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ABSTRACT 

 

Analogical reasoning is a complex process based on a comparison between two 

pairs of concepts and states of affairs (aka. the source and the target) for characterizing 

certain features from one to another. Arguments which employ this process to support 

their claims are called analogical arguments. Our goals are to study the structure and 

the computation for their defeasibility in light of the argumentation theory. We outline 

the results of our study as comprising two parts in the following.  

First, analogical reasoning involves in understanding the notion of similarity. 

To address this problem, we first take a look into the literature of similarity models. 

The most basic (but useful) one was introduced by (Tversky, 1977). In Tversky’s 

model, an object is considered as a set of features. Then, the similarity of two objects 

is measured by the relationship between a number of common features and a number 

of different features. Nonetheless, not every feature need to be cited in analogical 

arguments, the studies in (Hesse, 1965; Waller, 2001; Weinreb, 2016) reported that 

features used by the comparison should be ‘relevant’ for characterizing certain features 

from one to another. As part of the study, we formally investigate the characteristics of 

a ‘similarity notion’ for analogical arguments in this dissertation. Though our similarity 
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models are posed in a general structure, our running examples are shown w.r.t. 

description logic formalism.  

Second, analogical reasoning involves in understanding the structure of 

analogical arguments and computing their nature of defeasibility. These problems are 

indeed related to the study of structured argumentation and the acceptability of 

analogical arguments. As their results, we formally introduce a general framework in 

structured argumentation called assumption-based argumentation with predicate 

similarity ABA(p) framework. This framework can be seen as an extension of 

assumption-based argumentation framework (ABA), in which not only assumptions 

can be used but also similarity of predicates (w.r.t. by the proposed similarity notion) 

are used to support a claim. ABA(p) labels each argument tree with an analogical degree 

and different ways to aggregate numerical values are studied toward gullible/skeptical 

characteristics in agent reasoning. The acceptability of analogical arguments is 

evaluated w.r.t. Dung-styled semantics.  

Finally, we demonstrate how our study can benefit the area of service science. 

Realistic examples are analyzed and a diverse range of applications is discussed. 

 

Keywords: Analogical Reasoning, Metaphorical Reasoning, Description Logic, 

Assumption-based Argumentation, Persuasive Reasoning 
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CHAPTER 1 

INTRODUCTION 
 
1.1 Argumentation by Analogy 

The word ‘Analogy’ (or, ‘according to ratio’ in Greek) originally meant rational 

correspondence (Macagno, 2014). In the Posterior Analytics1, Aristotle pointed out that 

this type of reasoning could be used for identifying a fundamental characteristic 

common to various entities, and for which no name exists. His statement is quoted as 

follows: 

“Again, another way is excerpting in virtue of analogy; for you cannot get one 

identical thing which pounce and spine and bone should be called; but there will be 

things that follow them too, as though there were some single nature of this sort.” 

Intuitively, Aristotle noticed that there is not a specific generic class that 

subsumes the pounce (of a cuttlefish), the spine (of a fish), and the bone (of an animal). 

That is, no name representing this category existed. However, these three different 

concepts share substantial characteristics in common. Analogy, in this sense, can be 

used to reveal a genus (i.e. a generic, common, and relevant feature) that can be 

considered as an ontological and semantic property that does not have a conventional 

name (Glucksberg & Keysar, 1990; Hesse, 1965). 

Argumentation by analogy (or analogical reasoning) are powerful cognitive 

tools, in a sense that enabling to deal with unfamiliar situations, and can be classified 

in various ways. For example, (Garssen, 2009, p. 134) classified that there are two 

variants of argumentation by analogy represented in the various argumentative patterns 

viz. descriptive analogy and normative analogy. In (Bermejo-Luque, 2014, p. 58), 

analogical reasoning is characterized based on two perspectives viz. qualitative analogy 

and quantitative analogy. Other proposed models can be found in (Copi, Cohen, & 

McMahon, 2016; Davies, 1988; Guarini, Butchart, Smith, & Moldovan, 2009; Walton, 

2010; Walton, Reed, & Macagno, 2008). 

                                                
1 The Posterior Analytics is a text from Aristotle’s Organon that deals with demonstration, definition, 
and scientific knowledge i.e. syllogisms of scientific knowledge and statements of things’ nature. 
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Despite the diversity of existing models, analogical reasoning can be considered 

as a process based on a comparison between two pairs of concepts or states of affairs 

(aka. the source and the target) sharing some common features (Bartha, 2010). This 

comparison is the ground of this specific type of the reasoning, in which the conclusion 

of an argument is attributed to a specific feature characterized from one to another. The 

goal of this thesis is to study and investigate its computational aspect, particularly in 

light of the argumentation theory, rather than the psychological modeling.  

Table 1.1 Argumentation by Analogy as An Extrapolation. 

Description mentioned in the source Description mentioned in the target 

Relevant property 1 Relevant property 1 

Relevant property 2 Relevant property 2 

Relevant property 3 Extrapolated relevant property 3 

 

In the following subsections, each variation of argumentation by analogy is 

exemplified and discussed w.r.t its usage pattern in an argumentative discourse.  

 

1.1.1 Descriptive Analogy 

A typical characteristic of descriptive analogical reasoning is that the conclusion 

that is defended and the reason that is advanced in its support are descriptive. In other 

words, a comparison in this kind of analogy is made between the actual characteristics 

of one concept or state of affairs and the actual characteristics of another concept or 

state of affairs. For instance,  

“camera surveillance in the centre of Amsterdam will be effective because 

camera surveillance proved to be effective in London” in (Van Eemeren & Garssen, 

2014, p. 48) 

In this argumentation, London and Amsterdam are compared and it is claimed 

that ‘camera surveillance’ will be the case in Amsterdam because such thing has already 

happened in London and Amsterdam is comparable to London. 

It is worth observing that similarity is often mentioned implicitly and is usually 

subjective to certain ‘relevance’ in argumentation by analogy. The above example may 

assume that there are a number of similarities relevant to ‘safety’ between Amsterdam 
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and London. The fact that they are both capitals may be not relevant here since this 

condition is not directly related to safety in the streets. Instead, the fact that they are big 

cities is a relevant one to conclude that the property mentioned in London i.e. camera 

surveillance is effective is shared to Amsterdam. 

Intuitively, descriptive analogy is often employed to extrapolate a property from 

commonalities between two concepts or states of affairs. In other words, when the 

source and the target are comparable and have properties shared in common, they are 

assumed to share another property mentioned in the target. Table 1.1 shows a general 

characterization for this kind of analogical reasoning. According to this 

characterization, this kind of analogical argument is alternatively called case-based 

reasoning. 

To evaluate the acceptability of an extrapolated property, the first step is to ask 

whether the two concepts or states of affairs are comparable. If they are comparable, 

they are obliged to show that they are indeed belonged to the same class. This can be 

asked by the antagonist to the protagonist for mentioning the relevant properties which 

enable the conclusion that they are belonged to the same class. Mentioning the relevant 

properties can again enable the antagonist to criticize the perception of similarity since 

it may not be able to recognized as similarity or the mentioned properties may be not 

relevant to the issue at hand. 

Not merely criticizing the mentioned relevant properties, the antagonist can also 

point out the differences between them. This leads the protagonist to show either these 

differences are not relevant or the mentioned properties for similarity outweigh the 

differences. Regarding this testing procedure, the acceptability of a claim can be 

decided if an extrapolation is successful nor not. 

 

1.1.2 Normative Analogy 

In normative analogy, the principle of consistency plays a central role. This can 

be seen in the rule of justice i.e. people and institutions which belong to the same 

category should be treated similarly. Like the descriptive analogy, this kind of 

argumentation by analogy is used to claim that what is mentioned in the target case is 

comparable to what is mentioned in the source case. For instance,  
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“the employees in the administration department should get a salary raise 

because the sale persons in our firm also get a salary raise” in (Van Eemeren & 

Garssen, 2014, p. 48) 

It is worth observing that normative analogy differs from descriptive analogy in 

a sense that the use of the principle of consistency does not involve an extrapolation of 

characteristics. Its central issue is whether two persons or groups of people are really 

belonged to the same class or not.  

Another difference is the fact that a claim in normative analogical 

argumentation is ‘normative’ in nature i.e. it claims that people in the same category 

should be treated in the same direction.  

Similar to the usage of descriptive analogical argumentation, a set of critical 

questions can be employed to evaluate a claim. Again, the first step is to ask whether a 

person or a group of people mentioned in the target case and another person or group 

of people mentioned in the source case are comparable. After this question has been 

answered by the protagonist, the antagonist can further ask the protagonist to justify 

that the two persons or groups of people being compared are really belonged to the 

same category. To that effect, the protagonist is forced to show additional 

argumentation. If the antagonist points at differences i.e. showing that the two persons 

or groups of people are not belonged to the same class, the protagonist’s response has 

to show that the differences are not relevant or outweigh the similarities.  

Normative analogical argumentation shares some characteristics with a specific 

pattern of reasoning introduced by Govier in 1987 called a priori reasoning (Gover, 

2018). In a priori reasoning, some person, group or institution must act consistently: 

“You should do X because, in a similar situation, you would also do X. However, a 

priori reasoning differs from normative analogical reasoning in a sense that an example 

used in the comparison does not necessarily exist. Its basic idea is that if it is admitted 

in the answer that a person – imaginary or not – would be treated in a certain way, it 

has to be accepted that the (real) person of the same category must be treated in the 

same way. 

 

1.1.3 Figurative Analogy 
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In figurative analogy, two different concepts or states of affairs are situated on 

different levels of experience (or are belonged to completely different kinds). An 

example was analyzed in (Hastings, 1963), in which President Truman puts forward at 

the beginning of the Korea conflict in defense of his claim that the United States should 

strike immediately as follows:  

“The best time to meet the threat is in the beginning. It is easier to put out a fire 

in the beginning when it is small than after it has become a roaring blaze” in (Hastings, 

1963, p. 114) 

Fire and war are belonged to different classes, which make them impossible to 

compare directly between each other. By viewing literally, President Truman does not 

make a direct comparison between war and fire. To deal with this kind of comparison, 

the abstract relationship between the two classes is taken into account. Like the above 

example, the president’s intention was to convey that the war in Korea would become 

unmanageable if we did not act now. This relationship was later characterized by 

(Perelman, 1969) as the ‘resemblance of structures’ as follows: 

A and B together, the terms to which the conclusion relates are called theme.  

C and D together, the terms that advance it are called phoros. 

We schematize the above example according to Perelman as follows:  

Theme (A - B): meeting the threat -- in the beginning 

Phoros (C - D): putting out a fire -- when it is small 

Intuitively, this schematization speaks out that only one similarity is shared 

between two situations. Its objective is to establish the general rule governing the 

situations e.g. the rule “it is suggested to approach a problem when it is small” is applied 

in the above example. After this general rule is constructed, it does not make sense for 

figurative analogy to search for additional similarities. This makes it differs from both 

descriptive analogical argumentation and normative analogical argumentation, which 

often imply that there are a number of similarities. 

It is worth mentioning that figurative analogical argumentation is based on 

‘metaphorical’ relation that serves as an indirect means of expressing a general rule for 

advancing a claim. Ones may also observe that no real comparison has been made in 

an idiomatic expression. Since an idiomatic expression is always used to convey 
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implicitly intended meaning, it is ludicrous to ask critical questions in order to evaluate 

the acceptability of a claim advanced by a figurative analogy. 

Using an idiomatic expression to advance a claim does not mean that this kind 

of analogical argumentation is logically weak. It might mean so if it is compared with 

other kinds of analogical argumentation. Nonetheless, when it is properly constructed, 

what is presented in a figurative analogy can be compelling argumentation in a different 

way. This also means that, when studying about analogical argumentation, figurative 

analogy should be treated in a different way from descriptive analogy and normative 

analogy. In this thesis, we ‘only’ concentrate on argumentative patterns containing 

descriptive analogy and normative analogy. 

 
1.2 Argumentation Scheme for Argument from Analogy 

Though many characterizations of argument from analogy have been proposed, 

they can be represented by a generic structure called argumentation scheme for 

argument from analogy introduced by (Walton et al., 2008) as follows: 

Similarity Premise: Generally, case C1 is similar to case C2 

Base Premise: A is true (false) in case C1  

Conclusion: A is true (false) in case C2  

This generic structure can be explained as follows. The similarity is regarded to 

hold between two cases. These cases could be two different ‘concepts’ or ‘states of 

affairs’. Consequently, a property (e.g. a feature A) attributes from one to another. 

Intuitively, this kind of structure can be represented as a logic program where A and Ci 

are appeared as the head and the body of an inference rule, respectively. Several 

attempts similar to this approach were developed in (Racharak, Tojo, Hung, & 

Boonkwan, 2017a, 2017b; Raha, Hossain, & Ghosh, 2008; Sun, 1995a).  

A fundamental problem for this kind of reasoning is how to evaluate an 

analogical argument, i.e. its acceptability. Basically, this problem amounts to 

investigations of the structure of analogical arguments and its defeasibility 

characteristics. At the abstract level, critical questions (CQ) (Walton et al., 2008) 

associated to the argument scheme outlines several conditions of defeasibility:  

CQ1:  Is A true (false) in C1?  

CQ2:  Are C1 and C2 similar in the respects cited?  
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CQ3:  Are there important differences (dissimilarities) between C1 and C2 

CQ4:  Is there some other case C3 that is also similar to C1 except that A is false 

(true) in C3?  

 

1.2.1 Three Issues in Walton’s Scheme 

Though the critical questions can be used to understand which analogical 

arguments should not be accepted. However, they do not address the following three 

basic problems: 

1. How similarity/dissimilarity should be determined (which amounts to 

understand the notion of similarity)?; 

2. How an analogical argument is constructed (which amounts to understand 

the structure of an analogical argument)?; and 

3. How a conclusion drawn from the similarity premise and the base premise is 

warranted (which amounts to understand the evaluation of an analogical 

argument).  

The argumentation scheme and its critical questions do not involve these aspects 

concretely. 

To address the first problem, we first take a look into the literature of similarity 

models. The most basic (but useful) one was developed by (Tversky, 1977). In 

Tversky’s model, an object is considered as a set of features. Then, the similarity of two 

objects is measured by the relationship between a number of common features and a 

number of different features. Nevertheless, not every feature need to be cited in 

analogical arguments, the studies in (Hesse, 1965; Waller, 2001; Weinreb, 2016) 

reported that features used by the comparison should be ‘relevant’ to the attribution of 

the property. This leads to our study on characteristics of similarity models for 

analogical arguments in this work. 

Addressing the second and the third problems involve in computing arguments 

in terms of argumentation with structure (or structured argumentation). It should be 

noted that argumentation (Dung, 1995) is proven to be a promising platform to 

understand a non-monotonic and defeasible reasoning. With this viewpoint, these 

problems are indeed the problems of determining ‘acceptable’ analogical arguments 

w.r.t. argumentation semantics. That is, analogical arguments can attack (and be 
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attacked by) other arguments. We show the correspondence between this attack-

counterattack relationship and the defeasibility conditions of the argumentation scheme 

in this thesis. 

 

1.3 Objectives 

The primary objective of the thesis is to provide well understanding on the 

computational aspect of analogical reasoning in argumentation, rather than the 

psychological modeling, for dealing with the aforementioned problems. This goal is 

further developed into the following objectives: 

1. To propose well-defined notions of similarity measure for concepts, 

particularly description logic concepts. These well-defined notions can be 

divided into two parts viz. the basic notion of concept similarity and its 

extension for similarity of concepts under preference context;  

2. To investigate a general framework for analogical argumentation. Here, our 

development is restricted on assumption-based argumentation framework 

(ABA) (Dung, Kowalski, & Toni, 2009),	which	is	a	less	abstract	framework	

than	the	abstract	argumentation	(AA)	(Dung,	1995);	 

3. To demonstrate potential applications of our proposed methods.  

To fulfill these objectives, this thesis makes the following main contributions:  

1. The well-defined notion of concept similarity measure in description logics, 

which is defined as a function mapping from a concept pair to a unit interval 
(0 ≤ 𝑥 ≤ 1) for any real number x, also, a group of identified preferential 

aspects (called preference context), which can together be used to define the 

notion concept similarity under preferences (cf. Chapter 3);  

2. The well-defined concrete measure sim& for the description logic ℰℒℋ and 
mathematical proofs of their inherited properties, as well as, two algorithmic 

procedures for implementing simπ and their practical evaluation w.r.t. a 

medical ontology SNOMED CT (cf. Chapter 4); and 

3. The general framework called assumption-based argumentation with 

predicate similarity ABA(p) framework, which can be seen as an extension 

of ABA i.e. not only assumptions can be used but also similarity of 

predicates are used to support a claim. In ABA(p), an argument is represented 
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by a tree labeled with a unit interval and its acceptability is evaluated w.r.t. 

the semantics of AA (cf. Chapter 5).  

 

1.4 Reader’s Guide 

The remainder of the thesis is organized as follows: 

Chapter 2 briefly summarizes the background in argumentation theory and 

description logics (DLs). First, the argumentation part basically introduces essential 

elements of Dung’s abstract argumentation (AA) and its semantics. This chapter also 

introduces less abstract formalisms, dealing in particular with the construction of 

arguments and the conditions for an argument to attack another e.g. assumption-based 

argumentation (ABA). Second, the description logic part introduces its syntax, 

semantics, and basic reasoning algorithms, which are widely implemented by 

conventional reasoners.  

Chapter 3 defines the problem of concept similarity and gives formal definitions 

of this problem in DLs. Intuitively, a problem of concept similarity can be seen as a 

generalization of concept equivalence; hence, it can be also seen as a function which 

maps two equivalent concepts to 1 and totally dissimilar concepts to 0. We also 

investigate how a concrete measure in sub-Boolean logics can be developed. Inherited 

properties are also proven. In contrast to expressive DLs, sub-Boolean DLs are 

inherently tractable by nature. This fact has motivated us to take a look into them closely 

in the thesis, especially how ones can generalize the notion of concept equivalence for 

developing concrete measures (also see (Racharak, 2018, Chapter 4) for additional 

detailed analysis). This chapter is mainly summarized from our published work 

(Racharak, Suntisrivaraporn, & Tojo, 2016b, 2016a).  

As aforementioned, similarity measures may be subjective to relevant contexts. 

Chapter 4 investigates the notion of concept similarity under preferences in DLs and 

existing approaches dealing with this notion. This chapter re-visits and re-defines the 

development of similarity measures in a more formal way in DLs. After its redefinition, 

measure sim~ is also introduced for measuring the degree of similarity in DL ℰℒℋ. 

This chapter also provides mathematical proofs of its properties, studies algorithmic 

procedures for sim~ (viz. the top-down approach and the bottom-up approach), and 

performs empirical evaluation on the medical ontology SNOMED CT. This chapter is 
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mainly summarized from our published work (Racharak, Suntisrivaraporn, et al., 

2016a). 

Concept similarity under preferences previously introduced is equipped with 

ABA to define a general framework called assumption-based argumentation with 

predicate similarity ABA(p) in Chapter 5. As a general framework, it is discussed that 

ABA(p) can be defined for any logical language specified by means of ‘inference rules’ 

and ‘terminological formalism’, by identifying ‘sentences’ in the underlying languages 

that can be treated as assumptions and concept descriptions. Like ABA, all semantic 

notions for determining the acceptability of arguments in AA also apply to arguments 

in ABA(p). Hence, it has been investigated in this chapter a constructive proof procedure 

for determining a grounded set of assumptions. Lastly, it is demonstrated that the 

proposed framework captures the argumentation scheme for argument from analogy 

and provides an explanation when it is used for persuasion. This chapter is mainly 

summarized from our published work (Racharak, Tojo, Hung, & Boonkwan, 2019).  

Chapter 6 summarizes the significance of the thesis’s results, discusses about 

the potential applications of the thesis w.r.t. the service science area, and sketches the 

future research directions. We note that service science is a new discipline emerging 

from the rapid development of services across the industrial world. Its root is an 

interdisciplinary study of computer science, operations research, industrial engineering, 

mathematics, business strategy, management science, decision theory, and social and 

cognitive science, and legal science. Its goal is to improve essential nature of service, 

i.e. the joint co-creation between service providers and service consumers. 

Some results in this thesis have been previously published. Indeed, preference 

profile, the developed concept similarity measure under preferences profile, and 

concrete measure sim& for the logic ℰℒℋ (discussed in Chapter 3 and Chapter 4) 

appears in (Racharak, Suntisrivaraporn, & Tojo, 2018; Racharak, Suntisrivaraporn, et 

al., 2016b, 2016a). The proposed framework in argumentation and a constructive proof 

procedure (discussed in Chapter 5) appears in (Racharak et al., 2019). Preliminary 

studies, whose contents are not included in this thesis, can be found in (Racharak & 

Suntisrivaraporn, 2015; Racharak & Tojo, 2017b, 2017a, 2018; Racharak et al., 2017a, 

2017b). 
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CHAPTER 2 

PRELIMINARIES 
 

This thesis exploits benefits of two different reasoning paradigms viz. rule 

reasoning and schemata reasoning. They exhibit certain shortcomings that can be 

compensated for by advantages of the other. In particular, an argumentation framework 

is used as underlying mechanisms of rule reasoning and is explained in Section  2.1. 

Furthermore, description logics are used as underlying mechanisms about conceptual 

schemata and is described in Section 2.2. 

 
 

2.1 Argumentation Framework and Its Structure  

 
2.1.1 Abstract Argumentation  

An abstract argumentation framework (AA) (Dung, 1995) is a pair (𝐴, 𝑅) where 

𝐴 is a (possibly infinite) set of arguments and 𝑅	 ⊆ 𝐴	 × 𝐴 is called an attack relation. 

An AA has an obvious representation as a directed graph, in which each node is an 

argument and each edge connects an attacking argument to an attacked argument. A 

simple argumentation framework AAJ.M ∶= ⟨{𝑎, 𝑏}, {(𝑎, 𝑏)}⟩ is shown in Figure 2.1.  

 
Figure 2.1 AAJ.M: A Simple Argumentation Framework. 

 

In AA, an argument is not assumed to have any specific structure; thus, it can 

represent different situations. For instance, in a context of reasoning about weather, 

argument b may be associated with the inference rule “Tomorrow will rain because the 

national forecast says so” whereas a may be associated with “Tomorrow will not rain 

because the regional weather forecast says so”. In a legal dispute, argument b may be 

associated with the prosecutor’s statement “The suspect is guilty because an 

eyewitness, Mr. Smith, says so” whereas a may be associated with “Mr. Smith is an 

alcohol-addicted and it is proved that he was completely drunk; hence, his testimony 

should not be considered”. In the context of analogical reasoning, argument b may 
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represent “I think a goose can quack since it is like a duck” whereas a represents 

“Though it is similar to a duck, but to say that it can quack, we have to look into their 

vocal cords; and since they are built differently, it cannot quack”.  

We may observe that arguments may attack each other. This spells out that 

arguments may not stand together and their statuses are ‘subject to’ an evaluation. It is 

worth mentioning that this evaluation only concerns about the acceptability of an 

argument – not about the conclusions. Figure 2.2 illustrates this distinction by 

continuing from the legal dispute example, where argument c represents “The suspect 

is guilty because his fingerprints have been found on the crime scene”. Observe that 

this new argument has no attack relationship with others. Hence, apart from a, argument 

c is also accepted. 

 
Figure 2.2 AAJ.J: An Argumentation Framework Containing An Isolated Argument. 

 

In fact, the notion of ‘acceptability’ can be defined in many ways and such 

formal definitions are called argumentation semantics. Basically, semantics for AA 

return sets of arguments called extensions, which are conflict-free and defend 

themselves against attacks. We formally give their definitions in the following.  

Definition 2.1. Given an argumentation framework AA ∶= ⟨𝐴, 𝑅⟩, a set 𝑆	 ⊆ 𝐴 

is conflict-free iff ∄𝑎, 𝑏 ∈ 𝑆 such that (𝑎, 𝑏) ∈ 𝑅. 

 

Given an argumentation framework ⟨𝐴, 𝑅⟩, we call that a set 𝑆 ⊆ 𝐴 of arguments 

‘attacks’ an argument 𝑏 ∈ 𝐴 (denoted by 𝑆𝑅𝑏) if ∃𝑎 ∈ 𝑆: (𝑎, 𝑏) ∈ 𝑅, for convenience. 
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Definition 2.2. Given an argumentation framework AA ∶= ⟨𝐴, 𝑅⟩, an argument 

𝑎 ∈ 𝐴 is acceptable w.r.t. (or defended by) a set 𝑆 ⊆ 𝐴 iff ∀𝑏 ∈ 𝐴:	𝑏𝑅𝑎	 ⟹ 𝑆𝑅𝑏2. 

 

Intuitively, ‘conflict-free’ corresponds to the idea that a set of arguments must 

be able to stand together and ‘acceptability’ expresses the idea that an extension is a set 

of arguments that can withstand its attacks by responding with other attacks. These two 

properties are used to define the property of admissibility, which lies at the heart of all 

semantics introduced in (Dung, 1995). 

Definition 2.3. Given an argumentation framework AA ∶= ⟨𝐴, 𝑅⟩, a set 𝑆 ⊆ 𝐴 

is admissible iff 𝑆 is conflict-free and ∀𝑎 ∈ 𝑆:	𝑎 is acceptable w.r.t. 𝑆. 

 

Based on the admissibility, Dung has defined four ‘traditional’ semantics in his 

landmark paper viz. complete, grounded, stable, and preferred semantics. We review 

each of them in the following.  

 

2.1.1.1 Complete Semantics 

The notion of complete extension lies at the heart of all traditional Dung’s 

semantics. It is based on the admissibility defined earlier and a property that “a 

complete extension must be able defend itself and includes all arguments it defends”. 

The term ‘complete semantics’ has subsequently gained acceptance in the literature and 

is used to refer to the formal definition ruling arguments of complete extensions.  

Definition 2.4. Given an argumentation framework AA ∶= ⟨𝐴, 𝑅⟩, a set 𝐸 ⊆ 𝐴 

is a complete extension iff 𝐸 is admissible and 𝑥 ∈ 𝐸  ⟺ 	𝑥 is acceptable w.r.t. 𝐸. 

 

It is worth observing that the empty set is always admissible and that arguments 

not receiving attacks in an argumentation framework (called initial arguments) are 

acceptable w.r.t. the empty set. According to these observations, it can be shown that 

the following properties satisfy for any complete extension:  

• It cannot be empty; 

• It	is	the	empty	set	iff	its	initial	arguments	are	empty;	 

                                                
2 For convenience, we also write 𝑎𝑅𝑏 for (𝑎, 𝑏) ∈ 𝑅. 
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• It	subsumes	initial	arguments.	 

We illustrate the identification of complete extensions from Figure 2.3 as 

follows. We observe that its initial arguments are empty i.e. ∅. We also observe that all 

singletons except {𝑏}  are admissible. Nonetheless, only {𝑎}  and {𝑑}  are complete 

extensions. Set {𝑐}  is not complete since it defends a. Now, we consider larger 

admissible sets. Ones can observe that {𝑎, 𝑐}  and {𝑏, 𝑑}  are complete. Hence, we 

conclude that ∅, {𝑎}, {𝑑}, {𝑎, 𝑐}, {𝑏, 𝑑} are complete extensions.  

 
Figure 2.3 AAJ.N: Two Mutual Attacks. 

 

2.1.1.2 Grounded Semantics 

The grounded extension includes arguments whose defense is ‘rooted’ in initial 

arguments. To put it another way, this set of arguments represents ‘strong defense’. 

This semantics has a correspondence with Pollock’s approach (Pollock, 1992) and the 

well-founded semantics of logic programs (Van Gelder, Ross, & Schlipf, 1991). We 

give its formal definition in the following. 

Definition 2.5. Given an argumentation framework AA ∶= ⟨𝐴, 𝑅⟩, a set 𝐸 ⊆ 𝐴 

is a grounded extension iff 𝐸 is the set inclusion minimal complete extension. 

 

The grounded extension is unique and can be built incrementally as follows. 

First, the procedure begins with initial arguments and the argumentation framework is 

modified by suppressing on the arguments attacked by the initial arguments. Next, the 

initial arguments are re-identified. We note that this set could now become larger since 

the arguments attacked by the ‘new’ initial arguments can be suppressed. The process 

stops when no new initial arguments can be found after a suppression step. 

We illustrate the above procedure by considering on Figure 2.3. We observe 

that the initial arguments of the argumentation framework are empty. Since there are 

no initial arguments, the process has stopped. 

 

2.1.1.3 Stable Semantics 
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Stable semantics relies on a very simple intuition i.e. an extension should be 

able to attack all arguments which are not included in it. This leads to the following 

definition.  

Definition 2.6. Given an argumentation framework AA ∶= ⟨𝐴, 𝑅⟩, a set 𝐸 ⊆ 𝐴 

is a stable iff 𝐸 is conflict-free and ∀𝑥 ∈ 𝐴: (𝑥 ∉ 𝐸 ⟹ 𝐸𝑅𝑥).  

 

By definition, any stable extension is also a complete extension and a maximal 

conflict-free set of an argumentation framework. Stable semantics has significant 

counterparts in several contexts i.e. (Dung, 1995) showed its correspondence with 

solutions of cooperative n-person games, solutions of stable marriage problem, 

extensions of Reiter’s default logic (Reiter, 1980) , and stable models of logic programs 

(Gelfond & Lifschitz, 1988). Unfortunately, stable semantics has also a significant 

drawback i.e. there are argumentation frameworks in which no stable extensions exist. 

A simple example is shown in Figure 2.4. 

 

Figure 2.4 AAJ.O: A Cyclic Argumentation Framework. 

 

2.1.1.4 Preferred Semantics 

The requirement that an extension must attack anything outside it may be too 

‘aggressive’. This requirement can be relaxed by considering an extension that is as 

large as possible and is able to defend itself from attacks. This intuition is captured by 

preferred (or credulous) semantics, which is defined as follows.  

Definition 2.7. Given an argumentation framework AA ∶= ⟨𝐴, 𝑅⟩, a set 𝐸 ⊆ 𝐴 

is a preferred extension iff 𝐸 is the set inclusion maximal complete extension.  

 

By definition, we can observe that any stable extension is also a preferred 

extension, but not vice versa. We illustrate the identification of preferred extensions by 

considering Figure 2.3. Here, it shows that there are two preferred extensions viz. {𝑎, 𝑐} 
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and {𝑏, 𝑑}. Furthermore, considering Figure 2.4, there is only one preferred extension 

viz. ∅.  

 

2.1.2 Structured Argumentation 

In AA, the structure and meaning of arguments and attacks are abstract. On the 

one hand, these characteristics enable the study of properties which are independent of 

any specific aspects (Baroni & Giacomin, 2009). On the other hand, this generality 

features a limited expressivity and can be hardly adopted to model practical target 

situations. To fill out this gap, less abstract formalisms were considered, dealing in 

particular with the construction of arguments and the conditions for an argument to 

attack another e.g. ASPIC+ (Modgil & Prakken, 2014), DeLP (Garcı́a & Simari, 2004), 

and assumption-based argumentation (ABA) (Dung et al., 2009). This work extends 

ABA and we include its basis here for self-containment.  

Definition 2.8. An ABA framework is a quadruple 〈ℒ, ℛ,𝒜, � 〉,	 where  

• (ℒ, ℛ)  is a deductive system, in which ℒ  is a language and ℛ  is a set of 

inference rules,  

• 𝒜 ⊆ ℒ is a (non-empty) set, referred to as the set of assumptions,  

• �  is a total mapping from 𝒜 to ℒ, where 𝛼� is the contrary of 𝛼.  

 

We assume that the inference rules in ℛ have the syntax 𝑙w ← 𝑙M, … , 𝑙� (for 𝑛 ≥

0) where 𝑙¡ ∈ ℒ . We refer to 𝑙w  and 𝑙M, … , 𝑙�  as the head and the body of the rule, 

respectively. We also represent the rule 𝑙	 ← simply as l and restrict our attention to flat 

ABA framework (Bondarenko, Dung, Kowalski, & Toni, 1997), i.e. if 𝑙	 ∈ 𝒜, then 

there exists no inference rules of the form 𝑙 ← 𝑙M, … , 𝑙� ∈ ℛ for any 𝑛 ≥ 0. 

Now, we exemplify how ABA can be used to represent a human being’s 

reasoning. An example is given in terms of dialogue between two fictitious agents 

called Agent1 and Agent2 as follows:  

Agent1: I think a goose can quack since it is like a duck. 

Agent2: No. Though it is like a duck, but to say that it can quack, we have to 

look into their vocal cords. Since they are built differently, it cannot quack.  
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The above example can be considered as analogical reasoning because Agent1 

and Agent2 employ the perception of similarity as a means to justify their reasoning 

mechanism. The argumentation scheme for argument from analogy (cf. Section 1.2 for 

the description of its schemata) can be represented in ABA as follows3: 

ℎ𝑜𝑙𝑑(𝐴, 𝐶J) ← ℎ𝑜𝑙𝑑(𝐴, 𝐶M), 𝑠𝑖𝑚(𝐶M, 𝐶J), 𝑎𝑟𝑔𝑢𝑎𝑏𝑙𝑦(𝐴, 𝐶J) 

where Ci represents different concepts or states of affairs, the conclusion ℎ𝑜𝑙𝑑(𝐴, 𝐶J) 

may read “A holds in C2”; also, the assumption premises 

ℎ𝑜𝑙𝑑(𝐴, 𝐶M), 𝑠𝑖𝑚(𝐶M, 𝐶J), 𝑎𝑟𝑔𝑢𝑎𝑏𝑙𝑦(𝐴, 𝐶J) may read “A holds in C1”, “C1 and C2 are 

similar to each other”, and “the defeasible rule should not apply to the conclusion 

between A and C2”, respectively.  

The above (domain-independent) inference rule is exemplified to the agent 

reasoning described in our running example. According to the biological family of 

birds, we know that ducks and geese are belonged to the same family i.e. ‘Anatidae’. 

These birds are adapted for swimming, floating on the water surface, etc.. Though they 

are under the same family, ducks and geese are different. This information supports us 

to conclude that ducks and geese are similar. We represent the assumptions as follows.  

ℎ𝑜𝑙𝑑(𝑞𝑢𝑎𝑐𝑘, 𝑑𝑢𝑐𝑘); 	 	 𝑠𝑖𝑚(𝑑𝑢𝑐𝑘, 𝑔𝑜𝑜𝑠𝑒) 

where the assumptions ℎ𝑜𝑙𝑑(𝑞𝑢𝑎𝑐𝑘, 𝑑𝑢𝑐𝑘) and 𝑠𝑖𝑚(𝑑𝑢𝑐𝑘, 𝑔𝑜𝑜𝑠𝑒) states that “ducks 

can quack” and “ducks and geese are similar to each other”, respectively.  

Given an ABA framework, an argument in favor of a sentence 𝑐	 ∈ ℒ supported 

by a set 𝑆 of assumptions, denoted by 𝑆	 ⊢ 𝑐, is a backward deduction from c to S 

obtained by applying backward the rules in ℛ , e.g. 

{ℎ𝑜𝑙𝑑(𝑞𝑢𝑎𝑐𝑘, 𝑑𝑢𝑐𝑘), 𝑠𝑖𝑚(𝑑𝑢𝑐𝑘, 𝑔𝑜𝑜𝑠𝑒), 𝑎𝑟𝑔𝑢𝑎𝑏𝑙𝑦(𝑞𝑢𝑎𝑐𝑘, 𝑔𝑜𝑜𝑠𝑒)} ⊢

ℎ𝑜𝑙𝑑(𝑞𝑢𝑎𝑐𝑘, 𝑔𝑜𝑜𝑠𝑒).  

In ABA, the notion of attack between arguments is defined in terms of the 

contrary of assumptions, i.e. an argument 𝑆M ⊢ 𝑐M  attacks another (or the same) 

argument 𝑆J ⊢ 𝑐J iff c1 is the contrary of an assumption in S2. 

                                                
3 We use inference rule schemata, with variables starting with capital letters, to stand for the set of all 
instances obtained by instantiating the variables so that the resulting premises and conclusions are 
sentences of the underlying language. For simplicity, we omit the formal definition of the language 
underlying our examples. 
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In general, the contrary of an assumption is a sentence representing a challenge 

against the assumption and can be suggested by critical questions (CQ) of an 

argumentation scheme (cf. Section 1.2 for its description). For instance, the assumption 

ℎ𝑜𝑙𝑑(𝐴, 𝐶M)  can be challenged by providing a negative answer to CQ1 i.e. 

¬ℎ𝑜𝑙𝑑(𝐴, 𝐶M), where symbol ¬ denotes the classical negation. Supplying a negative 

answer to CQ2 and CQ3 can also be understood as proving the contrary ¬𝑠𝑖𝑚(𝐶M, 𝐶J) 

(i.e. C1 and C2 are dissimilar to each other) of the assumption 𝑠𝑖𝑚(𝐶M, 𝐶J). A negative 

answer to CQ4 can be understood as showing the contrary ¬ℎ𝑜𝑙𝑑(𝐴, 𝐶J)  of the 

assumption 𝑎𝑟𝑔𝑢𝑎𝑏𝑙𝑦(𝐴, 𝐶J) . This contrary ¬ℎ𝑜𝑙𝑑(𝐴, 𝐶J)  may be defined by an 

additional (domain-independent) inference rule: ¬ℎ𝑜𝑙𝑑(𝐴, 𝐶J) ←

𝑠𝑖𝑚(𝐶M, 𝐶J), 𝑠𝑖𝑚(𝐶M, 𝐶N), ℎ𝑜𝑙𝑑(𝐴, 𝐶M), ¬ℎ𝑜𝑙𝑑(𝐴, 𝐶N). Contraries may also be derived 

via a chain of rules, e.g. ¬ℎ𝑜𝑙𝑑(𝑞𝑢𝑎𝑐𝑘, 𝐴) ←

𝑐𝑜𝑟𝑑(𝐴, 𝐶), ¬𝑏𝑢𝑖𝑙𝑡(𝑞𝑢𝑎𝑐𝑘, 𝐴); 𝑐𝑜𝑟𝑑¨𝑐𝑜𝑟𝑑©, 𝑔𝑜𝑜𝑠𝑒ª;¬𝑏𝑢𝑖𝑙𝑡¨𝑞𝑢𝑎𝑐𝑘, 𝑐𝑜𝑟𝑑©ª , 

representing an abnormality condition that their vocal cords are built differently. The 

overall ABA framework is summarized in Figure 2.5. 

 
Figure 2.5 ABA Framework for The Running Example. 

 

2.1.2.1 Acceptability of Arguments in ABA 

ABA is an instance of AA. Hence, all semantic notions for determining the 

‘acceptability’ of arguments in AA also apply to arguments in ABA. Moreover, as ones 

may see, like AA, ABA is also a general purpose argumentation framework that can be 

used to support various applications or formalize as a specialized framework e.g. most 

default reasoning framework (Bondarenko et al., 1997; Bondarenko, Toni, & Kowalski, 

1993; Kakas & Toni, 1999), problems in legal reasoning (Dung & Thang, 2008), 
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problems in practical reasoning and problems in decision theory (Matt, Toni, 

Stournaras, & Dimitrelos, 2008; Toni, 2007).  

The framework proposed in Chapter 5 is extended from ABA and mainly focus 

on the ‘grounded’ semantics. Hence, we give informal definition of ‘acceptability’ for 

ABA toward the grounded semantics. A claim in ABA could be a potential belief to be 

justified, which is represented as a sentence in ℒ. To  determine the ‘acceptability’ of a 

claim, the agent needs to find an argument for it that can be defended against attacks 

from other arguments. To defend an argument, other arguments must be found and may 

need to be defended in turn (Dung et al., 2009) . We formally define these 

characteristics as follows: 

• A set of arguments Arg1 attacks a set of arguments Arg2 if an argument in Arg1 

attacks an argument in Arg2;  

• A set of arguments Arg defends an argument arg if Arg attacks all arguments 

that attack {arg}. 

Now, we are ready to give informal definitions toward the grounded semantics 

as follows:  

• A set of arguments is admissible iff it does not attack itself and it attacks every 

argument that attacks it;  

• An admissible set of arguments is complete if it contains all arguments that it 

defends;  

• The least (w.r.t. set inclusion) complete set of arguments is grounded. 

Given that an argument in ABA attacks another if the former supports the 

contrary of an assumption in the support of the latter, the correspondence between the 

assumption view and the argument view (Dung, Mancarella, & Toni, 2007) in ABA can 

be summarized as follows: 

• If a set of assumptions S is admissible/grounded, then the union of all arguments 

supported by any subset of S is admissible/grounded;  

• If a set of arguments S is admissible/grounded, then the union of all sets of 

assumptions supporting the arguments in S is admissible/grounded.  

The above notion of acceptable sets of arguments provides a non-constructive 

specification. Now, we show how to turn the specification into a constructive proof 
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procedure. The method we focus here is defined for a ‘grounded’ set of arguments 

introduced in (Dung et al., 2007).  

Informally, this constructive proof procedure is known as a dispute derivation 

which is defined as a sequence of transition steps from one state of a dispute to another. 

For each state, we maintain these following information. Component 𝒫 maintains a set 

of (both standard and analogical) assumptions, which are used to support potential 

arguments of the proponent. Component 𝒪  maintains multiple sets of assumptions, 

which are used to support all attacking arguments of the opponent. Component 𝐷 holds 

a set of assumptions, which have already been used by the proponent. Component 𝐶 

holds a set of assumptions, which have already been used by the opponent and have 

been attacked by the proponent. In the following, we formally define the dispute 

derivation for a ‘grounded’ set of arguments. 

Definition 2.9. Let an ABA is a quadruple ­ℒ, ℛ,𝒜, � ®. Given a selection 

function, a ‘grounded belief’ dispute derivation of a defence set ∆ for a sentence δ is a 

finite:  

⟨𝒫w, 𝒪w, 𝐷w, 𝐶w⟩, … , ⟨𝒫¡, 𝒪¡, 𝐷¡, 𝐶¡⟩, … , ⟨𝒫�, 𝒪�, 𝐷�, 𝐶�⟩ 

where 𝒫w ∶= {δ}, 𝐷w ∶= 𝒜 ∩ {δ}, 𝑂w ∶= ∅, 𝐶w ∶= ∅, 𝒫� ∶= ∅, 𝒪� ∶= ∅, Δ ∶= 𝐷�, and for 

every 0 ≤ 𝑖 < 𝑛, only one σ in 𝒫¡ or one 𝑆 in 𝒪¡ is selected, and: 

1. If σ ∈ 𝒫¡ is selected, then 

a. If σ is an assumption, then  

𝒫¡µM ∶= 𝒫¡ ∖ {σ} and 𝒪¡µM ∶= 𝒪¡ ∪ {{σ�}} 

b. Else if there exists an inference rule σ ← 𝑅 ∈ ℛ such that 𝐶¡ ∩ 𝑅 = ∅, 

then  

𝒫¡µM∶¸(𝒫¡ ∖ {σ}) ∪ 𝑅 and 𝐷¡µM ∶= (𝒜 ∩ 𝑅) 

2. If 𝑆 is selected in 𝒪¡ and σ is selected in 𝑆, then 

a. If σ is an assumption, then  

i. Either σ is ignored, i.e.  

𝒪¡µM ∶= (𝒪¡ ∖ {𝑆}) ∪ {𝑆 ∖ {𝜎}}  

ii. Or σ ∉ 𝐷¡ and  

𝒪¡µM ∶= 𝒪¡ ∖ {𝑆}, 𝒫¡µM ∶= 𝒫¡ ∪ {𝜎�}, 𝐷¡µM ∶= 𝐷¡ ∪ ({𝜎�} ∩ 𝒜), 

and 𝐶¡µM ∶= 𝐶¡ ∪ {𝜎} 
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b. Otherwise, then  

𝒪¡µM ∶=	(𝒪¡ ∖ {𝑆}) 	∪ {	𝑆 ∖ 	{𝜎} ∪ 𝑅	|𝜎 ← 𝑅 ∈ ℛ} 

 

A dispute derivation can be seen as a way of representing a ‘potential’ winning 

strategy for a proponent to win a dispute against an opponent. The proponent starts by 

putting forward a claim whose acceptability is under dispute. After that, there are many 

possibilities as follows, The opponent can try to attack the proponent’s claim by arguing 

for its contrary (cf. Case 1.a) or argues for a non-assumption by using an inference rule 

(cf. Case 1.b). Moreover, the proponent can select an assumption in one of the 

opponent’s attacks and either ignores it because it is not selected as a culprit (cf. Case 

2.a.i) or decides to counter-attack it by showing its contrary (cf. Case 2.a.ii). Otherwise, 

the opponent can argue for a non-assumption by using an inference rule (cf. Case 2.b). 

We give an informal dispute derivation for the working example as follows. 

Example 2.1. Consider an ABA given in Figure 2.5. Table 2.1 shows that there 

does not exist a grounded belief dispute derivation for ℎ𝑜𝑙𝑑(𝑞𝑢𝑎𝑐𝑘, 𝑔𝑜𝑜𝑠𝑒)4. 

At step 1, the proponent (𝒫) has completed the construction of an argument for 

ℎ(𝑞, 𝑔) supported by ‘ℎ(𝑞, 𝑑), 𝑠(𝑑, 𝑔), and 𝑎(𝑞, 𝑔)’, saying that “geese quack because 

ducks also quack and ducks are similar to geese”. At step 2, the opponent (𝒪) has 

decided to attack on assumption ℎ(𝑞, 𝑑) by showing its contrary ¬ℎ(𝑞, 𝑑). However, 

this attack fails to build on step 3. Again, the opponent (𝒪) has decided to attack on 

assumption 𝑠(𝑑, 𝑔) by showing its contrary ¬𝑠(𝑑, 𝑔) at step 4 and fails to build its 

support at 5. At step 6, the opponent (𝒪) has decided to attack on assumption 𝑎(𝑞, 𝑔) 

by showing its contrary ¬ℎ(𝑞, 𝑔). This argument is fully constructed at step 9, in which 

no assumptions have been used. Thus, this dispute derivation fails.  

With an analogous manner, Table 2.2 shows a successful dispute derivation for 

¬ℎ𝑜𝑙𝑑(𝑞𝑢𝑎𝑐𝑘, 𝑔𝑜𝑜𝑠𝑒) with three transition steps.  

Table 2.1 A Failed Grounded Belief Dispute Derivation for ℎ𝑜𝑙𝑑(𝑞𝑢𝑎𝑐𝑘, 𝑔𝑜𝑜𝑠𝑒). 

Ste

p 

𝒫 𝒪 𝐷 𝐶 

0 {ℎ(𝑞, 𝑔)} ∅ ∅ ∅ 

                                                
4 Obvious abbreviations are used here for the sake of succinctness. 
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1 {ℎ(𝑞, 𝑑), 𝑠(𝑑, 𝑔), 𝑎(𝑞, 𝑔)} ∅ ∅ ∅ 

2 {𝑠(𝑑, 𝑔), 𝑎(𝑞, 𝑔)} {{¬ℎ(𝑞, 𝑑)}} {ℎ(𝑞, 𝑑), 𝑠(𝑑, 𝑔), 𝑎(𝑞, 𝑔)} ∅ 

3 {𝑠(𝑑, 𝑔), 𝑎(𝑞, 𝑔)} ∅ {ℎ(𝑞, 𝑑), 𝑠(𝑑, 𝑔), 𝑎(𝑞, 𝑔)} ∅ 

4 {𝑎(𝑞, 𝑔)} {{¬𝑠(𝑑, 𝑔)}} {ℎ(𝑞, 𝑑), 𝑠(𝑑, 𝑔), 𝑎(𝑞, 𝑔)} ∅ 

5 {𝑎(𝑞, 𝑔)} ∅ {ℎ(𝑞, 𝑑), 𝑠(𝑑, 𝑔), 𝑎(𝑞, 𝑔)} ∅ 

6 ∅ {{¬ℎ(𝑞, 𝑔)}} {ℎ(𝑞, 𝑑), 𝑠(𝑑, 𝑔), 𝑎(𝑞, 𝑔)} ∅ 

7 ∅ {{𝑐¨𝑐©, 𝑔ª, ¬𝑏¨𝑞, 𝑐©ª}}} {ℎ(𝑞, 𝑑), 𝑠(𝑑, 𝑔), 𝑎(𝑞, 𝑔)} ∅ 

8 ∅ {{¬𝑏¨𝑞, 𝑐©ª}} {ℎ(𝑞, 𝑑), 𝑠(𝑑, 𝑔), 𝑎(𝑞, 𝑔)} ∅ 

9 ∅ {	∅} {ℎ(𝑞, 𝑑), 𝑠(𝑑, 𝑔), 𝑎(𝑞, 𝑔)} ∅ 

 

Table 2.2 A Successful Grounded Belief Dispute Derivation for 

¬ℎ𝑜𝑙𝑑(𝑞𝑢𝑎𝑐𝑘, 𝑔𝑜𝑜𝑠𝑒). 

Step 𝒫 𝒪 𝐷 𝐶 

0 {¬ℎ(𝑞, 𝑔)} ∅ ∅ ∅ 

1 {𝑐¨𝑐©, 𝑔ª, ¬𝑏¨𝑞, 𝑐©ª} ∅ ∅ ∅ 

2 {¬𝑏¨𝑞, 𝑐©ª} ∅ ∅ ∅ 

3 ∅ ∅ ∅ ∅ 

 

2.2 Description Logics 

Description logics (DLs) (Baader, Calvanese, McGuinness, Nardi, & Patel-

Schneider, 2007; Baader & Sattler, 2001; Calvanese, De Giacomo, Lenzerini, & Nardi, 

2001) are a family of knowledge representation languages that can be used to represent 

the knowledge of an application domain in a structured and formally well understood 

way. The name description logics is coined based on the fact that the application 

domain is described by concept ‘descriptions’, i.e. expressions that are built from 

atomic concepts (unary predicates) and atomic roles (binary predicates) using the 

concept and role constructors provided by the particular DL.  

DL Knowledge base is captured by two different formalisms viz. a terminology 

(TBox) representing general knowledge about the problem domain and an assertion 

(ABox) representing knowledge about a specific situation. Furthermore, the ABox part 
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may be ignored. In this thesis, our attempt mainly focuses on argumentative patterns 

containing ‘descriptive’ analogy and ‘normative’ analogy; and, the ABox part is not 

used. Therefore, we only review the basics of TBox in this section. 

 
2.2.1 Description Languages 

We assume two disjoint sets of concept names CN and role names RN. 

Description languages are distinguished by a set of concept constructors they provide. 

These constructors are used to inductively define concept descriptions (simply 

concepts). It is obvious that the more concept constructors a particular DL provides, the 

more expressive concepts can be constructed. In abstract notations, we use 𝐴 and 𝐵 to 

denote atomic concepts, 𝐶 and 𝐷 to denote concept descriptions5, and 𝑟 to denote an 

atomic role. Table 2.3 lists common concept constructors that are widely considered in 

the literature. The second and the third columns show the syntax and semantics 

elements, respectively. The attributive language 𝒜ℒ was introduced in (Smolka, 1991) 

as a minimal language that is of practical interest. 𝒜ℒ provides exactly the constructors 

as in the table except existential quantification (∃𝑟. 𝐶). 

Table 2.3 Syntax and Semantics of Concept Constructors. 

Constructor Name Syntax Semantics 

Top Concept ⊤ Δℐ 

Bottom Concept ⊥ ∅ 

Conjunction 𝐶 ⊓ 𝐷 𝐶ℐ ∩ 𝐷ℐ 

Disjunction 𝐶 ⊔ 𝐷 𝐶ℐ ∪ 𝐷𝒟 

Atomic Negation ¬𝐴 Δℐ ∖ 𝐴ℐ 

Negation ¬𝐶 Δℐ ∖ 𝐶ℐ 

Nominal {𝑎M, … , 𝑎�} {𝑎Mℐ, … , 𝑎�ℐ } 

Limited Existential 

Quantification 

∃𝑟. ⊤ {𝑑 ∈ Δℐ	|	∃𝑒 ∶ (𝑑, 𝑒) ∈ 𝑟ℐ} 

Existential 

Quantification 

∃𝑟. 𝐶 {𝑑 ∈ Δℐ	|	∃𝑒 ∶ (𝑑, 𝑒) ∈ 𝑟ℐ ∧ 𝑒 ∈ 𝐶ℐ} 

Universal Restriction ∀𝑟. 𝐶 {𝑑 ∈ Δℐ	|	∀𝑒 ∶ (𝑑, 𝑒) ∈ 𝑟ℐ → 𝑒 ∈ 𝐶ℐ} 

                                                
5 The precise definition of concept description is given later. 
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The first naming scheme for DLs was also proposed in (Smolka, 1991): starting 

from the DL 𝒜ℒ, additional constructors are indicated by appending corresponding 

letters; e.g. 𝒜ℒ𝒞 (which stands for Attributive Language with Complement) is obtained 

from 𝒜ℒ by featuring the complement operator (¬) and 𝒜ℒℰ is obtained from 𝒜ℒ by 

adding existential quantification (∃𝑟. 𝐶). DL 𝒜ℒ𝒞 is considered as the smallest 

Boolean-closed logic6. 

There are also a number of interesting sub-Boolean DLs7, most of which 

disallow disjunction and (full) negation such as ℱℒw and ℰℒ. For historical naming 

reasons, ℱℒw is obtained by disallowing atomic negation and limited existential 

quantification from 𝒜ℒ; and also, ℰℒ is obtained by disallowing atomic negation and 

universal restriction from 𝒜ℒ. Both are sub-languages of 𝒜ℒ that are practical interest 

due to their practical efficiency and sufficient expressivity.  

Let ℒ be a specific DL. We denote the set of concept descriptions for DL ℒ by 

Con(ℒ). In this thesis, we merely focus on the logic ℰℒ. Hence, formal definitions for 

the syntax and semantics of Con(ℰℒ) are given in the following.  

Definition 2.10 (𝓔𝓛 Concept Description). Let CN be a set of concept names, 

RN be a set of role names, and ⊤ be the top concept. A set of ℰℒ concept descriptions 

(denoted by Con(ℰℒ)) is the smallest set such that: 

1. If 𝐴 ∈ CN ∪ {⊤}, then 𝐴 ∈ Con(ℰℒ); 

2. If 𝐶, 𝐷 ∈ Con(ℰℒ) and 𝑟 ∈ RN, then 𝐶 ⊓ 𝐷, ∃𝑟. 𝐶 ∈ Con(ℰℒ).  
 

The following example illustrates how ones can construct ℰℒ concept 

descriptions based on sets of concept names and role names defined in SNOMED CT.  

Example 2.2. The concept of Endocarditis, whose members are an 

inflammation which has location on an endocardium tissue, may be expressed using 

concept names and role names in SNOMED CT: Inflammation ⊓

∃hasLocation.Endocardium. 

 

                                                
6 Strictly speaking, a DL must provide at least one quantifier, i.e. either existential or universal. Thus, 
the logic with the first five constructors in Table 2.3 is not a DL as it is equivalent to the propositional 
logic. 
7 Sub-Boolean DLs are DLs that are not equipped with all Boolean operators 
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We can agree that Endocarditis is an ℰℒ concept because, following Definition 

2.10, it is obvious that: 

1. Inflammation is an ℰℒ concept; 

2. ∃hasLocation.Endocardium is also an ℰℒ concept; 

3. Finally, Inflammation ⊓ ∃hasLocation.Endocardium is an ℰℒ concept. 

Though sub-Boolean DLs are not very expressive, they are also of theoretical 

interest due to their tractability. Table 2.4 shows the worst-case complexity of concept 

satisfiability problem8 in 𝒜ℒ𝒞 and the subsumption problem in ℱℒw and ℰℒ. It is worth 

noting that the satisfiability problem is trivial in ℱℒw and ℰℒ since any concept 

expressed in these languages is satisfiable. The table also shows that ℰℒ exhibits the 

most robust behavior w.r.t. every type of terminology.  

Table 2.4 Comparing The Description Logics. 

Terminology 𝒜ℒ𝒞 ℱℒw ℰℒ 

The empty TBox PSpace-complete 

(Smolka, 1991) 

Polynomial 

(Brachman & 

Levesque, 1984) 

Polynomial (Baader, 

Küsters, & Molitor, 

1999) 

Acyclic TBoxes PSpace-complete 

(Smolka, 1991) 

coNP-complete 

(Nebel, 1990) 

Polynomial (Baader, 

2003) 

General TBoxes ExpTime-

complete (Schild, 

1991) 

ExpTime-complete 

(Baader, Brandt, & 

Lutz, 2005) 

Polynomial (Brandt, 

2004) 

 

It should be also noted that these results are not merely theoretical interest. In 

fact, they also provide sufficiently expressivity. For instance, SNOMED CT9 

(Spackman, 2005; Stearns, Price, Spackman, & Wang, 2001) and Gene Ontology 

(Ashburner et al., 2000) employ ℰℒ. It is also worth noting that ℱℒw and ℰℒ are the 

minimal candidate DLs to pursue a polynomial complexity since they would not inherit 

NP-hardness from the propositional logic (Van Harmelen, Lifschitz, & Porter, 2008).  

                                                
8 Subsection 2.2.3 gives precise definitions of most widely used reasoning services in DLs. 
9 http://bioportal.bioontology.org/ontologies/SNOMEDCT  
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Like	 any	 DLs,	 the	 semantics	 of	 ℰℒ	 concepts	 is	 defined	 through	

interpretations	as	shown	in	the	following.		

Definition	 2.11	 (Semantics	 of	 𝓔𝓛	 Concept).	 An	 interpretation	 ℐ =

(Δℐ, ℐ)	 consists	 of	 a	 non-empty	 set	 Δℐ 	 of	 interpretation	 domain	 and	 an	

interpretation	function	 ℐ ,	which	assigns	to	each	concept	name	𝐴 ∈ CN	a	subset	

𝐴ℐ ⊆ Δℐ 	 and	 to	 each	 role	 name	 𝑟 ∈ RN	 a	 binary	 relation	 𝑟ℐ ⊆ Δℐ × Δℐ .	 The	

interpretation	 function	 is	 extended	 to	 a	 concept	 descriptions	 by	 inductive	

definitions	given	in	the	right	column	of	Table	2.3.	

	

An interpretation ℐ is said to be a model of a concept 𝐶, or ℐ models 𝐶, the 

interpretation of 𝐶 in ℐ, i.e. 𝐶ℐ, is not empty, i.e. 𝐶ℐ ≠ ∅. 

Example 2.3. Given a concept Inflammation ⊓ ∃hasLocation.Endocardium, 

we can find an interpretation ℐ = (Δℐ, ℐ) such that ℐ is a model of the concept as 

follows: 

1. Suppose an interpretation domain Δℐ = {𝑎, 𝑏, 𝑐, 𝑑};  

2. Suppose Inflammationℐ = {𝑎, 𝑏, 𝑐}, Endocardiumℐ = {𝑑}, and 

hasLocationℐ = {(𝑎, 𝑑), (𝑏, 𝑐)};  

3. From Table 2.3, we know (∃hasLocation.Endocardium)ℐ = {𝑎}; 

4. From Table 2.3, we know (Inflammation ⊓

∃hasLocation.Endocardium)ℐ = {𝑎}.  

Since (Inflammation ⊓ ∃hasLocation.Endocardium)ℐ ≠ ∅, then the defined 

interpretation ℐ = (Δℐ, ℐ) is a model of the concept Inflammation ⊓

∃hasLocation.Endocardium. 

 

Table 2.5 Syntax and Semantics of Ontological Constructors. 

Constructor Name Syntax Semantics 

Concept Definition A ≡ C Aℐ = Cℐ 

Concept Inclusion C ⊑ D Cℐ ⊆ Dℐ 

Concept Disjointness C ⊓ D ⊑⊥ Cℐ ∩ Dℐ = ∅ 

Domain Restriction domain(r) ⊑ C {d ∈ Δℐ ∣ ∃e: (d, e) ∈ rℐ} ⊆ Cℐ 
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Range Restriction range(r) ⊑ C {e ∈ Δℐ ∣ ∃d: (d, e) ∈ rℐ} ⊆ Cℐ  

Functionality functional(r) ∀d ∈ Δℐ:	#{e ∈ Δℐ ∣ (d, e) ∈ rℐ} ≤ 1 

Reflexivity reflexive(r) ∀d ∈ Δℐ: (d, d) ⊆ rℐ 

Transitivity transitive(r) ∀d, e, f ∈ Δℐ: (d, e), (e, f) ∈ rℐ → (d, f)

∈ 𝑟ℐ 

Role Hierarchy r ⊑ s rℐ ⊆ sℐ 

Role Inclusion rM ∘ ⋯ ∘ rÌ ⊑ s rMℐ ∘ ⋯ ∘ rÌℐ ⊆ sℐ 

 

2.2.2 DL Terminological Formalism 

We have seen how concept descriptions are built through the use of ‘concept 

constructors’. Now, we want to  form statements representing the general knowledge 

about the problem domain i.e. terminologies. For example,  

Endocarditis ≡ Inflammation ⊓ ∃hasLocation.Endocardium 

saying that “endocarditis is an inflammation that has location on endocardium tissue”. 

This kind of statements is seen as a terminological formalism (or a TBox statement) 

and can be characterized by a set of ontological constructors in DLs. Table 2.5 lists 

most commonly used constructors in the literature where the middle and the right 

column show their syntax and semantics. Formally, a TBox is defined as follows.  

 

 Definition 2.12 (TBox). Let ℒ be a specific DL, 𝐴 ∈ CN, and 𝐶 ∈ Con(ℒ). 

Then, A ≡ C and A ⊑ C are called a concept definition and a primitive concept 

definition, respectively. Let ⊳ denote either ≡ or ⊑. Then, TBox 𝒯 is a finite set of 

(possibly primitive) concept definitions. A concept definition 𝐴 ⊳ 𝐶 is unique if, for 

each 𝐴 ∈ CN, there is at most one concept definition 𝐴 ⊳ 𝐶 for some 𝐶 ∈ Con(ℒ). 

 We call A directly uses B in 𝒯 if 𝐴 ⊳ 𝐵 occurs in 𝒯 and we define uses to be the 

transitive closure of the relation directly uses. Then, a concept definition 𝐴 ⊳ 𝐶 is cyclic 

if A uses itself. Otherwise, we call such definition an acyclic concept definition. TBox 

𝒯 is called unfoldable if all concept definitions are unique and acyclic definitions. 

A concept name 𝑃 in 𝒯 is said to be undefined if it is neither fully defined nor 

primitively defined in 𝒯.  

 

Ref. code: 25615722300273MJP



28 
 
 

 
 

An interpretation ℐ is a model of a concept definition 𝐴 ≡ 𝐶 iff 𝐴ℐ = 𝐶ℐ and is 

a model of a primitive concept definition A ⊑ C iff Aℐ ⊆ Cℐ. ℐ is a model of  𝒯 iff it is 

a model of every definition 𝐴 ⊳ 𝐶 in 𝒯.  

Given an unfoldable TBox 𝒯, concept names occurring on the left-hand side of 

a concept definition are called defined concept names (denoted by CNdef) whereas the 

others are called primitive concept names (denoted by CNpri). The name unfoldable is 

motivated by the fact that, in such a TBox 𝒯, 𝒯 can be transformed into an equivalent 

one 𝒯G by substituting all the defined concept names in concept descriptions with their 

definitions until only primitive concept names remain. In particular, for a concept 

definition defined in 𝒯 by an axiom 𝐴 ≡ 𝐷, the procedure is simply to replace 𝐴 with 

𝐷 whenever if occurs in 𝐶, and then to recursively unfold D. For a “primitive” concept 

definition defined in 𝒯 by an axiom A ⊑ D, the procedure is slightly more complex. 

Whenever 𝐴 occurs in 𝐶, it is replaced with the concept 𝑋 ⊓ 𝐷 where 𝑋 is a new concept 

name not occurring in 𝒯 or 𝐶. After that, 𝐷 is recursively unfolded. We note that 𝑋 

represents the unspecified characteristics that differentiate it from D. Such unfolded 

concepts which remain only primitive concept names are called fully expanded 

concepts. This transformation is called unfolding and we use Unfold(𝐶, 𝒯) to denote 

that the concept C is unfolded w.r.t. 𝒯. 

When 𝒯 is unfolded to 𝒯G, each defined concept name in 𝒯G is an independent 

concept description in a sense that the TBox itself can be disregarded. From a 

computational point of view, unfoldable TBoxes are interesting since they may allow 

for the use of simplified reasoning techniques (cf. Table 2.4) and reasoning in the 

presence of a TBox is often harder than that without a TBox (or an empty TBox).  

A much more expressive formalism of TBox is called a general TBox where 

each statement is called a general concept inclusion. Informally, a general concept 

inclusion is a statement like this form: ∃married.Human ⊑ Human saying that “a 

human is only married to a human”. This general formalism is supported by most state-

of-the-art DL reasoners. In the following, we gives a formal definition for a general 

TBox. 
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Definition 2.13 (General TBox). Let ℒ be a specific DL and 𝐶, 𝐷 ∈ Con(ℒ). 

Then, a general concept inclusion (GCI) is of the form C ⊑ D. Then, general TBox is a 

finite set of GCIs. 

 

An interpretation ℐ is called a model of a GCI 𝐶 ⊑ 𝐷 iff Cℐ ⊆ Dℐ. ℐ is a model 

of a general TBox 𝒯 iff it is a model of every GCI in 𝒯. 

It should be also noted that general TBoxes are more general than unfoldable 

TBoxes since GCIs can be used to express (primitive) concept definitions. In particular, 

a primitive concept definition is a special form of GCI whereas a concept definition can 

be expressed by means of two GCIs, i.e. A ≡ C with A ⊑ C and C ⊑ A.  

It is also worth noting that, following (Nebel, 1991), the semantics we have 

studied so far is called descriptive semantics. This semantics can produce counter-

intuitive results when a TBox contains cyclic dependency. In such a case, the so-called 

fixpoint semantics (De Giacomo & Lenzerini, 1996; Nebel, 1991) is recommended to 

use. However, the descriptive semantics is adopted in this thesis because of its wide 

acceptance as the most appropriate one (Donini, lenzerini, Nardi, & Schaerf, 1996; 

Kohlas, 2003).  

Apart from concept definitions and inclusions, there are also interesting and 

important ontological constructors. Some of them are listed in the upper part of Table 

2.5. In some cases, one constructor can be simulated by another. For instance, a domain 

restriction domain(𝑟) ⊑ 𝐶 can be expressed by the GCI ∃r	. ⊤ ⊑ C. Also, reflexivity, 

transitivity, and role hierarchy are special forms of role inclusion10, i.e., ϵ ⊑ r, r ∘ r ⊑

r, r ⊑ s, respectively. Table 2.6 presents various DLs with their supported constructors, 

where ° denotes optional features that may or may not be supported.  

Table 2.6 Logical Constructors in Various DLs. 

DL Dialects ℒw ℰℒ ℱℒw ℰℒℋ 𝒜ℒ𝒞 𝒮ℋℐℱ 𝒮ℛ𝒪ℐ𝒬 
Top Concept • • • • • • • 

Bottom Concept     • • • 
Conjunction • • • • • • • 
Disjunction     • • • 

Negation     • • • 
Nominal       • 

                                                
10 Sometimes such statements are regarded as another component called RBox. 
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Existential Restrictions  •  • • • • 
Value Restrictions   •  • • • 
Concept Definition ° ° ° ° ° ° ° 
Concept Inclusion ° ° ° ° ° ° ° 

Domain Restriction  ° ° ° ° ° ° 
Concept Disjointness     ° ° ° 

Range Restriction     ° ° ° 
Functionality      • • 
Reflexivity       • 
Transitivity      • • 

Role Hierarchy    •  • • 
Role Inclusion       • 

Concept Assertion ° ° ° ° ° ° • 
Role Assertion  ° ° ° ° ° • 

 

2.2.3 Reasoning Services 

Reasoning services are processes of discovering valid statements in DL 

knowledge base and can be basically defined by means of logical inferences. We 

introduce some prominent ones for TBox in the following. 

Definition 2.14 (Concept Satisfiability). Let ℒ be a specific DL, 𝒯 be a TBox, 

and C ∈ Con(ℒ). Then, a concept 𝐶 is called satisfiable w.r.t. 𝒯 if there is a model ℐ of 

𝒯 with Cℐ ≠ ∅. 

 

Definition 2.15 (Concept Subsumption). Let ℒ be a specific DL, 𝒯 be a TBox, 

and 𝐶, 𝐷 ∈ Con(ℒ). Then, a concept 𝐷 subsumes a concept 𝐶 w.r.t. 𝒯 (denoted by 𝒯 ⊨

C ⊑ D or C ⊑× D) if Cℐ ⊆ Dℐ holds for all models ℐ of 𝒯. 

 

Definition 2.16 (Concept Equivalence). Let ℒ be a specific DL, 𝒯 be a TBox, 

and 𝐶, 𝐷 ∈ Con(ℒ). Then, two concepts 𝐶, 𝐷 are equivalent w.r.t. 𝒯 (denoted by 𝒯 ⊨

C ≡ D or C ≡× D) if 𝒯 ⊨ C ⊑ D and 𝒯 ⊨ D ⊑ C.  

 

The reasoning services introduced in Definition 2.14 - 2.16 are called basic 

reasoning services and should be supported by most DL systems. There are also 

additional services which could be implemented by a finite number of calls to the basic 

services. These are formally defined as follows.  
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Definition 2.17 (Ontology Classification). Let 𝒯 be a TBox and CN(𝒯) be a 

set of concept names occurring in 𝒯. Then, an ontology classification of 𝒯 is the 

identification of subsumption between all pairs of concept names in 𝒯, i.e. for all A, B ∈

CN(𝒯), determines whether or not 𝒯 ⊨ A ⊑ B.  

 

Reasoning may become conceptually easier by abstracting away from the TBox 

or assuming that it is empty. The following theorem formally presents the use of 

unfolding for TBox elimination. When the TBox is eliminated, we omit to denote it. 

Theorem 2.1. Let ℒ be a specific DL and 𝒯 be a TBox. Then, for every pair 

C, D ∈ Con(ℒ), we have:  

𝒯 ⊨ C ⊑ D⟺	⊨ Unfold(C, 𝒯) ⊑ Unfold(D, 𝒯) 

 

The procedure of unfolding is only restricted to an unfoldable TBox 𝒯 (Baader 

et al., 2007). For example, if 𝒯 is not unique, e.g. {(A ≡ C), (A ≡ D)} ⊆ 𝒯, then it is 

not possible to make precisely the substitution for A. If 𝒯 contains the cyclic 

dependency, it could lead to a non-termination problem. If T contains GCIs, e.g. ∃r. C ⊑

D, then it could not be guaranteed that an interpretation satisfying an unfolded concepts 

would also satisfy these logical statements. 

 
2.2.4 Reasoning Algorithms 

A variety of reasoning algorithms were introduced for the services discussed 

earlier. Two widely used algorithmic approaches are tableau-based approaches and 

structural ones for sub-Boolean DLs. Our proposed computational method in Chapter 

3 is developed based on the structural approach for ℰℒ. Hence, we review its basis here 

for self-containment.  

Before looking at an algorithmic procedure, let us state the general requirements 

on the ‘behaviors’ of such procedures (Baader, Horrocks, & Sattler, 2004) as follows: 

1) The procedure should be a decision procedure11, meaning that it should be:  

a) Sound i.e. the positive answers should be correct, 

b) Complete i.e. the negative answers should be correct, and 

                                                
11 This can be seen as a metaphorical meaning of soundness and completeness in logic. 
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c) Terminating i.e. it should always give an answer in finite time;  

2) The procedure should be as ‘efficient’ as possible. That is, it should be 

‘optimal’ w.r.t. the worst-case complexity of the problem;  

3) The procedure should be ‘practical’, i.e. it should be easy to be 

implemented, be easy to be optimized, and behave well in applications.  

 

2.2.4.1 Structural  Approach for 𝓔𝓛 

When trying to find a DL with a polynomial subsumption algorithm, it is clear 

that such a particular DL should not provide all Boolean operators since it will inherit 

NP-hardness from propositional logic (Baader et al., 2004). When ones have to decide 

to drop an operator, conjunction seems to be indispensable since it is used to state for 

different properties of a defining concept. Finally, if ones want to call that logic a DL, 

a constructor using roles is needed. This leads to the consideration of two minimal 

candidate sub-Boolean DLs, viz. ℱℒw and ℰℒ. As aforementioned in Table 2.4, these 

DLs exhibit robust behaviors. The following discusses the characterization for DL ℰℒ 

in detail. 

Suppose that TBox 𝒯 is unfoldable and ℰℒ concepts are fully expanded. Let an 

ℰℒ concept 𝐶 is of the following form:  

 
PM ⊓ …⊓ PØ ⊓ ∃rM. CM ⊓ …⊓ ∃rÙ. CÙ                (2.1) 

 
That concept 𝐶 can be structurally transformed into the corresponding ℰℒ description 

tree. The root 𝑣w of the ℰℒ description tree 𝒯𝒞 has {PM, … , PØ} as its label and has 𝑛 

outgoing edges, each labeled 𝑟Û to a vertex 𝑣Û for 1 ≤ j ≤ n. Then, a subtree with the 

root 𝑣Û is defined recursively relative to the concept 𝐶Û. In (Baader, 2003; Baader, 

Brandt, & Küsters, 2001), a characterization of subsumption for the DL ℰℒ w.r.t. an 

unfoldable TBox was proposed. Instead of considering concept descriptions, the so-

called ℰℒ description trees corresponding to those concept descriptions are used. The 

subsumption is then characterized by an existence of a homomorphism in the reverse 

direction (cf. Theorem 2.2).  

Definition 2.18 (Homomorphism (Baader, 2003; Baader et al., 2001)). An ℰℒ 

description tree 𝒯 is a quintuple (V, E,	rt, l, ρ) where 𝑉 is a set of vertices, E ⊆ V × V is 
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a set of edges, rt is the root, l: V → 2CNpri is a vertex labeling function, and ρ: E → RN 

is an edge labeling function. Let 𝒯M and 𝒯J be two ℰℒ description trees, vM ∈ VM, and 

vJ ∈ VJ. Then, the mapping h: VM → VJ is a homomorphism from 𝒯M to 𝒯J iff the 

following conditions are satisfied: 

• For all vM ∈ VM, lM(vM) ⊆ lJ¨h(vM)ª; and  

• For each successor wM of vM in 𝒯M, h(wM) is a successor of h(vM) with 

ρM(vM, wM) = ρJ¨h(vM), h(wM)ª 

 

Theorem 2.2 ((Baader, 2003; Baader et al., 2001)). Let C, D ∈ Con(ℰℒ) and 𝒯E  

and 𝒯D be the corresponding description trees. Then, C ⊑ D iff there exists a 

homomorphism (denoted by h: 𝒯D → 𝒯E) which maps the root 𝑣 of 𝒯D to the root 𝑤 of 

𝒯E .  

 

We illustrate how the subsumption relation between ℰℒ concepts in Example 

2.4.  

Example 2.4. Let a family TBox is given as follows: GrandFather ≡ Man ⊓

∃hasChild.Parent, Man ≡ Male ⊓ Person, and Parent ≡ Person ⊓

∃hasChild.Person. By unfolding, it yields a semantically equivalent TBox 𝒯G as 

follows:  

GrandFather ≡ Male ⊓ Person ⊓ ∃hasChild. (Person ⊓ ∃hasChild.Person) 

Man ≡ Male ⊓ Person 

Parent ≡ Person ⊓ ∃hasChild.Person 

 

To show that GrandFather ⊑ Parent, we construct the description tree 

𝒯GGrandFather for the concept GrandFather (cf. Figure 2.6a) and the description tree 

𝒯GParent for the concept Parent (cf. Figure 2.6b). Following Definition 2.18, it is not 

difficult to identify a homomorphism from 𝒯GParent to 𝒯GGrandFather. Thus, 

GrandFather ⊑ Parent. 

 

As shown in (Baader, 2003; Baader et al., 2001), this form of characterization 

can be decided in polynomial time (cf. Table 2.4). This result is not only of theoretical 
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interest. In fact, well-known medical ontologies such as Gene Ontology (Ashburner et 

al., 2000) and SNOMED CT (Spackman, 2005; Stearns et al., 2001) are expressible 

with the logic ℰℒ. As we shall also see soon, our concrete development for concept 

similarity under subjective factors in ℰℒℋ12 is driven by this form of structural 

subsumption.  

 
Figure 2.6 The Corresponding Description Trees of Concepts GrandFather and 

Parent. 

 

 

 

 

 

 

 
 
 
  
 

 
 
 
 
 
 
 
 
 
 
                                                
12 Strictly speaking, ℰℒℋ extends ℰℒ with the role hierarchy. 
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CHAPTER 3 

CONCEPT SIMILARITY IN DESCRIPTION LOGICS 
 

Considering examples in Chapter 1, ones may observe that the perception of 

‘concept similarity’ used by both descriptive analogy and normative analogy can be 

explicitly reconstructed by considering the description or taxonomy of concepts. For 

instance, “London is the capital city and one of the big cities of England” and 

“Amsterdam is the capital city and one of the big cities of Netherlands”. Regarding this 

observation, any frameworks developed for analogical argumentation must provide 

mechanisms to formalize the description of concepts. In a very simple way, we may 

formalize the description of concepts in terms of inference rules. For instance, the 

descriptions of the above city example can be represented by  

 
london(X) ← capital_city(X, Y),big_city(X, Y),england(Y) and 

amsterdam(X) ← capital_city(X, Y),big_city(X, Y),netherlands(Y) 

 
respectively. When inference rules are grounded, ones can employ the model theory to 

derive the similarity between predicates as in (Goebel, 1989b; Haraguchi & Arikawa, 

1987). 

Though using inference rules can encode our example, other knowledge 

representation formalisms which provide more expressivity may be also used to encode 

concepts e.g. description logics (cf. Subsection 2.2) or (other fragments of) first-order 

logic. For instance, the same description can be formalized based on TBox formalism 

as:  

 
London ⊑ CapitalCity ⊓ BigCity ⊓ ∃isCityOf.England and  

Amsterdam ⊑ CapitalCity ⊓ BigCity ⊓ ∃isCityOf.Netherlands 

 
respectively. Successful examples of DL knowledge bases are ontologies in medicine 

and bioinformatics e.g. SNOMED CT (www.snomed.org) or GO 

(www.geneontology.org).  

This chapter addresses the perception of concept similarity and defines it as a 

human judgment of a degree to which a pair of concepts in question is similar. Concept 
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similarity measures are computational techniques attempting to imitate the human 

judgments of concept similarity. Formally, they aim at identifying a degree of 

commonality of two given concepts and can be regarded as a generalization of the 

classical reasoning problem of equivalence i.e. two concepts (or states of affairs) are 

identical if and only if their degree of ‘similarity’ is equal to 1. It is worth noting that 

similarity of concepts is oftentimes context-sensitive and can be recognized from the 

comparison of features shared between them. Nevertheless, (Hesse, 1965; Waller, 

2001; Weinreb, 2016) reported that features used in comparisons should be ‘relevant’ 

to the attribution of the property. This means that there must be ways of expressing 

aspects of a context in consideration. 

 
3.1 Preference Context for Having Relevance 

This section introduces preference context (denoted by 𝔭) as a collection of 

‘abstract’ preferential elements in which the development of similarity measure of 

concepts for a particular cognitive agent should consider. Its first intuition is to 

represent different forms of preferences (of an agent) based on concept names and role 

names. Similarity measure which adopts this notion is flexible to be tuned by an agent 

and can determine the similarity conformable to that agent’s perception.  

The syntax and semantics of each form are given in terms of ‘partial’ functions 

because agents may not have preferences over all concept names and role names. We 

recommend to devise similarity measure with consideration on an appropriate 

‘instance’ of preference context if we aim at developing concept similarity measure for 

general purposes i.e. a measure based on both subjective and objective factors.  

Let 𝐼, 𝑆, 𝐷 be non-empty sets equipped with total orders ≤è, ≤?, and ≤D, 

respectively. As aforementioned, our intention is to define preference context for 

representing a broad notion of the user’s preferences i.e. the ‘abstract’ notion level. At 

its ‘implementation’ level, there could be many ways to instantiate these values. For 

instance, our development in Section 4.1 use [0, 2], [0, 1], [0,1] for 𝐼, 𝑆, and 𝐷, 

respectively. Different representations may result in different desirable properties of 

similarity measures. We investigate and discuss their differences with our work in 

Section 4.6. Mathematical definitions for each aspect of preference context are formally 

defined as follows.  
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Definition 3.1 (Importance of Concept Name). Let CN be a set of concept 

names. Then, the importance of concept name is a ‘partial’ function ic:	CN → 𝐼.  

 

For any concepts 𝐴, 𝐵 ∈ CN, the agent perceives that 𝐴 has equal or more (less) 

importance to 𝐵 if ic(A) = 𝑖J, ic(B) = 𝑖M, and 𝑖M ≤è 𝑖J (or 𝑖J ≤è 𝑖M, respectively) is 

defined in 𝐼. 

Example 3.1. Suppose that an agent 𝐴 is using a similarity measure to compare 

the degree of equality between concepts London and Amsterdam w.r.t. safety in the 

street. In that moment, being ‘capital city’ may be not relevant to the consideration. 

Thus, to capture this subjective feeling of proximity, we may suppose I ∶= {𝑖M, 𝑖J} such 

that 𝑖M ≤è 𝑖J. Then, the agent may just assign as: ic(BigCity) = 𝑖J and 

ic(CapitalCity) = 𝑖M.  

 

Definition 3.2 (Importance of Role Name). Let RN be a set of role names. 

Then, the importance of role name is a ‘partial’ function ir:	RN → 𝐼.  

 

For any roles r, s ∈ RN, the agent perceives that 𝑟 has equal or more (less) 

importance to 𝑠 if ir(r) = 𝑖J, ir(s) = 𝑖M, and 𝑖M ≤è 𝑖J (or 𝑖J ≤é 𝑖M, respectively) is 

defined in 𝐼. 

Example 3.2 (Continuation of Example 3.1). Suppose that an agent 𝐴 is using 

a similarity measure to compare the degree of equality between concepts London and 

Amsterdam w.r.t. safety in the street. In that moment, the ‘isCityOf’ relation between 

a city and a country may be not relevant to the consideration. Thus, to capture this 

subjective feeling of proximity, we may suppose I ∶= {𝑖M, 𝑖J} such that 𝑖M ≤é 𝑖J. Then, 

the agent may just assign as: ir(isCityOf) = 𝑖M and assign 𝑖J to concepts CapitalCity 

and BigCity.  

 

Definition 3.3 (Similarity of Concept Names). Let CN be a set of concept 

names. Then, the similarity of concept names is a ‘partial’ function sc:	CN × CN → 𝑆.  
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For any concepts 𝐴, 𝐵 ∈ CN, the agent perceives that 𝐴 and 𝐵 present subjective 

feeling of equality in degree 𝑥 if sc(𝐴, 𝐵) = 𝑥 and 𝑥 is defined in 𝑆. 

Example 3.3 (Continuation of Example 3.1). Suppose that an agent 𝐴 feels 

that England and Netherlands are similar because they are countries in Europe even 

though they are different countries. To capture this subjective feeling of equality, we 

may suppose S ∶= {𝑠M, 𝑠J} such that 𝑠M ≤? 𝑠J and assign: sc(England,Netherlands) =

𝑠J. Other pairs of different concept names are assigned to 𝑠M by default.  

 

Definition 3.4 (Similarity of Role Names). Let RN be a set of role names. 

Then, the similarity of role names is a ‘partial’ function sr:	RN × RN → 𝑆.  

 

For any roles 𝑟, 𝑠 ∈ RN, the agent perceives that 𝑟 and 𝑠 present subjective 

feeling of equality in degree 𝑥 if sr(𝑟, 𝑠) = 𝑥 and 𝑥 is defined in 𝑆.  

 

Example 3.4 (Continuation of Example 3.1). Suppose that concept London is 

redefined as: London ⊑ CapitalCity ⊓ BigCity ⊓ ∃isPartOf.England. According to 

this terminology, an agent 𝐴 feels that the relations isPartOf and isCityOf invoke similar 

feeling. To capture this subjective feeling of equality, we may suppose S ∶= {𝑠M, 𝑠J} 

such that 𝑠M ≤? 𝑠J and assign: sr(isPartOf,isCityOf) = 𝑠J. Other pairs of different role 

names are assigned to 𝑠M by default.  

 

Basically, our motivation of both functions sc and sr are the same, i.e. we aim 

at attaching subjective feeling of proximity (about concept names and role names) into 

a similarity measure. In description logics (or most of other formalisms), different 

(concept and role) names may refer to different (classes of) instances even though they 

could be recognized as being similar in real-world domains. 

Definition 3.5 (Importance Factor of Quantified Role). Let RN be a set of 

role names. Then, the importance factor of quantified role is a ‘partial’ function 

d:	RN → 𝐷. 
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For any role r ∈ RN, the agent perceives that, given a quantified concept ⊡ r. C 

where ⊡	∈ {	∀, ∃}, there is an importance factor 𝑥 of a quantified role 𝑟 in relation to 

the corresponding concept 𝐶 if d(r) = x and x is defined in D. 

Intuitively, an agent can employ this notion to distinguish the weighted factor 

be- tween a quantified role and its corresponding concept description. Indeed, this 

notion is used when an agent wants to compare two quantified concepts i.e. ⊡ rM. CM 

and ⊡ rJ. CJ where  ⊡	∈ {	∀, ∃}. We exemplify its usage in the following. 

Example 3.5 (Continuation of Example 3.1). Suppose that an agent A feels 

that the relation isCityOf is less influential than a corresponding concept description, 

compared to other relations. To capture this subjective feeling of biased weights, we 

may suppose 𝐷 ∶= {𝑑M, 𝑑J} such that 𝑑M ≤D 𝑑J and assign: d(isCityOf) = 𝑑M. Other 

role names are assigned to 𝑑J by default. 

 

The next section discusses our methodology to develop similarity measure w.r.t. 

preference context for indicating the degree of similarity w.r.t. certain contexts of 

consideration between two concepts (or states of affairs) in description logics. 

  

3.2 Formal Notion of Context Similarity under Preference 

To understand the notion of similarity under subjective factors, we first take a 

look into the definition of concept equivalence (cf. Definition 2.16). That is, let 𝒯 be a 

TBox and 𝐶, 𝐷 ∈ Con(ℒ) for a particular DL ℒ, then 

 
𝐶 ≡× 𝐷 ⟺ 𝐶 ⊑× 𝐷	and	𝐷 ⊑× 𝐶                 (3.1) 

 
It is worth observing that concept equivalence can be seen as an operation for 

comparing two concepts. For instance, if two concepts are equivalent (i.e. 𝐶 ≡× 𝐷 ⟺

𝐶ℐ = 𝐷ℐ), then the concept equivalence relation yields 1 (true); or yields 0 (false) 

otherwise. We adopt this viewpoint with preference context and introduce the 

following. 

Definition 3.6. Let 𝔓 be an infinite set of preference contexts where 𝔭 ∈ 𝔓, 

Con(ℒ) be a set of concept descriptions for a particular DL ℒ where 𝐶, 𝐷 ∈ Con(ℒ), 
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and 𝒯 be a TBox. Then, a concept similarity under preferences is a family of functions  

∼×
𝔭 :	Con(CN, RN) × Con(CN, RN) → [0,1] such that  

∀𝔭G ∈ 𝔓: 𝐶 ∼×
𝔭ï 𝐷 = 1	 ⟺ 𝐶 ≡× 𝐷 

(called preference invariant w.r.t. concept equivalence) holds; and  

• 𝐶 ∼×
𝔭 𝐷 = 1 indicates maximal similarity (or concept equivalence) under 

preference context 𝔭 w.r.t. 𝒯 between concept descriptions C and D,  

• 𝐶 ∼×
𝔭 𝐷 = 0 indicates having no relation under preference context 𝔭 w.r.t. 𝒯 

between concept descriptions C and D. 

 

The reason we require preference invariance w.r.t. concept equivalence because 

we do not want to allow the usage of any preference context to effect on the perception 

of semantically identical concept descriptions.  

An interesting question to the above definition is that “how concrete measures 

for particular DLs should be developed?”. We address this question by generalizing 

from the concept equivalence relation w.r.t. preference context as follows:  

 
C ∼𝜏

𝔭 D = 1 ⟺ C ↝𝜏
𝔭 D = 1	and	D ↝𝜏

𝔭 C = 1               (3.2) 

 
That is, two concepts are similar w.r.t. preference context 𝔭 to each other iff the 

degree of directional subsumption w.r.t. preference context p from a concept to another 

one is 1 and vice versa. In Equation 3.2, the notion of directional subsumption degree 

w.r.t. preference context is denoted by ↝×
𝔭. It should be noted that the logical 

conjunction ‘and’ in the equation should also be generalized in such a way that two 

numerical values are aggregated and result in a unit interval [0, 1]. Hence, we outline 

our methodology to develop a ‘concrete’ similarity measure as follows:  

1. Generalize the notion of concept subsumption (⊑×) to the notion of subsumption 

degree (↝× );  

2. Generalize the notion of subsumption degree (↝× ) to the notion of subsumption 

degree under preference (↝×
𝔭); and 

3. Generalize the logical conjunction (i.e. ‘and’) for aggregating two numerical 

values to result in a unit interval.  

Ref. code: 25615722300273MJP



41 
 
 

 
 

We address the first step in Chapter 3 and the remaining steps in Chapter 4. 

Basically, the classical reasoning technique is investigated under scrunity in this thesis 

with the main focus on DL ℰℒℋ. Our goal is to find out a similarity measure under 

preferences, which can be computed efficiently i.e. in polynomial time. Intuitively, the 

computational approach introduced in this chapter is derived from the scrunity of 

structural subsumption approach in ℰℒ (cf. Subsubsection 2.2.4).  

 

3.3 From Concept Subsumption to Subsumption Degree 

We first discuss a computational approach for identifying the subsumption 

degree between ℰℒℋ concepts. Since ℰℒℋ is a superlogic of ℰℒ, its structural 

subsumption procedure can be slightly modified from ℰℒ as follows:  

1. Concepts are fully expanded to the form PM ⊓ …⊓ PØ ⊓ ∃rM. CM ⊓ …⊓ ∃rÙ. CÙ;  

2. Fully expanded concepts are structurally transformed into the corresponding 

description trees, where its root has {PM, … , PØ} as its label, has n outgoing 

edges, each labeled by the set ℛ𝓇𝒿  of all rô’s super roles to a vertex vô for 1	 ≤

j	 ≤ n. Formally, ℛõ = {s	| r ⊑∗ s} and r ⊑∗ s if r = s or r÷ ⊑ r÷µM ∈ 𝒯 where 

1	 ≤ i	 ≤ n, rM = r, rÙ = s. That is, ⊑∗ denotes a transitive closure of ⊑ between 

roles. Then, a subtree with the root vô is defined recursively relative to the 

concept Cô; and  

3. Given two description trees 𝒯E, 𝒯D, we conclude that C ⊑ D holds iff there exists 

a homomorphism from 𝒯D to 𝒯E  according to the following definition and 

theorem.  

Definition 3.7 (Homomorphism (Baader, 2003; Baader et al., 2001)). An ℰℒℋ 

description tree 𝒯 is a quintuple (V, E,rt, l, ρ) where V is a set of vertices, E ⊆ V × V is 

a set of edges, rt is the root, l: V → 2CNpri is a vertex labeling function, and ρ: E → 2RN 

is an edge labeling function. Let 𝒯M and 𝒯J be two ℰℒℋ description trees, 𝑣M ∈ VM and 

𝑣J ∈ VJ. Then, the mapping h: VM → VJ is a homomorphism from 𝒯Mto 𝒯J iff the 

following conditions are satisfied:  

• For all 𝑣M ∈ VM, lM(𝑣M) ⊆ lJ¨h(𝑣M)ª; and  

• For each successor 𝑤M of 𝑣M in 𝒯M, ℎ(𝑤M) is a successor of h(𝑣M) with 

ρM(𝑣M, 𝑤M) ⊆ ρJ¨h(𝑣M), h(𝑤M)ª.  
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Theorem 3.1. Let C, D ∈ Con(ℰℒℋ) and 𝒯E  and 𝒯D be the corresponding 

description trees. Then, C ⊑ D iff there exists a homomorphism (denoted by h:	𝒯D →

𝒯E) which maps the root 𝑣 of 𝒯D to the root 𝑤 of 𝒯E .  

 

Let us demonstrate how ones can employ the approach to check if subsumption 

relation holds between ℰℒℋ concepts with the following example and shade some light 

of the possibility to compute the subsumption degree.  

Example 3.6. An agent A wants to visit a place for doing some physical 

activities (i.e. ActivePlace). Suppose that a place ontology is modeled as follows. The 

classical reasoning of subsumption may be used to find out a concept subsumed by 

ActivePlace.  

 
ActivePlace ⊑ Place ⊓ ∃canWalk.Trekking ⊓ ∃canSail.Kayaking  

Mangrove ⊑ Place ⊓ ∃canWalk.Trekking 

Beach ⊑ Place ⊓ ∃canSail.Kayaking 

canWalk ⊑ canMoveWithLegs 

canSail ⊑ canTravelWithSails 

 
Following the above steps, each primitive definition is transformed to a 

corresponding equivalent full definition and the corresponding description tree is 

constructed accordingly.  

 
ActivePlace ≡ X ⊓ Place ⊓ ∃canWalk.Trekking ⊓ ∃canSail.Kayaking  

Mangrove ≡ Y ⊓ Place ⊓ ∃canWalk.Trekking  

Beach ≡ 𝑍 ⊓ Place ⊓ ∃canSail.Kayaking  

 
where 𝑋, 𝑌, and 𝑍 are fresh primitive concept names. canWalk ≡ t ⊓

canMoveWithLegs and canSail ≡ u ⊓ canTravelWithSails, where 𝑡 and 𝑢 are fresh 

primitive role names. In other words, ℛcanWalk = {t,	canMoveWithLegs} and 

ℛcanSail = {u,	canTravelWithSails}. Figure 3.1a - 3.1c depict 𝒯ActivePlace, 𝒯Mangrove, and 

𝒯Beach, respectively.  

Ref. code: 25615722300273MJP



43 
 
 

 
 

It is not difficult to find a failed attempt of identifying a homomorphism 

mapping the root of 𝒯ActivePlace to the root of 𝒯Mangrove, i.e. h:	𝒯ActivePlace ↛ 𝒯Mangrove. 

Hence, this infers Mangrove ⋢ ActivePlace. Similarly, we can conclude that Beach ⋢

ActivePlace.  

 

Though we conclude that subsumption relations from ActivePlace to Mangrove 

and from ActivePlace to Beach do not hold, we can notice that they have some 

commonalities among their structures. For instance, considering the roots of 𝒯ActivePlace 

and 𝒯Beach,, it appears that Place is belonged to both {X,	Place} and {Y,	Place}. This 

observation leads us to develop approaches for computing the subsumption degree 

between ℰℒℋ concepts. In the next subsection, a homomorphism-based structural 

subsumption degree function is discussed. And, its properties are investigated 

accordingly.  

 
Figure 3.1 The Description Trees of Concepts 𝒯ActivePlace, 𝒯Mangrove, and 𝒯Beach. 

 

3.3.1 Homomorphism Degree 

 Let us reconsider Example 3.6. It is obvious that h:	𝒯ActivePlace ↛ 𝒯Mangrove holds 

due to {X,Place} ⊈ {Y,Place}. However, Place appears to be in common on both sets. 

Ones may regard this as partial mapping from 𝒯ActivePlace to 𝒯Mangrove. Intuitively, the 

homomorphism degree function adopts this viewpoint to develop the computational 

procedure.  

Let C, D ∈ Con(ℰℒℋ) be fully expanded concept of the form: PM ⊓ …⊓ PØ ⊓

∃rM. CM ⊓ …⊓ ∃rÙ. CÙ. We denote the set PM, … , PØ of the concepts 𝐶, 𝐷 and the set 
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∃𝑟M. 𝐶M ⊓ …⊓ ∃𝑟�. 𝐶� of the concepts 𝐶, 𝐷 by 𝒫E,𝒫D and ℰE, ℰD, respectively. The 

super roles ℛõ,ℛ! are as defined on Section 3.3. The following definition extends 

Theorem 3.1 to the case where no such homomorphism exists but there is some 

commonality.  

Definition 3.8 (Homomorphism Degree (Tongphu & Suntisrivaraporn, 

2015)). Let 𝕋ℰℒℋ  be a set of all ℰℒℋ description trees and 𝒯E, 𝒯D ∈ 𝕋ℰℒℋ  correspond 

to two ℰℒℋ concept names 𝐶 and 𝐷, respectively. The homomorphism degree function  

hd:𝕋ℰℒℋ × 𝕋ℰℒℋ → [0,1] is inductively defined as follows:  

 
hd(𝒯D, 𝒯E) = µ ⋅ p-hd(𝒫D, 𝒫E)+ (1− 𝜇) ⋅ e-set-hd(ℰD, ℰE),             (3.3) 

 
where 𝜇 = |𝒫D| (|𝒫D ∪ ℰD|)⁄  and | | represents the set cardinality;  

 

p-hd(𝒫D, 𝒫E) = *
								1,									𝒫D 	= 	∅
|𝒫+∩𝒫,|
|𝒫+|

, 	otherwise               (3.4) 

 

e-set-hd(ℰD, ℰE) =

⎩
⎨

⎧
1, 																															𝒫D = 	∅
0, 									ℰD ≠ ∅	and	ℰE = 	∅

∑
Ø12
34∈ℰ,

5e-hd¨67,64ª8

|ℰ+|67∈ℰ𝒟 ,		otherwise	
             (3.5) 

 

with 𝜖¡ , 𝜖Û existential restrictions; and  

 

 e-hd(∃𝑟. 𝑋, ∃𝑠. 𝑌) = 𝛾¨𝜈 + (1− 𝜈) ⋅ hd(𝒯< , 𝒯=)ª              (3.6) 

 

where 𝛾 = (|ℛõ ∩ ℛ!|) |ℛõ|⁄  and 0 ≤ 𝜈 < 1. 

 

The value of ν determines how important the roles are to be considered for 

similarity between two existential restriction information. For instance, 

∃canWalk.Trekking and ∃canWalk.Parading for dissimilar nested concepts Trekking 

and Parading should not be regarded as entirely dissimilar themselves. If 𝜈 is assigned 

the values 0.3, 0.4, and 0.5, then e-hd(∃canWalk.Trekking, ∃canWalk.Parading) is 
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0.3, 0.4, and 0.5, respectively. This value may vary among applications. In this work, 

𝜈 is set to 0.4 (if it is not explicitly defined) for exemplifying the calculation of hd.  

Example 3.7. (Continuation of Example 3.6) 

For brevity, let ActivePlace, Mangrove, Beach, Place, Trekking, Kayaking, canWalk, 

and canSail be abbreviated as AP, M, B, P, T, K, cW, and cS, respectively. Using 

Definition 3.8, the homomorphism degree from 𝒯AP to 𝒯M, or  

 

hd(𝒯AP, 𝒯M) = ?J
O
@ ?M

J
@ + ?J

O
@ ?Ø12{e-hd(∃cW.T,∃cW.T)}

J
+ Ø12{e-hd(∃cS.K,∃cW.T)}

J
@   

                      = ?J
O
@ ?M

J
@ + ?J

O
@ ?Mµw

J
@ = 0.5 

 

Similarly, hd(𝒯M, 𝒯AP) = 0.67, hd(𝒯AP, 𝒯B) = 0.5, and hd(𝒯B, 𝒯AP) = 0.67.  

 

The example shows that the homomorphism degree from 𝒯AP to 𝒯M is 0.5 even 

though M is not subsumed by AP. Similar interpretations can be applied for the other 

results.  

 

3.3.2 Properties underlying Homomorphism Degree 

Theorem 3.2. Let C, D ∈ Con(ℰℒℋ) and 𝒯E, 𝒯D be their corresponding 

description tree, respectively. Then, the following are equivalent:  

1. C ⊑ D; and  

2. hd(𝒯E, 𝒯D) = 1 

Proof. (⟹) Assume C ⊑ D i.e. there exists a homomorphism ℎ which maps the 

root of 𝒯D to the root of 𝒯E ⟺ lD(𝑣D) ⊆ lE¨h(𝑣D)ª for each 𝑣D ∈ VD and ρD(𝑣D, 𝑤D) ⊆

ρE¨h(𝑣E), h(𝑤E)ª for each successor 𝑤D of 𝑣D. We show hd(𝒯D, 𝒯E) = 1 by cases.  

• When |VD| = 1 i.e. 𝒯D contains only one node, then we show hd(𝒯D, 𝒯E) = 1 ⟺

p-hd(𝒫D, 𝒫E) = 1 (by Definition 3.8). This is obvious since 𝒫D ⊆ 𝒫E .  

• When |VD| > 1, then we need to show hd(𝒯D, 𝒯E) = 1 ⟺ p-hd(𝒫D, 𝒫E) = 1 

and e-set-hd(ℰD, ℰE) = 1  (by Definition 3.8). Since lD(rtD) ⊆ lF¨h(rtD)ª (by 

assumption), then p-hd(𝒫D, 𝒫E) = |𝒫D	| ∕ |𝒫D| = 	1. To show 

e-set-hd(ℰD, ℰE) = 1, we need to show that ρD(rtD, 𝑤) ⊆ ρE¨rtE, h(𝑤)ª for 
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each successor 𝑤 of rtD (in order to have 𝛾 = 	1) and there exists a 

homomorphism hG which maps 𝑤 of its subtree 𝒯D7 to hG¨h(𝑤)ª of another 

subtree 𝒯E4 (in order to have hd ?𝒯D7 , 𝒯E4@ = 1). The former is obvious by 

assumption. Since 𝒯D7 is part of 𝒯D and 𝒯E4 is also part of 𝒯E  , then such ℎG  also 

exists by assumption. Thus, we have hd(𝒯D, 𝒯E) = 1.  

(⟸) Assume hd(𝒯D, 𝒯E) = 1 i.e. p-hd(𝒫D, 𝒫E) = 1 and e-set-hd(ℰD, ℰE) = 1 

(by Definition 3.8). Then, we need to show C ⊑ D i.e. there exists a homomorphism 

which maps the root of 𝒯D to the root of 𝒯E . By Definition 3.8, p-hd(𝒫D, 𝒫E) = 1 

implies that 𝒫D ⊆ 𝒫E . Also, e-set-hd(ℰD, ℰE) = 1 ⟺ 𝛾 = 1 and hd ?𝒯D7 , 𝒯E4@ = 1 for 

each depth of the tree 𝒯D ⟺ lD(𝑣D) ⊆ lE¨h(𝑣D)ª for each 𝑣D ∈ VD and 𝜌D(𝑣D, 𝑤D) ⊆

𝜌E¨ℎ(𝑣E), ℎ(𝑤E)ª for each successor 𝑤D of 𝑣D. Therefore, we conclude that C ⊑ D.  

 

Theorem 3.2 describes a property of concept subsumption, i.e. 𝐶 is a subconcept 

of 𝐷 if the homomorphism degree of the corresponding description tree 𝒯D to 𝒯E  is equal 

to 1, and vice versa. In other words, the more value of hd(𝒯D, 𝒯E) is closer to 1, the 

more likely the subsumption of 𝐶 and 𝐷 may hold.  

In the following, we show that hd can be computed in polynomial time.  

Theorem 3.3. Let VM, VJ be sets of vertices corresponding to 𝒯M, 𝒯J, respectively. 

The computational complexity of hd is 𝒪(|VM| ⋅ |VJ|). 

Proof. Let C ∶= PM ⊓ …⊓ PØ ⊓ ∃rM. CM ⊓ …⊓ ∃rÙ. CÙ, D ∶= QM ⊓ …⊓ QK ⊓

∃sM. DM ⊓ …⊓ ∃rL. DL, and 𝒯E  , 𝒯D be the corresponding description trees. We need to 

show 𝜇, 𝛾, p-hd(𝒫D, 𝒫E), and e-set-hd(ℰD, ℰE) are bounded by 𝒪(|𝑉M| ⋅ |𝑉J|). 

Since the set union, the intersection, and the set cardinality | | can be computed 

in polynomial time in the worst case, then 𝜇, p-hd(𝒫D, 𝒫E), and 𝛾 are bounded 

by	𝒪(|𝑉M| ⋅ |𝑉J|).  

Computing e-set-hd(ℰD, ℰE) requires to call e-hd for |ℰD||ℰE| times. Each call 

of e-hd will make a recursive call to hd and its number of calls is bounded by the height 

of 𝒯D and 𝒯E . Hence, e-set-hd(ℰD, ℰE) are bounded by 𝒪(|𝑉M| ⋅ |𝑉J|).  
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3.3.3 Concept Similarity Degree 

The degree of concept similarity can be determined from the two directional 

subsumption degree of each corresponding direction. This is an intermediate result of 

developing a concrete notion of subsumption degree such as the homomorphism 

degree. Mathematically, the degree of concept similarity can be defined as any binary 

operators accepting the unit interval e.g. the average, the multiplication, and the root 

mean square.  

In the following, a measure for description logic ℰℒℋ is defined based on the 

average of two homomorphism degrees. This measure is named sim and is introduced 

(Suntisrivaraporn, 2013; Tongphu & Suntisrivaraporn, 2015). We give its formal 

definition as follows:  

Definition 3.9 (ℰℒℋ Similarity Degree). Let C, D ∈ Con(ℰℒℋ) and 𝒯E, 𝒯D be 

the corresponding description trees. Then, the ℰℒℋ similarity degree between 𝐶 and 𝐷 

(denoted by sim(𝐶, 𝐷)) is defined as follows:  

 

sim(𝐶, 𝐷) = hd(𝒯,,𝒯+)µhd(𝒯+,𝒯,)
J

                 (3.7)   

 

Example 3.8. (Continuation of Example 3.7) The ℰℒℋ similarity degree 

between AP and M can be calculated as follows:  

 

sim(AP,M) = MN(𝒯AP,𝒯M)µMN(𝒯M,𝒯AP)
J

= w.Oµw.PQ
J

= 0.585  

 

Similarly, sim(AP,B) = 0.585.  

 

Definition 3.10 (Ordering of Functions). Let 𝛼 and 𝛽 be different functions. 

Then, 𝛼 is more skeptical than or equal to 𝛽 (denoted by 𝛼 ⪯ 𝛽) if (𝐶 𝛼 𝐷) ≤ (𝐶 𝛽 𝐷) 

for all concepts 𝐶, 𝐷 ∈ Con(ℒ).  

 

The following proposition discusses about some inherited properties of the 

above measure for ℰℒℋ concepts i.e. it is symmetric and is less skeptical than the 

concept equivalence (cf. Definition 3.10).  
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Proposition 3.1. Let 𝐶, 𝐷 ∈ Con(ℰℒℋ). Then, the following properties hold: 

1. sim(𝐶, 𝐷) = sim(𝐷, 𝐶); and  

2. ≡	⪯ sim. 

Proof. (1) This is obvious by the average.  

(2) This is immediately followed from Theorem 3.2 and the average.  

 

Theorem 3.4. Let VM, VJ be sets of vertices corresponding to 𝒯M, 𝒯J, respectively. 

The computational complexity of sim is 𝒪(|VM| ⋅ |VJ|).  

Proof. This is immediately followed from Theorem 3.3 and the average.  

  

We can show that sim is also a procedure which ensures termination and can be 

used as an indicator for the degree of commonalities between ℰℒℋ concepts. 

Intuitively, we ensure that the correct results are correct (cf. Lemma 3.1) and the 

negative results are also correct (cf. Lemma 3.2). Termination guarantees to provide an 

answer in finite time.  

Lemma 3.1. Let 𝐶, 𝐷 be any ℰℒℋ concepts and 𝜈 ∈ (0,1]. Then, sim(𝐶, 𝐷) ∈

(0,1] implies that 𝐶 and 𝐷 share commonalities among each other.  

Proof. Let 𝐶, 𝐷 ∈ Con(ℰℒℋ), 𝒯E, 𝒯D be their corresponding trees, and 𝜈 ∈

(0,1). With Theorem 3.2 and the average, it suffices to show that hd(𝒯E, 𝒯D) ∈ (0,1] 

implies p-hd(𝒫E, 𝒫D) > 0 or e-set-hd(ℰD, ℰD) > 0. We show these cases as follows:  

• If there exists 𝑣 ∈ VF such that lF(𝑣) ∩ lD¨h(𝑣)ª ≠ 	∅, then we show 

hd(𝒯E, 𝒯D) ∈ (0,1]. Since UlF(𝑣) ∩ lD¨h(𝑣)ªU > 0, then we know 𝜇 > 	0 and 

p-hd¨𝒫V , 𝒫h(V)ª > 0. That is, p-hd(𝒫E, 𝒫D) > 0.  

• If there exist 𝑣,𝑤 ∈ VF such that ρE(𝑣, 𝑤) ∩ ρD¨h(𝑣), h(𝑤)ª ≠ 0, then we 

show hd(𝒯E, 𝒯D) ∈ (0,1]. Since UρE(𝑣, 𝑤) ∩ ρD¨h(𝑣), h(𝑤)ªU > 0, then we know 𝛾 >

	0. Since hd cannot be decreased, we know e-set-hd(ℰD, ℰD) > 0.  

  

Lemma 3.2. Let C,D be ℰℒℋ concepts and 𝜈 ∈ (0,1]. Then, if 𝐶 and D share 

commonalities among each other, then sim(𝐶, 𝐷) ∈ (0,1].  
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Proof. Let 𝐶, 𝐷 ∈ Con(ℰℒℋ), 𝒯E, 𝒯D be their corresponding trees, and 𝜈 ∈

(0,1). We show their contraposition i.e. sim(𝐶, 𝐷) = 0 implies that 𝐶 and 𝐷 do not 

share commonalities to each other.  

By the average, we know that hd(𝒯E, 𝒯D) = 0 and hd(𝒯D, 𝒯E) = 0. This means 

that both 𝐶 and 𝐷 do not share any commonalities to each other.  

 

Theorem 3.5. The measure sim is guaranteed for termination and fulfills the 

condition:  

 

sim(𝐶, 𝐷) ∈ (0,1] iff both 𝐶 and 𝐷 share commonalities among each other.  

 

Proof. This is obvious by Lemma 3.1, Lemma 3.2, and Theorem 3.4.  

 

Discussing about the choice of an aggregating operator, ones may argue to base 

the definitions on other methods. However, those may create unsatisfactory results for 

the extreme cases. To illustrate this, we define the functions sim× and simrms as 

follows.  

 

sim×(𝐶, 𝐷) = hd(𝒯E, 𝒯D) × hd(𝒯D, 𝒯E)                      (3.8)  

 

simrms(C, D) = W¨hd(𝒯,,𝒯+)ª
X
µ¨hd(𝒯+,𝒯,)ª

X

J
                  (3.9)  

 

Then, for any primitive concept 𝐴, we have sim×(A, ⊤) = 0 × 1 = 0 and 

simrms(A, ⊤) = Y(0J + 1J) 2⁄ = 0.707, whereas sim(A, ⊤) = (0+ 1) 2 = 0.5⁄ . This 

implies that sim×(𝐶, 𝐷) ≤ sim ≤ simrms(𝐶, 𝐷) for any concept descriptions 𝐶 and 𝐷. 

Hence, we agree with (Racharak et al., 2018; Suntisrivaraporn, 2013) that the average-

based definition as given above is the most appropriate method13.  

 

                                                
13 Though we recommend to use the average, its choice of operators may be changed and it may 
produce a different behavior as discussed. 
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CHAPTER 4 

PERSONALIZING CONCEPT SIMILARITY  

IN DESCRIPTION LOGICS 
 

The previous chapter proposes an approach for identifying subsumption degree 

and concept similarity degree in description logics. This produces a number which 

indicates the commonalities and discrepancies of the subset relation and equivalence 

relation, respectively, between concepts.  

However, not every feature need to be cited in analogical reasoning, the studies 

in (Hesse, 1965; Waller, 2001; Weinreb, 2016) reported that features used by the 

comparison should be ‘relevant’ to the attribution of the property. This leads us to 

investigate and develop an approach for computing the degree of concept similarity 

under subjective factors. We illustrate an example (slightly modified from Example 

3.6) in which subjective factors play a decisive role in similarity perception.  

Example 4.1. An agent 𝐴 wants to visit a place for doing some physical 

activities (i.e. ActivePlace). At that moment, he would like to enjoy walking. Suppose 

that a place ontology has been modeled as follows:  

 
ActivePlace ⊑ Place ⊓ ∃canWalk.Trekking ⊓ ∃canSail.Kayaking  

Mangrove ⊑ Place ⊓ ∃canWalk.Trekking    

Beach ⊑ Place ⊓ ∃canSail.Kayaking  

canWalk ⊑ canMoveWithLegs  

canSail ⊑ canTravelWithSails  

 
Since the above ontology is expressed in ℰℒℋ, we may use the measure sim to 

query the similarity degree between ActivePlace and Beach i.e. sim(AP,B), and also, 

between ActivePlace and Mangrove i.e. sim(AP,M). As shown in Example 3.8, 

sim(AP,B) = sim(AP,M) = 0.585. These information shows that both Mangrove and 

Beach are equally similar to ActivePlace. We note that sim was developed based on 

the structural subsumption algorithm; thus, it merely considers the objective aspects. 

Taking into account also the agent’s preferences, Mangrove may appear to be more 
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suitable for his perception of ActivePlace at that moment. In other words, he will not 

be happy if an intelligent system happens to recommend him to go for a Beach.  

To address this issue, how preferential aspects of a context in consideration 

should be properly formalized. As introduced in Chapter 3, preference context is an 

‘abstract’ guideline for devising similarity measure under subjective factors. Our 

intention for leaving the internal structure of preference context is related to an intuition 

that methods of developing specific similarity measure can be so many. Indeed, certain 

concrete notion of preference context may depend on an algorithmic definition of 

similarity measure. Later, we will exemplify other concrete notion of preference context 

that we have found in the literature of description logics in this chapter (cf. Subsection 

4.6.2) and compare them to our well-investigated concrete notion of preference context 

called preference profile. This chapter also generalizes the approach for computing 

subsumption degree w.r.t. those preferential aspects called concept similarity under 

preference profile. 

 
4.1 Preference Profile  

We first introduced preference profile (denoted by 𝜋) in (Racharak, 

Suntisrivaraporn, et al., 2016b) as a collection of preferential elements in which the 

development of similarity measure of concepts for a particular cognitive agent should 

consider. Its first intuition is to model different forms of preferences (of an agent) based 

on concept names and role names. Similarity measure which adopts this notion is 

flexible to be tuned by an agent and can determine the similarity conformable to that 

agent’s perception.  

The syntax and semantics of each form are given in term of ‘partial’ functions 

because agents may not have preferences over all concept names and role names. We 

recommend to devise similarity measures with considerations on preference profile if 

we aim at developing concept similarity measure for general purposes – a measure 

based on both subjective and objective factors. Mathematical definitions for each form 

of preferences are formally defined as follows.  
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Definition 4.1 (Primitive Concept Importance). Let CNpri(𝒯) be a set of 

primitive concept names occurring in a TBox 𝒯. Then, a primitive concept importance 

is a ‘partial’ function 𝔦𝔠: CNpri(𝒯) → [0,2]14.  

 

For any A ∈ CNpri(𝒯), 𝔦𝔠(𝐴) = 1 captures an expression of normal importance 

for 𝐴, 𝔦𝔠(𝐴) > 1 (and 𝔦𝔠(𝐴) < 1) indicates that 𝐴 has higher (and lower, respectively) 

importance, and 𝔦𝔠(𝐴) = 0 indicates that 𝐴 is of no importance to the agent.  

Example 4.2. (Continuation of Example 4.1) Suppose that an agent 𝐴 is using 

a similarity measure for querying some names similar to ActivePlace. He concerns that 

those names will be similar to ActivePlace if they are ‘places’. Thus, the agent can 

express this preference as 𝔦𝔠(Place) = 2, i.e. values should be higher than 1.  

On the other hand, suppose he ‘does not care’ if those are places or not, he may 

express this preference as 𝔦𝔠(Place) = 0, i.e. values must be equal to 0.  

 

Definition 4.2 (Role Importance). Let RN(𝒯) be a set of role names occurring 

in 𝒯. Then, a role importance is a ‘partial’ function 𝔦𝔯:RN(𝒯) → [0,2].  

 

For any 𝑟 ∈ RN(𝒯), 𝔦𝔯(𝑟) = 1 captures an expression of normal importance for 

𝑟, 𝔦𝔯(𝑟) > 1 (and 𝔦𝔯(𝑟) < 1) indicates that 𝑟 has higher (and lower, respectively) 

importance, and 𝔦𝔯(𝑟) 	= 	0 indicates that 𝑟 is of no importance to the agent.  

Example 4.3. (Continuation of Example 4.1) Suppose that the agent 𝐴 wants to 

enjoy ‘walking’. He may express this preference as 𝔦𝔯(canWalk) = 2, i.e. values should 

be higher than 1.  

 

It is worth noticing that, at the concrete level, preference profile makes use of 1 

as the special value to represent the normal importance and call other values above 1 as 

the higher importance (and below 1 as the lower importance).  

Definition 4.3 (Primitive Concepts Similarity). Let CNpri(𝒯) be a set of 

primitive concept names occurring in 𝒯. For 𝐴, 𝐵 ∈ CNpri(𝒯), a primitive concepts 

                                                
14 In the original definition of preference profile (Racharak, Suntisrivaraporn, et al., 2016b), elements 
in the domains of both 𝔦𝔠 and 𝔦𝔯 are mapped to R[𝟘, which is a minor error. 
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similarity is a ‘partial’ function 𝔰𝔠: CNpri(𝒯) × CNpri(𝒯) → [0,1] such that 𝔰𝔠(𝐴, 𝐵) =

𝔰𝔠(𝐵, 𝐴) and 𝔰𝔠(𝐴, 𝐴) = 1.  

 

For 𝐴, 𝐵 ∈ CNpri(𝒯), 𝔰𝔠(𝐴, 𝐵) = 1 captures an expression of total similarity 

between 𝐴 and 𝐵 and 𝔰𝔠(𝐴, 𝐵) = 0 captures an expression of their total dissimilarity.  

Example 4.4. (Continuation of Example 4.1) Suppose that the agent A believes 

that ‘trekking’ and ‘kayaking’ invoke similar feeling. Thus, he can express 

𝔰𝔠(Trekking,Kayaking) = 0.1, i.e. values should be higher than 0.  

 

Another example is the similarity of concepts PetM and PetJ, in which both are 

defined as follows: PetM ⊑ Dog ⊓ ∃hasOwned.Human; PetJ ⊑ Cat ⊓

∃hasOwned.Human. Here, Dog and Cat are both primitive concept names. Intuitively, 

Dog and Cat are similar, then we may attach this knowledge in form of 𝔰𝔠 in order to 

yield more accuracy on the measure.  

Definition 4.4 (Primitive Roles Similarity). Let RNpri(𝒯) be a set of primitive 

role names occurring in 𝒯. For r, s ∈ RNpri(𝒯), a primitive roles similarity is a ‘partial’ 

function 𝔰𝔯: RNpri(𝒯) × RNpri(𝒯) → [0,1] such that 𝔰𝔯(𝑟, 𝑠) = 𝔰𝔯(𝑠, 𝑟) and 𝔰𝔯(𝑟, 𝑟) =

1.  

 

For 𝑟, s ∈ RN(𝒯), 𝔰𝔯(𝑟, 𝑠) = 1 captures an expression of total similarity 

between 𝑟 and 𝑠 and 𝔰𝔯(𝑟, 𝑠) = 0 captures an expression of their total dissimilarity.  

Example 4.5. (Continuation of Example 4.1) Suppose that the agent 𝐴 believes 

that ‘moving with legs’ and ‘traveling with sails’ invoke similar feeling. He may 

express 𝔰𝔯(canMoveWithLegs,canTravelWithSails) = 0.1, i.e. values should be 

higher than 0.  

 

Basically, the intention of both functions 𝔰𝔠 and 𝔰𝔯 are the same, i.e. they are 

aimed at capturing subjective feeling of proximity (about primitive concept names and 

primitive role names) into a measure. In DLs, different primitive concept names (and 

also primitive role names) are considered to be total dissimilarity even though they may 

be recognized as being similar in real-world domains.  
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Definition 4.5 (Role Discount Factor). Let RN(𝒯) be a set of role names 

occurring in 𝒯. Then, a role discount factor is a ‘partial’ function 𝔡:RN(𝒯) → [0,1].  

 

Intuitively, role discount factor means a factor that discounts an important 

contribution of a role. This aspect plays a part when comparing two existential 

restrictions or two value restrictions, i.e. concepts of the form ∃𝑟. 𝐶 or concepts of the 

form ∀r. C, respectively, are being compared. For example, comparing ∃𝑟M. (∃𝑟J. 𝐶M) 

and ∃𝑟N. (∃𝑟O. 𝐶J) involves checking the commonality of 𝑟M, 𝑟N and the commonality of 

∃𝑟J. 𝐶M, ∃𝑟O. 𝐶J. Depending on a context of consideration, the commonality appeared in 

𝑟M may have more/less importance than the commonality appeared in its nested concept 

part i.e. ∃𝑟J. 𝐶M.  

More formally, for any 𝑟 ∈ RN(𝒯), 𝔡(𝑟) = 1 captures an expression of total 

importance on the role (beyond a corresponding nested concept) and 𝔡(𝑟) = 0 captures 

an expression of total importance on a nested concept (beyond the correspondent role 

𝑟).  

Example 4.6. (Continuation of Example 4.1) Suppose that the agent A does not 

concern much if places permit to either walk or to sail. He would rather consider on 

actual activities which he can perform. Thus, he may express 𝔡(canWalk) = 0.3 and 

𝔡(canSail) = 0.3, i.e. values should be close to 0.  

 

Definition 4.6 (Preference Profile). A preference profile, in symbol 𝜋, is a 

quintuple ⟨𝔦𝔠, 𝔦𝔯, 𝔰𝔠, 𝔰𝔯, 𝔡⟩ where 𝔦𝔠, 𝔦𝔯, 𝔰𝔠, 𝔰𝔯, and 𝔡 are as defined above and the default 

preference profile, in symbol πw, is the quintuple ⟨𝔦w𝔠 , 𝔦w𝔯 , 𝔰w𝔠 , 𝔰w𝔯 , 𝔡w⟩ where  

 
𝔦w𝔠 (𝐴) = 1	for	all	𝐴 ∈ CNpri(𝒯), 

𝔦w𝔯 (𝑟) = 1	for	all	𝑟 ∈ RN(𝒯), 

𝔰𝔠(𝐴, 𝐵) = 0	for	all	(𝐴, 𝐵) ∈ CNpri(𝒯) × CNpri(𝒯), 

𝔰w𝔯 (𝑟, 𝑠) = 0	for	all	(𝑟, 𝑠) ∈ RNpri(𝒯) × RNpri(𝒯), and 

𝔡w(𝑟) = 0.4	for	all	𝑟 ∈ RN(𝒯). 

 
Intuitively, the default preference profile 𝜋w represents the agent’s preference 

in the default manner, i.e. when preferences are not given. That is, every 𝐴 ∈ CNpri has 
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normal importance and so does every 𝑟 ∈ RN. Also, every (𝐴, 𝐵) ∈ CNpri × CNpri is 

totally different and so does every (𝑟, 𝑠) ∈ RNpri × RNpri. Lastly, every 𝑟 ∈ RN is 

considered 0.4 importance for the similarity of two existential restriction information 

(or two value restriction information). It is interesting to note that changes in the 

definition of the default preference profile yield different interpretations of the default 

preference and thereby may produce a different degree of similarity under the default 

manner. As for its exemplification, the value 0.4 is used by 𝔡w to conform with the value 

of ν used by sim in Chapter 3.  

 

In this work, a preference profile of an agent is denoted by subscribing that 

agent below 𝜋, e.g. 𝜋_ represents a preference profile of the agent 𝐴.  

 

4.2 From Subsumption Degree to Subsumption Degree under Preferences  

Now, we are ready to exemplify how the notion of preference profile can be 

adopted toward the development of concept similarity under preference profile. Our 

next step is to generalize the function hd to expose preferential elements of preference 

profile. As a result, the new function hd& is also driven by the structural subsumption 

characterization by means of tree homomorphism in ℰℒℋ.  

We start by presenting each aspect of preference profile in term of ‘total’ 

functions in order to avoid computing on null values. A total importance function is 

firstly introduced as `:̂ CNpri ∪ RN → [0,2] based on the primitive concept importance 

and the role importance.  

 

`(̂x) = b
𝔦𝔠(𝑥), 𝑥 ∈ CNpri	and	𝔦𝔠	is	defined	on	𝑥
𝔦𝔯(𝑥), 𝑥 ∈ RN	and	𝔦𝔯	is	defined	on	𝑥

1,	otherwise
                 (4.1) 

 
A total similarity function is also presented as 𝔰c: (CNpri × CNpri) ∪ (RNpri ×

RNpri) → [0,1] using the primitive concepts similarity and the primitive roles 

similarity.	
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𝔰c(𝑥, 𝑦) = b
M,																																																	2	¸	d

𝔰𝔠(e,f),(2,d)∈CNpri×CNpri	and	𝔰𝔠	is	defined	on	(2,d)
𝔰𝔯(e,f),(e,f)∈RNpri×RNpri	and	𝔰𝔯	is	defined	on	(2,d)

w,																																						otherwise

	 	 	 	 											(4.2) 

	

Similarly, a total role discount factor function15 is presented in the following in 

term of a function 𝔡g:RN → [0,1] based on the role discount factor. 

𝔡(𝑥) h𝔡(𝑥),	if	𝔡	is	defined	on	𝑥0.4,					otherwise                      (4.3) 

	

The next step is to generalize the notion of homomorphism degree hd (cf. 

Definition 3.8). Let 𝐶, 𝐷 ∈ Con(ℰℒℋ) and 𝑟, 𝑠 ∈ RN. Also, let 𝒯E , 𝒯D, 𝒫E , 𝒫D, ℰE , ℰD, 

ℛi, and ℛ! be as defined in Subsection 3.3.1. The homomorphism degree under 

preference profile 𝜋 from 𝒯D to 𝒯E  can be formally defined in Definition 4.7. 

Definition 4.7. Let 𝕋ℰℒℋ  be a set of all ℰℒℋ description trees, and 𝜋 =

	⟨𝔦𝔠, 𝔦𝔯, 𝔰𝔠, 𝔰𝔯, 𝔡⟩ be a preference profile. The homomorphism degree under preference 

profile 𝜋 is a function hd~:𝕋ℰℒℋ × 𝕋ℰℒℋ → [0,1] defined inductively as follows: 

 
hd&(𝒯D, 𝒯E) = 𝜇&(𝒫D, ℰD) ⋅ p-hd&(𝒫D, 𝒫E)+ ¨1− 𝜇&(𝒫D, ℰD)ª ⋅ e-set-hd&(ℰD, ℰE),  

        (4.4)  

	

where	𝜇&(𝒫D, ℰD) = b
1,∑ `̂(𝐴)_∈𝒫+ + ∑ `(̂𝑟)∃õ.<∈ℰ+ = 0

∑ `̂(j)k∈𝒫+
∑ `(̂j)k∈𝒫+ µ∑ `̂(õ)∃l.m∈ℰ+

,otherwise                (4.5) 

	

p-hd&(𝒫D, 𝒫E) =

⎩
⎪
⎨

⎪
⎧ 1,∑ `̂(𝐴)j∈𝒫+ = 0
0,∑ `(̂𝐴)j∈𝒫+ ≠ 0	and∑ `(̂𝐵)o∈𝒫, = 0
∑ `̂p(j)k∈𝒫+ ⋅Ø12q∈𝒫𝒞{𝔰c(j,o)}

∑ `(̂j)k∈𝒫+
,	otherwise

                       (4.6) 

	

                                                
15 We set the default value to 0.4 to comply with the default value of πw. 
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e-set-hd&(ℰD, ℰE) =

⎩
⎪
⎨

⎪
⎧ 1,∑ `(̂𝑟)∃õ.<∈ℰ+ = 0
0,∑ `(̂𝑟)∃õ.<∈ℰ+ ≠ 0	and	∑ `̂(𝑠)∃!.=∈ℰ, = 0
∑ `̂(õ)∃l.m∈ℰ+ ⋅Ø1234∈ℰ,{e-hd

r¨∃õ.<,s4ª}

∑ `̂(õ)∃l.m∈ℰ+
,	otherwise

					 											(4.7)	

	

where ϵÛ is an existential restriction; and  

	

e-hd&(∃𝑟. 𝑋, ∃𝑠. 𝑌) = 𝛾&(𝑟, 𝑠) ⋅ ?𝔡(𝑟)+ ¨1− 𝔡(𝑟)ª ⋅ hd~(𝒯< , 𝒯=)@			 											(4.8)	

	

	where	𝛾&(r, s) = b
1,∑ `(̂𝑟G)õï∈ℛl = 0

∑ `̂̈ õïªlï∈ℛl
⋅Ø12tï∈ℛt{𝔰c¨õ

ï,!ïª}

∑ `̂(õï)lï∈ℛl
,	otherwise

               (4.9) 

	

Intuitively, the function hd& (Equation 4.4) is defined as the weighted sum of 

the degree under preferences of the vertex set commonalities (p-hd&) and the degree 

under preferences of edge condition matching (e-set-hd&). Equation 4.6 calculates the 

average of the best matching under preferences of primitive concepts in 𝒫𝒟. Equation 

4.8 calculates the degree under preferences of a potential homomorphism of a matching 

edge. If edge labels share some commonalities under preferences (Equation 4.9), i.e. 

0 < 𝛾& ≤ 1, then part of the edge matching is satisfied; but the successors labels and 

structures have yet to be checked. This is defined recursively as hd&(𝒯< , 𝒯=) in Equation 

4.8. Equation 4.7 calculates the best possible edge matching under preferences of each 

edge in ℰD and returns the average thereof.  

The weight 𝜇& in Equation 4.4 determines how important the primitive concept 

names are to be considered for preference-based similarity. For the special case where 

𝐷 = ⊤, i.e. 𝒫D = ℰD = 	∅, 𝜇& is irrelevant as 𝒯u is the smallest ℰℒℋ description tree 

and hd~(𝒯u, 𝒯E) = 1 for all concepts 𝐶.  

It is to be mentioned that the function hd& may look similar to simiv (Lehmann 

& Turhan, 2012) as both are recursive definitions for the same DL ℰℒℋ. However, 

they are obviously different caused by the distinction of their inspirations and their 

viewpoints of the development. While hd& is inspired by the homomorphism-based 

structural subsumption characterization, simiN is inspired by the Jaccard Index 
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(Jaccard, 1901). Technically speaking, simiN employs t-conorm instead of fixing an 

operator. However, unlike simiN, the use of 𝜇& for determining how primitive concepts 

are weighted and the use of γπ for determining the proportion of shared super roles are 

employed. Furthermore, simiN,  is originated from the viewpoint of ordinary concept 

similarity measure, thus some aspects of preference profile are missed; though some 

may exist. We continue the discussion in Section 4.6.  

The function hd& yields a numerical value that represents structural similarity 

w.r.t. a particular profile π of a concept against another concept. We present an example 

about the calculation of hd& in the following.  

Example 4.7. (Continuation of Example 4.1) Let enrich the example. Assume 

the agent 𝐴’s preference profile is defined as follows: (i) 𝔦𝔠(Place) = 2; (ii) 

𝔦𝔯(canWalk) = 2; (iii) 𝔰𝔠(Trekking,Kayaking) = 0.1; (iv) 

𝔰𝔯(canMoveWithLegs,canTravelWithSails) = 0.1; (v) 𝔡(canWalk) = 0.3 and 

𝔡(canSail) = 0.3. Let ActivePlace, Mangrove, Beach, Place, Trekking, Kayaking, 

canWalk, and canSail are rewritten shortly as AP, M, B, P, T, K, cW, and cS, 

respectively. Using Definition 4.7, hd~(𝒯AP, 𝒯M) 

= w
3
6x ⋅ p-hd

~(𝒫AP, 𝒫M)+ w
3
6x ⋅ e-set-hd

~(ℰAP, ℰM) 

= w
3
6x ⋅ y

𝔦(X) ⋅max{𝔰 (𝑋, 𝑌), 𝔰(𝑋,P)}+ 𝔦(P) ⋅max	{	𝔰(P, 𝑌), 𝔰(P,P})})
𝔦(𝑋)+ 𝔦(P) z 

+w
3
6x ⋅ e-set-hd

~(ℰAP, ℰM) 

= w
3
6x w

1 ⋅max{ 0,0}+ 2 ⋅max{ 0,1}
1+ 2 x + w

3
6x ⋅ e-set-hd

~(ℰAP, ℰM) 

= w
3
6x w

2
3x + w

3
6x {

𝔦(cW) ⋅max{ e-hd~(∃cW.T, ∃cW.T)}+ 1 ⋅max{ 0.019}
𝔦(cW)+ 𝔦(cS) } 

= w
3
6x w

2
3x + w

3
6x {

2 ⋅max{ (1)¨0.3 + 0.7(1)ª}+ 1 ⋅max{ 0.019}
𝔦(cW)+ 𝔦(cS) } 

= w
3
6x w

2
3x + w

3
6x {

(2)(1)+ (1)(0.019)
2+ 1 } ≈ 0.67 

 

Similarly, we obtain hd~(𝒯M, 𝒯AP) = 0.80. Furthermore, using Definition 4.7,  

hd&(𝒯AP, 𝒯B) ≈ 0.51 and hd&(𝒯B, 𝒯AP) = 0.75.  
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The function hd& can be used when preferences of the agent are not given. That 

is, we tune the function according to the default preference profile i.e. hd&= . We state 

this property in the following proposition.  

Proposition 4.1. For 𝒯D, 𝒯C ∈ 𝕋ℰℒℋ , hd&=(𝒯D, 𝒯C) = hd&(𝒯D, 𝒯C). 

Proof. Recall by Definition 4.6 that the default preference profile 𝜋w is the 

quintuple ⟨𝔦w𝔠 , 𝔦w𝔯 , 𝔰w𝔠 , 𝔰w𝔯 , 𝔡w⟩. Also, suppose a concept name 𝐷 is of the form: 𝑃M ⊓ …⊓

𝑃Ø ⊓ ∃𝑟M. 𝐷M ⊓ …⊓ ∃𝑟Ù. 𝐷Ù where 𝑃¡ ∈ CNpri, 𝑟Û ∈ CN, 𝐷Û ∈ Con(ℰℒℋ), 1 ≤ 𝑖 ≤ 𝑚, 

1 ≤ 𝑗 ≤ 𝑛, 𝑃M ⊓ …⊓ 𝑃Ø is denoted by 𝒫D, and ∃𝑟M. 𝐷M ⊓ …⊓ ∃𝑟Ù. 𝐷Ù is denoted by ℰD. 

Let 𝑑 be the depth of 𝒯D. We prove that, for any 𝑑 ∈ N, hd&=(𝒯D, 𝒯E) = hd&(𝒯D, 𝒯E) by 

induction on 𝑑. 

When 𝑑 = 0, we know that 𝐷 = 𝑃M ⊓ …⊓ 𝑃�. To show that hd&=(𝒯D, 𝒯E) =

hd&(𝒯D, 𝒯E), we need to show that 𝜇&= = 𝜇 and p-hd~=(𝒫D, 𝒫E) = p-hd(𝒫D, 𝒫E). Let 

us derive as follows:  

𝜇&= =
∑ `̂(j)k∈𝒫+

∑ `(̂j)k∈𝒫+ µ∑ `̂(õ)∃l.m∈ℰ+
= ∑ M�

7��
∑ M�
7�� µw

= �
�µw

= 𝜇. 

  

Furthermore, we only need to show ∑ ma𝑥{𝔰c (𝐴, 𝐵)j∈𝒫+ : 𝐵 ∈ 𝒫E} = |𝒫D ∩

𝒫E| in order to show p-hd&=(𝒫D, 𝒫E) = p-hd(𝒫D, 𝒫E). We know that 𝔰w𝔠  maps name 

identity to 1 and otherwise to 0. Thus, ∑ max{𝔰c (𝐴, 𝐵): 𝐵 ∈ 𝒫E}j∈𝒫+ 	= |{	𝑥 ∶ 𝑥	 ∈

𝒫D	and	𝑥	 ∈ 𝒫E}	| = |	𝒫D ∩ 𝒫E|. 

We must now prove that if hd&=(𝒯D, 𝒯E) = hd&(𝒯D, 𝒯E) holds for 𝑑 = ℎ − 1 

where ℎ > 1 and 𝐷 = 𝑃M ⊓ …⊓ 𝑃� ⊓ ∃𝑟M. 𝐷M ⊓ …⊓ ∃𝑟�. 𝐷� then hd&=(𝒯D, 𝒯E) =

hd&(𝒯D, 𝒯E) also holds for 𝑑 = ℎ. To do that, we have to show e-set-hd&=(ℰD, ℰE) =

e-set-hd(ℰD, ℰE). This can be done by showing in the similar manner that 𝛾&= = 𝛾 and 

hd&=(𝒯< , 𝒯=) = hd&(𝒯< , 𝒯=) from e-hd~=(∃𝑟. 𝑋, ∃𝑠. 𝑌) = e-hd(∃𝑟. 𝑋, ∃𝑠. 𝑌), where 

∃𝑟. 𝑋 ∈ ℰD	and	∃𝑠. 𝑌 ∈ ℰE . Consequently, it follows by induction that, for 𝒯D, 𝒯E ∈

𝕋ℰℒℋ , hd&=(𝒯D, 𝒯E) = hd&(𝒯D, 𝒯E).  

 

4.3 Concept Similarity under Preference Profile  
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In this section, we present a ‘general’ notion of concept similarity measure 

under the agent's preferences (Racharak et al., 2018; Racharak, Suntisrivaraporn, et al., 

2016a) and its desirable properties. This notion can be seen as a function of the family 

∼×
𝔭 given in Definition 3.6. As we shall see, the previous developments on subsumption 

degree under preference profile can be utilized to develop concrete measures of this 

abstract notion. Hence, the measures sim& is introduced by utilizing the function hd&. 

Our first intuition is to exemplify the applicability of preference profile onto an arbitrary 

existing measure of concept similarity. This shows that our proposed notion of 

preference profile can be considered as a collection of noteworthy aspects for the 

development of concept similarity measure under the agent's preferences. Furthermore, 

it is obvious that preference profile can be seen as a concrete notion of preference 

context. 

Definition 4.8. Given a preference profile 𝜋, two concepts 𝐶, 𝐷 ∈ Con(ℒ), and 

a TBox 𝒯, a concept similarity measure under preference profile w.r.t. a TBox 𝒯 is a 

function ∼×& :Con(ℒ) × Con(ℒ) → [0,1]. 

 

When a TBox 𝒯 is clear from the context, we simply write ∼& . Furthermore, to 

avoid confusion on the symbols, ∼×& is used when referring to arbitrary measures. 

The notion ∼&  may be informally read as “the computation of ∼ is influenced 

by 𝜋”. That informal interpretation shapes our intuition to consider this kind as a more 

generalized concept similarity i.e. not only objective factors but also subjective factors 

are considered in the identification of the degree of similarity. With adopting of this 

viewpoint of the interpretation, we can agree that sim& is informally interpreted as “we 

compute sim under an existence of a given preference profile 𝜋”. 

Basically, the notion ∼&  is a function mapping a pair of two concept 

descriptions w.r.t. a particular 𝜋 to a unit interval. We have identified a property called 

preference invariance w.r.t. equivalence in our preliminary study (Racharak, 

Suntisrivaraporn, et al., 2016a). To identify more important properties of ∼& , we started 

by investigating important properties of concept similarity measure existing in the 

literature (e.g. (D’Amato, Staab, & Fanizzi, 2008; Lehmann & Turhan, 2012)). Our 

primary motivation is to identify the properties of concept similarity measure which are 
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also reasonable for ∼& . The following collects fundamental properties for the 

introduced concept similarity measure under preference profile. They can be used to 

answer the question “What could be good preference-based similarity measures?”. In 

other words, any preference-based measures satisfying the fundamental properties are 

considered to be good ones. 

Definition 4.9. Let 𝐶, 𝐷, 𝐸 ∈ Con(ℒ) and Π be a countably infinite set of 

preference profile. Then, we call a concept similarity measure under preference profile 

∼&  is: 

1. Symmetric iff ∀𝜋G ∈ Π: ?𝐶 ∼&
ï
𝐷 = 𝐷 ∼&

ï
𝐶@; 

2. Equivalence invariant iff 𝐶 ≡ 𝐷 ⟹ ∀𝜋G ∈ Π: ?𝐶 ∼&
ï
𝐸 = 𝐷 ∼&

ï
𝐸@; 

3. Structurally dependent iff for any finite sets of concepts CM and CJ with the 

following conditions: 

a. CM ⊆ CJ, 

b. Concepts 𝐴, 𝐵 ∉ CJ, 

c. 𝔦𝔠(𝛷) > 0 if 𝛷 is primitive and 𝛷 ∈ CJ, and 

d. 𝔦𝔯(𝜑) > 0 if 𝛷 is existential, i.e. 𝛷 ∶=	∃𝜑.𝛹, and 𝛷 ∈ CJ, 

the concepts 𝐶 ∶= ⨅(CM ∪ {𝐴}), 𝐷 ≔ ⨅(CM ∪ {𝐵}), 𝐸 ∶=⨅(CJ ∪ {𝐴}) and 

𝐹 ≔ ⨅(CJ ∪ {𝐵}) fulfill the condition ∀𝜋G ∈ Π: ?𝐶 ∼&
ï
𝐷 ≤ 𝐸 ∼&

ï
𝐹@; and 

4. Preference invariant w.r.t. equivalence iff 𝐶 ≡ 𝐷 ⟺ ∀𝜋G ∈ Π: 𝐶 ∼&
ï
𝐷 =

1. 

 

Next, we discuss the underlying intuitions of each property subsequently. We 

note that the properties 1 to 3 are adopted from (D’Amato et al., 2008; Lehmann & 

Turhan, 2012). However, to the best of our knowledge, the property 4 is first introduced 

for concept similarity measure under preference profile in this work (originally 

introduced in (Racharak, Suntisrivaraporn, et al., 2016a)).  

Let Π be a countably infinite set of preference profile. In the following, we 

discuss the intuitive interpretation of each property. Firstly, symmetry states that an 

order of concepts in question does not influence the notion 𝜋G for any 𝜋G ∈ Π. For 

instance, Mangrove ∼&
ï
Beach = Beach ∼&

ï
Mangrove w.r.t. any particular context 
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𝜋G. This property is controversial since cognitive science believes that similarity is 

asymmetric. An example given in (Tversky, 1977) is as follows: People usually speak 

“the son resembles the father” rather than “the father resembles the son”. Some work 

in DLs also prefer asymmetry such as (Janowicz, 2006; Janowicz & Wilkes, 2009). It 

is worth observing that such a statement is made w.r.t. some particular contexts. Thus, 

this work favors on symmetry as it appears more natural to use and gives more intuitive 

computational understanding. For example, rather than viewing like “the son resembles 

the father”, we would view like “if certain contexts are fixed, then the son and the father 

are similar to each other” (cf. (Racharak & Suntisrivaraporn, 2015; Racharak et al., 

2018; Racharak, Suntisrivaraporn, et al., 2016a)). Furthermore, we agree on the 

symmetry because axiomatic information in TBox is not dynamically changed; and 

also, the notion of preference profile studied in this work is static, i.e. it can be changed 

merely by tuning. Some work in DLs which favors on symmetry includes (Borgida & 

Walsh, n.d.; d’Amato, Fanizzi, & Esposito, 2009; D’Amato, Fanizzi, & Esposito, 2006; 

D’Amato et al., 2008; Fanizzi & D’Amato, n.d.; Lehmann & Turhan, 2012; Racharak 

& Suntisrivaraporn, 2015; Racharak, Suntisrivaraporn, et al., 2016a; Tongphu & 

Suntisrivaraporn, 2015). 

Secondly, equivalence invariance (alternatively called equivalence soundness 

(D’Amato et al., 2008) in the context of dissimilarity measure) states that if two 

concepts 𝐶 and 𝐷 are logically equivalent, then measuring the similarity of each toward 

the third concept 𝐸 w.r.t. any 𝜋G ∈ Π must be the same. This property is inspired from 

a characteristics of synonym concepts, i.e. concepts that means exactly the same. For 

instance, let 𝐶 ≡ ∃canWalk.Trekking and 𝐷 ≡ ∃canWalk.Trekking. It is clear that 𝐶 

and 𝐷 are logically equivalent. Therefore, let 𝐸 ∈ Con(ℒ), 𝐶 ∼&
ï
𝐸 = 𝐷 ∼&

ï
𝐸 for any 

𝜋G ∈ Π. 

Thirdly, the notion of structural dependence was originally introduced by 

Tversky in (Tversky, 1977). Later, the authors of (Lehmann & Turhan, 2012) has 

collected it as another important properties for concept similarity measure in their work. 

Basically, in Tversky’s model, an object was considered as a set of features. Then, the 

similarity of two objects was measured by the relationship between a number of 

common features and a number of different features. Extending this idea to ∼&  gives 
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the meaning that the similarity of two concepts 𝐶, 𝐷 increases if a more number of 

‘equivalent’ concepts is shared and each is considered ‘important’. 

Lastly, preference invariance w.r.t. equivalence states that if two concepts are 

logically equivalent, then the similarity degree of two concepts under preference profile 

𝜋 is always 1 for every 𝜋 ∈ Π, and vice versa. Taking the negation both sides, this means 

𝐶 ≢ 𝐷 ⟺ ∃𝜋G ∈ Π: 𝐶 ∼&
ï
𝐷 ≠ 1. For instance, let 𝐶 ≡ ∃canWalk.Trekking and 𝐷 ≡

∃canWalk.Parading. It is clear that 𝐶 and 𝐷 are not logically equivalent, then taking 

𝜋 = 𝜋w obtains 𝐶 ∼&0 𝐷 ≠ 1; though, taking 𝜋 = 𝜋M where 𝔰𝔠(Trekking,Parading) =

1 is defined in 𝜋M yields 𝐶 ∼&1 𝐷 = 1. 

There are several properties which are not considered as fundamental properties 

of concept similarity measure under preference profile because the behaviors may not 

obey their properties when used under ‘non-default’ preference profiles, e.g. reverse 

subsumption preserving. According to (Lehmann & Turhan, 2012), a concrete measure 

∼ satisfies the reverse subsumption preserving iff, for any concepts 𝐶, 𝐷, and 𝐸, 𝐶 ⊑

𝐷 ⊑ 𝐸 ⟹ 𝐶 ∼ 𝐸 ≤ 𝐷 ∼ 𝐸. The property states that the similarity of 𝐷 and 𝐸 is higher 

than the one of 𝐶 and 𝐸 because 𝐸 is closer to 𝐷 than 𝐶. To refute it, we need only one 

preference profile 𝜋 such that the implication does not hold (cf. Example 4.8), i.e. to 

show that (𝐶	 ⊑ 𝐷	 ⊑ 𝐸)	and	∃𝜋G ∈ Π:	(𝐶 ∼&
ï
𝐸 > 𝐷 ∼&

ï
𝐸. 

 Example 4.8. Suppose concepts AM, AJ, AN, and AO are primitive. Query 

describes features of an item that an agent is searching for. ItemM and ItemJ are items,  

which compose of features AM, AJ, AN and AM, AJ, AN,	AO, respectively.  

	

Query ≡ A1 ⊓ A2 

ItemM ≡ A1 ⊓ A2 ⊓ A3  

ItemJ ≡ A1 ⊓ A2 ⊓ A3 ⊓ A4  

	

The ontology shows the hierarchy: ItemJ ⊑ ItemM ⊑ Query. By taking 

𝔰𝔠(A2, A4) = 1, it is reasonable to conclude that ItemJ ∼
𝜋 Query > ItemM ∼

𝜋 Query 

due to an increased number of totally similar concepts. 
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Our proceeding paper (Racharak & Suntisrivaraporn, 2015) studies CSM for the 

DL ℱℒw. In this paper, we suggest two measures, viz. the skeptical measure ∼! and the 

credulous measure ∼�, which are derived from the known structural characterization 

subsumption through inclusion of regular languages. This fact exhibits that there is no 

a unique CSM for similarity-based applications. Which CSMs should be used depends 

on concrete applications, especially the type of a rational agent. For example, when 

employing the notion ∼ to a query answering system, a credulous agent may want to 

see answers as much as possible; hence, the measure ∼� is employed. On the other 

hand, a skeptical agent would like to see sufficient relevant answers; hence, the measure 

∼! is employed. This idea is generalized and is extended toward the notion ∼&  to be 

used under different agent’s profiles.  

Definition 4.10. Let Π be a countably infinite set of preference profile and 

𝜋M,𝜋J ∈ Π. For any fixed measure ∼& , the concept similarity measure under 𝜋M is more 

skeptical than 𝜋J (denoted by ∼&� 	⪯	∼&X) if 𝐶 ∼𝜋1 𝐷	 ≤ 𝐶 ∼𝜋2 𝐷 for all 𝐶, 𝐷 ∈ Con(ℒ).  

 

Intuitively, if an arbitrary concept similarity measure under preference profile 

∼&  is fixed, measuring the similarity of two concepts under different preference profiles 

may yield different values. A similar experiment was done in (Bernstein, Kaufmann, 

Bürki, & Klein, 2005) where different measures were used in target ontologies and 

obtained the better results than just using a single measure.  

 

4.3.1 From Subsumption Degree under Preferences to Concept Similarity under 

Preferences 

The idea of developing ‘concrete’ concept similarity measures under preference 

profile can be analogously brought from concept similarity. Indeed, we have pointed 

out this in Section 3.2, i.e. the second and the third step of our outlined methodology 

(cf. Section 3.2). We formally recast this in the following.  

 
𝐶 ∼𝜏𝜋 𝐷 = 1 ⟺ 𝐶 ↝𝜏

𝜋 𝐷 = 1	and	𝐷 ↝𝜏
𝜋 𝐶 = 1              (4.10) 

 
where the notion of directional subsumption degree under preference profile is denoted 

by ↝×
& and the binary operator ‘and’ should be generalized to aggregate two unit 
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intervals. In the following, we show how ones can employ this idea to develop concrete 

concept similarity measure under preference profile for DL ℰℒℋ in this subsection. 

The function hd& yields a numerical value that represents structural similarity 

w.r.t. a particular profile 𝜋 of a concept against another concept. We can use this 

knowledge to develop a concrete measure of ℰℒℋ concepts as follows.  

Definition 4.11. Let 𝐶, 𝐷 ∈ Con(ℰℒℋ), 𝒯E  and 𝒯D be the corresponding 

description trees, and 𝜋 =	 ⟨𝔦𝔠, 𝔦𝔯, 𝔰𝔠, 𝔰𝔯, 𝔡⟩ be a preference profile. Then, the ℰℒℋ 

similarity measure under preference profile 𝜋 between 𝐶 and 𝐷 (denoted by 

sim~(𝐶, 𝐷)) is defined as follows:  

 
sim&(𝐶, 𝐷) = hd�(𝒯,,𝒯+)µhd�(𝒯+,𝒯,)

J
                  (4.11)  

 
Example 4.9. (Continuation of Example 4.7) Using Definition 4.11, it yields 

that  

 

sim&(M,AP) =
0.67 + 0.80

2 ≈ 0.74 
 

Similarly, sim&(B,AP) ≈ 0.63. The fact that sim&(M,AP) > sim&(B,AP) corresponds  

with the agent 𝐴’s needs and preferences.  

 

The above definition uses the average to aggregate two corresponding unit 

intervals. We may also argue to aggregate both values based on alternative operators 

accepting unit intervals e.g. the multiplication or the root mean square of both values. 

Un- fortunately, those give unsatisfactory values for the extreme cases. Similar 

arguments about this point has been discussed on Subsection 3.3.3. Hence, we believe 

that the average-based definition given above is the most appropriate method for 

aggregating two values of subsumption degree under preference profile. Based on this 

form, simπ is basically considered as a generalization of sim, which determines 

similarity under preference profile, i.e. behavioral expectation of the measure will 

conform to the agent’s perception. We note that, though we recommend to use the 

average, its choice of operators may be changed and it may produce a different 

behavior. The following discusses some inherited properties of the measures sim&.  
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First, sim& can be used in the case that a preference profile is not defined by the 

agent. In such a case, we tune the profile setting to 𝜋w. That is, computing sim	&= yields 

the degree of concept similarity measure merely w.r.t. the structure of concept 

descriptions in question.  

Theorem 4.1. Let	𝐶, 𝐷 ∈ Con(ℰℒℋ), sim	&=(𝐶, 𝐷) = sim(𝐶, 𝐷). 

Proof. It immediately follows from Lemma 4.1, Definition 3.9, and Definition 

4.11.  

 

The above theorem shows that sim&is also backward compatible in the sense 

that using sim& with 𝜋 = 𝜋w, i.e. sim	&=, coincides with sim.  

In the following, we show that the measure sim& can also be computed in 

polynomial time i.e. there exists an algorithmic procedure whose execution time is 

upper bounded by a polynomial expression in the size of the description trees  

Theorem 4.2. Assume that a value from any preference functions is retrieved 

in 𝒪(1). Given 𝐶, 𝐷 ∈ Con(ℰℒℋ), sim&(𝐶, 𝐷) ∈ 𝒪(|𝑉E| ⋅ |𝑉D|) where 𝑉E  and 𝑉D are 

set of vertices of the description trees 𝒯E  and 𝒯D, respectively.  

Proof. Let 𝐶, 𝐷 ∈ Con(ℰℒℋ), 𝐶 ∶= 𝑃M ⊓ …⊓ 𝑃� ⊓ ∃𝑟M. 𝐶M ⊓ …⊓ ∃𝑟�. 𝐶�, 𝐷

∶= 𝑄M ⊓ …⊓ 𝑄K ⊓ ∃𝑠M. 𝐷M ⊓ …⊓ ∃𝑟� . 𝐷�, 𝜋 be any preference profile, and 𝒯E, 𝒯D be 

corresponding description trees. By Definition 4.11, we show hd~(𝒯E, 𝒯D) ∈

𝒪(|𝑉E| ⋅ |𝑉D|) and hd&(𝒯D, 𝒯E) ∈ 𝒪(|𝑉D| ⋅ |𝑉E|). Without loss of generality, it suffices 

to show merely hd&(𝒯E, 𝒯D) ∈ 𝒪(|𝑉E| ⋅ |𝑉D|). That is, we need to show 𝜇&, 𝛾&, 

p-hd~(𝒫D, 𝒫E), and e-set-hd~(ℰD, ℰE) are bounded by 𝒪(|VE| ⋅ |VD|).  

Since the summation, the maximal matching between 𝒫D and 𝒫E , and the 

maximal matching between ℛõ and ℛ! can be computed in polynomial time in the worst 

case, the functions 𝜇&, 𝛾&, and p-hd&(𝒫D, 𝒫E) are bounded by 𝒪(|𝑉E| ⋅ |𝑉D|).  

Computing e-set-hd&(ℰD, ℰE) requires to call e-hd& for |ℰD	| ⋅ |ℰE	| times. 

Each call of e-hd& will make a recursive call to hd& and its number of calls is bounded 

by the height of 𝒯D and 𝒯E . Hence, e-set-hd&(ℰD, ℰE) are bounded by 𝒪(|𝑉E| ⋅ |𝑉D|).  

  

We can also show sim& is a procedure which ensures termination and can be 

used as an indicator for the degree of commonalities under preference profile 𝜋 between 
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ℰℒℋ concepts. That is, we ensure that the correct results are corrects (cf. Lemma 4.1) 

and the negative results are also correct (cf. Lemma 4.2). Termination ensures to 

provide an answer in finite time.  

Lemma 4.1. Let 𝐶, 𝐷 be ℰℒℋ concepts and πG = ⟨𝔦𝔠, 𝔦𝔯, 𝔰𝔠, 𝔰𝔯, 𝔡⟩ be any 

preference profile, where 𝔦𝔠(𝐴) ∈ (0,2] for all 𝐴 ∈ CNpri(𝒯), 𝔦𝔯(𝑟) ∈ (0,2] for all 𝑟 ∈

RN(𝒯), 𝔡(𝑟) ∈ (0,1] for all 𝑟 ∈ RN(𝒯). Then, sim~ï(𝐶, 𝐷) ∈ (0,1] implies that both 𝐶 

and 𝐷 share commonalities under 𝜋G among each other.  

Proof. Let 𝐶, 𝐷 ∈ Con(ℰℒℋ), 𝒯E, 𝒯D be their corresponding trees, and 𝜋G be 

any preference profile where 𝔦𝔠(𝐴) ∈ (0,2] for all 𝐴 ∈ CNpri(𝒯), 𝔦𝔯(𝑟) ∈ (0,2] for all 

𝑟 ∈ RN(𝒯), 𝔡(𝑟) ∈ (0,1] for all 𝑟 ∈ RN(𝒯). With Lemma 3.1, Theorem 4.1, and the 

average, it suffices to show that hd&ï(𝒯E, 𝒯D) ∈ (0,1] implies the partial subsumption 

under 𝜋G from 𝐷 to 𝐶 based on the characterization of homomorphism structural 

subsumption ⟺ hd&ï(𝒯E, 𝒯D) ∈ (0,1] implies p-hd&ï(𝒫E, 𝒫D) > 0 or 

e-set-hd&(ℰE, ℰD) > 0. We show these cases as follows: 

• For any 𝑣 ∈ VE , for any h(𝑣) ∈ VD, if there exists 𝐴 ∈ lE(𝑣) and 𝐵 ∈

lD¨h(𝑣)ª such that 𝔰c(𝐴, 𝐵) > 0, then we show that p-hd&ï(𝒫E, 𝒫D) > 0. To 

show this, we fix any 𝑣G ∈ VE , any h(𝑣G) ∈ VD; and assume A ∈ lE(𝑣G), 𝐵 ∈

lD¨h(𝑣G)ª, and 𝔰c(𝐴, 𝐵) > 0. By Definition 4.11, we know 

p-hd&ï(𝒫E, 𝒫D) > 0. 

• For any 𝑣,𝑤 ∈ VE , for any h(𝑣), h(𝑤) ∈ VD, if there exists 𝑟 ∈ ρE(𝑣, 𝑤) and 

𝑠 ∈ ρD¨h(𝑣), h(𝑤)ª such that, then we show 𝔰c(𝑟, 𝑠) > 0 that 

e-set-hd&ï(ℰE, ℰD) > 0. To show this, we fix any 𝑣G, 𝑤G ∈ VE , any 

h(𝑣G), h(𝑤G) ∈ VD; and assume 𝑟 ∈ ρE(𝑣G, 𝑤G), s ∈ ρD¨h(𝑣G), h(𝑤G)ª, and 

𝔰c(𝑟, 𝑠) > 0. By assumptions, we know 𝛾&ï(𝑟, 𝑠) > 0. Since hd&ï cannot be 

decreased according to Definition 4.11, we conclude that 

e-set-hd~ï(ℰE, ℰD) > 0. 

 

Lemma 4.2. Let 𝐶, 𝐷 be any ℰℒℋ concepts and 𝜋G = ⟨𝔦𝔠, 𝔦𝔯, 𝔰𝔠, 𝔰𝔯, 𝔡⟩ be any 

preference profile where 𝔦𝔠(𝐴) ∈ (0,2] for all 𝐴 ∈ CNpri(𝒯), 𝔦𝔯(𝑟) ∈ (0,2] for all 𝑟 ∈
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RN(𝒯), 𝔡(𝑟) ∈ (0,1] for all 𝑟 ∈ RN(𝒯). Then, if both 𝐶 and 𝐷 share commonalities 

under 𝜋G among each other, then sim&ï(𝐶, 𝐷) ∈ (0,1]. 

Proof. Let 𝐶, 𝐷 ∈ Con(ℰℒℋ), 𝒯E, 𝒯D be their corresponding trees, and 𝜋G be 

any preference profile where 𝔦𝔠(𝐴) ∈ (0,2] for all 𝐴 ∈ CNpri(𝒯), 𝔦𝔯(𝑟) ∈ (0,2] for all 

𝑟 ∈ RN(𝒯), 𝔡(𝑟) ∈ (0,1] for all 𝑟 ∈ RN(𝒯). We show its contraposition i.e. 

sim~ï(𝐶, 𝐷) = 0 implies that 𝐶 and 𝐷 do not share commonalities under 𝜋G to each 

other. 

By the average, we know that hd~ï(𝒯E, 𝒯D) = 0 and hd&ï(𝒯D, 𝒯E) = 0. This 

means that both 𝐶 and 𝐷 do not share any commonalities under 𝜋G to each other.  

 

Theorem 4.3. The measure sim& is guaranteed for termination and fulfills the 

condition: 

	

sim&ï(𝐶, 𝐷) ∈ (0,1] iff both 𝐶 and 𝐷 share commonalities under 𝜋G among each other. 

	

Proof. This is obvious by Lemma 4.1, Lemma 4.2, Theorem 4.2. 

 

4.3.2 Desirable Properties of sim& 

Previously, we theorize a set of desirable properties that a concept similarity 

measure under preference profile should satisfy and systematically introduce the 

measure sim&. In this section, we provide mathematical proofs for the desirable 

properties of sim&. Understanding the properties gives many benefits to the users of 

sim& since they can predict its expected behaviors. 

Theorem 4.4. sim& is symmetric. 

Proof. Let Π be a countably infinite set of preference profile. Fix any 𝜋 ∈ Π and 

𝐶, 𝐷 ∈ Con(ℰℒℋ), we have sim&(𝐶, 𝐷) = sim&(𝐷, 𝐶) by Definition 4.11.  

 

Theorem 4.5. sim& is equivalence invariant. 

Proof. Let Π be a countably infinite set of preference profile. Fix any 𝜋 ∈ Π and 

𝐶, 𝐷, 𝐸 ∈ Con(ℰℒℋ), we show 𝐶 ≡ 𝐷 ⟹ sim~(𝐶, 𝐸) = sim~(𝐷, 𝐸). 
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Suppose 𝐶	 ≡ 𝐷, i.e. 𝐶 ⊑ 𝐷	and	𝐷 ⊑ 𝐶, then we know there exists a 

homomorphism hM: 𝒯D → 𝒯E  which maps the root of 𝒯D to the root of 𝒯E  and hJ: 𝒯E →

𝒯D which maps the root of 𝒯E  to the root of 𝒯D, respectively, by Theorem 3.1. This 

means 𝒯E = 𝒯D. Thus, sim&(𝐶, 𝐸) = sim&(𝐷, 𝐸). 

 

Theorem 4.6. sim& is structurally dependent. 

Proof. Let Π be a countably infinite set of preference profile. Fix any π ∈ Π and 

any finite sets of concepts CM and CJ with the following conditions: (1) CM ⊆ CJ; (2) 

concepts 𝐴, 𝐵 ∉ CJ; (3) 𝔦𝔠(𝛷) > 0 if primitive 𝛷 ∈ CJ; (4) 𝔦𝔯(𝜑) > 0 if existential 

∃𝜑.𝛹 ∈ CJ. Suppose 𝐶 ∶= ⨅(CM ∪ {𝐴}), 𝐷 ∶= ⨅(CM ∪ {𝐵}), 𝐸 ∶=⨅(CJ ∪ {𝐴}), and 𝐹

∶= ⨅(CJ ∪ {𝐵}) where CM = {𝑃M, … , 𝑃�, ∃𝑟M. 𝑃MG, … , ∃𝑟�. 𝑃�G} and CJ =

{𝑃M, … , 𝑃¡, ∃𝑟M. 𝑃MG, … , ∃𝑟Û. 𝑃ÛG}, w.l.o.g. we show sim&(𝐶, 𝐷) ≤ sim&(𝐸,𝐹) by following 

two cases.  

Suppose 𝑚 ≤ 𝑖, 𝑛 = 𝑗 and 𝐴, 𝐵 be primitives, we have p-hd&(𝒫E, 𝒫D) =
∑ 𝔦𝔠(�)�∈𝒫,

∑ 𝔦𝔠(�)�∈𝒫, µ𝔦𝔠(j)
, p-hd&(𝒫D, 𝒫E) =

∑ 𝔦𝔠(�)�∈𝒫+
∑ 𝔦𝔠(�)�∈𝒫+ µ𝔦𝔠(o)

, p-hd~(𝒫C, 𝒫�) =
∑ 𝔦𝔠(�)�∈𝒫�

∑ 𝔦𝔠(�)�∈𝒫� µ𝔦𝔠(j)
, 

and p-hd~(𝒫� , 𝒫C) =
∑ 𝔦𝔠(�)�∈𝒫�

∑ 𝔦𝔠(�)�∈𝒫� µ𝔦𝔠(o)
. Since 𝑚 ≤ 𝑖, we know p-hd&(𝒫E, 𝒫D) ≤

p-hd&(𝒫C, 𝒫�) and p-hd&(𝒫D, 𝒫E) ≤ p-hd&(𝒫� , 𝒫C). This infers sim&(𝐶, 𝐷) ≤

sim&(𝐸,𝐹). 

Suppose 𝑚 = 𝑖, 𝑛 ≤ 𝑗, and 𝐴, 𝐵 be existentials, then with the similar manner, 

we can show e-set-hd&(ℰE, ℰD) ≤ e-set-hd&(ℰC, ℰ�) and e-set-hd&(ℰD, ℰE) ≤

e-set-hd&(ℰ� , ℰC). This also infers sim&(𝐶, 𝐷) ≤ sim&(𝐸,𝐹). 

Therefore, we have shown sim&(𝐶, 𝐷) ≤ sim&(𝐸,𝐹). 

 

Lemma 4.3. Let 𝒯D, 𝒯E ∈ 𝕋ℰℒℋ  and Π be a countably infinite set of preference 

profile. Then, hd(𝒯D, 𝒯E) = 1 ⟺ ∀𝜋 ∈ Π: hd&(𝒯D, 𝒯E) = 1. 

Proof. Let Π be a countably infinite set of preference profile and πw be the 

default preference profile. Fix any 𝜋 ∈ Π, we show hd(𝒯D, 𝒯E) = 1 ⟺ hd~(𝒯D, 𝒯E) =

1. 
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(⟹) hd(𝒯D, 𝒯E) = 1 implies that there exists a homomorphism h:	𝒯D → 𝒯E  

which maps the root of 𝒯D to the root of 𝒯E . Consequently, any setting on 𝜋 does not 

influence the calculation on hd&(𝒯D, 𝒯E). 

(⟸) In particular, it suffices to show hd&=(𝒯D, 𝒯E) = 1 ⟹ hd(𝒯D, 𝒯E) = 1. By 

Lemma 4.1, it is the case that hd(𝒯D, 𝒯E) = 1. 

 

Theorem 4.7. sim& is preference invariant w.r.t. equivalence. 

Proof. Let C, D ∈ Con(ℰℒℋ) and Π be a countably infinite set of preference 

profile. Fix any 𝜋 ∈ Π, we show 𝐶 ≡ 𝐷 ⟺ sim&(𝐶, 𝐷) = 1. 

(⟹) Assume 𝐶 ≡ 𝐷, we need to show sim&(𝐶, 𝐷) = 1. By Theorem 3.2, we 

know 𝐶 ≡ 𝐷 ⟺ sim(𝐶, 𝐷) = 1. With the usage of Lemma 4.3, Definition 3.9, and 

Definition 4.11, we can derive sim&(𝐶, 𝐷) = 1. 

(⟸) This can be shown similarly as in the forward direction.  

 

Theorem 4.4 to 4.7 spells out that sim& satisfies all fundamental properties of 

concept similarity measure under preference profile. 

Definition 4.10 suggests that different preference profile settings represent 

different types of a rational agent. An easy characterization is observed from the aspect 

of role discount factor (𝔡). Intuitively, when the settings 𝔦𝔠, 𝔦𝔯, 𝔰𝔠,	and	𝔰𝔯 defined by two 

rational agents 𝐴, 𝐵 are the same, the agent which defines the lower 𝔡 on every 𝑟 ∈ RN 

is always more skeptical. For instance, if 𝔡_(canWalk) = 0.3 and 𝔡�(canWalk) = 0.4, 

then sim&�(∃canWalk.Trekking, ∃canWalk.Parading) = 0.3 and 

sim&�(∃canWalk.Trekking, ∃canWalk.Parading) = 0.4. This is clear that the agent 𝐴 

is more skeptical than the agent 𝐵. 

Proposition 4.2. Let Π be a countably infinite set of preference profile and 

𝜋M,𝜋J ∈ Π such that 𝜋M = ⟨𝔦M𝔠 , 𝔦M𝔯 , 𝔰M𝔠 , 𝔰M𝔯 , 𝔡M⟩, 𝜋J = ⟨𝔦J𝔠 , 𝔦J𝔯 , 𝔰J𝔠 , 𝔰J𝔯 , 𝔡J⟩, and RN be a set of 

role names. The following holds16: 

	

∀𝑟 ∈ RN: ¨𝔡M(𝑟) ≤ 𝔡J(𝑟)ª ⟹	≡	⪯  sim&� ⪯  sim&X  

                                                
16 See Definition 4.10 for the meaning of ⪯. 
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for fixed functions 𝔦M𝔠 = 𝔦J𝔠 , 𝔦M𝔯 = 𝔦J𝔯 , 𝔰M𝔠 = 𝔰J𝔠 , and 𝔰M𝔯 = 𝔰J𝔯 . 

 

4.4 Implementation Methods of sim&  

Theorem 4.2 tells us that sim& can be computed in the polynomial time. This 

section exhibits two algorithmic procedures of sim& belonging to that class. 

 

4.4.1 Top-Down Implementation of sim& 

 
Figure 4.1 Pseudo Code for hd& using Top-Down Fashion (Part 1). 
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In Definition 4.7, hd& is established by an inductive procedure. Therefore, it is 

a very straightforward way to implement the procedure by recursion (see Figure 4.1).  

 
Figure 4.2 Pseudo Code for hd& using Top-Down Fashion (Part 2). 

 

From Figure 4.1 and Figure 4.2, hd& is directly followed from Equation 4.4 of 

Definition 4.7. That is, it receives three parameters as inputs, viz. a description tree 𝒯D, 

a description tree 𝒯E , and a preference profile 𝜋. Suppose 𝒯D be defined as 𝒫D ∪ ℰD, 𝒯E  

be defined as 𝒫E ∪ ℰE , and 𝜋 = ⟨𝔦𝔠, 𝔦𝔯, 𝔰𝔠, 𝔰𝔯, 𝔡⟩ is given. The function hd&(𝒯D, 𝒯E,𝜋) 

computes the function value for a composition in a prescribed way from the function 

values of the composing parts, i.e. 𝜇&(𝒯D,𝜋), p-hd&(𝒫D, 𝒫E,𝜋), and 

e-set-hd&(ℰD, ℰE,𝜋). 𝜇&, p-hd&, e-set-hd& are also followed from Equation 4.5, 4.6, 

and 4.7, respectively, of Definition 4.7. Each internally uses subfunctions ∑𝔦𝔠 and ∑𝔦𝔯 

(see Figure 4.4) to calculate the total number of concept importance and the total 

number of role importance, respectively. 

For Figure 4.3 and Figure 4.4, e-hd& is directly followed from Equation 4.8 of 

Definition 4.7. To compute the function value e-hd&, we recursively compute the 

function value hd& on the children of certain nodes (denoted by 𝑋 and 𝑌) and 𝜋. γ& is 
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directly followed from Equation 4.9 of Definition 4.7. Also, 𝛾& internally invokes 

subfunction ∑𝔦𝔯 to calculate the total number of role importance. 

 
Figure 4.3 Pseudo Code for hd& using Top-Down Fashion (Part 3). 

 

 The reader may easily observe that the time efficiency of Algorithm 1 is quintic 

because the computation of p-hd& is quadratic and e-set-hd&  contains double nested 

loops which indirectly make recursive calls to hd&. It is also not difficult to observe 

that the number of recursive calls is upper bounded by the height of the description tree. 

It is worth to mention that using hd& requires concept descriptions to be 

transformed into ℰℒℋ description trees. Taking this as an advantage, the next 

subsection introduces an alternative way to compute hd& from bottom to up, which is 

approximately three times faster than the counterpart top-down approach in the worst 

case (cf. Subsection 4.5.1 for useful discussion). 
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Figure 4.4 Pseudo Code for hd& using Top-Down Fashion (Part 4). 

 

4.4.2 Bottom-Up Implementation of sim& 

Rather than computing (possibly duplicated) value of hd& again and again, 

Figure 4.5 shows the classical bottom-up version of dynamic programming technique 

to compute hd& of the smaller subtrees and records the results in a table (see the variable 

result[⋅][⋅] in the figure) from which a solution to the original computation of hd& can 

be then obtained (cf. at line no. 20, the function returns value 𝑟𝑒𝑠𝑢𝑙𝑡[0][0]).  

To compute hd& from bottom to up, we need to know the height of the trees in 

advance. According to Figure 4.5, we employ ‘breath-first search’ algorithm (denoted 

by BFS) to determine the height of each description tree (cf. line no. 4 and 5 of the 

algorithm). The algorithm reuses the methods 𝜇&, p-hd&, e-set-hd&, 𝛾&, ∑𝔦𝔠, and ∑𝔦𝔯  

from the top-down algorithm and provides pseudo code for e-hd& since it is merely 

overridden.  
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Figure 4.5 Pseudo Code for hd& using Bottom-Up Fashion. 

 

What is the time complexity of this approach? It should be quintic because the 

algorithm considers the similarity of all the different pairs of two concept names for ℎ 

times (cf. line no. 6). More formally, we know 𝑟𝑒𝑠𝑢𝑙𝑡�𝒯��[𝒯�] ∈ 𝒪(𝑣J) where 𝑣 denotes 

the set cardinality of 𝒫𝓍 (and ℰ𝓍) for any description tree 𝑥. Let 𝑚(𝑖) and 𝑛(𝑖) be the 

number of nodes on level 𝑖 of description trees 𝐷 and 𝐶, respectively. Then, the number 

of times operation 𝑟𝑒𝑠𝑢𝑙𝑡[⋅][⋅]  is executed (say 𝐶) is equal to: 
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𝐶 = ∑ ∑ ∑ 𝑣J�(¡)
�¸w

�(¡)
Û¸w

M�M
¡¸w   

= 𝑣J∑ ∑ ∑ 1�(¡)
�¸w

�(¡)
Û¸w

M�M
¡¸w   

= 𝑣J∑ ∑ (𝑛(𝑖)+ 1)�(¡)
Û¸w

M�M
¡¸w   

= 𝑣J∑ (𝑛(𝑖) + 1)(𝑚(𝑖)+ 1)M�M
¡¸w   

= 𝑣J�[(𝑛(0)+ 1)(𝑚(0)+ 1)] + [(𝑛(1)+ 1)(𝑚(1)+ 1)] +⋯

+ [(𝑛(ℎ − 1)+ 1)(𝑚(ℎ − 1)+ 1)]� 

 
Thus, the algorithm makes the similar number of operations as the top-down approach, 

plus an additional amount of extra space. On the positive side, the algorithm has never 

recursively invoked itself to determine the similarity of different pairs of nested 

concepts, i.e. it directly uses values stored in the table. The algorithm also shows that 

computing the similarity of nodes from level 𝑖, where 𝑖 is greater than the minimum 

height of description trees (cf. the condition list𝒯 !=	null at line no. 11), is irrelevant to 

the computation.  

The bottom-up approach does work productively in an environment where 

recursion is fairly expensive. For example, imperative languages, such as Java, C, and 

Python, are typically faster if using a loop and slower if doing a recursion. On the other 

hand, for some implementations of functional programming languages, iterations may 

be very expensive and recursion may be very cheap. In many implementations of them, 

recursion is transformed into a simple jump but changing the loop variables (which are 

mutable) requires heavy operations. Subsection 4.5.1 reports that the practical 

performance agrees to this theoretical analysis that the bottom-up approach is more 

efficient when implemented by imperative languages, such as Java. 

 

4.5 Empirical Evaluation 

This section evaluates the practical performance of both algorithms against 

sim17, reassures pragmatically the backward compatibility of sim& under 𝜋w (Theorem 

4.1 already proves this), and discusses the applicability of sim& in potential use cases. 

                                                
17 We have re-implemented sim (proposed in (Tongphu & Suntisrivaraporn, 2015)) based on the same 
technologies and techniques as sim&. 
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4.5.1 Performance Analysis and Backward Compatibility of sim& 

Both versions of sim& (cf. Subsection 4.4.1 and Subsection 4.4.2) are 

implemented in Java version 1.8 with the usage of Spring Boot version 1.3.3. 

RELEASE. All the dependencies are managed by Apache Maven version 3.2.5. We also 

implement unit test cases along with the development of both versions to verify the 

correctness of their behaviors. In the current state (when we are writing this work), there 

are 111 unit test cases. All of them are written to cover important parts of both 

implementations. 

To perform benchmarking, we have selected SNOMED CT as a test ontology. 

As mentioned in Appendix A, it is one of the largest and the most widely used medical 

ontologies currently available, and also, is expressible in ℰℒℋ. In our experiments, we 

employ a SNOMED CT ontology version from January 2005 (hitherto referred as 

𝒪SNOMED	CT) which contains 379,691 concept names and 62 role names. Moreover, each 

defined concept is categorized into the 18 mutually exclusive top-level concepts. In the 

sense of subsumption relation, concepts belonging to the same category should be more 

similar than those belonging to different categories. 

For our experiments, we used a 2.4 GHz Intel Core i5 with 8 GB RAM under 

OS X El Capitan. Unfortunately, the overall number of concept pairs in 𝒪SNOMED	CT is 

approximately 1011. Suppose an execution of simπ takes around a millisecond, we still 

need around 1,158 days in order to complete the entire ontology. According to this 

reason, we consider 2 out of 18 categories, viz. Clinical Finding and Procedure, 

although there are more category pairs. Then, we randomly select 0.5% of Clinical 

Finding, i.e. 206 concepts, denoted by ℂMG . After that, we randomly select the same 

number of concepts from Procedure, i.e. 206 concepts, denoted by ℂJG . This sampled 

set is denoted by 𝒪GSNOMED	CT i.e. 𝒪GSNOMED	CT = ℂMG ∪ ℂJG . Then, we create three test 

datasets from this sampled set, viz. ℂMG × ℂMG , ℂMG × ℂJG , and ℂJG × 	ℂJG . 

Firstly, we estimate the practical performance of the top-down fashion. For each 

concept pair in each set, we 1) employ the default preference profile 𝜋w on (top-down) 

sim&; 2) measure the similarity of concepts in 𝒪GSNOMED	CT by peeking on 𝒪SNOMED	CT 

to help unfolding; 3) repeat the previous step with (top-down) sim; 4) repeat steps 2)-

3) three times and calculate the statistical results (in milliseconds). Results are gathered 
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on Table 4.1. We note that 𝑎𝑣𝑔, 𝑚𝑎𝑥, and 𝑚𝑖𝑛 represent the execution time for 

measuring similarity of a concept pair in the average case, in the worst case, and in the 

best case, respectively. 

Table 4.1 Execution Time of Top-Down sim and Top-Down sim&= on 𝒪GSNOMED	CT.  

Pairs Number of Pairs sim (avg/max/min) sim&= (avg/max/min) 
ℂMG × ℂMG  25 2.280/7.000/0.000 1.800/10.000/0.000 
ℂMG × ℂJG  215 2.291/97.000/0.000 2.278/84.000/0.000 
ℂJG × 	ℂJG  1,849 3.395/45.000/0.000 3.931/128.000/0.000 

 

Secondly, we estimate the practical performance of the bottom-up fashion by 

following the same steps as we did previously. Indeed, we exclude the time used to 

determine the height of each description tree, i.e. our benchmark begins from line no. 

7 to 21 of  the bottom-up algorithm. Table 4.2 gathers up the results.  

Table 4.2 Execution Time of Bottom-Up sim and Bottom-Up sim&= on 𝒪GSNOMED	CT.  

Pairs Number of Pairs sim (avg/max/min) sim&= (avg/max/min) 
ℂMG × ℂMG  25 2.200/6.000/0.000 1.693/5.000/0.000 
ℂMG × ℂJG  215 2.040/32.000/0.000 1.946/10.000/0.000 
ℂJG × 	ℂJG  1,849 3.368/55.000/0.000 3.435/45.000/0.000 

 

The experiment shows that the practical performance of sim& is likely equal to 

the performance obtained by sim – as ones may not expect. The results show that the 

bottom-up sim& performs approximately three times faster that the counterpart top- 

down sim&  (in the worst case) when implemented by imperative languages (e.g. Java 

as in our case). This conforms to our analysis discussed in Subsection 4.4.2. 

Lastly, we evaluate the backward compatibility of sim& with sim. Our goal is 

to ascertain that sim& can be used interchangeably as the original sim by setting 

preference profile to the default one (Theorem 4.1 already proves this). To this point, 

we have performed an experiment on concept pairs defined in 𝒪GSNOMED	CT. The 

experiment evaluates results from sim and sim& and found that both coincide, as 

desired. Table 4.3 gathers the results, where “td” and “bu” are abbreviation forms of 

top-down and bottom-up, respectively. 
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Table 4.3 Results of Executing sim and sim&= on 𝒪GSNOMED	CT.  

Pairs 
Number 
of Pairs 

td sim 
(avg/max/m

in) 

td sim&= 
(avg/max/mi

n) 

bu sim 
(avg/max/mi

n) 

bu sim&= 
(avg/max/mi

n) 

ℂMG × ℂMG  
 

25 
0.87597/ 
1.00000/ 
0.67953 

0.87597/ 
1.00000/ 
0.67953 

0.87597/ 
1.00000/ 
0.67953 

0.87597/ 
1.00000/ 
0.67953 

ℂMG × ℂJG  
 

215 
0.57801/	
0.66546/	
0.24594	

0.57801/	
0.66546/	
0.24594 

0.57801/	
0.66546/	
0.24594 

0.57801/	
0.66546/	
0.24594 

ℂJG × 	ℂJG  
 

1,849 
0.79690/ 
1.00000/ 
0.35360 

0.79690/ 
1.00000/ 
0.35360 

0.79690/ 
1.00000/ 
0.35360 

0.79690/ 
1.00000/ 
0.35360 

 

4.5.2 Effects of Tuning sim& 

4.5.2.1 Tuning via 𝔦𝔠 and 𝖉 

We show the applicability of 𝔦𝔠 and 𝔡 through similarity measuring on 

SNOMED CT. Figure 4.6 depicts an example unfoldable terminology extracted from 

𝒪SNOMED	CT.  

 
Figure 4.6 Example of ℰℒℋ Concept Definitions Defined in 𝒪SNOMED	CT. . 

 

Considering merely objective factors regardless of the agent’s preferences, it 

yields that sim&=(NAOAF,NAOM) ≈ 0.918 and sim&=(NAOAF,H) ≈ 0.2. The results 

yielding to the quite similar concepts NAOAF and NAOM, which reflects the fact that 

both are resided in the same cluster of SNOMED CT. However, the result yielding that 

                                                
18 Obvious abbreviations are used here for the sake of succinctness. 
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the concepts NAOAF and H shares a little similarity controverts the fact that both carry 

neither implicit nor explicit relationship. This is indeed caused by the usage of the 

special-purpose role called roleGroup – informally read as relation group.  

In SNOMED CT, the use of relation group is widely accepted to nestedly 

represent a group of existential information (Schulz, Suntisrivaraporn, & Baader, 

2007). As a consequence, it increases unintentionally the degree of similarity due to 

role commonality (i.e. γ&). Since roleGroup precedes every existential restriction, it is 

useless to regard an occurrence of this as being similar. The importance contribution of 

roleGroup in 𝒪SNOMED	CT should be none. Hence, the agent 𝑆 who measures similarity 

on SNOMED CT should set 𝔡?(roleGroup) = 0.  

Furthermore, the SNOMED CT top concept SCT-TOP subsumes every defined 

concept of each category. This means this special concept is shared by every expanded 

concept description. Intuitively, this special top concept is of no importance for 

measuring similarity on SNOMED CT and we can treat the top-level concepts as 

directly subsumed by ⊤. As a result, the agent 𝑆 should also set 𝔦𝔠?(SCT-TOP)=0.  

Tuning the measure with this expertise knowledge yields more realistic result. 

That is, the similarity of concepts under the same category which uses roleGroup in 

their definitions is slightly reduced. Also, the similarity of concepts under different 

categories is totally dissimilar. Continuing the case, sim&¤(NAOAF,NAOM) ≈ 0.84 

and sim&¤(NAOAF,H) = 0.0, as desired.  

 

4.5.2.2 Tuning via 𝔰𝔯 

Let us use the ontology given below to query for places similar to ActivePlace.  

 
ActivePlace ⊑ Place ⊓ ∃canSail.Kayaking 

Mangrove ⊑ Place ⊓ ∃canWalk.Trekking 

Supermarket ⊑ Place ⊓ ∃canBuy.FreshFood 

 
Suppose the agent feels ‘walking’ and ‘sailing’ are similar and are ‘still satisfied 

much’ on both actions. Taking 𝔰𝔯(canWalk,canSail) = 0.6 yields sim~(M,AP) >

sim~(S,AP), which conforms to the agent’s preferences and needs.  
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4.5.2.3 Tuning via 𝔰𝔠 

Let us use the ontology given below to query for a product which offers features 

the agent is satisfied with most.  

 
WantedFeatures ⊑ Fw ⊓ FM ⊓ FJ 

ItemM ⊑ Fw ⊓ FN 

ItemJ ⊑ Fw ⊓ FO 

 
According to the ontology, WantedFeatures represents a collection of desired 

features and F¡ (where i ∈ N) represents a feature. A purchase decision is sometimes 

affected by satisfied alternations, which are varied by different people. Assume that the 

agent feels satisfaction to have FN if the agent cannot have FM. Taking 𝔰𝔠(FM, FN) = 0.8 

yields sim&(WF,I1) > sim&(WF,I2), which conforms to the agent’s perceptions.  

 

4.5.2.4 Tuning via 𝔦𝔯 

Let us use the ontology given in Example 4.1 to query for places which are most 

similar to ActivePlace. Typically, a human decision is affected by a priority of 

concerns, which are varied by different people. Suppose that the agent weights more on 

places which permit to ‘walk’ more than other activities. Taking 𝔦𝔯(canWalk) = 2 

yields sim~(M,AP) > sim~(B,AP), which conforms to the agent’s preferences.  

 

4.6 Comparison with Related Works 

As we develop the notion ∼×& as a generalization of ∼× , this section relates our 

development to others in two areas, viz. ordinary concept similarity measures (which 

do not take into account the agent’s preferences) and preference-based concept 

similarity measures.  

 

4.6.1 Ordinary Concept Similarity Measure  

In the standard perception, concept similarity measure refers to the study of 

similar concepts inherited by nature, i.e. the ones similar regardless of the agent’s 

preferences. Our concrete developments, which employ structural subsumption, can be 
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considered as the semantic similarity approach. Hence, we merely compare our 

approaches to other approaches of semantic similarity as follows.  

A simple method was developed in (Jaccard, 1901) for the DL ℒw (i.e. no use 

of roles) and was known as Jaccard Index. Its extension to the DL ℰℒℋ was proposed 

in (Lehmann & Turhan, 2012). This work also introduced important properties of 

concept similarity measure and suggested a general framework called 𝑠𝑖𝑚𝑖 which 

satisfied most of the properties. In 𝑠𝑖𝑚𝑖, functions and operators, such as t-conorm and 

the fuzzy connector, were to be parameterized and thus left to be specified. The 

framework also did not contain implementation details. This may cause implementation 

difficulties since merely promising properties were given and no guideline of how 

concrete operators are chosen is provided.  

In (Janowicz & Wilkes, 2009), the measure SIM-DLA was proposed for the DL 

𝒮ℋℐ. The measure was not completely defined in mathematical terms and some text 

descriptions were not precise. Roughly, the measure had three stages. First, two concept 

descriptions in question were converted into the negation normal form (NNF). A 

modified version of the tableau was used to generate a completion tree for each NNF 

concept. In this modified version, the ⊔-rule was modified and another ∀-rule was 

added. Second, a set of proxy models was generated from the completion tree. A proxy 

model was a tree where each was labeled by a role name and each node was labeled by 

a concept name. Third, both sets of proxy models were used to compute the degree of 

similarity. This was done by measuring similarity among all pairs of proxy models 

(using tree similarity). The final result was evaluated from either the maximum, the 

minimum, or the average. However, the paper did not explain the selection rule when 

more than one tableau rules could be applied.  

Two similarity measures for DL ℱℒw was proposed in our proceeding papers 

(Racharak & Suntisrivaraporn, 2015; Racharak & Tojo, 2018). In (Racharak & 

Suntisrivaraporn, 2015), similarity measures were conformed to the different skeptical 

aspect of their computation and were derived from the structural subsumption of the 

language inclusion. The skeptical concept similarity was further generalized and was 

extended toward the notion of preference profile in (Racharak & Tojo, 2018). It was 

also shown in (Racharak & Tojo, 2018) that, like in this thesis, when tuning with the 
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default preference profile, it measures similarity of concepts w.r.t. their structure 

merely.  

The notion of homomorphism degree was originally introduced in 

(Suntisrivaraporn, 2013) and is thereof extended toward the development of sim& for 

the DL ℰℒℋ in this chapter. Theorem 4.1 suggests that simπ can be used to measure 

similarity of concepts inherently by nature through the setting 𝜋w, i.e.  sim&=. 

As inspired by the tree homomorphism, sim& differs (Lehmann & Turhan, 

2012) from the use of 𝜇& to determine how important the primitive concepts are to be 

considered and the use of  𝛾& to determine a degree of role commonality between 

matching edges of the description trees. We further discuss about preference-based 

similarity measures in the next subsection. 

 

4.6.2 Preference-based Concept Similarity Measure  

Most concept similarity measures are objective-based. However, there exists 

work (Lehmann & Turhan, 2012; Racharak & Tojo, 2018; Tongphu & 

Suntisrivaraporn, 2015) which provides methodologies for tuning. We discuss their 

differences to our approaches in the following.  

In (Racharak & Tojo, 2018), a concept similarity measure ∼!& under preference 

profile was proposed for ℱℒw concept descriptions. Both were developed from a 

characterization of language inclusion in description logics. Unfortunately, ∼!&  merely 

supports some preferential elements in preference profile.  

In an extended work of sim (Tongphu & Suntisrivaraporn, 2015), a range of 

number for discount factor (ν) and the neglect of special concept names were used in 

the similarity application of SNOMED CT. For instance, when roleGroup was found, 

the value of 𝜈 was set to 0. These ad hoc approaches can be viewed as specific 

applications of 𝔡 and 𝔦𝔠, respectively, of preference profile. Unfortunately, no other 

aspects of π appear in its use.  

In 𝑠𝑖𝑚𝑖 (Lehmann & Turhan, 2012), the function 𝑝𝑚 was used to define the 

similarity degree of primitive concept pairs and role pairs. Using 𝑝𝑚 with primitive 

concept pairs invokes the equivalent intuition as 𝔰𝔠; however, this does not mean so in 

the aspect 𝔰𝔯. Allowing to define the similarity of defined role names, as in (Lehmann 
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& Turhan, 2012), may be not appropriate since defined role names are contributed by 

primitive role names. For example, let 𝑟M ⊑ 𝑠M and 𝑟J ⊑ 𝑠J are defined in 𝒯. It is clear 

that 𝑟M, 𝑟J ∈ RNdef. By defining 𝑝𝑚(𝑟M, 𝑟J), the defined similarity should be also 

propagated to the similarity of 𝑠M and 𝑠J. However, this point was not discussed in 

(Lehmann & Turhan, 2012). In respect of this, RNpri is merely used in 𝔰𝔯 and γ& is 

defined for the similarity of defined role names. The authors of (Lehmann & Turhan, 

2012) also defined the function g: N_ → R¦𝟘 representing the weight for concept names 

and existential restriction atoms (based on their definition). Ones may feel the 

resemblance of 𝑔 and 𝔦𝔠,	𝔦𝔯; however, they are also different in three perspectives. 

Firstly, the mapping of g is reached to the infinity whereas 𝔦𝔠 and 𝔦𝔯 are bounded. This 

characteristic of 𝑔 is impractical to use as it may lead to the unbalance of weight 

assignments. For instance, one may define g(𝐴M) = 1 but g(𝐴J) = 10MJ where 

𝐴M, 𝐴J ∈ CNpri. To avoid this situation, the authors should provide a guideline for 

weight assignments. Secondly, the mapping of g is lower bounded by one. This clearly 

makes an impossibility to define the intuition of having no importance. Thus, the 

situation given in Subsubsection 4.5.2 is not expressible. Lastly, the domain of 𝑔 is the 

set of atoms whereas 𝔦𝔠 (and 𝔦𝔯) is the set of primitive concept names (and the set of role 

names, respectively). Using the set of atoms as the domain is also impractical since 

there can be infinitely many existential restriction atoms and the interpretation of 

functions is slightly dubious. For instance, given g(∃𝑟. 𝐶) = 2 and g(∃𝑟. 𝐷) = 3, do 

both 𝑟 intentionally contribute the equal importance? Thus, this definition is 

inappropriate to represent the agent’s perception. Moreover, the aspect 𝔡 disappeared 

from (Lehmann & Turhan, 2012). Lacking of fully 𝔦𝔠 and 𝔡 makes the framework 

inappropriate to use for Snomed ct applications. These distinctions of simi and ours are 

radically caused by their different motivations. Table 4.4 summarizes this discussion, 

where • denotes totally identical to the specified function whereas ° denotes partially 

identical to the specified function. 

Not only distinct on the mathematical representation of 𝑠𝑖𝑚𝑖 and our measures,  

the desired properties presented in each work are also different. While the properties 

introduced in (Lehmann & Turhan, 2012) were motivated for (ordinary) concept 

similarity measure, our properties are developed under the consideration of the agent's 
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preferences (∼×&). Hence, some properties introduced for concept similarity measure are 

revised in subjective manners and the new property is introduced.  

Table 4.4 Concept Similarity Measures which Embed Preference Elements. 

Similarity Measure DL 𝔦𝔠 𝔦𝔯 𝔰𝔠 𝔰𝔯 𝔡 
sim& ℰℒℋ • • • • • 

∼!& (Racharak & 
Tojo, 2018) 

 
ℱℒw 

 
• 

  
• 

  

the extended work of 
sim (Tongphu & 
Suntisrivaraporn, 

2015) 

 
ℰℒℋ 

 
• 

    
• 

𝑠𝑖𝑚𝑖 (Lehmann & 
Turhan, 2012) 

ℰℒℋ °  • °  
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CHAPTER 5 

COMPUTATION OF ACCEPTED ANALOGICAL ARGUMENTS 
 

We have discussed the theoretical analysis of using ABA framework to model 

the argumentation scheme for argument from analogy and concept similarity under 

preferences for understanding the degree of similarity between concepts in Section 2.1 

and Section 3.2, respectively. Though using ABA alone could model the argumentation 

scheme for argument from analogy, it came up with several difficulties as follows.  

First, ABA does not concretely describe where the source of similarity premises 

comes from, how a notion of concept similarity should be involved, how ‘relevance’ of 

concept similarity is defined and effects the degree of analogical arguments, and how 

analogical arguments should interact with normal arguments in case of persuasion. 

These problems are basically related to redefining both the notion of structured 

arguments and the framework in a way that arguments’ types can be classified.  

Second, an analogical argument should be associated with a particular degree 

since each analogy used to support a claim is associated with a unit interval [0, 1]. This 

degree should also contribute to the attack relation between arguments. It is worth 

mentioning that similarity could be ‘qualitative’ in a sense that ones may only perceive 

if two concepts are similar or not. In this case, a certain threshold should be defined for 

being similar and each analogical argument could be associated with a binary [0, 1] 

where 1 indicates ‘similar’ and 0 indicates ‘not similar’.  

Third, different rational agents may value arguments supported by analogies un- 

equally, depending on their characteristics. This point is related to different styles of 

making judgment. For example, there could be a ‘gullible’ agent who always gives a 

high degree on every analogical argument; or a ‘skeptical’ agent vice versa.  

To address the first difficulty, we extend the original ABA framework to 

assumption-based argumentation with predicate similarity (denoted by ABA(p)) by 

identifying necessary components to form analogical arguments. In the following, the 

extended framework considers any arbitrary description language although DL 

terminological formalism is used in our running example.  
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Definition 5.1. An ABA(p) is a 10-tuple 〈ℒD, ℛ,𝒜, � , ℒF, 𝒯, ℳ , ∼×
𝔭, 𝔭, ℱ〉 

where (ℒF, 𝒯) is a module formalizing descriptions of concepts with a language ℒF and 

a set 𝒯 of formulae (constructed from ℒF) representing definitions of concepts, ℳis 

a partial mapping from the predicate of sentences in ℒD to concepts in ℒF, 

∼×
𝔭: ℒF × ℒF → [0,1] is a certain concept similarity w.r.t. 𝒯 under preference context 𝔭, 

ℱ is an annotation function for each entire argument to a numerical value19, �  is a total 

function mapping from 𝒜 ∪𝒜𝒩, where 𝒜𝒩 ∶= {𝑃 ∼×
𝔭 𝑄 | 𝑃ℳ ∼×

𝔭 𝑄ℳ ∈ (0,1], for 

any 𝑃(tM, … , tp),𝑄(tM, … , tp) 	∈ ℒD}20 representing a set of analogies, and ℒD,ℛ,𝒜 are 

as defined in ABA framework. An argument for 𝑐 ∈ ℒD (the conclusion or claim) 

supported by 𝒮 ⊆ 𝒜 ∪𝒜𝒩, is a tree with nodes labeled by sentences in ℒD ∪𝒜𝒩, by 

sentences of the special form ? (𝜑,𝜓, 𝜉) representing a defeasible condition of sentence 

𝜑 concluded from an analogy between 𝜓 and 𝜉, or by the special symbol � representing 

an empty set of premises, such that:  

• the root is labelled by c; 

• for every node N, 

o if N is a leaf, then N is labeled by an assumption in 𝒜 ∪𝒜𝒩, an 

assumption of the form ? (𝜑,𝜓, 𝜉), or by �, 

o if N is not a leaf, 𝑙@ is the label of N, and there is an inference rule 𝑙@ ←

𝑏M, … , 𝑏� (𝑚	 ≥ 0) in ℛ, then 

§ either 𝑚 = 	0, and the child of N is � 

§ or 𝑚	 > 	0 and N has m children, labeled by 𝑏M, … , 𝑏�, 

respectively, 

o if N is not a leaf, 𝑙@ is the label of N where 𝑙@ ∶= 𝑃¨𝑡M, … , 𝑡¬ª, there is 

an analogy 𝑃 ∼×
𝔭 𝑄 in 𝒜𝒩, and there is either an inference rule 

𝑄¨𝑡M, … , 𝑡¬ª ← 𝑏M, … , 𝑏� (𝑚	 ≥ 0) in ℛ or 𝑄¨𝑡M, … , 𝑡¬ª in 𝒜, then 

§ N has 3 children, labeled by 𝑃 ∼×
𝔭 𝑄, ? (𝑙@, 𝑃,𝑄), 𝑄¨𝑡M, … , 𝑡¬ª; 

• 𝒮 is the set of all assumptions labelling the leaves.  

 

                                                
19 See Definition 6, for its formal definition. 
20 If 𝑝	 = 	0, both P and Q are called propositions. 
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(ℒF, 𝒯) can be defined for any kinds of terminological formalism specified by 

means of a language ℒF and a set of formulae 𝒯. For example, a DL terminological 

knowledge base can be recast as ℒF ∶= CN	 ∪ RN and 𝒯 is a TBox constructed from 

ℒF. Furthermore, a choice of terminological formalism can affect particular constraints. 

For instance, if (ℒF, 𝒯) represents a DL knowledge base, then the predicates in (ℒD, ℛ) 

which has a mapping in ℒF must be unary.  

We note that ? (𝜑,𝜓, 𝜉) can be read as “conclusion 𝜑 supported by an analogy 

between 𝜓 and 𝜉 is opened for challenging”. A challenge of 𝜑 could be the contrary of 

𝜑, which may be possibly drawn from other analogies (aka. counter-analogies) or 

chains of inference rules. For example, a challenge of “sound2 created by bird2 is duck’s 

sound” is an evidence that sound2 is honk sound. Like ABA, assumptions are the only 

defeasible component in ABA(p) and they are used to support a conclusion. For the sake 

of simplicity, we clearly separate analogical assumptions from standard assumptions. 

That is, an argument for c supported by standard assumption 𝒮𝒜 ⊆ 𝒜 and analogical 

assumption 𝒮𝒜𝒩 ∶= 𝒮	 ∖  𝒮𝒜  is denoted by 𝒮𝒜 	∪ 𝒮𝒜𝒩 	 ⊢ 𝑐 (i.e. 𝒮𝒜 	∪ 𝒮𝒜𝒩 = 	𝒮 

such that 𝒮𝒜 	∩ 	𝒮𝒜𝒩 = 	∅). When 	𝒮𝒜𝒩  is empty i.e. 𝒮𝒜 	∪ ∅ ⊢ 𝑐, we call such an 

argument a standard argument. Otherwise, we call it an analogical argument. This style 

of writing helps recognizing analogical arguments and standard arguments at first 

glance.  

It is worth noting that the study of analogical reasoning in logical systems is not 

new since several studies do exist. For example, (Goebel, 1989a) provided a form of 

analogical reasoning in terms of a system of hypothetical reasoning, (Sun, 1995b) 

integrated rule-based and similarity-based reasoning in a connectionist model. In 

argumentation systems, (Racharak, Tojo, Hung, & Boonkwan, 2016) studied an 

implementation of analogical reasoning using an argument-based logic programming 

and (Racharak et al., 2017b) proposed an idea to combine answer set programming with 

description logic. This work makes a continuous study of these papers by generalizing 

(Racharak et al., 2017b) to ABA.  

To address the second difficulty, we define the function 𝑓: 𝒮 → [0,1] for 

annotating (both standard and analogical) assumptions as follows:  
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Definition 5.2. Given a set 𝒮 of assumptions, a partial mapping ℳ  from the 

predicate of sentences in ℒD to concepts in ℒF, and ∼×
𝔭: ℒF × ℒF → [0,1] is a certain 

concept similarity w.r.t. terminological formalism 𝒯 under preference context 𝔭, the 

(total) annotation function 𝑓: 𝒮 → [0,1]  is defined, for any 𝑎	 ∈ 𝒮, as:  

 

𝑓(𝑎) = b
𝑃ℳ ∼×

𝔭 𝑄ℳ 	if	𝑎	is of the form	𝑃 ∼×
𝔭 𝑄

𝑃ℳ ∼×
𝔭 𝑄ℳ 	if	𝑎	𝑖s of the form	? (𝑙@, 𝑃,𝑄)

1	otherwise
               (5.1) 

 
Intuitively, standard assumptions are labeled with 1 to correspond with the fact 

that similarity relation is bound by 1 (we note that 1 is used in ∼×
𝔭 to indicate the 

maximal similarity). Next, we extend f to the function ℱ for annotating arguments. Each 

annotation represents the degree of each entire argument.  

Definition 5.3. Let 𝒮𝒜 	∪ 𝒮𝒜𝒩 	 ⊢ 𝑐 be an argument. Then, a function ℱ for 

annotating an entire argument is defined as:  

 

ℱ(𝒮𝒜 ∪ 𝒮𝒜𝒩 ⊢ 𝑐) = h⨂{𝑓(𝑎¡) , 𝑓¨𝑎𝑛Ûª}	if	𝒮
𝒜 ∪ 𝒮𝒜𝒩 ≠ ∅

1	otherwise
            (5.2) 

 
where 𝑎¡ ∈ 𝒮𝒜 , 𝑎𝑛Û ∈ 𝒮𝒜𝒩 , and ⊗ is a triangular norm (t-norm).  

 

Since the above definition employs the notion of t-norm, we include its basis 

here for self-containment. A function ⊗: [0,1]J → [0,1] is called a t-norm iff it fulfills 

the following properties for all 𝑥, 𝑦, 𝑧, 𝑤 ∈ [0,1]: (1) 𝑥	 ⊗ 𝑦	 = 	𝑦	 ⊗ 𝑥 

(commutativity); (2) 𝑥	 ≤ 𝑧	and	𝑦	 ≤ 𝑤	 ⟹ 𝑥	 ⊗ 𝑦	 ≤ 𝑧	 ⊗ 𝑤 (monotonicity); (3) 

(𝑥 ⊗ 𝑦)⊗ 𝑧 = 𝑥 ⊗ (𝑦 ⊗ 𝑧) (associativity); (4) 𝑥	 ⊗ 1 = 	𝑥 (identity). A t-norm is 

called bounded iff 𝑥	 ⊗ 𝑦	 = 	0	 ⟹ 𝑥	 = 	0	or	𝑦	 = 	0. There are several reasons for the 

use of a t-norm. Firstly, it is the generalization of the conjunction in propositional logic. 

Secondly, the operator min (i.e. 𝑥 ⊗ 𝑦 = 𝑚𝑖𝑛{ 𝑥, 𝑦}) is an instance of a bounded t-

norm. This reflects an intuition that the strength of an argument depends on the used 

‘weakest’ analogical assumptions. Lastly, 1 acts as the neutral element for t-norms.  

Concerning the third difficulty, the choice of ⊗ (cf. Table 1 for its examples) 

can represent a type of a rational agent in analogical reasoning. For example, a 
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gullible/skeptical agent may give a high/low degree to his answer when his answer is 

derived from analogies. We formalize this characteristic as follows21.  

Definition 5.4. Let 𝒮𝒜 	∪ 𝒮𝒜𝒩 	 ⊢ 𝑐 be an argument; also, ℱM and ℱJ be two 

different functions representing different agents. Then, ℱM is more gullible than ℱJ if 

ℱM(𝒮𝒜 ∪ 𝒮𝒜𝒩 ⊢ 𝑐) ≥ ℱJ(𝒮𝒜 ∪ 𝒮𝒜𝒩 ⊢ 𝑐). On the other hand, ℱM is more skeptical 

than ℱJ if ℱM(𝒮𝒜 ∪ 𝒮𝒜𝒩 ⊢ 𝑐) ≤ ℱJ(𝒮𝒜 ∪ 𝒮𝒜𝒩 ⊢ 𝑐). Lastly, ℱM and ℱJ are identical 

if ℱM are both gullible and skeptical to ℱJ.  

 

The following theorem is an aid to help deciding which operator ⊗ should be 

chosen for ℱ in ABA(p). That is, if an agent strongly recognizes analogical principles, 

we may choose the most gullible function (i.e. ⊗�¡�). On the other hand, we may 

choose the skeptical function (i.e. ⊗mlt) if an agent weakly recognizes analogical 

principles.  

Table 5.1 Some Instances of The Operator ⊗. 

Name Notation 𝑥M ⊗ 𝑥J = 

Minimum ⊗�¡� 𝑚𝑖𝑛{ 𝑥M, 𝑥J} 
Product ⊗mlt 𝑥M ⋅ 𝑥J 

Hamacher product ⊗°= 0	if	𝑥M = 𝑥J;	otherwise
𝑥M ⋅ 𝑥J

𝑥M + 𝑥J − 𝑥M ⋅ 𝑥J
 

 

Theorem 5.1. From Table 5.1 and let 𝑥M, 𝑥J ∈ (0,1]. Then, ⊗mlt≤⊗°=≤⊗�¡�.  

Proof. (Sketch) We show the following inequality:  

 
𝑥M ⋅ 𝑥J ≤

𝑥M ⋅ 𝑥J
𝑥M + 𝑥J − 𝑥M ⋅ 𝑥J

≤ 𝑚𝑖𝑛{ 𝑥M, 𝑥J} 

 

That is, we show 𝑥M ⋅ 𝑥J ≤
e�⋅eX

e�µeX�e�⋅eX
 as follows: 

 

𝑥M ⋅ 𝑥J ≤
𝑥M ⋅ 𝑥J

𝑥M + 𝑥J − 𝑥M ⋅ 𝑥J
⇔ 1 ≤

1
𝑥M + 𝑥J − 𝑥M ⋅ 𝑥J

⇔ 𝑥M + 𝑥J − 𝑥M ⋅ 𝑥J ≤ 1 

                                                
21 The choice of ∼×

𝔭 also contributes to the type of a rational agent. That is, different concrete 
measures may have different skepticism. However, the definition only pays attention to how 
gullible is contributed from ℱ. 
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⇔ 𝑥J − 𝑥M ⋅ 𝑥J ≤ 1− 𝑥M ⇔ (1− 𝑥M) ⋅ 𝑥J ≤ 1− 𝑥M ⇔ 𝑥J ≤ 1	(by assumption) 

 

Lastly, we show e�⋅eX
e�µeX�e�⋅eX

≤ min{ xM, xJ} in the similar fashion.   

   

Attacks in ABA are defined in terms of the contrary of assumptions (cf. 

Subsection Structured Argumentation). However, argument trees and their supporting 

assumptions in ABA(p) are labeled with numbers. This is clear that the current definition 

of attacks in ABA is not appropriate for handling attacks in ABA(p). To define the notion 

of attacks in ABA(p), we extend the original definition of attacks in ABA to take into 

account the numbers. In addition, the extended definition imposes a particular 

restriction on the usage of analogical reasoning for ‘persuasion’ i.e. analogical 

arguments are always preferable to standard arguments. These characteristics are 

formally defined as follows.  

Definition 5.5. Let function � , function ℱ, and function f be as defined in 

Definition 4, Definition 5, and Definition 6, respectively. An argument 𝒮M𝒜 ∪	𝒮M𝒜𝒩 ⊢

𝑐M attacks an argument 𝒮J𝒜 ∪	𝒮J𝒜𝒩 ⊢ 𝑐Jiff the following satisfies:  

• If 𝒮M𝒜𝒩 ≠ ∅ and 𝒮J𝒜𝒩 = ∅, then 𝑐M is the contrary of an assumption in 𝒮J𝒜; 

• Otherwise, 𝑐M is the contrary of an assumption 𝒮J𝒜 ∪	𝒮J𝒜𝒩  (i.e. 𝑥 ∈ 𝒮J𝒜 ∪

	𝒮J𝒜𝒩and 𝑐M� = 𝑥) and ℱ¨𝒮M𝒜 ∪ 𝒮M𝒜𝒩 ⊢ 𝑐Mª ≥ 𝑓(𝑥).  

 

The first condition spells out that an analogical argument may attack a standard 

argument. This certain characteristic corresponds to the investigation in (Waller, 2001), 

where analogical arguments can be used for persuasion. For instance, saying “geese can 

quack because they are similar to ducks” may effect the belief’s changing on the 

opponent if no evidences to falsify the argument can be shown up. To put it more 

precisely, an opponent can be persuaded to believe a conclusion and that conclusion is 

inherently subject to be challenged. Hence, the burden of proof is shifted back to an 

opponent after he/she is persuaded to believe in that conclusion.  

The second condition associates with another circumstance i.e. an analogical 

argument can attack an assumption only if the argument has been labeled with the 
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number higher than or equal to the number associated with the assumption. This way 

of treatment is not used in (Waller, 2001; Walton et al., 2008).  

 

Figure 5.1 ABA(p) Framework for The Running Example. 

 

Example 5.1. Figure 5.1 illustrates an overall ABA(p) framework for the running 

example. According to the figure, the framework uses sim~ and πw as concrete 

instances of ∼×
𝔭 and 𝔭, respectively. The figure also uses ≁×

𝔭 to indicate ‘being not 

similar under preference context 𝔭 w.r.t. 𝒯’. The following suggests two arguments 

which can be constructed from the framework.  

• {𝑔𝑜𝑜𝑠𝑒(𝑏𝑖𝑟𝑑J, 𝑠𝑜𝑢𝑛𝑑J) ∪

𝑑𝑢𝑐𝑘 ∼×
𝔭 𝑔𝑜𝑜𝑠𝑒, ? (𝑞𝑢𝑎𝑐𝑘(𝑠𝑜𝑢𝑛𝑑J), 𝑑𝑢𝑐𝑘, 𝑔𝑜𝑜𝑠𝑒) ⊢ 𝑞𝑢𝑎𝑐𝑘(𝑠𝑜𝑢𝑛𝑑J)} 

representing “sound2 created by bird2 is quack sound because bird2 is a goose 

and geese are similar to ducks”; 

• ∅ ⊢ ℎ𝑜𝑛𝑘(𝑠𝑜𝑢𝑛𝑑J) representing “sound2 is honk sound”.  

Hence, the second argument attacks the first argument. It is also worth 

observing that, in this case, varying each choice of ⊗ does not effect on the attack 

relation between these two arguments even though the degree of an argument is 

changed. For example, if ⊗�¡� is used, then the degree of the first argument is equal 

to 0.5. On the other hand, if ⊗mlt is used, then the degree of the first argument is equal 

to 0.25. 

 

The following theorizes an observation which can be derived from Definition 

5.5.  
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Theorem 5.2. An analogical argument cannot attack a standard argument which 

does not use assumptions to support a claim.  

Proof. Let argument 𝒢M be defined as 𝒮M𝒜 ∪	𝒮M𝒜𝒩 ⊢ 𝑐M and argument 𝒢J be 

defined as ∅ ⊢ 𝑐J. We need to show that 𝒢M cannot attack 𝒢J.  

Since 𝒢J contains no assumptions, we conclude that 𝒢M cannot attack 𝒢J.   

 

Theorem 5.2 shows that when an agent supports a claim from the grounded 

truth, it is impossible for other agents to persuade him/her by analogies. This 

corresponds to how analogical arguments are treated in practical reasoning.  

 

5.1 Acceptability of Arguments in ABA(p) 

ABA(p) extends from ABA by equipping with predicate similarity and its attack 

definition is also extended for handling the degree of each argument and the preference 

between different types of arguments. Hence, ABA(p) can be considered as an instance 

of Dung’s abstract argumentation. This implies that it can be used to determine whether 

a given claim is ‘accepted’ by a rational agent. In a sense of analogical argumentation, 

the claim could be a potential belief to be justified from analogies.  

In order to determine the ‘acceptability’ of a claim, the agent needs to find an 

argument for the claim that can be defended against attacks from other arguments. To 

defend an argument, other arguments must be found and may need to be defended in 

turn (Dung et al., 2009). We formally define these characteristics as follows:  

• A set of arguments Arg1 attacks a set of arguments Arg2 if an argument in Arg1 

attacks an argument in Arg2;  

• A set of arguments Arg defends an argument arg if Arg attacks all arguments 

that attack {arg}. 

As in Dung’s abstract argumentation, the notion of ‘acceptability’ can be 

formalized in many ways. In this work, we focus on the following notions:  

• A set of arguments is admissible iff it does not attack itself and it attacks every 

argument that attacks it;  

• An admissible set of arguments is complete if it contains all arguments that it 

defends;  
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• The least (w.r.t. set inclusion) complete set of arguments is grounded. 

We observe that the correspondence between ‘acceptability’ of arguments and 

‘acceptability’ of assumptions in ABA(p) can be argued in the same way as in (Dung et 

al., 2007) for the link between ABA and AA. Hence, we know:  

• If a set of assumptions S is admissible/grounded, then the union of all arguments 

supported by any subset of S is admissible/grounded;  

• If a set of arguments S is admissible/grounded, then the union of all sets of 

assumptions supporting the arguments in S is admissible/grounded.  

The above notion of acceptable sets of arguments provides a non-constructive 

specification. Now, we show how to turn the specification into a constructive proof 

procedure. The method we focus here is defined for a ‘grounded’ set of arguments and 

is extended from (Dung et al., 2007) for handling analogical arguments.  

Informally, this constructive proof procedure is known as a dispute derivation 

which is defined as a sequence of transition steps from one state of a dispute to another. 

For each state, we maintain these following information. Component 𝒫 maintains a set 

of (both standard and analogical) assumptions, which are used to support potential 

arguments of the proponent. Component 𝒪 maintains multiple sets of assumptions, 

which are used to support all attacking arguments of the opponent. Component D holds 

a set of assumptions, which have already been used by the proponent. Component C 

holds a set of assumptions, which have already been used by the opponent and have 

been attacked by the proponent. Component SP maintains a set of triples holding an 

opponent’s attacked assumption, a set of proponent’s assumptions supporting a 

contrary of the attacked assumption, and a set of opponent’s assumptions supporting 

the argument. Component SO maintains a set of triples holding a proponent’s attacked 

assumption, a set of proponent’s assumptions supporting the argument, and a set of 

opponent’s assumptions supporting a contrary of the attacked assumption. In the 

following, we formally define the dispute derivation for a ‘grounded’ set of arguments.  

Definition 5.6. Let an ABA(p) is a 10-tuple 〈ℒD, ℛ,𝒜, � , ℒF, 𝒯, ℳ , ∼×
𝔭, 𝔭, ℱ〉. 

Given a ‘patient’ selection function22, a ‘grounded belief’ dispute derivation of a 

defence set Δ for a sentence δ is a finite sequence:  

                                                
22 A patient selection function always prefers a non-assumption to an assumption in its selection.  
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〈𝒫w, 𝒪w, 𝐷w, 𝐶w, 𝑆𝑃w, 𝑆𝑂w〉, … , 〈𝒫¡, 𝒪¡, 𝐷¡, 𝐶¡, 𝑆𝑃¡, 𝑆𝑂¡〉, … , 〈𝒫�, 𝒪�, 𝐷�, 𝐶�, 𝑆𝑃�, 𝑆𝑂�〉 

 

where 𝒫w ∶= 5{𝛿}8, 𝐷w ∶= 𝒜 ∩ {δ}, 𝒪w ∶= ∅, 𝐶w ∶= ∅, 𝒫� ∶= {∅}, 𝒪� ∶= ∅, 𝑆𝑃w ∶= ∅, 

𝑆𝑂w ∶= ∅, Δ ∶= 𝐷�, and for every 0	 ≤ 𝑖	 < 	𝑛, only one S in 𝒫¡ or one S in 𝒪¡ is selected, 

and: 

1. if S is selected in 𝒫¡ and 𝜎 is selected in S, then 

a. if 𝜎 is an assumption, then 

 
𝒫¡µM ∶= (𝒫¡ ∖ {𝑆}) 	∪ {	𝑆 ∖ {𝜎}}, 𝒪¡µM ∶= 𝒪¡ ∪ {{𝜎�}}, 

and 𝑆𝑂¡µM ∶= 𝑆𝑂¡ ∪ {〈𝜎, 𝑆, {𝜎�}〉} 

 

b. else if there exists an inference rule 𝜎 ← 𝑅 ∈ ℛ such that 𝐶¡ ∩ 𝑅 = ∅, 

then 

 
𝒫¡µM ∶= (𝒫¡ ∖ {𝑆}) 	∪ {	𝑆 ∖ {𝜎} ∪ 𝑅}, 𝐷¡µM ∶= 𝐷¡ ∪ (𝒜 ∩ 𝑅), 

and 𝑆𝑃¡µM ∶= (𝑆𝑃¡ ∖ {〈𝜑,	PA,	OA〉}) ∪ {⟨𝜑,	PA ∖ {𝜑} ∪ 𝑅,	OA⟩} 

for any ⟨𝜑,	PA,	OA⟩ ∈ 𝑆𝑃¡ such that 𝜎 ∈ PA 
 

and if 𝑅 ⊆ 𝒜, then further validation needs to be checked:  

for any ⟨𝜑,	PA,	OA⟩ ∈ 𝑆𝑃¡µM such that PA	 ∪ OA	 ⊆ 𝒜	 ∪ 𝒜𝒩, we have 

either PA ⊆ 𝒜𝒩 and OA ⊆ 𝒜 

or ℱ(PA) ≥ ℱ(𝜑) 
 

c. else if 𝜎 ∶= 𝑃¨𝑡M, … , 𝑡¬ª and there exists 𝜙 ∶= 𝑄¨𝑡M, … , 𝑡¬ª  

such that 𝑃ℳ ∼×
𝔭 𝑄ℳ ∈ (0,1], then  

 

𝒫¡µM ∶= (𝒫¡ ∖ {𝑆}) ∪ {𝑆 ∖ {𝜎} ∪ {𝑃 ∼×
𝔭 𝑄, ? (𝜎, 𝑃,𝑄),𝜙}}, 

𝐷¡µM ∶= 𝐷¡ ∪ {𝑃 ∼×
𝔭 𝑄, ? (𝜎, 𝑃,𝑄)} ∪ (𝒜 ∩ {𝜙}), 

and 𝑆𝑃¡µM ∶= (𝑆𝑃¡ ∖ {⟨𝜑,	PA,	OA⟩}) ∪ {­𝜑,	PA ∖ {𝜎} ∪ {𝑃 ∼×
𝔭 𝑄, ? (𝜎, 𝑃,𝑄),𝜙},	OA®} 

for any ⟨𝜑,	PA,	OA⟩ ∈ 𝑆𝑃¡ such that 𝜎 ∈ PA 
 

and if 𝜙 ∈ 𝒜, then the same validation as in Case 1.b is required 
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2. if S is selected in 𝒪¡ and 𝜎 is selected in S, then  

a. if 𝜎 is an assumption, then 

i. either 𝜎 is ignored i.e. 

 
𝒪¡µM ∶= (𝒪¡ ∖ {𝑆}) ∪ {𝑆 ∖ {𝜎}} 
 

ii. or 𝜎 ∉ 𝐷¡ and  

 
𝒪¡µM ∶= 𝒪¡ ∖ {𝑆}, 𝒫¡µM ∶= 𝒫¡ ∪ {{𝜎�}}, 𝐷¡µM ∶= 𝐷¡ ∪ ({𝜎�} ∩ 𝒜), 

𝐶¡µM ∶= 𝐶¡ ∪ {𝜎}, and 𝑆𝑃¡µM ∶= 𝑆𝑃¡ ∪ {⟨𝜎, {𝜎�}, 𝑆⟩} 
 

b. else if 𝒜 ∶= {	𝑅	|	𝜎 ← 𝑅 ∈ ℛ} and 𝐴 ≠ ∅, then 

 
𝒪¡µM ∶= (𝒪¡ ∖ {𝑆}) ∪	¶{𝑆 ∖ {𝜎} ∪ 𝑅}

·∈j

 

and 𝑆𝑂¡µM ∶= (𝑆𝑂¡ ∖ {⟨𝜑,	PA,	OA⟩}) 	∪¶{〈𝜑,	PA,	OA ∖ {𝜎} ∪ 𝑅〉}
·∈j

 

for any ⟨𝜑,	PA,	OA⟩ ∈ 𝑆𝑂¡ such that 𝜎 ∈ OA 

 
and further validation must be satisfied: 

for any ⟨𝜑,	PA,	OA⟩ ∈ 𝑆𝑂¡µM such that PA ∪ OA ⊆ 𝒜 ∪𝒜𝒩, we have  

either OA ⊆ 𝒜𝒩 and PA	 ⊆ 𝒜 

or ℱ(OA) ≥ ℱ(𝜑) 

 
c. else if 𝜎 ≜ 𝑃¨𝑡M, … , 𝑡¬ª, 𝐴 ∶= {	𝑄(𝑡M, … , 𝑡¬)	|𝑃ℳ ∼×

𝔭 𝑄ℳ ∈ (0,1]}, and 

𝐴 ≠ ∅, then 

 
𝒪¡µM ∶= (𝒪¡ ∖ {𝑆}) ∪	 ¶ ¹𝑆 ∖ {𝜎} ∪ 5𝑃 ∼×

𝔭 𝑄, ? (𝜎, 𝑃,𝑄),𝑄¨𝑡M, … , 𝑡¬ª8º
»¨¼�,…,¼½ª∈j

 

and 𝑆𝑂¡µM ∶= (𝑆𝑂¡ ∖ {⟨𝜑,	PA,	OA⟩}) ∪ 

¶ 5〈𝜑,	PA,	OA ∖ {𝜎} ∪ 5𝑃 ∼×
𝔭 𝑄, ? (𝜎, 𝑃,𝑄),𝑄¨𝑡M, … , 𝑡¬ª8〉8

»¨¼�,…,¼½ª∈j

 

for any ⟨𝜑,	PA,	OA⟩ ∈ 𝑆𝑂¡ such that 𝜎 ∈ OA 
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plus, the same validation as in Case 2.b is required 

d. else 𝒪¡µM ∶= 𝒪¡ ∖ {𝑆} and 𝑆𝑂¡µM ∶= 𝑆𝑂¡ 	∖ {	⟨𝜑,	PA,	OA	⟩	|	⟨𝜑,	PA,	OA⟩ ∈

𝑆𝑂¡	and	PO = 𝑆	}  

 

A dispute derivation can be seen as a way of representing a ‘potential’ winning 

strategy for a proponent to win a dispute against an opponent. The proponent starts by 

putting forward a claim whose acceptability is under dispute. After that, there are many 

possibilities as follows. The opponent can try to attack the proponent’s claim by arguing 

for its contrary (cf. Case 1.a). The proponent argues for a non-assumption by using an 

inference rule (cf. Case 1.b). If an inference rule does not exist, the proponent can use 

an analogy to support the initial claim (cf. Case 1.c). Moreover, the proponent can select 

an assumption in one of the opponent’s attacks and either ignores it because it is not 

selected as a culprit (cf. Case 2.a.i) or decides to counter-attack it by showing its 

contrary (cf. Case 2.a.ii). Otherwise, the opponent can argue for a non-assumption by 

using either an inference rule (cf. Case 2.b) or an analogy (cf. Case 2.c). Unfortunately, 

the opponent may not have even a reason to argue for it (cf. Case 2.d). In addition, every 

attacking argument of the opponent to the proponent’s claim is maintained inside 𝑆𝑂 

i.e. ⟨𝜎, 𝑆, {𝜎�}⟩ is read as “assumption σ in a set of proponent’s assumptions S is attacked 

by a set of assumptions {𝜎�}”. Every attacking argument of the proponent to the 

opponent’s claim is also maintained inside 𝑆𝑃 i.e. ⟨𝜎, {𝜎�}, 𝑆⟩ is read as “assumption σ 

in a set of opponent’s assumptions S is attacked by a set of assumptions {𝜎�}”.  

We give an informal dispute derivation for the running example. 

Example 5.2. Consider an ABA(p) given in Figure 5.1 and let ⊗�¡� be used. 

Table 2 shows that there does not exist a grounded belief dispute derivation for 

𝑞𝑢𝑎𝑐𝑘(𝑠𝑜𝑢𝑛𝑑J), where23 ©, §1, §2, §3, §4, ª1, and ª2 denotes 

{𝑑 ∼×
𝔭 𝑔, ? (𝑑(𝑏J, 𝑠J), 𝑑, 𝑔), 𝑔(𝑏J, 𝑠J)}, ⟨? (𝑑(𝑏J, 𝑠J), 𝑑, 𝑔),©, {ℎ(𝑠J)}⟩, 

⟨? (𝑑(𝑏J, 𝑠J), 𝑑, 𝑔),©, {𝑐(𝑐M, 𝑐J), 𝑏𝑓ℎ(𝑐M)}⟩, ⟨? (𝑑(𝑏J, 𝑠J), 𝑑, 𝑔),©, {𝑏𝑓ℎ(𝑐M)}⟩, 

⟨? (𝑑(𝑏J, 𝑠J), 𝑑, 𝑔),©, ∅⟩, ­𝑔(𝑏J, 𝑠J), {𝑑 ∼×
𝔭 𝑔, 𝑔(𝑏J, 𝑠J)}, {¬𝑔(𝑏J, 𝑠J)}®, and 

­𝑔(𝑏J, 𝑠J), {𝑑 ∼×
𝔭 𝑔, 𝑔(𝑏J, 𝑠J)}, {𝑑 ≁×

𝔭 𝑔}®, respectively.  

                                                
23 Obvious abbreviations are used here for the sake of succinctness. 
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At step 2, the proponent (𝒫) has completed the construction of an argument for 

𝑞(𝑠J) supported by ©, saying that “s2 is a quack sound because goose b2 makes s2 and 

geese are similar to ducks”. At step 3, the opponent (𝒪) has decided to attack on 

assumption ? (𝑑(𝑏J, 𝑠J), 𝑑, 𝑔) by showing its contrary ℎ(𝑠J). This argument is fully 

constructed at step 6, in which no assumptions have been used. Nonetheless, this 

attacking argument needs to be checked at 𝑆𝑂P if it satisfies the requirements of 

argument from analogy. Since it satisfies, step 6 is valid. Finally, no arguments of the 

proponent can defend the opponent’s argument at step 10, this dispute derivation fails.  

With an analogous manner, we can find a grounded belief dispute derivation of 

{𝑑(𝑏M, 𝑠M)} for 𝑞(𝑠M) with three transition steps. 

Table 5.2 A Grounded Belief Dispute Derivation for 𝑞𝑢𝑎𝑐𝑘(𝑠𝑜𝑢𝑛𝑑J). 

Step 𝒫 𝒪 D C SP SO 
0 {{𝑞(𝑠J)}} ∅ ∅ ∅ ∅ ∅ 
1 {{𝑑(𝑏J, 𝑠J)}} ∅ ∅ ∅ ∅ ∅ 
2 {©} ∅ © ∅ ∅ ∅ 
3 {{𝑑 ∼×

𝔭 𝑔, 𝑔(𝑏J, 𝑠J)}} {{ℎ(𝑠J)}} © ∅ ∅ {§M} 
4 {{𝑑 ∼×

𝔭 𝑔, 𝑔(𝑏J, 𝑠J)}} {{𝑐(𝑐M, 𝑐J), 𝑏𝑓ℎ(𝑐M)}} © ∅ ∅ {§J} 
5 {{𝑑 ∼×

𝔭 𝑔, 𝑔(𝑏J, 𝑠J)}} {{𝑏𝑓ℎ(𝑐M)}} © ∅ ∅ {§N} 
6 {{𝑑 ∼×

𝔭 𝑔, 𝑔(𝑏J, 𝑠J)}} {∅} © ∅ ∅ {§O} 
7 {{𝑑 ∼×

𝔭 𝑔}} {∅, {¬𝑔(𝑏J, 𝑠J)}} © ∅ ∅ {§O,ªM} 
8 {{𝑑 ∼×

𝔭 𝑔}} {∅} © ∅ ∅ {§O} 
9 {∅} {∅, {	𝑑 ≁×

𝔭 𝑔	}} © ∅ ∅ {§O,ªJ} 
10 {∅} {∅} © ∅ ∅ {§O} 

 

5.2 Relationship to Argumentation Scheme for Argument from Analogy  

Since ABA(p) extends from ABA with the capability for supporting the 

conclusion from similarity premises, the notion of argument trees in ABA(p) can be also 

used to display the structural relationships between conclusions and assumptions 

including standard assumptions and analogical assumptions. Figure 5.2 illustrates an 

example of argument trees for arguments discussed in Example 5.1. The figure uses a 

rounded rectangle for indicating an argument tree, a number floating near a rounded 

rectangle for indicating an annotated degree of that entire argument, a number floating 

near an assumption for indicating an annotated degree of that assumption, and a dashed 
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arrow for indicating an attack. For example, the top rounded rectangle shows the 

structural relationship of argument “sound2 created by bird2 is quack sound of ducks 

because ducks are similar to geese and we know that bird2, which is a goose, creates 

sound2” whereas the bottom rounded rectangle shows the structural relationship of 

argument “sound2 is honk sound because it is created from cord1 and that cord is built 

for honk”. The figure also depicts that the bottom one attacks the top one.  

 
Figure 5.2 An Example of Argument Trees and Their Relationship. 

 

Ones may observe that the structural relationship represented by an argument 

tree directly corresponds to the relationship between premises and a conclusion used in 

the argumentation scheme. That is, a similarity premise appears as an assumption of 

the form 𝑃 ∼×
𝔭 𝑄 and a base premise appears as either an assumption in 𝒜 or an 

inference rule with the empty body in ℛ. They appear as nodes in an argument tree. A 

conclusion drawn from the use of the argumentation scheme is represented as a parent 

of those nodes in an argument tree. This structure clearly explains the relationship 

indicated in the argumentation scheme.  

The critical questions can also be captured in ABA(p). Let us repeat that page 2 

writes down each critical question (CQ) matching the scheme argument from analogy. 

Firstly, asking CQ1 is captured by the provability of a claim i.e. a backward deduction 

from a claim to its supporting assumptions. Secondly, CQ2 and CQ3 are formalized by 

the use of a similarity measure together with a supplied terminological formalism. Since 

similarity measure of concepts identifies the degree of commonalities, it automatically 
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models the questions. Lastly, the notion of counter-analogies can be also modeled by 

the construction of arguments from another analogies drawing the contrary of the 

defeasible condition of the former argument.  

Argumentation schemes employ the idea of asking critical questions to evaluate 

the acceptability of generated arguments. In ABA(p), we evaluate by employing the 

notion of attack together with a semantics of argumentation framework (Dung, 1995) 

insisting that sets of acceptable arguments do not attack themselves and counter-attack 

all the opponent’s arguments (aka. admissible sets of arguments).  

 

5.3 Comparison with Related Works 

There were attempts on modeling analogical reasoning including these recent 

work (Racharak et al., 2017b; Racharak, Tojo, et al., 2016) in which their results are 

continued to study in this work. We note that both formalized the scheme argument 

from analogy and provided a logical language which enables finding analogical 

conclusions. On the other hand, (Racharak, Tojo, et al., 2016) extended syntax and 

argumentative features of DeLP for handling analogical arguments whereas (Racharak 

et al., 2017b) translated the logical language to the represented answer set program and 

an answer set solver would be used to compute analogical conclusions. As  (Racharak, 

Tojo, et al., 2016) extended DeLP, this work differs to (Racharak, Tojo, et al., 2016) in 

the structure of an argument’s notion. Another difference is that (Racharak, Tojo, et al., 

2016) is more computationally oriented and has restricted expressiveness whereas 

ABA(p), like ABA, is a more general framework for analogical argumentation. With 

(Racharak et al., 2017), it is worth observing that their definition of knowledge base 

can be captured by an ABA(p) framework. That is, a logic program ℒ𝒫 is mapped to an 

ABA component, 𝒪 is a concrete instance of (ℒF, 𝒯), and ∼×& is an abstract instance of 

∼×
𝔭. However, the development in  (Racharak et al., 2017b) ignored analogical degrees 

in their computational method. We have completed that part and generalized the 

approach in this work.  

A similar attempt to (Racharak et al., 2017b; Racharak, Tojo, et al., 2016), i.e. 

combing rules and similarities, was proposed in (Sun, 1995b). In that work, a two-level 

connectionist model was developed. The first level (called CL) had one node for each 
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domain concept whereas the second level (called CD) had fine-grained features in 

which all domain concepts could be decomposed to. Characteristics of similarity 

measures (denoted by ∼ in (Sun, 1995b)) was also discussed and the formula based on 

the above two-level model was proposed for concepts A,B as: 

𝐴 ∼ 𝐵 = (|𝐹j ∩ 𝐹o|) (|𝐹o|)⁄  where 𝐹j,𝐹o are features defined in CD. It is worth 

observing that those two levels and similarity formula can be represented as (ℒF, 𝒯) 

and ∼×
𝔭, respectively. However, how defeasible conditions and the notion of relevence 

should be handled was not discussed concretely.  

In (Goebel, 1989a), the form of analogical reasoning was cast as hypothetical 

reasoning as: source knowledge	 ∪ target knowledge	 ∪ equality assumptions	 ⊨

conclusions where equality assumptions can be viewed as similarity between the source 

and the target. If there were many equality assumptions, certain explicit preferences, 

e.g. the highest number of shared properties, were used. However, the defeasible 

conditions and the notion of relevance were also not concretely discussed. It is also 

worth observing that source knowledge and target knowledge can also be recast in 

(ℒF, 𝒯) and the criterion for forming equality assumptions can be made explicitly in 

∼×
𝔭. 

 In (Haraguchi & Arikawa, 1987)	, the source domain and the target domain were 

represented by logic programs and their intended models were the least (Herbrand) 

model of them. Then, an analogy was considered as a partial identity between their least 

models. According to their definitions, the partial identity was a function mapping two 

different ground terms of two different domains so that the compatible mapped terms 

could be treated like a single term in the analogy-based reasoning process. Technically, 

the authors defined a formal reasoning based on the partial identity as an admissible 

method to extend the least (Herbrand) model. It is worth noticing that the authors used 

the partial identity to transfer knowledge about ground terms from the source domain 

to the target domain; thus, the terms were applicable if their related predicate symbols 

were the same i.e. the knowledge was transferred in the level of terms. This point differs 

to our work in a sense that knowledge was transferred in the level of predicates using 

similarity measure between two concepts in terminological formalism. Other different 
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points are that the reasoning process proposed in (Haraguchi & Arikawa, 1987) was 

monotonic and did not consider the relevancy.  

Case-based reasoning (CBR) can also be viewed as a form of analogical 

reasoning. In CBR, dimensions and factors are used for comparing cases and the 

decision in the precedent case is then taken as the decision into the current case. 

Examples of CBR systems are HYPO (Ashley, 2006) and CATO (Aleven, 1997). With 

ABA(p), CBR can be recast by consisting the rules: 𝑐¡ ← 𝑓M, … , 𝑓� in 𝒯, the rules: 𝑝¡ ←

𝑐¡ in ℛ, and similarity between two cases ci is measured from their common features fi.  

Comparing this work with defeasible reasoning formalism, particularly Nute’s 

d-Prolog (Gabbay, Hogger, & Robinson, 1998, pp.353-396), different forms of rules 

were introduced viz. strict (unchallengeable) rules, defeasible (challengeable) rules, and 

defeater (exceptionable) rules. Examples of strict rules, defeasible rules, and defeater 

rules are “all penguins are bird”, “birds normally fly”, and “sick birds do not fly”, 

respectively. Like ABA, inference rules in ABA(p) can be seen as strict rules and a 

simple transformation (as used in Theorist (Poole, 1988)) can be employed to convert 

defeasible rules into strict rules with assumptions. Moreover, we may observe that 

ABA(p) does not need to supply with defeater rules since it can find counter-arguments, 

including counter-analogies, among arguments it is able to build. 

Ones may would like to compare between ABA(p) and an abstract framework of 

argumentation equipped with a preorder relation e.g. preference-based argumentation 

framework (PAF) introduced in  (Amgoud & Cayrol, 2002). Formally, a PAF is a triple 

⟨Args, Attack,≼⟩ where Args is a set of arguments, Attack is an attack relation, and ≼ 

is used to define a ‘defeat’ relation on each attack. It is not difficult to observe the 

correspondence between an ABA(p) framework and a PAF framework. Informally, each 

argument tree in ABA(p) is mapped to an argument in Args and an attack in ABA(p) 

between argument trees is mapped to a defeat relation, in which the usage of an 

argument’s degree and the preference on analogical arguments can be captured in a 

preorder relation. Their further theoretical relationship is left for future work.  
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CHAPTER 6 

CONCLUDING REMARKS 
 

This thesis investigated and formally defined a structured argumentation 

framework called ABA(p), which formalizes the argumentation scheme for argument 

from analogy. The main objectives of this work were to provide well understanding on 

the computational aspect of analogical reasoning in argumentation, rather than the 

psychological modeling. As a result, ABA(p) offers ways to encode the pattern of 

reasoning in argument from analogy and its critical questions, where concepts (or states 

of affairs) are represented by predicates in an underlying language and are defined by 

a particular terminological formalism (such as description logics). Its underlying 

mechanism consists in four mainstreams, viz. an ABA framework, a terminology, and 

a concept similarity under preferences, and a preference context. When no assumptions 

are available to construct an argument tree, additional assumptions can be constructed 

from the use of a similarity measure w.r.t. a terminology and a preference context. In 

other words, it draws a connection between two different formalisms, i.e. inference 

rules and terminological sentences, for dealing with analogical argumentation. Figure 

6.1 shows a general review of our proposed framework, in which English alphabets 

represent examples of predicate symbols in the inference rules and concepts in the 

terminological formalism24.  

 
Figure 6.1 An Overview of Our ABA(p) Framework. 

 

                                                
24 Though, the syntax of description logics is used, other kinds of terminological formalisms are also 
supported as discussed in Chapter 5.  
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To achieve these goals, we exploited two different reasoning paradigms viz. rule 

reasoning and schemata reasoning. In particular, the original ABA was extended to 

incorporate with description logics for handling the acceptability of (analogical) 

arguments in question. Our framework uses the semantics of abstract argumentation 

and the degree of concept similarity is determined by aggregating subsumption degrees 

of two corresponding concepts.  Figure 6.1 also indicates the interactions between the 

two reasoning paradigms. Specifically, we can view that when the rule reasoning cannot 

deductively infer new knowledge, it will make a query to the schemata reasoning so 

that the rule reasoning has more (potential) knowledge with a similarity score. 

We also developed algorithmic procedures for evaluating warranted arguments 

and a numerical value indicating the similarity under subjective factors between 

concepts. In the following sections, major technical and empirical results of this thesis 

are discussed. 

 

6.1 Discussion of Achieved Results 

The major results achieved in this thesis can be classified as follows:  

1. The development of concept similarity measure under preference profile in 

description logics (particularly, a sub-Boolean logic ℰℒℋ);  

2. The design of algorithmic procedures for our proposed measure sim& and 

their empirical evaluation w.r.t. realistic ontologies; and  

3. The development of assumption-based argumentation with predicate 

similarity ABA(p) framework, which gives the structure and computation of 

accepted (analogical) arguments.  

 

6.1.1 The Development of Concept Similarity Measure under Preference Profile 

in Description Logics 

Concept similarity measure can be regarded as a generalization of the classical 

reasoning problem of equivalence in description logics. That is, any two concepts are 

equivalent if and only if their similarity degree is one (cf. Equation 3.2). Regarding this 

observation, we have investigated an approach to compute the degree of subsumption 

between concepts in sub-Boolean description logics since their subsumption reasoning 

problems are tractable and they are shown to be expressive enough for formulating 
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realistic ontologies. As a result, we developed a formal definition for calculating the 

degree of subsumption between ℰℒℋ concepts (cf. Chapter 3). This subsumption 

degree function also gives us an approach to produce a numerical degree indicating 

concept similarity. For instance, the measure sim was defined as the average of the two 

corresponding subsumption degrees of ℰℒℋ concepts. When two concepts are not in 

equivalence relationship, sim is capable of providing the degree of relation w.r.t. their 

common and different features. Accordingly, they play a major role in the discovery of 

similar concepts in an ontology and are often used by many application areas such as 

ontology alignment algorithms. It is worth mentioning that there are other concept 

similarity measure we have developed for ℱℒw concepts but they are not included in 

the thesis (cf. (Racharak & Suntisrivaraporn, 2015; Racharak & Tojo, 2018)). 

An experiment in (Bernstein et al., 2005) reported that similarity measure might 

depend on target applications and should be personalized to the agent’s similarity 

judgment style. We did consider this point and extended the definition of concept 

similarity measure in such a way that the degree of concept similarity is calculated w.r.t. 

subjective factors (such as the agent’s preferences). This generalized notion is called 

concept similarity measure under preference profile. In particular, we developed a 

formalism for expressing the agent’s preferences in concept similarity called preference 

profile and further refined sim according to each aspect of preference profile to sim& 

for the DL ℰℒℋ.  

Apart from the definition of concept similarity measure under preference 

profile, Chapter 4 also identified a set of desirable properties that any concrete measures 

of this notion should satisfy. We have provided proofs of satisfied properties for the 

developed concrete measures. Understanding their satisfied properties is important for 

employing the measures in any applicable areas since their users can predict the 

expected behaviors. The measures can also be used regardless of the agent’s preferences 

i.e. sim& is tuned with the special preference profile called the default preference profile 

𝜋w. Finally, we have provided proofs that sim& can be computed in polynomial time.  

 

6.1.2 The Design of Algorithmic Procedures for sim& and Their Empirical 

Evaluation w.r.t. Realistic Ontologies 
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In Section 4.4, two concrete algorithms viz. the top-down approach and the 

bottom-up approach for implementations of sim& were developed. The computational 

complexity of each algorithm was clearly analyzed. Concretely, both algorithms make 

the similar number of executions; however, the bottom-up additionally requires an 

amount of extra space due to the employed dynamic programming technique. Unlike 

the top-down approach, the bottom-up approach has never recursively invoked itself to 

determine the similarity of different pair of nested concepts. The algorithm directly uses 

values stored in the table. Both approaches have different benefits and drawbacks. On 

the one hand, the bottom-up requires an additional extra space. On the other hand, it 

does work productively an environment where recursion is fairly expensive.  

In Section 4.5, our defined notion ∼& has been evaluated with realistic 

ontologies w.r.t. several use cases. In this thesis, we used simπ to show the practical 

performance of both developed algorithms and usefulness of tuning the measure via 

preference profile. Both algorithms of sim& were implemented using Java version 1.8 

with the usage of Spring Boot version 1.3.3.RELEASE as application programming 

interfaces (APIs). These APIs can also be used by application developers to use simπ 

with their working ontologies. Results of the empirical evaluation are summarized as 

follows: 

1. We compared the practical performance of the top-down sim& and the bottom- 

up sim& w.r.t. the medical ontology SNOMED CT. The experiment showed that 

the bottom-up sim& performs approximately three times faster than the top-

down sim&. This result conforms to our theoretical analysis as discussed earlier;  

2. We re-implemented the existing measure sim based on the same technologies 

and techniques as sim&. Then, we compared the practical performance of sim& 

and sim w.r.t. SNOMED CT and found that they perform equally;  

3. We evaluated the backward compatibility of sim& with sim. This experiment 

would like to ensure that the default preference profile can be used when 

preferences are not given by the agent. Our experiment has guaranteed this;  

4. We showed the usefulness of our defined notion through measuring the 

similarity of SNOMED CT concepts. Due to its special characteristics, 

measuring similarity of SNOMED CT concepts requires special ways of tuning 
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the measure. We showed that tuning sim& under the special setting yields the 

more intuitive results. We also compared25 the use of 𝑠𝑖𝑚𝑖, which is another 

measure for the same ℰℒℋ, and found that lacking (even some) aspects of 

preference profile may not be suitable to use with an ontology where some 

special cases of tuning are required; and  

5. We also showed the usefulness of our defined notion in several use cases of 

query answering systems with realistic ontologies. The discussion showed that 

∼& is appropriate to identify the degree of similarity w.r.t. the agent’s 

preferences.  

Though we designed and developed the notion of concept similarity measure 

under relevant factors for construction and evaluation of analogical arguments, this 

notion also has great potential use in knowledge engineering such as the development 

of recommendation systems based on the agent’s preferences, the development of 

domain-specific knowledge bases, and the ontology engineering. Moreover, it may be 

used with heterogeneous ontologies by identifying duplicated primitive concepts and 

primitive roles among ontologies via 𝔰𝔠 and 𝔰𝔯 (cf. Section 6.2). In the next subsection, 

we discuss how analogical arguments can be constructed and evaluated for persuasive 

reasoning, which is the main purpose of our developed similarity measure. 

 

6.1.3 Construction and Evaluation of Analogical Arguments  

We recall that analogical reasoning is a complex process based on a comparison 

between two pairs of concepts or states of affairs (aka. the source and the target) for 

characterizing certain features from one to another. Arguments which employ this 

process to support their claims are called analogical arguments. Chapter 5 investigated 

and explored the structure and the computation for their defeasibility in light of the 

argumentation theory. As a result, we introduced assumption-based argumentation with 

predicate similarity ABA(p) framework, which can be seen as an extension of 

assumption-based argumentation framework (ABA), in which not only assumptions 

can be used but also similarity of predicates are used to support a claim.  

                                                
25 We also compared sim& with measures in ℰℒℋ and ℱℒw (cf. Table 4.4). 
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ABA(p) consists of four mainstreams viz. an ABA framework, a terminology, a 

concept similarity under preferences, and a preference context. When no assumptions 

are available to construct an argument tree, additional assumptions can be constructed 

from the use of a similarity measure w.r.t. a terminology and a preference context. In 

particular, ABA(p) exploits benefits of two different formalisms, viz. inference rules and 

terminological sentences, for dealing with analogical argumentation.  

ABA(p) was designed to be a general framework for analogical argumentation. 

Thus, other notions apart from an ABA framework are also remained in general. For 

instance, ones may express a terminology as inference rules in 𝒯 underlying a language 

ℒF and ∼×
𝔭 may be defined as a proportion of common features to different features as 

discussed in Chapter 5. As an exemplification, we have discussed how ones can use a 

particular description logic to express terminological formulae and our recent 

developed measure sim& is also demonstrated. One benefit of using description logics 

is that their expressivity and computational complexities were clearly studied (Baader 

et al., 2007).  

Like ABA, all semantic notions for determining the acceptability of arguments 

in AA also apply to arguments in ABA(p). Thus, we investigate a constructive proof 

procedure for determining a grounded set of assumptions in this work. Since different 

agents may value analogies for their reasoning unequally, we also study how each 

choice of operator ⊗ can influence different types of agents in analogical reasoning. 

Concerning other semantic notions of acceptability, this becomes an obvious future 

work to investigate on a dispute derivation for them and to further study how each 

semantic notion contributes to analogical argumentation in practice. It is also worth 

noting that we also developed other two formalisms based on the argumentation scheme 

(cf. (Racharak et al., 2017a, 2017b)) but they are not included in the thesis. The first 

formalism exploited benefits of extensive tools from answer set programming together 

with our developed notions (and our developed APIs). This provides a rough-and-ready 

method for building an analogical inference engine. On the other hand, the second one 

developed an argument-based logic-programming-like language which provides the 

possibility of representing information in terms of strict, defeasible, and similarity rules 

in a declarative manner. Their differences were also discussed in Section 5.3.  
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6.2 Potential Applications in Service Science Area 

Service science is a new discipline emerging from the rapid development of 

services across the industrial world. Its root is an interdisciplinary study of computer 

science, operations research, industrial engineering, mathematics, business strategy, 

management science, decision theory, and social and cognitive science, and legal 

science. Its goal is to improve essential nature of service, i.e. the joint co-creation 

between service providers and service consumers. It is worth noting that developing 

ABA(p) causes sim& to come out as a by-product. Thus, we would like to discuss some 

potential applications of them in service science area.  

First, our developed similarity measure has potential applications of knowledge 

engineering. For instance, sim& can be used in the development of recommendation 

systems based on the agent’s preferences, the development of domain-specific 

knowledge bases, and the ontology engineering. We exemplify in Subsection 4.5.2 a 

development of recommendation systems based on the agent’s preferences via the 

sections about tuning 𝔰𝔯, 𝔰𝔠, and 𝔦𝔯, and a development of the domain-specific knowledge 

base in case of SNOMED CT (cf. page 68).  

Second, if service applications would like to exploit similar concepts across 

heterogeneous ontologies, one approach is to identify duplicated primitive concepts and 

primitive roles among ontologies via 𝔰𝔠 and 𝔰𝔯 of preference profile, respectively. In 

fact, some existing ontologies partially contain duplicated information. It has been 

revealed in (Dhombres & Bodenreider, 2016) that concepts used by different 

terminologies may unintentionally mean the same. In (Dhombres & Bodenreider, 

2016), 30% of Human Phenotype Ontology (HPO) concepts are semantically 

duplicated with Snomed ct concepts. For example, the HPO concept ‘Multicystic 

Dysplastic Kidney’ (HP:0000003) is identical to the SNOMED CT concept 

‘Multicystic Renal Dysplasia’ (SCTID:204962002). In such a case, a mapping between 

these two ontologies should be formed. After the mapping, similar concepts from 

multiple ontologies can be found out.  

Last, ABA(p) can be employed to suggest the reasoning by analogy. This in fact 

corresponds to the two different phases of a decision making situation viz. the reasoning 
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phase and the applicability phase. Suppose this framework is employed in a court case, 

then the framework can give suggestion that seems to be appropriate with a target 

situation (e.g. a case) and the expert (e.g. the law people) may consider the applicability 

after our suggestion – this is at their disposal. 

 

6.3 Directions of Future Research  

Several directions for further research on analogical argumentation and 

similarity measure of concepts are in order:  

• In light of argumentation schemes, (Macagno, Walton, & Tindale, 2017) 

developed some inferential structures and defeasibility conditions for analogical 

arguments. Thus, we aim at investigating if such inferential structures can be 

captured by ABA(p);  

• Preference-based argumentation framework (PAF) extended abstract 

argumentation by equipping with ≼ to define a ‘defeat’ relation among each 

attack. This gives us an obvious future direction to investigate theoretical 

relationship between ABA(p) and PAF frameworks. Understanding this will 

allow us to transfer some proven properties of PAF to ABA(p);  

• Apart from theoretical research directions, we also intend to apply our proposed 

framework in some practical domains where analogical reasoning is extensively 

used e.g in clinical practices. In clinical domain, many terminologies do exist 

and are represented in description logics e.g. SNOMED CT and Go. The 

remaining tasks will be then encoding the actual methods of medical experts in 

terms of inference rules;  

• The proposed similarity measure is not meant to be the universal measure. 

Indeed, it is restricted to the DL ℰℒℋ with unfoldable TBox. While it came 

with the limitation in terms of expressivity, its computation was proven to be 

tractable; thereby, provided practically acceptable response time which is a key 

requirement in the design and the development of large-scale ontologies. As for 

future work, we are interested in exploring other techniques of concept 

similarity measure under preference profile for more expressive DLs and other 

formalisms corresponding to ABA(p) framework;  
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• The current structure of preference profile also restricts its expressivity on sub- 

Boolean logics, particularly ℰℒℋ. Hence, it appears to be a natural step to 

extend preference profile to support more expressive DLs e.g. concept negation, 

and also, to support capabilities to express preferences on an ABox;  

• As reported in (Bernstein et al., 2005) about the need of having multiple 

measures, we are interested to investigate the possible classes of similarity 

measures w.r.t. their potential use cases and applications. Understanding this 

would help the agent to select the right measure for a dealing situation;  

• The proposed approach of concept similarity measure under preference profile 

has an advantage of computing the degree of commonalities under the agent's 

preferences. On the other hand, it cannot provide a good reason why two 

concepts are considered as ‘being similar’. As for future work, we are interested 

in extracting the computational content which makes two concepts considered 

as being similar. This will give more informative answer to analogical 

arguments since the supporting reasons of a claim are more explainable. To do 

this, we may investigate the deduction systems e.g. a sequent calculus and a 

natural deduction system as developed in (Rademaker, 2012);  

• Apart from our developed Java APIs, we intend to extend our development as a 

plug-in of ontology editors such as Protégé. Doing this would undoubtedly 

spread out their usability to a wider group of users; and  

• The current usage of preference profile appears only in the task of concept 

similarity measure, which is a TBox-related problem. Now, we are interested in 

exploring ways to adopt preference profile on ABox-related problem e.g. non-

standard instance checking under preference profile. The idea in the nutshell is 

to use concept similarity measure under preference profile for ABox instance 

checking rather than using the standard instance checking techniques. This may 

also involve extending the structure of preference profile with some capabilities 

of defining preferences over each instance in the ABox.  
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APPENDIX A 

THE SYSTEMATIZED NOMENCLATURE OF MEDICINE: 

SNOMED CT 
 

The Systematized Nomenclature of Medicine, Clinical Terms (aka. SNOMED 

CT)26 is one of the largest and the most widely used medical ontologies currently 

available. Figure A.1 depicts its web interface which can be accessed via the link given 

at the footnote. It was produced by merging SNOMED Reference Terminology (RT) 

(Rector, 2003; Spackman, Campbell, & Côté, 1997) with Clinical Terms version 3 

(CTV3) (O’Neil, Payne, & Read, 1995). 

 
Figure A.1 SNOMED CT BioPortal (Accessed on February 21, 2018). 

 

Historically, SNOMED RT was developed by the College of American 

Pathologists (CAP) with the aim to be a comprehensive clinical reference terminology 

                                                
26 http://bioportal.bioontology.org/ontologies/SNOMEDCT 
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e.g. the retrieval and analysis of data relating the causes of diseases, the treatment of 

patients, and retrieval of health care information (Spackman et al., 1997). The RT 

version was the first generation of the SNOMED terminology to use the formal 

semantics through the KRSS syntax (Patel-Schneider & Swartout, 1993). 

In 1993, the UK National Health Service (NHS) has adopted the Read codes, 

which had been developed by a medical practitioner Read, for health electronic records. 

Later on, the terminology has been expanded and enhanced to become Clinical Terms 

version 3 (CTV3).  

Between 1999 and 2002, CAP and the UK NHS together with Keiser 

Permanente have jointly worked to merge SNOMED RT and CTV3. Its resulting 

SNOMED CT contained 55% of the source concepts from CTV3 and 31% from RT. 

Moreover, the ontology become freely available in both the US and UK.  

Nowadays, SNOMED CT is already used by more than 50 countries. 

Furthermore, it is the most comprehensive, multilingual clinical health-care 

terminology in the world and is mapped to other international standards. As reported in 

(Spackman, 2005; Stearns et al., 2001), SNOMED CT can be seen as the DL ℰℒℋ with 

an unfoldable TBox. SNOMED CT has several inherent characteristics. We discuss 

several of them in the following.  

Firstly, SNOMED CT purposefully uses the special role roleGroup to group 

two or more existential quantifications in a definition. Spackman et al. has illustrated 

the use of roleGroup for the concept ‘Tetralogy of Fallot’ in (Spackman, Dionne, Mays, 

& Weis, 2002) as follows.  

 
TetralogyOfFallot

≡ ∃rG. (∃s.RightVentricle ⊓ ∃m.Hypertrophy)
⊓ ∃rG. (∃s.Aorta ⊓ ∃m.Overriding)
⊓ ∃rG. (∃s.Pulmonary ⊓ ∃m.Stenosis)
⊓ ∃rG. (∃s.InterventricularSeptum ⊓ ∃m.IncompleteClosure) 

 
where rG, s, and m are abbreviations for roles roleGroup, site, and morphology, 

respectively. 

Secondly, individuals (i.e. the ABox) are omitted. On the other hand, SNOMED 

concepts such as Germany, Japan, and Thailand are used to represent unique 

individuals. Indeed, they are seen as ‘instances’ of the concept GeographicLocation.  
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Thirdly, SNOMED CT has 18 mutually exclusive top-level concepts for 

dividing the entire ontology into disjoint categories. However, the disjointness is not 

logically specified as axioms; hence, some concept names may happen to belong to 

more than one category.  

Lastly, the SNOMED CT top concept SCT-Top subsumes every defined 

concept of each category. This means this special concept is shared by every expanded 

concept.  

In this thesis, we use SNOMED CT ontology version from January 2005 which 

contains 13 role inclusions, 38,719 concept definitions, 340,972 primitive concept 

definitions, 379,691 concept names and 62 role names.  

 

 

 
  

 

  

Ref. code: 25615722300273MJP



125 
 
 

 
 

APPENDIX B 

IMPLEMENTATION OF THE MEASURE sim&  
 

We have implemented sim& as a collection of application programming 

interfaces (APIs) as well as command-line interfaces (CLIs) using Java version 1.8 with 

the usage of Spring Boot version 1.3.3.RELEASE. The ultimate goal of these APIs is 

to provide a tool for identifying the degree of concept similarity under preference 

profile for the DL ℰℒℋ. As shown in Theorem 4.2, the computation of sim& can be 

performed in polynomial time. 

Since sim& is targeted on ℰℒℋ, we summarize the provided constructors as 

follows: 

• top concept ‘⊤’, 

• conjunction ‘𝐶 ⊓ 𝐷’, and 

• full existential quantification ‘∃𝑟. 𝐶’; and 

the following means of expressivity to construct an ontology as follows:  

• primitive concept definition ‘𝐴 ⊑ 𝐷’, 

• concept definition ‘𝐴 ≡ 𝐷’, and 

• role hierarchy axiom ‘𝑟 ⊑ 𝑠’. 

Currently, sim& accepts two formats of inputs viz. in KRSS27 (Knowledge 

Representation System Specification) (Patel-Schneider & Swartout, 1993), OWL (Web 

Ontology Language), and OWL 228. Our APIs wrap OWL API29 version 3.4.4. In the 

following, we have summarized shortly both KRSS and OWL syntaxes only the parts 

relevant to our APIs for self-containment of the thesis. 

In KRSS, an ontology contains the following sorts of statements: 

• primitive concept definition ‘(define-primitive-concept CN C)’,  

• concept definition ‘(define-concept CN C)’, and 

• role hierarchy axiom ‘(define-primitive-role RNM RNJ)’, 

                                                
27 http://dl.kr.org/krss-spec.ps 
28 https://www.w3.org/TR/owl2-overview/ 
29 http://semanticweb.org/wiki/OWL_API.html 
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where CN be a concept name, RNM and RNJ be two different role names, and concept C 

can be either CN, ⊤, or formed as follows: 

• conjunction ‘(and	CM  …  CÙ)’,  

• full existential quantification ‘(some	RN C)’,  

where concept C, CM, … , CÙ are recursively defined as above. 

Figure B.1 depicts an overview of OWL 2. In the center, the ellipse represents  

the abstract notion of an ontology, which can be thought of as an abstract ontology 

structure or an RDF graph. The top of the figure shows each concrete syntax based on 

the abstract notion which can be serialized and exchanged. The bottom shows the two 

specification of semantics defining the meaning of an ontology. As aforementioned, 

our APIs wrap the OWL API, which can handle these various syntaxes and semantics. 

Thus, this capability automatically transfer to our APIs for free. We refer the readers to 

check the official documentation for the full descriptions of each syntax and semantics. 

Figure B.1 The Structure of OWL 2 (Source: https://www.w3.org/TR/owl2-

overview/OWL2-structure2-800.png). 
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To use our APIs in Java, four classes may be involved viz. 

‘KRSSServiceContext’, ‘OWLServiceContext’, ‘PreferenceProfile’, and 

‘SimilarityService’. First, KRSSService- Context and OWLServiceContext are used to 

initialize the ontology from a given file path. Initializing the ontology is mandatory and 

is required to do once prior to the query of concept similarity. Second, PreferenceProfile 

is used to configure each aspect of preference profile (cf. Section 4.1). If this class is 

not explicitly used, it will automatically use the default value (cf. the default preference 

profile). Third, SimilarityService encapsulates functionalities to compute the degree of 

concept similarity based on a syntax and a computational approach (cf. Section 4.4) as 

follows: 

• measureOWLConceptsWithTopDownSimPi(conceptName1 : String, 

conceptName2 : String) : BigDecimal; 

• measureOWLConceptsWithDynamicProgrammingSimPi(conceptName1 : 

String, conceptName2 : String) : BigDecimal; 

• measureKRSSConceptsWithTopDownSimPi(conceptName1 : String, 

conceptName2 : String) : BigDecimal; and 

• measureKRSSConceptsWithDynamicProgrammingSimPi(conceptName1 : 

String, conceptName2 : String) : BigDecimal. 

Figure B.2 demonstrates how ones can use our APIs in Java. 

  
Figure B.2 Example of Using sim& APIs in Java. 
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We have also implemented several batch programs based on the APIs and used 

them on the part of our empirical evaluation of the thesis (cf. Section 4.5). For the 

current implementation, each program stores each concept pair in question as a text file 

separated by a space. Each aspect of preference profile is stored on its own file but is 

collectively kept together in the same folder. Their outputs after the execution is stored 

in another text file. Figure B.3 depicts the idea as described above. We also 

implemented other batch programs based on the same techniques for the measure sim 

(as discussed in Section 4.5) with the purpose of benchmarking. In total, we have 

implemented 8 programs. Each uses the same structure as shown in the figure. 

 
Figure B.3 Our Batch Program’s Structure. 

 

To run each batch program, we have to execute the command ‘mvn spring-

boot:run’. When the program is run, it will take each concept pair defined in a given 

ontology (such as ‘family.owl’ in this case), compute the degree of similarity under a 

defined preference profile, and pipe the results to output file. Figure B.4 illustrates an 

example after the execution. The figure shows that the degree of similarity between 

both concepts is 0.96. 

 
Figure B.4 The Degree of Similarity between Son and SonInLaw. 
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Finally, we have written 111 unit test cases to ensure that all batch programs 

and the core APIs function correctly. These test cases were written to cover important 

parts of the implementation. Concepts in both the family ontology (family.owl) and 

Snomed ct were used by the test cases. To execute the test, we use the command ‘mvn 

test’. Figure B.5 depicts the results. 

 
Figure B.5 Results of Unit Tests. 
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