantham, S., Panthong, S., Itharat, A. (2009). Study on Antimicrobial activity of Thai medicinal plants in Pikutbenjalokawichain [Abstract]. *Journal of Thai Traditional & Alternative Medicine*, *7*, 121.
- Sarker, SD., Nahar L., Kumarasamy, Y. (2007). Microtitre platebased antibacterial assay incorporating resazurinas an indicator of cell growth, and its application in the *in vitro* antibacterial screening of phytochemicals. *Methods, 42,* 321-4.
- Schwartz, LB., Lewis, RA., Seldin, D., Austen, KF. (1981). Acid hydrolyses and tryptase from granules of dispersed human lung mast cells. *Journal of Immunology*, *126(4)*, 1290-4.
- Sharaf, M., El-Ansari, MA., Saleh, NAM. (1997). Flavonoids of four Cleome and three *Capparis* species. *Biochemical Systematics and Ecology, 25,* 161-6.
- Sharaf, M., El-Ansari, MA., Saleh, NAM. (2000). Quercetin triglycoside from *Capparis. Fitoterapia, 71,* 46–9.
- Shiksharthi, AR., Mittal, S. (2011). *Ficus Racemosa:* Phytochemistry, Traditional Uses and Pharmacological Properties: A Review, *International Journal of Recent Advances in Pharmaceutical Research, 4, 6-15.*
- Shrivastava, N., Patel, T. (2007). *Clerodendrum* and Heathcare: An Overview. *Medicinal and Aromatic Plant Science and Biotechnology. 1(1),* 142-150.
- Singharachai, C., Palanuvej, C., Vipanngeun, Niran., Ruangrungsi, N. (2008). Microscopic characters of five roots species in Ben-Cha-Lo-Ka-Wi- Chian remedy [Abstract]. *Journal of Thai Traditional & Alternative Medicine, 6,* 116.
- Singharachai, C., Palanuvej, C., Kiyohara, H., Yamada, H., Ruangrungsi, N. (2011). Pharmacognostic Specification of Five Root Species in Thai Traditional Medicine Remedy: Ben-Cha-Lo-Ka-Wi-Chian. *Phamacognosy Journal*, *3*, 1-11.
- Sireeratawong, S., Lertprasertsuke, N., Srisawat, U., Thuppia, A., Ngamjariyawat, A., Suwanlikhid, N., Jaijoy, K. (2009). Acute and subchronic toxicity study of the water extract from *Harrisonia perforata* Merr. in rats. *Songklanakarin Journal of Science and Technology, 31(1),* 63-71.
- Skehan, P., Storeng, R., Scudiero, D., Monks, A., McMahon, J., Vistica, D., Warren, JT., Bokesch, H., Kenney, S., Boyd, MR. (1990). New colorimetric cytotoxicity assay

for anticancer-drug screening. *Journal of the National Cancer Institute, 82(13),* 1107-12.

- Steane, DA., Scotland, RW., Mabberley, DJ., Olmstead, RG., (1999). Molecular systematics of *Clerodendrum* (Lamiaceae): ITS sequences and total evidence. *American Journal of Botany, 86,* 98–107.
- Sung, TV., Phung, NM., Kamperdick, C., Adam, G. (1995). Perforatinolone, a limonoid from *Harrisonia perforata*. *Phytochemistry*, *38*, 213–15.
- Suranart, J., Juckmeta, T., Makchuchit, S., Itharat, A. (2009). Study on anti-inflammatory activities of Thai medicinal plants in Pikutbenjalokawichian (Ha-Rak) [Abstract]. *Journal of Thai Traditional & Alternative Medicine, 7,* 120.
- Sureram, S., Senadeera, SP., Hongmanee, P., Mahidol, C., Ruchirawat, S., Kittakoop, P. (2012). Antimycobacterial activity of bisbenzylisoquinoline alkaloids from *Tiliacora triandra* against multidrug-resistant isolates of *Mycobacterium tuberculosis. Bioorganic & Medicinal Chemistry Letters, 22,* 2902–05.
- Tabpueng, T., Tungjitpiyanont, T., Makchuchit, S., Itharat, A. (2009). Study on Antiallergic activity of Thai medicinal plants in Pikutbenjalokawichain [Abstract]. *Journal of Thai Traditional & Alternative Medicine, 7,* 123.
- Tanaka, T., Koike, K., Mitsunaga, K., Narita, K., Takano, S., Kamioka, A., Sase, E., Ouyang,
 Y. Ohmoto, T. (1995). Chromones from *Harrisonia perforata*. *Phytochemistry*,
 40(6), 1787-90.
- Tangwatcharin, P., Meannui, N., Onyen, A. (2012). Antimybacterial activity of mangosteen hull extract against *Listeria monocytogenes*. 4th International Conference on Bioinformatics and Biomedical Technology, 29, 191-195.
- Tewtrakul, S., Wattanapiromsakul, C., Mahabusarakam, W. (2009). Effects of compounds from *Garcinia mangostana* on inflammatory mediators in RAW264.7 macrophage cells. *Journal of Ethnopharmacology, 121(3),* 379-82.
- Thadaniti, S., Archakunakorn, W., Tuntiwachwuttikul, P., Bremner BJ. (1994). Chromones from *Harrisonia perforata* (Blanco.) Merr. *Journal of the Scientific Society, 20,* 183-187.
- Thaweephol, D., Panida, K., Kazumitsu, N. (1974). Isolation of active principle from Yanang. *Bulletin of the Department of Medical Sciences, 16,* 75-81.

- Tlili, N., Elfalleh, W., Saadaoui, E., Khaldi, A., Triki, S., Nasri, N. (2011). The caper (*Capparis*L.): Ethnopharmacology, phytochemical and pharmacological properties. *Fitoterapia, 82*, 93–101.
- Torre, D., Pugliese, A., Speranza, F. (2002). Role of nitric oxide in HIV-1 infection: friend or foe?. *THE LANCET Infectious Diseases, 2,* 273–80.
- Tuntiwachwuttikul, P., Phansa, P., Pootaengon, Y., Taylor, WC. (2006). Chromones from the branches of *Harrisonia perforata. Chemical and Pharmaceutical Bulletin, 54,* 44-7.
- Upegui, Y., Robledo, SM., Gil Romero JF, Quiñones, W., Archbold, R., Torres, F., Escobar, G., Nariño, B., Echeverri, F. (2015). *In vivo* Antimalarial Activity of **α**-Mangostin and the New Xanthone **δ**-Mangostin. *Phytotherapy Research, 29(8),* 1195-201.
- Veerapur, VP., Prabhakar, KR., Parikar, VK., Kandadi, MR., Ramakrishana, S., Mishra, B., Rao, SS., Srinivasan, KK. Priyadarsini, KI., Unnikrishnan, MK. (2009). *Ficus racemosa* Stem Bark Extract: A Potent Antioxidant and a Probable Natural Radioprotector. *Evidence-based complementary and alternative medicine*, 6, 317-24.
- Walker, PG., Woollen, JW., Heyworth, R. (1961). Studies on glucosaminidase. 5. Kidney N-acetyl-β-glucosaminidase and N-acetyl-galactosaminidase. *Biochemical Journal*, *79*, 288-94.
- Wiriyachitra, P., Phuriyakorn, B. (1981). Alkaloids of *Tiliacora triandra. Australian Journal* of Chemistry, 34, 2001-4.
- Worawattananutai, P., Itharat A., Ruangnoo S. (2014). *In vitro* antioxidant, antiinflammatory, cytotoxic activities against prostate cancer of extracts from *Hibiscus sabdariffa* leaves. *Journal of the Medical Association of Thailand*, *97(8)*, 81-7.
- Xiao, D., Zhu, SP., Gu, ZL. (1997). Quercetin induced apoptosis in human leukemia HL-60 cells. *Acta Pharmacologica Sinica, 18,* 280–283.
- Yan, XH., Di, YT., Fang, X., Yang, SY., He, HP., Li, SL., Lu, Y., Hao XJ. (2011). Chemical constituents from fruits of *Harrisonia perforata*. *Phytochemistry* 72, 508-13.

- Yamazaki, K., Hashimoto, A., Kokusenya, Y., Miyamoto, T., Sato, T., (1994). Electrochemical method for estimating the antioxidative effect of methanol extracts of crude drugs. *Chemical and Pharmaceutical Bulletin, 42,* 1663-5.
- Yin, S., Chen, X., Su, ZS., Yang, SP., Fan, CQ., Ding, J., Yue, JM., (2009). Harrisotones A-E, five novel prenylated polyketides with a rare spirocyclic skeleton from *Harrisonia perforata. Tetrahedron 65,* 1147-52.

Electronic Media

- AAAAI ; The American Academy of Allergy, Asthma and Immunology. (2011). Statistic Allergy 2011. Retrieved July 18, 2011, from http://pollen.aaaai.org/nab/index.cfm?p=faq.
- American Academy of Family Physicians. (2010). antihistamine. Retrieved July 18, 2011, from

http://familydoctor.org/online/famdocen/home/common/allergies/treatment/ 262.printerview.html

- Anthony Harris, Daniel J Sexton. Elinor L Baron. Patient information: Methicillin-resistant Staphylococcus aureus (MRSA) (Beyond the Basics) update May 13, 2015.
 Retrieved April 7, 2016 from http://www.uptodate.com/contents/methicillinresistant-staphylococcus-aureus-mrsa-beyond-the-basics
- Asean Center for Biodiversity. (2010, Dec 24). Checklist of medicinal plants in southeast Asia [online]. Retrieved July 18, 2011, from: http://www.aseanbiodiversity.org/
- Asthma and Allergy Foundation of America (AAFA). (2005). Alternative Therapies. Retrieved July 18, 2011, from http://www.aafa.org/display.cfm?id=9&sub=19&cont=254

Centers for Disease Control and Prevention, Vital Signs, May (2011). Retrieved July 18, 2011, from http://www.aaaai.org/media/statistics/asthma-statistics.asp

Division of Healthcare Quality Promotion Centers for Disease Control and Prevention. (2015). Investigation and Control of Vancomycin-Resistant *Staphylococcus aureus* (VRSA): 2015 Update. Retrieved April 7, 2016, from http://www.cdc.gov/hai/pdfs/VRSA-Investigation-Guide-05_12_2015.pdf

- Farnsworth, N.R., Bunyapraphattsara, N. (1992). Thai medicinal plants. Prachachon Co., Ltd., Bangkok, Thailand
- George Krucik, MD, MBA. Skin Infection. (2014, Jan 22). Retrieved January 22, 2016, from, http://www.healthline.com/health/skin-infection#Overview1
- WAO; World Allergy Organization. (2011). Statistic Allergy 2011. WAO White Book on allergy 2011-2012: Executive Summary, Retrieved July 18, 2011, from http://www.worldallergy.org/UserFiles/file/WAO-White-Book-on-Allergy web.pdf
- World Health Organization. (2007). WHO Allergy. Global surveillance, prevention and
control of chronic respiratory diseases: a comprehensive approach, Retrieved
July 18, 2011, from
http://www.who.int/gard/publications/GARD%20Book%202007.pdf
- National Cancer Institute.(2013).National Cancer Control Program(2013-2017).RetrievedJanuary22,2016,from,http://www.nci.go.th/th/File_download/D_index/NCCP_2556-2560.pdf

APPENDICES

APPENDIX A

Figure A1 The ¹H spectrum of TTE1 recorded at 600 MHz in CDCl₃

Figure A2 The $^{\rm 13}{\rm C}$ NMR spectrum of TTE1 recorded at 150 MHz in CDCl_3

Figure A6 The DEPT135 spectrum of TTE1 in CDCl₃

Figure A7 The ¹H NMR data for mixture of CPE1 and BLWE1 compounds and their structures

Figure A10 The COSY spectrum of CPE1 in $CDCl_3$

Figure A12 The 1 H and 13 C NMR spectrum of HPE1 (600 and 150 MHz in DMSO- d_{6})

128

Figure A14 The 1 H and 13 C NMR spectrum of BLWE2 (600 and 150 MHz in DMSO- d_{6})

COSY Spectrum of BLWE3 in DMSO-d₆

132

APPENDIX B

Chemical Reagents and Preparation

Reagents for cell culture

FBS (inactivated)

Slowly thaw the frozen FBS, heat inactivate (56 °C, 30 min)

(Aliquot, stored at -20 $^{\circ}\text{C})$

PBS

- PBS 1 tablet
- MQ water
 100 ml

(Autoclave 121 °C, 15 min, stored at 4 °C)

Penicillin-Streptomycin

 Slowly thaw the frozen P/S in water bath at 37 °C till complete thaw (Aliquot, stored at -20 °C)

Trypsin-EDTA

 Slowly thaw the frozen trypsin in water bath at 37 °C till complete thaw (Aliquot, stored at -20 °C)

Medias preparation

RPMI 1640 (incomplete media)

- RPMI 1640 1X with L-glutamine
 1 pack (powder)
- NaHCO₃ 2.0 g
- Adjust volume with sterile water to 1,000 ml

Adjust pH 7.00-7.05 by 1 N NaOH or 1 N HCl

(Filtered sterile at a pore size of 0.2 μ M, stored t 4 °C)

MEM (incomplete media)

•	MEM 1X with Earle's salts, L-glutamine	1 pack (powder)
•	NaHCO ₃	2.2 g
•	Adjust volume with sterile water to	1,000 ml
	Adjust pH 7.00-7.05 by 1 N NaOH or 1 N HCl	
	(Filtered sterile at a pore size of 0.2 μ M, stored at 4	1°C

DMEM (incomplete media)

•	DMEM 1X with L-glutamine and glucose	1 pack (powder)
•	NaHCO ₃	2.2 g
•	Adjust volume with sterile water to	1,000 ml
	Adjust pH 7.00-7.05 by 1 N NaOH or 1 N HCl	
RPMI	1640 (complete media)	
•	RPMI 1640 (incomplete media)	400 ml
•	10% FBS	40 ml
•	1% Penicillin-Streptomycin	4 ml
	(Stored at 4 °C)	
MEM	(complete media)	
•	MEM (incomplete media)	400 ml
-	10% FBS	40 ml
•	1% Penicillin-Streptomycin	4 ml
	(Stored at 4 °C)	
DMEN	1 (complete media)	
•	DMEM (incomplete media)	400 ml
•	10% FBS	40 ml
•	1% Penicillin-Streptomycin	4 ml
	(Stored at 4 °C)	

NA (Nutrient Agar)

- NA with beef extract and peptone
 8.05 g
- Adjust volume with water to
 350 ml
- Mixed well and autocalved (121 °C 15 min.)
- poured into petri dishes and waited until media solidified (Stored at 4 °C)

MHA (Mueller Hinton Agar)

- MHA with beef extract powder, acid digest of casein, starch 13.3 g
- Adjust volume with water to
 350 ml
- Mixed well and autocalved (121 °C 15 min.)
- poured into petri dishes and waited until media solidified
 (Stored at 4 °C)

BHI agar (Brain Heart Infusion agar)

- MHA with calf brain, beef heart, proteose peptone, dextrose 18.2 g sodium chloride, disodium phosphate
- Adjust volume with water to
- Mixed well and autocalved (121 °C 15 min.)
- poured into petri dishes and waited until media solidified

(Stored at $4 \,^{\circ}$ C)

350 ml

BHI broth (Brain Heart Infusion)

- MHA with calf brain, beef heart, proteose peptone, 12.95 g dextrose, sodium chloride, disodium phosphate
- Adjust volume with boiled water to
 350 ml
- Pipetted to glass tubes with loose screw-caps then autoclaved

(121 °C 15 min.)

(Stored at 4 °C)

MHB (Mueller Hinton Broth)

- MHA with beef extract powder, acid digest of casein, starch 13.3 g
- Adjust volume with boiled water to
 350 ml
- Pipetted to glass tubes with loose screw-caps then autocalved

(121 °C 15 min.)

(Stored at 4° C)

APPENDIX C

Summary of Plants: Literature Reviews

Extraction	Compounds	Activity	Results	References
		N 24 (77	The root powder of BLW formula showed	
			the antipyretic efficacy by using a Baker's	
	- 1971	Antipyretic	yeast-induced fever model in rats.	Konsue <i>et al.,</i> 2008
			The identification of five authenticated	
			powdered roots were based on the	
			starch granules, fragment of fibers and	
			fragment of pitted vessels. All	
			authenticated powders showed	
			distinctive characteristics which can be	
		Identification of	established a key to identify the roots of	
		adulteration by	these five species and to detect the	Singharachai <i>et al.,</i>
	-	macroscopic	adulteration.	2008

Extraction	Compounds	Activity	Results	References
			The ethanolic extract showed mo	oderate
			antioxidant (EC50 value 35.3 µg/m	L) and
			also showed cytotoxic activity	against
			lung carcinoma cell line (COR-L2	3) and
			breast cancer cell line (MCF-7) w	ith IC ₅₀
Maceration- 95%ethanol, Decoction and		Antioxidant,	value 29.9, 31.4 µg/mL. Both of	water Chartsuwan et al.,
Residue decoction	-94	Cytotoxic	extract showed no activity in this	study. 2009
			The ethanolic extract of BLW showed	anti-
Maceration- 95%ethanol, Decoction and			inflammatory with IC $_{\rm 50}=91.4~\mu g/mL$ where	eas the
Residue decoction		Antiinflamma	water extract and residue extract show	red no
	- 20-	tory	activity.	Suranart <i>et al.,</i> 2009
N.S.	2.		The ethanolic extract of BLW inhibi	ted <i>S.</i>
Maceration- 95%ethanol, Decoction and			aureus, B. subtilis and C. albicans	5 with
Residue decoction		Antim	crob inhibition zone 7.7, 11.7 and 17.3	mm, Sangrapee et al.,
		ial	respectively.	2009
		1 0		
Maceration- 95%ethanol, Decoction and		Anti-	The ethanolic extract of BLW showe	d anti- Tahnuang <i>at al</i>
Residue decoction	_	alleroi		ug/ml 2009

Extraction	Compounds	Activity	Results	References
			whereas the water extract and residue	
			extract showed no activity.	
			All doses of BLW 25-400 mg/kg significantly	
			(p<0.05) attenuated the increased rectal	
			temperature produced by LPS injection and	
			were found to be as potent as ASA. BLW (400	
			mg/kg) produced a significant analgesic	
			response in the hot-plate test, while all doses	
			of BLW, except the lowest dose (25mg/kg),	
			produced significant analgesic responses in the	
			tail-flick test. For acetic acid-induced writhing	
			models in mice, BLW doses of 200 and 400	
			mg/kg significantly (p < 0.05) decreased the	
		Antipyretic,	mean writhing response compared to vehicle	Jongchanapong et
	-	Antinociceptive	controls.	al., 2010

Extraction	Compounds	Activity	Results	References
			The samples were collected from wild or	
			non-cultivated from 14 difference places	
		Pharmacognostic	throughout Thailand. The result showed	
		evaluations of five	that the main distinguishing features of	
		roots for diagnosis	five root species were obtained from the	
		and distinguishing	morphological and histological	
		them from their	characters as well as 3D-HPLC	Singharachai <i>et al.,</i>
	-	adulterants.	chromatogram.	2011
1.50/	Bla	and Williams	The water extract of BLW inhibited none	
			of strains whereas the ethanolic extract	
			showed effective against S. boydii, S.	
			dysenteriae, S. flexneri, A. buamannei, P.	
			aeruginosa, K. pneumoniae, S. aureus	Nuaeissara <i>et al.,</i>
Maceration- 95% ethanol and Decoction		Antimicrobial	MRSA, S. pyrogenes, B. Subtilis.	2011
		AT INCOMENT	Ethanolic extract of Benchalokawichian	
		Antioxidant,	showed moderate antioxidant in DPPH	Juckmeta&Itharat,
Maceration-95%Ethanol	-	Antiinflammatory	assay and antiinflammatory activity on	2012

Extraction	Compounds	Activity	Results	References
			RAW264.7 cells (EC ₅₀ and IC ₅₀ = 40.93,	
			40.36 µg/mL)	
	11.		The stems and roots of each plant	
			presented similar appearances,	
			especially Capparis micracantha and	
		Identification of	Ficus racemosa, which were similar in	
		adulteration by	both morphological and anatomical	
		macroscopic,	characters. Results of TLC technique,	
		microscopic and TLC	stem adultation was common found in	Nutmakul <i>et al.,</i>
-		Technique	commercial capsule of BLW remedy.	2013
	1010		Pectolinarigenin was absorption at	
			wavelength 331 nm for quantification.	
			Mixture of 0.1% ortho phosphoric acid	
Magazation 050/5then al			and acetronitrile with gradient elution,	
Maceration-95%Ethanot			flow rate was 1 mL/min, were examined	
		Development and	as the mobile phase and optimized to	
		Validation of RP-	obtaining a good resolution. The spectra	Sakpakdeejaroen <i>et</i>
	pectolinarigenin	HPLC Method	of peak found at retention time 21.49	<i>al.,</i> 2014

Extraction	Compounds A	ctivity	Results	References
			min. Based on the HPLC analysis,	
			pectolinarigenin was a minor compound	
			with a content of 0.18% w/w.	
	1/10/1000		Pectolinarigenin exhibited stronger anti-	
			allergy activity (IC $_{50}$ = 6.3 $\mu\text{g/mL},$ 20.1 $\mu\text{M})$	
			than O-methylalloptaeroxylin and	
			chlorpheniramine, positive control (IC $_{50}$	
Magazatian OFO/Ethanal			=14.2µg/mL, 51.8 µM and 16.2 µg/mL,	
Maceration-95%Ethanot			58.8 µM respectively). The ethanolic	
	pectolinarigenin,		extract of Benchalokawichian showed	
	0-		moderate inhibitory effect agianst beta-	
	methylalloptaer		hexosaminidase with IC_{50} value 39.8	Juckmeta <i>et al.,</i>
	oxylin	Anti-allergic	µg/mL.	2014

Part used	Extraction	Compounds	Activity	Results	References
				The ethanolic extract was tested to evaluate the	
				spasmolytic activity on isolated guinea-pig tracheal smooth	
				muscle. The crude extract (2.25–9.0 mg/mL) dose-	
				dependently caused relartxation of tracheal smooth	
				muscle which was contracted by exposure to histamine.	
	Maceration-	hispidulin	Spasmolytic	The active principle was isolated and identified as the	Hazekamp <i>et al.,</i>
Aerials	96%ethanol	(flavonoids)	(bronchodilator)	flavonoid hispidulin (EC ₅₀ : 3.0×10^{-5} µM).	2001
				The methanol extract possessed moderate inhibitory	
				activity on acute phase of inflammation in a dose-related	
				manner as seen in ethyl phenylpropiolate-induced ear	
	Maceration-			edema (ED ₅₀ = 2.34 mg/ear) as well as carrageenin-induced	Panthong <i>et al.,</i>
Roots	methanol	-	Anti-inflammatory	hind paw edema (ED_{50} = 420.41 mg/kg) in rats.	2003
				The aqueous extract of C. indicum exhibited anti-HIV-1 IN	
Whole	Reflux-water			activity (IC_{50} =43.5 $\mu\text{g/mL})$ whereas the ethanolic extract	Bunluepuech&
plants	and ethanol	-	HIV-1 Integrase	showed no HIV-1 IN activity (IC_{50} > 100 μ g/mL).	Tewtrakul, 2009

Table C2: Phytochemistry and Biological activity of *Cleodendrum petasites*

Part used	Extraction	Compounds	Activity	Results	References
	Maceration-			C e	
	95%ethanol,				
	Decoction			The ethanolic and water extracts showed no antioxidant	
	and Residue		Antioxidant,	activity by DPPH assay with EC_{50} >100 $\mu\text{g/mL}$ and no	Chartsuwan <i>et</i>
Roots	decoction	- // 1-1	Cytotoxic	cytotoxicity on COR-L23, MCF-7, MRC5 cell line.	al., 2009
	Maceration-	156		W ASSA	
	95%ethanol,				
	Decoction			The ethanolic extract exhibited anti-inflammatory inhibit	
	and Residue			NO effect with $IC_{50} = 51.46 \ \mu g/mL$. The water extract	Suranart <i>et al.,</i>
Roots	decoction	-	Anti-inflammatory	showed no activity (> 100 µg/mL).	2009
	Maceration-				
	95%ethanol,				
	Decoction			The ethanolic extract showed anti-allergic activity against	
	and Residue			release β -hexosaminidase with IC50 = 90.01 µg/mL whereas	Tabpueng <i>et al.,</i>
Roots	decoction	-	Anti-allergic	the water extract and residue extract showed no activity.	2009
	Maceration-			The ethanolic extract inhibited all gram negative and	
	95%ethanol,			positive bacteria except C. albicans. The water extract	Nuaeissara <i>et al.,</i>
Roots	Decoction	-	Antimicrobial	showed no activity agianst all microbacterial in this study.	2011

Table C2: Phytochemistry and Biological activity of *Cleodendrum petasites*

|--|

Part used	Extraction	Compounds	Activity	Results	References
				Ethanolic extract of C. petasites showed weak antioxidant	
				in DPPH assay (EC_{50} >100 $\mu\text{g/mL})$ and moderate inhibition	
	Maceration-		Antioxidant,	nitric oxide effect on RAW264.7 cells (IC $_{\rm 50}$ value 46.55	Juckmeta&Itharat
Roots	95%ethanol	- //	Antiinflammatory	µg/mL)	, 2012
		12	Identification of		
			adulteration by		
			macroscopic,	Clerodendrum petasites stems had a pericyclic band of	
Stems and			microscopic and	sclerenchyma, and lignified parenchyma and sclereids	Nutmakul <i>et al.,</i>
Roots	-	-	TLC Technique	lining around hollow pith, which absented in the root.	2013
		10.0		C. petasites showed moderate inhibitory effect against	
				beta-hexosaminidase with IC_{50} value 57.8 $\mu\text{g/mL}.$ IC_{50}	
	Maceration-			values of chlorpheniramine, positive control was 16.2	Juckmeta <i>et al.,</i>
Roots	95%ethanol	-	Anti-allergic	μg/mL, 58.8 μM.	2014

Part used	Extraction	Compounds	Activity	Results	References
			500		Bunluepuech
	Reflux-water and			The aqueous and ethanolic extracts of C. micracantha	&Tewtrakul,
Woods	ethanol	- ///8	HIV-1 Integrase	showed no HIV-1 Integrase activity (IC $_{50}$ > 100 µg/mL).	2009
	Maceration-	1/22	ALL AL	The ethanolic extract showed moderate antioxidant	
	95%ethanol,			activity by DPPH assay with EC_{50} = 42.91 $\mu\text{g/mL}$ and no	
	Decoction and			cytotoxicity on COR-L23, MCF-7, MRC5 cell line. The	
	Residue			water extract and residue extract showed no activity	Chartsuwan <i>et</i>
Roots	decoction	B	Antioxidant, Cytotoxic	(>100 µg/mL).	al., 2009
	Maceration-				
	95%ethanol,				
	Decoction and			The ethanolic extract exhibited anti-inflammatory inhibit	
	Residue			NO effect with IC ₅₀ = 95.79 μ g/mL. The water extract and	Suranart <i>et al.,</i>
Roots	decoction	-	Anti-inflammatory	residue extract showed no activity (>100 μ g/mL).	2009
	Maceration-		Carrow as	The ethanolic extract of CM showed anti-allergic activity	
	95%ethanol,			with ICro=9.8 LIg/mL whereas the water extract and	-
	Decoction and			with 1000-2.0 pg/me whereas the water extract and	Tabpueng <i>et</i>
Roots	Residue decoction	-	Anti-allergic	residue extract showed no activity (>100 μ g/mL).	al., 2009

Table C3: Phytochemistry and Biological activity of Capparis micracantha

Part used	Extraction	Compounds	Activity	Results	References
			- Suc	The water extract inhibited all E. coli strains with	
				inhibition zone 9.3-10.5 mm whereas the ethanolic	
				extract inhibited general pathogen (S. aureus, MRSA, B.	
				subtilis). The water extracts had better inhibited A.	
	Maceration-			buamannei, K. pneumoniae and Shigella species (except	
	95%ethanol and			S. sonnei) than the ethanolic extracts. CM and CMW also	Nuaeissara <i>et</i>
Roots	Decoction	-	Antimicrobial	showed no activity against P. aeruginosa and C. albicans.	al., 2011
		1.8		Ethanolic extract of C. micracantha showed moderate	
	Maceration-		Antioxidant,	antioxidant in DPPH assay and antiinflammatory activity	Juckmeta &
Roots	95%ethanol	IN C	Antiinflammatory	on RAW264.7 cells (EC ₅₀ , IC ₅₀ =61.35, 61.37 µg/mL).	ltharat, 2012
		121		The stems and roots presented similar appearances. C.	
			Identification of	micracantha stems had marked lignified sclereids,	
			adulteration by	arranged in pericyclic band underneath rhytidome,	
			macroscopic,	groups in cortex and densely packed in secondary	
Stems and			microscopic and TLC	phloem. On the contrary, the roots had few groups of	Nutmakul <i>et</i>
Roots	-	-	Technique	sclereids scattered in cortex and secondary phloem.	al., 2013

Table C3: Phytochemistry and Biological activity of Capparis micracantha

Table C3: Phytochemistry and Biological activity of Capparis micracantha

Part used	Extraction	Compounds	Activity	Results	References
				The ethanolic of <i>C. micracantha</i> showed no inhibitory	
				effect agianst beta-hexosaminidase (IC5 >100 μ g/mL)	
				whereas chlorpheniramine, positive control exhibited	
	Maceration-			anti-allergy activity with IC_50 value 16.2 µg/mL (58.8 µM)	Juckmeta <i>et</i>
Roots	95%ethanol	-// 20-/	Anti-allergic	respectively.	<i>al.,</i> 2014

Part used	Extraction	Compounds	Activity	Results	References
			1000	The stem bark of 'da da' (Harrisonia perforata)	
				extract has high activity against Shigella shiga,	
				low activity against Vibro eltor and no activity	
				against Salmonella and other Shigella and	Phan <i>et al.,</i> 1981
Stem barks			Antimicrobial	Vibro species.	Phan <i>et al.,</i> 1983
		peucenin-7-methyl ether,	INTR/		
	Soxhlet-	O-methylalloptaeroxylin,			Thadaniti <i>et al.,</i>
Branches	Chloroform	perforatic acid			1994
		Perforatinolone, (a new	12/12/2-		
		tetranortriterpenoid with an			
	Defatted with	A, D-ring seco-limonoid			
	n-hexane and	structure, which is closely			
	extracted with	related to perforatin), gallic			
	Me ₂ CO and	acid, sitosterol and 3-O-fl-D-			
Leaves	Ethanol	glucopyranosyl sitosterol	- 1181	-	Sung <i>et al.,</i> 1995

Part used	Extraction	Compounds	Activity	Results	References
		perforatin C, perforatin D,	1000		
		perforatin E, perforatin F,			
		perforin G, Heteropeucenin-			
		7-methyl ether,			
		Heteropeucenin-5-methoxy-			
		7-methyl ether, 2-			
		Hydroxymethylalloptaeroxyli			
		n-5-methyl ether,			
		Perfiratin A, Perforatic acid,			
		Perforatic acid methyl ester,		Five new chromones, perforatins C-G,	
		Scopoletin, Cedrelopsin,		together with 10 known compounds were	
		Xanthoxyletin,	Isolate	isolated from the wood of Harrisonia	Tanaka <i>et al.,</i>
Woods	n-butanol extracts	Coniferyl aldehyde	compounds	perforata.	1995
	J. Polonsky for the				
	isolation of the bitter				
	principles of the				
	Simaroubaceae, with	haperforine A, haperforine E,	Isolated	Acetylationn of 12-Desacetylhaperforine to	Khuong-Huu <i>et</i>
Leaves	slight modifications.	12-Desacetylhaperforine	compound	afford a haperforine A	<i>al.,</i> 2000

Part used	Extraction	Compounds	Activity	Results	References
	25% aqueous	haperforins C2, haperforins	Isolated		Khuong-Huu <i>et</i>
Leaves	EtOH extract	F, and haperforins G	compound		<i>al.,</i> 2001
			Inhibitory		
			effect on		
			Streptococcus		
			mutans (S.		
			mutans) ATCC	The inhibitory effect on adherence to glass	
	Maceration-50% /		25175 and	surface of 0.5% extract was strong inhibiter for	Limsong <i>et al.,</i>
Twigs	95% ethanol	24 EV-588	TPF-1 in vitro	S. mutans ATCC 25175 and TPF-1.	2004
		1 and		Most of compounds inactived antiplasmodial	
		peucenin-7-methyl ether,		activity. Only O-methylalloptaeroxylin also	
	95% Ethanolic	O-methylalloptaeroxylin,		showed antiplasmodial with EC_{50} value 10.5	
	extract -	perforatic acid,		$\mu\text{g/mL}$ and antimicrobial activity with MIC	
	partitioned	perforamone A, B, C,		value 100 µg/mL. The MIC value of	
	between water,	eugenin, saikochromone A,	Anti-	perforamone B and perforamone D showed	
	ethyl acetate,	perforamone D,	plasmodial,	highest antimicrobacterial activity (25 µg/mL)	Tuntiwachwuttikul
Branches	n-buthanol	greveichromenol	Antimicrobial	following by peucenin-7-methyl ether and	et al., 2006

Part used	Extraction	Compounds	Activity	Results	References
			Succ	greveichromenol (50 µg/mL), O-	
				methylalloptaeroxylin and eugenin (100	
				$\mu\text{g/mL}\text{)},$ perforamone A and C (200 $\mu\text{g/mL}\text{)},$	
				respectively.	
	cyclohexane	1200	MANAZ	23	
	extract,			The crude, cyclohexane, methanol extract	
	methylene			showed antiplasmiodial activity with IC_{50}	
	chloride extract,			value 94.67 and 51 ug/mL Cytotoxic	
	crude extract,			activity on Hola and MPC 5 showed IC-	
	methanol extract,				
	methanol extract		Anti-	values following crude (8.7 µg/mL, NT),	
	after tannins		plasmodial,	cyclohexane (3.9, 8.4 µg/mL), methanol	Nguyen-Pouplin <i>et</i>
Leaves	removal.	- 600	Cytotoxic	(14.3, 56 μg/mL).	<i>al.,</i> 2007
			AT INV	H. perforata exhibited a bactericidal effect	
				against <i>S. aureus</i> (roots, at conc. 500 µg/mL)	
Roots and				and Mycobacterium smegmatis (roots and	
Stems		-	Antimicrobial	stem, at concentration 250 µg/mL)	Chea <i>et al.,</i> 2007

Part used	Extraction	Compounds	Activity	Results	References
			1000	The ethanolic extract show exhibited normal	
				African green monkey kidney (Vero) cell with	
	Maceration-			IC_{50} value 276 μ g/mL, no cytotoxic with	Prayong <i>et al.,</i>
Branches	50%Ethanol	-///	Cytotoxic	malignant human hepatoma (HepG2).	2008
			0.000000	The water extract of <i>H. perforata</i> at the oral	
			Acute and	doses treated did not cause either acute (at	
			subchronic	the dose of 5,000 mg/kg) or subchronic	Sireeratawong <i>et</i>
Barks	Decoction	·	toxic	toxicities in rats.	al., 2009
	95% Ethanolic		61787	In these tests, pseudolaric acid B15 (with $\ensuremath{IC_{50}}$	
	extract-which was			values of 0.74 and 1.99 against P-388 and A-	
	suspended in 1.5			549, respectively) was used as positive	
	L water and then			control. Harrisotones A, C and harrisonol A	
	partitioned with			exhibited significant cytotoxic activity against	
	ethyl acetate to	Harrisotone A, Harrisotone B,		P-388 tumor cell line with IC $_{50}$ values of 1.56,	
Stems and	give ethyl acetate	Harrisotone C, Harrisotone D,		2.35, and 0.27 $\mu\text{M},$ respectively. Harrisotone A	
leaves	soluble fraction	Harrisotone E, Harrisonol A	Cytotoxic	and harrisonol A also showed moderate	Yin <i>et al.,</i> 2009

Part used	Extraction	Compounds	Activity	Results	References
			- August	activity against A-549 tumor cell line with $\ensuremath{IC_{50}}$	
				of 24.5 and 26.6 µM, respectively.	
		1/25/25	S 34 00	The aqueous extract of Harrisonia perforata	
				exhibited anti-HIV-1 IN activity (IC ₅₀ = 2.3	
				μ g/mL) higher than that of suramin, a positive	
				control (IC ₅₀ = 3.4 μ g/mL). Ethanolic extract	
	Reflux-water and			showed no HIV-1 IN activity (IC $_{50}$ > 100	Bunluepuech&
Wood	ethanol		HIV-1 Integrase	μg/mL).	Tewtrakul, 2009
				The ethanolic extract showed strong	
				antioxidant activity by DPPH assay with EC_{50}	
				=15.98 µg/mL and exhibited cytotoxic on	
				COR-L23, MCF-7 with IC_{50} = 32.07 $\mu\text{g/mL},$	
	Maceration-			27.66µg/mL, respectively and no cytotoxicity	
	95%ethanol,			on MRC5 cell line. The water extract and	
	Decoction and		Antioxidant,	residue extract showed no activity (>100	Chartsuwan <i>et al.,</i>
Roots	Residue decoction	-	Cytotoxic	µg/mL).	2009

Part used	Extraction	Compounds	Activity	Results	References
	Maceration-		Suc.	The ethanolic extract exhibited anti-	
	95%ethanol,			inflammatory inhibit NO effect with $IC_{50} = 41.6$	
	Decoction and			μ g/mL. The water extract and residue extract	Suranart <i>et al.,</i>
Roots	Residue decoction	-// 2/2	Antiinflammatory	showed no activity (>100 μ g/mL).	2009
	Maceration-		100000000000000000000000000000000000000		
	95%ethanol,			The residue extract of HP inhibited S. aureus	
	Decoction and			with inhibition zone 8.3 mm. The water	Sangrapee <i>et al.,</i>
Roots	Residue decoction	- Birt	Antimicrobial	extract showed no activity (>100 μ g/mL).	2009
	Maceration-			The ethanolic extract of HP showed anti-	
	95%ethanol,			allergic activity with IC_{50}= 84.4 $\mu\text{g/mL}$ whereas	
	Decoction and			the water extract and residue extract showed	Tabpueng <i>et al.,</i>
Roots	Residue decoction		Anti-allergic	no activity.	2009

Part used	Extraction	Compounds	Activity	Results	References
			1100	The ethanolic and water extracts of <i>H</i> .	
				perforata showed antimicrobial activity	
				against both gram-positive (S. pyrogenes, B.	
				subtilis) and negative bacteria (S. dysenteriae,	
				A. buamannei). In addition, the ethanolic was	
				effective against S. aureus and MRSA with	
	Maceration-			inhibition zone 7.8 and 7.4 mm, respectively.	
	95%ethanol and			Both extracts showed no activity against E.	Nuaeissara <i>et al.,</i>
Roots	Decoction		Antimicrobial	coli strains and C. albicans.	2011
		5,6-			
		dehydrodesepoxyharperforin			
		C2, Harrpernoid B,			
		Harrpernoid C, harperforin			
		C2, perforin A, 12b-			
		acetoxyharrisonin, 11b,12b-			
		diacetoxyharrisonin,			
		rutaevine, umtatin, gre-		All isolated limonoids were screened for	
		veichromenol, one		cytotoxicity in vitro, as well as anti-tobacco	

Part used	Extraction	Compounds	Activity	Results	References
		triterpene, pachymic acid,		mosaic virus activities only compound 2	
		one lignan, pinoresinol, gallic		showed very weak cytotoxicity to A-549 and	
Fruits	Reflux-Methanol	acid, methyl gallate	Cytotoxic	HL-60 cell lines.	Yan <i>et al.,</i> 2011
			$\simeq (D)$	Ethanolic extract of <i>H. perforata</i> showed	
				strong antioxidant in DPPH assay (EC $_{50}$ value	
				16.91 µg/mL) and moderate inhibition nitric	
	Maceration-		Antioxidant.	oxide effect on RAW264.7 cells (IC $_{\rm 50}$ value	Juckmeta&Itharat,
Roots	95%ethanol	· 81-	Antiinflammatory	53.16 µg/mL)	2012
		harperforatin, harperfolide,		Harperfolide exhibited stronger potent anti-	
		harperamone, harrisonin,		inflammatory activity by suppressing nitric	
		obacunone, Peucenin-7-		oxide (NO) production from activated murine	
		methyl ester, Perforatic acid		macrophages J774.A1 cells than	
		methyl ester, <i>O</i> -		indomethacin (IC_{50} value of 6.51, 28.42 μM).	
		Methylalloptaeroxylin,		Harrisolanol A, harperamone, peucenin-7-	
Fruits and	Ethyl acetate	braylin I , (+)- vouacapenic		methyl ester, perforatic acid methyl ester, O-	Choodej <i>et al.,</i>
Roots	extract	acid, harrisolanol A	Antiinflammatory	Methylalloptaeroxylin, obacunone showed	2013

Part used	Extraction	Compounds	Activity	Results	References
			Sel Ca	antiinflammatory activity at IC_{50} in range	
				31.04-83.61 μM.	
		114524	Identification	The stems and roots presented similar	
			of adulteration	appearances. <i>H. perforata</i> stems had	
			by	tangential bands of lignified fibers arranged in	
			macroscopic,	secondary phloem and area of pith whereas	
			microscopic	the roots had small-scattered groups of	
Stems and			and TLC	lignified fibers in secondary phloem and	Nutmakul <i>et al.,</i>
Roots	-		Technique	absented pith area.	2013
				H. perforata extract exhibited stronger anti-	
				allergy activity than chlorpheniramine,	
	Maceration-			positive control (IC_{50} =14.5 and 16.2 $\mu\text{g/mL},$	Juckmeta <i>et al.,</i>
Roots	95%ethanol	-	Anti-allergic	58.8 µM respectively).	2014

Part used	Extraction	Compounds	Activity	Results	References
		tannins,			
		kaempferol,			
		rutin, arabinose,			
		bergapten,			
		psoralenes,			
		flavonoids,			
		ficusin,			
		coumarins,	Chemical		
		phenolic	composition		Paruahl Cabain 1002
		glycosides	composition	-	
				The extracts of <i>F. racemosa</i> (400mg/kg) showed	
				significant inhibitory activity against castor oil	
				induced diarrhoea and PGE_2 induced enteropooling	
				in rats and also showed a significant reduction in	
	Soxhlet extraction			gastrointestinal motility in charcoal meal tests in	
Bark	with ethanol	-	Anti-diarrhoeal	rats.	Mukherjee <i>et al.,</i> 1998
	Soxhlet extraction		2. Al	Oral administration of leaf extract (400 mg/kg, p.o.)	
	with petroleum		Hepato-	exhibited a significant reduction in the CCl ₄ induced	
Leaves	ether	-	protective	increase in the levels of SGOT, SGPT, alkaline	Mandal <i>et al.,</i> 1999

Table C5: Phytochemistry and Biological activity of Ficus racemosa
Part used	Extraction	Compounds	Activity	Results	References
			5	phosphatase and serum bilirubin. However,	
				treatment with Neutrosec (a popular liver tonic) also	
				better reversed the hepatotoxicity than the extract	
				significantly.	
		1112		The leaves extract was tested for antibacterial	
				potential against Escherichia coli ATCC 10536,	
				Basillus pumilis ATCC 14884, Bacillus subtilis ATCC	
	Sequentially			6633, Pseudomonas aeruginosa ATCC 25619 and	
	extracted-			Staphylococcus aureus ATCC 29737. The effects	
	petroleum ether,			produced by the extracts were significant and were	
	benzene,			compared with chloramphenicol. The petroleum	
	chloroform,			ether extract was the most effective against the	
	acetone, methanol			tested organisms, following by benzene and	
Leaves	and water	-	Antibacterial	chloroform extract.	Mandal <i>et al.,</i> 2000

Part used	Extraction	Compounds	Activity	Results	References
				The anti-inflammatory activity of F. racemosa	
				extract was evaluated on carrageenin, serotonin,	
				histamine and dextran-induced rat hind paw	
				oedema models. The extract at doses of 200 and	
				400 mg/kg has been found to possess significant anti-	
				inflammatory activity on the tested experimental	
				models. The extract (400 mg/kg) exhibited maximum	
				anti-inflammatory effect, that is 30.4, 32.2, 33.9 and	
				32.0% at the end of 3 h with carrageenin, serotonin,	
				histamine, dextran-induced rat paw oedema,	
				respectively. In a chronic test the extract (400 mg/kg)	
				showed 41.5% reduction in granuloma weight. The	
	Soxhlet extraction			effect produced by the extract was comparable to	
	with petroleum		Anti-	that of phenylbutazone, a prototype of a non-	
Leaves	ether	-	inflammatory	steroidal anti-inflammatory agent.	Mandal <i>et al.,</i> 2000

Part used	Extraction	Compounds	Activity	Results	References
				A yeast suspension (10 ml/kg body wt.) increased	
				rectal temperature 19 h after subcutaneous	
				injection. The anti-pyretic effect of MEFR was	
				comparable to that of paracetamol (150 mg/kg body	
				wt., p.o.), a standard anti-pyretic agent. The MEFR,	
				at doses of 100, 200 and 300 mg/kg body wt. p.o.,	
				showed significant dose-dependent reduction in	
				normal body temperature and yeast-provoked	
	Methanol extract			elevated temperature. The effect extended up to 5	
Stem bark	(MEFR)	-	Antipyretic	h after drug administration.	Rao <i>et al.,</i> 2002
				The glucose-lowering efficacy of a methanol extract	
				of the stem bark of <i>F. racemosa</i> Linn. (MEBFR)	
				(Family Moraceae) was evaluated both in normal	
				and alloxan-induced diabetic rats. The MEBFR at the	
				doses examined (200 and 400mg/kg p.o.) exhibited	
				significant hypoglycaemic activity in both	
	Methanol extract			experimental animal models when compared with	
Stem bark	(MEFR)	-	Antidiabetic	the control group.	Rao <i>et al.,</i> 2002

Part used	Extraction	Compounds	Activity	Results	References
				The methanol extract of Ficus racemosa Linn	
				(Moraceae) (stem bark) (MEFR) was tested for its	
				antitussive potential against a cough induced model	
				by sulphur dioxide gas in mice. The extract	
				demonstrated significant (p < 0.001) antitussive	
				activity at all tested dose levels when compared	
				with the control. The antitussive activity of the	
				extract was comparable to that of codeine	
				phosphate (10 mg), a standard antitussive agent. The	
	Methanol extract			extract exhibited maximum inhibition of 56.9% at a	
Stem bark	(MEFR)		Antitussive	dose of 200 mg/kg (p.o.) 90 min after administration.	Rao <i>et al.,</i> 2003
		121		Ethanolic extracts inhibited COX-1 with the $\ensuremath{IC_{50}}$ of	
	Southlat outraction			100 μ g/mL. The positive control aspirin showed 52%	
	with absolute			inhibition of COX-1 at 306 µg/mL and indomethacin	
Bark	ethanol (EtOH)		Anti-inflammatory	showed 70% inhibition at 10 µg/mL.	Li <i>et al.,</i> 2003

Table C5: Phytochemistry and Biological activity of Ficus racemosa	Table C5: Phytochemistry	y and Biological	activity of Ficus	racemosa
--	--------------------------	------------------	-------------------	----------

Part used	Extraction	Compounds	Activity	Results	References
			5.1	Racemosic acid showed potent inhibitory activity	
				against COX-1 and 5-LOX in vitro with IC_{50} values of	
				90 and 18 µM, respectively. Its also demonstrated a	
				strong antioxidant activity to scavenge ABTS free	
				radical cations with an IC_{50} value of 19 $\mu M.$ F.	
				racemosa showed no cytotoxicity on the cell lines	
			Antiinflammatory,	skin fibroblasts (1BR3), human caucasian hepatocyte	
	Soxhlet-absolute	Bergenin,	Antioxidant,	carcinoma (Hep G2) and human Caucasian	
Bark	ethanol (EtOH)	Rasemisic acid	Cytotoxic	promyelocytic leukaemia (HL-60)	Li <i>et al.,</i> 2004
	Reflux increasing	1 miles			
	polarity petroleum				
	ether, benzene,				
	ethyl acetate,			F. racemosa extract is a potent chemopreventive	
	acetone, methanol			agent and suppresses Fe-NTA-induced renal	
	and double		Chemo-	carcinogenesis and oxidative damage response in	
	distilled water	-	preventive	Wistar rats.	Khan&Sultana, 2005

Part used	Extraction	Compounds	Activity	Results	References
	cyclohexane				
	extract, methylene				
	chloride extract,				
	, crude extract,				
	methanol extract,			The crude, cyclohexane, methylene chloride,	
	methanol extract			methanol extract showed %inhibition less than 50 at	
	after tannins		Antiplasmodial,	concentration 10 μ g/mL. None of extract showed	Nguyen-Pouplin <i>et al.,</i>
Leaves	removal.	- 5	Cytotoxic	cytotoxic activity.	2007
			Localla	The fruits used for laxative, digestive, aphthae,	
				menorrhagia, hemoptysis and gargling for sore	
				throat. The leaves mixed with honey used for bilious	
				affection, which are curing juandice, billious	
				remittants and all varieties of disease generated by	
				an unnatural condition of involving organ. The bark	
			Review	used for diabetes, cooling, gonorrhea, ulcers, skin	
			ethnopharmac	diseases, scabies, hiccup, vomiting. The roots used	
			ological and	for dysentery, infusion with oil used external	
-	-	-	Biological	treatment for excema, leprosy, rheumatism. In India	Lansky <i>et al.,</i> 2008

Part used	Extraction	Compounds	Activity	Results	References
			15.	contemporary ethnomedical commonly used	
				decoction fruits for gripping gastralgia, root juice (sap)	
				for stomachic and freash leaf juice for pneumonia.	
		1/25		The 70% acetone extract of F. racemosa contained	
				relatively higher levels of total phenolics than	
				methanol extract. The antioxidant potential of the	
				extracts assessed by employing different in vitro	
				assays such as reducing power assay, DPPH, ABTS	
				and OH radical scavenging capacities, peroxidation	
				inhibiting activity through linoleic acid emulsion	
				system, antihemolytic assay by hydrogen peroxide	
				induced method and metal ion chelating ability.	
				Though all the extracts exhibited dose dependent	
				reducing power activity, methanol extracts of all the	
	Soxhlet extraction			samples were found to have more hydrogen	
	with methanol			donating ability. Similar line of dose dependent	
	follow by			activity has been maintained in all the samples in	
Stem barks	70%acetone	-	Antioxidant	DPPH and OH scavenging systems. All the extracts	Manian <i>et al.,</i> 2008

Part used	Extraction	Compounds	Activity	Results	References
			6	exhibited antioxidant activity against the linoleic acid	
				emulsion system (34–38%).	
		11.5		FGE showed dose dependent inhibition of ulcer	
				index in pylorus ligation, ethanol and cold restraint	
				stress-induced ulcers. FGE prevents the oxidative	
				damage of gastric mucosa by blocking lipid	
				peroxidation and by significant decrease in	
				superoxide dismutase, $H^{^{+}}\!K^{^{+}}\!ATPase$ and increase in	
				catalase activity. High performance thin layer	
				chromatography (HPTLC) analysis showed the	
				presence of 0.57% and 0.36% w/w of gallic acid and	
				ellagic acid in FGE. The results show that F.	
				glomerata possess significant gastroprotective	
				activity which might be due to gastric defence	
	50% ethanolic	gallic acid and	Gastro-	factors and phenolics might be the main	
Fruits	extract	ellagic acid	protective	constituents responsible for this activity.	Rao <i>et al.,</i> 2008

Part used	Extraction	Compounds	Activity	Results	References
			5	Oral administration of bark powder (FGB) and	
				aqueous extract (FGAE) at 500 mg/kg caused 21%	
				and 52% reduction in fasting blood glucose,	
			Antihyper-	respectively and also decreased glycosuria	
Stem barks	Aqueous extract	-////	glycemic	significantly.	Ahmed&Urooj, 2008
		112-18		Ficus racemosa Linn. is a moderate-sized avenue	
				tree found throughout India either wild or cultivated	
				for its fruits eaten by villagers. It is popular in	
				Indigenous System of Medicine like Ayurveda,	
				Siddha, Unani and Homoeopathy. In the Traditional	
				system of medicine, various plant parts such as bark,	
				root, leaves, fruits and latex are used in dysentery,	
				diarrhoea, diabetes, bilious affections, stomachache,	
				menorrhage, haemoptysis, piles and as carminative	
				and astringent. The review is therefore, an effort to	
				give a detailed survey of the literature on its	
				pharmacognosy, phytochemistry, traditional and	
		-	A review	pharmacological uses.	Paarakh, 2009

Part used	Extraction	Compounds	Activity	Results	References
				Ethanol extract (FRE) and water extract (FRW) of	
				Ficus racemosa (family: Moraceae) were subjected	
				to free radical scavenging both by steady state and	
				time resolved methods such as nanosecond pulse	
				radiolysis and stopped-flow spectrophotometric	
				analyses. FRE exhibited concentration dependent	
				DPPH, ABTS, hydroxyl radical and superoxide radical	
				scavenging and inhibition of lipid peroxidation with	
				$\ensuremath{IC_{50}}$ comparable with tested standard compounds.	
				In vitro radioprotective potential of FRE was studied	
				using micronucleus assay in irradiated Chinese	
				hamster lung fibroblast cells (V79). Pretreatment	
				with different doses of FRE 1h prior to 2 Gy g-	
				radiation resulted in a significant (P<0.001) decrease	
				in the percentage of micronucleated binuclear V79	
	Ethanol extract			cells. Maximum radioprotection was observed at	
	(FRE) and water		Antioxidant,	20mg/mL of FRE. The radioprotection was found to	
Barks	extract (FRW)	-	Radioprotective	be significant (P<0.01) when cells were treated with	Veerapur <i>et al.,</i> 2009

Part used	Extraction	Compounds	Activity	Results	References
				optimum dose of FRE (20mg/ml) 1h prior to 0.5, 1,	
				2, 3 and 4 Gyg-irradiation compared to the respective	
				radiation controls. The cytokinesis-block proliferative	
				index indicated that FRE does not alter radiation	
				induced cell cycle delay. Based on all these results	
				we conclude that the ethanol extract of F. racemosa	
				acts as a potent antioxidant and a probable	
				radioprotector.	
		$ _{1/2}$	Locall	The aqueous and ethanolic extract of F. glomerata	
	Reflux-water and			exhibited anti-HIV-1 IN activity, with IC_{50} =29.5 and	Bunluepuech&
Woods	ethanol		HIV-1 Integrase	7.8 μg/mL, respectively.	Tewtrakul, 2009
	Maceration-			A YA W	
	95%ethanol,			The ethanolic, water extract and residue extract	
	Decoction and		Antioxidant,	showed no antioxidant (EC_{50} > 100 $\mu\text{g/mL})$ and	
Roots	Residue decoction	-	Cytotoxic	cytotoxic activity (IC ₅₀ > 100 μ g/mL).	Chartsuwan <i>et al.,</i> 2009
				UN	

Part used	Extraction	Compounds	Activity	Results	References
	Maceration-			The ethanolic extract of FR showed anti-	
	95%ethanol,			inflammatory activity with IC_{50}=70.2 $\mu\text{g/mL}$ whereas	
	Decoction and			the water extract and residue extract showed no	
Roots	Residue decoction	- ////	Anti-inflammatory	activity.	Suranart <i>et al.,</i> 2009
	Maceration-	link			
	95%ethanol,			The ethanolic extract of FR showed anti-allergic	
	Decoction and			activity with IC_{50}=15.9 $\mu\text{g/mL}$ whereas the water	
Roots	Residue decoction	- 5	Anti-allergic	extract and residue extract showed no activity.	Tabpueng <i>et al.,</i> 2009
				In order to find in vitro antioxidant properties,	
				extract/fractions from F. glomerata were studied for	
				TPC, AOA, RP, DPPH, O ₂ , OH scavenging activities	
				and LPO. Among all the extract/fractions, FEF has	
				shown potent antioxidant activity and was also	
				found effective in protecting oxidative DNA damage.	
				In vivo evaluation of oxidative stress (LPO) and	
			Antioxidant,	antioxidant defenses (concentration of GSH, as well	
Green			DNA damage	as CAT and SOD activities) were measured in CCl_4	
fruits		-	protective	induced toxic rats. FEF was found to inhibit the	

Part used	Extraction	Compounds	Activity	Results	References
			5.	toxicity as seen from the decreased LPO and	
				increased GSH, SOD and CAT levels. FEF has higher	
				phenolic content and showed the presence of gallic,	
				chlorogenic and ellagic acid. Based on these results,	
				it is concluded that F. glomerata protects tissues	
				from oxidative stress and these effects are probably	
				related to the antioxidant properties.	Verma <i>et al.,</i> 2010
				Indicated that administration of the aqueous extract	
				of herb for 15 to 21 days (incremental as well as	
				fixed, in dose 30 mg/100 gm and 20 mg/ 100 gm up	
				to 320 mg/100gm of body weight) in subacute	
				toxicity study showed definitive liver damage.	
				Hepatotoxicity is appeared to be reversible.	
				Histopathologicaly renal damage was not marked.	
				Serum creatinine and blood urea were increased	
Bark			Subacutetoxic	significantly.	Panwar <i>et al.,</i> 2010

Table C5: Phytochemistry	y and Biological	l activity of Ficus racemosa	

Part used	Extraction	Compounds	Activity	Results	References
				Physicochemical studies reflected that total, water	
				soluble ash content is higher in stem and acid	
				insoluble ash is higher in root. It may be due to the	
				soil components. Extractive value has been found	
				higher in stem water extract, however alcoholic	
Leaves,				extract has found higher in leaf. Total carbohydrate	
Stems,				content has found higher in leaf however, protein,	
Roots,	50% ethanolic		Physicochemical	phenol and tannin content found higher in stem	Arunachalam <i>et al.,</i>
Fruits	extract	1-51/ B.	screening	portion of F. racemaosa.	2010
		1755		All doses of FR (ethanolic extract) significantly	
				(p<0.05) reduced the pyrexia induced by yeast and	
	Maceration-			FR (ethanolic extract) doses of 200 and 400 mg/kg	
Bark	ethanol	-	Antipyretic	were equally potent as ASA.	Chomchuen <i>et al.,</i> 2010
				The ethanolic extract of <i>F. racemosa</i> inhibited <i>S.</i>	
				typhimurium, A. buamannei, S. pyrogenes and B.	
	Maceration-			subtilis with inhibition zone 9.0, 8.5, 11.7 and 8.2	
	95%ethanol and			mm, respectively. The water extract showed no	
Roots	Decoction	-	Antimicrobial	activity agianst all microbacterial in this study.	Nuaeissara <i>et al.,</i> 2011

Part used	Extraction	Compounds	Activity	Results	References
				The leaf of this plant contains sterols, triterpenoids	
				(Lanosterol) and alkaloids, tannins and flavonoids. Stem-bark	
				gives gluanol acetate, eta -sitosterol, leucocyanidin-3-O- eta -D-	
				glucopyrancoside, leucopel- argonidin-3-O- eta -D-	
				glucopyranoside, leucopelarg- onidin -3-O- $\mathbf{\alpha}$ -L-	
				rhamnopyranoside, lupeol, ceryl behenate, lupeol acetate	
				and $lpha$ -amyrin acetate. From trunk bark, lupenol, eta -sistosterol	
				and stigmasterol were isolated. Fruit contains gluanol	
				acetate, glucose, tiglic acid, esters of taraxasterol, lupeol	
				acetate, friedelin, higher hydrocarbons (Hentriacontane) and	
				other phytosterols. A new tetracyclic triterpene glauanol	
				acetate which is characterized as 13 $lpha$, 14 eta , 17 eta H, 20 $lpha$ H-	
				lanosta-8, 22-diene-3 eta -acetate and racemosic acid were	
				isolated from the leaves. An unusual thermostable aspartic	
				protease was isolated from latex of the plant. The stem bark	Shiksharthi & Mittal,
-	-		A review	and fruit showed presence of gluanol acetate.	2011

Part used	Extraction	Compounds	Activity	Activity Results		
				Ethanolic extract of F. racemosa showed stronger		
				antioxidant in DPPH assay than positive control, BHT		
				(EC ₅₀ = 4.87 and 12.75 μ g/mL, respectively). It		
	Maceration-		Antioxidant,	showed moderate inhibition nitric oxide effect on		
Roots	95%ethanol	-110-1	Antiinflammatory	RAW264.7 cells (IC ₅₀ = 46.55 µg/mL).	Juckmeta & Itharat, 2012	
		120	Identification of	MV ACASA I		
			adulteration by	F. racemosa stem and root presented similarity in		
			macroscopic,	both cell types and arrangement. However, the		
			microscopic	stems had broad bands of xylem fibers alternating		
Stems and			and TLC	with narrow bands of axial xylem parenchyma in		
Roots	-	-	Technique	contrast to the roots.	Nutmakul <i>et al.,</i> 2013	
				The ethanolic of F. racemose exhibited anti-allergy		
				activity (IC ₅₀ = 27.1 µg/mL) whereas		
				chlorpheniramine, positive control showed		
	Maceration-			inhibitory effect against beta-hexosaminidase with		
Roots	95%ethanol	-	Anti-allergic	IC ₅₀ value 16.2 μ g/mL (58.8 μ M) respectively.	Juckmeta <i>et al.,</i> 2014	

Part used	Extraction	Compounds	Activity	Results	References
		nortiliacorine A, tiliacorinine	THE A		
		2'-N-oxide, tiliacorinine 2-N-			
		oxide, tiliacorinine,			
		tiliacorine, dinklacorine,			
		yanangine, yanangcorinine,			
		tilianangine, tiliageine,			
		nortiliacorinine A,			Thaweephol <i>et al.,</i>
		tilitriandrine, noryanangine,			1974; Wiriyachitra &
Roots	-	norisoyanangine	Isolated compound		Phuriyakorn, 1981;
				Tiliacolinine, tiliacorine and	
				nortiliacorinine A were isolated from T.	
				triandra which showed antimararial	
		tiliacolinine, tiliacorine,		activity with IC $_{\rm 50}$ values 3533 ng/mL, 675	
Roots	-	nortiliacorinine A	Antimararial	ng/mL and 558 ng/mL, respectively.	Mahidol <i>et al.,</i> 1994

Part used	Extraction	Compounds	Activity	Results	References
			JUCA	Isolation and purification of the crude	
	Maceration-			extract using column chromatography	
	chloroform:			and crystallization techniques provided	
	methanol:			two pure alkaloid compounds:	
	ammonia		Isolated	tiliacorinine and tiliacorine with 0.0082	Saiin & Markmee,
Roots	(50:50:1)	tiliacorine, tiliacorinine	compound	and 0.0029 percent yield, respectively.	2003
				The methanolic extracts from <i>T. triandra</i>	
				(Colebr.) Diel. showed moderate effect	
	Maceration-			of the inhibitory activity on	Ingkaninan <i>et al.,</i>
Roots	methanol	-	Anti-alzheimer	acetylcholinesterase (40-50%)	2003
		1000		The water extract from the T. triandra	
			Acute and	does not cause acute or subchronic	Sireeratawong <i>et</i>
Whole	Decoction	-	subchronic toxic	toxicities in either male or female rats.	<i>al.,</i> 2008
			100	The methanolic extract had the	
				antioxidant activity with an EC_{50} of 3,903.9	
				mg extract/ mg DPPH (AE = 25.6×10^{-5})	
	Maceration-			and contained the content of phenolic	Nanasombat &
Leaves	methanol	-	Antioxidant	compounds (13.3 mg GAE/mg dry extract).	Teckchuen, 2009

Part used	Extraction	Compounds	Activity	Results	References
			au car	The aqueous and ethanolic extracts of <i>T</i> .	
	Reflux-water and			triandra showed no HIV-1 IN activity (IC_{\rm 50}	Bunluepuech &
Stems	ethanol	- ////	HIV-1 Integrase	> 100 µg/mL).	Tewtrakul, 2009
				The ethanolic extract showed antioxidant	
				activity by DPPH assay with $EC_{50} = 23.35$	
				µg/mL and high exhibited cytotoxic	
	Maceration-			activity on COR-L23, MCF-7 with \mbox{IC}_{50} =	
	95%ethanol,			5.50 µg/mL, 7.88 µg/mL, respectively but	
	Decoction and			no cytotoxicity on MRC5 cell line. The	
	Residue		Antioxidant,	water and residue extracts showed no	Chartsuwan <i>et al.,</i>
Roots	decoction	127.0	Cytotoxic	activity (>100 µg/mL).	2009
	Maceration-			The ethanolic extract showed cytotoxic	
	95%ethanol,			on RAW264.7 cell line which use to test	
	Decoction and			anti-inflammatory activity. The water and	
	Residue			residue extracts showed no activity (>100	
Roots	decoction		Antiinflammatory	µg/mL).	Suranart <i>et al.,</i> 2009

Part used	Extraction	Compounds	Activity	Results	References
			THEFT	The ethanolic of TT inhibited S. aureus, B.	
				subtilis, E. coli and C. albicans with	
	Maceration-			inhibition zone 11.2, 13.8, 9.5 and 20.5	
	95%ethanol,			mm, respectively. The residue of extract	
	Decoction and			inhibited C. albicans (9mm) whereas the	
	Residue			water extract showed no activity (>100	Sangrapee <i>et al.,</i>
Roots	decoction		Antimicrobial	μg/mL).	2009
	Maceration-			The ethanolic extract of TT showed anti-	
	95%ethanol,			allergic activity with IC_{50}=10.3 $\mu\text{g/mL}$	
	Decoction and			whereas the water extract and the	
	Residue			residue extract showed no activity (>100	Tabpueng <i>et al.,</i>
Roots	decoction	- 180	Anti-allergic	μg/mL).	2009

Part used	Extraction	Compounds	Activity	Results	References
			THEFT	The ethanolic extract showed most	
				effective activity against E. coli strains,	
				Shigella species, A. buamannei, gram-	
				positive bacteria and C. albican except P.	
				aeruginosa and K. pneumoniae. In	
				contrast, the water extract only inhibited	
	Maceration-			S. aureus, S. aureus MRSA and C. albican	
	95%ethanol and			with the inhibition zone 6.7, 7.3 and 10.8	Nuaeissara <i>et al.,</i>
Roots	Decoction		Antimicrobial	mm, respectively.	2011
		In Local		Ethanolic extract of <i>T. triandra</i> showed	
				strong antioxidant in DPPH assay (EC $_{50}$	
				value 15.38 µg/mL) and moderate	
	Maceration-		Antioxidant,	inhibition nitric oxide effect on RAW264.7	Juckmeta & Itharat,
Roots	95%ethanol	-	Antiinflammatory	cells (IC ₅₀ value 54.65 μ g/mL)	2012

Part used	Extraction	Compounds	Activity	Results	References
		tiliacorinine,		Bisbenzylisoquinoline alkaloids, tiliacorinine, 2'-nortiliacorinine, and tiliacorine, isolated from the edible plant, Tiliacora triandra, as well as a synthetic derivative, 13'-bromo-tiliacorinine, were tested against 59 clinical isolates of multidrug-resistant <i>Mycobacterium</i> <i>tuberculosis</i> (MDR-MTB). The alkaloids showed MIC values ranging from 0.7 to 6.2	
		2'-nortiliacorinine,		$\mu\text{g/ml},$ but they exhibited the MIC value	
		tiliacorine,		at 3.1 µg/ml against most MDR-MTB	
Roots		13'-bromo-tiliacorinine	Antimycobacterial	isolates.	Sureram <i>et al.,</i> 2012
			Identification of adulteration by macroscopic,	The stems and roots presented similar appearances. <i>T. triandra</i> stems had broad vascular bundles alternating with narrow medullary rays contrast to the roots which had	
Stems and			microscopic and	narrow vascular bundles alternating with broad	Nutmakul <i>et al.,</i>
Roots	-	-	TLC Technique	medullary rays.	2013

Part used	Extraction	Compounds	Activity	Results	References
			The ethanolic of <i>T. triandra</i> showed no		
				inhibitory effect agianst beta-	
				hexosaminidase (IC50 >100 µg/mL)	
				whereas chlorpheniramine, positive	
				control exhibited anti-allergic activity with	
	Maceration-			IC ₅₀ value 16.2 μg/mL (58.8 μM)	Juckmeta <i>et al.,</i>
Roots	95%ethanol	-	Anti-allergic	respectively.	2014

Part used	Extraction	Compounds	Activity	Results	References
				$\pmb{\gamma}\mbox{-Mangostin}$ had a potent inhibitory activity of prostaglandin E_2	
				(PGE ₂) release induced by A23187, a Ca ₂ ionophore. The	
				inhibition was concentration-dependent, with the IC_{50} value of	
				about 5 μ M. γ -Mangostin had no inhibitory effect on A23187-	
				induced phosphorylation of p42/p44 extracellular signal	
				regulated kinase/mitogen-activated protein kinase or on the	
				liberation of $[^{14}C]$ -AA from the cells labeled with $[^{14}C]$ AA.	
				However, γ -mangostin concentration-dependently inhibited the	
				conversion of AA to PGE_2 in microsomal preparations, showing	
				its possible inhibition of cyclooxygenase (COX). In enzyme assay	
				in vitro, γ -mangostin inhibited the activities of both constitutive	
				COX (COX-1) and inducible COX (COX-2) in a concentration-	
				dependent manner, with the IC_{50} values of about 0.8 and 2 $\mu\text{M},$	Nakatani <i>et</i>
Hulls	-	γ -mangostin	Anti-inflammation	respectively.	al., 2002
			NAL 1		

Part used	Extraction	Compounds	Activity	Results	References
				The 40% ethanol extract inhibited IgE-mediated histamine	
				release from RBL-2H3 cells with greater potency than the water	
				extract of Rubus suavissimus that has been used as an anti-	
				allergy crude drug in Japan. All GM extracts potently inhibited	
				A23187-induced prostaglandin E2 synthesis in C6 rat glioma	
	Maceration-			cells, positive control had no effect. The 40% GM extract	
	100%, 70%,			inhibited the prostaglandin E2 synthesis in a concentration-	
	40% and		Anti-allergy,	dependent manner with relatively lower concentrations than	Nakatani <i>et</i>
Hulls	water	- 124 BV	Antiinflammation	the histamine release.	al., 2002
		No.		G. mangostana showed the best antioxidant activity and could	
				inhibit 50% of free radicals at the concentration of 6.13 μ g/mL.	
				Ethanolic extract also significantly reduced ROS production	
				using NBT assay with the inhibitory ratio at 77.80%. At	
	Maceration-		Antiinflammation,	concentration 50 $\mu\text{g/mL}$ showed highest inhibitory against TNF-	Chomnawang
Pericarps	95%ethanol	-	Antioxidant	lpha production in dose-dependent manner.	et al., 2007

Part used	Extraction	Compounds	Activity	Results	References
		two xanthones, 1,2-			
		dihydro-1,8,10-			
		trihydroxy-2-(2-			
		hydroxypropan-2-yl)-			
		9-(3-methyl but-2-			
		enyl)furo[3,2-			
		a]xanthen-11-one, 6-			
		deoxy-7-		Bioactivity-guided fractionation of a dichloromethane-soluble	
		demethylmangostani		extract of Garcinia mangostana fruits has led to the isolation	
		n		and identification of five compounds, including two xanthones,	
		three known		along with three known compounds (1,3,7-trihydroxy-2,8-di-(3-	
		compounds, 1,3,7-		methylbut-2-enyl)xanthone, mangostanin,	
		trihydroxy-2,8-di-(3-		lpha-mangostin). All isolated compounds were tested in an <i>in vitro</i>	
		methylbut-2-		quinone reductase-induction assay using murine hepatoma cells	
(freeze-		enyl)xanthone,		(Hepa 1c1c7) and an in vitro hydroxyl radical antioxidant assay.	
dried)	Maceration-	mangostanin,		γ -mangostin exhibited hydroxyl radical-scavenging activity (IC_{50}	Chin <i>et al.,</i>
Fruits	methanol	lpha-mangostin	Antioxidant	= 0.20 µg/mL).	2008

Part used	Extraction	Compounds	Activity	Results	References
				$lpha$ and γ -mangostin dose-dependently reduced the induction of	
				NO products with IC_{50}=12.4 and 10.1 μM Two xanthones	
				concentration-dependently reduced PGE_2 production at IC_{50} 3–	
				25 $\mu\text{M},$ and the inhibitive effects of $\gamma\text{-mangostin}$ were also	
				stronger than these of $lpha$ -mangostin. Both of them significantly	
				inhibited the expression of iNOS, but not COX-2. In animal	
				model, $lpha$ -Mangostin and sulindac (positive control) exhibited a	
	Homogenizati			potent inhibition on paw edema at 3 h and 5 h, respectively	
(fresh)	on-		In <i>vitro</i> and <i>vivo</i>	whereas $\gamma\text{-mangostin}$ did not. Interestingly, on-set time of $\infty\text{-}$	Chen <i>et al.,</i>
Hulls	70%acetone	$lpha$ -and γ -mangostin	Antiinflammation	Mangostin was more quickly than that of sulindac.	2008
				GM extract possessed potent NO inhibitory effect with an $\ensuremath{IC_{50}}$	
				value of 1.0 µg/mL, $\pmb{\alpha}\text{-}$ and $\pmb{\gamma}\text{-mangostin},$ also possessed	
	Maceration-			inhibitory effect with IC_{50} values of 3.1 and 6.0 $\mu\text{M},$ respectively.	
(dried)	dichlorometh		Anti-	Two compounds similar inhibited PGE_2 production at IC ₅₀ value	Tewtrakul <i>et</i>
Hulls	ane	$lpha$ -and γ -mangostin	inflammation	13 μ M. $oldsymbol{lpha}$ -mangostin higher inhibited than $oldsymbol{\gamma}$ -mangostin	al., 2009

Part used	Extraction	Compounds	Activity	Results	References
			1	inhibitory effect on LPS-stimulated TNF- $oldsymbol{\propto}$ and IL-4 release	ses with
				IC 50 value in range 31.8-64.8 μ M.	
		112		Extracts of GM showing inhibitory effects against the gro	owth of
				S. aureus NIHJ 209p were fractionated according to gu	uidance
				obtained from bioassay and some of the componen	ts with
				activity against methicillin-resistant Staphylococcus	aureus
				(MRSA) were characterized. One active isolate, $\pmb{\alpha}$ -mar	ngostin, Linuma et al.,
	-	lpha-mangostin	Antibacterial	presented MIC value of 1.57-12.5 µg/mL.	1996
		120		GM extract had the greatest antimicrobial effect. The MIC	values
				were the same (0.039 mg/mL) for both bacterial species a	and the
				MBC values	were
				0.039 and 0.156 mg/ml against Propionibacterium acm	es and Chomnawang
	-	-	Antibacterial	Staphylococcus epidermidis, respectively.	<i>et al.,</i> 2005

Part used	Extraction	Compounds	Activity	Results	References
				$\pmb{\alpha}\text{-mangostin}$ was found to be active against vancomycin	
				resistant Enterococci (VRE) and methicillin resistant	
				Staphylococcus aureus (MRSA), with MIC values of 6.25 and 6.25	
				to 12.5 µg/mL, respectively. eta -mangostin showed low	
				inhibitory effect against VRE and MRSA with MIC values more	
				than 25 and 100 $\mu\text{g/mL},$ respectively. The study showed	
	hexane,			synergism between $oldsymbol{lpha}$ -mangostin and gentamicin (GM) against	
	methylene			VRE, and \pmb{lpha} -mangostin and vancomycin hydrochloride (VCM)	
	chloride and			against MRSA might be useful in controlling VRE and MRSA	Sakagami <i>et</i>
Stem Bark	methanol	$oldsymbol{lpha}$, $oldsymbol{eta}$ -mangostin	Antibacterial	infections.	al., 2005
		121		The crude CH_2Cl_2 extract (>0.53 mg/disc) exhibited a favorable	
				activity against L. monocytogenes. Furthermore, MIC and MBC	
				of antibacterial against strain were 8.50 and 17.00 mg/mL, which	
	Maceration-			MBC was two-fold higher than the corresponding MIC. The GM	
	hexane,			extract at conc. 17 mg/mL treated to cells and studied by	
	methylene			Transmission Electron Microscopy (TEM). There was some loss	
Hulls	chloride	lpha-mangostin	Antibacterial	and change of the membrane and cytoplasm in cells of the	

Part used	Extraction	Compounds	Activity	Results	References
				bacterium following exposure to crude extract. This may be	
				due to the yield of $\mathbf{\alpha}$ -mangostin content about 316.40 ± 32.36	
				µg/mg of dry matter of extract (31.64%) from dried inner	Tangwatcharin
				mangosteen hull extraction with CH_2Cl_2 .	et al., 2012
		128			
				The ethyl acetate extract showed no antiprotozoal activity at all, a	
				pronounced inhibitory effect (IC_{50}) was obtained with the dichloromethane	
				extract against Plasmodium falciparum (IC $_{\rm 50}$ 2.7 $\mu g/mL)$ and Trypanosoma	
				brucei (IC_{50} 0.5 µg/mL), but only with acceptable selectivity (SI) for T. brucei	
				(SI = 18.8). Some side activity was also noted against <i>T. cruzi</i> and	
				Leishmania infantum (IC_{50} 7.6 and 7.5 µg/mL), but with low selectivity. $\pmb{\alpha}$ -	
	oli ola la ra na atla			mangostin could be indicated against B. subtilis and S. aureus (MIC 1.6 and	
	achtorometh			3.2 µg/mL) and the Mycobacterium species (MIC 1.5 µg/mL), selectivity was	
	ane and ethyl			quite low in view of the observed cytotoxicity on MRC-5 cells (IC $_{50}$ = 7.5	
	acetate		Antiprotozal,	μM). No activity at all was found against C. albicans, E. coli and P.	Al-Massarani
Pericarps	extracts	lpha-mangostin	Antimicrobial	aeruginosa (IC ₅₀ >200 μg/mL).	<i>et al.,</i> 2013

Part used	Extraction	Compounds	Activity	Results	References
	80%			The MeOH extract of bark and pericarp showed highest	
Bark and	methanol,			inhibition against microorganism, both water and ethanolic	Palakawong <i>et</i>
Pericarps	water	- ////	Antibacterial	extracts showed higher effective inhibition in high acidity (pH4).	<i>al.,</i> 2013
		9-	201 X	mangostanaxanthones I and II displayed promising antioxidant	
		hydroxycalabaxantho		activity with IC_{50} 12.07 and 14.12 $\mu\text{M},$ respectively using DPPH	
		ne, parvifolixanthone		assay. $oldsymbol{lpha}$ -mangostin and mangostanaxanthones II had weak to	
		C, α -mangostin,		moderate activity against Staphylococcus aureus with MICs 0.79,	
		mangostanaxanthone		1.0 mg/mL, respectively. All compounds were inactive against	Mohamed et
Pericarps	-	s I, and II	Antibacterial	Candida albican.	<i>al.,</i> 2014
				The 95% ethanol extract contained higher $oldsymbol{lpha}$ -mangostin and total	
				phenolic compounds. Tannins of 70% acetone extract were	
				significantly higher than 95% ethanol extract. The 95% ethanol	
				extract exhibited a potent antibacterial activity against oral	
				pathogens with low MIC and MBC values compared to the acetone	
		lpha-mangostin, total		extract. The morphology of bacteria was significantly changed after	
	95% ethanol,	phenolic compounds		treatment with extracts for 24 h. Furthermore, time kill assay	Samprasit <i>et</i>
Pericarps	70% acetone	and tannins	Antibacterial	revealed that bacterial cells were decreased within 2 hours.	<i>al.,</i> 2014

Table C7: I	Phytochemistry	and Biological	activity of	Garcinia mangostana
-------------	----------------	----------------	-------------	---------------------

Part used	Extraction	Compounds	Activity	Results	References
				Pericarps, leaves and resins (100 mg) showed inhibition against	
				Staphylococcus aureus and Escherichia coli strains at clear zone	
Fruits,				10, 5, 1 mm, respectively. The GM leaf extract inhibited	
Leaves and	Maceration-		Antibacterial,	cytotoxic activity against mouse melanoma B16 - F10 cells with	Cunha <i>et al.,</i>
Resin	70%ethanol	- 112-15	Cytotoxic	IC ₅₀ =0.039 mg/mL.	2014
		150	2	lpha-Mangostin was more active against the resistant in vitro	
				antiplasmodial and cytotoxic effects were determined. $\pmb{\alpha}$ -	
				mangostin was more active against the resistant Plasmodium	
		$lpha$ -mangostin, δ -		<i>falciparum</i> chloroquine-resistant (FCR3) strain (IC ₅₀ = 0.2μ M)	Upegui <i>et al.,</i>
Husks	90% ethanol	mangostin	Antiplasmodial	than $\boldsymbol{\delta}$ -mangostin (IC ₅₀ = 121.2 μ M).	2015

BIOGRAPHY

Name	Miss Thana Juckmeta	
Date of Birth	November 09, 1988	
Educational Attainment	2010: B.Sc. (Applied Thai Traditional Medicine)	
	Thammasat University, Thailand	
	2012: M.Sc. (Applied Thai Traditional Medicine)	
	Thammasat University, Thailand	
Work Position	Research assistant in Department of Thai	
	Traditional Medicine, Faculty of Medicine,	
	Thammasat University	
Scholarship (If any)	Year 2014: Scholarship of Thammasat	
	University	

Publications

- Suranart, J., Juckmeta, T., Makchuchit, S., Itharat, A. Study on anti-inflammatory activities of Thai medicinal plants in Pikutbenjalokawichian (Ha-Rak) [Abstract]. *Journal of Thai Traditional & Alternative Medicine* **2009**, *7*, 120.
- Suranart, J., Juckmeta, T., Makchuchit, S., Itharat, A. Study on anti-inflammatory activities of Thai medicinal plants in Pikutbenjalokawichian (Ha-Rak) [Abstract]. *The Journal of Thammasat University Medical School* **2009**, 184.
- Juckmeta, T., Itharat A. Anti-Inflammatory and Antioxidant Activities of Thai Traditional Remedy Called "Ya-Ha-Rak". *Journal of Health Research* 2012, 26, 205-210.
- Sakpakdeejaroen, I., Juckmeta, T., Itharat, A. Development and Validation of RP-HPLC Method to Determine Anti-Allergic Compound in Thai Traditional Remedy Called Benjalokawichien. *Journal of Medicinal Association of Thailand, August 2014*, 97 (Suppl. 8): S76-S80.
- Jai-aue, A., Makchuchit, S., **Juckmeta, T.,** Itharat, A. Anti-Allergic, Anti-Inflammatory and Antioxidant Activities of the Different Extracts of Thai Traditional Remedy

Called Prabchompoothaweep for Allergic Rhinitis Treatment. *Journal of Medicinal Association of Thailand, August* **201**4; 97 (Suppl. 8): S140-S148.

- Juckmeta, T., Thongdeeying, P., Itharat, A. Inhibitory effect on β-hexosaminidase release from RBL-2H3 cells of extracts and some pure constituents of Benchalokawichian, a Thai herbal Remedy, used for allergic disorders. *Evidence-Based Complementary and Alternative Medicine* **2014**; Article ID 828760, 8 pages, http://dx.doi.org/10.1155/2014/82876
- Hansakul, P., Dechayont, B., Phuaklee, P., Pradjuabjinda, O., Juckmeta, T., Itharat, A.
 Cytotoxic and Antioxidant Activities of Antidesma thwaitesianum MÜll Arg
 (Euphorbiaceae) Fruit and Fruit Waste Extracts. *Tropical Journal of Pharmaceutical Research, April* 2015; 14(4), 627-34.
- Juckmeta, T., Ruangnoo, S., Itharat, A. Cytotoxic activities against two lung cancer cells of Thai antipyretic drug. *Planta medica. December 2016;* 81(s01): S1-381, DOI: 10.1055/s-0036-1596966.
- Chunthorng-Orn, J., Dechayont, B., Phuaklee, P., Prajuabjinda, O., Juckmeta, T., Itharat, A. Cytotoxic, Anti-inflammatory and Antioxidant Activities of *Heliotropium indicum* Extracts. *Journal of Medicinal Association of Thailand, July* **2016;** 99(7):
- Dechayont, B., Itharat, A., Phuaklee, P., Chunthorng-Orn, J., Juckmeta, T., Prommee,
 N., Nuengchamnong, N., Hansakul, P. Antioxidant activities and
 phytochemical constituents of Antidesma thwaitesianum Müll. Arg. leaf
 extracts. *Journal of Integrative Medicine, July* 2017; 15(4): 310-19.
- Juckmeta, T., Pipatrattanaseree, W., Jaidee, W., Dechayont, B., Chunthorng-Orn, J., Andersen, J.R., Itharat, A. Cytotoxicity to Five Cancer Cell Lines of the Respiratory Tract System and Anti-inflammatory Activity of Thai Traditional Remedy. Natural Product Communications, *2018*; *In process*

Presentation

- Juckmeta, T., Itharat A. Antioxidant and anti-allergy activities of Thai traditional medicine preparations. 40th Annual Meeting of the Physiological Society of Thailand International Conference, 2-4 May 2011 Pullman Hotel, KhonKaen, Thailand (poster presentation)
- Juckmeta, T. Biological activities of the ethanolic extracts from Pikut Benjalokawichian (Ha-Rak) and its isolate compounds. Medicinal Conference of Thammasat university **2012**, Faculty of Medicine, Thammasat University (oral presentation)
- Juckmeta, T. Biological activities of the ethanolic extracts from Pikut Benjalokawichian (Ha-Rak) and its isolate compounds. 2nd Applied Thai Traditional Medicine Conference, 5-7 October **2012**, Faculty of Medicine Siriraj Hospital, Mahidol University (oral presentation)
- Juckmeta, T., Itharat A. Cytotoxic, Anti-inflammatoryand Antioxidant Activities of *Tiliacora triandra* (Yanang). 1st Joint ACS AGFD-ACS ICSCT Symposium on Agricultural and Food Chemistry, 4-5 March **2014** Montein Riverside Hotel, Bangkok, Thailand (poster presentation)
- Juckmeta, T., Itharat A. Cytotoxic Activities of *Tiliacora triandra* "Yanang". 18th World Congress on Clinical Nutrition (WCCN)"Agriculture, Food and Nutrition for Health and Wellness", 1-3 December, **2014**, Ubonratchathani, Thailand (oral presentation)
- Juckmeta, T., Itharat A. Biological activities of the ethanolic extracts from Pikut Benjalokawichian (Ha-Rak) and its isolate compounds. The International Conference on Traditional and Indigenous Medicine, 4-5 September 2015 Impact exhibition & Convention center, Nonthaburi, Thailand (oral presentation)
- Juckmeta, T., Itharat A. Cytotoxic activities against two lung cancer cells of Thai antipyretic drug. The 9th Joint Natural Products Conference, 24-28 July **2016**, Copenhagen, Denmark (poster presentation)

<u>Award</u>

Winner of oral presentation in Thai Traditional Research Conferences of Faculty of Medicine, **2012**, Thammasat University, Thailand

First runner up in Innovation Award **2015,** "Harberstin" product, Institute of Intellectual Property and Business Incubator Thammasat University, Thailand

Work Experience

2014-present: Member of Center of Excellence on Applied Thai Traditional Medicine Research 2013-2016: Research Manager of Research and Development of Thai Traditional Medicine Holistic Approach to Enhance Health, Prevent and Treat Chronic Diseases from Community to World Class, Thammasat University under the National Research University Project of Thailand (NRU) Fund, Office of Higher Education Commission

2012-present: Research Assistant in Applied Thai Traditional Medicine, Faculty of Medicine