

STRUCTURED ANALOGICAL ARGUMENTATION:

FRAMEWORKS AND ALGORITHMS

BY

MR. TEERADAJ RACHARAK

A THESIS SUBMITTED IN PARTIAL FULFILLMENT OF THE

REQUIREMENTS FOR THE DEGREE OF DOCTOR OF

PHILOSOPHY (ENGINEERING AND TECHNOLOGY)

SIRINDHORN INTERNATIONAL INSTITUTE OF TECHNOLOGY

THAMMASAT UNIVERSITY

ACADEMIC YEAR 2018

COPYRIGHT OF THAMMASAT UNIVERSITY

Ref. code: 25615722300273MJP

STRUCTURED ANALOGICAL ARGUMENTATION:

FRAMEWORKS AND ALGORITHMS

BY

MR. TEERADAJ RACHARAK

A THESIS SUBMITTED IN PARTIAL FULFILLMENT OF THE

REQUIREMENTS FOR THE DEGREE OF DOCTOR

OF PHILOSOPHY (ENGINEERING AND TECHNOLOGY)

SIRINDHORN INTERNATIONAL INSTITUTE OF TECHNOLOGY

THAMMASAT UNIVERSITY

ACADEMIC YEAR 2018

COPYRIGHT OF THAMMASAT UNIVERSITY

Ref. code: 25615722300273MJP

(1)

Thesis Title STRUCTURED ANALOGICAL

ARGUMENTATION: FRAMEWORKS

 AND ALGORITHMS

Author Mr. Teeradaj Racharak

Degree Doctor of Philosophy (Engineering and

Technology)

Faculty/University Sirindhorn International Institute of Technology/

Thammasat University

Thesis Advisor Assistant Professor Nguyen Duy Hung, Ph.D.

Thesis Co-Advisor Professor Satoshi Tojo, Ph.D.

Academic Years 2018

ABSTRACT

Analogical reasoning is a complex process based on a comparison between two

pairs of concepts and states of affairs (aka. the source and the target) for characterizing

certain features from one to another. Arguments which employ this process to support

their claims are called analogical arguments. Our goals are to study the structure and

the computation for their defeasibility in light of the argumentation theory. We outline

the results of our study as comprising two parts in the following.

First, analogical reasoning involves in understanding the notion of similarity.

To address this problem, we first take a look into the literature of similarity models.

The most basic (but useful) one was introduced by (Tversky, 1977). In Tversky’s

model, an object is considered as a set of features. Then, the similarity of two objects

is measured by the relationship between a number of common features and a number

of different features. Nonetheless, not every feature need to be cited in analogical

arguments, the studies in (Hesse, 1965; Waller, 2001; Weinreb, 2016) reported that

features used by the comparison should be ‘relevant’ for characterizing certain features

from one to another. As part of the study, we formally investigate the characteristics of

a ‘similarity notion’ for analogical arguments in this dissertation. Though our similarity

Ref. code: 25615722300273MJP

(2)

models are posed in a general structure, our running examples are shown w.r.t.

description logic formalism.

Second, analogical reasoning involves in understanding the structure of

analogical arguments and computing their nature of defeasibility. These problems are

indeed related to the study of structured argumentation and the acceptability of

analogical arguments. As their results, we formally introduce a general framework in

structured argumentation called assumption-based argumentation with predicate

similarity ABA(p) framework. This framework can be seen as an extension of

assumption-based argumentation framework (ABA), in which not only assumptions

can be used but also similarity of predicates (w.r.t. by the proposed similarity notion)

are used to support a claim. ABA(p) labels each argument tree with an analogical degree

and different ways to aggregate numerical values are studied toward gullible/skeptical

characteristics in agent reasoning. The acceptability of analogical arguments is

evaluated w.r.t. Dung-styled semantics.

Finally, we demonstrate how our study can benefit the area of service science.

Realistic examples are analyzed and a diverse range of applications is discussed.

Keywords: Analogical Reasoning, Metaphorical Reasoning, Description Logic,

Assumption-based Argumentation, Persuasive Reasoning

Ref. code: 25615722300273MJP

(3)

ACKNOWLEDGEMENTS

First and Foremost, I would like to express my deepest gratitude to my advisor

and co-advisor, Asst. Prof. Nguyen Duy Hung and Prof. Satoshi Tojo, for their

guidance, support, patience, and encouragement throughout my doctoral course. Their

technical and editorial advice were essential to the completion of this thesis. They have

taught me innumerable lessons on academic researching. I am and will always be most

appreciative of their kindness to help me learn, grow, and move forward.

Grateful acknowledgement is extended to Dr. Boontawee Suntisrivaraporn, who

serve as a member of doctoral committees and my former advisor, for his useful and

valuable guidance at the early stage of my doctoral study. Cordial gratitude is continued

to Dr. Prachya Boonkwan for his kind proofreading on several of our publications. His

suggestions and correction of writing style have improved my writing skill. Many

thanks to Dr. Prachya Boonkwan, Assoc. Prof. Ekawit Nantajeewarawat, and Prof.

Thanaruk Theeramunkong, who also serve as members of doctoral committees for their

interest, comments, and support throughout the study. In addition, I would like to thank

Prof. Ken Satoh, my external examiner, for his constructive suggestions.

I am also obliged to JAIST-NECTEC-SIIT dual degree program for the

scholarship which facilitated my doctoral study at Sirindhorn International Institute of

Technology, Thammasat University.

Last but not least, I would like to express my warmest appreciation to my

family, Mr. Boontham Racharak and Mrs. Supatra Racharak, for their love, care,

patience, understanding, and spiritual supports.

Mr. Teeradaj Racharak

Ref. code: 25615722300273MJP

(4)

TABLE OF CONTENTS

 Page

ABSTRACT (1)

ACKNOWLEDGEMENTS (3)

LIST OF TABLES (7)

LIST OF FIGURES (8)

LIST OF SYMBOLS/ABBREVIATIONS (9)

CHAPTER 1 INTRODUCTION 1

1.1 Argumentation by Analogy 1

1.1.1 Descriptive Analogy 2

1.1.2 Normative Analogy 3

1.1.3 Figurative Analogy 4

1.2 Argumentation Scheme for Argument from Analogy 6

1.2.1 Three Issues in Walton’s Scheme 7

1.3 Objectives 8

1.4 Reader’s Guide 9

CHAPTER 2 PRELIMINARIES 11

2.1 Argumentation Framework and Its Structure 11

2.1.1 Abstract Argumentation 11

2.1.1.1 Complete Semantics 13

2.1.1.2 Grounded Semantics 14

2.1.1.3 Stable Semantics 14

2.1.1.4 Preferred Semantics 15

2.1.2 Structured Argumentation 16

2.1.2.1 Acceptability of Arguments in ABA 18

Ref. code: 25615722300273MJP

(5)

2.2 Description Logics 22

2.2.1 Description Languages 23

2.2.2 DL Terminological Formalism 27

2.2.3 Reasoning Services 30

2.2.4 Reasoning Algorithms 31

2.2.4.1 Structural Approach for ℰℒ 32

CHAPTER 3 CONCEPT SIMILARITY IN DESCRIPTION LOGICS 35

3.1 Preference Context for Having Relevance 36

3.2 Formal Notion of Context Similarity under Preference 39

3.3 From Concept Subsumption to Subsumption Degree 41

3.3.1 Homomorphism Degree 43

3.3.2 Properties underlying Homomorphism Degree 45

3.3.3 Concept Similarity Degree 47

CHAPTER 4 PERSONALIZING CONCEPT SIMILARITY IN DESCRIPTION

LOGICS 50

4.1 Preference Profile 51

4.2 From Subsumption Degree to Subsumption Degree under Preferences 55

4.3 Concept Similarity under Preference Profile 59

4.3.1 From Subsumption Degree under Preferences to Concept Similarity

under Preferences 64

4.3.2 Desirable Properties of sim& 68

4.4 Implementation Methods of sim& 71

4.4.1 Top-Down Implementation of sim& 71

4.4.2 Bottom-Up Implementation of sim&		 74

4.5 Empirical Evaluation 76

4.5.1 Performance Analysis and Backward Compatibility of sim& 77

4.5.2 Effects of Tuning sim& 79

4.5.2.1 Tuning via 𝔦𝔠 and 𝔡 79

4.5.2.2 Tuning via 𝔰𝔯 80

4.5.2.3 Tuning via 𝔰𝔠 81

Ref. code: 25615722300273MJP

(6)

4.5.2.4 Tuning via 𝔦𝔯 81

4.6 Comparison with Related Works 81

4.6.1 Ordinary Concept Similarity Measure v 81

4.6.2 Preference-based Concept Similarity Measure 83

CHAPTER 5 COMPUTATION OF ACCEPTED ANALOGICAL ARGUMENTS 86

5.1 Acceptability of Arguments in ABA(p) 93

5.2 Relationship to Argumentation Scheme for Argument from Analogy 98

5.3 Comparison with Related Works 100

CHAPTER 6 CONCLUDING REMARKS 103

6.1 Discuss of Achieved Results 104

6.1.1 The Development of Concept Similarity Measure under Preference

Profile in Description Logics 104

6.1.2 The Design of Algorithmic Procedures for sim& and Their Empirical

Evaluation w.r.t. Realistic Ontologies 105

6.1.3 Construction and Evaluation of Analogical Arguments 107

6.2 Potential Applications in Service Science Area 108

6.3 Directions of Future Research 110

REFERENCES 112

APPENDICES

APPENDIX A 122

APPENDIX B 125

BIOGRAPHY 130

Ref. code: 25615722300273MJP

(7)

LIST OF TABLES

Tables Page

1.1 Argumentation by Analogy as An Extrapolation 2

2.1 A Failed Grounded Belief Dispute Derivation for ℎ𝑜𝑙𝑑(𝑞𝑢𝑎𝑐𝑘, 𝑔𝑜𝑜𝑠𝑒) 21

2.2 A Successful Grounded Belief Dispute Derivation for ¬ℎ𝑜𝑙𝑑(𝑞𝑢𝑎𝑐𝑘, 𝑔𝑜𝑜𝑠𝑒) 22

2.3 Syntax and Semantics of Concept Constructors 23

2.4 Comparing The Description Logics 25

2.5 Syntax and Semantics of Ontological Constructors 26

2.6 Logical Constructors in Various DLs 29

4.1 Execution Time of Top-Down sim and Top-Down sim&= on 𝒪?@ABCD	EFG 78

4.2 Execution Time of Bottom-UP sim and Bottom-Up sim&= on 𝒪?@ABCD	EFG 78

4.3 Results of Executing sim and sim&= on 𝒪?@ABCD	EFG 79

4.4 Concept Similarity Measures which Embed Preference Elements 85

5.1 Some Instances of The Operator ⊗ 90

5.2 A Grounded Belief Dispute Derivation for 𝑞𝑢𝑎𝑐𝑘(𝑠𝑜𝑢𝑛𝑑J) 98

Ref. code: 25615722300273MJP

(8)

LIST OF FIGURES

Figures Page

2.1 AAJ.M: A Simple Argumentation Framework 11

2.2 AAJ.J: An Argumentation Framework Containing An Isolated Argument 12

2.3 AAJ.N: Two Mutual Attacks 14

2.4 AAJ.O: A Cyclic Argumentation Framework 15

2.5 ABA Framework for The Running Example 18

2.6 The Corresponding Description Trees of Concept GrandFather and Parent 34

3.1 The Description Trees of Concepts 𝒯ActivePlace, 𝒯Mangrove, and 𝒯Beach 43

4.1 Pseudo Code for hd& using Top-Down Fashion (Part 1) 71

4.2 Pseudo Code for hd& using Top-Down Fashion (Part 2) 72

4.3 Pseudo Code for hd& using Top-Down Fashion (Part 3) 73

4.4 Pseudo Code for hd& using Top-Down Fashion (Part 4) 74

4.5 Pseudo Code for hd& using Bottom-Up Fashion 75

4.6 Example of ℰℒℋ Concept Definitions Defined in 𝒪SNOMED	CT 79

5.1 ABA(p) Framework for The Running Example 92

5.2 An Example of Argument Trees and Their Relationship 99

6.1 An Overview of Our ABA(p) Framework 103

A.1 SNOMED CT BioPortal (Accessed on February 21, 2018) 122

B.1 The Structure of OWL 2 (Source: https://www.w3.org/TR/owl2-

overview/OWL2-structure2-800.png) 126

B.2 Example of Using sim& APIs in Java 127

B.3 Our Batch Program’s Structure 128

B.4 The Degree of Similarity between Son and SonInLaw 128

B.5 Results of Unit Tests 129

Ref. code: 25615722300273MJP

(9)

LIST OF SYMBOLS/ABBREVIATIONS

Symbols/Abbreviations Terms

𝒜 An ABox

AA Abstract Argumentation

ABA Assumption-based Argumentation

𝒜ℒ Attributive Language, a Description

 Logic providing atomic concept, the

 top concept (⊤), the bottom concept

 (⊥), atomic negation,

 conjunction (⊓), value restriction

 (∀𝑟. 𝐶), and limited existential

 restriction (∃𝑟. ⊤)

𝒜ℒ𝒞 𝒜ℒ extended with full concept

 negation (𝒞)

CQ Critical Question

DL Description Logic

DLs Description Logics

ℱℒw 𝒜ℒ disallowing the bottom concept

 (⊥), atomic negation, and limited

 existential restriction (∃𝑟. ⊤)

ℰℒ 𝒜ℒ disallowing the bottom concept

 (⊥), atomic negation, and value

 restriction (∀𝑟. 𝐶)

ℰℒℋ ℰℒ extended with role hierarchy (ℋ)

CN A set of concept names

PAF Preference-based Argumentation

 Framework

RN A set of role names

𝒯 A TBox

Ref. code: 25615722300273MJP

1

CHAPTER 1

INTRODUCTION

1.1 Argumentation by Analogy

The word ‘Analogy’ (or, ‘according to ratio’ in Greek) originally meant rational

correspondence (Macagno, 2014). In the Posterior Analytics1, Aristotle pointed out that

this type of reasoning could be used for identifying a fundamental characteristic

common to various entities, and for which no name exists. His statement is quoted as

follows:

“Again, another way is excerpting in virtue of analogy; for you cannot get one

identical thing which pounce and spine and bone should be called; but there will be

things that follow them too, as though there were some single nature of this sort.”

Intuitively, Aristotle noticed that there is not a specific generic class that

subsumes the pounce (of a cuttlefish), the spine (of a fish), and the bone (of an animal).

That is, no name representing this category existed. However, these three different

concepts share substantial characteristics in common. Analogy, in this sense, can be

used to reveal a genus (i.e. a generic, common, and relevant feature) that can be

considered as an ontological and semantic property that does not have a conventional

name (Glucksberg & Keysar, 1990; Hesse, 1965).

Argumentation by analogy (or analogical reasoning) are powerful cognitive

tools, in a sense that enabling to deal with unfamiliar situations, and can be classified

in various ways. For example, (Garssen, 2009, p. 134) classified that there are two

variants of argumentation by analogy represented in the various argumentative patterns

viz. descriptive analogy and normative analogy. In (Bermejo-Luque, 2014, p. 58),

analogical reasoning is characterized based on two perspectives viz. qualitative analogy

and quantitative analogy. Other proposed models can be found in (Copi, Cohen, &

McMahon, 2016; Davies, 1988; Guarini, Butchart, Smith, & Moldovan, 2009; Walton,

2010; Walton, Reed, & Macagno, 2008).

1 The Posterior Analytics is a text from Aristotle’s Organon that deals with demonstration, definition,
and scientific knowledge i.e. syllogisms of scientific knowledge and statements of things’ nature.

Ref. code: 25615722300273MJP

2

Despite the diversity of existing models, analogical reasoning can be considered

as a process based on a comparison between two pairs of concepts or states of affairs

(aka. the source and the target) sharing some common features (Bartha, 2010). This

comparison is the ground of this specific type of the reasoning, in which the conclusion

of an argument is attributed to a specific feature characterized from one to another. The

goal of this thesis is to study and investigate its computational aspect, particularly in

light of the argumentation theory, rather than the psychological modeling.

Table 1.1 Argumentation by Analogy as An Extrapolation.

Description mentioned in the source Description mentioned in the target

Relevant property 1 Relevant property 1

Relevant property 2 Relevant property 2

Relevant property 3 Extrapolated relevant property 3

In the following subsections, each variation of argumentation by analogy is

exemplified and discussed w.r.t its usage pattern in an argumentative discourse.

1.1.1 Descriptive Analogy

A typical characteristic of descriptive analogical reasoning is that the conclusion

that is defended and the reason that is advanced in its support are descriptive. In other

words, a comparison in this kind of analogy is made between the actual characteristics

of one concept or state of affairs and the actual characteristics of another concept or

state of affairs. For instance,

“camera surveillance in the centre of Amsterdam will be effective because

camera surveillance proved to be effective in London” in (Van Eemeren & Garssen,

2014, p. 48)

In this argumentation, London and Amsterdam are compared and it is claimed

that ‘camera surveillance’ will be the case in Amsterdam because such thing has already

happened in London and Amsterdam is comparable to London.

It is worth observing that similarity is often mentioned implicitly and is usually

subjective to certain ‘relevance’ in argumentation by analogy. The above example may

assume that there are a number of similarities relevant to ‘safety’ between Amsterdam

Ref. code: 25615722300273MJP

3

and London. The fact that they are both capitals may be not relevant here since this

condition is not directly related to safety in the streets. Instead, the fact that they are big

cities is a relevant one to conclude that the property mentioned in London i.e. camera

surveillance is effective is shared to Amsterdam.

Intuitively, descriptive analogy is often employed to extrapolate a property from

commonalities between two concepts or states of affairs. In other words, when the

source and the target are comparable and have properties shared in common, they are

assumed to share another property mentioned in the target. Table 1.1 shows a general

characterization for this kind of analogical reasoning. According to this

characterization, this kind of analogical argument is alternatively called case-based

reasoning.

To evaluate the acceptability of an extrapolated property, the first step is to ask

whether the two concepts or states of affairs are comparable. If they are comparable,

they are obliged to show that they are indeed belonged to the same class. This can be

asked by the antagonist to the protagonist for mentioning the relevant properties which

enable the conclusion that they are belonged to the same class. Mentioning the relevant

properties can again enable the antagonist to criticize the perception of similarity since

it may not be able to recognized as similarity or the mentioned properties may be not

relevant to the issue at hand.

Not merely criticizing the mentioned relevant properties, the antagonist can also

point out the differences between them. This leads the protagonist to show either these

differences are not relevant or the mentioned properties for similarity outweigh the

differences. Regarding this testing procedure, the acceptability of a claim can be

decided if an extrapolation is successful nor not.

1.1.2 Normative Analogy

In normative analogy, the principle of consistency plays a central role. This can

be seen in the rule of justice i.e. people and institutions which belong to the same

category should be treated similarly. Like the descriptive analogy, this kind of

argumentation by analogy is used to claim that what is mentioned in the target case is

comparable to what is mentioned in the source case. For instance,

Ref. code: 25615722300273MJP

4

“the employees in the administration department should get a salary raise

because the sale persons in our firm also get a salary raise” in (Van Eemeren &

Garssen, 2014, p. 48)

It is worth observing that normative analogy differs from descriptive analogy in

a sense that the use of the principle of consistency does not involve an extrapolation of

characteristics. Its central issue is whether two persons or groups of people are really

belonged to the same class or not.

Another difference is the fact that a claim in normative analogical

argumentation is ‘normative’ in nature i.e. it claims that people in the same category

should be treated in the same direction.

Similar to the usage of descriptive analogical argumentation, a set of critical

questions can be employed to evaluate a claim. Again, the first step is to ask whether a

person or a group of people mentioned in the target case and another person or group

of people mentioned in the source case are comparable. After this question has been

answered by the protagonist, the antagonist can further ask the protagonist to justify

that the two persons or groups of people being compared are really belonged to the

same category. To that effect, the protagonist is forced to show additional

argumentation. If the antagonist points at differences i.e. showing that the two persons

or groups of people are not belonged to the same class, the protagonist’s response has

to show that the differences are not relevant or outweigh the similarities.

Normative analogical argumentation shares some characteristics with a specific

pattern of reasoning introduced by Govier in 1987 called a priori reasoning (Gover,

2018). In a priori reasoning, some person, group or institution must act consistently:

“You should do X because, in a similar situation, you would also do X. However, a

priori reasoning differs from normative analogical reasoning in a sense that an example

used in the comparison does not necessarily exist. Its basic idea is that if it is admitted

in the answer that a person – imaginary or not – would be treated in a certain way, it

has to be accepted that the (real) person of the same category must be treated in the

same way.

1.1.3 Figurative Analogy

Ref. code: 25615722300273MJP

5

In figurative analogy, two different concepts or states of affairs are situated on

different levels of experience (or are belonged to completely different kinds). An

example was analyzed in (Hastings, 1963), in which President Truman puts forward at

the beginning of the Korea conflict in defense of his claim that the United States should

strike immediately as follows:

“The best time to meet the threat is in the beginning. It is easier to put out a fire

in the beginning when it is small than after it has become a roaring blaze” in (Hastings,

1963, p. 114)

Fire and war are belonged to different classes, which make them impossible to

compare directly between each other. By viewing literally, President Truman does not

make a direct comparison between war and fire. To deal with this kind of comparison,

the abstract relationship between the two classes is taken into account. Like the above

example, the president’s intention was to convey that the war in Korea would become

unmanageable if we did not act now. This relationship was later characterized by

(Perelman, 1969) as the ‘resemblance of structures’ as follows:

A and B together, the terms to which the conclusion relates are called theme.

C and D together, the terms that advance it are called phoros.

We schematize the above example according to Perelman as follows:

Theme (A - B): meeting the threat -- in the beginning

Phoros (C - D): putting out a fire -- when it is small

Intuitively, this schematization speaks out that only one similarity is shared

between two situations. Its objective is to establish the general rule governing the

situations e.g. the rule “it is suggested to approach a problem when it is small” is applied

in the above example. After this general rule is constructed, it does not make sense for

figurative analogy to search for additional similarities. This makes it differs from both

descriptive analogical argumentation and normative analogical argumentation, which

often imply that there are a number of similarities.

It is worth mentioning that figurative analogical argumentation is based on

‘metaphorical’ relation that serves as an indirect means of expressing a general rule for

advancing a claim. Ones may also observe that no real comparison has been made in

an idiomatic expression. Since an idiomatic expression is always used to convey

Ref. code: 25615722300273MJP

6

implicitly intended meaning, it is ludicrous to ask critical questions in order to evaluate

the acceptability of a claim advanced by a figurative analogy.

Using an idiomatic expression to advance a claim does not mean that this kind

of analogical argumentation is logically weak. It might mean so if it is compared with

other kinds of analogical argumentation. Nonetheless, when it is properly constructed,

what is presented in a figurative analogy can be compelling argumentation in a different

way. This also means that, when studying about analogical argumentation, figurative

analogy should be treated in a different way from descriptive analogy and normative

analogy. In this thesis, we ‘only’ concentrate on argumentative patterns containing

descriptive analogy and normative analogy.

1.2 Argumentation Scheme for Argument from Analogy

Though many characterizations of argument from analogy have been proposed,

they can be represented by a generic structure called argumentation scheme for

argument from analogy introduced by (Walton et al., 2008) as follows:

Similarity Premise: Generally, case C1 is similar to case C2

Base Premise: A is true (false) in case C1

Conclusion: A is true (false) in case C2

This generic structure can be explained as follows. The similarity is regarded to

hold between two cases. These cases could be two different ‘concepts’ or ‘states of

affairs’. Consequently, a property (e.g. a feature A) attributes from one to another.

Intuitively, this kind of structure can be represented as a logic program where A and Ci

are appeared as the head and the body of an inference rule, respectively. Several

attempts similar to this approach were developed in (Racharak, Tojo, Hung, &

Boonkwan, 2017a, 2017b; Raha, Hossain, & Ghosh, 2008; Sun, 1995a).

A fundamental problem for this kind of reasoning is how to evaluate an

analogical argument, i.e. its acceptability. Basically, this problem amounts to

investigations of the structure of analogical arguments and its defeasibility

characteristics. At the abstract level, critical questions (CQ) (Walton et al., 2008)

associated to the argument scheme outlines several conditions of defeasibility:

CQ1: Is A true (false) in C1?

CQ2: Are C1 and C2 similar in the respects cited?

Ref. code: 25615722300273MJP

7

CQ3: Are there important differences (dissimilarities) between C1 and C2

CQ4: Is there some other case C3 that is also similar to C1 except that A is false

(true) in C3?

1.2.1 Three Issues in Walton’s Scheme

Though the critical questions can be used to understand which analogical

arguments should not be accepted. However, they do not address the following three

basic problems:

1. How similarity/dissimilarity should be determined (which amounts to

understand the notion of similarity)?;

2. How an analogical argument is constructed (which amounts to understand

the structure of an analogical argument)?; and

3. How a conclusion drawn from the similarity premise and the base premise is

warranted (which amounts to understand the evaluation of an analogical

argument).

The argumentation scheme and its critical questions do not involve these aspects

concretely.

To address the first problem, we first take a look into the literature of similarity

models. The most basic (but useful) one was developed by (Tversky, 1977). In

Tversky’s model, an object is considered as a set of features. Then, the similarity of two

objects is measured by the relationship between a number of common features and a

number of different features. Nevertheless, not every feature need to be cited in

analogical arguments, the studies in (Hesse, 1965; Waller, 2001; Weinreb, 2016)

reported that features used by the comparison should be ‘relevant’ to the attribution of

the property. This leads to our study on characteristics of similarity models for

analogical arguments in this work.

Addressing the second and the third problems involve in computing arguments

in terms of argumentation with structure (or structured argumentation). It should be

noted that argumentation (Dung, 1995) is proven to be a promising platform to

understand a non-monotonic and defeasible reasoning. With this viewpoint, these

problems are indeed the problems of determining ‘acceptable’ analogical arguments

w.r.t. argumentation semantics. That is, analogical arguments can attack (and be

Ref. code: 25615722300273MJP

8

attacked by) other arguments. We show the correspondence between this attack-

counterattack relationship and the defeasibility conditions of the argumentation scheme

in this thesis.

1.3 Objectives

The primary objective of the thesis is to provide well understanding on the

computational aspect of analogical reasoning in argumentation, rather than the

psychological modeling, for dealing with the aforementioned problems. This goal is

further developed into the following objectives:

1. To propose well-defined notions of similarity measure for concepts,

particularly description logic concepts. These well-defined notions can be

divided into two parts viz. the basic notion of concept similarity and its

extension for similarity of concepts under preference context;

2. To investigate a general framework for analogical argumentation. Here, our

development is restricted on assumption-based argumentation framework

(ABA) (Dung, Kowalski, & Toni, 2009),	which	is	a	less	abstract	framework	

than	the	abstract	argumentation	(AA)	(Dung,	1995);	

3. To demonstrate potential applications of our proposed methods.

To fulfill these objectives, this thesis makes the following main contributions:

1. The well-defined notion of concept similarity measure in description logics,

which is defined as a function mapping from a concept pair to a unit interval
(0 ≤ 𝑥 ≤ 1) for any real number x, also, a group of identified preferential

aspects (called preference context), which can together be used to define the

notion concept similarity under preferences (cf. Chapter 3);

2. The well-defined concrete measure sim& for the description logic ℰℒℋ and
mathematical proofs of their inherited properties, as well as, two algorithmic

procedures for implementing simπ and their practical evaluation w.r.t. a

medical ontology SNOMED CT (cf. Chapter 4); and

3. The general framework called assumption-based argumentation with

predicate similarity ABA(p) framework, which can be seen as an extension

of ABA i.e. not only assumptions can be used but also similarity of

predicates are used to support a claim. In ABA(p), an argument is represented

Ref. code: 25615722300273MJP

9

by a tree labeled with a unit interval and its acceptability is evaluated w.r.t.

the semantics of AA (cf. Chapter 5).

1.4 Reader’s Guide

The remainder of the thesis is organized as follows:

Chapter 2 briefly summarizes the background in argumentation theory and

description logics (DLs). First, the argumentation part basically introduces essential

elements of Dung’s abstract argumentation (AA) and its semantics. This chapter also

introduces less abstract formalisms, dealing in particular with the construction of

arguments and the conditions for an argument to attack another e.g. assumption-based

argumentation (ABA). Second, the description logic part introduces its syntax,

semantics, and basic reasoning algorithms, which are widely implemented by

conventional reasoners.

Chapter 3 defines the problem of concept similarity and gives formal definitions

of this problem in DLs. Intuitively, a problem of concept similarity can be seen as a

generalization of concept equivalence; hence, it can be also seen as a function which

maps two equivalent concepts to 1 and totally dissimilar concepts to 0. We also

investigate how a concrete measure in sub-Boolean logics can be developed. Inherited

properties are also proven. In contrast to expressive DLs, sub-Boolean DLs are

inherently tractable by nature. This fact has motivated us to take a look into them closely

in the thesis, especially how ones can generalize the notion of concept equivalence for

developing concrete measures (also see (Racharak, 2018, Chapter 4) for additional

detailed analysis). This chapter is mainly summarized from our published work

(Racharak, Suntisrivaraporn, & Tojo, 2016b, 2016a).

As aforementioned, similarity measures may be subjective to relevant contexts.

Chapter 4 investigates the notion of concept similarity under preferences in DLs and

existing approaches dealing with this notion. This chapter re-visits and re-defines the

development of similarity measures in a more formal way in DLs. After its redefinition,

measure sim~ is also introduced for measuring the degree of similarity in DL ℰℒℋ.

This chapter also provides mathematical proofs of its properties, studies algorithmic

procedures for sim~ (viz. the top-down approach and the bottom-up approach), and

performs empirical evaluation on the medical ontology SNOMED CT. This chapter is

Ref. code: 25615722300273MJP

10

mainly summarized from our published work (Racharak, Suntisrivaraporn, et al.,

2016a).

Concept similarity under preferences previously introduced is equipped with

ABA to define a general framework called assumption-based argumentation with

predicate similarity ABA(p) in Chapter 5. As a general framework, it is discussed that

ABA(p) can be defined for any logical language specified by means of ‘inference rules’

and ‘terminological formalism’, by identifying ‘sentences’ in the underlying languages

that can be treated as assumptions and concept descriptions. Like ABA, all semantic

notions for determining the acceptability of arguments in AA also apply to arguments

in ABA(p). Hence, it has been investigated in this chapter a constructive proof procedure

for determining a grounded set of assumptions. Lastly, it is demonstrated that the

proposed framework captures the argumentation scheme for argument from analogy

and provides an explanation when it is used for persuasion. This chapter is mainly

summarized from our published work (Racharak, Tojo, Hung, & Boonkwan, 2019).

Chapter 6 summarizes the significance of the thesis’s results, discusses about

the potential applications of the thesis w.r.t. the service science area, and sketches the

future research directions. We note that service science is a new discipline emerging

from the rapid development of services across the industrial world. Its root is an

interdisciplinary study of computer science, operations research, industrial engineering,

mathematics, business strategy, management science, decision theory, and social and

cognitive science, and legal science. Its goal is to improve essential nature of service,

i.e. the joint co-creation between service providers and service consumers.

Some results in this thesis have been previously published. Indeed, preference

profile, the developed concept similarity measure under preferences profile, and

concrete measure sim& for the logic ℰℒℋ (discussed in Chapter 3 and Chapter 4)

appears in (Racharak, Suntisrivaraporn, & Tojo, 2018; Racharak, Suntisrivaraporn, et

al., 2016b, 2016a). The proposed framework in argumentation and a constructive proof

procedure (discussed in Chapter 5) appears in (Racharak et al., 2019). Preliminary

studies, whose contents are not included in this thesis, can be found in (Racharak &

Suntisrivaraporn, 2015; Racharak & Tojo, 2017b, 2017a, 2018; Racharak et al., 2017a,

2017b).

Ref. code: 25615722300273MJP

11

CHAPTER 2

PRELIMINARIES

This thesis exploits benefits of two different reasoning paradigms viz. rule

reasoning and schemata reasoning. They exhibit certain shortcomings that can be

compensated for by advantages of the other. In particular, an argumentation framework

is used as underlying mechanisms of rule reasoning and is explained in Section 2.1.

Furthermore, description logics are used as underlying mechanisms about conceptual

schemata and is described in Section 2.2.

2.1 Argumentation Framework and Its Structure

2.1.1 Abstract Argumentation

An abstract argumentation framework (AA) (Dung, 1995) is a pair (𝐴, 𝑅) where

𝐴 is a (possibly infinite) set of arguments and 𝑅	 ⊆ 𝐴	 × 𝐴 is called an attack relation.

An AA has an obvious representation as a directed graph, in which each node is an

argument and each edge connects an attacking argument to an attacked argument. A

simple argumentation framework AAJ.M ∶= ⟨{𝑎, 𝑏}, {(𝑎, 𝑏)}⟩ is shown in Figure 2.1.

Figure 2.1 AAJ.M: A Simple Argumentation Framework.

In AA, an argument is not assumed to have any specific structure; thus, it can

represent different situations. For instance, in a context of reasoning about weather,

argument b may be associated with the inference rule “Tomorrow will rain because the

national forecast says so” whereas a may be associated with “Tomorrow will not rain

because the regional weather forecast says so”. In a legal dispute, argument b may be

associated with the prosecutor’s statement “The suspect is guilty because an

eyewitness, Mr. Smith, says so” whereas a may be associated with “Mr. Smith is an

alcohol-addicted and it is proved that he was completely drunk; hence, his testimony

should not be considered”. In the context of analogical reasoning, argument b may

Ref. code: 25615722300273MJP

12

represent “I think a goose can quack since it is like a duck” whereas a represents

“Though it is similar to a duck, but to say that it can quack, we have to look into their

vocal cords; and since they are built differently, it cannot quack”.

We may observe that arguments may attack each other. This spells out that

arguments may not stand together and their statuses are ‘subject to’ an evaluation. It is

worth mentioning that this evaluation only concerns about the acceptability of an

argument – not about the conclusions. Figure 2.2 illustrates this distinction by

continuing from the legal dispute example, where argument c represents “The suspect

is guilty because his fingerprints have been found on the crime scene”. Observe that

this new argument has no attack relationship with others. Hence, apart from a, argument

c is also accepted.

Figure 2.2 AAJ.J: An Argumentation Framework Containing An Isolated Argument.

In fact, the notion of ‘acceptability’ can be defined in many ways and such

formal definitions are called argumentation semantics. Basically, semantics for AA

return sets of arguments called extensions, which are conflict-free and defend

themselves against attacks. We formally give their definitions in the following.

Definition 2.1. Given an argumentation framework AA ∶= ⟨𝐴, 𝑅⟩, a set 𝑆	 ⊆ 𝐴

is conflict-free iff ∄𝑎, 𝑏 ∈ 𝑆 such that (𝑎, 𝑏) ∈ 𝑅.

Given an argumentation framework ⟨𝐴, 𝑅⟩, we call that a set 𝑆 ⊆ 𝐴 of arguments

‘attacks’ an argument 𝑏 ∈ 𝐴 (denoted by 𝑆𝑅𝑏) if ∃𝑎 ∈ 𝑆: (𝑎, 𝑏) ∈ 𝑅, for convenience.

Ref. code: 25615722300273MJP

13

Definition 2.2. Given an argumentation framework AA ∶= ⟨𝐴, 𝑅⟩, an argument

𝑎 ∈ 𝐴 is acceptable w.r.t. (or defended by) a set 𝑆 ⊆ 𝐴 iff ∀𝑏 ∈ 𝐴:	𝑏𝑅𝑎	 ⟹ 𝑆𝑅𝑏2.

Intuitively, ‘conflict-free’ corresponds to the idea that a set of arguments must

be able to stand together and ‘acceptability’ expresses the idea that an extension is a set

of arguments that can withstand its attacks by responding with other attacks. These two

properties are used to define the property of admissibility, which lies at the heart of all

semantics introduced in (Dung, 1995).

Definition 2.3. Given an argumentation framework AA ∶= ⟨𝐴, 𝑅⟩, a set 𝑆 ⊆ 𝐴

is admissible iff 𝑆 is conflict-free and ∀𝑎 ∈ 𝑆:	𝑎 is acceptable w.r.t. 𝑆.

Based on the admissibility, Dung has defined four ‘traditional’ semantics in his

landmark paper viz. complete, grounded, stable, and preferred semantics. We review

each of them in the following.

2.1.1.1 Complete Semantics

The notion of complete extension lies at the heart of all traditional Dung’s

semantics. It is based on the admissibility defined earlier and a property that “a

complete extension must be able defend itself and includes all arguments it defends”.

The term ‘complete semantics’ has subsequently gained acceptance in the literature and

is used to refer to the formal definition ruling arguments of complete extensions.

Definition 2.4. Given an argumentation framework AA ∶= ⟨𝐴, 𝑅⟩, a set 𝐸 ⊆ 𝐴

is a complete extension iff 𝐸 is admissible and 𝑥 ∈ 𝐸  ⟺ 	𝑥 is acceptable w.r.t. 𝐸.

It is worth observing that the empty set is always admissible and that arguments

not receiving attacks in an argumentation framework (called initial arguments) are

acceptable w.r.t. the empty set. According to these observations, it can be shown that

the following properties satisfy for any complete extension:

• It cannot be empty;

• It	is	the	empty	set	iff	its	initial	arguments	are	empty;	

2 For convenience, we also write 𝑎𝑅𝑏 for (𝑎, 𝑏) ∈ 𝑅.

Ref. code: 25615722300273MJP

14

• It	subsumes	initial	arguments.	

We illustrate the identification of complete extensions from Figure 2.3 as

follows. We observe that its initial arguments are empty i.e. ∅. We also observe that all

singletons except {𝑏} are admissible. Nonetheless, only {𝑎} and {𝑑} are complete

extensions. Set {𝑐} is not complete since it defends a. Now, we consider larger

admissible sets. Ones can observe that {𝑎, 𝑐} and {𝑏, 𝑑} are complete. Hence, we

conclude that ∅, {𝑎}, {𝑑}, {𝑎, 𝑐}, {𝑏, 𝑑} are complete extensions.

Figure 2.3 AAJ.N: Two Mutual Attacks.

2.1.1.2 Grounded Semantics

The grounded extension includes arguments whose defense is ‘rooted’ in initial

arguments. To put it another way, this set of arguments represents ‘strong defense’.

This semantics has a correspondence with Pollock’s approach (Pollock, 1992) and the

well-founded semantics of logic programs (Van Gelder, Ross, & Schlipf, 1991). We

give its formal definition in the following.

Definition 2.5. Given an argumentation framework AA ∶= ⟨𝐴, 𝑅⟩, a set 𝐸 ⊆ 𝐴

is a grounded extension iff 𝐸 is the set inclusion minimal complete extension.

The grounded extension is unique and can be built incrementally as follows.

First, the procedure begins with initial arguments and the argumentation framework is

modified by suppressing on the arguments attacked by the initial arguments. Next, the

initial arguments are re-identified. We note that this set could now become larger since

the arguments attacked by the ‘new’ initial arguments can be suppressed. The process

stops when no new initial arguments can be found after a suppression step.

We illustrate the above procedure by considering on Figure 2.3. We observe

that the initial arguments of the argumentation framework are empty. Since there are

no initial arguments, the process has stopped.

2.1.1.3 Stable Semantics

Ref. code: 25615722300273MJP

15

Stable semantics relies on a very simple intuition i.e. an extension should be

able to attack all arguments which are not included in it. This leads to the following

definition.

Definition 2.6. Given an argumentation framework AA ∶= ⟨𝐴, 𝑅⟩, a set 𝐸 ⊆ 𝐴

is a stable iff 𝐸 is conflict-free and ∀𝑥 ∈ 𝐴: (𝑥 ∉ 𝐸 ⟹ 𝐸𝑅𝑥).

By definition, any stable extension is also a complete extension and a maximal

conflict-free set of an argumentation framework. Stable semantics has significant

counterparts in several contexts i.e. (Dung, 1995) showed its correspondence with

solutions of cooperative n-person games, solutions of stable marriage problem,

extensions of Reiter’s default logic (Reiter, 1980) , and stable models of logic programs

(Gelfond & Lifschitz, 1988). Unfortunately, stable semantics has also a significant

drawback i.e. there are argumentation frameworks in which no stable extensions exist.

A simple example is shown in Figure 2.4.

Figure 2.4 AAJ.O: A Cyclic Argumentation Framework.

2.1.1.4 Preferred Semantics

The requirement that an extension must attack anything outside it may be too

‘aggressive’. This requirement can be relaxed by considering an extension that is as

large as possible and is able to defend itself from attacks. This intuition is captured by

preferred (or credulous) semantics, which is defined as follows.

Definition 2.7. Given an argumentation framework AA ∶= ⟨𝐴, 𝑅⟩, a set 𝐸 ⊆ 𝐴

is a preferred extension iff 𝐸 is the set inclusion maximal complete extension.

By definition, we can observe that any stable extension is also a preferred

extension, but not vice versa. We illustrate the identification of preferred extensions by

considering Figure 2.3. Here, it shows that there are two preferred extensions viz. {𝑎, 𝑐}

Ref. code: 25615722300273MJP

16

and {𝑏, 𝑑}. Furthermore, considering Figure 2.4, there is only one preferred extension

viz. ∅.

2.1.2 Structured Argumentation

In AA, the structure and meaning of arguments and attacks are abstract. On the

one hand, these characteristics enable the study of properties which are independent of

any specific aspects (Baroni & Giacomin, 2009). On the other hand, this generality

features a limited expressivity and can be hardly adopted to model practical target

situations. To fill out this gap, less abstract formalisms were considered, dealing in

particular with the construction of arguments and the conditions for an argument to

attack another e.g. ASPIC+ (Modgil & Prakken, 2014), DeLP (Garcı́a & Simari, 2004),

and assumption-based argumentation (ABA) (Dung et al., 2009). This work extends

ABA and we include its basis here for self-containment.

Definition 2.8. An ABA framework is a quadruple 〈ℒ, ℛ,𝒜, � 〉,	 where

• (ℒ, ℛ) is a deductive system, in which ℒ is a language and ℛ is a set of

inference rules,

• 𝒜 ⊆ ℒ is a (non-empty) set, referred to as the set of assumptions,

• � is a total mapping from 𝒜 to ℒ, where 𝛼� is the contrary of 𝛼.

We assume that the inference rules in ℛ have the syntax 𝑙w ← 𝑙M, … , 𝑙� (for 𝑛 ≥

0) where 𝑙¡ ∈ ℒ . We refer to 𝑙w and 𝑙M, … , 𝑙� as the head and the body of the rule,

respectively. We also represent the rule 𝑙	 ← simply as l and restrict our attention to flat

ABA framework (Bondarenko, Dung, Kowalski, & Toni, 1997), i.e. if 𝑙	 ∈ 𝒜, then

there exists no inference rules of the form 𝑙 ← 𝑙M, … , 𝑙� ∈ ℛ for any 𝑛 ≥ 0.

Now, we exemplify how ABA can be used to represent a human being’s

reasoning. An example is given in terms of dialogue between two fictitious agents

called Agent1 and Agent2 as follows:

Agent1: I think a goose can quack since it is like a duck.

Agent2: No. Though it is like a duck, but to say that it can quack, we have to

look into their vocal cords. Since they are built differently, it cannot quack.

Ref. code: 25615722300273MJP

17

The above example can be considered as analogical reasoning because Agent1

and Agent2 employ the perception of similarity as a means to justify their reasoning

mechanism. The argumentation scheme for argument from analogy (cf. Section 1.2 for

the description of its schemata) can be represented in ABA as follows3:

ℎ𝑜𝑙𝑑(𝐴, 𝐶J) ← ℎ𝑜𝑙𝑑(𝐴, 𝐶M), 𝑠𝑖𝑚(𝐶M, 𝐶J), 𝑎𝑟𝑔𝑢𝑎𝑏𝑙𝑦(𝐴, 𝐶J)

where Ci represents different concepts or states of affairs, the conclusion ℎ𝑜𝑙𝑑(𝐴, 𝐶J)

may read “A holds in C2”; also, the assumption premises

ℎ𝑜𝑙𝑑(𝐴, 𝐶M), 𝑠𝑖𝑚(𝐶M, 𝐶J), 𝑎𝑟𝑔𝑢𝑎𝑏𝑙𝑦(𝐴, 𝐶J) may read “A holds in C1”, “C1 and C2 are

similar to each other”, and “the defeasible rule should not apply to the conclusion

between A and C2”, respectively.

The above (domain-independent) inference rule is exemplified to the agent

reasoning described in our running example. According to the biological family of

birds, we know that ducks and geese are belonged to the same family i.e. ‘Anatidae’.

These birds are adapted for swimming, floating on the water surface, etc.. Though they

are under the same family, ducks and geese are different. This information supports us

to conclude that ducks and geese are similar. We represent the assumptions as follows.

ℎ𝑜𝑙𝑑(𝑞𝑢𝑎𝑐𝑘, 𝑑𝑢𝑐𝑘); 	 	 𝑠𝑖𝑚(𝑑𝑢𝑐𝑘, 𝑔𝑜𝑜𝑠𝑒)

where the assumptions ℎ𝑜𝑙𝑑(𝑞𝑢𝑎𝑐𝑘, 𝑑𝑢𝑐𝑘) and 𝑠𝑖𝑚(𝑑𝑢𝑐𝑘, 𝑔𝑜𝑜𝑠𝑒) states that “ducks

can quack” and “ducks and geese are similar to each other”, respectively.

Given an ABA framework, an argument in favor of a sentence 𝑐	 ∈ ℒ supported

by a set 𝑆 of assumptions, denoted by 𝑆	 ⊢ 𝑐, is a backward deduction from c to S

obtained by applying backward the rules in ℛ , e.g.

{ℎ𝑜𝑙𝑑(𝑞𝑢𝑎𝑐𝑘, 𝑑𝑢𝑐𝑘), 𝑠𝑖𝑚(𝑑𝑢𝑐𝑘, 𝑔𝑜𝑜𝑠𝑒), 𝑎𝑟𝑔𝑢𝑎𝑏𝑙𝑦(𝑞𝑢𝑎𝑐𝑘, 𝑔𝑜𝑜𝑠𝑒)} ⊢

ℎ𝑜𝑙𝑑(𝑞𝑢𝑎𝑐𝑘, 𝑔𝑜𝑜𝑠𝑒).

In ABA, the notion of attack between arguments is defined in terms of the

contrary of assumptions, i.e. an argument 𝑆M ⊢ 𝑐M attacks another (or the same)

argument 𝑆J ⊢ 𝑐J iff c1 is the contrary of an assumption in S2.

3 We use inference rule schemata, with variables starting with capital letters, to stand for the set of all
instances obtained by instantiating the variables so that the resulting premises and conclusions are
sentences of the underlying language. For simplicity, we omit the formal definition of the language
underlying our examples.

Ref. code: 25615722300273MJP

18

In general, the contrary of an assumption is a sentence representing a challenge

against the assumption and can be suggested by critical questions (CQ) of an

argumentation scheme (cf. Section 1.2 for its description). For instance, the assumption

ℎ𝑜𝑙𝑑(𝐴, 𝐶M) can be challenged by providing a negative answer to CQ1 i.e.

¬ℎ𝑜𝑙𝑑(𝐴, 𝐶M), where symbol ¬ denotes the classical negation. Supplying a negative

answer to CQ2 and CQ3 can also be understood as proving the contrary ¬𝑠𝑖𝑚(𝐶M, 𝐶J)

(i.e. C1 and C2 are dissimilar to each other) of the assumption 𝑠𝑖𝑚(𝐶M, 𝐶J). A negative

answer to CQ4 can be understood as showing the contrary ¬ℎ𝑜𝑙𝑑(𝐴, 𝐶J) of the

assumption 𝑎𝑟𝑔𝑢𝑎𝑏𝑙𝑦(𝐴, 𝐶J) . This contrary ¬ℎ𝑜𝑙𝑑(𝐴, 𝐶J) may be defined by an

additional (domain-independent) inference rule: ¬ℎ𝑜𝑙𝑑(𝐴, 𝐶J) ←

𝑠𝑖𝑚(𝐶M, 𝐶J), 𝑠𝑖𝑚(𝐶M, 𝐶N), ℎ𝑜𝑙𝑑(𝐴, 𝐶M), ¬ℎ𝑜𝑙𝑑(𝐴, 𝐶N). Contraries may also be derived

via a chain of rules, e.g. ¬ℎ𝑜𝑙𝑑(𝑞𝑢𝑎𝑐𝑘, 𝐴) ←

𝑐𝑜𝑟𝑑(𝐴, 𝐶), ¬𝑏𝑢𝑖𝑙𝑡(𝑞𝑢𝑎𝑐𝑘, 𝐴); 𝑐𝑜𝑟𝑑¨𝑐𝑜𝑟𝑑©, 𝑔𝑜𝑜𝑠𝑒ª;¬𝑏𝑢𝑖𝑙𝑡¨𝑞𝑢𝑎𝑐𝑘, 𝑐𝑜𝑟𝑑©ª ,

representing an abnormality condition that their vocal cords are built differently. The

overall ABA framework is summarized in Figure 2.5.

Figure 2.5 ABA Framework for The Running Example.

2.1.2.1 Acceptability of Arguments in ABA

ABA is an instance of AA. Hence, all semantic notions for determining the

‘acceptability’ of arguments in AA also apply to arguments in ABA. Moreover, as ones

may see, like AA, ABA is also a general purpose argumentation framework that can be

used to support various applications or formalize as a specialized framework e.g. most

default reasoning framework (Bondarenko et al., 1997; Bondarenko, Toni, & Kowalski,

1993; Kakas & Toni, 1999), problems in legal reasoning (Dung & Thang, 2008),

Ref. code: 25615722300273MJP

19

problems in practical reasoning and problems in decision theory (Matt, Toni,

Stournaras, & Dimitrelos, 2008; Toni, 2007).

The framework proposed in Chapter 5 is extended from ABA and mainly focus

on the ‘grounded’ semantics. Hence, we give informal definition of ‘acceptability’ for

ABA toward the grounded semantics. A claim in ABA could be a potential belief to be

justified, which is represented as a sentence in ℒ. To determine the ‘acceptability’ of a

claim, the agent needs to find an argument for it that can be defended against attacks

from other arguments. To defend an argument, other arguments must be found and may

need to be defended in turn (Dung et al., 2009) . We formally define these

characteristics as follows:

• A set of arguments Arg1 attacks a set of arguments Arg2 if an argument in Arg1

attacks an argument in Arg2;

• A set of arguments Arg defends an argument arg if Arg attacks all arguments

that attack {arg}.

Now, we are ready to give informal definitions toward the grounded semantics

as follows:

• A set of arguments is admissible iff it does not attack itself and it attacks every

argument that attacks it;

• An admissible set of arguments is complete if it contains all arguments that it

defends;

• The least (w.r.t. set inclusion) complete set of arguments is grounded.

Given that an argument in ABA attacks another if the former supports the

contrary of an assumption in the support of the latter, the correspondence between the

assumption view and the argument view (Dung, Mancarella, & Toni, 2007) in ABA can

be summarized as follows:

• If a set of assumptions S is admissible/grounded, then the union of all arguments

supported by any subset of S is admissible/grounded;

• If a set of arguments S is admissible/grounded, then the union of all sets of

assumptions supporting the arguments in S is admissible/grounded.

The above notion of acceptable sets of arguments provides a non-constructive

specification. Now, we show how to turn the specification into a constructive proof

Ref. code: 25615722300273MJP

20

procedure. The method we focus here is defined for a ‘grounded’ set of arguments

introduced in (Dung et al., 2007).

Informally, this constructive proof procedure is known as a dispute derivation

which is defined as a sequence of transition steps from one state of a dispute to another.

For each state, we maintain these following information. Component 𝒫 maintains a set

of (both standard and analogical) assumptions, which are used to support potential

arguments of the proponent. Component 𝒪 maintains multiple sets of assumptions,

which are used to support all attacking arguments of the opponent. Component 𝐷 holds

a set of assumptions, which have already been used by the proponent. Component 𝐶

holds a set of assumptions, which have already been used by the opponent and have

been attacked by the proponent. In the following, we formally define the dispute

derivation for a ‘grounded’ set of arguments.

Definition 2.9. Let an ABA is a quadruple ­ℒ, ℛ,𝒜, � ®. Given a selection

function, a ‘grounded belief’ dispute derivation of a defence set ∆ for a sentence δ is a

finite:

⟨𝒫w, 𝒪w, 𝐷w, 𝐶w⟩, … , ⟨𝒫¡, 𝒪¡, 𝐷¡, 𝐶¡⟩, … , ⟨𝒫�, 𝒪�, 𝐷�, 𝐶�⟩

where 𝒫w ∶= {δ}, 𝐷w ∶= 𝒜 ∩ {δ}, 𝑂w ∶= ∅, 𝐶w ∶= ∅, 𝒫� ∶= ∅, 𝒪� ∶= ∅, Δ ∶= 𝐷�, and for

every 0 ≤ 𝑖 < 𝑛, only one σ in 𝒫¡ or one 𝑆 in 𝒪¡ is selected, and:

1. If σ ∈ 𝒫¡ is selected, then

a. If σ is an assumption, then

𝒫¡µM ∶= 𝒫¡ ∖ {σ} and 𝒪¡µM ∶= 𝒪¡ ∪ {{σ�}}

b. Else if there exists an inference rule σ ← 𝑅 ∈ ℛ such that 𝐶¡ ∩ 𝑅 = ∅,

then

𝒫¡µM∶¸(𝒫¡ ∖ {σ}) ∪ 𝑅 and 𝐷¡µM ∶= (𝒜 ∩ 𝑅)

2. If 𝑆 is selected in 𝒪¡ and σ is selected in 𝑆, then

a. If σ is an assumption, then

i. Either σ is ignored, i.e.

𝒪¡µM ∶= (𝒪¡ ∖ {𝑆}) ∪ {𝑆 ∖ {𝜎}}

ii. Or σ ∉ 𝐷¡ and

𝒪¡µM ∶= 𝒪¡ ∖ {𝑆}, 𝒫¡µM ∶= 𝒫¡ ∪ {𝜎�}, 𝐷¡µM ∶= 𝐷¡ ∪ ({𝜎�} ∩ 𝒜),

and 𝐶¡µM ∶= 𝐶¡ ∪ {𝜎}

Ref. code: 25615722300273MJP

21

b. Otherwise, then

𝒪¡µM ∶=	(𝒪¡ ∖ {𝑆}) 	∪ {	𝑆 ∖ 	{𝜎} ∪ 𝑅	|𝜎 ← 𝑅 ∈ ℛ}

A dispute derivation can be seen as a way of representing a ‘potential’ winning

strategy for a proponent to win a dispute against an opponent. The proponent starts by

putting forward a claim whose acceptability is under dispute. After that, there are many

possibilities as follows, The opponent can try to attack the proponent’s claim by arguing

for its contrary (cf. Case 1.a) or argues for a non-assumption by using an inference rule

(cf. Case 1.b). Moreover, the proponent can select an assumption in one of the

opponent’s attacks and either ignores it because it is not selected as a culprit (cf. Case

2.a.i) or decides to counter-attack it by showing its contrary (cf. Case 2.a.ii). Otherwise,

the opponent can argue for a non-assumption by using an inference rule (cf. Case 2.b).

We give an informal dispute derivation for the working example as follows.

Example 2.1. Consider an ABA given in Figure 2.5. Table 2.1 shows that there

does not exist a grounded belief dispute derivation for ℎ𝑜𝑙𝑑(𝑞𝑢𝑎𝑐𝑘, 𝑔𝑜𝑜𝑠𝑒)4.

At step 1, the proponent (𝒫) has completed the construction of an argument for

ℎ(𝑞, 𝑔) supported by ‘ℎ(𝑞, 𝑑), 𝑠(𝑑, 𝑔), and 𝑎(𝑞, 𝑔)’, saying that “geese quack because

ducks also quack and ducks are similar to geese”. At step 2, the opponent (𝒪) has

decided to attack on assumption ℎ(𝑞, 𝑑) by showing its contrary ¬ℎ(𝑞, 𝑑). However,

this attack fails to build on step 3. Again, the opponent (𝒪) has decided to attack on

assumption 𝑠(𝑑, 𝑔) by showing its contrary ¬𝑠(𝑑, 𝑔) at step 4 and fails to build its

support at 5. At step 6, the opponent (𝒪) has decided to attack on assumption 𝑎(𝑞, 𝑔)

by showing its contrary ¬ℎ(𝑞, 𝑔). This argument is fully constructed at step 9, in which

no assumptions have been used. Thus, this dispute derivation fails.

With an analogous manner, Table 2.2 shows a successful dispute derivation for

¬ℎ𝑜𝑙𝑑(𝑞𝑢𝑎𝑐𝑘, 𝑔𝑜𝑜𝑠𝑒) with three transition steps.

Table 2.1 A Failed Grounded Belief Dispute Derivation for ℎ𝑜𝑙𝑑(𝑞𝑢𝑎𝑐𝑘, 𝑔𝑜𝑜𝑠𝑒).

Ste

p

𝒫 𝒪 𝐷 𝐶

0 {ℎ(𝑞, 𝑔)} ∅ ∅ ∅

4 Obvious abbreviations are used here for the sake of succinctness.

Ref. code: 25615722300273MJP

22

1 {ℎ(𝑞, 𝑑), 𝑠(𝑑, 𝑔), 𝑎(𝑞, 𝑔)} ∅ ∅ ∅

2 {𝑠(𝑑, 𝑔), 𝑎(𝑞, 𝑔)} {{¬ℎ(𝑞, 𝑑)}} {ℎ(𝑞, 𝑑), 𝑠(𝑑, 𝑔), 𝑎(𝑞, 𝑔)} ∅

3 {𝑠(𝑑, 𝑔), 𝑎(𝑞, 𝑔)} ∅ {ℎ(𝑞, 𝑑), 𝑠(𝑑, 𝑔), 𝑎(𝑞, 𝑔)} ∅

4 {𝑎(𝑞, 𝑔)} {{¬𝑠(𝑑, 𝑔)}} {ℎ(𝑞, 𝑑), 𝑠(𝑑, 𝑔), 𝑎(𝑞, 𝑔)} ∅

5 {𝑎(𝑞, 𝑔)} ∅ {ℎ(𝑞, 𝑑), 𝑠(𝑑, 𝑔), 𝑎(𝑞, 𝑔)} ∅

6 ∅ {{¬ℎ(𝑞, 𝑔)}} {ℎ(𝑞, 𝑑), 𝑠(𝑑, 𝑔), 𝑎(𝑞, 𝑔)} ∅

7 ∅ {{𝑐¨𝑐©, 𝑔ª, ¬𝑏¨𝑞, 𝑐©ª}}} {ℎ(𝑞, 𝑑), 𝑠(𝑑, 𝑔), 𝑎(𝑞, 𝑔)} ∅

8 ∅ {{¬𝑏¨𝑞, 𝑐©ª}} {ℎ(𝑞, 𝑑), 𝑠(𝑑, 𝑔), 𝑎(𝑞, 𝑔)} ∅

9 ∅ {	∅} {ℎ(𝑞, 𝑑), 𝑠(𝑑, 𝑔), 𝑎(𝑞, 𝑔)} ∅

Table 2.2 A Successful Grounded Belief Dispute Derivation for

¬ℎ𝑜𝑙𝑑(𝑞𝑢𝑎𝑐𝑘, 𝑔𝑜𝑜𝑠𝑒).

Step 𝒫 𝒪 𝐷 𝐶

0 {¬ℎ(𝑞, 𝑔)} ∅ ∅ ∅

1 {𝑐¨𝑐©, 𝑔ª, ¬𝑏¨𝑞, 𝑐©ª} ∅ ∅ ∅

2 {¬𝑏¨𝑞, 𝑐©ª} ∅ ∅ ∅

3 ∅ ∅ ∅ ∅

2.2 Description Logics

Description logics (DLs) (Baader, Calvanese, McGuinness, Nardi, & Patel-

Schneider, 2007; Baader & Sattler, 2001; Calvanese, De Giacomo, Lenzerini, & Nardi,

2001) are a family of knowledge representation languages that can be used to represent

the knowledge of an application domain in a structured and formally well understood

way. The name description logics is coined based on the fact that the application

domain is described by concept ‘descriptions’, i.e. expressions that are built from

atomic concepts (unary predicates) and atomic roles (binary predicates) using the

concept and role constructors provided by the particular DL.

DL Knowledge base is captured by two different formalisms viz. a terminology

(TBox) representing general knowledge about the problem domain and an assertion

(ABox) representing knowledge about a specific situation. Furthermore, the ABox part

Ref. code: 25615722300273MJP

23

may be ignored. In this thesis, our attempt mainly focuses on argumentative patterns

containing ‘descriptive’ analogy and ‘normative’ analogy; and, the ABox part is not

used. Therefore, we only review the basics of TBox in this section.

2.2.1 Description Languages

We assume two disjoint sets of concept names CN and role names RN.

Description languages are distinguished by a set of concept constructors they provide.

These constructors are used to inductively define concept descriptions (simply

concepts). It is obvious that the more concept constructors a particular DL provides, the

more expressive concepts can be constructed. In abstract notations, we use 𝐴 and 𝐵 to

denote atomic concepts, 𝐶 and 𝐷 to denote concept descriptions5, and 𝑟 to denote an

atomic role. Table 2.3 lists common concept constructors that are widely considered in

the literature. The second and the third columns show the syntax and semantics

elements, respectively. The attributive language 𝒜ℒ was introduced in (Smolka, 1991)

as a minimal language that is of practical interest. 𝒜ℒ provides exactly the constructors

as in the table except existential quantification (∃𝑟. 𝐶).

Table 2.3 Syntax and Semantics of Concept Constructors.

Constructor Name Syntax Semantics

Top Concept ⊤ Δℐ

Bottom Concept ⊥ ∅

Conjunction 𝐶 ⊓ 𝐷 𝐶ℐ ∩ 𝐷ℐ

Disjunction 𝐶 ⊔ 𝐷 𝐶ℐ ∪ 𝐷𝒟

Atomic Negation ¬𝐴 Δℐ ∖ 𝐴ℐ

Negation ¬𝐶 Δℐ ∖ 𝐶ℐ

Nominal {𝑎M, … , 𝑎�} {𝑎Mℐ, … , 𝑎�ℐ }

Limited Existential

Quantification

∃𝑟. ⊤ {𝑑 ∈ Δℐ	|	∃𝑒 ∶ (𝑑, 𝑒) ∈ 𝑟ℐ}

Existential

Quantification

∃𝑟. 𝐶 {𝑑 ∈ Δℐ	|	∃𝑒 ∶ (𝑑, 𝑒) ∈ 𝑟ℐ ∧ 𝑒 ∈ 𝐶ℐ}

Universal Restriction ∀𝑟. 𝐶 {𝑑 ∈ Δℐ	|	∀𝑒 ∶ (𝑑, 𝑒) ∈ 𝑟ℐ → 𝑒 ∈ 𝐶ℐ}

5 The precise definition of concept description is given later.

Ref. code: 25615722300273MJP

24

The first naming scheme for DLs was also proposed in (Smolka, 1991): starting

from the DL 𝒜ℒ, additional constructors are indicated by appending corresponding

letters; e.g. 𝒜ℒ𝒞 (which stands for Attributive Language with Complement) is obtained

from 𝒜ℒ by featuring the complement operator (¬) and 𝒜ℒℰ is obtained from 𝒜ℒ by

adding existential quantification (∃𝑟. 𝐶). DL 𝒜ℒ𝒞 is considered as the smallest

Boolean-closed logic6.

There are also a number of interesting sub-Boolean DLs7, most of which

disallow disjunction and (full) negation such as ℱℒw and ℰℒ. For historical naming

reasons, ℱℒw is obtained by disallowing atomic negation and limited existential

quantification from 𝒜ℒ; and also, ℰℒ is obtained by disallowing atomic negation and

universal restriction from 𝒜ℒ. Both are sub-languages of 𝒜ℒ that are practical interest

due to their practical efficiency and sufficient expressivity.

Let ℒ be a specific DL. We denote the set of concept descriptions for DL ℒ by

Con(ℒ). In this thesis, we merely focus on the logic ℰℒ. Hence, formal definitions for

the syntax and semantics of Con(ℰℒ) are given in the following.

Definition 2.10 (𝓔𝓛 Concept Description). Let CN be a set of concept names,

RN be a set of role names, and ⊤ be the top concept. A set of ℰℒ concept descriptions

(denoted by Con(ℰℒ)) is the smallest set such that:

1. If 𝐴 ∈ CN ∪ {⊤}, then 𝐴 ∈ Con(ℰℒ);

2. If 𝐶, 𝐷 ∈ Con(ℰℒ) and 𝑟 ∈ RN, then 𝐶 ⊓ 𝐷, ∃𝑟. 𝐶 ∈ Con(ℰℒ).

The following example illustrates how ones can construct ℰℒ concept

descriptions based on sets of concept names and role names defined in SNOMED CT.

Example 2.2. The concept of Endocarditis, whose members are an

inflammation which has location on an endocardium tissue, may be expressed using

concept names and role names in SNOMED CT: Inflammation ⊓

∃hasLocation.Endocardium.

6 Strictly speaking, a DL must provide at least one quantifier, i.e. either existential or universal. Thus,
the logic with the first five constructors in Table 2.3 is not a DL as it is equivalent to the propositional
logic.
7 Sub-Boolean DLs are DLs that are not equipped with all Boolean operators

Ref. code: 25615722300273MJP

25

We can agree that Endocarditis is an ℰℒ concept because, following Definition

2.10, it is obvious that:

1. Inflammation is an ℰℒ concept;

2. ∃hasLocation.Endocardium is also an ℰℒ concept;

3. Finally, Inflammation ⊓ ∃hasLocation.Endocardium is an ℰℒ concept.

Though sub-Boolean DLs are not very expressive, they are also of theoretical

interest due to their tractability. Table 2.4 shows the worst-case complexity of concept

satisfiability problem8 in 𝒜ℒ𝒞 and the subsumption problem in ℱℒw and ℰℒ. It is worth

noting that the satisfiability problem is trivial in ℱℒw and ℰℒ since any concept

expressed in these languages is satisfiable. The table also shows that ℰℒ exhibits the

most robust behavior w.r.t. every type of terminology.

Table 2.4 Comparing The Description Logics.

Terminology 𝒜ℒ𝒞 ℱℒw ℰℒ

The empty TBox PSpace-complete

(Smolka, 1991)

Polynomial

(Brachman &

Levesque, 1984)

Polynomial (Baader,

Küsters, & Molitor,

1999)

Acyclic TBoxes PSpace-complete

(Smolka, 1991)

coNP-complete

(Nebel, 1990)

Polynomial (Baader,

2003)

General TBoxes ExpTime-

complete (Schild,

1991)

ExpTime-complete

(Baader, Brandt, &

Lutz, 2005)

Polynomial (Brandt,

2004)

It should be also noted that these results are not merely theoretical interest. In

fact, they also provide sufficiently expressivity. For instance, SNOMED CT9

(Spackman, 2005; Stearns, Price, Spackman, & Wang, 2001) and Gene Ontology

(Ashburner et al., 2000) employ ℰℒ. It is also worth noting that ℱℒw and ℰℒ are the

minimal candidate DLs to pursue a polynomial complexity since they would not inherit

NP-hardness from the propositional logic (Van Harmelen, Lifschitz, & Porter, 2008).

8 Subsection 2.2.3 gives precise definitions of most widely used reasoning services in DLs.
9 http://bioportal.bioontology.org/ontologies/SNOMEDCT

Ref. code: 25615722300273MJP

26

Like	 any	 DLs,	 the	 semantics	 of	 ℰℒ	 concepts	 is	 defined	 through	

interpretations	as	shown	in	the	following.		

Definition	 2.11	 (Semantics	 of	 𝓔𝓛	 Concept).	 An	 interpretation	 ℐ =

(Δℐ, ℐ)	 consists	 of	 a	 non-empty	 set	 Δℐ 	 of	 interpretation	 domain	 and	 an	

interpretation	function	 ℐ ,	which	assigns	to	each	concept	name	𝐴 ∈ CN	a	subset	

𝐴ℐ ⊆ Δℐ 	 and	 to	 each	 role	 name	 𝑟 ∈ RN	 a	 binary	 relation	 𝑟ℐ ⊆ Δℐ × Δℐ .	 The	

interpretation	 function	 is	 extended	 to	 a	 concept	 descriptions	 by	 inductive	

definitions	given	in	the	right	column	of	Table	2.3.	

	

An interpretation ℐ is said to be a model of a concept 𝐶, or ℐ models 𝐶, the

interpretation of 𝐶 in ℐ, i.e. 𝐶ℐ, is not empty, i.e. 𝐶ℐ ≠ ∅.

Example 2.3. Given a concept Inflammation ⊓ ∃hasLocation.Endocardium,

we can find an interpretation ℐ = (Δℐ, ℐ) such that ℐ is a model of the concept as

follows:

1. Suppose an interpretation domain Δℐ = {𝑎, 𝑏, 𝑐, 𝑑};

2. Suppose Inflammationℐ = {𝑎, 𝑏, 𝑐}, Endocardiumℐ = {𝑑}, and

hasLocationℐ = {(𝑎, 𝑑), (𝑏, 𝑐)};

3. From Table 2.3, we know (∃hasLocation.Endocardium)ℐ = {𝑎};

4. From Table 2.3, we know (Inflammation ⊓

∃hasLocation.Endocardium)ℐ = {𝑎}.

Since (Inflammation ⊓ ∃hasLocation.Endocardium)ℐ ≠ ∅, then the defined

interpretation ℐ = (Δℐ, ℐ) is a model of the concept Inflammation ⊓

∃hasLocation.Endocardium.

Table 2.5 Syntax and Semantics of Ontological Constructors.

Constructor Name Syntax Semantics

Concept Definition A ≡ C Aℐ = Cℐ

Concept Inclusion C ⊑ D Cℐ ⊆ Dℐ

Concept Disjointness C ⊓ D ⊑⊥ Cℐ ∩ Dℐ = ∅

Domain Restriction domain(r) ⊑ C {d ∈ Δℐ ∣ ∃e: (d, e) ∈ rℐ} ⊆ Cℐ

Ref. code: 25615722300273MJP

27

Range Restriction range(r) ⊑ C {e ∈ Δℐ ∣ ∃d: (d, e) ∈ rℐ} ⊆ Cℐ

Functionality functional(r) ∀d ∈ Δℐ:	#{e ∈ Δℐ ∣ (d, e) ∈ rℐ} ≤ 1

Reflexivity reflexive(r) ∀d ∈ Δℐ: (d, d) ⊆ rℐ

Transitivity transitive(r) ∀d, e, f ∈ Δℐ: (d, e), (e, f) ∈ rℐ → (d, f)

∈ 𝑟ℐ

Role Hierarchy r ⊑ s rℐ ⊆ sℐ

Role Inclusion rM ∘ ⋯ ∘ rÌ ⊑ s rMℐ ∘ ⋯ ∘ rÌℐ ⊆ sℐ

2.2.2 DL Terminological Formalism

We have seen how concept descriptions are built through the use of ‘concept

constructors’. Now, we want to form statements representing the general knowledge

about the problem domain i.e. terminologies. For example,

Endocarditis ≡ Inflammation ⊓ ∃hasLocation.Endocardium

saying that “endocarditis is an inflammation that has location on endocardium tissue”.

This kind of statements is seen as a terminological formalism (or a TBox statement)

and can be characterized by a set of ontological constructors in DLs. Table 2.5 lists

most commonly used constructors in the literature where the middle and the right

column show their syntax and semantics. Formally, a TBox is defined as follows.

 Definition 2.12 (TBox). Let ℒ be a specific DL, 𝐴 ∈ CN, and 𝐶 ∈ Con(ℒ).

Then, A ≡ C and A ⊑ C are called a concept definition and a primitive concept

definition, respectively. Let ⊳ denote either ≡ or ⊑. Then, TBox 𝒯 is a finite set of

(possibly primitive) concept definitions. A concept definition 𝐴 ⊳ 𝐶 is unique if, for

each 𝐴 ∈ CN, there is at most one concept definition 𝐴 ⊳ 𝐶 for some 𝐶 ∈ Con(ℒ).

 We call A directly uses B in 𝒯 if 𝐴 ⊳ 𝐵 occurs in 𝒯 and we define uses to be the

transitive closure of the relation directly uses. Then, a concept definition 𝐴 ⊳ 𝐶 is cyclic

if A uses itself. Otherwise, we call such definition an acyclic concept definition. TBox

𝒯 is called unfoldable if all concept definitions are unique and acyclic definitions.

A concept name 𝑃 in 𝒯 is said to be undefined if it is neither fully defined nor

primitively defined in 𝒯.

Ref. code: 25615722300273MJP

28

An interpretation ℐ is a model of a concept definition 𝐴 ≡ 𝐶 iff 𝐴ℐ = 𝐶ℐ and is

a model of a primitive concept definition A ⊑ C iff Aℐ ⊆ Cℐ. ℐ is a model of 𝒯 iff it is

a model of every definition 𝐴 ⊳ 𝐶 in 𝒯.

Given an unfoldable TBox 𝒯, concept names occurring on the left-hand side of

a concept definition are called defined concept names (denoted by CNdef) whereas the

others are called primitive concept names (denoted by CNpri). The name unfoldable is

motivated by the fact that, in such a TBox 𝒯, 𝒯 can be transformed into an equivalent

one 𝒯G by substituting all the defined concept names in concept descriptions with their

definitions until only primitive concept names remain. In particular, for a concept

definition defined in 𝒯 by an axiom 𝐴 ≡ 𝐷, the procedure is simply to replace 𝐴 with

𝐷 whenever if occurs in 𝐶, and then to recursively unfold D. For a “primitive” concept

definition defined in 𝒯 by an axiom A ⊑ D, the procedure is slightly more complex.

Whenever 𝐴 occurs in 𝐶, it is replaced with the concept 𝑋 ⊓ 𝐷 where 𝑋 is a new concept

name not occurring in 𝒯 or 𝐶. After that, 𝐷 is recursively unfolded. We note that 𝑋

represents the unspecified characteristics that differentiate it from D. Such unfolded

concepts which remain only primitive concept names are called fully expanded

concepts. This transformation is called unfolding and we use Unfold(𝐶, 𝒯) to denote

that the concept C is unfolded w.r.t. 𝒯.

When 𝒯 is unfolded to 𝒯G, each defined concept name in 𝒯G is an independent

concept description in a sense that the TBox itself can be disregarded. From a

computational point of view, unfoldable TBoxes are interesting since they may allow

for the use of simplified reasoning techniques (cf. Table 2.4) and reasoning in the

presence of a TBox is often harder than that without a TBox (or an empty TBox).

A much more expressive formalism of TBox is called a general TBox where

each statement is called a general concept inclusion. Informally, a general concept

inclusion is a statement like this form: ∃married.Human ⊑ Human saying that “a

human is only married to a human”. This general formalism is supported by most state-

of-the-art DL reasoners. In the following, we gives a formal definition for a general

TBox.

Ref. code: 25615722300273MJP

29

Definition 2.13 (General TBox). Let ℒ be a specific DL and 𝐶, 𝐷 ∈ Con(ℒ).

Then, a general concept inclusion (GCI) is of the form C ⊑ D. Then, general TBox is a

finite set of GCIs.

An interpretation ℐ is called a model of a GCI 𝐶 ⊑ 𝐷 iff Cℐ ⊆ Dℐ. ℐ is a model

of a general TBox 𝒯 iff it is a model of every GCI in 𝒯.

It should be also noted that general TBoxes are more general than unfoldable

TBoxes since GCIs can be used to express (primitive) concept definitions. In particular,

a primitive concept definition is a special form of GCI whereas a concept definition can

be expressed by means of two GCIs, i.e. A ≡ C with A ⊑ C and C ⊑ A.

It is also worth noting that, following (Nebel, 1991), the semantics we have

studied so far is called descriptive semantics. This semantics can produce counter-

intuitive results when a TBox contains cyclic dependency. In such a case, the so-called

fixpoint semantics (De Giacomo & Lenzerini, 1996; Nebel, 1991) is recommended to

use. However, the descriptive semantics is adopted in this thesis because of its wide

acceptance as the most appropriate one (Donini, lenzerini, Nardi, & Schaerf, 1996;

Kohlas, 2003).

Apart from concept definitions and inclusions, there are also interesting and

important ontological constructors. Some of them are listed in the upper part of Table

2.5. In some cases, one constructor can be simulated by another. For instance, a domain

restriction domain(𝑟) ⊑ 𝐶 can be expressed by the GCI ∃r	. ⊤ ⊑ C. Also, reflexivity,

transitivity, and role hierarchy are special forms of role inclusion10, i.e., ϵ ⊑ r, r ∘ r ⊑

r, r ⊑ s, respectively. Table 2.6 presents various DLs with their supported constructors,

where ° denotes optional features that may or may not be supported.

Table 2.6 Logical Constructors in Various DLs.

DL Dialects ℒw ℰℒ ℱℒw ℰℒℋ 𝒜ℒ𝒞 𝒮ℋℐℱ 𝒮ℛ𝒪ℐ𝒬
Top Concept • • • • • • •

Bottom Concept • • •
Conjunction • • • • • • •
Disjunction • • •

Negation • • •
Nominal •

10 Sometimes such statements are regarded as another component called RBox.

Ref. code: 25615722300273MJP

30

Existential Restrictions • • • • •
Value Restrictions • • • •
Concept Definition ° ° ° ° ° ° °
Concept Inclusion ° ° ° ° ° ° °

Domain Restriction ° ° ° ° ° °
Concept Disjointness ° ° °

Range Restriction ° ° °
Functionality • •
Reflexivity •
Transitivity • •

Role Hierarchy • • •
Role Inclusion •

Concept Assertion ° ° ° ° ° ° •
Role Assertion ° ° ° ° ° •

2.2.3 Reasoning Services

Reasoning services are processes of discovering valid statements in DL

knowledge base and can be basically defined by means of logical inferences. We

introduce some prominent ones for TBox in the following.

Definition 2.14 (Concept Satisfiability). Let ℒ be a specific DL, 𝒯 be a TBox,

and C ∈ Con(ℒ). Then, a concept 𝐶 is called satisfiable w.r.t. 𝒯 if there is a model ℐ of

𝒯 with Cℐ ≠ ∅.

Definition 2.15 (Concept Subsumption). Let ℒ be a specific DL, 𝒯 be a TBox,

and 𝐶, 𝐷 ∈ Con(ℒ). Then, a concept 𝐷 subsumes a concept 𝐶 w.r.t. 𝒯 (denoted by 𝒯 ⊨

C ⊑ D or C ⊑× D) if Cℐ ⊆ Dℐ holds for all models ℐ of 𝒯.

Definition 2.16 (Concept Equivalence). Let ℒ be a specific DL, 𝒯 be a TBox,

and 𝐶, 𝐷 ∈ Con(ℒ). Then, two concepts 𝐶, 𝐷 are equivalent w.r.t. 𝒯 (denoted by 𝒯 ⊨

C ≡ D or C ≡× D) if 𝒯 ⊨ C ⊑ D and 𝒯 ⊨ D ⊑ C.

The reasoning services introduced in Definition 2.14 - 2.16 are called basic

reasoning services and should be supported by most DL systems. There are also

additional services which could be implemented by a finite number of calls to the basic

services. These are formally defined as follows.

Ref. code: 25615722300273MJP

31

Definition 2.17 (Ontology Classification). Let 𝒯 be a TBox and CN(𝒯) be a

set of concept names occurring in 𝒯. Then, an ontology classification of 𝒯 is the

identification of subsumption between all pairs of concept names in 𝒯, i.e. for all A, B ∈

CN(𝒯), determines whether or not 𝒯 ⊨ A ⊑ B.

Reasoning may become conceptually easier by abstracting away from the TBox

or assuming that it is empty. The following theorem formally presents the use of

unfolding for TBox elimination. When the TBox is eliminated, we omit to denote it.

Theorem 2.1. Let ℒ be a specific DL and 𝒯 be a TBox. Then, for every pair

C, D ∈ Con(ℒ), we have:

𝒯 ⊨ C ⊑ D⟺	⊨ Unfold(C, 𝒯) ⊑ Unfold(D, 𝒯)

The procedure of unfolding is only restricted to an unfoldable TBox 𝒯 (Baader

et al., 2007). For example, if 𝒯 is not unique, e.g. {(A ≡ C), (A ≡ D)} ⊆ 𝒯, then it is

not possible to make precisely the substitution for A. If 𝒯 contains the cyclic

dependency, it could lead to a non-termination problem. If T contains GCIs, e.g. ∃r. C ⊑

D, then it could not be guaranteed that an interpretation satisfying an unfolded concepts

would also satisfy these logical statements.

2.2.4 Reasoning Algorithms

A variety of reasoning algorithms were introduced for the services discussed

earlier. Two widely used algorithmic approaches are tableau-based approaches and

structural ones for sub-Boolean DLs. Our proposed computational method in Chapter

3 is developed based on the structural approach for ℰℒ. Hence, we review its basis here

for self-containment.

Before looking at an algorithmic procedure, let us state the general requirements

on the ‘behaviors’ of such procedures (Baader, Horrocks, & Sattler, 2004) as follows:

1) The procedure should be a decision procedure11, meaning that it should be:

a) Sound i.e. the positive answers should be correct,

b) Complete i.e. the negative answers should be correct, and

11 This can be seen as a metaphorical meaning of soundness and completeness in logic.

Ref. code: 25615722300273MJP

32

c) Terminating i.e. it should always give an answer in finite time;

2) The procedure should be as ‘efficient’ as possible. That is, it should be

‘optimal’ w.r.t. the worst-case complexity of the problem;

3) The procedure should be ‘practical’, i.e. it should be easy to be

implemented, be easy to be optimized, and behave well in applications.

2.2.4.1 Structural Approach for 𝓔𝓛

When trying to find a DL with a polynomial subsumption algorithm, it is clear

that such a particular DL should not provide all Boolean operators since it will inherit

NP-hardness from propositional logic (Baader et al., 2004). When ones have to decide

to drop an operator, conjunction seems to be indispensable since it is used to state for

different properties of a defining concept. Finally, if ones want to call that logic a DL,

a constructor using roles is needed. This leads to the consideration of two minimal

candidate sub-Boolean DLs, viz. ℱℒw and ℰℒ. As aforementioned in Table 2.4, these

DLs exhibit robust behaviors. The following discusses the characterization for DL ℰℒ

in detail.

Suppose that TBox 𝒯 is unfoldable and ℰℒ concepts are fully expanded. Let an

ℰℒ concept 𝐶 is of the following form:

PM ⊓ …⊓ PØ ⊓ ∃rM. CM ⊓ …⊓ ∃rÙ. CÙ (2.1)

That concept 𝐶 can be structurally transformed into the corresponding ℰℒ description

tree. The root 𝑣w of the ℰℒ description tree 𝒯𝒞 has {PM, … , PØ} as its label and has 𝑛

outgoing edges, each labeled 𝑟Û to a vertex 𝑣Û for 1 ≤ j ≤ n. Then, a subtree with the

root 𝑣Û is defined recursively relative to the concept 𝐶Û. In (Baader, 2003; Baader,

Brandt, & Küsters, 2001), a characterization of subsumption for the DL ℰℒ w.r.t. an

unfoldable TBox was proposed. Instead of considering concept descriptions, the so-

called ℰℒ description trees corresponding to those concept descriptions are used. The

subsumption is then characterized by an existence of a homomorphism in the reverse

direction (cf. Theorem 2.2).

Definition 2.18 (Homomorphism (Baader, 2003; Baader et al., 2001)). An ℰℒ

description tree 𝒯 is a quintuple (V, E,	rt, l, ρ) where 𝑉 is a set of vertices, E ⊆ V × V is

Ref. code: 25615722300273MJP

33

a set of edges, rt is the root, l: V → 2CNpri is a vertex labeling function, and ρ: E → RN

is an edge labeling function. Let 𝒯M and 𝒯J be two ℰℒ description trees, vM ∈ VM, and

vJ ∈ VJ. Then, the mapping h: VM → VJ is a homomorphism from 𝒯M to 𝒯J iff the

following conditions are satisfied:

• For all vM ∈ VM, lM(vM) ⊆ lJ¨h(vM)ª; and

• For each successor wM of vM in 𝒯M, h(wM) is a successor of h(vM) with

ρM(vM, wM) = ρJ¨h(vM), h(wM)ª

Theorem 2.2 ((Baader, 2003; Baader et al., 2001)). Let C, D ∈ Con(ℰℒ) and 𝒯E

and 𝒯D be the corresponding description trees. Then, C ⊑ D iff there exists a

homomorphism (denoted by h: 𝒯D → 𝒯E) which maps the root 𝑣 of 𝒯D to the root 𝑤 of

𝒯E .

We illustrate how the subsumption relation between ℰℒ concepts in Example

2.4.

Example 2.4. Let a family TBox is given as follows: GrandFather ≡ Man ⊓

∃hasChild.Parent, Man ≡ Male ⊓ Person, and Parent ≡ Person ⊓

∃hasChild.Person. By unfolding, it yields a semantically equivalent TBox 𝒯G as

follows:

GrandFather ≡ Male ⊓ Person ⊓ ∃hasChild. (Person ⊓ ∃hasChild.Person)

Man ≡ Male ⊓ Person

Parent ≡ Person ⊓ ∃hasChild.Person

To show that GrandFather ⊑ Parent, we construct the description tree

𝒯GGrandFather for the concept GrandFather (cf. Figure 2.6a) and the description tree

𝒯GParent for the concept Parent (cf. Figure 2.6b). Following Definition 2.18, it is not

difficult to identify a homomorphism from 𝒯GParent to 𝒯GGrandFather. Thus,

GrandFather ⊑ Parent.

As shown in (Baader, 2003; Baader et al., 2001), this form of characterization

can be decided in polynomial time (cf. Table 2.4). This result is not only of theoretical

Ref. code: 25615722300273MJP

34

interest. In fact, well-known medical ontologies such as Gene Ontology (Ashburner et

al., 2000) and SNOMED CT (Spackman, 2005; Stearns et al., 2001) are expressible

with the logic ℰℒ. As we shall also see soon, our concrete development for concept

similarity under subjective factors in ℰℒℋ12 is driven by this form of structural

subsumption.

Figure 2.6 The Corresponding Description Trees of Concepts GrandFather and

Parent.

12 Strictly speaking, ℰℒℋ extends ℰℒ with the role hierarchy.

Ref. code: 25615722300273MJP

35

CHAPTER 3

CONCEPT SIMILARITY IN DESCRIPTION LOGICS

Considering examples in Chapter 1, ones may observe that the perception of

‘concept similarity’ used by both descriptive analogy and normative analogy can be

explicitly reconstructed by considering the description or taxonomy of concepts. For

instance, “London is the capital city and one of the big cities of England” and

“Amsterdam is the capital city and one of the big cities of Netherlands”. Regarding this

observation, any frameworks developed for analogical argumentation must provide

mechanisms to formalize the description of concepts. In a very simple way, we may

formalize the description of concepts in terms of inference rules. For instance, the

descriptions of the above city example can be represented by

london(X) ← capital_city(X, Y),big_city(X, Y),england(Y) and

amsterdam(X) ← capital_city(X, Y),big_city(X, Y),netherlands(Y)

respectively. When inference rules are grounded, ones can employ the model theory to

derive the similarity between predicates as in (Goebel, 1989b; Haraguchi & Arikawa,

1987).

Though using inference rules can encode our example, other knowledge

representation formalisms which provide more expressivity may be also used to encode

concepts e.g. description logics (cf. Subsection 2.2) or (other fragments of) first-order

logic. For instance, the same description can be formalized based on TBox formalism

as:

London ⊑ CapitalCity ⊓ BigCity ⊓ ∃isCityOf.England and

Amsterdam ⊑ CapitalCity ⊓ BigCity ⊓ ∃isCityOf.Netherlands

respectively. Successful examples of DL knowledge bases are ontologies in medicine

and bioinformatics e.g. SNOMED CT (www.snomed.org) or GO

(www.geneontology.org).

This chapter addresses the perception of concept similarity and defines it as a

human judgment of a degree to which a pair of concepts in question is similar. Concept

Ref. code: 25615722300273MJP

36

similarity measures are computational techniques attempting to imitate the human

judgments of concept similarity. Formally, they aim at identifying a degree of

commonality of two given concepts and can be regarded as a generalization of the

classical reasoning problem of equivalence i.e. two concepts (or states of affairs) are

identical if and only if their degree of ‘similarity’ is equal to 1. It is worth noting that

similarity of concepts is oftentimes context-sensitive and can be recognized from the

comparison of features shared between them. Nevertheless, (Hesse, 1965; Waller,

2001; Weinreb, 2016) reported that features used in comparisons should be ‘relevant’

to the attribution of the property. This means that there must be ways of expressing

aspects of a context in consideration.

3.1 Preference Context for Having Relevance

This section introduces preference context (denoted by 𝔭) as a collection of

‘abstract’ preferential elements in which the development of similarity measure of

concepts for a particular cognitive agent should consider. Its first intuition is to

represent different forms of preferences (of an agent) based on concept names and role

names. Similarity measure which adopts this notion is flexible to be tuned by an agent

and can determine the similarity conformable to that agent’s perception.

The syntax and semantics of each form are given in terms of ‘partial’ functions

because agents may not have preferences over all concept names and role names. We

recommend to devise similarity measure with consideration on an appropriate

‘instance’ of preference context if we aim at developing concept similarity measure for

general purposes i.e. a measure based on both subjective and objective factors.

Let 𝐼, 𝑆, 𝐷 be non-empty sets equipped with total orders ≤è, ≤?, and ≤D,

respectively. As aforementioned, our intention is to define preference context for

representing a broad notion of the user’s preferences i.e. the ‘abstract’ notion level. At

its ‘implementation’ level, there could be many ways to instantiate these values. For

instance, our development in Section 4.1 use [0, 2], [0, 1], [0,1] for 𝐼, 𝑆, and 𝐷,

respectively. Different representations may result in different desirable properties of

similarity measures. We investigate and discuss their differences with our work in

Section 4.6. Mathematical definitions for each aspect of preference context are formally

defined as follows.

Ref. code: 25615722300273MJP

37

Definition 3.1 (Importance of Concept Name). Let CN be a set of concept

names. Then, the importance of concept name is a ‘partial’ function ic:	CN → 𝐼.

For any concepts 𝐴, 𝐵 ∈ CN, the agent perceives that 𝐴 has equal or more (less)

importance to 𝐵 if ic(A) = 𝑖J, ic(B) = 𝑖M, and 𝑖M ≤è 𝑖J (or 𝑖J ≤è 𝑖M, respectively) is

defined in 𝐼.

Example 3.1. Suppose that an agent 𝐴 is using a similarity measure to compare

the degree of equality between concepts London and Amsterdam w.r.t. safety in the

street. In that moment, being ‘capital city’ may be not relevant to the consideration.

Thus, to capture this subjective feeling of proximity, we may suppose I ∶= {𝑖M, 𝑖J} such

that 𝑖M ≤è 𝑖J. Then, the agent may just assign as: ic(BigCity) = 𝑖J and

ic(CapitalCity) = 𝑖M.

Definition 3.2 (Importance of Role Name). Let RN be a set of role names.

Then, the importance of role name is a ‘partial’ function ir:	RN → 𝐼.

For any roles r, s ∈ RN, the agent perceives that 𝑟 has equal or more (less)

importance to 𝑠 if ir(r) = 𝑖J, ir(s) = 𝑖M, and 𝑖M ≤è 𝑖J (or 𝑖J ≤é 𝑖M, respectively) is

defined in 𝐼.

Example 3.2 (Continuation of Example 3.1). Suppose that an agent 𝐴 is using

a similarity measure to compare the degree of equality between concepts London and

Amsterdam w.r.t. safety in the street. In that moment, the ‘isCityOf’ relation between

a city and a country may be not relevant to the consideration. Thus, to capture this

subjective feeling of proximity, we may suppose I ∶= {𝑖M, 𝑖J} such that 𝑖M ≤é 𝑖J. Then,

the agent may just assign as: ir(isCityOf) = 𝑖M and assign 𝑖J to concepts CapitalCity

and BigCity.

Definition 3.3 (Similarity of Concept Names). Let CN be a set of concept

names. Then, the similarity of concept names is a ‘partial’ function sc:	CN × CN → 𝑆.

Ref. code: 25615722300273MJP

38

For any concepts 𝐴, 𝐵 ∈ CN, the agent perceives that 𝐴 and 𝐵 present subjective

feeling of equality in degree 𝑥 if sc(𝐴, 𝐵) = 𝑥 and 𝑥 is defined in 𝑆.

Example 3.3 (Continuation of Example 3.1). Suppose that an agent 𝐴 feels

that England and Netherlands are similar because they are countries in Europe even

though they are different countries. To capture this subjective feeling of equality, we

may suppose S ∶= {𝑠M, 𝑠J} such that 𝑠M ≤? 𝑠J and assign: sc(England,Netherlands) =

𝑠J. Other pairs of different concept names are assigned to 𝑠M by default.

Definition 3.4 (Similarity of Role Names). Let RN be a set of role names.

Then, the similarity of role names is a ‘partial’ function sr:	RN × RN → 𝑆.

For any roles 𝑟, 𝑠 ∈ RN, the agent perceives that 𝑟 and 𝑠 present subjective

feeling of equality in degree 𝑥 if sr(𝑟, 𝑠) = 𝑥 and 𝑥 is defined in 𝑆.

Example 3.4 (Continuation of Example 3.1). Suppose that concept London is

redefined as: London ⊑ CapitalCity ⊓ BigCity ⊓ ∃isPartOf.England. According to

this terminology, an agent 𝐴 feels that the relations isPartOf and isCityOf invoke similar

feeling. To capture this subjective feeling of equality, we may suppose S ∶= {𝑠M, 𝑠J}

such that 𝑠M ≤? 𝑠J and assign: sr(isPartOf,isCityOf) = 𝑠J. Other pairs of different role

names are assigned to 𝑠M by default.

Basically, our motivation of both functions sc and sr are the same, i.e. we aim

at attaching subjective feeling of proximity (about concept names and role names) into

a similarity measure. In description logics (or most of other formalisms), different

(concept and role) names may refer to different (classes of) instances even though they

could be recognized as being similar in real-world domains.

Definition 3.5 (Importance Factor of Quantified Role). Let RN be a set of

role names. Then, the importance factor of quantified role is a ‘partial’ function

d:	RN → 𝐷.

Ref. code: 25615722300273MJP

39

For any role r ∈ RN, the agent perceives that, given a quantified concept ⊡ r. C

where ⊡	∈ {	∀, ∃}, there is an importance factor 𝑥 of a quantified role 𝑟 in relation to

the corresponding concept 𝐶 if d(r) = x and x is defined in D.

Intuitively, an agent can employ this notion to distinguish the weighted factor

be- tween a quantified role and its corresponding concept description. Indeed, this

notion is used when an agent wants to compare two quantified concepts i.e. ⊡ rM. CM

and ⊡ rJ. CJ where ⊡	∈ {	∀, ∃}. We exemplify its usage in the following.

Example 3.5 (Continuation of Example 3.1). Suppose that an agent A feels

that the relation isCityOf is less influential than a corresponding concept description,

compared to other relations. To capture this subjective feeling of biased weights, we

may suppose 𝐷 ∶= {𝑑M, 𝑑J} such that 𝑑M ≤D 𝑑J and assign: d(isCityOf) = 𝑑M. Other

role names are assigned to 𝑑J by default.

The next section discusses our methodology to develop similarity measure w.r.t.

preference context for indicating the degree of similarity w.r.t. certain contexts of

consideration between two concepts (or states of affairs) in description logics.

3.2 Formal Notion of Context Similarity under Preference

To understand the notion of similarity under subjective factors, we first take a

look into the definition of concept equivalence (cf. Definition 2.16). That is, let 𝒯 be a

TBox and 𝐶, 𝐷 ∈ Con(ℒ) for a particular DL ℒ, then

𝐶 ≡× 𝐷 ⟺ 𝐶 ⊑× 𝐷	and	𝐷 ⊑× 𝐶 (3.1)

It is worth observing that concept equivalence can be seen as an operation for

comparing two concepts. For instance, if two concepts are equivalent (i.e. 𝐶 ≡× 𝐷 ⟺

𝐶ℐ = 𝐷ℐ), then the concept equivalence relation yields 1 (true); or yields 0 (false)

otherwise. We adopt this viewpoint with preference context and introduce the

following.

Definition 3.6. Let 𝔓 be an infinite set of preference contexts where 𝔭 ∈ 𝔓,

Con(ℒ) be a set of concept descriptions for a particular DL ℒ where 𝐶, 𝐷 ∈ Con(ℒ),

Ref. code: 25615722300273MJP

40

and 𝒯 be a TBox. Then, a concept similarity under preferences is a family of functions

∼×
𝔭 :	Con(CN, RN) × Con(CN, RN) → [0,1] such that

∀𝔭G ∈ 𝔓: 𝐶 ∼×
𝔭ï 𝐷 = 1	 ⟺ 𝐶 ≡× 𝐷

(called preference invariant w.r.t. concept equivalence) holds; and

• 𝐶 ∼×
𝔭 𝐷 = 1 indicates maximal similarity (or concept equivalence) under

preference context 𝔭 w.r.t. 𝒯 between concept descriptions C and D,

• 𝐶 ∼×
𝔭 𝐷 = 0 indicates having no relation under preference context 𝔭 w.r.t. 𝒯

between concept descriptions C and D.

The reason we require preference invariance w.r.t. concept equivalence because

we do not want to allow the usage of any preference context to effect on the perception

of semantically identical concept descriptions.

An interesting question to the above definition is that “how concrete measures

for particular DLs should be developed?”. We address this question by generalizing

from the concept equivalence relation w.r.t. preference context as follows:

C ∼𝜏

𝔭 D = 1 ⟺ C ↝𝜏
𝔭 D = 1	and	D ↝𝜏

𝔭 C = 1 (3.2)

That is, two concepts are similar w.r.t. preference context 𝔭 to each other iff the

degree of directional subsumption w.r.t. preference context p from a concept to another

one is 1 and vice versa. In Equation 3.2, the notion of directional subsumption degree

w.r.t. preference context is denoted by ↝×
𝔭. It should be noted that the logical

conjunction ‘and’ in the equation should also be generalized in such a way that two

numerical values are aggregated and result in a unit interval [0, 1]. Hence, we outline

our methodology to develop a ‘concrete’ similarity measure as follows:

1. Generalize the notion of concept subsumption (⊑×) to the notion of subsumption

degree (↝×);

2. Generalize the notion of subsumption degree (↝×) to the notion of subsumption

degree under preference (↝×
𝔭); and

3. Generalize the logical conjunction (i.e. ‘and’) for aggregating two numerical

values to result in a unit interval.

Ref. code: 25615722300273MJP

41

We address the first step in Chapter 3 and the remaining steps in Chapter 4.

Basically, the classical reasoning technique is investigated under scrunity in this thesis

with the main focus on DL ℰℒℋ. Our goal is to find out a similarity measure under

preferences, which can be computed efficiently i.e. in polynomial time. Intuitively, the

computational approach introduced in this chapter is derived from the scrunity of

structural subsumption approach in ℰℒ (cf. Subsubsection 2.2.4).

3.3 From Concept Subsumption to Subsumption Degree

We first discuss a computational approach for identifying the subsumption

degree between ℰℒℋ concepts. Since ℰℒℋ is a superlogic of ℰℒ, its structural

subsumption procedure can be slightly modified from ℰℒ as follows:

1. Concepts are fully expanded to the form PM ⊓ …⊓ PØ ⊓ ∃rM. CM ⊓ …⊓ ∃rÙ. CÙ;

2. Fully expanded concepts are structurally transformed into the corresponding

description trees, where its root has {PM, … , PØ} as its label, has n outgoing

edges, each labeled by the set ℛ𝓇𝒿 of all rô’s super roles to a vertex vô for 1	 ≤

j	 ≤ n. Formally, ℛõ = {s	| r ⊑∗ s} and r ⊑∗ s if r = s or r÷ ⊑ r÷µM ∈ 𝒯 where

1	 ≤ i	 ≤ n, rM = r, rÙ = s. That is, ⊑∗ denotes a transitive closure of ⊑ between

roles. Then, a subtree with the root vô is defined recursively relative to the

concept Cô; and

3. Given two description trees 𝒯E, 𝒯D, we conclude that C ⊑ D holds iff there exists

a homomorphism from 𝒯D to 𝒯E according to the following definition and

theorem.

Definition 3.7 (Homomorphism (Baader, 2003; Baader et al., 2001)). An ℰℒℋ

description tree 𝒯 is a quintuple (V, E,rt, l, ρ) where V is a set of vertices, E ⊆ V × V is

a set of edges, rt is the root, l: V → 2CNpri is a vertex labeling function, and ρ: E → 2RN

is an edge labeling function. Let 𝒯M and 𝒯J be two ℰℒℋ description trees, 𝑣M ∈ VM and

𝑣J ∈ VJ. Then, the mapping h: VM → VJ is a homomorphism from 𝒯Mto 𝒯J iff the

following conditions are satisfied:

• For all 𝑣M ∈ VM, lM(𝑣M) ⊆ lJ¨h(𝑣M)ª; and

• For each successor 𝑤M of 𝑣M in 𝒯M, ℎ(𝑤M) is a successor of h(𝑣M) with

ρM(𝑣M, 𝑤M) ⊆ ρJ¨h(𝑣M), h(𝑤M)ª.

Ref. code: 25615722300273MJP

42

Theorem 3.1. Let C, D ∈ Con(ℰℒℋ) and 𝒯E and 𝒯D be the corresponding

description trees. Then, C ⊑ D iff there exists a homomorphism (denoted by h:	𝒯D →

𝒯E) which maps the root 𝑣 of 𝒯D to the root 𝑤 of 𝒯E .

Let us demonstrate how ones can employ the approach to check if subsumption

relation holds between ℰℒℋ concepts with the following example and shade some light

of the possibility to compute the subsumption degree.

Example 3.6. An agent A wants to visit a place for doing some physical

activities (i.e. ActivePlace). Suppose that a place ontology is modeled as follows. The

classical reasoning of subsumption may be used to find out a concept subsumed by

ActivePlace.

ActivePlace ⊑ Place ⊓ ∃canWalk.Trekking ⊓ ∃canSail.Kayaking

Mangrove ⊑ Place ⊓ ∃canWalk.Trekking

Beach ⊑ Place ⊓ ∃canSail.Kayaking

canWalk ⊑ canMoveWithLegs

canSail ⊑ canTravelWithSails

Following the above steps, each primitive definition is transformed to a

corresponding equivalent full definition and the corresponding description tree is

constructed accordingly.

ActivePlace ≡ X ⊓ Place ⊓ ∃canWalk.Trekking ⊓ ∃canSail.Kayaking

Mangrove ≡ Y ⊓ Place ⊓ ∃canWalk.Trekking

Beach ≡ 𝑍 ⊓ Place ⊓ ∃canSail.Kayaking

where 𝑋, 𝑌, and 𝑍 are fresh primitive concept names. canWalk ≡ t ⊓

canMoveWithLegs and canSail ≡ u ⊓ canTravelWithSails, where 𝑡 and 𝑢 are fresh

primitive role names. In other words, ℛcanWalk = {t,	canMoveWithLegs} and

ℛcanSail = {u,	canTravelWithSails}. Figure 3.1a - 3.1c depict 𝒯ActivePlace, 𝒯Mangrove, and

𝒯Beach, respectively.

Ref. code: 25615722300273MJP

43

It is not difficult to find a failed attempt of identifying a homomorphism

mapping the root of 𝒯ActivePlace to the root of 𝒯Mangrove, i.e. h:	𝒯ActivePlace ↛ 𝒯Mangrove.

Hence, this infers Mangrove ⋢ ActivePlace. Similarly, we can conclude that Beach ⋢

ActivePlace.

Though we conclude that subsumption relations from ActivePlace to Mangrove

and from ActivePlace to Beach do not hold, we can notice that they have some

commonalities among their structures. For instance, considering the roots of 𝒯ActivePlace

and 𝒯Beach,, it appears that Place is belonged to both {X,	Place} and {Y,	Place}. This

observation leads us to develop approaches for computing the subsumption degree

between ℰℒℋ concepts. In the next subsection, a homomorphism-based structural

subsumption degree function is discussed. And, its properties are investigated

accordingly.

Figure 3.1 The Description Trees of Concepts 𝒯ActivePlace, 𝒯Mangrove, and 𝒯Beach.

3.3.1 Homomorphism Degree

 Let us reconsider Example 3.6. It is obvious that h:	𝒯ActivePlace ↛ 𝒯Mangrove holds

due to {X,Place} ⊈ {Y,Place}. However, Place appears to be in common on both sets.

Ones may regard this as partial mapping from 𝒯ActivePlace to 𝒯Mangrove. Intuitively, the

homomorphism degree function adopts this viewpoint to develop the computational

procedure.

Let C, D ∈ Con(ℰℒℋ) be fully expanded concept of the form: PM ⊓ …⊓ PØ ⊓

∃rM. CM ⊓ …⊓ ∃rÙ. CÙ. We denote the set PM, … , PØ of the concepts 𝐶, 𝐷 and the set

Ref. code: 25615722300273MJP

44

∃𝑟M. 𝐶M ⊓ …⊓ ∃𝑟�. 𝐶� of the concepts 𝐶, 𝐷 by 𝒫E,𝒫D and ℰE, ℰD, respectively. The

super roles ℛõ,ℛ! are as defined on Section 3.3. The following definition extends

Theorem 3.1 to the case where no such homomorphism exists but there is some

commonality.

Definition 3.8 (Homomorphism Degree (Tongphu & Suntisrivaraporn,

2015)). Let 𝕋ℰℒℋ be a set of all ℰℒℋ description trees and 𝒯E, 𝒯D ∈ 𝕋ℰℒℋ correspond

to two ℰℒℋ concept names 𝐶 and 𝐷, respectively. The homomorphism degree function

hd:𝕋ℰℒℋ × 𝕋ℰℒℋ → [0,1] is inductively defined as follows:

hd(𝒯D, 𝒯E) = µ ⋅ p-hd(𝒫D, 𝒫E)+ (1− 𝜇) ⋅ e-set-hd(ℰD, ℰE), (3.3)

where 𝜇 = |𝒫D| (|𝒫D ∪ ℰD|)⁄ and | | represents the set cardinality;

p-hd(𝒫D, 𝒫E) = *
								1,									𝒫D 	= 	∅
|𝒫+∩𝒫,|
|𝒫+|

, 	otherwise (3.4)

e-set-hd(ℰD, ℰE) =

⎩
⎨

⎧
1, 																															𝒫D = 	∅
0, 									ℰD ≠ ∅	and	ℰE = 	∅

∑
Ø12
34∈ℰ,

5e-hd¨67,64ª8

|ℰ+|67∈ℰ𝒟 ,		otherwise	
 (3.5)

with 𝜖¡ , 𝜖Û existential restrictions; and

 e-hd(∃𝑟. 𝑋, ∃𝑠. 𝑌) = 𝛾¨𝜈 + (1− 𝜈) ⋅ hd(𝒯< , 𝒯=)ª (3.6)

where 𝛾 = (|ℛõ ∩ ℛ!|) |ℛõ|⁄ and 0 ≤ 𝜈 < 1.

The value of ν determines how important the roles are to be considered for

similarity between two existential restriction information. For instance,

∃canWalk.Trekking and ∃canWalk.Parading for dissimilar nested concepts Trekking

and Parading should not be regarded as entirely dissimilar themselves. If 𝜈 is assigned

the values 0.3, 0.4, and 0.5, then e-hd(∃canWalk.Trekking, ∃canWalk.Parading) is

Ref. code: 25615722300273MJP

45

0.3, 0.4, and 0.5, respectively. This value may vary among applications. In this work,

𝜈 is set to 0.4 (if it is not explicitly defined) for exemplifying the calculation of hd.

Example 3.7. (Continuation of Example 3.6)

For brevity, let ActivePlace, Mangrove, Beach, Place, Trekking, Kayaking, canWalk,

and canSail be abbreviated as AP, M, B, P, T, K, cW, and cS, respectively. Using

Definition 3.8, the homomorphism degree from 𝒯AP to 𝒯M, or

hd(𝒯AP, 𝒯M) = ?J
O
@ ?M

J
@ + ?J

O
@ ?Ø12{e-hd(∃cW.T,∃cW.T)}

J
+ Ø12{e-hd(∃cS.K,∃cW.T)}

J
@

 = ?J
O
@ ?M

J
@ + ?J

O
@ ?Mµw

J
@ = 0.5

Similarly, hd(𝒯M, 𝒯AP) = 0.67, hd(𝒯AP, 𝒯B) = 0.5, and hd(𝒯B, 𝒯AP) = 0.67.

The example shows that the homomorphism degree from 𝒯AP to 𝒯M is 0.5 even

though M is not subsumed by AP. Similar interpretations can be applied for the other

results.

3.3.2 Properties underlying Homomorphism Degree

Theorem 3.2. Let C, D ∈ Con(ℰℒℋ) and 𝒯E, 𝒯D be their corresponding

description tree, respectively. Then, the following are equivalent:

1. C ⊑ D; and

2. hd(𝒯E, 𝒯D) = 1

Proof. (⟹) Assume C ⊑ D i.e. there exists a homomorphism ℎ which maps the

root of 𝒯D to the root of 𝒯E ⟺ lD(𝑣D) ⊆ lE¨h(𝑣D)ª for each 𝑣D ∈ VD and ρD(𝑣D, 𝑤D) ⊆

ρE¨h(𝑣E), h(𝑤E)ª for each successor 𝑤D of 𝑣D. We show hd(𝒯D, 𝒯E) = 1 by cases.

• When |VD| = 1 i.e. 𝒯D contains only one node, then we show hd(𝒯D, 𝒯E) = 1 ⟺

p-hd(𝒫D, 𝒫E) = 1 (by Definition 3.8). This is obvious since 𝒫D ⊆ 𝒫E .

• When |VD| > 1, then we need to show hd(𝒯D, 𝒯E) = 1 ⟺ p-hd(𝒫D, 𝒫E) = 1

and e-set-hd(ℰD, ℰE) = 1 (by Definition 3.8). Since lD(rtD) ⊆ lF¨h(rtD)ª (by

assumption), then p-hd(𝒫D, 𝒫E) = |𝒫D	| ∕ |𝒫D| = 	1. To show

e-set-hd(ℰD, ℰE) = 1, we need to show that ρD(rtD, 𝑤) ⊆ ρE¨rtE, h(𝑤)ª for

Ref. code: 25615722300273MJP

46

each successor 𝑤 of rtD (in order to have 𝛾 = 	1) and there exists a

homomorphism hG which maps 𝑤 of its subtree 𝒯D7 to hG¨h(𝑤)ª of another

subtree 𝒯E4 (in order to have hd ?𝒯D7 , 𝒯E4@ = 1). The former is obvious by

assumption. Since 𝒯D7 is part of 𝒯D and 𝒯E4 is also part of 𝒯E , then such ℎG also

exists by assumption. Thus, we have hd(𝒯D, 𝒯E) = 1.

(⟸) Assume hd(𝒯D, 𝒯E) = 1 i.e. p-hd(𝒫D, 𝒫E) = 1 and e-set-hd(ℰD, ℰE) = 1

(by Definition 3.8). Then, we need to show C ⊑ D i.e. there exists a homomorphism

which maps the root of 𝒯D to the root of 𝒯E . By Definition 3.8, p-hd(𝒫D, 𝒫E) = 1

implies that 𝒫D ⊆ 𝒫E . Also, e-set-hd(ℰD, ℰE) = 1 ⟺ 𝛾 = 1 and hd ?𝒯D7 , 𝒯E4@ = 1 for

each depth of the tree 𝒯D ⟺ lD(𝑣D) ⊆ lE¨h(𝑣D)ª for each 𝑣D ∈ VD and 𝜌D(𝑣D, 𝑤D) ⊆

𝜌E¨ℎ(𝑣E), ℎ(𝑤E)ª for each successor 𝑤D of 𝑣D. Therefore, we conclude that C ⊑ D.

Theorem 3.2 describes a property of concept subsumption, i.e. 𝐶 is a subconcept

of 𝐷 if the homomorphism degree of the corresponding description tree 𝒯D to 𝒯E is equal

to 1, and vice versa. In other words, the more value of hd(𝒯D, 𝒯E) is closer to 1, the

more likely the subsumption of 𝐶 and 𝐷 may hold.

In the following, we show that hd can be computed in polynomial time.

Theorem 3.3. Let VM, VJ be sets of vertices corresponding to 𝒯M, 𝒯J, respectively.

The computational complexity of hd is 𝒪(|VM| ⋅ |VJ|).

Proof. Let C ∶= PM ⊓ …⊓ PØ ⊓ ∃rM. CM ⊓ …⊓ ∃rÙ. CÙ, D ∶= QM ⊓ …⊓ QK ⊓

∃sM. DM ⊓ …⊓ ∃rL. DL, and 𝒯E , 𝒯D be the corresponding description trees. We need to

show 𝜇, 𝛾, p-hd(𝒫D, 𝒫E), and e-set-hd(ℰD, ℰE) are bounded by 𝒪(|𝑉M| ⋅ |𝑉J|).

Since the set union, the intersection, and the set cardinality | | can be computed

in polynomial time in the worst case, then 𝜇, p-hd(𝒫D, 𝒫E), and 𝛾 are bounded

by	𝒪(|𝑉M| ⋅ |𝑉J|).

Computing e-set-hd(ℰD, ℰE) requires to call e-hd for |ℰD||ℰE| times. Each call

of e-hd will make a recursive call to hd and its number of calls is bounded by the height

of 𝒯D and 𝒯E . Hence, e-set-hd(ℰD, ℰE) are bounded by 𝒪(|𝑉M| ⋅ |𝑉J|).

Ref. code: 25615722300273MJP

47

3.3.3 Concept Similarity Degree

The degree of concept similarity can be determined from the two directional

subsumption degree of each corresponding direction. This is an intermediate result of

developing a concrete notion of subsumption degree such as the homomorphism

degree. Mathematically, the degree of concept similarity can be defined as any binary

operators accepting the unit interval e.g. the average, the multiplication, and the root

mean square.

In the following, a measure for description logic ℰℒℋ is defined based on the

average of two homomorphism degrees. This measure is named sim and is introduced

(Suntisrivaraporn, 2013; Tongphu & Suntisrivaraporn, 2015). We give its formal

definition as follows:

Definition 3.9 (ℰℒℋ Similarity Degree). Let C, D ∈ Con(ℰℒℋ) and 𝒯E, 𝒯D be

the corresponding description trees. Then, the ℰℒℋ similarity degree between 𝐶 and 𝐷

(denoted by sim(𝐶, 𝐷)) is defined as follows:

sim(𝐶, 𝐷) = hd(𝒯,,𝒯+)µhd(𝒯+,𝒯,)
J

 (3.7)

Example 3.8. (Continuation of Example 3.7) The ℰℒℋ similarity degree

between AP and M can be calculated as follows:

sim(AP,M) = MN(𝒯AP,𝒯M)µMN(𝒯M,𝒯AP)
J

= w.Oµw.PQ
J

= 0.585

Similarly, sim(AP,B) = 0.585.

Definition 3.10 (Ordering of Functions). Let 𝛼 and 𝛽 be different functions.

Then, 𝛼 is more skeptical than or equal to 𝛽 (denoted by 𝛼 ⪯ 𝛽) if (𝐶 𝛼 𝐷) ≤ (𝐶 𝛽 𝐷)

for all concepts 𝐶, 𝐷 ∈ Con(ℒ).

The following proposition discusses about some inherited properties of the

above measure for ℰℒℋ concepts i.e. it is symmetric and is less skeptical than the

concept equivalence (cf. Definition 3.10).

Ref. code: 25615722300273MJP

48

Proposition 3.1. Let 𝐶, 𝐷 ∈ Con(ℰℒℋ). Then, the following properties hold:

1. sim(𝐶, 𝐷) = sim(𝐷, 𝐶); and

2. ≡	⪯ sim.

Proof. (1) This is obvious by the average.

(2) This is immediately followed from Theorem 3.2 and the average.

Theorem 3.4. Let VM, VJ be sets of vertices corresponding to 𝒯M, 𝒯J, respectively.

The computational complexity of sim is 𝒪(|VM| ⋅ |VJ|).

Proof. This is immediately followed from Theorem 3.3 and the average.

We can show that sim is also a procedure which ensures termination and can be

used as an indicator for the degree of commonalities between ℰℒℋ concepts.

Intuitively, we ensure that the correct results are correct (cf. Lemma 3.1) and the

negative results are also correct (cf. Lemma 3.2). Termination guarantees to provide an

answer in finite time.

Lemma 3.1. Let 𝐶, 𝐷 be any ℰℒℋ concepts and 𝜈 ∈ (0,1]. Then, sim(𝐶, 𝐷) ∈

(0,1] implies that 𝐶 and 𝐷 share commonalities among each other.

Proof. Let 𝐶, 𝐷 ∈ Con(ℰℒℋ), 𝒯E, 𝒯D be their corresponding trees, and 𝜈 ∈

(0,1). With Theorem 3.2 and the average, it suffices to show that hd(𝒯E, 𝒯D) ∈ (0,1]

implies p-hd(𝒫E, 𝒫D) > 0 or e-set-hd(ℰD, ℰD) > 0. We show these cases as follows:

• If there exists 𝑣 ∈ VF such that lF(𝑣) ∩ lD¨h(𝑣)ª ≠ 	∅, then we show

hd(𝒯E, 𝒯D) ∈ (0,1]. Since UlF(𝑣) ∩ lD¨h(𝑣)ªU > 0, then we know 𝜇 > 	0 and

p-hd¨𝒫V , 𝒫h(V)ª > 0. That is, p-hd(𝒫E, 𝒫D) > 0.

• If there exist 𝑣,𝑤 ∈ VF such that ρE(𝑣, 𝑤) ∩ ρD¨h(𝑣), h(𝑤)ª ≠ 0, then we

show hd(𝒯E, 𝒯D) ∈ (0,1]. Since UρE(𝑣, 𝑤) ∩ ρD¨h(𝑣), h(𝑤)ªU > 0, then we know 𝛾 >

	0. Since hd cannot be decreased, we know e-set-hd(ℰD, ℰD) > 0.

Lemma 3.2. Let C,D be ℰℒℋ concepts and 𝜈 ∈ (0,1]. Then, if 𝐶 and D share

commonalities among each other, then sim(𝐶, 𝐷) ∈ (0,1].

Ref. code: 25615722300273MJP

49

Proof. Let 𝐶, 𝐷 ∈ Con(ℰℒℋ), 𝒯E, 𝒯D be their corresponding trees, and 𝜈 ∈

(0,1). We show their contraposition i.e. sim(𝐶, 𝐷) = 0 implies that 𝐶 and 𝐷 do not

share commonalities to each other.

By the average, we know that hd(𝒯E, 𝒯D) = 0 and hd(𝒯D, 𝒯E) = 0. This means

that both 𝐶 and 𝐷 do not share any commonalities to each other.

Theorem 3.5. The measure sim is guaranteed for termination and fulfills the

condition:

sim(𝐶, 𝐷) ∈ (0,1] iff both 𝐶 and 𝐷 share commonalities among each other.

Proof. This is obvious by Lemma 3.1, Lemma 3.2, and Theorem 3.4.

Discussing about the choice of an aggregating operator, ones may argue to base

the definitions on other methods. However, those may create unsatisfactory results for

the extreme cases. To illustrate this, we define the functions sim× and simrms as

follows.

sim×(𝐶, 𝐷) = hd(𝒯E, 𝒯D) × hd(𝒯D, 𝒯E) (3.8)

simrms(C, D) = W¨hd(𝒯,,𝒯+)ª
X
µ¨hd(𝒯+,𝒯,)ª

X

J
 (3.9)

Then, for any primitive concept 𝐴, we have sim×(A, ⊤) = 0 × 1 = 0 and

simrms(A, ⊤) = Y(0J + 1J) 2⁄ = 0.707, whereas sim(A, ⊤) = (0+ 1) 2 = 0.5⁄ . This

implies that sim×(𝐶, 𝐷) ≤ sim ≤ simrms(𝐶, 𝐷) for any concept descriptions 𝐶 and 𝐷.

Hence, we agree with (Racharak et al., 2018; Suntisrivaraporn, 2013) that the average-

based definition as given above is the most appropriate method13.

13 Though we recommend to use the average, its choice of operators may be changed and it may
produce a different behavior as discussed.

Ref. code: 25615722300273MJP

50

CHAPTER 4

PERSONALIZING CONCEPT SIMILARITY

IN DESCRIPTION LOGICS

The previous chapter proposes an approach for identifying subsumption degree

and concept similarity degree in description logics. This produces a number which

indicates the commonalities and discrepancies of the subset relation and equivalence

relation, respectively, between concepts.

However, not every feature need to be cited in analogical reasoning, the studies

in (Hesse, 1965; Waller, 2001; Weinreb, 2016) reported that features used by the

comparison should be ‘relevant’ to the attribution of the property. This leads us to

investigate and develop an approach for computing the degree of concept similarity

under subjective factors. We illustrate an example (slightly modified from Example

3.6) in which subjective factors play a decisive role in similarity perception.

Example 4.1. An agent 𝐴 wants to visit a place for doing some physical

activities (i.e. ActivePlace). At that moment, he would like to enjoy walking. Suppose

that a place ontology has been modeled as follows:

ActivePlace ⊑ Place ⊓ ∃canWalk.Trekking ⊓ ∃canSail.Kayaking

Mangrove ⊑ Place ⊓ ∃canWalk.Trekking

Beach ⊑ Place ⊓ ∃canSail.Kayaking

canWalk ⊑ canMoveWithLegs

canSail ⊑ canTravelWithSails

Since the above ontology is expressed in ℰℒℋ, we may use the measure sim to

query the similarity degree between ActivePlace and Beach i.e. sim(AP,B), and also,

between ActivePlace and Mangrove i.e. sim(AP,M). As shown in Example 3.8,

sim(AP,B) = sim(AP,M) = 0.585. These information shows that both Mangrove and

Beach are equally similar to ActivePlace. We note that sim was developed based on

the structural subsumption algorithm; thus, it merely considers the objective aspects.

Taking into account also the agent’s preferences, Mangrove may appear to be more

Ref. code: 25615722300273MJP

51

suitable for his perception of ActivePlace at that moment. In other words, he will not

be happy if an intelligent system happens to recommend him to go for a Beach.

To address this issue, how preferential aspects of a context in consideration

should be properly formalized. As introduced in Chapter 3, preference context is an

‘abstract’ guideline for devising similarity measure under subjective factors. Our

intention for leaving the internal structure of preference context is related to an intuition

that methods of developing specific similarity measure can be so many. Indeed, certain

concrete notion of preference context may depend on an algorithmic definition of

similarity measure. Later, we will exemplify other concrete notion of preference context

that we have found in the literature of description logics in this chapter (cf. Subsection

4.6.2) and compare them to our well-investigated concrete notion of preference context

called preference profile. This chapter also generalizes the approach for computing

subsumption degree w.r.t. those preferential aspects called concept similarity under

preference profile.

4.1 Preference Profile

We first introduced preference profile (denoted by 𝜋) in (Racharak,

Suntisrivaraporn, et al., 2016b) as a collection of preferential elements in which the

development of similarity measure of concepts for a particular cognitive agent should

consider. Its first intuition is to model different forms of preferences (of an agent) based

on concept names and role names. Similarity measure which adopts this notion is

flexible to be tuned by an agent and can determine the similarity conformable to that

agent’s perception.

The syntax and semantics of each form are given in term of ‘partial’ functions

because agents may not have preferences over all concept names and role names. We

recommend to devise similarity measures with considerations on preference profile if

we aim at developing concept similarity measure for general purposes – a measure

based on both subjective and objective factors. Mathematical definitions for each form

of preferences are formally defined as follows.

Ref. code: 25615722300273MJP

52

Definition 4.1 (Primitive Concept Importance). Let CNpri(𝒯) be a set of

primitive concept names occurring in a TBox 𝒯. Then, a primitive concept importance

is a ‘partial’ function 𝔦𝔠: CNpri(𝒯) → [0,2]14.

For any A ∈ CNpri(𝒯), 𝔦𝔠(𝐴) = 1 captures an expression of normal importance

for 𝐴, 𝔦𝔠(𝐴) > 1 (and 𝔦𝔠(𝐴) < 1) indicates that 𝐴 has higher (and lower, respectively)

importance, and 𝔦𝔠(𝐴) = 0 indicates that 𝐴 is of no importance to the agent.

Example 4.2. (Continuation of Example 4.1) Suppose that an agent 𝐴 is using

a similarity measure for querying some names similar to ActivePlace. He concerns that

those names will be similar to ActivePlace if they are ‘places’. Thus, the agent can

express this preference as 𝔦𝔠(Place) = 2, i.e. values should be higher than 1.

On the other hand, suppose he ‘does not care’ if those are places or not, he may

express this preference as 𝔦𝔠(Place) = 0, i.e. values must be equal to 0.

Definition 4.2 (Role Importance). Let RN(𝒯) be a set of role names occurring

in 𝒯. Then, a role importance is a ‘partial’ function 𝔦𝔯:RN(𝒯) → [0,2].

For any 𝑟 ∈ RN(𝒯), 𝔦𝔯(𝑟) = 1 captures an expression of normal importance for

𝑟, 𝔦𝔯(𝑟) > 1 (and 𝔦𝔯(𝑟) < 1) indicates that 𝑟 has higher (and lower, respectively)

importance, and 𝔦𝔯(𝑟) 	= 	0 indicates that 𝑟 is of no importance to the agent.

Example 4.3. (Continuation of Example 4.1) Suppose that the agent 𝐴 wants to

enjoy ‘walking’. He may express this preference as 𝔦𝔯(canWalk) = 2, i.e. values should

be higher than 1.

It is worth noticing that, at the concrete level, preference profile makes use of 1

as the special value to represent the normal importance and call other values above 1 as

the higher importance (and below 1 as the lower importance).

Definition 4.3 (Primitive Concepts Similarity). Let CNpri(𝒯) be a set of

primitive concept names occurring in 𝒯. For 𝐴, 𝐵 ∈ CNpri(𝒯), a primitive concepts

14 In the original definition of preference profile (Racharak, Suntisrivaraporn, et al., 2016b), elements
in the domains of both 𝔦𝔠 and 𝔦𝔯 are mapped to R[𝟘, which is a minor error.

Ref. code: 25615722300273MJP

53

similarity is a ‘partial’ function 𝔰𝔠: CNpri(𝒯) × CNpri(𝒯) → [0,1] such that 𝔰𝔠(𝐴, 𝐵) =

𝔰𝔠(𝐵, 𝐴) and 𝔰𝔠(𝐴, 𝐴) = 1.

For 𝐴, 𝐵 ∈ CNpri(𝒯), 𝔰𝔠(𝐴, 𝐵) = 1 captures an expression of total similarity

between 𝐴 and 𝐵 and 𝔰𝔠(𝐴, 𝐵) = 0 captures an expression of their total dissimilarity.

Example 4.4. (Continuation of Example 4.1) Suppose that the agent A believes

that ‘trekking’ and ‘kayaking’ invoke similar feeling. Thus, he can express

𝔰𝔠(Trekking,Kayaking) = 0.1, i.e. values should be higher than 0.

Another example is the similarity of concepts PetM and PetJ, in which both are

defined as follows: PetM ⊑ Dog ⊓ ∃hasOwned.Human; PetJ ⊑ Cat ⊓

∃hasOwned.Human. Here, Dog and Cat are both primitive concept names. Intuitively,

Dog and Cat are similar, then we may attach this knowledge in form of 𝔰𝔠 in order to

yield more accuracy on the measure.

Definition 4.4 (Primitive Roles Similarity). Let RNpri(𝒯) be a set of primitive

role names occurring in 𝒯. For r, s ∈ RNpri(𝒯), a primitive roles similarity is a ‘partial’

function 𝔰𝔯: RNpri(𝒯) × RNpri(𝒯) → [0,1] such that 𝔰𝔯(𝑟, 𝑠) = 𝔰𝔯(𝑠, 𝑟) and 𝔰𝔯(𝑟, 𝑟) =

1.

For 𝑟, s ∈ RN(𝒯), 𝔰𝔯(𝑟, 𝑠) = 1 captures an expression of total similarity

between 𝑟 and 𝑠 and 𝔰𝔯(𝑟, 𝑠) = 0 captures an expression of their total dissimilarity.

Example 4.5. (Continuation of Example 4.1) Suppose that the agent 𝐴 believes

that ‘moving with legs’ and ‘traveling with sails’ invoke similar feeling. He may

express 𝔰𝔯(canMoveWithLegs,canTravelWithSails) = 0.1, i.e. values should be

higher than 0.

Basically, the intention of both functions 𝔰𝔠 and 𝔰𝔯 are the same, i.e. they are

aimed at capturing subjective feeling of proximity (about primitive concept names and

primitive role names) into a measure. In DLs, different primitive concept names (and

also primitive role names) are considered to be total dissimilarity even though they may

be recognized as being similar in real-world domains.

Ref. code: 25615722300273MJP

54

Definition 4.5 (Role Discount Factor). Let RN(𝒯) be a set of role names

occurring in 𝒯. Then, a role discount factor is a ‘partial’ function 𝔡:RN(𝒯) → [0,1].

Intuitively, role discount factor means a factor that discounts an important

contribution of a role. This aspect plays a part when comparing two existential

restrictions or two value restrictions, i.e. concepts of the form ∃𝑟. 𝐶 or concepts of the

form ∀r. C, respectively, are being compared. For example, comparing ∃𝑟M. (∃𝑟J. 𝐶M)

and ∃𝑟N. (∃𝑟O. 𝐶J) involves checking the commonality of 𝑟M, 𝑟N and the commonality of

∃𝑟J. 𝐶M, ∃𝑟O. 𝐶J. Depending on a context of consideration, the commonality appeared in

𝑟M may have more/less importance than the commonality appeared in its nested concept

part i.e. ∃𝑟J. 𝐶M.

More formally, for any 𝑟 ∈ RN(𝒯), 𝔡(𝑟) = 1 captures an expression of total

importance on the role (beyond a corresponding nested concept) and 𝔡(𝑟) = 0 captures

an expression of total importance on a nested concept (beyond the correspondent role

𝑟).

Example 4.6. (Continuation of Example 4.1) Suppose that the agent A does not

concern much if places permit to either walk or to sail. He would rather consider on

actual activities which he can perform. Thus, he may express 𝔡(canWalk) = 0.3 and

𝔡(canSail) = 0.3, i.e. values should be close to 0.

Definition 4.6 (Preference Profile). A preference profile, in symbol 𝜋, is a

quintuple ⟨𝔦𝔠, 𝔦𝔯, 𝔰𝔠, 𝔰𝔯, 𝔡⟩ where 𝔦𝔠, 𝔦𝔯, 𝔰𝔠, 𝔰𝔯, and 𝔡 are as defined above and the default

preference profile, in symbol πw, is the quintuple ⟨𝔦w𝔠 , 𝔦w𝔯 , 𝔰w𝔠 , 𝔰w𝔯 , 𝔡w⟩ where

𝔦w𝔠 (𝐴) = 1	for	all	𝐴 ∈ CNpri(𝒯),

𝔦w𝔯 (𝑟) = 1	for	all	𝑟 ∈ RN(𝒯),

𝔰𝔠(𝐴, 𝐵) = 0	for	all	(𝐴, 𝐵) ∈ CNpri(𝒯) × CNpri(𝒯),

𝔰w𝔯 (𝑟, 𝑠) = 0	for	all	(𝑟, 𝑠) ∈ RNpri(𝒯) × RNpri(𝒯), and

𝔡w(𝑟) = 0.4	for	all	𝑟 ∈ RN(𝒯).

Intuitively, the default preference profile 𝜋w represents the agent’s preference

in the default manner, i.e. when preferences are not given. That is, every 𝐴 ∈ CNpri has

Ref. code: 25615722300273MJP

55

normal importance and so does every 𝑟 ∈ RN. Also, every (𝐴, 𝐵) ∈ CNpri × CNpri is

totally different and so does every (𝑟, 𝑠) ∈ RNpri × RNpri. Lastly, every 𝑟 ∈ RN is

considered 0.4 importance for the similarity of two existential restriction information

(or two value restriction information). It is interesting to note that changes in the

definition of the default preference profile yield different interpretations of the default

preference and thereby may produce a different degree of similarity under the default

manner. As for its exemplification, the value 0.4 is used by 𝔡w to conform with the value

of ν used by sim in Chapter 3.

In this work, a preference profile of an agent is denoted by subscribing that

agent below 𝜋, e.g. 𝜋_ represents a preference profile of the agent 𝐴.

4.2 From Subsumption Degree to Subsumption Degree under Preferences

Now, we are ready to exemplify how the notion of preference profile can be

adopted toward the development of concept similarity under preference profile. Our

next step is to generalize the function hd to expose preferential elements of preference

profile. As a result, the new function hd& is also driven by the structural subsumption

characterization by means of tree homomorphism in ℰℒℋ.

We start by presenting each aspect of preference profile in term of ‘total’

functions in order to avoid computing on null values. A total importance function is

firstly introduced as `:̂ CNpri ∪ RN → [0,2] based on the primitive concept importance

and the role importance.

`(̂x) = b
𝔦𝔠(𝑥), 𝑥 ∈ CNpri	and	𝔦𝔠	is	defined	on	𝑥
𝔦𝔯(𝑥), 𝑥 ∈ RN	and	𝔦𝔯	is	defined	on	𝑥

1,	otherwise
 (4.1)

A total similarity function is also presented as 𝔰c: (CNpri × CNpri) ∪ (RNpri ×

RNpri) → [0,1] using the primitive concepts similarity and the primitive roles

similarity.	

Ref. code: 25615722300273MJP

56

𝔰c(𝑥, 𝑦) = b
M,																																																	2	¸	d

𝔰𝔠(e,f),(2,d)∈CNpri×CNpri	and	𝔰𝔠	is	defined	on	(2,d)
𝔰𝔯(e,f),(e,f)∈RNpri×RNpri	and	𝔰𝔯	is	defined	on	(2,d)

w,																																						otherwise

	 	 	 	 											(4.2)

	

Similarly, a total role discount factor function15 is presented in the following in

term of a function 𝔡g:RN → [0,1] based on the role discount factor.

𝔡(𝑥) h𝔡(𝑥),	if	𝔡	is	defined	on	𝑥0.4,					otherwise (4.3)

	

The next step is to generalize the notion of homomorphism degree hd (cf.

Definition 3.8). Let 𝐶, 𝐷 ∈ Con(ℰℒℋ) and 𝑟, 𝑠 ∈ RN. Also, let 𝒯E , 𝒯D, 𝒫E , 𝒫D, ℰE , ℰD,

ℛi, and ℛ! be as defined in Subsection 3.3.1. The homomorphism degree under

preference profile 𝜋 from 𝒯D to 𝒯E can be formally defined in Definition 4.7.

Definition 4.7. Let 𝕋ℰℒℋ be a set of all ℰℒℋ description trees, and 𝜋 =

	⟨𝔦𝔠, 𝔦𝔯, 𝔰𝔠, 𝔰𝔯, 𝔡⟩ be a preference profile. The homomorphism degree under preference

profile 𝜋 is a function hd~:𝕋ℰℒℋ × 𝕋ℰℒℋ → [0,1] defined inductively as follows:

hd&(𝒯D, 𝒯E) = 𝜇&(𝒫D, ℰD) ⋅ p-hd&(𝒫D, 𝒫E)+ ¨1− 𝜇&(𝒫D, ℰD)ª ⋅ e-set-hd&(ℰD, ℰE),

 (4.4)

	

where	𝜇&(𝒫D, ℰD) = b
1,∑ `̂(𝐴)_∈𝒫+ + ∑ `(̂𝑟)∃õ.<∈ℰ+ = 0

∑ `̂(j)k∈𝒫+
∑ `(̂j)k∈𝒫+ µ∑ `̂(õ)∃l.m∈ℰ+

,otherwise (4.5)

	

p-hd&(𝒫D, 𝒫E) =

⎩
⎪
⎨

⎪
⎧ 1,∑ `̂(𝐴)j∈𝒫+ = 0
0,∑ `(̂𝐴)j∈𝒫+ ≠ 0	and∑ `(̂𝐵)o∈𝒫, = 0
∑ `̂p(j)k∈𝒫+ ⋅Ø12q∈𝒫𝒞{𝔰c(j,o)}

∑ `(̂j)k∈𝒫+
,	otherwise

 (4.6)

	

15 We set the default value to 0.4 to comply with the default value of πw.

Ref. code: 25615722300273MJP

57

e-set-hd&(ℰD, ℰE) =

⎩
⎪
⎨

⎪
⎧ 1,∑ `(̂𝑟)∃õ.<∈ℰ+ = 0
0,∑ `(̂𝑟)∃õ.<∈ℰ+ ≠ 0	and	∑ `̂(𝑠)∃!.=∈ℰ, = 0
∑ `̂(õ)∃l.m∈ℰ+ ⋅Ø1234∈ℰ,{e-hd

r¨∃õ.<,s4ª}

∑ `̂(õ)∃l.m∈ℰ+
,	otherwise

					 											(4.7)	

	

where ϵÛ is an existential restriction; and

	

e-hd&(∃𝑟. 𝑋, ∃𝑠. 𝑌) = 𝛾&(𝑟, 𝑠) ⋅ ?𝔡(𝑟)+ ¨1− 𝔡(𝑟)ª ⋅ hd~(𝒯< , 𝒯=)@			 											(4.8)	

	

	where	𝛾&(r, s) = b
1,∑ `(̂𝑟G)õï∈ℛl = 0

∑ `̂̈ õïªlï∈ℛl
⋅Ø12tï∈ℛt{𝔰c¨õ

ï,!ïª}

∑ `̂(õï)lï∈ℛl
,	otherwise

 (4.9)

	

Intuitively, the function hd& (Equation 4.4) is defined as the weighted sum of

the degree under preferences of the vertex set commonalities (p-hd&) and the degree

under preferences of edge condition matching (e-set-hd&). Equation 4.6 calculates the

average of the best matching under preferences of primitive concepts in 𝒫𝒟. Equation

4.8 calculates the degree under preferences of a potential homomorphism of a matching

edge. If edge labels share some commonalities under preferences (Equation 4.9), i.e.

0 < 𝛾& ≤ 1, then part of the edge matching is satisfied; but the successors labels and

structures have yet to be checked. This is defined recursively as hd&(𝒯< , 𝒯=) in Equation

4.8. Equation 4.7 calculates the best possible edge matching under preferences of each

edge in ℰD and returns the average thereof.

The weight 𝜇& in Equation 4.4 determines how important the primitive concept

names are to be considered for preference-based similarity. For the special case where

𝐷 = ⊤, i.e. 𝒫D = ℰD = 	∅, 𝜇& is irrelevant as 𝒯u is the smallest ℰℒℋ description tree

and hd~(𝒯u, 𝒯E) = 1 for all concepts 𝐶.

It is to be mentioned that the function hd& may look similar to simiv (Lehmann

& Turhan, 2012) as both are recursive definitions for the same DL ℰℒℋ. However,

they are obviously different caused by the distinction of their inspirations and their

viewpoints of the development. While hd& is inspired by the homomorphism-based

structural subsumption characterization, simiN is inspired by the Jaccard Index

Ref. code: 25615722300273MJP

58

(Jaccard, 1901). Technically speaking, simiN employs t-conorm instead of fixing an

operator. However, unlike simiN, the use of 𝜇& for determining how primitive concepts

are weighted and the use of γπ for determining the proportion of shared super roles are

employed. Furthermore, simiN, is originated from the viewpoint of ordinary concept

similarity measure, thus some aspects of preference profile are missed; though some

may exist. We continue the discussion in Section 4.6.

The function hd& yields a numerical value that represents structural similarity

w.r.t. a particular profile π of a concept against another concept. We present an example

about the calculation of hd& in the following.

Example 4.7. (Continuation of Example 4.1) Let enrich the example. Assume

the agent 𝐴’s preference profile is defined as follows: (i) 𝔦𝔠(Place) = 2; (ii)

𝔦𝔯(canWalk) = 2; (iii) 𝔰𝔠(Trekking,Kayaking) = 0.1; (iv)

𝔰𝔯(canMoveWithLegs,canTravelWithSails) = 0.1; (v) 𝔡(canWalk) = 0.3 and

𝔡(canSail) = 0.3. Let ActivePlace, Mangrove, Beach, Place, Trekking, Kayaking,

canWalk, and canSail are rewritten shortly as AP, M, B, P, T, K, cW, and cS,

respectively. Using Definition 4.7, hd~(𝒯AP, 𝒯M)

= w
3
6x ⋅ p-hd

~(𝒫AP, 𝒫M)+ w
3
6x ⋅ e-set-hd

~(ℰAP, ℰM)

= w
3
6x ⋅ y

𝔦(X) ⋅max{𝔰 (𝑋, 𝑌), 𝔰(𝑋,P)}+ 𝔦(P) ⋅max	{	𝔰(P, 𝑌), 𝔰(P,P})})
𝔦(𝑋)+ 𝔦(P) z

+w
3
6x ⋅ e-set-hd

~(ℰAP, ℰM)

= w
3
6x w

1 ⋅max{ 0,0}+ 2 ⋅max{ 0,1}
1+ 2 x + w

3
6x ⋅ e-set-hd

~(ℰAP, ℰM)

= w
3
6x w

2
3x + w

3
6x {

𝔦(cW) ⋅max{ e-hd~(∃cW.T, ∃cW.T)}+ 1 ⋅max{ 0.019}
𝔦(cW)+ 𝔦(cS) }

= w
3
6x w

2
3x + w

3
6x {

2 ⋅max{ (1)¨0.3 + 0.7(1)ª}+ 1 ⋅max{ 0.019}
𝔦(cW)+ 𝔦(cS) }

= w
3
6x w

2
3x + w

3
6x {

(2)(1)+ (1)(0.019)
2+ 1 } ≈ 0.67

Similarly, we obtain hd~(𝒯M, 𝒯AP) = 0.80. Furthermore, using Definition 4.7,

hd&(𝒯AP, 𝒯B) ≈ 0.51 and hd&(𝒯B, 𝒯AP) = 0.75.

Ref. code: 25615722300273MJP

59

The function hd& can be used when preferences of the agent are not given. That

is, we tune the function according to the default preference profile i.e. hd&= . We state

this property in the following proposition.

Proposition 4.1. For 𝒯D, 𝒯C ∈ 𝕋ℰℒℋ , hd&=(𝒯D, 𝒯C) = hd&(𝒯D, 𝒯C).

Proof. Recall by Definition 4.6 that the default preference profile 𝜋w is the

quintuple ⟨𝔦w𝔠 , 𝔦w𝔯 , 𝔰w𝔠 , 𝔰w𝔯 , 𝔡w⟩. Also, suppose a concept name 𝐷 is of the form: 𝑃M ⊓ …⊓

𝑃Ø ⊓ ∃𝑟M. 𝐷M ⊓ …⊓ ∃𝑟Ù. 𝐷Ù where 𝑃¡ ∈ CNpri, 𝑟Û ∈ CN, 𝐷Û ∈ Con(ℰℒℋ), 1 ≤ 𝑖 ≤ 𝑚,

1 ≤ 𝑗 ≤ 𝑛, 𝑃M ⊓ …⊓ 𝑃Ø is denoted by 𝒫D, and ∃𝑟M. 𝐷M ⊓ …⊓ ∃𝑟Ù. 𝐷Ù is denoted by ℰD.

Let 𝑑 be the depth of 𝒯D. We prove that, for any 𝑑 ∈ N, hd&=(𝒯D, 𝒯E) = hd&(𝒯D, 𝒯E) by

induction on 𝑑.

When 𝑑 = 0, we know that 𝐷 = 𝑃M ⊓ …⊓ 𝑃�. To show that hd&=(𝒯D, 𝒯E) =

hd&(𝒯D, 𝒯E), we need to show that 𝜇&= = 𝜇 and p-hd~=(𝒫D, 𝒫E) = p-hd(𝒫D, 𝒫E). Let

us derive as follows:

𝜇&= =
∑ `̂(j)k∈𝒫+

∑ `(̂j)k∈𝒫+ µ∑ `̂(õ)∃l.m∈ℰ+
= ∑ M�

7��
∑ M�
7�� µw

= �
�µw

= 𝜇.

Furthermore, we only need to show ∑ ma𝑥{𝔰c (𝐴, 𝐵)j∈𝒫+ : 𝐵 ∈ 𝒫E} = |𝒫D ∩

𝒫E| in order to show p-hd&=(𝒫D, 𝒫E) = p-hd(𝒫D, 𝒫E). We know that 𝔰w𝔠 maps name

identity to 1 and otherwise to 0. Thus, ∑ max{𝔰c (𝐴, 𝐵): 𝐵 ∈ 𝒫E}j∈𝒫+ 	= |{	𝑥 ∶ 𝑥	 ∈

𝒫D	and	𝑥	 ∈ 𝒫E}	| = |	𝒫D ∩ 𝒫E|.

We must now prove that if hd&=(𝒯D, 𝒯E) = hd&(𝒯D, 𝒯E) holds for 𝑑 = ℎ − 1

where ℎ > 1 and 𝐷 = 𝑃M ⊓ …⊓ 𝑃� ⊓ ∃𝑟M. 𝐷M ⊓ …⊓ ∃𝑟�. 𝐷� then hd&=(𝒯D, 𝒯E) =

hd&(𝒯D, 𝒯E) also holds for 𝑑 = ℎ. To do that, we have to show e-set-hd&=(ℰD, ℰE) =

e-set-hd(ℰD, ℰE). This can be done by showing in the similar manner that 𝛾&= = 𝛾 and

hd&=(𝒯< , 𝒯=) = hd&(𝒯< , 𝒯=) from e-hd~=(∃𝑟. 𝑋, ∃𝑠. 𝑌) = e-hd(∃𝑟. 𝑋, ∃𝑠. 𝑌), where

∃𝑟. 𝑋 ∈ ℰD	and	∃𝑠. 𝑌 ∈ ℰE . Consequently, it follows by induction that, for 𝒯D, 𝒯E ∈

𝕋ℰℒℋ , hd&=(𝒯D, 𝒯E) = hd&(𝒯D, 𝒯E).

4.3 Concept Similarity under Preference Profile

Ref. code: 25615722300273MJP

60

In this section, we present a ‘general’ notion of concept similarity measure

under the agent's preferences (Racharak et al., 2018; Racharak, Suntisrivaraporn, et al.,

2016a) and its desirable properties. This notion can be seen as a function of the family

∼×
𝔭 given in Definition 3.6. As we shall see, the previous developments on subsumption

degree under preference profile can be utilized to develop concrete measures of this

abstract notion. Hence, the measures sim& is introduced by utilizing the function hd&.

Our first intuition is to exemplify the applicability of preference profile onto an arbitrary

existing measure of concept similarity. This shows that our proposed notion of

preference profile can be considered as a collection of noteworthy aspects for the

development of concept similarity measure under the agent's preferences. Furthermore,

it is obvious that preference profile can be seen as a concrete notion of preference

context.

Definition 4.8. Given a preference profile 𝜋, two concepts 𝐶, 𝐷 ∈ Con(ℒ), and

a TBox 𝒯, a concept similarity measure under preference profile w.r.t. a TBox 𝒯 is a

function ∼×& :Con(ℒ) × Con(ℒ) → [0,1].

When a TBox 𝒯 is clear from the context, we simply write ∼& . Furthermore, to

avoid confusion on the symbols, ∼×& is used when referring to arbitrary measures.

The notion ∼& may be informally read as “the computation of ∼ is influenced

by 𝜋”. That informal interpretation shapes our intuition to consider this kind as a more

generalized concept similarity i.e. not only objective factors but also subjective factors

are considered in the identification of the degree of similarity. With adopting of this

viewpoint of the interpretation, we can agree that sim& is informally interpreted as “we

compute sim under an existence of a given preference profile 𝜋”.

Basically, the notion ∼& is a function mapping a pair of two concept

descriptions w.r.t. a particular 𝜋 to a unit interval. We have identified a property called

preference invariance w.r.t. equivalence in our preliminary study (Racharak,

Suntisrivaraporn, et al., 2016a). To identify more important properties of ∼& , we started

by investigating important properties of concept similarity measure existing in the

literature (e.g. (D’Amato, Staab, & Fanizzi, 2008; Lehmann & Turhan, 2012)). Our

primary motivation is to identify the properties of concept similarity measure which are

Ref. code: 25615722300273MJP

61

also reasonable for ∼& . The following collects fundamental properties for the

introduced concept similarity measure under preference profile. They can be used to

answer the question “What could be good preference-based similarity measures?”. In

other words, any preference-based measures satisfying the fundamental properties are

considered to be good ones.

Definition 4.9. Let 𝐶, 𝐷, 𝐸 ∈ Con(ℒ) and Π be a countably infinite set of

preference profile. Then, we call a concept similarity measure under preference profile

∼& is:

1. Symmetric iff ∀𝜋G ∈ Π: ?𝐶 ∼&
ï
𝐷 = 𝐷 ∼&

ï
𝐶@;

2. Equivalence invariant iff 𝐶 ≡ 𝐷 ⟹ ∀𝜋G ∈ Π: ?𝐶 ∼&
ï
𝐸 = 𝐷 ∼&

ï
𝐸@;

3. Structurally dependent iff for any finite sets of concepts CM and CJ with the

following conditions:

a. CM ⊆ CJ,

b. Concepts 𝐴, 𝐵 ∉ CJ,

c. 𝔦𝔠(𝛷) > 0 if 𝛷 is primitive and 𝛷 ∈ CJ, and

d. 𝔦𝔯(𝜑) > 0 if 𝛷 is existential, i.e. 𝛷 ∶=	∃𝜑.𝛹, and 𝛷 ∈ CJ,

the concepts 𝐶 ∶= ⨅(CM ∪ {𝐴}), 𝐷 ≔ ⨅(CM ∪ {𝐵}), 𝐸 ∶=⨅(CJ ∪ {𝐴}) and

𝐹 ≔ ⨅(CJ ∪ {𝐵}) fulfill the condition ∀𝜋G ∈ Π: ?𝐶 ∼&
ï
𝐷 ≤ 𝐸 ∼&

ï
𝐹@; and

4. Preference invariant w.r.t. equivalence iff 𝐶 ≡ 𝐷 ⟺ ∀𝜋G ∈ Π: 𝐶 ∼&
ï
𝐷 =

1.

Next, we discuss the underlying intuitions of each property subsequently. We

note that the properties 1 to 3 are adopted from (D’Amato et al., 2008; Lehmann &

Turhan, 2012). However, to the best of our knowledge, the property 4 is first introduced

for concept similarity measure under preference profile in this work (originally

introduced in (Racharak, Suntisrivaraporn, et al., 2016a)).

Let Π be a countably infinite set of preference profile. In the following, we

discuss the intuitive interpretation of each property. Firstly, symmetry states that an

order of concepts in question does not influence the notion 𝜋G for any 𝜋G ∈ Π. For

instance, Mangrove ∼&
ï
Beach = Beach ∼&

ï
Mangrove w.r.t. any particular context

Ref. code: 25615722300273MJP

62

𝜋G. This property is controversial since cognitive science believes that similarity is

asymmetric. An example given in (Tversky, 1977) is as follows: People usually speak

“the son resembles the father” rather than “the father resembles the son”. Some work

in DLs also prefer asymmetry such as (Janowicz, 2006; Janowicz & Wilkes, 2009). It

is worth observing that such a statement is made w.r.t. some particular contexts. Thus,

this work favors on symmetry as it appears more natural to use and gives more intuitive

computational understanding. For example, rather than viewing like “the son resembles

the father”, we would view like “if certain contexts are fixed, then the son and the father

are similar to each other” (cf. (Racharak & Suntisrivaraporn, 2015; Racharak et al.,

2018; Racharak, Suntisrivaraporn, et al., 2016a)). Furthermore, we agree on the

symmetry because axiomatic information in TBox is not dynamically changed; and

also, the notion of preference profile studied in this work is static, i.e. it can be changed

merely by tuning. Some work in DLs which favors on symmetry includes (Borgida &

Walsh, n.d.; d’Amato, Fanizzi, & Esposito, 2009; D’Amato, Fanizzi, & Esposito, 2006;

D’Amato et al., 2008; Fanizzi & D’Amato, n.d.; Lehmann & Turhan, 2012; Racharak

& Suntisrivaraporn, 2015; Racharak, Suntisrivaraporn, et al., 2016a; Tongphu &

Suntisrivaraporn, 2015).

Secondly, equivalence invariance (alternatively called equivalence soundness

(D’Amato et al., 2008) in the context of dissimilarity measure) states that if two

concepts 𝐶 and 𝐷 are logically equivalent, then measuring the similarity of each toward

the third concept 𝐸 w.r.t. any 𝜋G ∈ Π must be the same. This property is inspired from

a characteristics of synonym concepts, i.e. concepts that means exactly the same. For

instance, let 𝐶 ≡ ∃canWalk.Trekking and 𝐷 ≡ ∃canWalk.Trekking. It is clear that 𝐶

and 𝐷 are logically equivalent. Therefore, let 𝐸 ∈ Con(ℒ), 𝐶 ∼&
ï
𝐸 = 𝐷 ∼&

ï
𝐸 for any

𝜋G ∈ Π.

Thirdly, the notion of structural dependence was originally introduced by

Tversky in (Tversky, 1977). Later, the authors of (Lehmann & Turhan, 2012) has

collected it as another important properties for concept similarity measure in their work.

Basically, in Tversky’s model, an object was considered as a set of features. Then, the

similarity of two objects was measured by the relationship between a number of

common features and a number of different features. Extending this idea to ∼& gives

Ref. code: 25615722300273MJP

63

the meaning that the similarity of two concepts 𝐶, 𝐷 increases if a more number of

‘equivalent’ concepts is shared and each is considered ‘important’.

Lastly, preference invariance w.r.t. equivalence states that if two concepts are

logically equivalent, then the similarity degree of two concepts under preference profile

𝜋 is always 1 for every 𝜋 ∈ Π, and vice versa. Taking the negation both sides, this means

𝐶 ≢ 𝐷 ⟺ ∃𝜋G ∈ Π: 𝐶 ∼&
ï
𝐷 ≠ 1. For instance, let 𝐶 ≡ ∃canWalk.Trekking and 𝐷 ≡

∃canWalk.Parading. It is clear that 𝐶 and 𝐷 are not logically equivalent, then taking

𝜋 = 𝜋w obtains 𝐶 ∼&0 𝐷 ≠ 1; though, taking 𝜋 = 𝜋M where 𝔰𝔠(Trekking,Parading) =

1 is defined in 𝜋M yields 𝐶 ∼&1 𝐷 = 1.

There are several properties which are not considered as fundamental properties

of concept similarity measure under preference profile because the behaviors may not

obey their properties when used under ‘non-default’ preference profiles, e.g. reverse

subsumption preserving. According to (Lehmann & Turhan, 2012), a concrete measure

∼ satisfies the reverse subsumption preserving iff, for any concepts 𝐶, 𝐷, and 𝐸, 𝐶 ⊑

𝐷 ⊑ 𝐸 ⟹ 𝐶 ∼ 𝐸 ≤ 𝐷 ∼ 𝐸. The property states that the similarity of 𝐷 and 𝐸 is higher

than the one of 𝐶 and 𝐸 because 𝐸 is closer to 𝐷 than 𝐶. To refute it, we need only one

preference profile 𝜋 such that the implication does not hold (cf. Example 4.8), i.e. to

show that (𝐶	 ⊑ 𝐷	 ⊑ 𝐸)	and	∃𝜋G ∈ Π:	(𝐶 ∼&
ï
𝐸 > 𝐷 ∼&

ï
𝐸.

 Example 4.8. Suppose concepts AM, AJ, AN, and AO are primitive. Query

describes features of an item that an agent is searching for. ItemM and ItemJ are items,

which compose of features AM, AJ, AN and AM, AJ, AN,	AO, respectively.

	

Query ≡ A1 ⊓ A2

ItemM ≡ A1 ⊓ A2 ⊓ A3

ItemJ ≡ A1 ⊓ A2 ⊓ A3 ⊓ A4

	

The ontology shows the hierarchy: ItemJ ⊑ ItemM ⊑ Query. By taking

𝔰𝔠(A2, A4) = 1, it is reasonable to conclude that ItemJ ∼
𝜋 Query > ItemM ∼

𝜋 Query

due to an increased number of totally similar concepts.

Ref. code: 25615722300273MJP

64

Our proceeding paper (Racharak & Suntisrivaraporn, 2015) studies CSM for the

DL ℱℒw. In this paper, we suggest two measures, viz. the skeptical measure ∼! and the

credulous measure ∼�, which are derived from the known structural characterization

subsumption through inclusion of regular languages. This fact exhibits that there is no

a unique CSM for similarity-based applications. Which CSMs should be used depends

on concrete applications, especially the type of a rational agent. For example, when

employing the notion ∼ to a query answering system, a credulous agent may want to

see answers as much as possible; hence, the measure ∼� is employed. On the other

hand, a skeptical agent would like to see sufficient relevant answers; hence, the measure

∼! is employed. This idea is generalized and is extended toward the notion ∼& to be

used under different agent’s profiles.

Definition 4.10. Let Π be a countably infinite set of preference profile and

𝜋M,𝜋J ∈ Π. For any fixed measure ∼& , the concept similarity measure under 𝜋M is more

skeptical than 𝜋J (denoted by ∼&� 	⪯	∼&X) if 𝐶 ∼𝜋1 𝐷	 ≤ 𝐶 ∼𝜋2 𝐷 for all 𝐶, 𝐷 ∈ Con(ℒ).

Intuitively, if an arbitrary concept similarity measure under preference profile

∼& is fixed, measuring the similarity of two concepts under different preference profiles

may yield different values. A similar experiment was done in (Bernstein, Kaufmann,

Bürki, & Klein, 2005) where different measures were used in target ontologies and

obtained the better results than just using a single measure.

4.3.1 From Subsumption Degree under Preferences to Concept Similarity under

Preferences

The idea of developing ‘concrete’ concept similarity measures under preference

profile can be analogously brought from concept similarity. Indeed, we have pointed

out this in Section 3.2, i.e. the second and the third step of our outlined methodology

(cf. Section 3.2). We formally recast this in the following.

𝐶 ∼𝜏𝜋 𝐷 = 1 ⟺ 𝐶 ↝𝜏

𝜋 𝐷 = 1	and	𝐷 ↝𝜏
𝜋 𝐶 = 1 (4.10)

where the notion of directional subsumption degree under preference profile is denoted

by ↝×
& and the binary operator ‘and’ should be generalized to aggregate two unit

Ref. code: 25615722300273MJP

65

intervals. In the following, we show how ones can employ this idea to develop concrete

concept similarity measure under preference profile for DL ℰℒℋ in this subsection.

The function hd& yields a numerical value that represents structural similarity

w.r.t. a particular profile 𝜋 of a concept against another concept. We can use this

knowledge to develop a concrete measure of ℰℒℋ concepts as follows.

Definition 4.11. Let 𝐶, 𝐷 ∈ Con(ℰℒℋ), 𝒯E and 𝒯D be the corresponding

description trees, and 𝜋 =	 ⟨𝔦𝔠, 𝔦𝔯, 𝔰𝔠, 𝔰𝔯, 𝔡⟩ be a preference profile. Then, the ℰℒℋ

similarity measure under preference profile 𝜋 between 𝐶 and 𝐷 (denoted by

sim~(𝐶, 𝐷)) is defined as follows:

sim&(𝐶, 𝐷) = hd�(𝒯,,𝒯+)µhd�(𝒯+,𝒯,)

J
 (4.11)

Example 4.9. (Continuation of Example 4.7) Using Definition 4.11, it yields

that

sim&(M,AP) =
0.67 + 0.80

2 ≈ 0.74

Similarly, sim&(B,AP) ≈ 0.63. The fact that sim&(M,AP) > sim&(B,AP) corresponds

with the agent 𝐴’s needs and preferences.

The above definition uses the average to aggregate two corresponding unit

intervals. We may also argue to aggregate both values based on alternative operators

accepting unit intervals e.g. the multiplication or the root mean square of both values.

Un- fortunately, those give unsatisfactory values for the extreme cases. Similar

arguments about this point has been discussed on Subsection 3.3.3. Hence, we believe

that the average-based definition given above is the most appropriate method for

aggregating two values of subsumption degree under preference profile. Based on this

form, simπ is basically considered as a generalization of sim, which determines

similarity under preference profile, i.e. behavioral expectation of the measure will

conform to the agent’s perception. We note that, though we recommend to use the

average, its choice of operators may be changed and it may produce a different

behavior. The following discusses some inherited properties of the measures sim&.

Ref. code: 25615722300273MJP

66

First, sim& can be used in the case that a preference profile is not defined by the

agent. In such a case, we tune the profile setting to 𝜋w. That is, computing sim	&= yields

the degree of concept similarity measure merely w.r.t. the structure of concept

descriptions in question.

Theorem 4.1. Let	𝐶, 𝐷 ∈ Con(ℰℒℋ), sim	&=(𝐶, 𝐷) = sim(𝐶, 𝐷).

Proof. It immediately follows from Lemma 4.1, Definition 3.9, and Definition

4.11.

The above theorem shows that sim&is also backward compatible in the sense

that using sim& with 𝜋 = 𝜋w, i.e. sim	&=, coincides with sim.

In the following, we show that the measure sim& can also be computed in

polynomial time i.e. there exists an algorithmic procedure whose execution time is

upper bounded by a polynomial expression in the size of the description trees

Theorem 4.2. Assume that a value from any preference functions is retrieved

in 𝒪(1). Given 𝐶, 𝐷 ∈ Con(ℰℒℋ), sim&(𝐶, 𝐷) ∈ 𝒪(|𝑉E| ⋅ |𝑉D|) where 𝑉E and 𝑉D are

set of vertices of the description trees 𝒯E and 𝒯D, respectively.

Proof. Let 𝐶, 𝐷 ∈ Con(ℰℒℋ), 𝐶 ∶= 𝑃M ⊓ …⊓ 𝑃� ⊓ ∃𝑟M. 𝐶M ⊓ …⊓ ∃𝑟�. 𝐶�, 𝐷

∶= 𝑄M ⊓ …⊓ 𝑄K ⊓ ∃𝑠M. 𝐷M ⊓ …⊓ ∃𝑟� . 𝐷�, 𝜋 be any preference profile, and 𝒯E, 𝒯D be

corresponding description trees. By Definition 4.11, we show hd~(𝒯E, 𝒯D) ∈

𝒪(|𝑉E| ⋅ |𝑉D|) and hd&(𝒯D, 𝒯E) ∈ 𝒪(|𝑉D| ⋅ |𝑉E|). Without loss of generality, it suffices

to show merely hd&(𝒯E, 𝒯D) ∈ 𝒪(|𝑉E| ⋅ |𝑉D|). That is, we need to show 𝜇&, 𝛾&,

p-hd~(𝒫D, 𝒫E), and e-set-hd~(ℰD, ℰE) are bounded by 𝒪(|VE| ⋅ |VD|).

Since the summation, the maximal matching between 𝒫D and 𝒫E , and the

maximal matching between ℛõ and ℛ! can be computed in polynomial time in the worst

case, the functions 𝜇&, 𝛾&, and p-hd&(𝒫D, 𝒫E) are bounded by 𝒪(|𝑉E| ⋅ |𝑉D|).

Computing e-set-hd&(ℰD, ℰE) requires to call e-hd& for |ℰD	| ⋅ |ℰE	| times.

Each call of e-hd& will make a recursive call to hd& and its number of calls is bounded

by the height of 𝒯D and 𝒯E . Hence, e-set-hd&(ℰD, ℰE) are bounded by 𝒪(|𝑉E| ⋅ |𝑉D|).

We can also show sim& is a procedure which ensures termination and can be

used as an indicator for the degree of commonalities under preference profile 𝜋 between

Ref. code: 25615722300273MJP

67

ℰℒℋ concepts. That is, we ensure that the correct results are corrects (cf. Lemma 4.1)

and the negative results are also correct (cf. Lemma 4.2). Termination ensures to

provide an answer in finite time.

Lemma 4.1. Let 𝐶, 𝐷 be ℰℒℋ concepts and πG = ⟨𝔦𝔠, 𝔦𝔯, 𝔰𝔠, 𝔰𝔯, 𝔡⟩ be any

preference profile, where 𝔦𝔠(𝐴) ∈ (0,2] for all 𝐴 ∈ CNpri(𝒯), 𝔦𝔯(𝑟) ∈ (0,2] for all 𝑟 ∈

RN(𝒯), 𝔡(𝑟) ∈ (0,1] for all 𝑟 ∈ RN(𝒯). Then, sim~ï(𝐶, 𝐷) ∈ (0,1] implies that both 𝐶

and 𝐷 share commonalities under 𝜋G among each other.

Proof. Let 𝐶, 𝐷 ∈ Con(ℰℒℋ), 𝒯E, 𝒯D be their corresponding trees, and 𝜋G be

any preference profile where 𝔦𝔠(𝐴) ∈ (0,2] for all 𝐴 ∈ CNpri(𝒯), 𝔦𝔯(𝑟) ∈ (0,2] for all

𝑟 ∈ RN(𝒯), 𝔡(𝑟) ∈ (0,1] for all 𝑟 ∈ RN(𝒯). With Lemma 3.1, Theorem 4.1, and the

average, it suffices to show that hd&ï(𝒯E, 𝒯D) ∈ (0,1] implies the partial subsumption

under 𝜋G from 𝐷 to 𝐶 based on the characterization of homomorphism structural

subsumption ⟺ hd&ï(𝒯E, 𝒯D) ∈ (0,1] implies p-hd&ï(𝒫E, 𝒫D) > 0 or

e-set-hd&(ℰE, ℰD) > 0. We show these cases as follows:

• For any 𝑣 ∈ VE , for any h(𝑣) ∈ VD, if there exists 𝐴 ∈ lE(𝑣) and 𝐵 ∈

lD¨h(𝑣)ª such that 𝔰c(𝐴, 𝐵) > 0, then we show that p-hd&ï(𝒫E, 𝒫D) > 0. To

show this, we fix any 𝑣G ∈ VE , any h(𝑣G) ∈ VD; and assume A ∈ lE(𝑣G), 𝐵 ∈

lD¨h(𝑣G)ª, and 𝔰c(𝐴, 𝐵) > 0. By Definition 4.11, we know

p-hd&ï(𝒫E, 𝒫D) > 0.

• For any 𝑣,𝑤 ∈ VE , for any h(𝑣), h(𝑤) ∈ VD, if there exists 𝑟 ∈ ρE(𝑣, 𝑤) and

𝑠 ∈ ρD¨h(𝑣), h(𝑤)ª such that, then we show 𝔰c(𝑟, 𝑠) > 0 that

e-set-hd&ï(ℰE, ℰD) > 0. To show this, we fix any 𝑣G, 𝑤G ∈ VE , any

h(𝑣G), h(𝑤G) ∈ VD; and assume 𝑟 ∈ ρE(𝑣G, 𝑤G), s ∈ ρD¨h(𝑣G), h(𝑤G)ª, and

𝔰c(𝑟, 𝑠) > 0. By assumptions, we know 𝛾&ï(𝑟, 𝑠) > 0. Since hd&ï cannot be

decreased according to Definition 4.11, we conclude that

e-set-hd~ï(ℰE, ℰD) > 0.

Lemma 4.2. Let 𝐶, 𝐷 be any ℰℒℋ concepts and 𝜋G = ⟨𝔦𝔠, 𝔦𝔯, 𝔰𝔠, 𝔰𝔯, 𝔡⟩ be any

preference profile where 𝔦𝔠(𝐴) ∈ (0,2] for all 𝐴 ∈ CNpri(𝒯), 𝔦𝔯(𝑟) ∈ (0,2] for all 𝑟 ∈

Ref. code: 25615722300273MJP

68

RN(𝒯), 𝔡(𝑟) ∈ (0,1] for all 𝑟 ∈ RN(𝒯). Then, if both 𝐶 and 𝐷 share commonalities

under 𝜋G among each other, then sim&ï(𝐶, 𝐷) ∈ (0,1].

Proof. Let 𝐶, 𝐷 ∈ Con(ℰℒℋ), 𝒯E, 𝒯D be their corresponding trees, and 𝜋G be

any preference profile where 𝔦𝔠(𝐴) ∈ (0,2] for all 𝐴 ∈ CNpri(𝒯), 𝔦𝔯(𝑟) ∈ (0,2] for all

𝑟 ∈ RN(𝒯), 𝔡(𝑟) ∈ (0,1] for all 𝑟 ∈ RN(𝒯). We show its contraposition i.e.

sim~ï(𝐶, 𝐷) = 0 implies that 𝐶 and 𝐷 do not share commonalities under 𝜋G to each

other.

By the average, we know that hd~ï(𝒯E, 𝒯D) = 0 and hd&ï(𝒯D, 𝒯E) = 0. This

means that both 𝐶 and 𝐷 do not share any commonalities under 𝜋G to each other.

Theorem 4.3. The measure sim& is guaranteed for termination and fulfills the

condition:

	

sim&ï(𝐶, 𝐷) ∈ (0,1] iff both 𝐶 and 𝐷 share commonalities under 𝜋G among each other.

	

Proof. This is obvious by Lemma 4.1, Lemma 4.2, Theorem 4.2.

4.3.2 Desirable Properties of sim&

Previously, we theorize a set of desirable properties that a concept similarity

measure under preference profile should satisfy and systematically introduce the

measure sim&. In this section, we provide mathematical proofs for the desirable

properties of sim&. Understanding the properties gives many benefits to the users of

sim& since they can predict its expected behaviors.

Theorem 4.4. sim& is symmetric.

Proof. Let Π be a countably infinite set of preference profile. Fix any 𝜋 ∈ Π and

𝐶, 𝐷 ∈ Con(ℰℒℋ), we have sim&(𝐶, 𝐷) = sim&(𝐷, 𝐶) by Definition 4.11.

Theorem 4.5. sim& is equivalence invariant.

Proof. Let Π be a countably infinite set of preference profile. Fix any 𝜋 ∈ Π and

𝐶, 𝐷, 𝐸 ∈ Con(ℰℒℋ), we show 𝐶 ≡ 𝐷 ⟹ sim~(𝐶, 𝐸) = sim~(𝐷, 𝐸).

Ref. code: 25615722300273MJP

69

Suppose 𝐶	 ≡ 𝐷, i.e. 𝐶 ⊑ 𝐷	and	𝐷 ⊑ 𝐶, then we know there exists a

homomorphism hM: 𝒯D → 𝒯E which maps the root of 𝒯D to the root of 𝒯E and hJ: 𝒯E →

𝒯D which maps the root of 𝒯E to the root of 𝒯D, respectively, by Theorem 3.1. This

means 𝒯E = 𝒯D. Thus, sim&(𝐶, 𝐸) = sim&(𝐷, 𝐸).

Theorem 4.6. sim& is structurally dependent.

Proof. Let Π be a countably infinite set of preference profile. Fix any π ∈ Π and

any finite sets of concepts CM and CJ with the following conditions: (1) CM ⊆ CJ; (2)

concepts 𝐴, 𝐵 ∉ CJ; (3) 𝔦𝔠(𝛷) > 0 if primitive 𝛷 ∈ CJ; (4) 𝔦𝔯(𝜑) > 0 if existential

∃𝜑.𝛹 ∈ CJ. Suppose 𝐶 ∶= ⨅(CM ∪ {𝐴}), 𝐷 ∶= ⨅(CM ∪ {𝐵}), 𝐸 ∶=⨅(CJ ∪ {𝐴}), and 𝐹

∶= ⨅(CJ ∪ {𝐵}) where CM = {𝑃M, … , 𝑃�, ∃𝑟M. 𝑃MG, … , ∃𝑟�. 𝑃�G} and CJ =

{𝑃M, … , 𝑃¡, ∃𝑟M. 𝑃MG, … , ∃𝑟Û. 𝑃ÛG}, w.l.o.g. we show sim&(𝐶, 𝐷) ≤ sim&(𝐸,𝐹) by following

two cases.

Suppose 𝑚 ≤ 𝑖, 𝑛 = 𝑗 and 𝐴, 𝐵 be primitives, we have p-hd&(𝒫E, 𝒫D) =
∑ 𝔦𝔠(�)�∈𝒫,

∑ 𝔦𝔠(�)�∈𝒫, µ𝔦𝔠(j)
, p-hd&(𝒫D, 𝒫E) =

∑ 𝔦𝔠(�)�∈𝒫+
∑ 𝔦𝔠(�)�∈𝒫+ µ𝔦𝔠(o)

, p-hd~(𝒫C, 𝒫�) =
∑ 𝔦𝔠(�)�∈𝒫�

∑ 𝔦𝔠(�)�∈𝒫� µ𝔦𝔠(j)
,

and p-hd~(𝒫� , 𝒫C) =
∑ 𝔦𝔠(�)�∈𝒫�

∑ 𝔦𝔠(�)�∈𝒫� µ𝔦𝔠(o)
. Since 𝑚 ≤ 𝑖, we know p-hd&(𝒫E, 𝒫D) ≤

p-hd&(𝒫C, 𝒫�) and p-hd&(𝒫D, 𝒫E) ≤ p-hd&(𝒫� , 𝒫C). This infers sim&(𝐶, 𝐷) ≤

sim&(𝐸,𝐹).

Suppose 𝑚 = 𝑖, 𝑛 ≤ 𝑗, and 𝐴, 𝐵 be existentials, then with the similar manner,

we can show e-set-hd&(ℰE, ℰD) ≤ e-set-hd&(ℰC, ℰ�) and e-set-hd&(ℰD, ℰE) ≤

e-set-hd&(ℰ� , ℰC). This also infers sim&(𝐶, 𝐷) ≤ sim&(𝐸,𝐹).

Therefore, we have shown sim&(𝐶, 𝐷) ≤ sim&(𝐸,𝐹).

Lemma 4.3. Let 𝒯D, 𝒯E ∈ 𝕋ℰℒℋ and Π be a countably infinite set of preference

profile. Then, hd(𝒯D, 𝒯E) = 1 ⟺ ∀𝜋 ∈ Π: hd&(𝒯D, 𝒯E) = 1.

Proof. Let Π be a countably infinite set of preference profile and πw be the

default preference profile. Fix any 𝜋 ∈ Π, we show hd(𝒯D, 𝒯E) = 1 ⟺ hd~(𝒯D, 𝒯E) =

1.

Ref. code: 25615722300273MJP

70

(⟹) hd(𝒯D, 𝒯E) = 1 implies that there exists a homomorphism h:	𝒯D → 𝒯E

which maps the root of 𝒯D to the root of 𝒯E . Consequently, any setting on 𝜋 does not

influence the calculation on hd&(𝒯D, 𝒯E).

(⟸) In particular, it suffices to show hd&=(𝒯D, 𝒯E) = 1 ⟹ hd(𝒯D, 𝒯E) = 1. By

Lemma 4.1, it is the case that hd(𝒯D, 𝒯E) = 1.

Theorem 4.7. sim& is preference invariant w.r.t. equivalence.

Proof. Let C, D ∈ Con(ℰℒℋ) and Π be a countably infinite set of preference

profile. Fix any 𝜋 ∈ Π, we show 𝐶 ≡ 𝐷 ⟺ sim&(𝐶, 𝐷) = 1.

(⟹) Assume 𝐶 ≡ 𝐷, we need to show sim&(𝐶, 𝐷) = 1. By Theorem 3.2, we

know 𝐶 ≡ 𝐷 ⟺ sim(𝐶, 𝐷) = 1. With the usage of Lemma 4.3, Definition 3.9, and

Definition 4.11, we can derive sim&(𝐶, 𝐷) = 1.

(⟸) This can be shown similarly as in the forward direction.

Theorem 4.4 to 4.7 spells out that sim& satisfies all fundamental properties of

concept similarity measure under preference profile.

Definition 4.10 suggests that different preference profile settings represent

different types of a rational agent. An easy characterization is observed from the aspect

of role discount factor (𝔡). Intuitively, when the settings 𝔦𝔠, 𝔦𝔯, 𝔰𝔠,	and	𝔰𝔯 defined by two

rational agents 𝐴, 𝐵 are the same, the agent which defines the lower 𝔡 on every 𝑟 ∈ RN

is always more skeptical. For instance, if 𝔡_(canWalk) = 0.3 and 𝔡�(canWalk) = 0.4,

then sim&�(∃canWalk.Trekking, ∃canWalk.Parading) = 0.3 and

sim&�(∃canWalk.Trekking, ∃canWalk.Parading) = 0.4. This is clear that the agent 𝐴

is more skeptical than the agent 𝐵.

Proposition 4.2. Let Π be a countably infinite set of preference profile and

𝜋M,𝜋J ∈ Π such that 𝜋M = ⟨𝔦M𝔠 , 𝔦M𝔯 , 𝔰M𝔠 , 𝔰M𝔯 , 𝔡M⟩, 𝜋J = ⟨𝔦J𝔠 , 𝔦J𝔯 , 𝔰J𝔠 , 𝔰J𝔯 , 𝔡J⟩, and RN be a set of

role names. The following holds16:

	

∀𝑟 ∈ RN: ¨𝔡M(𝑟) ≤ 𝔡J(𝑟)ª ⟹	≡	⪯  sim&� ⪯  sim&X

16 See Definition 4.10 for the meaning of ⪯.

Ref. code: 25615722300273MJP

71

	

for fixed functions 𝔦M𝔠 = 𝔦J𝔠 , 𝔦M𝔯 = 𝔦J𝔯 , 𝔰M𝔠 = 𝔰J𝔠 , and 𝔰M𝔯 = 𝔰J𝔯 .

4.4 Implementation Methods of sim&

Theorem 4.2 tells us that sim& can be computed in the polynomial time. This

section exhibits two algorithmic procedures of sim& belonging to that class.

4.4.1 Top-Down Implementation of sim&

Figure 4.1 Pseudo Code for hd& using Top-Down Fashion (Part 1).

Ref. code: 25615722300273MJP

72

In Definition 4.7, hd& is established by an inductive procedure. Therefore, it is

a very straightforward way to implement the procedure by recursion (see Figure 4.1).

Figure 4.2 Pseudo Code for hd& using Top-Down Fashion (Part 2).

From Figure 4.1 and Figure 4.2, hd& is directly followed from Equation 4.4 of

Definition 4.7. That is, it receives three parameters as inputs, viz. a description tree 𝒯D,

a description tree 𝒯E , and a preference profile 𝜋. Suppose 𝒯D be defined as 𝒫D ∪ ℰD, 𝒯E

be defined as 𝒫E ∪ ℰE , and 𝜋 = ⟨𝔦𝔠, 𝔦𝔯, 𝔰𝔠, 𝔰𝔯, 𝔡⟩ is given. The function hd&(𝒯D, 𝒯E,𝜋)

computes the function value for a composition in a prescribed way from the function

values of the composing parts, i.e. 𝜇&(𝒯D,𝜋), p-hd&(𝒫D, 𝒫E,𝜋), and

e-set-hd&(ℰD, ℰE,𝜋). 𝜇&, p-hd&, e-set-hd& are also followed from Equation 4.5, 4.6,

and 4.7, respectively, of Definition 4.7. Each internally uses subfunctions ∑𝔦𝔠 and ∑𝔦𝔯

(see Figure 4.4) to calculate the total number of concept importance and the total

number of role importance, respectively.

For Figure 4.3 and Figure 4.4, e-hd& is directly followed from Equation 4.8 of

Definition 4.7. To compute the function value e-hd&, we recursively compute the

function value hd& on the children of certain nodes (denoted by 𝑋 and 𝑌) and 𝜋. γ& is

Ref. code: 25615722300273MJP

73

directly followed from Equation 4.9 of Definition 4.7. Also, 𝛾& internally invokes

subfunction ∑𝔦𝔯 to calculate the total number of role importance.

Figure 4.3 Pseudo Code for hd& using Top-Down Fashion (Part 3).

 The reader may easily observe that the time efficiency of Algorithm 1 is quintic

because the computation of p-hd& is quadratic and e-set-hd& contains double nested

loops which indirectly make recursive calls to hd&. It is also not difficult to observe

that the number of recursive calls is upper bounded by the height of the description tree.

It is worth to mention that using hd& requires concept descriptions to be

transformed into ℰℒℋ description trees. Taking this as an advantage, the next

subsection introduces an alternative way to compute hd& from bottom to up, which is

approximately three times faster than the counterpart top-down approach in the worst

case (cf. Subsection 4.5.1 for useful discussion).

Ref. code: 25615722300273MJP

74

Figure 4.4 Pseudo Code for hd& using Top-Down Fashion (Part 4).

4.4.2 Bottom-Up Implementation of sim&

Rather than computing (possibly duplicated) value of hd& again and again,

Figure 4.5 shows the classical bottom-up version of dynamic programming technique

to compute hd& of the smaller subtrees and records the results in a table (see the variable

result[⋅][⋅] in the figure) from which a solution to the original computation of hd& can

be then obtained (cf. at line no. 20, the function returns value 𝑟𝑒𝑠𝑢𝑙𝑡[0][0]).

To compute hd& from bottom to up, we need to know the height of the trees in

advance. According to Figure 4.5, we employ ‘breath-first search’ algorithm (denoted

by BFS) to determine the height of each description tree (cf. line no. 4 and 5 of the

algorithm). The algorithm reuses the methods 𝜇&, p-hd&, e-set-hd&, 𝛾&, ∑𝔦𝔠, and ∑𝔦𝔯

from the top-down algorithm and provides pseudo code for e-hd& since it is merely

overridden.

Ref. code: 25615722300273MJP

75

Figure 4.5 Pseudo Code for hd& using Bottom-Up Fashion.

What is the time complexity of this approach? It should be quintic because the

algorithm considers the similarity of all the different pairs of two concept names for ℎ

times (cf. line no. 6). More formally, we know 𝑟𝑒𝑠𝑢𝑙𝑡�𝒯��[𝒯�] ∈ 𝒪(𝑣J) where 𝑣 denotes

the set cardinality of 𝒫𝓍 (and ℰ𝓍) for any description tree 𝑥. Let 𝑚(𝑖) and 𝑛(𝑖) be the

number of nodes on level 𝑖 of description trees 𝐷 and 𝐶, respectively. Then, the number

of times operation 𝑟𝑒𝑠𝑢𝑙𝑡[⋅][⋅] is executed (say 𝐶) is equal to:

Ref. code: 25615722300273MJP

76

𝐶 = ∑ ∑ ∑ 𝑣J�(¡)
�¸w

�(¡)
Û¸w

M�M
¡¸w

= 𝑣J∑ ∑ ∑ 1�(¡)
�¸w

�(¡)
Û¸w

M�M
¡¸w

= 𝑣J∑ ∑ (𝑛(𝑖)+ 1)�(¡)
Û¸w

M�M
¡¸w

= 𝑣J∑ (𝑛(𝑖) + 1)(𝑚(𝑖)+ 1)M�M
¡¸w

= 𝑣J�[(𝑛(0)+ 1)(𝑚(0)+ 1)] + [(𝑛(1)+ 1)(𝑚(1)+ 1)] +⋯

+ [(𝑛(ℎ − 1)+ 1)(𝑚(ℎ − 1)+ 1)]�

Thus, the algorithm makes the similar number of operations as the top-down approach,

plus an additional amount of extra space. On the positive side, the algorithm has never

recursively invoked itself to determine the similarity of different pairs of nested

concepts, i.e. it directly uses values stored in the table. The algorithm also shows that

computing the similarity of nodes from level 𝑖, where 𝑖 is greater than the minimum

height of description trees (cf. the condition list𝒯 !=	null at line no. 11), is irrelevant to

the computation.

The bottom-up approach does work productively in an environment where

recursion is fairly expensive. For example, imperative languages, such as Java, C, and

Python, are typically faster if using a loop and slower if doing a recursion. On the other

hand, for some implementations of functional programming languages, iterations may

be very expensive and recursion may be very cheap. In many implementations of them,

recursion is transformed into a simple jump but changing the loop variables (which are

mutable) requires heavy operations. Subsection 4.5.1 reports that the practical

performance agrees to this theoretical analysis that the bottom-up approach is more

efficient when implemented by imperative languages, such as Java.

4.5 Empirical Evaluation

This section evaluates the practical performance of both algorithms against

sim17, reassures pragmatically the backward compatibility of sim& under 𝜋w (Theorem

4.1 already proves this), and discusses the applicability of sim& in potential use cases.

17 We have re-implemented sim (proposed in (Tongphu & Suntisrivaraporn, 2015)) based on the same
technologies and techniques as sim&.

Ref. code: 25615722300273MJP

77

4.5.1 Performance Analysis and Backward Compatibility of sim&

Both versions of sim& (cf. Subsection 4.4.1 and Subsection 4.4.2) are

implemented in Java version 1.8 with the usage of Spring Boot version 1.3.3.

RELEASE. All the dependencies are managed by Apache Maven version 3.2.5. We also

implement unit test cases along with the development of both versions to verify the

correctness of their behaviors. In the current state (when we are writing this work), there

are 111 unit test cases. All of them are written to cover important parts of both

implementations.

To perform benchmarking, we have selected SNOMED CT as a test ontology.

As mentioned in Appendix A, it is one of the largest and the most widely used medical

ontologies currently available, and also, is expressible in ℰℒℋ. In our experiments, we

employ a SNOMED CT ontology version from January 2005 (hitherto referred as

𝒪SNOMED	CT) which contains 379,691 concept names and 62 role names. Moreover, each

defined concept is categorized into the 18 mutually exclusive top-level concepts. In the

sense of subsumption relation, concepts belonging to the same category should be more

similar than those belonging to different categories.

For our experiments, we used a 2.4 GHz Intel Core i5 with 8 GB RAM under

OS X El Capitan. Unfortunately, the overall number of concept pairs in 𝒪SNOMED	CT is

approximately 1011. Suppose an execution of simπ takes around a millisecond, we still

need around 1,158 days in order to complete the entire ontology. According to this

reason, we consider 2 out of 18 categories, viz. Clinical Finding and Procedure,

although there are more category pairs. Then, we randomly select 0.5% of Clinical

Finding, i.e. 206 concepts, denoted by ℂMG . After that, we randomly select the same

number of concepts from Procedure, i.e. 206 concepts, denoted by ℂJG . This sampled

set is denoted by 𝒪GSNOMED	CT i.e. 𝒪GSNOMED	CT = ℂMG ∪ ℂJG . Then, we create three test

datasets from this sampled set, viz. ℂMG × ℂMG , ℂMG × ℂJG , and ℂJG × 	ℂJG .

Firstly, we estimate the practical performance of the top-down fashion. For each

concept pair in each set, we 1) employ the default preference profile 𝜋w on (top-down)

sim&; 2) measure the similarity of concepts in 𝒪GSNOMED	CT by peeking on 𝒪SNOMED	CT

to help unfolding; 3) repeat the previous step with (top-down) sim; 4) repeat steps 2)-

3) three times and calculate the statistical results (in milliseconds). Results are gathered

Ref. code: 25615722300273MJP

78

on Table 4.1. We note that 𝑎𝑣𝑔, 𝑚𝑎𝑥, and 𝑚𝑖𝑛 represent the execution time for

measuring similarity of a concept pair in the average case, in the worst case, and in the

best case, respectively.

Table 4.1 Execution Time of Top-Down sim and Top-Down sim&= on 𝒪GSNOMED	CT.

Pairs Number of Pairs sim (avg/max/min) sim&= (avg/max/min)
ℂMG × ℂMG 25 2.280/7.000/0.000 1.800/10.000/0.000
ℂMG × ℂJG 215 2.291/97.000/0.000 2.278/84.000/0.000
ℂJG × 	ℂJG 1,849 3.395/45.000/0.000 3.931/128.000/0.000

Secondly, we estimate the practical performance of the bottom-up fashion by

following the same steps as we did previously. Indeed, we exclude the time used to

determine the height of each description tree, i.e. our benchmark begins from line no.

7 to 21 of the bottom-up algorithm. Table 4.2 gathers up the results.

Table 4.2 Execution Time of Bottom-Up sim and Bottom-Up sim&= on 𝒪GSNOMED	CT.

Pairs Number of Pairs sim (avg/max/min) sim&= (avg/max/min)
ℂMG × ℂMG 25 2.200/6.000/0.000 1.693/5.000/0.000
ℂMG × ℂJG 215 2.040/32.000/0.000 1.946/10.000/0.000
ℂJG × 	ℂJG 1,849 3.368/55.000/0.000 3.435/45.000/0.000

The experiment shows that the practical performance of sim& is likely equal to

the performance obtained by sim – as ones may not expect. The results show that the

bottom-up sim& performs approximately three times faster that the counterpart top-

down sim& (in the worst case) when implemented by imperative languages (e.g. Java

as in our case). This conforms to our analysis discussed in Subsection 4.4.2.

Lastly, we evaluate the backward compatibility of sim& with sim. Our goal is

to ascertain that sim& can be used interchangeably as the original sim by setting

preference profile to the default one (Theorem 4.1 already proves this). To this point,

we have performed an experiment on concept pairs defined in 𝒪GSNOMED	CT. The

experiment evaluates results from sim and sim& and found that both coincide, as

desired. Table 4.3 gathers the results, where “td” and “bu” are abbreviation forms of

top-down and bottom-up, respectively.

Ref. code: 25615722300273MJP

79

Table 4.3 Results of Executing sim and sim&= on 𝒪GSNOMED	CT.

Pairs
Number
of Pairs

td sim
(avg/max/m

in)

td sim&=
(avg/max/mi

n)

bu sim
(avg/max/mi

n)

bu sim&=
(avg/max/mi

n)

ℂMG × ℂMG

25
0.87597/
1.00000/
0.67953

0.87597/
1.00000/
0.67953

0.87597/
1.00000/
0.67953

0.87597/
1.00000/
0.67953

ℂMG × ℂJG

215
0.57801/	
0.66546/	
0.24594	

0.57801/	
0.66546/	
0.24594

0.57801/	
0.66546/	
0.24594

0.57801/	
0.66546/	
0.24594

ℂJG × 	ℂJG

1,849
0.79690/
1.00000/
0.35360

0.79690/
1.00000/
0.35360

0.79690/
1.00000/
0.35360

0.79690/
1.00000/
0.35360

4.5.2 Effects of Tuning sim&

4.5.2.1 Tuning via 𝔦𝔠 and 𝖉

We show the applicability of 𝔦𝔠 and 𝔡 through similarity measuring on

SNOMED CT. Figure 4.6 depicts an example unfoldable terminology extracted from

𝒪SNOMED	CT.

Figure 4.6 Example of ℰℒℋ Concept Definitions Defined in 𝒪SNOMED	CT. .

Considering merely objective factors regardless of the agent’s preferences, it

yields that sim&=(NAOAF,NAOM) ≈ 0.918 and sim&=(NAOAF,H) ≈ 0.2. The results

yielding to the quite similar concepts NAOAF and NAOM, which reflects the fact that

both are resided in the same cluster of SNOMED CT. However, the result yielding that

18 Obvious abbreviations are used here for the sake of succinctness.

Ref. code: 25615722300273MJP

80

the concepts NAOAF and H shares a little similarity controverts the fact that both carry

neither implicit nor explicit relationship. This is indeed caused by the usage of the

special-purpose role called roleGroup – informally read as relation group.

In SNOMED CT, the use of relation group is widely accepted to nestedly

represent a group of existential information (Schulz, Suntisrivaraporn, & Baader,

2007). As a consequence, it increases unintentionally the degree of similarity due to

role commonality (i.e. γ&). Since roleGroup precedes every existential restriction, it is

useless to regard an occurrence of this as being similar. The importance contribution of

roleGroup in 𝒪SNOMED	CT should be none. Hence, the agent 𝑆 who measures similarity

on SNOMED CT should set 𝔡?(roleGroup) = 0.

Furthermore, the SNOMED CT top concept SCT-TOP subsumes every defined

concept of each category. This means this special concept is shared by every expanded

concept description. Intuitively, this special top concept is of no importance for

measuring similarity on SNOMED CT and we can treat the top-level concepts as

directly subsumed by ⊤. As a result, the agent 𝑆 should also set 𝔦𝔠?(SCT-TOP)=0.

Tuning the measure with this expertise knowledge yields more realistic result.

That is, the similarity of concepts under the same category which uses roleGroup in

their definitions is slightly reduced. Also, the similarity of concepts under different

categories is totally dissimilar. Continuing the case, sim&¤(NAOAF,NAOM) ≈ 0.84

and sim&¤(NAOAF,H) = 0.0, as desired.

4.5.2.2 Tuning via 𝔰𝔯

Let us use the ontology given below to query for places similar to ActivePlace.

ActivePlace ⊑ Place ⊓ ∃canSail.Kayaking

Mangrove ⊑ Place ⊓ ∃canWalk.Trekking

Supermarket ⊑ Place ⊓ ∃canBuy.FreshFood

Suppose the agent feels ‘walking’ and ‘sailing’ are similar and are ‘still satisfied

much’ on both actions. Taking 𝔰𝔯(canWalk,canSail) = 0.6 yields sim~(M,AP) >

sim~(S,AP), which conforms to the agent’s preferences and needs.

Ref. code: 25615722300273MJP

81

4.5.2.3 Tuning via 𝔰𝔠

Let us use the ontology given below to query for a product which offers features

the agent is satisfied with most.

WantedFeatures ⊑ Fw ⊓ FM ⊓ FJ

ItemM ⊑ Fw ⊓ FN

ItemJ ⊑ Fw ⊓ FO

According to the ontology, WantedFeatures represents a collection of desired

features and F¡ (where i ∈ N) represents a feature. A purchase decision is sometimes

affected by satisfied alternations, which are varied by different people. Assume that the

agent feels satisfaction to have FN if the agent cannot have FM. Taking 𝔰𝔠(FM, FN) = 0.8

yields sim&(WF,I1) > sim&(WF,I2), which conforms to the agent’s perceptions.

4.5.2.4 Tuning via 𝔦𝔯

Let us use the ontology given in Example 4.1 to query for places which are most

similar to ActivePlace. Typically, a human decision is affected by a priority of

concerns, which are varied by different people. Suppose that the agent weights more on

places which permit to ‘walk’ more than other activities. Taking 𝔦𝔯(canWalk) = 2

yields sim~(M,AP) > sim~(B,AP), which conforms to the agent’s preferences.

4.6 Comparison with Related Works

As we develop the notion ∼×& as a generalization of ∼× , this section relates our

development to others in two areas, viz. ordinary concept similarity measures (which

do not take into account the agent’s preferences) and preference-based concept

similarity measures.

4.6.1 Ordinary Concept Similarity Measure

In the standard perception, concept similarity measure refers to the study of

similar concepts inherited by nature, i.e. the ones similar regardless of the agent’s

preferences. Our concrete developments, which employ structural subsumption, can be

Ref. code: 25615722300273MJP

82

considered as the semantic similarity approach. Hence, we merely compare our

approaches to other approaches of semantic similarity as follows.

A simple method was developed in (Jaccard, 1901) for the DL ℒw (i.e. no use

of roles) and was known as Jaccard Index. Its extension to the DL ℰℒℋ was proposed

in (Lehmann & Turhan, 2012). This work also introduced important properties of

concept similarity measure and suggested a general framework called 𝑠𝑖𝑚𝑖 which

satisfied most of the properties. In 𝑠𝑖𝑚𝑖, functions and operators, such as t-conorm and

the fuzzy connector, were to be parameterized and thus left to be specified. The

framework also did not contain implementation details. This may cause implementation

difficulties since merely promising properties were given and no guideline of how

concrete operators are chosen is provided.

In (Janowicz & Wilkes, 2009), the measure SIM-DLA was proposed for the DL

𝒮ℋℐ. The measure was not completely defined in mathematical terms and some text

descriptions were not precise. Roughly, the measure had three stages. First, two concept

descriptions in question were converted into the negation normal form (NNF). A

modified version of the tableau was used to generate a completion tree for each NNF

concept. In this modified version, the ⊔-rule was modified and another ∀-rule was

added. Second, a set of proxy models was generated from the completion tree. A proxy

model was a tree where each was labeled by a role name and each node was labeled by

a concept name. Third, both sets of proxy models were used to compute the degree of

similarity. This was done by measuring similarity among all pairs of proxy models

(using tree similarity). The final result was evaluated from either the maximum, the

minimum, or the average. However, the paper did not explain the selection rule when

more than one tableau rules could be applied.

Two similarity measures for DL ℱℒw was proposed in our proceeding papers

(Racharak & Suntisrivaraporn, 2015; Racharak & Tojo, 2018). In (Racharak &

Suntisrivaraporn, 2015), similarity measures were conformed to the different skeptical

aspect of their computation and were derived from the structural subsumption of the

language inclusion. The skeptical concept similarity was further generalized and was

extended toward the notion of preference profile in (Racharak & Tojo, 2018). It was

also shown in (Racharak & Tojo, 2018) that, like in this thesis, when tuning with the

Ref. code: 25615722300273MJP

83

default preference profile, it measures similarity of concepts w.r.t. their structure

merely.

The notion of homomorphism degree was originally introduced in

(Suntisrivaraporn, 2013) and is thereof extended toward the development of sim& for

the DL ℰℒℋ in this chapter. Theorem 4.1 suggests that simπ can be used to measure

similarity of concepts inherently by nature through the setting 𝜋w, i.e. sim&=.

As inspired by the tree homomorphism, sim& differs (Lehmann & Turhan,

2012) from the use of 𝜇& to determine how important the primitive concepts are to be

considered and the use of 𝛾& to determine a degree of role commonality between

matching edges of the description trees. We further discuss about preference-based

similarity measures in the next subsection.

4.6.2 Preference-based Concept Similarity Measure

Most concept similarity measures are objective-based. However, there exists

work (Lehmann & Turhan, 2012; Racharak & Tojo, 2018; Tongphu &

Suntisrivaraporn, 2015) which provides methodologies for tuning. We discuss their

differences to our approaches in the following.

In (Racharak & Tojo, 2018), a concept similarity measure ∼!& under preference

profile was proposed for ℱℒw concept descriptions. Both were developed from a

characterization of language inclusion in description logics. Unfortunately, ∼!& merely

supports some preferential elements in preference profile.

In an extended work of sim (Tongphu & Suntisrivaraporn, 2015), a range of

number for discount factor (ν) and the neglect of special concept names were used in

the similarity application of SNOMED CT. For instance, when roleGroup was found,

the value of 𝜈 was set to 0. These ad hoc approaches can be viewed as specific

applications of 𝔡 and 𝔦𝔠, respectively, of preference profile. Unfortunately, no other

aspects of π appear in its use.

In 𝑠𝑖𝑚𝑖 (Lehmann & Turhan, 2012), the function 𝑝𝑚 was used to define the

similarity degree of primitive concept pairs and role pairs. Using 𝑝𝑚 with primitive

concept pairs invokes the equivalent intuition as 𝔰𝔠; however, this does not mean so in

the aspect 𝔰𝔯. Allowing to define the similarity of defined role names, as in (Lehmann

Ref. code: 25615722300273MJP

84

& Turhan, 2012), may be not appropriate since defined role names are contributed by

primitive role names. For example, let 𝑟M ⊑ 𝑠M and 𝑟J ⊑ 𝑠J are defined in 𝒯. It is clear

that 𝑟M, 𝑟J ∈ RNdef. By defining 𝑝𝑚(𝑟M, 𝑟J), the defined similarity should be also

propagated to the similarity of 𝑠M and 𝑠J. However, this point was not discussed in

(Lehmann & Turhan, 2012). In respect of this, RNpri is merely used in 𝔰𝔯 and γ& is

defined for the similarity of defined role names. The authors of (Lehmann & Turhan,

2012) also defined the function g: N_ → R¦𝟘 representing the weight for concept names

and existential restriction atoms (based on their definition). Ones may feel the

resemblance of 𝑔 and 𝔦𝔠,	𝔦𝔯; however, they are also different in three perspectives.

Firstly, the mapping of g is reached to the infinity whereas 𝔦𝔠 and 𝔦𝔯 are bounded. This

characteristic of 𝑔 is impractical to use as it may lead to the unbalance of weight

assignments. For instance, one may define g(𝐴M) = 1 but g(𝐴J) = 10MJ where

𝐴M, 𝐴J ∈ CNpri. To avoid this situation, the authors should provide a guideline for

weight assignments. Secondly, the mapping of g is lower bounded by one. This clearly

makes an impossibility to define the intuition of having no importance. Thus, the

situation given in Subsubsection 4.5.2 is not expressible. Lastly, the domain of 𝑔 is the

set of atoms whereas 𝔦𝔠 (and 𝔦𝔯) is the set of primitive concept names (and the set of role

names, respectively). Using the set of atoms as the domain is also impractical since

there can be infinitely many existential restriction atoms and the interpretation of

functions is slightly dubious. For instance, given g(∃𝑟. 𝐶) = 2 and g(∃𝑟. 𝐷) = 3, do

both 𝑟 intentionally contribute the equal importance? Thus, this definition is

inappropriate to represent the agent’s perception. Moreover, the aspect 𝔡 disappeared

from (Lehmann & Turhan, 2012). Lacking of fully 𝔦𝔠 and 𝔡 makes the framework

inappropriate to use for Snomed ct applications. These distinctions of simi and ours are

radically caused by their different motivations. Table 4.4 summarizes this discussion,

where • denotes totally identical to the specified function whereas ° denotes partially

identical to the specified function.

Not only distinct on the mathematical representation of 𝑠𝑖𝑚𝑖 and our measures,

the desired properties presented in each work are also different. While the properties

introduced in (Lehmann & Turhan, 2012) were motivated for (ordinary) concept

similarity measure, our properties are developed under the consideration of the agent's

Ref. code: 25615722300273MJP

85

preferences (∼×&). Hence, some properties introduced for concept similarity measure are

revised in subjective manners and the new property is introduced.

Table 4.4 Concept Similarity Measures which Embed Preference Elements.

Similarity Measure DL 𝔦𝔠 𝔦𝔯 𝔰𝔠 𝔰𝔯 𝔡
sim& ℰℒℋ • • • • •

∼!& (Racharak &
Tojo, 2018)

ℱℒw

•

•

the extended work of
sim (Tongphu &
Suntisrivaraporn,

2015)

ℰℒℋ

•

•

𝑠𝑖𝑚𝑖 (Lehmann &
Turhan, 2012)

ℰℒℋ ° • °

Ref. code: 25615722300273MJP

86

CHAPTER 5

COMPUTATION OF ACCEPTED ANALOGICAL ARGUMENTS

We have discussed the theoretical analysis of using ABA framework to model

the argumentation scheme for argument from analogy and concept similarity under

preferences for understanding the degree of similarity between concepts in Section 2.1

and Section 3.2, respectively. Though using ABA alone could model the argumentation

scheme for argument from analogy, it came up with several difficulties as follows.

First, ABA does not concretely describe where the source of similarity premises

comes from, how a notion of concept similarity should be involved, how ‘relevance’ of

concept similarity is defined and effects the degree of analogical arguments, and how

analogical arguments should interact with normal arguments in case of persuasion.

These problems are basically related to redefining both the notion of structured

arguments and the framework in a way that arguments’ types can be classified.

Second, an analogical argument should be associated with a particular degree

since each analogy used to support a claim is associated with a unit interval [0, 1]. This

degree should also contribute to the attack relation between arguments. It is worth

mentioning that similarity could be ‘qualitative’ in a sense that ones may only perceive

if two concepts are similar or not. In this case, a certain threshold should be defined for

being similar and each analogical argument could be associated with a binary [0, 1]

where 1 indicates ‘similar’ and 0 indicates ‘not similar’.

Third, different rational agents may value arguments supported by analogies un-

equally, depending on their characteristics. This point is related to different styles of

making judgment. For example, there could be a ‘gullible’ agent who always gives a

high degree on every analogical argument; or a ‘skeptical’ agent vice versa.

To address the first difficulty, we extend the original ABA framework to

assumption-based argumentation with predicate similarity (denoted by ABA(p)) by

identifying necessary components to form analogical arguments. In the following, the

extended framework considers any arbitrary description language although DL

terminological formalism is used in our running example.

Ref. code: 25615722300273MJP

87

Definition 5.1. An ABA(p) is a 10-tuple 〈ℒD, ℛ,𝒜, � , ℒF, 𝒯, ℳ , ∼×
𝔭, 𝔭, ℱ〉

where (ℒF, 𝒯) is a module formalizing descriptions of concepts with a language ℒF and

a set 𝒯 of formulae (constructed from ℒF) representing definitions of concepts, ℳis

a partial mapping from the predicate of sentences in ℒD to concepts in ℒF,

∼×
𝔭: ℒF × ℒF → [0,1] is a certain concept similarity w.r.t. 𝒯 under preference context 𝔭,

ℱ is an annotation function for each entire argument to a numerical value19, � is a total

function mapping from 𝒜 ∪𝒜𝒩, where 𝒜𝒩 ∶= {𝑃 ∼×
𝔭 𝑄 | 𝑃ℳ ∼×

𝔭 𝑄ℳ ∈ (0,1], for

any 𝑃(tM, … , tp),𝑄(tM, … , tp) 	∈ ℒD}20 representing a set of analogies, and ℒD,ℛ,𝒜 are

as defined in ABA framework. An argument for 𝑐 ∈ ℒD (the conclusion or claim)

supported by 𝒮 ⊆ 𝒜 ∪𝒜𝒩, is a tree with nodes labeled by sentences in ℒD ∪𝒜𝒩, by

sentences of the special form ? (𝜑,𝜓, 𝜉) representing a defeasible condition of sentence

𝜑 concluded from an analogy between 𝜓 and 𝜉, or by the special symbol � representing

an empty set of premises, such that:

• the root is labelled by c;

• for every node N,

o if N is a leaf, then N is labeled by an assumption in 𝒜 ∪𝒜𝒩, an

assumption of the form ? (𝜑,𝜓, 𝜉), or by �,

o if N is not a leaf, 𝑙@ is the label of N, and there is an inference rule 𝑙@ ←

𝑏M, … , 𝑏� (𝑚	 ≥ 0) in ℛ, then

§ either 𝑚 = 	0, and the child of N is �

§ or 𝑚	 > 	0 and N has m children, labeled by 𝑏M, … , 𝑏�,

respectively,

o if N is not a leaf, 𝑙@ is the label of N where 𝑙@ ∶= 𝑃¨𝑡M, … , 𝑡¬ª, there is

an analogy 𝑃 ∼×
𝔭 𝑄 in 𝒜𝒩, and there is either an inference rule

𝑄¨𝑡M, … , 𝑡¬ª ← 𝑏M, … , 𝑏� (𝑚	 ≥ 0) in ℛ or 𝑄¨𝑡M, … , 𝑡¬ª in 𝒜, then

§ N has 3 children, labeled by 𝑃 ∼×
𝔭 𝑄, ? (𝑙@, 𝑃,𝑄), 𝑄¨𝑡M, … , 𝑡¬ª;

• 𝒮 is the set of all assumptions labelling the leaves.

19 See Definition 6, for its formal definition.
20 If 𝑝	 = 	0, both P and Q are called propositions.

Ref. code: 25615722300273MJP

88

(ℒF, 𝒯) can be defined for any kinds of terminological formalism specified by

means of a language ℒF and a set of formulae 𝒯. For example, a DL terminological

knowledge base can be recast as ℒF ∶= CN	 ∪ RN and 𝒯 is a TBox constructed from

ℒF. Furthermore, a choice of terminological formalism can affect particular constraints.

For instance, if (ℒF, 𝒯) represents a DL knowledge base, then the predicates in (ℒD, ℛ)

which has a mapping in ℒF must be unary.

We note that ? (𝜑,𝜓, 𝜉) can be read as “conclusion 𝜑 supported by an analogy

between 𝜓 and 𝜉 is opened for challenging”. A challenge of 𝜑 could be the contrary of

𝜑, which may be possibly drawn from other analogies (aka. counter-analogies) or

chains of inference rules. For example, a challenge of “sound2 created by bird2 is duck’s

sound” is an evidence that sound2 is honk sound. Like ABA, assumptions are the only

defeasible component in ABA(p) and they are used to support a conclusion. For the sake

of simplicity, we clearly separate analogical assumptions from standard assumptions.

That is, an argument for c supported by standard assumption 𝒮𝒜 ⊆ 𝒜 and analogical

assumption 𝒮𝒜𝒩 ∶= 𝒮	 ∖  𝒮𝒜 is denoted by 𝒮𝒜 	∪ 𝒮𝒜𝒩 	 ⊢ 𝑐 (i.e. 𝒮𝒜 	∪ 𝒮𝒜𝒩 = 	𝒮

such that 𝒮𝒜 	∩ 	𝒮𝒜𝒩 = 	∅). When 	𝒮𝒜𝒩 is empty i.e. 𝒮𝒜 	∪ ∅ ⊢ 𝑐, we call such an

argument a standard argument. Otherwise, we call it an analogical argument. This style

of writing helps recognizing analogical arguments and standard arguments at first

glance.

It is worth noting that the study of analogical reasoning in logical systems is not

new since several studies do exist. For example, (Goebel, 1989a) provided a form of

analogical reasoning in terms of a system of hypothetical reasoning, (Sun, 1995b)

integrated rule-based and similarity-based reasoning in a connectionist model. In

argumentation systems, (Racharak, Tojo, Hung, & Boonkwan, 2016) studied an

implementation of analogical reasoning using an argument-based logic programming

and (Racharak et al., 2017b) proposed an idea to combine answer set programming with

description logic. This work makes a continuous study of these papers by generalizing

(Racharak et al., 2017b) to ABA.

To address the second difficulty, we define the function 𝑓: 𝒮 → [0,1] for

annotating (both standard and analogical) assumptions as follows:

Ref. code: 25615722300273MJP

89

Definition 5.2. Given a set 𝒮 of assumptions, a partial mapping ℳ from the

predicate of sentences in ℒD to concepts in ℒF, and ∼×
𝔭: ℒF × ℒF → [0,1] is a certain

concept similarity w.r.t. terminological formalism 𝒯 under preference context 𝔭, the

(total) annotation function 𝑓: 𝒮 → [0,1] is defined, for any 𝑎	 ∈ 𝒮, as:

𝑓(𝑎) = b
𝑃ℳ ∼×

𝔭 𝑄ℳ 	if	𝑎	is of the form	𝑃 ∼×
𝔭 𝑄

𝑃ℳ ∼×
𝔭 𝑄ℳ 	if	𝑎	𝑖s of the form	? (𝑙@, 𝑃,𝑄)

1	otherwise
 (5.1)

Intuitively, standard assumptions are labeled with 1 to correspond with the fact

that similarity relation is bound by 1 (we note that 1 is used in ∼×
𝔭 to indicate the

maximal similarity). Next, we extend f to the function ℱ for annotating arguments. Each

annotation represents the degree of each entire argument.

Definition 5.3. Let 𝒮𝒜 	∪ 𝒮𝒜𝒩 	 ⊢ 𝑐 be an argument. Then, a function ℱ for

annotating an entire argument is defined as:

ℱ(𝒮𝒜 ∪ 𝒮𝒜𝒩 ⊢ 𝑐) = h⨂{𝑓(𝑎¡) , 𝑓¨𝑎𝑛Ûª}	if	𝒮
𝒜 ∪ 𝒮𝒜𝒩 ≠ ∅

1	otherwise
 (5.2)

where 𝑎¡ ∈ 𝒮𝒜 , 𝑎𝑛Û ∈ 𝒮𝒜𝒩 , and ⊗ is a triangular norm (t-norm).

Since the above definition employs the notion of t-norm, we include its basis

here for self-containment. A function ⊗: [0,1]J → [0,1] is called a t-norm iff it fulfills

the following properties for all 𝑥, 𝑦, 𝑧, 𝑤 ∈ [0,1]: (1) 𝑥	 ⊗ 𝑦	 = 	𝑦	 ⊗ 𝑥

(commutativity); (2) 𝑥	 ≤ 𝑧	and	𝑦	 ≤ 𝑤	 ⟹ 𝑥	 ⊗ 𝑦	 ≤ 𝑧	 ⊗ 𝑤 (monotonicity); (3)

(𝑥 ⊗ 𝑦)⊗ 𝑧 = 𝑥 ⊗ (𝑦 ⊗ 𝑧) (associativity); (4) 𝑥	 ⊗ 1 = 	𝑥 (identity). A t-norm is

called bounded iff 𝑥	 ⊗ 𝑦	 = 	0	 ⟹ 𝑥	 = 	0	or	𝑦	 = 	0. There are several reasons for the

use of a t-norm. Firstly, it is the generalization of the conjunction in propositional logic.

Secondly, the operator min (i.e. 𝑥 ⊗ 𝑦 = 𝑚𝑖𝑛{ 𝑥, 𝑦}) is an instance of a bounded t-

norm. This reflects an intuition that the strength of an argument depends on the used

‘weakest’ analogical assumptions. Lastly, 1 acts as the neutral element for t-norms.

Concerning the third difficulty, the choice of ⊗ (cf. Table 1 for its examples)

can represent a type of a rational agent in analogical reasoning. For example, a

Ref. code: 25615722300273MJP

90

gullible/skeptical agent may give a high/low degree to his answer when his answer is

derived from analogies. We formalize this characteristic as follows21.

Definition 5.4. Let 𝒮𝒜 	∪ 𝒮𝒜𝒩 	 ⊢ 𝑐 be an argument; also, ℱM and ℱJ be two

different functions representing different agents. Then, ℱM is more gullible than ℱJ if

ℱM(𝒮𝒜 ∪ 𝒮𝒜𝒩 ⊢ 𝑐) ≥ ℱJ(𝒮𝒜 ∪ 𝒮𝒜𝒩 ⊢ 𝑐). On the other hand, ℱM is more skeptical

than ℱJ if ℱM(𝒮𝒜 ∪ 𝒮𝒜𝒩 ⊢ 𝑐) ≤ ℱJ(𝒮𝒜 ∪ 𝒮𝒜𝒩 ⊢ 𝑐). Lastly, ℱM and ℱJ are identical

if ℱM are both gullible and skeptical to ℱJ.

The following theorem is an aid to help deciding which operator ⊗ should be

chosen for ℱ in ABA(p). That is, if an agent strongly recognizes analogical principles,

we may choose the most gullible function (i.e. ⊗�¡�). On the other hand, we may

choose the skeptical function (i.e. ⊗mlt) if an agent weakly recognizes analogical

principles.

Table 5.1 Some Instances of The Operator ⊗.

Name Notation 𝑥M ⊗ 𝑥J =

Minimum ⊗�¡� 𝑚𝑖𝑛{ 𝑥M, 𝑥J}
Product ⊗mlt 𝑥M ⋅ 𝑥J

Hamacher product ⊗°= 0	if	𝑥M = 𝑥J;	otherwise
𝑥M ⋅ 𝑥J

𝑥M + 𝑥J − 𝑥M ⋅ 𝑥J

Theorem 5.1. From Table 5.1 and let 𝑥M, 𝑥J ∈ (0,1]. Then, ⊗mlt≤⊗°=≤⊗�¡�.

Proof. (Sketch) We show the following inequality:

𝑥M ⋅ 𝑥J ≤

𝑥M ⋅ 𝑥J
𝑥M + 𝑥J − 𝑥M ⋅ 𝑥J

≤ 𝑚𝑖𝑛{ 𝑥M, 𝑥J}

That is, we show 𝑥M ⋅ 𝑥J ≤
e�⋅eX

e�µeX�e�⋅eX
 as follows:

𝑥M ⋅ 𝑥J ≤
𝑥M ⋅ 𝑥J

𝑥M + 𝑥J − 𝑥M ⋅ 𝑥J
⇔ 1 ≤

1
𝑥M + 𝑥J − 𝑥M ⋅ 𝑥J

⇔ 𝑥M + 𝑥J − 𝑥M ⋅ 𝑥J ≤ 1

21 The choice of ∼×

𝔭 also contributes to the type of a rational agent. That is, different concrete
measures may have different skepticism. However, the definition only pays attention to how
gullible is contributed from ℱ.

Ref. code: 25615722300273MJP

91

⇔ 𝑥J − 𝑥M ⋅ 𝑥J ≤ 1− 𝑥M ⇔ (1− 𝑥M) ⋅ 𝑥J ≤ 1− 𝑥M ⇔ 𝑥J ≤ 1	(by assumption)

Lastly, we show e�⋅eX
e�µeX�e�⋅eX

≤ min{ xM, xJ} in the similar fashion.

Attacks in ABA are defined in terms of the contrary of assumptions (cf.

Subsection Structured Argumentation). However, argument trees and their supporting

assumptions in ABA(p) are labeled with numbers. This is clear that the current definition

of attacks in ABA is not appropriate for handling attacks in ABA(p). To define the notion

of attacks in ABA(p), we extend the original definition of attacks in ABA to take into

account the numbers. In addition, the extended definition imposes a particular

restriction on the usage of analogical reasoning for ‘persuasion’ i.e. analogical

arguments are always preferable to standard arguments. These characteristics are

formally defined as follows.

Definition 5.5. Let function � , function ℱ, and function f be as defined in

Definition 4, Definition 5, and Definition 6, respectively. An argument 𝒮M𝒜 ∪	𝒮M𝒜𝒩 ⊢

𝑐M attacks an argument 𝒮J𝒜 ∪	𝒮J𝒜𝒩 ⊢ 𝑐Jiff the following satisfies:

• If 𝒮M𝒜𝒩 ≠ ∅ and 𝒮J𝒜𝒩 = ∅, then 𝑐M is the contrary of an assumption in 𝒮J𝒜;

• Otherwise, 𝑐M is the contrary of an assumption 𝒮J𝒜 ∪	𝒮J𝒜𝒩 (i.e. 𝑥 ∈ 𝒮J𝒜 ∪

	𝒮J𝒜𝒩and 𝑐M� = 𝑥) and ℱ¨𝒮M𝒜 ∪ 𝒮M𝒜𝒩 ⊢ 𝑐Mª ≥ 𝑓(𝑥).

The first condition spells out that an analogical argument may attack a standard

argument. This certain characteristic corresponds to the investigation in (Waller, 2001),

where analogical arguments can be used for persuasion. For instance, saying “geese can

quack because they are similar to ducks” may effect the belief’s changing on the

opponent if no evidences to falsify the argument can be shown up. To put it more

precisely, an opponent can be persuaded to believe a conclusion and that conclusion is

inherently subject to be challenged. Hence, the burden of proof is shifted back to an

opponent after he/she is persuaded to believe in that conclusion.

The second condition associates with another circumstance i.e. an analogical

argument can attack an assumption only if the argument has been labeled with the

Ref. code: 25615722300273MJP

92

number higher than or equal to the number associated with the assumption. This way

of treatment is not used in (Waller, 2001; Walton et al., 2008).

Figure 5.1 ABA(p) Framework for The Running Example.

Example 5.1. Figure 5.1 illustrates an overall ABA(p) framework for the running

example. According to the figure, the framework uses sim~ and πw as concrete

instances of ∼×
𝔭 and 𝔭, respectively. The figure also uses ≁×

𝔭 to indicate ‘being not

similar under preference context 𝔭 w.r.t. 𝒯’. The following suggests two arguments

which can be constructed from the framework.

• {𝑔𝑜𝑜𝑠𝑒(𝑏𝑖𝑟𝑑J, 𝑠𝑜𝑢𝑛𝑑J) ∪

𝑑𝑢𝑐𝑘 ∼×
𝔭 𝑔𝑜𝑜𝑠𝑒, ? (𝑞𝑢𝑎𝑐𝑘(𝑠𝑜𝑢𝑛𝑑J), 𝑑𝑢𝑐𝑘, 𝑔𝑜𝑜𝑠𝑒) ⊢ 𝑞𝑢𝑎𝑐𝑘(𝑠𝑜𝑢𝑛𝑑J)}

representing “sound2 created by bird2 is quack sound because bird2 is a goose

and geese are similar to ducks”;

• ∅ ⊢ ℎ𝑜𝑛𝑘(𝑠𝑜𝑢𝑛𝑑J) representing “sound2 is honk sound”.

Hence, the second argument attacks the first argument. It is also worth

observing that, in this case, varying each choice of ⊗ does not effect on the attack

relation between these two arguments even though the degree of an argument is

changed. For example, if ⊗�¡� is used, then the degree of the first argument is equal

to 0.5. On the other hand, if ⊗mlt is used, then the degree of the first argument is equal

to 0.25.

The following theorizes an observation which can be derived from Definition

5.5.

Ref. code: 25615722300273MJP

93

Theorem 5.2. An analogical argument cannot attack a standard argument which

does not use assumptions to support a claim.

Proof. Let argument 𝒢M be defined as 𝒮M𝒜 ∪	𝒮M𝒜𝒩 ⊢ 𝑐M and argument 𝒢J be

defined as ∅ ⊢ 𝑐J. We need to show that 𝒢M cannot attack 𝒢J.

Since 𝒢J contains no assumptions, we conclude that 𝒢M cannot attack 𝒢J.

Theorem 5.2 shows that when an agent supports a claim from the grounded

truth, it is impossible for other agents to persuade him/her by analogies. This

corresponds to how analogical arguments are treated in practical reasoning.

5.1 Acceptability of Arguments in ABA(p)

ABA(p) extends from ABA by equipping with predicate similarity and its attack

definition is also extended for handling the degree of each argument and the preference

between different types of arguments. Hence, ABA(p) can be considered as an instance

of Dung’s abstract argumentation. This implies that it can be used to determine whether

a given claim is ‘accepted’ by a rational agent. In a sense of analogical argumentation,

the claim could be a potential belief to be justified from analogies.

In order to determine the ‘acceptability’ of a claim, the agent needs to find an

argument for the claim that can be defended against attacks from other arguments. To

defend an argument, other arguments must be found and may need to be defended in

turn (Dung et al., 2009). We formally define these characteristics as follows:

• A set of arguments Arg1 attacks a set of arguments Arg2 if an argument in Arg1

attacks an argument in Arg2;

• A set of arguments Arg defends an argument arg if Arg attacks all arguments

that attack {arg}.

As in Dung’s abstract argumentation, the notion of ‘acceptability’ can be

formalized in many ways. In this work, we focus on the following notions:

• A set of arguments is admissible iff it does not attack itself and it attacks every

argument that attacks it;

• An admissible set of arguments is complete if it contains all arguments that it

defends;

Ref. code: 25615722300273MJP

94

• The least (w.r.t. set inclusion) complete set of arguments is grounded.

We observe that the correspondence between ‘acceptability’ of arguments and

‘acceptability’ of assumptions in ABA(p) can be argued in the same way as in (Dung et

al., 2007) for the link between ABA and AA. Hence, we know:

• If a set of assumptions S is admissible/grounded, then the union of all arguments

supported by any subset of S is admissible/grounded;

• If a set of arguments S is admissible/grounded, then the union of all sets of

assumptions supporting the arguments in S is admissible/grounded.

The above notion of acceptable sets of arguments provides a non-constructive

specification. Now, we show how to turn the specification into a constructive proof

procedure. The method we focus here is defined for a ‘grounded’ set of arguments and

is extended from (Dung et al., 2007) for handling analogical arguments.

Informally, this constructive proof procedure is known as a dispute derivation

which is defined as a sequence of transition steps from one state of a dispute to another.

For each state, we maintain these following information. Component 𝒫 maintains a set

of (both standard and analogical) assumptions, which are used to support potential

arguments of the proponent. Component 𝒪 maintains multiple sets of assumptions,

which are used to support all attacking arguments of the opponent. Component D holds

a set of assumptions, which have already been used by the proponent. Component C

holds a set of assumptions, which have already been used by the opponent and have

been attacked by the proponent. Component SP maintains a set of triples holding an

opponent’s attacked assumption, a set of proponent’s assumptions supporting a

contrary of the attacked assumption, and a set of opponent’s assumptions supporting

the argument. Component SO maintains a set of triples holding a proponent’s attacked

assumption, a set of proponent’s assumptions supporting the argument, and a set of

opponent’s assumptions supporting a contrary of the attacked assumption. In the

following, we formally define the dispute derivation for a ‘grounded’ set of arguments.

Definition 5.6. Let an ABA(p) is a 10-tuple 〈ℒD, ℛ,𝒜, � , ℒF, 𝒯, ℳ , ∼×
𝔭, 𝔭, ℱ〉.

Given a ‘patient’ selection function22, a ‘grounded belief’ dispute derivation of a

defence set Δ for a sentence δ is a finite sequence:

22 A patient selection function always prefers a non-assumption to an assumption in its selection.

Ref. code: 25615722300273MJP

95

〈𝒫w, 𝒪w, 𝐷w, 𝐶w, 𝑆𝑃w, 𝑆𝑂w〉, … , 〈𝒫¡, 𝒪¡, 𝐷¡, 𝐶¡, 𝑆𝑃¡, 𝑆𝑂¡〉, … , 〈𝒫�, 𝒪�, 𝐷�, 𝐶�, 𝑆𝑃�, 𝑆𝑂�〉

where 𝒫w ∶= 5{𝛿}8, 𝐷w ∶= 𝒜 ∩ {δ}, 𝒪w ∶= ∅, 𝐶w ∶= ∅, 𝒫� ∶= {∅}, 𝒪� ∶= ∅, 𝑆𝑃w ∶= ∅,

𝑆𝑂w ∶= ∅, Δ ∶= 𝐷�, and for every 0	 ≤ 𝑖	 < 	𝑛, only one S in 𝒫¡ or one S in 𝒪¡ is selected,

and:

1. if S is selected in 𝒫¡ and 𝜎 is selected in S, then

a. if 𝜎 is an assumption, then

𝒫¡µM ∶= (𝒫¡ ∖ {𝑆}) 	∪ {	𝑆 ∖ {𝜎}}, 𝒪¡µM ∶= 𝒪¡ ∪ {{𝜎�}},

and 𝑆𝑂¡µM ∶= 𝑆𝑂¡ ∪ {〈𝜎, 𝑆, {𝜎�}〉}

b. else if there exists an inference rule 𝜎 ← 𝑅 ∈ ℛ such that 𝐶¡ ∩ 𝑅 = ∅,

then

𝒫¡µM ∶= (𝒫¡ ∖ {𝑆}) 	∪ {	𝑆 ∖ {𝜎} ∪ 𝑅}, 𝐷¡µM ∶= 𝐷¡ ∪ (𝒜 ∩ 𝑅),

and 𝑆𝑃¡µM ∶= (𝑆𝑃¡ ∖ {〈𝜑,	PA,	OA〉}) ∪ {⟨𝜑,	PA ∖ {𝜑} ∪ 𝑅,	OA⟩}

for any ⟨𝜑,	PA,	OA⟩ ∈ 𝑆𝑃¡ such that 𝜎 ∈ PA

and if 𝑅 ⊆ 𝒜, then further validation needs to be checked:

for any ⟨𝜑,	PA,	OA⟩ ∈ 𝑆𝑃¡µM such that PA	 ∪ OA	 ⊆ 𝒜	 ∪ 𝒜𝒩, we have

either PA ⊆ 𝒜𝒩 and OA ⊆ 𝒜

or ℱ(PA) ≥ ℱ(𝜑)

c. else if 𝜎 ∶= 𝑃¨𝑡M, … , 𝑡¬ª and there exists 𝜙 ∶= 𝑄¨𝑡M, … , 𝑡¬ª

such that 𝑃ℳ ∼×
𝔭 𝑄ℳ ∈ (0,1], then

𝒫¡µM ∶= (𝒫¡ ∖ {𝑆}) ∪ {𝑆 ∖ {𝜎} ∪ {𝑃 ∼×
𝔭 𝑄, ? (𝜎, 𝑃,𝑄),𝜙}},

𝐷¡µM ∶= 𝐷¡ ∪ {𝑃 ∼×
𝔭 𝑄, ? (𝜎, 𝑃,𝑄)} ∪ (𝒜 ∩ {𝜙}),

and 𝑆𝑃¡µM ∶= (𝑆𝑃¡ ∖ {⟨𝜑,	PA,	OA⟩}) ∪ {­𝜑,	PA ∖ {𝜎} ∪ {𝑃 ∼×
𝔭 𝑄, ? (𝜎, 𝑃,𝑄),𝜙},	OA®}

for any ⟨𝜑,	PA,	OA⟩ ∈ 𝑆𝑃¡ such that 𝜎 ∈ PA

and if 𝜙 ∈ 𝒜, then the same validation as in Case 1.b is required

Ref. code: 25615722300273MJP

96

2. if S is selected in 𝒪¡ and 𝜎 is selected in S, then

a. if 𝜎 is an assumption, then

i. either 𝜎 is ignored i.e.

𝒪¡µM ∶= (𝒪¡ ∖ {𝑆}) ∪ {𝑆 ∖ {𝜎}}

ii. or 𝜎 ∉ 𝐷¡ and

𝒪¡µM ∶= 𝒪¡ ∖ {𝑆}, 𝒫¡µM ∶= 𝒫¡ ∪ {{𝜎�}}, 𝐷¡µM ∶= 𝐷¡ ∪ ({𝜎�} ∩ 𝒜),

𝐶¡µM ∶= 𝐶¡ ∪ {𝜎}, and 𝑆𝑃¡µM ∶= 𝑆𝑃¡ ∪ {⟨𝜎, {𝜎�}, 𝑆⟩}

b. else if 𝒜 ∶= {	𝑅	|	𝜎 ← 𝑅 ∈ ℛ} and 𝐴 ≠ ∅, then

𝒪¡µM ∶= (𝒪¡ ∖ {𝑆}) ∪	¶{𝑆 ∖ {𝜎} ∪ 𝑅}

·∈j

and 𝑆𝑂¡µM ∶= (𝑆𝑂¡ ∖ {⟨𝜑,	PA,	OA⟩}) 	∪¶{〈𝜑,	PA,	OA ∖ {𝜎} ∪ 𝑅〉}
·∈j

for any ⟨𝜑,	PA,	OA⟩ ∈ 𝑆𝑂¡ such that 𝜎 ∈ OA

and further validation must be satisfied:

for any ⟨𝜑,	PA,	OA⟩ ∈ 𝑆𝑂¡µM such that PA ∪ OA ⊆ 𝒜 ∪𝒜𝒩, we have

either OA ⊆ 𝒜𝒩 and PA	 ⊆ 𝒜

or ℱ(OA) ≥ ℱ(𝜑)

c. else if 𝜎 ≜ 𝑃¨𝑡M, … , 𝑡¬ª, 𝐴 ∶= {	𝑄(𝑡M, … , 𝑡¬)	|𝑃ℳ ∼×

𝔭 𝑄ℳ ∈ (0,1]}, and

𝐴 ≠ ∅, then

𝒪¡µM ∶= (𝒪¡ ∖ {𝑆}) ∪	 ¶ ¹𝑆 ∖ {𝜎} ∪ 5𝑃 ∼×

𝔭 𝑄, ? (𝜎, 𝑃,𝑄),𝑄¨𝑡M, … , 𝑡¬ª8º
»¨¼�,…,¼½ª∈j

and 𝑆𝑂¡µM ∶= (𝑆𝑂¡ ∖ {⟨𝜑,	PA,	OA⟩}) ∪

¶ 5〈𝜑,	PA,	OA ∖ {𝜎} ∪ 5𝑃 ∼×
𝔭 𝑄, ? (𝜎, 𝑃,𝑄),𝑄¨𝑡M, … , 𝑡¬ª8〉8

»¨¼�,…,¼½ª∈j

for any ⟨𝜑,	PA,	OA⟩ ∈ 𝑆𝑂¡ such that 𝜎 ∈ OA

Ref. code: 25615722300273MJP

97

plus, the same validation as in Case 2.b is required

d. else 𝒪¡µM ∶= 𝒪¡ ∖ {𝑆} and 𝑆𝑂¡µM ∶= 𝑆𝑂¡ 	∖ {	⟨𝜑,	PA,	OA	⟩	|	⟨𝜑,	PA,	OA⟩ ∈

𝑆𝑂¡	and	PO = 𝑆	}

A dispute derivation can be seen as a way of representing a ‘potential’ winning

strategy for a proponent to win a dispute against an opponent. The proponent starts by

putting forward a claim whose acceptability is under dispute. After that, there are many

possibilities as follows. The opponent can try to attack the proponent’s claim by arguing

for its contrary (cf. Case 1.a). The proponent argues for a non-assumption by using an

inference rule (cf. Case 1.b). If an inference rule does not exist, the proponent can use

an analogy to support the initial claim (cf. Case 1.c). Moreover, the proponent can select

an assumption in one of the opponent’s attacks and either ignores it because it is not

selected as a culprit (cf. Case 2.a.i) or decides to counter-attack it by showing its

contrary (cf. Case 2.a.ii). Otherwise, the opponent can argue for a non-assumption by

using either an inference rule (cf. Case 2.b) or an analogy (cf. Case 2.c). Unfortunately,

the opponent may not have even a reason to argue for it (cf. Case 2.d). In addition, every

attacking argument of the opponent to the proponent’s claim is maintained inside 𝑆𝑂

i.e. ⟨𝜎, 𝑆, {𝜎�}⟩ is read as “assumption σ in a set of proponent’s assumptions S is attacked

by a set of assumptions {𝜎�}”. Every attacking argument of the proponent to the

opponent’s claim is also maintained inside 𝑆𝑃 i.e. ⟨𝜎, {𝜎�}, 𝑆⟩ is read as “assumption σ

in a set of opponent’s assumptions S is attacked by a set of assumptions {𝜎�}”.

We give an informal dispute derivation for the running example.

Example 5.2. Consider an ABA(p) given in Figure 5.1 and let ⊗�¡� be used.

Table 2 shows that there does not exist a grounded belief dispute derivation for

𝑞𝑢𝑎𝑐𝑘(𝑠𝑜𝑢𝑛𝑑J), where23 ©, §1, §2, §3, §4, ª1, and ª2 denotes

{𝑑 ∼×
𝔭 𝑔, ? (𝑑(𝑏J, 𝑠J), 𝑑, 𝑔), 𝑔(𝑏J, 𝑠J)}, ⟨? (𝑑(𝑏J, 𝑠J), 𝑑, 𝑔),©, {ℎ(𝑠J)}⟩,

⟨? (𝑑(𝑏J, 𝑠J), 𝑑, 𝑔),©, {𝑐(𝑐M, 𝑐J), 𝑏𝑓ℎ(𝑐M)}⟩, ⟨? (𝑑(𝑏J, 𝑠J), 𝑑, 𝑔),©, {𝑏𝑓ℎ(𝑐M)}⟩,

⟨? (𝑑(𝑏J, 𝑠J), 𝑑, 𝑔),©, ∅⟩, ­𝑔(𝑏J, 𝑠J), {𝑑 ∼×
𝔭 𝑔, 𝑔(𝑏J, 𝑠J)}, {¬𝑔(𝑏J, 𝑠J)}®, and

­𝑔(𝑏J, 𝑠J), {𝑑 ∼×
𝔭 𝑔, 𝑔(𝑏J, 𝑠J)}, {𝑑 ≁×

𝔭 𝑔}®, respectively.

23 Obvious abbreviations are used here for the sake of succinctness.

Ref. code: 25615722300273MJP

98

At step 2, the proponent (𝒫) has completed the construction of an argument for

𝑞(𝑠J) supported by ©, saying that “s2 is a quack sound because goose b2 makes s2 and

geese are similar to ducks”. At step 3, the opponent (𝒪) has decided to attack on

assumption ? (𝑑(𝑏J, 𝑠J), 𝑑, 𝑔) by showing its contrary ℎ(𝑠J). This argument is fully

constructed at step 6, in which no assumptions have been used. Nonetheless, this

attacking argument needs to be checked at 𝑆𝑂P if it satisfies the requirements of

argument from analogy. Since it satisfies, step 6 is valid. Finally, no arguments of the

proponent can defend the opponent’s argument at step 10, this dispute derivation fails.

With an analogous manner, we can find a grounded belief dispute derivation of

{𝑑(𝑏M, 𝑠M)} for 𝑞(𝑠M) with three transition steps.

Table 5.2 A Grounded Belief Dispute Derivation for 𝑞𝑢𝑎𝑐𝑘(𝑠𝑜𝑢𝑛𝑑J).

Step 𝒫 𝒪 D C SP SO
0 {{𝑞(𝑠J)}} ∅ ∅ ∅ ∅ ∅
1 {{𝑑(𝑏J, 𝑠J)}} ∅ ∅ ∅ ∅ ∅
2 {©} ∅ © ∅ ∅ ∅
3 {{𝑑 ∼×

𝔭 𝑔, 𝑔(𝑏J, 𝑠J)}} {{ℎ(𝑠J)}} © ∅ ∅ {§M}
4 {{𝑑 ∼×

𝔭 𝑔, 𝑔(𝑏J, 𝑠J)}} {{𝑐(𝑐M, 𝑐J), 𝑏𝑓ℎ(𝑐M)}} © ∅ ∅ {§J}
5 {{𝑑 ∼×

𝔭 𝑔, 𝑔(𝑏J, 𝑠J)}} {{𝑏𝑓ℎ(𝑐M)}} © ∅ ∅ {§N}
6 {{𝑑 ∼×

𝔭 𝑔, 𝑔(𝑏J, 𝑠J)}} {∅} © ∅ ∅ {§O}
7 {{𝑑 ∼×

𝔭 𝑔}} {∅, {¬𝑔(𝑏J, 𝑠J)}} © ∅ ∅ {§O,ªM}
8 {{𝑑 ∼×

𝔭 𝑔}} {∅} © ∅ ∅ {§O}
9 {∅} {∅, {	𝑑 ≁×

𝔭 𝑔	}} © ∅ ∅ {§O,ªJ}
10 {∅} {∅} © ∅ ∅ {§O}

5.2 Relationship to Argumentation Scheme for Argument from Analogy

Since ABA(p) extends from ABA with the capability for supporting the

conclusion from similarity premises, the notion of argument trees in ABA(p) can be also

used to display the structural relationships between conclusions and assumptions

including standard assumptions and analogical assumptions. Figure 5.2 illustrates an

example of argument trees for arguments discussed in Example 5.1. The figure uses a

rounded rectangle for indicating an argument tree, a number floating near a rounded

rectangle for indicating an annotated degree of that entire argument, a number floating

near an assumption for indicating an annotated degree of that assumption, and a dashed

Ref. code: 25615722300273MJP

99

arrow for indicating an attack. For example, the top rounded rectangle shows the

structural relationship of argument “sound2 created by bird2 is quack sound of ducks

because ducks are similar to geese and we know that bird2, which is a goose, creates

sound2” whereas the bottom rounded rectangle shows the structural relationship of

argument “sound2 is honk sound because it is created from cord1 and that cord is built

for honk”. The figure also depicts that the bottom one attacks the top one.

Figure 5.2 An Example of Argument Trees and Their Relationship.

Ones may observe that the structural relationship represented by an argument

tree directly corresponds to the relationship between premises and a conclusion used in

the argumentation scheme. That is, a similarity premise appears as an assumption of

the form 𝑃 ∼×
𝔭 𝑄 and a base premise appears as either an assumption in 𝒜 or an

inference rule with the empty body in ℛ. They appear as nodes in an argument tree. A

conclusion drawn from the use of the argumentation scheme is represented as a parent

of those nodes in an argument tree. This structure clearly explains the relationship

indicated in the argumentation scheme.

The critical questions can also be captured in ABA(p). Let us repeat that page 2

writes down each critical question (CQ) matching the scheme argument from analogy.

Firstly, asking CQ1 is captured by the provability of a claim i.e. a backward deduction

from a claim to its supporting assumptions. Secondly, CQ2 and CQ3 are formalized by

the use of a similarity measure together with a supplied terminological formalism. Since

similarity measure of concepts identifies the degree of commonalities, it automatically

Ref. code: 25615722300273MJP

100

models the questions. Lastly, the notion of counter-analogies can be also modeled by

the construction of arguments from another analogies drawing the contrary of the

defeasible condition of the former argument.

Argumentation schemes employ the idea of asking critical questions to evaluate

the acceptability of generated arguments. In ABA(p), we evaluate by employing the

notion of attack together with a semantics of argumentation framework (Dung, 1995)

insisting that sets of acceptable arguments do not attack themselves and counter-attack

all the opponent’s arguments (aka. admissible sets of arguments).

5.3 Comparison with Related Works

There were attempts on modeling analogical reasoning including these recent

work (Racharak et al., 2017b; Racharak, Tojo, et al., 2016) in which their results are

continued to study in this work. We note that both formalized the scheme argument

from analogy and provided a logical language which enables finding analogical

conclusions. On the other hand, (Racharak, Tojo, et al., 2016) extended syntax and

argumentative features of DeLP for handling analogical arguments whereas (Racharak

et al., 2017b) translated the logical language to the represented answer set program and

an answer set solver would be used to compute analogical conclusions. As (Racharak,

Tojo, et al., 2016) extended DeLP, this work differs to (Racharak, Tojo, et al., 2016) in

the structure of an argument’s notion. Another difference is that (Racharak, Tojo, et al.,

2016) is more computationally oriented and has restricted expressiveness whereas

ABA(p), like ABA, is a more general framework for analogical argumentation. With

(Racharak et al., 2017), it is worth observing that their definition of knowledge base

can be captured by an ABA(p) framework. That is, a logic program ℒ𝒫 is mapped to an

ABA component, 𝒪 is a concrete instance of (ℒF, 𝒯), and ∼×& is an abstract instance of

∼×
𝔭. However, the development in (Racharak et al., 2017b) ignored analogical degrees

in their computational method. We have completed that part and generalized the

approach in this work.

A similar attempt to (Racharak et al., 2017b; Racharak, Tojo, et al., 2016), i.e.

combing rules and similarities, was proposed in (Sun, 1995b). In that work, a two-level

connectionist model was developed. The first level (called CL) had one node for each

Ref. code: 25615722300273MJP

101

domain concept whereas the second level (called CD) had fine-grained features in

which all domain concepts could be decomposed to. Characteristics of similarity

measures (denoted by ∼ in (Sun, 1995b)) was also discussed and the formula based on

the above two-level model was proposed for concepts A,B as:

𝐴 ∼ 𝐵 = (|𝐹j ∩ 𝐹o|) (|𝐹o|)⁄ where 𝐹j,𝐹o are features defined in CD. It is worth

observing that those two levels and similarity formula can be represented as (ℒF, 𝒯)

and ∼×
𝔭, respectively. However, how defeasible conditions and the notion of relevence

should be handled was not discussed concretely.

In (Goebel, 1989a), the form of analogical reasoning was cast as hypothetical

reasoning as: source knowledge	 ∪ target knowledge	 ∪ equality assumptions	 ⊨

conclusions where equality assumptions can be viewed as similarity between the source

and the target. If there were many equality assumptions, certain explicit preferences,

e.g. the highest number of shared properties, were used. However, the defeasible

conditions and the notion of relevance were also not concretely discussed. It is also

worth observing that source knowledge and target knowledge can also be recast in

(ℒF, 𝒯) and the criterion for forming equality assumptions can be made explicitly in

∼×
𝔭.

 In (Haraguchi & Arikawa, 1987)	, the source domain and the target domain were

represented by logic programs and their intended models were the least (Herbrand)

model of them. Then, an analogy was considered as a partial identity between their least

models. According to their definitions, the partial identity was a function mapping two

different ground terms of two different domains so that the compatible mapped terms

could be treated like a single term in the analogy-based reasoning process. Technically,

the authors defined a formal reasoning based on the partial identity as an admissible

method to extend the least (Herbrand) model. It is worth noticing that the authors used

the partial identity to transfer knowledge about ground terms from the source domain

to the target domain; thus, the terms were applicable if their related predicate symbols

were the same i.e. the knowledge was transferred in the level of terms. This point differs

to our work in a sense that knowledge was transferred in the level of predicates using

similarity measure between two concepts in terminological formalism. Other different

Ref. code: 25615722300273MJP

102

points are that the reasoning process proposed in (Haraguchi & Arikawa, 1987) was

monotonic and did not consider the relevancy.

Case-based reasoning (CBR) can also be viewed as a form of analogical

reasoning. In CBR, dimensions and factors are used for comparing cases and the

decision in the precedent case is then taken as the decision into the current case.

Examples of CBR systems are HYPO (Ashley, 2006) and CATO (Aleven, 1997). With

ABA(p), CBR can be recast by consisting the rules: 𝑐¡ ← 𝑓M, … , 𝑓� in 𝒯, the rules: 𝑝¡ ←

𝑐¡ in ℛ, and similarity between two cases ci is measured from their common features fi.

Comparing this work with defeasible reasoning formalism, particularly Nute’s

d-Prolog (Gabbay, Hogger, & Robinson, 1998, pp.353-396), different forms of rules

were introduced viz. strict (unchallengeable) rules, defeasible (challengeable) rules, and

defeater (exceptionable) rules. Examples of strict rules, defeasible rules, and defeater

rules are “all penguins are bird”, “birds normally fly”, and “sick birds do not fly”,

respectively. Like ABA, inference rules in ABA(p) can be seen as strict rules and a

simple transformation (as used in Theorist (Poole, 1988)) can be employed to convert

defeasible rules into strict rules with assumptions. Moreover, we may observe that

ABA(p) does not need to supply with defeater rules since it can find counter-arguments,

including counter-analogies, among arguments it is able to build.

Ones may would like to compare between ABA(p) and an abstract framework of

argumentation equipped with a preorder relation e.g. preference-based argumentation

framework (PAF) introduced in (Amgoud & Cayrol, 2002). Formally, a PAF is a triple

⟨Args, Attack,≼⟩ where Args is a set of arguments, Attack is an attack relation, and ≼

is used to define a ‘defeat’ relation on each attack. It is not difficult to observe the

correspondence between an ABA(p) framework and a PAF framework. Informally, each

argument tree in ABA(p) is mapped to an argument in Args and an attack in ABA(p)

between argument trees is mapped to a defeat relation, in which the usage of an

argument’s degree and the preference on analogical arguments can be captured in a

preorder relation. Their further theoretical relationship is left for future work.

Ref. code: 25615722300273MJP

103

CHAPTER 6

CONCLUDING REMARKS

This thesis investigated and formally defined a structured argumentation

framework called ABA(p), which formalizes the argumentation scheme for argument

from analogy. The main objectives of this work were to provide well understanding on

the computational aspect of analogical reasoning in argumentation, rather than the

psychological modeling. As a result, ABA(p) offers ways to encode the pattern of

reasoning in argument from analogy and its critical questions, where concepts (or states

of affairs) are represented by predicates in an underlying language and are defined by

a particular terminological formalism (such as description logics). Its underlying

mechanism consists in four mainstreams, viz. an ABA framework, a terminology, and

a concept similarity under preferences, and a preference context. When no assumptions

are available to construct an argument tree, additional assumptions can be constructed

from the use of a similarity measure w.r.t. a terminology and a preference context. In

other words, it draws a connection between two different formalisms, i.e. inference

rules and terminological sentences, for dealing with analogical argumentation. Figure

6.1 shows a general review of our proposed framework, in which English alphabets

represent examples of predicate symbols in the inference rules and concepts in the

terminological formalism24.

Figure 6.1 An Overview of Our ABA(p) Framework.

24 Though, the syntax of description logics is used, other kinds of terminological formalisms are also
supported as discussed in Chapter 5.

Ref. code: 25615722300273MJP

104

To achieve these goals, we exploited two different reasoning paradigms viz. rule

reasoning and schemata reasoning. In particular, the original ABA was extended to

incorporate with description logics for handling the acceptability of (analogical)

arguments in question. Our framework uses the semantics of abstract argumentation

and the degree of concept similarity is determined by aggregating subsumption degrees

of two corresponding concepts. Figure 6.1 also indicates the interactions between the

two reasoning paradigms. Specifically, we can view that when the rule reasoning cannot

deductively infer new knowledge, it will make a query to the schemata reasoning so

that the rule reasoning has more (potential) knowledge with a similarity score.

We also developed algorithmic procedures for evaluating warranted arguments

and a numerical value indicating the similarity under subjective factors between

concepts. In the following sections, major technical and empirical results of this thesis

are discussed.

6.1 Discussion of Achieved Results

The major results achieved in this thesis can be classified as follows:

1. The development of concept similarity measure under preference profile in

description logics (particularly, a sub-Boolean logic ℰℒℋ);

2. The design of algorithmic procedures for our proposed measure sim& and

their empirical evaluation w.r.t. realistic ontologies; and

3. The development of assumption-based argumentation with predicate

similarity ABA(p) framework, which gives the structure and computation of

accepted (analogical) arguments.

6.1.1 The Development of Concept Similarity Measure under Preference Profile

in Description Logics

Concept similarity measure can be regarded as a generalization of the classical

reasoning problem of equivalence in description logics. That is, any two concepts are

equivalent if and only if their similarity degree is one (cf. Equation 3.2). Regarding this

observation, we have investigated an approach to compute the degree of subsumption

between concepts in sub-Boolean description logics since their subsumption reasoning

problems are tractable and they are shown to be expressive enough for formulating

Ref. code: 25615722300273MJP

105

realistic ontologies. As a result, we developed a formal definition for calculating the

degree of subsumption between ℰℒℋ concepts (cf. Chapter 3). This subsumption

degree function also gives us an approach to produce a numerical degree indicating

concept similarity. For instance, the measure sim was defined as the average of the two

corresponding subsumption degrees of ℰℒℋ concepts. When two concepts are not in

equivalence relationship, sim is capable of providing the degree of relation w.r.t. their

common and different features. Accordingly, they play a major role in the discovery of

similar concepts in an ontology and are often used by many application areas such as

ontology alignment algorithms. It is worth mentioning that there are other concept

similarity measure we have developed for ℱℒw concepts but they are not included in

the thesis (cf. (Racharak & Suntisrivaraporn, 2015; Racharak & Tojo, 2018)).

An experiment in (Bernstein et al., 2005) reported that similarity measure might

depend on target applications and should be personalized to the agent’s similarity

judgment style. We did consider this point and extended the definition of concept

similarity measure in such a way that the degree of concept similarity is calculated w.r.t.

subjective factors (such as the agent’s preferences). This generalized notion is called

concept similarity measure under preference profile. In particular, we developed a

formalism for expressing the agent’s preferences in concept similarity called preference

profile and further refined sim according to each aspect of preference profile to sim&

for the DL ℰℒℋ.

Apart from the definition of concept similarity measure under preference

profile, Chapter 4 also identified a set of desirable properties that any concrete measures

of this notion should satisfy. We have provided proofs of satisfied properties for the

developed concrete measures. Understanding their satisfied properties is important for

employing the measures in any applicable areas since their users can predict the

expected behaviors. The measures can also be used regardless of the agent’s preferences

i.e. sim& is tuned with the special preference profile called the default preference profile

𝜋w. Finally, we have provided proofs that sim& can be computed in polynomial time.

6.1.2 The Design of Algorithmic Procedures for sim& and Their Empirical

Evaluation w.r.t. Realistic Ontologies

Ref. code: 25615722300273MJP

106

In Section 4.4, two concrete algorithms viz. the top-down approach and the

bottom-up approach for implementations of sim& were developed. The computational

complexity of each algorithm was clearly analyzed. Concretely, both algorithms make

the similar number of executions; however, the bottom-up additionally requires an

amount of extra space due to the employed dynamic programming technique. Unlike

the top-down approach, the bottom-up approach has never recursively invoked itself to

determine the similarity of different pair of nested concepts. The algorithm directly uses

values stored in the table. Both approaches have different benefits and drawbacks. On

the one hand, the bottom-up requires an additional extra space. On the other hand, it

does work productively an environment where recursion is fairly expensive.

In Section 4.5, our defined notion ∼& has been evaluated with realistic

ontologies w.r.t. several use cases. In this thesis, we used simπ to show the practical

performance of both developed algorithms and usefulness of tuning the measure via

preference profile. Both algorithms of sim& were implemented using Java version 1.8

with the usage of Spring Boot version 1.3.3.RELEASE as application programming

interfaces (APIs). These APIs can also be used by application developers to use simπ

with their working ontologies. Results of the empirical evaluation are summarized as

follows:

1. We compared the practical performance of the top-down sim& and the bottom-

up sim& w.r.t. the medical ontology SNOMED CT. The experiment showed that

the bottom-up sim& performs approximately three times faster than the top-

down sim&. This result conforms to our theoretical analysis as discussed earlier;

2. We re-implemented the existing measure sim based on the same technologies

and techniques as sim&. Then, we compared the practical performance of sim&

and sim w.r.t. SNOMED CT and found that they perform equally;

3. We evaluated the backward compatibility of sim& with sim. This experiment

would like to ensure that the default preference profile can be used when

preferences are not given by the agent. Our experiment has guaranteed this;

4. We showed the usefulness of our defined notion through measuring the

similarity of SNOMED CT concepts. Due to its special characteristics,

measuring similarity of SNOMED CT concepts requires special ways of tuning

Ref. code: 25615722300273MJP

107

the measure. We showed that tuning sim& under the special setting yields the

more intuitive results. We also compared25 the use of 𝑠𝑖𝑚𝑖, which is another

measure for the same ℰℒℋ, and found that lacking (even some) aspects of

preference profile may not be suitable to use with an ontology where some

special cases of tuning are required; and

5. We also showed the usefulness of our defined notion in several use cases of

query answering systems with realistic ontologies. The discussion showed that

∼& is appropriate to identify the degree of similarity w.r.t. the agent’s

preferences.

Though we designed and developed the notion of concept similarity measure

under relevant factors for construction and evaluation of analogical arguments, this

notion also has great potential use in knowledge engineering such as the development

of recommendation systems based on the agent’s preferences, the development of

domain-specific knowledge bases, and the ontology engineering. Moreover, it may be

used with heterogeneous ontologies by identifying duplicated primitive concepts and

primitive roles among ontologies via 𝔰𝔠 and 𝔰𝔯 (cf. Section 6.2). In the next subsection,

we discuss how analogical arguments can be constructed and evaluated for persuasive

reasoning, which is the main purpose of our developed similarity measure.

6.1.3 Construction and Evaluation of Analogical Arguments

We recall that analogical reasoning is a complex process based on a comparison

between two pairs of concepts or states of affairs (aka. the source and the target) for

characterizing certain features from one to another. Arguments which employ this

process to support their claims are called analogical arguments. Chapter 5 investigated

and explored the structure and the computation for their defeasibility in light of the

argumentation theory. As a result, we introduced assumption-based argumentation with

predicate similarity ABA(p) framework, which can be seen as an extension of

assumption-based argumentation framework (ABA), in which not only assumptions

can be used but also similarity of predicates are used to support a claim.

25 We also compared sim& with measures in ℰℒℋ and ℱℒw (cf. Table 4.4).

Ref. code: 25615722300273MJP

108

ABA(p) consists of four mainstreams viz. an ABA framework, a terminology, a

concept similarity under preferences, and a preference context. When no assumptions

are available to construct an argument tree, additional assumptions can be constructed

from the use of a similarity measure w.r.t. a terminology and a preference context. In

particular, ABA(p) exploits benefits of two different formalisms, viz. inference rules and

terminological sentences, for dealing with analogical argumentation.

ABA(p) was designed to be a general framework for analogical argumentation.

Thus, other notions apart from an ABA framework are also remained in general. For

instance, ones may express a terminology as inference rules in 𝒯 underlying a language

ℒF and ∼×
𝔭 may be defined as a proportion of common features to different features as

discussed in Chapter 5. As an exemplification, we have discussed how ones can use a

particular description logic to express terminological formulae and our recent

developed measure sim& is also demonstrated. One benefit of using description logics

is that their expressivity and computational complexities were clearly studied (Baader

et al., 2007).

Like ABA, all semantic notions for determining the acceptability of arguments

in AA also apply to arguments in ABA(p). Thus, we investigate a constructive proof

procedure for determining a grounded set of assumptions in this work. Since different

agents may value analogies for their reasoning unequally, we also study how each

choice of operator ⊗ can influence different types of agents in analogical reasoning.

Concerning other semantic notions of acceptability, this becomes an obvious future

work to investigate on a dispute derivation for them and to further study how each

semantic notion contributes to analogical argumentation in practice. It is also worth

noting that we also developed other two formalisms based on the argumentation scheme

(cf. (Racharak et al., 2017a, 2017b)) but they are not included in the thesis. The first

formalism exploited benefits of extensive tools from answer set programming together

with our developed notions (and our developed APIs). This provides a rough-and-ready

method for building an analogical inference engine. On the other hand, the second one

developed an argument-based logic-programming-like language which provides the

possibility of representing information in terms of strict, defeasible, and similarity rules

in a declarative manner. Their differences were also discussed in Section 5.3.

Ref. code: 25615722300273MJP

109

6.2 Potential Applications in Service Science Area

Service science is a new discipline emerging from the rapid development of

services across the industrial world. Its root is an interdisciplinary study of computer

science, operations research, industrial engineering, mathematics, business strategy,

management science, decision theory, and social and cognitive science, and legal

science. Its goal is to improve essential nature of service, i.e. the joint co-creation

between service providers and service consumers. It is worth noting that developing

ABA(p) causes sim& to come out as a by-product. Thus, we would like to discuss some

potential applications of them in service science area.

First, our developed similarity measure has potential applications of knowledge

engineering. For instance, sim& can be used in the development of recommendation

systems based on the agent’s preferences, the development of domain-specific

knowledge bases, and the ontology engineering. We exemplify in Subsection 4.5.2 a

development of recommendation systems based on the agent’s preferences via the

sections about tuning 𝔰𝔯, 𝔰𝔠, and 𝔦𝔯, and a development of the domain-specific knowledge

base in case of SNOMED CT (cf. page 68).

Second, if service applications would like to exploit similar concepts across

heterogeneous ontologies, one approach is to identify duplicated primitive concepts and

primitive roles among ontologies via 𝔰𝔠 and 𝔰𝔯 of preference profile, respectively. In

fact, some existing ontologies partially contain duplicated information. It has been

revealed in (Dhombres & Bodenreider, 2016) that concepts used by different

terminologies may unintentionally mean the same. In (Dhombres & Bodenreider,

2016), 30% of Human Phenotype Ontology (HPO) concepts are semantically

duplicated with Snomed ct concepts. For example, the HPO concept ‘Multicystic

Dysplastic Kidney’ (HP:0000003) is identical to the SNOMED CT concept

‘Multicystic Renal Dysplasia’ (SCTID:204962002). In such a case, a mapping between

these two ontologies should be formed. After the mapping, similar concepts from

multiple ontologies can be found out.

Last, ABA(p) can be employed to suggest the reasoning by analogy. This in fact

corresponds to the two different phases of a decision making situation viz. the reasoning

Ref. code: 25615722300273MJP

110

phase and the applicability phase. Suppose this framework is employed in a court case,

then the framework can give suggestion that seems to be appropriate with a target

situation (e.g. a case) and the expert (e.g. the law people) may consider the applicability

after our suggestion – this is at their disposal.

6.3 Directions of Future Research

Several directions for further research on analogical argumentation and

similarity measure of concepts are in order:

• In light of argumentation schemes, (Macagno, Walton, & Tindale, 2017)

developed some inferential structures and defeasibility conditions for analogical

arguments. Thus, we aim at investigating if such inferential structures can be

captured by ABA(p);

• Preference-based argumentation framework (PAF) extended abstract

argumentation by equipping with ≼ to define a ‘defeat’ relation among each

attack. This gives us an obvious future direction to investigate theoretical

relationship between ABA(p) and PAF frameworks. Understanding this will

allow us to transfer some proven properties of PAF to ABA(p);

• Apart from theoretical research directions, we also intend to apply our proposed

framework in some practical domains where analogical reasoning is extensively

used e.g in clinical practices. In clinical domain, many terminologies do exist

and are represented in description logics e.g. SNOMED CT and Go. The

remaining tasks will be then encoding the actual methods of medical experts in

terms of inference rules;

• The proposed similarity measure is not meant to be the universal measure.

Indeed, it is restricted to the DL ℰℒℋ with unfoldable TBox. While it came

with the limitation in terms of expressivity, its computation was proven to be

tractable; thereby, provided practically acceptable response time which is a key

requirement in the design and the development of large-scale ontologies. As for

future work, we are interested in exploring other techniques of concept

similarity measure under preference profile for more expressive DLs and other

formalisms corresponding to ABA(p) framework;

Ref. code: 25615722300273MJP

111

• The current structure of preference profile also restricts its expressivity on sub-

Boolean logics, particularly ℰℒℋ. Hence, it appears to be a natural step to

extend preference profile to support more expressive DLs e.g. concept negation,

and also, to support capabilities to express preferences on an ABox;

• As reported in (Bernstein et al., 2005) about the need of having multiple

measures, we are interested to investigate the possible classes of similarity

measures w.r.t. their potential use cases and applications. Understanding this

would help the agent to select the right measure for a dealing situation;

• The proposed approach of concept similarity measure under preference profile

has an advantage of computing the degree of commonalities under the agent's

preferences. On the other hand, it cannot provide a good reason why two

concepts are considered as ‘being similar’. As for future work, we are interested

in extracting the computational content which makes two concepts considered

as being similar. This will give more informative answer to analogical

arguments since the supporting reasons of a claim are more explainable. To do

this, we may investigate the deduction systems e.g. a sequent calculus and a

natural deduction system as developed in (Rademaker, 2012);

• Apart from our developed Java APIs, we intend to extend our development as a

plug-in of ontology editors such as Protégé. Doing this would undoubtedly

spread out their usability to a wider group of users; and

• The current usage of preference profile appears only in the task of concept

similarity measure, which is a TBox-related problem. Now, we are interested in

exploring ways to adopt preference profile on ABox-related problem e.g. non-

standard instance checking under preference profile. The idea in the nutshell is

to use concept similarity measure under preference profile for ABox instance

checking rather than using the standard instance checking techniques. This may

also involve extending the structure of preference profile with some capabilities

of defining preferences over each instance in the ABox.

Ref. code: 25615722300273MJP

112

REFERENCES

Aleven, V. (1997). Teaching Case-based Argumentation through a Model and

Examples. University of Pittsburgh, Pittsburgh, Pennsylvania: PhD diss.

Amgoud, L., & Cayrol, C. (2002). Inferring from Inconsistency in Preference-Based

Argumentation Frameworks. Journal of Automated Reasoning, 29(2), 125–169.

https://doi.org/10.1023/A:1021603608656

Ashburner, M., Ball, C. A., Blake, J. A., Botstein, D., Butler, H., Cherry, J. M., …

Sherlock, G. (2000). Gene Ontology: tool for the unification of biology. Nature

Genetics, 25(1), 25–29. https://doi.org/10.1038/75556

Ashley, K. (2006). Case-based reasoning. In Information Technology and Lawyers:

Advanced Technology in the Legal Domain, from Challenges to Daily Routine

(pp. 23–60). Berlin: Springer.

Baader, F. (2003). Terminological cycles in a description logic with existential

restrictions. In Proceedings of the 18th International Joint Conference on

Artificial Intelligence (pp. 325–330). Morgan Kaufmann Publishers Inc.

Baader, F., Brandt, S., & Küsters, R. (2001). Matching under side conditions in

description logics. In Proceedings of the 17th International Joint Conference on

Artificial Intelligence - Volume 1 (pp. 213–218). Morgan Kaufmann Publishers

Inc.

Baader, F., Brandt, S., & Lutz, C. (2005). Pushing the EL envelope. In IJCAI (Vol. 5,

pp. 364–369).

Baader, F., Calvanese, D., McGuinness, D. L., Nardi, D., & Patel-Schneider, P. F.

(Eds.). (2007). The description logic handbook: Theory, implementation, and

applications. New York, NY, USA: Cambridge University Press.

Baader, F., Horrocks, I., & Sattler, U. (2004). Description logics. In S. Staab & R.

Studer (Eds.), Handbook on Ontologies (pp. 3–28). Berlin, Heidelberg: Springer

Berlin Heidelberg.

Baader, F., Küsters, R., & Molitor, R. (1999). Computing least common subsumers in

description logics with existential restrictions. In IJCAI (Vol. 99, pp. 96–101).

Baader, F., & Sattler, U. (2001). An overview of tableau algorithms for description

Ref. code: 25615722300273MJP

113

logics. Studia Logica, 69(1), 5–40.

Baroni, P., & Giacomin, M. (2009). Semantics of abstract argument systems. In G.

Simari & I. Rahwan (Eds.), Argumentation in Artificial Intelligence (pp. 25–44).

Boston, MA: Springer US.

Bartha, P. (2010). By parallel reasoning: The construction and evaluation of

analogical arguments. By Parallel Reasoning: The Construction and Evaluation

of Analogical Arguments, 1–384.

Bermejo-Luque, L. (2014). The uses of analogies. In Systematic Approaches to

Argument by Analogy (pp. 57–71). Springer.

Bernstein, A., Kaufmann, E., Bürki, C., & Klein, M. (2005). How similar is it?

Towards personalized similarity measures in ontologies. In Wirtschaftsinformatik

2005: eEconomy, eGovernment, eSociety (pp. 1347–1366). Heidelberg: Physica-

Verlag HD.

Bondarenko, A., Dung, P. M., Kowalski, R. A., & Toni, F. (1997). An Abstract,

argumentation-theoretic approach to default reasoning. Artificial Intelligence,

93(1–2), 63–101.

Bondarenko, A., Toni, F., & Kowalski, R. A. (1993). An assumption-based

framework for non-monotonic reasoning. Logic Programming and Non-

Monotonic Reasoning (Lisbon, 1993), 171–189.

Borgida, A., & Walsh, T. J. (n.d.). Towards Measuring Similarity in Description

Logics.

Brachman, R. J., & Levesque, H. J. (1984). The tractability of subsumption in frame-

based description languages. In AAAI (Vol. 84, pp. 34–37).

Brandt, S. (2004). Polynomial time reasoning in a description logic with existential

restrictions, GCI axioms, and -- what else? In Proceedings of the 16th European

Conference on Artificial Intelligence (pp. 298–302).

Calvanese, D., De Giacomo, G., Lenzerini, M., & Nardi, D. (2001). Reasoning in

expressive description logics. Handbook of Automated Reasoning, 2, 1581–1634.

Copi, I. M., Cohen, C., & McMahon, K. (2016). Introduction to logic. Routledge.

d’Amato, C., Fanizzi, N., & Esposito, F. (2009). A Semantic Similarity Measure for

Expressive Description Logics, 13. Artificial Intelligence; Logic in Computer

Science. Retrieved from http://arxiv.org/abs/0911.5043

Ref. code: 25615722300273MJP

114

D’Amato, C., Fanizzi, N., & Esposito, F. (2006). A dissimilarity measure for ALC

concept descriptions. In Proceedings of the 2006 ACM Symposium on Applied

Computing, 1695–1699.

D’Amato, C., Staab, S., & Fanizzi, N. (2008). On the influence of description logics

ontologies on conceptual similarity. In Proceedings of Knowledge Engineering:

Practice and Patterns, 48–63.

Davies, T. R. (1988). Determination, uniformity, and relevance: Normative criteria for

generalization and reasoning by analogy. In Analogical reasoning (pp. 227–250).

Springer.

De Giacomo, G., & Lenzerini, M. (1996). TBox and ABox reasoning in expressive

description logics. KR, 96(316–327), 10.

Dhombres, F., & Bodenreider, O. (2016). Interoperability between phenotypes in

research and healthcare terminologies?Investigating partial mappings between

HPO and SNOMED CT. Journal of Biomedical Semantics, 7(1), 3.

Donini, F. M., lenzerini, M., Nardi, D., & Schaerf, A. (1996). Principles of

Knowledge Representation. In G. Brewka (Ed.) (pp. 191–236). Stanford, CA,

USA: Center for the Study of Language and Information.

Dung, P. M. (1995). On the acceptability of arguments and its fundamental role in

nonmonotonic reasoning, logic programming and n-person games. Artificial

Intelligence, 77(2), 321–357.

Dung, P. M., Kowalski, R. A., & Toni, F. (2009). Assumption-based argumentation.

In G. Simari & I. Rahwan (Eds.), Argumentation in Artificial Intelligence (pp.

199–218). Boston, MA: Springer US.

Dung, P. M., Mancarella, P., & Toni, F. (2007). Computing ideal sceptical

argumentation. Artificial Intelligence, 171(10), 642–674.

https://doi.org/https://doi.org/10.1016/j.artint.2007.05.003

Dung, P. M., & Thang, P. M. (2008). Towards an argument-based model of legal

doctrines in common law of contracts. Proc. CLIMA IX, 7.

Fanizzi, N., & D’Amato, C. (n.d.). A similarity measure for the ALN description

logic. In Proceedings of CILC 2006 - Italian Conference on Computational

Logic, 26–27.

Gabbay, D. M., Hogger, C. J., & Robinson, J. A. (1998). Handbook of Logic in

Ref. code: 25615722300273MJP

115

Artificial Intelligence and Logic Programming: Volume 5: Logic Programming.

Clarendon Press.

Garcı́a, A. J., & Simari, G. R. (2004). Defeasible Logic Programming: An

Argumentative Approach. Journal of Theory and Practice of Logic

Programming, 4(2), 95–138.

Garssen, B. (2009). Comparing the incomparable: Figurative analogies in a dialectical

testing procedure. In Pondering on problems of argumentation (pp. 133–140).

Springer.

Gelfond, M., & Lifschitz, V. (1988). The stable model semantics for logic

programming. In ICLP/SLP (Vol. 88, pp. 1070–1080).

Glucksberg, S., & Keysar, B. (1990). Understanding metaphorical comparisons:

Beyond similarity. Psychological Review, 97(1), 3.

Goebel, R. (1989a). A sketch of analogy as reasoning with equality hypotheses. In K.

P. Jantke (Ed.), Analogical and Inductive Inference: International Workshop AII

’89 Reinhardsbrunn Castle, GDR, October 1--6, 1989 Proceedings (pp. 243–

253). Berlin, Heidelberg: Springer Berlin Heidelberg.

Goebel, R. (1989b). A Sketch of Analogy as Reasoning with Equality Hypotheses.

Analogical and Inductive Inference, International Workshop AII ’89,

Reinhardsbrunn Castle, GDR, October 1-6, 1989, Proceedings, 397, 243–253.

Gover, T. (2018). Problems in argument analysis and evaluation.

Guarini, M., Butchart, A., Smith, P. S., & Moldovan, A. (2009). Resources for

research on analogy: A multi-disciplinary guide. Informal Logic, 29.

Haraguchi, M., & Arikawa, S. (1987). Reasoning by analogy as a partial identity

between models. In K. P. Jantke (Ed.), Analogical and Inductive Inference (pp.

61–87). Berlin, Heidelberg: Springer Berlin Heidelberg.

Hastings, A. C. (1963). A Reformulation of the Modes of Reasoning in

Argumentation.

Hesse, M. B. (1965). Models and analogies in science.

Jaccard, P. (1901). Étude comparative de la distribution florale dans une portion des

alpeset des jura. Bulletin de La Societe Vaudoise Des Sciences Naturellese, 37,

547–579.

Janowicz, K. (2006). Sim-DL: towards a semantic similarity measurement theory for

Ref. code: 25615722300273MJP

116

the description logic ALCNR in geographic information retrieval. In SeBGIS

2006, OTM Workshops 2006. Volume 4278 of Lecture Notes in Computer

Science. Springer.

Janowicz, K., & Wilkes, M. (2009). SIM-DLA: A Novel Semantic Similarity Measure

for Description Logics Reducing Inter-concept to Inter-instance Similarity. In

Proceedings of the 6th European Semantic Web Conference on The Semantic

Web: Research and Applications, 353–367.

Kakas, K. C., & Toni, F. (1999). Computing argumentation in logic programming.

Journal of Logic and Computation, 9(4), 515–562.

Kohlas, J. (2003). Probabilistic argumentation systems A new way to combine logic

with probability. Journal of Applied Logic, 1(3–4), 225–253.

https://doi.org/10.1016/S1570-8683(03)00014-4

Lehmann, K., & Turhan, A.-Y. (2012). A framework for semantic-based similarity

measures for ELH-concepts. In L. F. del Cerro, A. Herzig, & J. Mengin (Eds.),

JELIA (Vol. 7519, pp. 307–319). Springer.

Macagno, F. (2014). Analogy and redefinition. In Systematic approaches to argument

by analogy (pp. 73–89). Springer.

Macagno, F., Walton, D., & Tindale, C. (2017). Analogical arguments: Inferential

structures and defeasibility conditions. Argumentation, 31(2), 221–243.

Matt, P.-A., Toni, F., Stournaras, T., & Dimitrelos, D. (2008). Argumentation-based

agents for eprocurement. In Proceedings of the 7th international joint conference

on Autonomous agents and multiagent systems: industrial track (pp. 71–74).

Modgil, S., & Prakken, H. (2014). The ASPICµ Framework for Structured

Argumentation: A Tutorial. Argument and Computation, 5(1), 31–62.

Nebel, B. (1990). Terminological reasoning is inherently intractable. Artificial

Intelligence, 43(2), 235–249.

Nebel, B. (1991). Terminological cycles: semantics and computational properties.

O’Neil, M., Payne, C., & Read, J. (1995). Read Codes Version 3: a user led

terminology. Methods of Information in Medicine, 34(1–2), 187–192.

Patel-Schneider, P. F., & Swartout, B. (1993). Description-logic knowledge

representation system specification from the KRSS group of the ARPA

Ref. code: 25615722300273MJP

117

knowledge sharing effort. KRSS Group of the ARPA.

Perelman, C. (1969). The New Rhetoric: A Treatise on Argumentation [by] C.

Perelman and L. Olbrechts-Tyteca. Translated by John Wilkinson and Purcell

Weaver.

Pollock, J. L. (1992). How to reason defeasibly. Artificial Intelligence, 57(1), 1–42.

Poole, D. (1988). A logical framework for default reasoning. Artificial Intelligence,

36(1), 27–47.

Racharak, T. (2018). Concept Similarity and Agent’s Preferences in Description

Logics: Computations and Applications. School of Information Science, Japan

Advanced Institute of Science and Technology. Retrieved from

http://hdl.handle.net/10119/15429

Racharak, T., & Suntisrivaraporn, B. (2015). Similarity measures for FLw concept

descriptions from an automata-theoretic point of view. In Proceedings of the 6th

Annual International Conference on Information and Communication

Technology for Embedded Systems (ICICTES 2015).

Racharak, T., Suntisrivaraporn, B., & Tojo, S. (2016a). sim~: A Concept Similarity

Measure under an Agent’s Preferences in Description Logic ELH. In

Proceedings of the 8th International Conference on Agents and Artificial

Intelligence (pp. 480–487). https://doi.org/10.5220/0005813404800487

Racharak, T., Suntisrivaraporn, B., & Tojo, S. (2016b). Identifying an agent’s

preferences toward similarity measures in description logics. Lecture Notes in

Computer Science (including subseries Lecture Notes in Artificial Intelligence

and Lecture Notes in Bioinformatics) (Vol. 9544). https://doi.org/10.1007/978-3-

319-31676-5_14

Racharak, T., Suntisrivaraporn, B., & Tojo, S. (2018). Personalizing a Concept

Similarity Measure in the Description Logic ELH with Preference Profile.

Computing and Informatics, 37(3), 581–613.

Racharak, T., & Tojo, S. (2017a). Analogical reasoning in clinical practice with

description logic ELH. In Agents and Artificial Intelligence - 9th International

Conference, ICAART 2017, Porto, Portugal, February 24-26, 2017, Revised

Selected Papers (pp. 179–204). Springer International Publishing. Retrieved

Ref. code: 25615722300273MJP

118

from https://doi.org/10.1007/978-3-319-93581-2_10

Racharak, T., & Tojo, S. (2017b). Tuning agent’s profile for similarity measure in

description logic ELH. In Proceedings of the 9th International Conference on

Agents and Artificial Intelligence, ICAART 2017, Volume 2, Porto, Portugal,

February 24-26, 2017. (pp. 287–298).

https://doi.org/10.5220/0006249602870298

Racharak, T., & Tojo, S. (2018). Inherited Properties of FLw concept similarity

measure under preference profile. In Agents and Artificial Intelligence - 9th

International Conference, ICAART 2018, Porto, Portugal, February 24-26,

2017, Revised Selected Papers. Springer International Publishing.

Racharak, T., Tojo, S., Hung, N. D., & Boonkwan, P. (2016). Argument-Based Logic

Programming for Analogical Reasoning. In New Frontiers in Artificial

Intelligence - JSAI-isAI 2016 Workshops (pp. 253–269).

Racharak, T., Tojo, S., Hung, N. D., & Boonkwan, P. (2017a). Argument-based logic

programming for analogical reasoning. Lecture Notes in Computer Science

(including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in

Bioinformatics) (Vol. 10247 LNAI). https://doi.org/10.1007/978-3-319-61572-

1_17

Racharak, T., Tojo, S., Hung, N. D., & Boonkwan, P. (2017b). Combining answer set

programming with description logics for analogical reasoning under an agent’s

preferences. Lecture Notes in Computer Science (including subseries Lecture

Notes in Artificial Intelligence and Lecture Notes in Bioinformatics) (Vol. 10351

LNCS). https://doi.org/10.1007/978-3-319-60045-1_33

Racharak, T., Tojo, S., Hung, N. D., & Boonkwan, P. (2019). On construction and

evaluation of analogical arguments for persuasive reasoning. Applied Artificial

Intelligence, 33. https://doi.org/https://doi.org/10.1080/08839514.2019.1646026

Rademaker, A. (2012). A Proof Theory for Description Logics. Springer Science &

Business Media.

Raha, S., Hossain, A., & Ghosh, S. (2008). Similarity based approximate reasoning:

Fuzzy control. Journal of Applied Logic, 6(1), 47–71.

Rector, A. (2003). Medical informatics. In The description logic handbook (pp. 406–

426).

Ref. code: 25615722300273MJP

119

Reiter, R. (1980). A logic for default reasoning. Artificial Intelligence, 13(1–2), 81–

132.

Schild, K. (1991). A correspondence theory for terminological logics: preliminary

report. In Proceedings of the 12th International Joint Conference on Artificial

Intelligence - Volume 1 (pp. 466–471). San Francisco, CA, USA: Morgan

Kaufmann Publishers Inc.

Schulz, S., Suntisrivaraporn, B., & Baader, F. (2007). SNOMED CT’s problem list:

ontologists’ and logicians’ therapy suggestions. Studies in Health Technology

and Informatics, 129(1), 802.

Smolka, M. S.-S. G. (1991). Attributive concept descriptions with complements.

Artificial Intelligence, 48(1), 1–26.

Spackman, K. A. (2005). Rates of change in a large clinical terminology: three years

experience with SNOMED Clinical Terms. In AMIA.

Spackman, K. A., Campbell, K. E., & Côté, R. A. (1997). SNOMED RT: a reference

terminology for health care. In Proceedings of the AMIA annual fall symposium

(p. 640).

Spackman, K. A., Dionne, R., Mays, E., & Weis, J. (2002). Role grouping as an

extension to the description logic of Ontylog, motivated by concept modeling in

{\sc Snomed}. In Proceedings of the AMIA Symposium (p. 712).

Stearns, M. Q., Price, C., Spackman, K. A., & Wang, A. Y. (2001). SNOMED clinical

terms: overview of the development process and project status. In Proceedings of

the AMIA Symposium (pp. 662–666). College of American Pathologists,

Northfield, IL, USA. Retrieved from

http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2243297/

Sun, R. (1995a). Robust reasoning: integrating rule-based and similarity-based

reasoning. Artificial Intelligence, 75(2), 241–295. https://doi.org/10.1016/0004-

3702(94)00028-Y

Sun, R. (1995b). Robust reasoning: Integrating rule-based and similarity-based

reasoning. Artificial Intelligence, 75(2), 241–295.

Suntisrivaraporn, B. (2013). A similarity measure for the description logic EL with

unfoldable terminologies. In INCoS, 408–413.

Tongphu, S., & Suntisrivaraporn, B. (2015). Algorithms for measuring similarity

Ref. code: 25615722300273MJP

120

between ELH concept descriptions: a case study on SNOMED CT. Journal of

Computing and Informatics (Accepted on May 7; to Appear).

Toni, F. (2007). Assumption-based argumentation for selection and composition of

services. In International Workshop on Computational Logic in Multi-Agent

Systems (pp. 231–247).

Tversky, A. (1977). Features of similarity. Psychological Review, 84(4), 327.

Van Eemeren, F. H., & Garssen, B. (2014). Argumentation by analogy in

stereotypical argumentative patterns. In Systematic approaches to argument by

analogy (pp. 41–56). Springer.

Van Gelder, A., Ross, K. A., & Schlipf, J. S. (1991). The well-founded semantics for

general logic programs. Journal of the ACM (JACM), 38(3), 619–649.

Van Harmelen, F., Lifschitz, V., & Porter, B. (2008). Handbook of knowledge

representation (Vol. 1). Elsevier.

Waller, B. N. (2001). Classifying and analyzing analogies. Informal Logic, 21(3).

Walton, D. (2010). Similarity, precedent and argument from analogy. Artificial

Intelligence and Law, 18(3), 217–246.

Walton, D., Reed, C., & Macagno, F. (2008). Argumentation schemes. Cambridge

University Press.

Weinreb, L. L. (2016). Legal reason: The use of analogy in legal argument.

Cambridge University Press.

Ref. code: 25615722300273MJP

121

APPENDICES

Ref. code: 25615722300273MJP

122

APPENDIX A

THE SYSTEMATIZED NOMENCLATURE OF MEDICINE:

SNOMED CT

The Systematized Nomenclature of Medicine, Clinical Terms (aka. SNOMED

CT)26 is one of the largest and the most widely used medical ontologies currently

available. Figure A.1 depicts its web interface which can be accessed via the link given

at the footnote. It was produced by merging SNOMED Reference Terminology (RT)

(Rector, 2003; Spackman, Campbell, & Côté, 1997) with Clinical Terms version 3

(CTV3) (O’Neil, Payne, & Read, 1995).

Figure A.1 SNOMED CT BioPortal (Accessed on February 21, 2018).

Historically, SNOMED RT was developed by the College of American

Pathologists (CAP) with the aim to be a comprehensive clinical reference terminology

26 http://bioportal.bioontology.org/ontologies/SNOMEDCT

Ref. code: 25615722300273MJP

123

e.g. the retrieval and analysis of data relating the causes of diseases, the treatment of

patients, and retrieval of health care information (Spackman et al., 1997). The RT

version was the first generation of the SNOMED terminology to use the formal

semantics through the KRSS syntax (Patel-Schneider & Swartout, 1993).

In 1993, the UK National Health Service (NHS) has adopted the Read codes,

which had been developed by a medical practitioner Read, for health electronic records.

Later on, the terminology has been expanded and enhanced to become Clinical Terms

version 3 (CTV3).

Between 1999 and 2002, CAP and the UK NHS together with Keiser

Permanente have jointly worked to merge SNOMED RT and CTV3. Its resulting

SNOMED CT contained 55% of the source concepts from CTV3 and 31% from RT.

Moreover, the ontology become freely available in both the US and UK.

Nowadays, SNOMED CT is already used by more than 50 countries.

Furthermore, it is the most comprehensive, multilingual clinical health-care

terminology in the world and is mapped to other international standards. As reported in

(Spackman, 2005; Stearns et al., 2001), SNOMED CT can be seen as the DL ℰℒℋ with

an unfoldable TBox. SNOMED CT has several inherent characteristics. We discuss

several of them in the following.

Firstly, SNOMED CT purposefully uses the special role roleGroup to group

two or more existential quantifications in a definition. Spackman et al. has illustrated

the use of roleGroup for the concept ‘Tetralogy of Fallot’ in (Spackman, Dionne, Mays,

& Weis, 2002) as follows.

TetralogyOfFallot

≡ ∃rG. (∃s.RightVentricle ⊓ ∃m.Hypertrophy)
⊓ ∃rG. (∃s.Aorta ⊓ ∃m.Overriding)
⊓ ∃rG. (∃s.Pulmonary ⊓ ∃m.Stenosis)
⊓ ∃rG. (∃s.InterventricularSeptum ⊓ ∃m.IncompleteClosure)

where rG, s, and m are abbreviations for roles roleGroup, site, and morphology,

respectively.

Secondly, individuals (i.e. the ABox) are omitted. On the other hand, SNOMED

concepts such as Germany, Japan, and Thailand are used to represent unique

individuals. Indeed, they are seen as ‘instances’ of the concept GeographicLocation.

Ref. code: 25615722300273MJP

124

Thirdly, SNOMED CT has 18 mutually exclusive top-level concepts for

dividing the entire ontology into disjoint categories. However, the disjointness is not

logically specified as axioms; hence, some concept names may happen to belong to

more than one category.

Lastly, the SNOMED CT top concept SCT-Top subsumes every defined

concept of each category. This means this special concept is shared by every expanded

concept.

In this thesis, we use SNOMED CT ontology version from January 2005 which

contains 13 role inclusions, 38,719 concept definitions, 340,972 primitive concept

definitions, 379,691 concept names and 62 role names.

Ref. code: 25615722300273MJP

125

APPENDIX B

IMPLEMENTATION OF THE MEASURE sim&

We have implemented sim& as a collection of application programming

interfaces (APIs) as well as command-line interfaces (CLIs) using Java version 1.8 with

the usage of Spring Boot version 1.3.3.RELEASE. The ultimate goal of these APIs is

to provide a tool for identifying the degree of concept similarity under preference

profile for the DL ℰℒℋ. As shown in Theorem 4.2, the computation of sim& can be

performed in polynomial time.

Since sim& is targeted on ℰℒℋ, we summarize the provided constructors as

follows:

• top concept ‘⊤’,

• conjunction ‘𝐶 ⊓ 𝐷’, and

• full existential quantification ‘∃𝑟. 𝐶’; and

the following means of expressivity to construct an ontology as follows:

• primitive concept definition ‘𝐴 ⊑ 𝐷’,

• concept definition ‘𝐴 ≡ 𝐷’, and

• role hierarchy axiom ‘𝑟 ⊑ 𝑠’.

Currently, sim& accepts two formats of inputs viz. in KRSS27 (Knowledge

Representation System Specification) (Patel-Schneider & Swartout, 1993), OWL (Web

Ontology Language), and OWL 228. Our APIs wrap OWL API29 version 3.4.4. In the

following, we have summarized shortly both KRSS and OWL syntaxes only the parts

relevant to our APIs for self-containment of the thesis.

In KRSS, an ontology contains the following sorts of statements:

• primitive concept definition ‘(define-primitive-concept CN C)’,

• concept definition ‘(define-concept CN C)’, and

• role hierarchy axiom ‘(define-primitive-role RNM RNJ)’,

27 http://dl.kr.org/krss-spec.ps
28 https://www.w3.org/TR/owl2-overview/
29 http://semanticweb.org/wiki/OWL_API.html

Ref. code: 25615722300273MJP

126

where CN be a concept name, RNM and RNJ be two different role names, and concept C

can be either CN, ⊤, or formed as follows:

• conjunction ‘(and	CM  …  CÙ)’,

• full existential quantification ‘(some	RN C)’,

where concept C, CM, … , CÙ are recursively defined as above.

Figure B.1 depicts an overview of OWL 2. In the center, the ellipse represents

the abstract notion of an ontology, which can be thought of as an abstract ontology

structure or an RDF graph. The top of the figure shows each concrete syntax based on

the abstract notion which can be serialized and exchanged. The bottom shows the two

specification of semantics defining the meaning of an ontology. As aforementioned,

our APIs wrap the OWL API, which can handle these various syntaxes and semantics.

Thus, this capability automatically transfer to our APIs for free. We refer the readers to

check the official documentation for the full descriptions of each syntax and semantics.

Figure B.1 The Structure of OWL 2 (Source: https://www.w3.org/TR/owl2-

overview/OWL2-structure2-800.png).

Ref. code: 25615722300273MJP

127

To use our APIs in Java, four classes may be involved viz.

‘KRSSServiceContext’, ‘OWLServiceContext’, ‘PreferenceProfile’, and

‘SimilarityService’. First, KRSSService- Context and OWLServiceContext are used to

initialize the ontology from a given file path. Initializing the ontology is mandatory and

is required to do once prior to the query of concept similarity. Second, PreferenceProfile

is used to configure each aspect of preference profile (cf. Section 4.1). If this class is

not explicitly used, it will automatically use the default value (cf. the default preference

profile). Third, SimilarityService encapsulates functionalities to compute the degree of

concept similarity based on a syntax and a computational approach (cf. Section 4.4) as

follows:

• measureOWLConceptsWithTopDownSimPi(conceptName1 : String,

conceptName2 : String) : BigDecimal;

• measureOWLConceptsWithDynamicProgrammingSimPi(conceptName1 :

String, conceptName2 : String) : BigDecimal;

• measureKRSSConceptsWithTopDownSimPi(conceptName1 : String,

conceptName2 : String) : BigDecimal; and

• measureKRSSConceptsWithDynamicProgrammingSimPi(conceptName1 :

String, conceptName2 : String) : BigDecimal.

Figure B.2 demonstrates how ones can use our APIs in Java.

Figure B.2 Example of Using sim& APIs in Java.

Ref. code: 25615722300273MJP

128

We have also implemented several batch programs based on the APIs and used

them on the part of our empirical evaluation of the thesis (cf. Section 4.5). For the

current implementation, each program stores each concept pair in question as a text file

separated by a space. Each aspect of preference profile is stored on its own file but is

collectively kept together in the same folder. Their outputs after the execution is stored

in another text file. Figure B.3 depicts the idea as described above. We also

implemented other batch programs based on the same techniques for the measure sim

(as discussed in Section 4.5) with the purpose of benchmarking. In total, we have

implemented 8 programs. Each uses the same structure as shown in the figure.

Figure B.3 Our Batch Program’s Structure.

To run each batch program, we have to execute the command ‘mvn spring-

boot:run’. When the program is run, it will take each concept pair defined in a given

ontology (such as ‘family.owl’ in this case), compute the degree of similarity under a

defined preference profile, and pipe the results to output file. Figure B.4 illustrates an

example after the execution. The figure shows that the degree of similarity between

both concepts is 0.96.

Figure B.4 The Degree of Similarity between Son and SonInLaw.

Ref. code: 25615722300273MJP

129

Finally, we have written 111 unit test cases to ensure that all batch programs

and the core APIs function correctly. These test cases were written to cover important

parts of the implementation. Concepts in both the family ontology (family.owl) and

Snomed ct were used by the test cases. To execute the test, we use the command ‘mvn

test’. Figure B.5 depicts the results.

Figure B.5 Results of Unit Tests.

Ref. code: 25615722300273MJP

130

BIOGRAPHY

Name Mr. Teeradaj Racharak

Date of Birth September 18, 1988

Education 2010: Bachelor of Engineering (Software and

Knowledge Engineering) Kasetsart University

 2012: Master of Engineering (Computer Science)

Asian Institute of Technology

 2018: Doctor of Philosophy (Information Science)

Japan Advanced Institute of Science and

Technology

Publications

Racharak, T., Tojo, S., Hung, N. D., & Boonkwan, P. (2019). On construction and

evaluation of analogical arguments for persuasive reasoning. Applied Artificial

Intelligence, 33.

Racharak, T., Suntisrivaraporn, B., & Tojo, S. (2018). Personalizing a Concept

Similarity Measure in the Description Logic ℰℒℋ with Preference Profile.

Computing and Informatics, 37(3), 581–613.

Racharak, T., & Tojo, S. (2018). Inherited Properties of ℱℒw concept similarity

measure under preference profile. In Agents and Artificial Intelligence - 9th

International Conference, ICAART 2018, Porto, Portugal, February 24-26,

2017, Revised Selected Papers. Springer International Publishing.

Racharak, T., Tojo, S., Hung, N. D., & Boonkwan, P. (2017a). Argument-based logic

programming for analogical reasoning. Lecture Notes in Computer Science

(including subseries Lecture Notes in Artificial Intelligence and Lecture Notes

in Bioinformatics) (Vol. 10247 LNAI).

Racharak, T., Tojo, S., Hung, N. D., & Boonkwan, P. (2017b). Combining answer set

programming with description logics for analogical reasoning under an agent’s

Ref. code: 25615722300273MJP

131

preferences. Lecture Notes in Computer Science (including subseries Lecture

Notes in Artificial Intelligence and Lecture Notes in Bioinformatics) (Vol.

10351 LNCS).

Racharak, T., & Tojo, S. (2017a). Analogical reasoning in clinical practice with

description logic ℰℒℋ. In Agents and Artificial Intelligence - 9th International

Conference, ICAART 2017, Porto, Portugal, February 24-26, 2017, Revised

Selected Papers (pp. 179–204). Springer International Publishing.

Racharak, T., & Tojo, S. (2017b). Tuning agent’s profile for similarity measure in

description logic ℰℒℋ. In Proceedings of the 9th International Conference on

Agents and Artificial Intelligence, ICAART 2017, Volume 2, Porto, Portugal,

February 24-26, 2017. (pp. 287–298).

Racharak, T., Suntisrivaraporn, B., & Tojo, S. (2016a). sim&: A Concept Similarity

Measure under an Agent’s Preferences in Description Logic ℰℒℋ . In

Proceedings of the 8th International Conference on Agents and Artificial

Intelligence (pp. 480–487).

Racharak, T., Suntisrivaraporn, B., & Tojo, S. (2016b). Identifying an agent’s

preferences toward similarity measures in description logics. Lecture Notes in

Computer Science (including subseries Lecture Notes in Artificial Intelligence

and Lecture Notes in Bioinformatics) (Vol. 9544).

Racharak, T., Tojo, S., Hung, N. D., & Boonkwan, P. (2016). Argument-Based Logic

Programming for Analogical Reasoning. In New Frontiers in Artificial

Intelligence - JSAI-isAI 2016 Workshops (pp. 253–269).

Racharak, T., & Suntisrivaraporn, B. (2015). Similarity measures for ℱℒw concept

descriptions from an automata-theoretic point of view. In Proceedings of the

6th Annual International Conference on Information and Communication

Technology for Embedded Systems (ICICTES 2015).

Ref. code: 25615722300273MJP

