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ABSTRACT

Capture-recapture is a powerful method for estimating the size of an elu-

sive target population. A new estimator of the population size is proposed by allowing

the Normal mixing density leading to the Hermite distribution. The EM algorithm is

discussed for maximum likelihood estimation.

The discrete mixture of a Hermite distribution is adopted to model the het-

erogeneity of an unobserved population. The parameters of zero-truncated count mix-

ture of Hermite distributions are estimated by using a PMLE with the EM algorithm.

The penalized maximum likelihood estimator is proposed based on zero-truncated Her-

mite distribution through the Horvitz-Thomson approach.

The development of estimation to include validation information in the capture-

recapture modeling is introduced, to increase the accuracy and efficiency of population

size estimation. The nonparametric maximum likelihood estimator is developed based

on zero-truncated Hermite distribution, which includes validation information.

With regard to making inference about the unknown size N of the popu-

lation, confidence interval estimations are proposed. The profile mixture likelihood
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is used to construct the confidence intervals for the population size N . A simulation

study was conducted to compare the performance of the proposed estimators with the

maximum likelihood Poisson, Turing, Chao and Censored estimators. The proposed

methods were applied to estimate the number of heroin users in Chiang Mai from 2016

to 2018.

Keywords: Capture-recapture, Poisson-Normal Mixture, EM algorithm, Mixture of

truncated Hermite distributions
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CHAPTER 1

INTRODUCTION

1.1 Overview

A capture-recapture approach aims to estimate an elusive target population

size. A large number of fields have adopted capture-recapture to estimate unobserved

units as well as the total population size. Capture-Recapture methods have been applied

in many areas, including biology, sociology, criminology, public health and epidemi-

ology, for estimating the number of female grizzly bears in the Yellowstone ecosys-

tem (Chao, 2005), the number of transport injuries in a developing country (Tercero

& Andersson, 2004), the size of a criminal population (Van Der Heijden, Cruyff, &

Van Houwelingen, 2003), the number of injecting drug users in Scotland (McDonald et

al., 2014), or infectious disease incidence (Van Hest et al., 2008).

Capture-recapture surveys assume that the target population N is closed,

with no births, deaths, or migration over the observational period. Some identification

mechanisms, such as registration or trapping systems, are used to identify observed

units. The identifications provide a count Yj of the number of times the jth individual

was identified during the observational period, for j = 1, 2, ..., N. This is called pos-

itive sample. The frequency of units identified exactly 0, 1, ...,m times is denoted by

f0, f1, ..., fm respectively, where m is the largest observed count. As all units in a popu-

lation cannot be captured. The number of zero-count data, f0, is unknown. An example

of capture-recapture data is presented in Table 1.1. As a consequence, the number of

observed units n = f1 + f2 + ...+ fm and N = n+ f0. Estimation of f0 is required to

estimate the population size N .

Table 1.1: Frequencies of capture-recapture data.

i 0 1 2 3 ... m

fi ? f1 f2 f3 ... fm
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A count distribution arises when we summarize how often a unit was iden-

tified. Let pi = P (Y = i) denote the probability of identifying a unit i times. Ac-

cordingly, p0 is the probability that a unit is not identified. The unobserved f0 might be

replaced by the expected value Np0. If p0 is known then we can solve for N = n+ f0.

The fact that p0 is unknown but is required for estimation produces the well-known

Horvitz-Thompson estimator:

N̂HT =
n

1− p̂0

. (1.1)

In general, count data are modeled as a Poisson distribution having parame-

ter λ. Under the homogeneous Poisson model, the probability of each unit being iden-

tified exactly i times is pi = e−λλi

i!
. Several estimators have been developed to estimate

the hidden population size based on a homogeneous case. These include maximum like-

lihood estimation and Turing’s estimator (Good, 1953). Due to the fact that, in practice,

λ is not identical for all units in the population it is more reasonable to assume that the

target population may consist of a set of subgroups. An alternative model incorporat-

ing heterogeneity of the Poisson parameter might be more realistic. Introducing such

heterogeneity into the model has been proposed in the literature (Chao, 1987; Zelter-

man, 1988; Niwitpong et al., 2013). The probability under heterogeneity Poisson with

density f(λ) is given by

pi =

∫ ∞
0

e−λλi

i!
f(λ)dλ. (1.2)

The more general case is to allow gamma-mixing, which leads to a Poisson-Gamma

mixture or negative binomial. For example, Rocchetti et al. (2011) and Böhning et

al. (2013) proposed population size estimators under a zero-truncated Poisson-Gamma

mixture model. However, this is problematic due to the boundary problem (Böhning,

2015), which results in a spurious estimate for the size N of a population, as demon-

strated in Kuhnert and Böhning (2009). We propose the use of f(λ) as the normal

density. A new estimator is proposed, based on the zero-truncated Poisson-Normal

distribution.

A mixture model is a flexible approach to cope with data from a population

which is suspected to contain sub-populations. Böhning and Schön (2005) proposed

nonparametric maximum likelihood estimation (NPMLE) of a population of size N

based on the binomial or Poisson distributions. Viwatwongkasem et al. (2013) applied

Ref. code: 25615809320038LCH
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the NPMLE for estimating the mixture of zero-trucated Poisson distributions, when

estimating the number of drug users in Thailand 2005-2007. With this motivation, the

discrete mixtures of Poisson-Normal distributions is adopted to model the heterogeneity

of an unobserved population, and the EM algorithm is employed for maximum likeli-

hood estimation.

Sometimes addition information on the observed units is available from an-

other sub-sample of the target population, called a validation sample. Such samples are

smaller and contain no hidden cases, so that zero counts are observed. Let g0, g1, ..., gm

be the frequency of units identified exactly 0, 1, 2, ...,m times. Note that g0 is known.

Table 1.2 provides example data of a positive sample and validation sample.

Table 1.2: Frequencies in positive sample and validation sample.

i 0 1 2 3 ... m

fi ? f1 f2 f3 ... fm

gi g0 g1 g2 g3 ... gm

Böhning et al. (2016) incorporated information from the validation sample

into the capture-recapture model. Arnold, Böhning, and Azevedo (2017) demonstrated

that the use of a validation sample increases the estimation efficiency and reduces the

bias. In this research, the extension of estimation including validation information is

proposed, to increase the accuracy and efficiency of population size estimation.

1.2 Objectives

1. To explore a more appropriate alternative distribution for zero-truncated count

data.

2. To develop a new estimator of the population size N , based on the Poisson-

Normal distribution.

3. To develop a new estimator of the population size N , based on discrete mixtures

of the Poisson-Normal distributions.
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4. To develop a new estimator of the population size N , based on discrete mixtures

of the Poisson-Normal distributions with validation samples.

5. To evaluate the efficiency of the population size estimators under various condi-

tions.

1.3 Benefits of the research

1. To derive efficient population size estimators.

2. To apply the proposed estimators to real situations.

1.4 Thesis outline

Chapter 2 introduces capture-recapture methodology, and the research method-

ology of the dissertation.

In Chapter 3, Laplace’s method is used to derive the Poisson-Normal mix-

ture model and the EM algorithm is employed for maximum likelihood estimation of

the parameters. The performance of the new estimator is compared with those of other

well-known estimators in different cases. For making inferences about the unknown

size N of a closed population, this project uses confidence interval estimation.

In Chapter 4, we propose the inclusion of discrete mixtures to increase gen-

erality. We propose an estimator when the counts are assumed to come from a zero-

truncated Poisson-Normal distribution. In addition, we propose an estimator that com-

bines maximum likelihood estimation for zero-truncated Poisson-Normal distributions

with validation information. The performance of the new estimators compared with

those of other well-known estimators under various conditions. Confidence intervals

are constructed based upon the profile mixture likelihood.

In Chapter 5, data of heroin users in Chiang Mai (Thailand) are provided as

illustrations of practical application.

The thesis ends with a chapter of conclusions and future work.
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CHAPTER 2

REVIEW OF METHODOLOGY

This chapter focuses on the capture-recapture methodology and two types

of data set used in capture-recapture studies. Well-known estimators based on homo-

geneous and heterogeneous Poisson models are provided. The methodology of this

dissertation is introduced.

2.1 Capture-recapture methodology

Capture-recapture methods have been widely used to estimate the size of a

population in many field including ecology, criminology, social science, public health,

and epidemiology. Examples include estimating the number of females with cubs-of-

the-year in the Yellowstone grizzly bear population (Keating et al., 2002), the size of

the hidden scrapie population in Great Britain (Böhning & Vilas, 2008), the number

of illegal immigrants living in the Netherlands from Middle East countries (Heijden et

al., 2012), or the number of adult cannabinoid users in Italy (Farcomeni et al., 2013).

Studies in Thailand that have used the capture-recapture methodology for estimating

population sizes N include Mastro et al. (1994), who estimated the number of HIV-

infected injection drug users in Bangkok. Böhning et al. (2004), who estimated the

number of drug users in Bangkok in 2001, and Viwatwongkasem et al. (2013), who

estimated the number of drug users in Thailand 2005-2007.

Capture-recapture surveys assume that the target population N is closed

with no births, deaths, or migration over the observational period. As all units in a

population cannot be collected, separate mechanisms are used to identify the observed

units. A registration system can be used as the identification mechanism in human

populations, and a trapping system in wildlife populations.

Intuitively, some units of the population are observed and some units are un-

observed. As a consequence, the number of missing units must be estimated. Suppose

Ref. code: 25615809320038LCH
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that every unit has the same probability of identification given by 1 − p0. Since the

population size N consists of an observed and unobserved part,

N = N(1− p0) +Np0 = n+Np0. (2.1)

The expected number of identification units N(1− p0) can be estimated from the num-

ber of observed units n. Equation (2.1) can be solved for N to provide the Horvitz

Thompson estimator:

N̂HT =
n

1− p̂0

. (2.2)

To model probability identification and estimate p0, two types of capture-recapture data

with different sources and repeated counting data are taken into account.

A unit is identified at different occasions, periods, or sources of identifi-

cation. Capture-recapture data with different sources was introduced by Böhning and

Schön (2005). Let the units be indexed as 1, 2, ..., N withm trapping occasions indexed

as 1, 2, ...,m. Data are tagged as present (1) or absent (0). The data of all units are pro-

vided as an m-vector consisting of 0s and 1s. An example of capture-recapture data, for

38 deer mice with six capture occasions (Amstrup et al., 2010), is shown in Table 2.1.

Let Yj be the number of times that the jth unit is identified during a period of study with

m trapping occasions, j = 1, 2, ..., N . From Table 2.1, the 1st unit was observed in all

trappings, giving Y1 = 6 . The 2nd unit was trapped in the 1st, 4th, 5th, and 6th trappings,

so that Y2 = 4. The vector [0, 0, 0, 0, 0, 0], indicating a case which has never been

identified, is not recorded, and the number of units with Y = 0 is unknown. Let fi be

the frequency of units identified exactly i times, i = 1, 2, ...,m. The frequency counts

for the 38 deer mice are shown in Table 2.2. As Y = 0 is not observed, the frequency

of unobserved units, f0, is unknown and becomes a crucial part of the estimation.

A unit may also be identified repeatedly by the same mechanism during the

observational period. This leads to repeated counting data (Böhning & Schön, 2005).

These represent how often each unit is identified. Let Y be the number of times that

a unit is identified over the observational period, and let fi be the frequency of units

identified exactly i times, i = 1, 2, ...,m where m is the largest observed count. Exam-

ples of repeated counting data include the number of illegal immigrants in four large

cities in the Netherlands (Van Der Heijden, Bustami, et al., 2003) and the number of
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Table 2.1: Individual capture history of 38 deer mice with capture occasions.

unit Occasion Yj

j 1 2 3 4 5 6

1 1 1 1 1 1 1 6

2 1 0 0 1 1 1 4

3 1 1 0 0 1 1 4

4 1 1 0 1 1 1 5

5 1 1 1 1 1 1 6

6 1 1 0 1 1 1 5

7 1 1 1 1 1 0 5

8 1 1 1 0 0 1 4

9 1 1 1 1 1 1 6

10 1 1 0 1 1 1 5

11 1 1 0 1 1 1 5

12 1 1 1 0 1 1 5

13 1 1 1 1 1 1 6

14 1 0 1 1 1 0 4

15 1 0 0 1 0 0 2

16 0 1 0 0 1 0 2

17 0 1 1 0 0 1 3

18 0 1 0 0 0 1 2

19 0 1 0 1 0 1 3

20 0 1 1 0 1 0 3

21 0 1 0 1 0 1 3

22 0 1 0 0 0 1 2

23 0 1 0 0 1 1 3

24 0 0 1 0 0 0 1

25 0 0 1 1 1 1 4

26 0 0 1 0 1 1 3

27 0 0 1 1 1 1 4

28 0 0 1 0 1 0 2

29 0 0 1 0 0 0 1

30 0 0 0 1 0 0 1

31 0 0 0 1 1 1 3

32 0 0 0 1 1 0 2

33 0 0 0 0 1 0 1

34 0 0 0 0 1 0 1

35 0 0 0 0 1 0 1

36 0 0 0 0 0 1 1

37 0 0 0 0 0 1 1

38 0 0 0 0 0 1 1
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Table 2.2: Frequency count of 38 deer mice.

y 1 2 3 4 5 6

fy 9 6 7 6 6 4

methamphetamine users for each count of treatment episodes from 61 health treatment

centres in Bangkok (Böhning et al., 2004). The frequency counts of illegal immigrants

in the Netherlands and methamphetamine users in Bangkok are shown in Tables 2.3

and 2.4, respectively. As can be seen from Table 2.3, f1 = 1, 645 illegal immigrants

were observed once, f2 = 183 were observed twice, f3 = 37 were observed three

times, f4 = 13 were observed four times, f5 = 1 were observed five times, and f6 = 1

were observed six times. The number of illegal immigrants that were not seen, f0, was

unknown.

Table 2.3: Frequency count of the illegal immigrant population in Netherlands.

y 1 2 3 4 5 6

fy 1645 183 37 13 1 1

Table 2.4: Frequency count of methamphetamine users for each count of treatment

episode from 61 health treatment centres in Bangkok.

y 1 2 3 4 5 6 7 8 9 10

fy 3114 163 23 20 9 3 3 3 4 3

In both types of capture-recapture data, Y is the number of times that a

unit is identified over the study period. Here, Y = 1, 2, ...,m, where m is the largest

observed count and fi the frequency of units identified exactly i times for i = 1, 2, ...,m.

The number of observed units is given by n = f1 + f2 + ... + fm. As zero counts are

not observed, f0 is unknown. Since the population size N consists of an observed and

unobserved part, N = n+ f0. Therefore, f0 must be estimated to derive the estimate of

population size N . Also, modeling and estimating of p0 is required for estimating the

population size N , as N̂ = n
1−p̂0 .
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2.2 Estimation of population size N

Several estimators have been proposed for estimating the population size N .

This section focuses on well-known estimators based on homogeneous and heteroge-

neous Poisson models. The maximum likelihood estimation under a Poisson model and

Turing’s estimator are used as estimators in the homogeneous case. Two estimators for

the heterogeneous case, Chao’s lower bound estimator and the Censored estimator, are

also considered.

2.2.1 Horvitz-Thomson Approach

Horvitz and Thompson (1952) proposed a general approach to estimating the

population size. From the identification mechanism, identification is assumed to occur

independently for each unit with probability 1−p0. The population consists of N units.

Let Zj be the indicator identifying the jth unit in the population for j = 1, 2, ..., N with

Zj =

 1 if jth unit is identified

0 otherwise.

Then, E(
∑N

j=1 Zj) =
∑N

j=1 E(Zj) =
∑N

j=1 P (Zj) = N(1 − p0). Equating this ex-

pected value to the observed number of cases n = N(1− p0) yeilds

N̂HT =
n

1− p̂0

, (2.3)

which is well-known as the Horvitz-Thompson estimator.

2.2.2 Turing’s estimator

Let Y be the number of times that a unit is identified over the observational

period, and let fi be the frequency of units identified exactly i times, i = 1, 2, ...,m

where m is the largest observed count. Also let pi be the probability that a unit is

identified exactly i times. Under the assumption that Y has a homogeneous Poisson

distribution with parameter λ,

p0 = e−λ =
λe−λ

λ
=

p1

E(Y )
=
E(f1)/N

E(S)/N
=
E(f1)

E(S)
,
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where S =
∑m

i=1 ifi. Replacing the expected value by the observed frequencies yields:

p̂0 =
f1

S
.

Then, Turing’s estimator (Good, 1953) is given by

N̂Turing =
n

1− f1/S
. (2.4)

A simple variant of Turing’s estimator (Lerdsuwansri, 2012) is given by

V̂ ar(N̂Turing) =
nf1
S

(1 + f1
S

)2
+

n2

(1 + f1
S

)4

[
f1(1− f1

N̂
)

S2
+
f 2

1

S3

]
. (2.5)

The benefits of Turing’s estimator are that it is easy to calculate, its value can be ob-

tained in a straightforward way, iteration is not required.

2.2.3 Maximum Likelihood Estimation

Let Y be the number of times that a unit is identified over the study period.

The frequency of units identified exactly i times is given as fi where i = 1, 2, ...,m and

m is the largest observed count. Since count data from capture-recapture studies have

non-zero counts, they can be modeled as a zero-truncated Poisson distribution:

p(y;λ) =
e−λλy/y!

1− e−λ
.

In statistics, maximum likelihood estimation is a well-known method for

estimating parameters, by finding the parameter value that maximizes the likelihood

function. Consider the likelihood function of count data Y :

L(λ) =
m∏
i=1

(
e−λλi/i!

1− e−λ

)fi
.

The log-likelihood function is

logL(λ) = −nλ+ log λ
m∑
i=1

ifi −
m∑
i=1

fi log i!− n log(1− e−λ). (2.6)

To find the maximum likelihood estimator (MLE) of parameter λ, (2.6) is differentiated

with respect to λ and is equated to 0. The MLE of parameter λ is given by

λ̂ =
S

n
(1− e−λ̂) =

S

N̂
,
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where S =
∑m

i=1 ifi. Since there is no closed-form solution, the EM algorithm is used

to find the MLE by iteratively applying these two steps:

(i) N̂ (t+1) =
n

1− e−λ̂t

(ii) λ̂(t+1) =
S

N̂ (t+1)
.

The steps are repeated until convergence, to find λ̂MLE . Thus, the population size

estimator is of the form

N̂MLE =
n

1− e−λ̂MLE

. (2.7)

The variance of (2.7) is given as

V̂ ar(N̂MLE) =
N̂MLE

e
S

N̂MLE − S

N̂MLE
− 1

, (2.8)

see (Böhning, 2008) for more details.

2.2.4 Chao’s lower bound estimator

Chao (1987, 1989) proposed an alternative estimator of population size for a

heterogeneous Poisson model. Count data are assumed to be generated from a mixed

Poisson model with arbitrary density g(λ) : pi =
∫∞

0
e−λλi

i!
g(λ)dλ, where i = 0, 1, 2, ....

Chao’s estimator is derived based on the Cauchy-Schwarz inequality:

E[UV ]2 =
∣∣E[UV ]

∣∣2 6 E[U ]2E[V ]2.

Then

(

∫
UV )2 6

∫
U2

∫
V 2.

Let U(λ) =
√
e−λ and V (λ) = λ

√
e−λ. This yields

(

∫ ∞
0

λe−λdλ)2 6
∫ ∞

0

e−λdλ

∫ ∞
0

λ2e−λdλ

p2
1 6 p0 × 2p2.

The lower bound for p0 is derived by

p0 6
p2

1

2p2

.
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Multipling inequality by N leads to

Np0 6
(Np1)2

2Np2

f0 6
f 2

1

2f2

.

Hence, the lower bound estimator is f̂0 =
f21
2f2

and Chao’s lower bound estimator is

N̂Chao = n+
f 2

1

2f2

. (2.9)

The estimated variance of Chao’s estimator is

V̂ ar(N̂Chao) =
1

4

f1
4

f2
3 +

f1
3

f2
2 +

1

2

f1
2

f2

− 1

4

f1
4

nf2
2 −

1

2

f1
4

f2(2nf2 + f1
2)
, (2.10)

see (Böhning, 2008) for more details.

2.2.5 The censored estimator

Niwitpong et al.(2013) proposed an estimator under a geometric distribution

with ky(p) = p(1 − p)y for y = 0, 1, 2, .... Consider the conventional zero-truncated

geometric k+
y = p(1−p)y

1−p = p(1− p)y−1 for y = 1, 2, .... Then P (Y = 1) = k+
1 = p and

P (Y > 1) =
∑∞

y=2 k
+
y = 1− p. The log-likelihood is

l(p) = f1 log p+ (n− f1) log(1− p). (2.11)

To find the MLE of parameter p, (2.11) is differentiated with respect to p and is equated

to 0

∂

∂p
l(p) = 0

f1

p
− n− f1

1− p
= 0

p̂ =
f1

n
.

Hence, the MLE of parameter p is p̂ = f1
n

. From e0 = E(f0|p) = np
1−p , ê0 =

n
f1
n

1− f1
n

=

f1

1− f1
n

and the censored estimator is

N̂Censored = n+
f1

1− f1
n

=
n2

n− f1

. (2.12)
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An estimate of the variance of the censored estimator is given by

V̂ ar(N̂Censored) =
f1

(1− f1
n

)2
× 2n− f1

n− f1

. (2.13)

2.3 Mixture models for estimating population size

This section reviews mixture models introduced into the framework of capture-

recapture. In general, count data are often modeled by a Poisson distribution having

parameter λ. As λ is not identical for all units in the population in practice, it is more

reasonable to assume that the target population may consist of a multiple subgroups.

Mixture models are more flexible than simple models, which require specific assump-

tions, and can cope with data from a heterogeneous population which is known or sus-

pected to contain dissimilar parts. Suppose that Y is a random variable that arises from

s sub-populations or components. Each component has the same density but different

parameter values, i.e. λ1, λ2, ..., λs. Let p(y;λk) be the component density of k for

k = 1, 2, ..., s. Then, the finite mixture distribution

f(y;Q) =
s∑

k=1

qkp(y;λk) (2.14)

arises as the marginal distribution with respect to some latent variable Z with distribu-

tion Q. The mixing distribution Q =

λ1 λ2 · · · λs

q1 q2 · · · qs

 gives a non-negative weight

qk to parameter λk such that
∑s

k=1 qk = 1.

2.3.1 Zero-truncated count mixture distributions

Böhning et al. (2005) proposed the NPMLE of population size based on the

zero-truncated mixture Poisson distribution.

Let Y be the number of times that a unit was identified over the study period.

Assuming that Y is mixture of densities p(y;λk), then the marginal distribution of Y is

f(y;Q) =
s∑

k=1

qkp(y|λk), (2.15)
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where p(y|λk) =
e−λkλyk
y!

and the mixing distribution Q =

λ1 λ2 · · · λs

q1 q2 · · · qs

 .

Assume fi be the number of units identified exactly i times, where i =

1, 2, ...,m and m is the largest occurring count. As Y = 0 is not observed, f0 is un-

known. The observed, incomplete data likelihood is of the form

L(Q) =
m∏
i=1

( ∑s
k=1 qkp(i|λk)

1−
∑s

k=1 qkp(0|λk)

)fi
. (2.16)

The incomplete data log-likelihood is

l(Q) =
m∑
i=1

fi log

( ∑s
k=1 qkp(i|λk)

1−
∑s

k=1 qkp(0|λk)

)
. (2.17)

An estimate of Q can be found by maximizing (2.17) leading to the NPMLE. It has

become very common to use the EM algorithm (Dempster et al., 1977) for maximum

likelihood estimation in a mixture model. To apply the EM algorithm, the complete

data log-likelihood is needed.

At the E-step, the unobserved frequency f0 is replaced by its expected value

given observed frequencies and current values of Q. Let the expected value of f0,

denoted by f̂0, be written as

f̂0 = E(f0|observed data;Q)

=
nf(0;Q)

1− f(0;Q)

=
n
∑s

k=1 qkp(0|νk, d)

1−
∑s

k=1 qkp(0|νk, d)
. (2.18)

The log-likelihood for the complete data is given as

lcd(Q) =
m∑
i=0

fi

s∑
k=1

zik log qk +
m∑
i=0

fi

s∑
k=1

zik log p(i|λk), (2.19)

where the unobserved covariate zik is 1 if i belongs to component k and 0 otherwise.

In the E-step, the unobserved covariates zik are replaced by their expected

values, eik, conditional upon the observed data and current values of λk and qk for

k = 1, 2, ..., s. This gives

eik = E(zik|observed data;λk, qk) =
qkp(i|λk)∑s
k=1 qkp(i|λk)

. (2.20)
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The expected log-likelihood of the complete data is

E[lcd(Q)] =
m∑
i=0

fi

s∑
k=1

eik log qk +
m∑
i=0

fi

s∑
k=1

eik log p(i|λk). (2.21)

M-step: in mathematical optimization, the method of Lagrange multipliers

is a strategy for finding the local maximum and minimum of a function, subject to

equality constraints. To maximize (2.21) subject to the constraint
∑s

k=1 qk = 1,

L(Q, γ) =
m∑
i=0

fi

s∑
k=1

eik log qk +
m∑
i=0

fi

s∑
k=1

eik log p(i|λk) + γ(1−
s∑

k=1

qk). (2.22)

The MLEs of qk, λ1, λ2, ..., λs are found by solving the equations of derivative (2.22)

with respect to γ, qk, and λk. The new estimators of qk and λk are

q̂k =
1

n+ f̂0

m∑
i=0

fieik for k = 1, 2, ..., s (2.23)

λ̂k =

∑m
i=0 ifieik∑m
i=0 fieik

(1− e−λ̂k) for k = 1, 2, ..., s. (2.24)

To estimate an unknown population of size N , the Horvitz-Thompson estimate under

the zero-truncated mixture of Poisson models is

N̂TMIX =
n

1−
∑s

k=1 q̂ke
−λ̂k

. (2.25)

Note that (2.24) does not provide a closed form solution of λ̂k. Therefore, the following

algorithm is used to compute the population size estimator:

Step 0: Choose some initial values of q̂(0)
k and λ̂(0)

k for Q̂(0), and set t = 0.

Step 1: Compute f̂ (t+1)
0 =

n
∑s
k=1 q̂

(t)
k e
−λ̂(t)

k

1−
∑s
k=1 q̂

(t)
k e
−λ̂(t)

k

.

Step 2: Use complete data f̂ (t+1)
0 , f1, f2, ..., fm to compute the new MLEs of

q̂
(t+1)
k =

∑m
i=0 fie

(t)
ik

n+ f̂
(t+1)
0

and

λ̂
(t+1)
k =

∑m
i=0 ifie

(t)
ik∑m

i=0 fie
(t)
ik

(1− e−λ̂
(t)
k )

for Q̂(t+1), where e(t)
ik =

q̂
(t)
k p(i|λ̂(t)k )∑s

k=1 q̂
(t)
k p(i|λ̂(t)k )

.

Step 3: Set t = t+ 1 and repeat Step 1.

Steps 1 and 2 are repeated until convergence to a constant with an acceptable

error.
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2.3.2 Mixtures of zero-truncated count distributions

Viwatwongkasem et al. (2013) adopted the NPMLE for estimating the mix-

ture parameters of zero-truncated Poisson distributions. The method was used to esti-

mate the number of drug user in Thailand 2005-2007, using surveillance data on drug

users identified by treatment episodes in over 1,140 health treatment centers in Thailand

(Bureau of Health Service System Development, Ministry of Public Health).

Let Y be the number of times that a unit was identified over the study period.

Assuming Y is mixture of zero-truncated Poisson distributions with densities p+(y;λk),

then the marginal distribution of Y is

f+(y;Q) =
s∑

k=1

qkp+(y|λk), (2.26)

where p+(y;λk) = p(y|λk)
1−p(0|λk)

=
e−λkλyk/y!

1−e−λk and the mixing distribution is

Q =

λ1 λ2 · · · λs

q1 q2 · · · qs

.

Assume fi to be the number of units identified exactly i times, where i = 1, 2, ...,m and

m is the largest occurring count. As Y = 0 is not observed, f0 is unknown and must be

estimated. The observed, incomplete data likelihood is of the form

L(Q) =
m∏
i=1

(
f+(i;Q)

)fi
=

m∏
i=1

( s∑
k=1

qkp+(i|λk)
)fi

. (2.27)

The log-likelihood for the mixture of zero-truncated count densities is

l(Q) =
m∑
i=1

fi log f+(i;Q)

=
m∑
i=1

fi log

[ s∑
k=1

qkp+(i|λk)
]
. (2.28)

The NPMLE of Q can be found by maximizing (2.28). To apply the EM algorithm, the

complete data log-likelihood is needed, given in this case by

lcd(Q) =
m∑
i=1

fi

s∑
k=1

zik log qk +
m∑
i=1

fi

s∑
k=1

zik log p+(i|λk). (2.29)
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Here, the unobserved covariate zik is 1 if i belongs to component k and 0 otherwise.

In the E-step, the unobserved covariates zik replaced by their expected val-

ues, eik, conditional upon the observed data and current values of λk and qk for k =

1, 2, ..., s. This gives

eik = E(zik|observed data;λk, qk) =
qkp+(i|λk)∑s
k=1 qkp+(i|λk)

. (2.30)

The expected log-likelihood of the complete data is

E[lcd(Q)] =
m∑
i=1

fi

s∑
k=1

eik log qk +
m∑
i=1

fi

s∑
k=1

eik log p+(i|λk). (2.31)

In the M-step, Lagrange multipliers is applied to find the local maximum of

complete data log-likelihood (2.31), subject to the constraint
∑s

k=1 qk = 1,

L(Q, γ) =
m∑
i=1

fi

s∑
k=1

eik log qk +
m∑
i=1

fi

s∑
k=1

eik log p+(i|λk) + γ(1−
s∑

k=1

qk). (2.32)

The MLEs of weights qk are found by solving the equations of derivative (2.32) with

respect to λ and qk and is equated to 0. The new estimators of weights qk are

q̂k =
1

n

m∑
i=1

fieik, for k = 1, 2, ..., s. (2.33)

Similarly, the MLEs of the unknown parameters λ̂1, λ̂2, ..., λ̂s are found by solving the

equations of derivatives (2.32) with respect to λk, given by

λ̂k =

∑m
i=1 ifieik∑m
i=1 fieik

(1− e−λ̂k) for k = 1, 2, ..., s. (2.34)

To estimate an unknown population sizeN , the Horvitz-Thompson estimate under mix-

tures of zero-truncated Poisson models is

N̂MIXT =
n

1−
∑s

k=1 q̂ke
−λ̂k

. (2.35)

Note that (2.34) does not provide a closed-form solution of λ̂k; iteration

is applied until the desired accuracy is achieved. The following algorithm is used to

compute the population size estimator:

Step 0: Choose some initial values of q̂(0)
k and λ̂(0)

k for Q̂(0), and set t = 0.
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Step 1: Use observed data f1, f2, ..., fm to compute the new MLE

q̂
(t+1)
k =

1

n

m∑
i=1

fie
(t)
ik and

λ̂
(t+1)
k =

∑m
i=1 ifie

(t)
ik∑m

i=1 fie
(t)
ik

(1− e−λ̂
(t)
k )

for Q̂(t+1), where e(t)
ik =

q̂
(t)
k p+(i|λ̂(t)k )∑s

k=1 q̂
(t)
k p+(i|λ̂(t)k )

.

Step 2: Set t = t+ 1 and repeat Step 1.

Steps 1 and 2 are repeated until convergence to a constant with an acceptable

error.

Böhning and Kuhnert (2006) showed the equivalence of the zero-truncated

count mixture distributions and the mixtures of zero-truncated count distributions. They

observed that, for any mixing distribution of the truncated mixture, a different mixing

distribution of the mixture could be found. This implied that the likelihood surfaces

of the two models agree, and in this sense the models are equivalent. Consequently,

estimating the population size N of two estimators associated with the two models

provides equal values.

2.4 Unconditional nonparametric maximum likelihood estimator

Let Y be the number of times that a unit was identified over the study period.

Assuming Y is mixture of densities p(y;λk), then the marginal distribution of Y is

f(y;Q) =
s∑

k=1

qkp(y|λk)

where mixing distribution Q =

λ1 λ2 · · · λs

q1 q2 · · · qs

. For capture-recapture model-

ing, two likelihood methods are possible. One is based upon the full, unconditional

likelihood

L(N,Q) =
N !

f0!f1!...fm!

m∏
i=0

f(i;Q)fi . (2.36)

This may be rewritten in two parts (Sanathanan, 1977)

L(N,Q) = Lb(N,Q)× Lc(Q)
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where

Lb(N,Q) =
N !

f0!(N − f0)!
f(0;Q)f0(1− f(0;Q))N−f0 ,

Lc(Q) =
n!

f1!f2!...fm!

m∏
i=1

(
f(i;Q)

1− f(0;Q)

)fi
.

Two estimates of N arise naturally. The first is maximum likelihood esti-

mation, denoted as N̂u and defined by the condition that there exists a value Q̂u such

that (N̂u, Q̂u) maximizes L(N,Q) over all admissible values of (N,Q). The second

estimate, and called the conditional maximum likelihood estimate, is denoted by N̂c

and defined by the condition that N̂c maximizes Lb(N,Q). This yields Q̂c the value of

Q that maximizes Lc(Q), as discussed in the previous section.

The conditional NPMLE faces two major problems: the boundary problem

and the lack of identifiability in mixture models. The boundary problem deals with the

circumstance in which the mixing distribution component parameters converge to 0+

with a positive weight (J.-P. Z. Wang & Lindsay, 2005; J.-P. Wang & Lindsay, 2008).

Kuhnert et al. (2008) demonstrated that the boundary problem results in overestimation

of population size N . Nonidentifiability also affects the inference of population size

(Link, 2003). Different models that provide different estimates of N might have iden-

tical distributions. To avoid these problems, the unconditional maximum likelihood

for inferring the unknown population size N was suggested by Pawitan (2001). The

resulting likelihood is called a profile mixture likelihood.

The population size N and mixing distribution Q are unknown, where N is

the parameter of interest and Q is a nuisance parameter. We need to estimate both N

and Q, but are interested lies only in the parameter N . To achieve this, the nuisance

parameter is often profiled out. Since N = n + f0, estimating the population size N is

equivalent to estimating f0. The full likelihood (2.36) can be rewritten as

L(n+ f0, Q) =
(n+ f0)!

f0!f1!...fm!

m∏
i=0

f(i;Q)fi . (2.37)

Given a fixed f0, the log-likelihood function of (2.37), with the constant terms omitted,

takes the form

l(Q|f0) =
m∑
i=0

fi log
s∑

k=1

qkp(i|λk). (2.38)
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To obtain the MLE of Q for a given fixed f0, (2.38) is maximized with respect to Q,

leading to

Q̂(f0) = arg max
Q

l(Q(f0)|f0). (2.39)

For each fixed f0 we can evaluate Q̂(f0) and derive a new curve l(Q̂(f0)|f0), f0. The

maximum over all these curves is the MLE of f0:

f̂0 = arg max
f0

l(Q̂(f0)|f0). (2.40)

Consequently, the MLEs of f0 and Q are f̂0 and Q(f̂0), respectively. The estimator for

population size becomes N̂ = n+f̂0. This is called the profile nonparametric maximum

likelihood estimator (profile NPMLE).

2.5 Confidence interval estimation for population sizeN based upon

the profile likelihood

In capture-recapture studies, derivation of V ar(N̂) to form the confidence

interval of N is not easy. Profile likelihood can be used to construct the confidence

intervals of population size N (Norris III & Pollock, 1996; Norris & Pollock, 1998) as

follows.

Let N̂ = n + f̂0 be the profile NPMLE. The log-likelihood ratio statistic is

given by

2[l(n+ f̂0, Q(f̂0))− l(n+ f0, Q̂(f0))] ∼ χ2(1).

Using the log-likelihood ratio statistic, all Ns corresponding to

2[l(n+ f̂0, Q(f̂0))− l(n+ f0, Q̂(f0))] ≤ (z1−α/2)2

form the 100(1−α)% confidence set for N . Therefore, the 95% confidence interval for

N is the range of N that satisfies

2[l(n+ f̂0, Q(f̂0))− l(n+ f0, Q̂(f0))]− (1.96)2 ≤ 0. (2.41)
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2.6 Confidence interval of the population size N under normal ap-

proximation

Based on the population size estimators N̂ and the estimated variance V̂ ar(N̂),

a confidence interval of the population size N̂ can be constructed by the normal approx-

imation approach. The 100(1− α)% confidence interval for N̂ is given as follows:

N̂ ± z1−α
2
Ŝe(N̂), (2.42)

where z1−α
2

is the
(
1 − α

2

)th percentile of the standard normal distribution, Ŝe(N̂)

denotes the standard error of N̂ , approximated by the asymptotic standard error, and

Ŝe(N̂) =

√
V̂ ar(N̂).

2.7 Expectation-Maximization(EM) algorithm

The Expectation-Maximization (EM) algorithm is an efficient iterative pro-

cedure for computing the MLE. It can be used for solving the problem of complete and

incomplete data.

Let y = (y1, ..., yn)′ be an incomplete observed data vector of size n from

the population function f(y;θ), where θ = (θ1, ..., θp)
′ is a vector of p unknown param-

eters. Let z denote the vector containing unobservable or missing data and let x denote

the complete data vector x = (y′, z′)′.

Let gc(x;θ) denote the probability function of the random vector X corre-

sponding to the complete data vector x. The complete-data log-likelihood function is

given by

l(x;θ) = logLc(x;θ) = log gc(x;θ).

The EM algorithm finds the MLE by iteratively applying these two steps:

Expectation step (E step): This calculates the expected value of the complete

log-likelihood l(x;θ) with respect to the conditional distribution of z given the observed

data vector y and the current estimate of the parameter vector θ(k−1)at the (k − 1)th

iteration:

Q(θ|θk−1) = E[l(x;θ)|y;θk−1].
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Maximization step (M step): This maximizes Q(θ|θk−1) with respect to θ to give up-

dated values θk until convergence with an acceptable error.

2.8 Model selection criteria

Selection of the appropriate number of components is important in the finite

mixture model. Several selection criteria have been suggested. Schwarz et al. (1978)

provide the Bayesian Information Criterion (BIC) for model selection in the context of

mixture models. The BIC is defined as

BIC = −2 logL(Q̂s) + k log n, (2.43)

where logL(Q̂s) is the maximum log-likelihood of the model with s components and k

is the number of parameters estimated by the model. The model with the lowest BIC is

preferred.

2.9 Laplace approximation

An alternative approach to the approximation of integrals is to use Laplace’s

method. The Laplace method approximates integrals of the form∫ b

a

eh(x)dx ∼=
√

2πeh(x̃)

∣∣∣∣∂2h(x)
∂x2

∣∣∣
x=x̃

∣∣∣∣− 1
2

, (2.44)

where a and b may be finite or infinite and x̃ denotes the value of x that maximizes

h(x).

2.10 Ratio plot for identify a distribution

Graphical statistics is a simple and quick method for identifying a distribution. In

the capture-recapture method a graphical device, named the ratio plot, was developed by

Böhning et al.(2013) for investigating homogeneous and heterogeneous Poisson mod-

els. The ratio plot for untruncated probability is defined as

rx = (x+ 1)
px+1

px
. (2.45)
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In capture-recapture studies, the observed data arise from the zero-truncated distribution

with probability

p+(x) =
px

1− p0

. (2.46)

Then, the ratio plot for the zero-truncated probability is expressed as

rx = (x+ 1)
px+1/(1− p0)

px/(1− p0)
. (2.47)

Since

rx = (x+ 1)
px+1

px
= (x+ 1)

px+1/(1− p0)

px/(1− p0)
, (2.48)

the ratio plots for untruncated and truncated distributions are identical. As a conse-

quence, the ratio plot rx = (x + 1)px+1

px
can be used for both zero-truncated and com-

pleted count distributions.

The probability function of Poisson distribution is px = e−λλx

x!
. The ratio

plot can be calculated by

rx = (x+ 1)
px+1

px

= (x+ 1)

e−λλx+1

(x+1)!

e−λλx

x!

= λ. (2.49)

The ratio plot rx of Poisson distribution is constant with varying count x. Therefore,

plotting rx against x can be used to identify the model of count data. If the ratio plot

produces a pattern of a horizontal line, this can be taken as evidence for the presence

of a Poisson distribution. If the ratio plot produces a straight line with a positive slope,

this is indicative of structured heterogeneity. In practice, the ratio plot is estimated by

r∗x = (x+ 1)
p̂x+1N

p̂xN
= (x+ 1)

fx+1/N

fx/N
= (x+ 1)

fx+1

fx
, (2.50)

where fx is the frequency of count x.
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CHAPTER 3

MAXIMUM LIKELIHOOD ESTIMATION OF

POSSION-NORMAL MIXTURE

In general, count data are modeled by a Poisson distribution with parameter λ.

Under the homogeneous Poisson model, the probability of each unit identified exactly i

times is pi = e−λλi

i!
. Due to the fact that, in practice, λ is not identical for all units in the

population it is more reasonable to assume that the target population may consist of a set

of subgroups. An alternative model incorporating heterogeneity of Poisson parameter

might be more realistic. The probability under heterogeneity Poisson with density f(λ)

is given by

pi =

∫ ∞
0

e−λλi

i!
f(λ)dλ. (3.1)

For example, if f(λ) is the gamma distribution with a shape parameter k and a scale

parameter θ = 1−π
π

. The probability function is

f(λ; k, θ) =
θ−kλk−1e

−λ
θ

Γ(k)
, (3.2)

where λ, θ, k > 0. The probability that a unit identifies exactly i times is

pi =

∫ ∞
0

e−λλi

i!
f(λ)dλ

=

∫ ∞
0

e−λλi

i!
× θ−kλk−1e

−λ
θ

Γ(k)
dλ

=
θ−k

Γ(i+ 1)Γ(k)

∫ ∞
0

e−λ(1+ 1
θ

)λi+k−1dλ. (3.3)

Let w = λ(1 + 1
θ
) = λ( θ+1

θ
), so λ = wθ

θ+1
and dλ = θ

θ+1
dw. Then

pi =
θ−k

Γ(i+ 1)Γ(k)

∫ ∞
0

e−w
(

wθ

θ + 1

)i+k−1(
θ

θ + 1

)
dw

=
θ−k

Γ(i+ 1)Γ(k)

(
θ

θ + 1

)i+k ∫ ∞
0

e−wwi+k−1dw. (3.4)
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Since
∫∞

0
e−wwi+k−1dw = Γ(i+ k),

pi =
Γ(i+ k)

Γ(i+ 1)Γ(k)
θ−k
(

θ

θ + 1

)i+k
(3.5)

=
Γ(i+ k)

Γ(i+ 1)Γ(k)
θ−k
(

θ

θ + 1

)i(
1

θ + 1

)k
.

As θ = 1−π
π

, θ + 1 = 1
π

, and θ
θ+1

= 1− π,

pi =
Γ(i+ k)

Γ(i+ 1)Γ(k)
πk(1− π)i (3.6)

which is the probability function of negative binomial distribution with parameter π and

k. Modeling and estimating p0 by negative binomial distribution leads to N̂ = n

1−π̂k̂
.

The failure of a dispersion parameter estimation in negative binomial affects a spurious

estimate for the population size N . This is called boundary problem (Böhning, 2015),

as demonstrated in Kuhnert et al. (2008). To explore an alternative distribution, we

propose to use f(λ) as the normal distribution and discuss in this chapter. The EM

algorithm is used for estimating MLEs of parameters.

3.1 Poisson-Normal mixture model

A discrete distribution commonly used in practice is also a compound Pois-

son distribution, a Poisson random variable with parameter λ, where parameter Λ is a

random variable with density f(λ). In such a case, the probability generating function

(pgf) be written as

G(s) =

∫ ∞
−∞

eλ(s−1)f(λ)dλ. (3.7)

Let Λ follows a normal distribution with mean µ and variance σ2. It is

not possible be compound a Poisson with a normal distribution, because the normally

distributed random variable can be negative. In order for the normal distribution taking

positive values with probability near 1, it must hold that µ − 3σ > 0, or µ is much

greater than σ2. From (3.7) the pgf of compound Poisson with a normal distribution is

G(s) =

∫ ∞
0

eλ(s−1)f(λ)dλ

=

∫ ∞
0

eλ(s−1)(2πσ2)−
1
2 e−

(λ−µ)2

2σ2 dλ

= (2πσ2)−
1
2

∫ ∞
0

eλ(s−1)− (λ−µ)2

2σ2 dλ. (3.8)
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To evaluate Equation (3.8), approximation of
∫∞

0
eλ(s−1)− (λ−µ)2

2σ2 dλ is needed.

Let

h(λ) = λ(s− 1)− (λ− µ)2

2σ2
. (3.9)

The integral is ∫ ∞
0

eλ(s−1)− (λ−µ)2

2σ2 dλ =

∫ ∞
0

eh(λ)dλ. (3.10)

Laplace’s method is applied to approximate the integral in Equation (3.10)∫ ∞
0

eh(λ)dλ ∼= (2π)
1
2 eh(λ̃)

∣∣∣∣∂2h(λ)
∂λ2

∣∣∣
λ=λ̃

∣∣∣∣− 1
2

,

where λ̃ denotes the value of λ that maximizes h(λ). The first derivative of h(λ) is

h′(λ) = (s− 1)− (λ− µ)

σ2
. (3.11)

The value of λ that maximizes h(λ) is found by solving

h′(λ) = 0

(s− 1)− (λ− µ)

σ2
= 0

(s− 1) =
(λ− µ)

σ2
.

The values that maximizes h(λ) is

λ̃ = σ2(s− 1) + µ. (3.12)

Since σ2 > 0, second derivative of h(λ) is h′′(λ) = − 1
σ2 < 0. Then, λ̃ = σ2(s− 1) +µ

maximizes h(λ). The integral approximation of (3.10) is∫ ∞
0

eλ(s−1)− (λ−µ)2

2σ2 dλ =

∫ ∞
0

eh(λ)dλ

= (2π)
1
2 eh(λ̃)

∣∣∣h′′(λ̃)
∣∣∣− 1

2

= (2π)
1
2 e[σ2(s−1)+µ][s−1]−σ

4(s−1)2

2σ2

∣∣∣∣− 1

σ2

∣∣∣∣− 1
2

. (3.13)

Substituting (3.13) in Equation (3.8) the pgf of compound Poisson with a normal distri-
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bution is

G(s) = (2πσ2)−
1
2

∫ ∞
0

eλ(s−1)− (λ−µ)2

2σ2 dλ

= (2πσ2)−
1
2 (2π)

1
2 e[σ2(s−1)+µ][s−1]−σ

4(s−1)2

2σ2

∣∣∣∣− 1

σ2

∣∣∣∣− 1
2

= e[σ2(s−1)+µ][s−1]−σ
2(s−1)2

2

= eσ
2(s−1)2+µ(s−1)−σ

2(s−1)2

2

= e
σ2(s−1)2

2
+µ(s−1)−σ2(s−1)+σ2(s−1)

= e(µ−σ2)(s−1)+σ2(s−1)+
σ2(s−1)2

2

= e(µ−σ2)(s−1)+
σ2(s−1)

2
(2+s−1)

= e(µ−σ2)(s−1)+
σ2(s−1)

2
(s+1)

= e(µ−σ2)(s−1)+
σ2(s2−1)

2 (3.14)

which is the pgf of Hermite distribution.

The probability function of Hermite distribution, in terms of the parameters

a1 = µ− σ2 and a2 = σ2

2
, has the expression

p(y|a1, a2) = e−(a1+a2)

[y/2]∑
j=0

ay−2j
1 aj2

(y − 2j)!j!
. (3.15)

Here, y = 0, 1, 2, ... ; a1, a2 > 0 and [y/2] is the integer part of y
2
. The mean and

variance of Hermite distribution are ν = a1 + 2a2 and σ̃2 = a1 + 4a2, respectively. The

coefficient of dispersion d = 1 + 2a2
a1+2a2

allows a moderate overdispersion between 1

and 2. Reparameterize the probability function by ν and d gives the probability function

as

p(y|ν, d) = eν( d−3
2

)[ν(2− d)]y
[y/2]∑
j=0

(
d− 1

2ν(2− d)2

)j
1

(y − 2j)!j!
, (3.16)

where y = 0, 1, 2, ...; ν > 0 and 1 < d < 2.

The probability function of Hermite distribution for some mean ν and dis-

persion d is shown in Figure 3.1.
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Figure 3.1: The probability function of Hermite distribution.

3.2 Maximum likelihood estimation of Poisson-Normal mixture

Let Y be the number of times that a unit was identified over the study period.

Count Y is modeled with a Hermite distribution having probability function

p(y|ν, d) = eν( d−3
2

)[ν(2− d)]y
[y/2]∑
j=0

(
d− 1

2ν(2− d)2

)j
1

(y − 2j)!j!
, (3.17)

where y = 0, 1, 2, ...; ν > 0 and 1 < d < 2. Since the observed sample from capture-

recapture contains only non-zero counts, the associated probability function becomes a

zero-truncated Hermite. The incompletely observed likelihood relative to zero truncated

count frequencies is

L(ν, d) =
m∏
i=1

p′fii , (3.18)

where p′i = p(i|ν,d)
1−p(0|ν,d)

.

The MLEs of ν and d can be found by maximizing (3.18). It has become common to

use EM algorithm. To apply the EM algorithm, the complete data is required.

In the E-step, suppose that unknown missing frequency f0 is replaced by its

conditional expectation e0 given the observed frequencies f1, f2, ..., fm and the current

Ref. code: 25615809320038LCH



29

values of ν, d. The expected value e0 under the Hermite density is obtained as

e0 = E(f0|f1, ..., fm; ν, d, )

= Np0

= (e0 + n)p0

=
np0

1− p0

. (3.19)

The complete data likelihood with density pi is

Lcd(ν, d) =
m∏
i=0

pfii

= pe00 p
f1
1 ...p

fm
m . (3.20)

Here, pi = p(i|ν, d) = eν( d−3
2

)[ν(2− d)]i
∑[i/2]

j=0

(
d−1

2ν(2−d)2

)j
1

(i−2j)!j!
. The log-likelihood

of complete data is

lcd(ν, d) = e0 log p0 +
m∑
i=1

fi log pi. (3.21)

The complete log-likelihood (3.21) with the expectation and observed data is rewritten

as

lcd(ν, d) = e0 log p0 +
m∑
i=1

fi log pi

=


e0log

(
eν( d−3

2
)

)
+
∑m

i=1 fi log

[
eν( d−3

2
)[ν(2− d)]i

∑[i/2]
j=0

(
d−1

2ν(2−d)2

)j
1

(i−2j)!j!

]


=


e0ν
(
d−3

2

)
∑m

i=1 fi

[
ν

(
d−3

2

)
+ i log ν(2− d) + log

∑[i/2]
j=0

(
d−1

2ν(2−d)2

)j
1

(i−2j)!j!

]
 .

(3.22)

Let qi(θ) =
∑[i/2]

j=0
θj

(i−2j)!j!
and θ = d−1

2ν(2−d)2
. The complete log-likelihood (3.22),

lcd(ν, d) = e0ν

(
d− 3

2

)
+

m∑
i=1

fi

[
ν

(
d− 3

2

)
+ i log ν(2− d) + log qi(θ)

]
= e0ν

(
d− 3

2

)
+

m∑
i=1

fiν

(
d− 3

2

)
+

m∑
i=1

ifi log ν(2− d) +
m∑
i=1

fi log qi(θ).

(3.23)
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In the M-step taking derivative of (3.23) with respect to ν and d, and setting

the result to 0 yields

∂

∂ν
lcd(ν, d) = 0

e0

(
d−3

2

)
+
∑m

i=1 fi

(
d−3

2

)
+ 1
ν

∑m
i=1 ifi + ∂

∂ν

[∑m
i=1 fi log qi(θ)

]
 = 0


(
d−3

2

)
(e0 +

∑m
i=1 fi) + 1

ν

∑m
i=1 ifi

+ ∂
∂ν

[∑m
i=1 fi log qi(θ)

]
 = 0. (3.24)

Consider

∂

∂ν

[ m∑
i=1

fi log qi(θ)

]
=

m∑
i=1

fi

[
∂

∂ν
log qi(θ)

]
=

m∑
i=1

fi

[
1

qi(θ)
· ∂
∂θ
qi(θ) ·

∂θ

∂ν

]
=

m∑
i=1

fi

[
1

qi(θ)
· q′i(θ) ·

∂

∂ν

(
d− 1

2ν(2− d)2

)]
=

m∑
i=1

fi

[
1

qi(θ)
· q′i(θ) ·

(
− d− 1

2ν2(2− d)2

)]
= − d− 1

2ν2(2− d)2

m∑
i=1

fiq
′
i(θ)

qi(θ)
, (3.25)

where q′i(θ) = ∂
∂θ
qi(θ). Substituting (3.25) in (3.24),

∂

∂ν
lcd(ν, d) = 0

(
d−3

2

)
(e0 +

∑m
i=1 fi) + 1

ν

∑m
i=1 ifi

− d−1
2ν2(2−d)2

∑m
i=1

fiq
′
i(θ)

qi(θ)

 = 0. (3.26)
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∂

∂d
lcd(ν, d) = 0

e0ν
2

+ ν
2

∑m
i=1 fi −

1
2−d
∑m

i=1 ifi

+ ∂
∂d

[∑m
i=1 fi log qi(θ)

]
 = 0


ν
2
(e0 +

∑m
i=1 fi)−

1
2−d
∑m

i=1 ifi

+ ∂
∂d

[∑m
i=1 fi log qi(θ)

]
 = 0. (3.27)

Consider

∂

∂d

[ m∑
i=1

fi log qi(θ)

]
=

m∑
i=1

fi

[
∂

∂d
log qi(θ)

]
=

m∑
i=1

fi

[
1

qi(θ)
· ∂
∂θ
qi(θ) ·

∂θ

∂d

]
=

m∑
i=1

fi

[
1

qi(θ)
· q′i(θ) ·

∂

∂d

(
d− 1

2ν(2− d)2

)]
=

m∑
i=1

fi

[
1

qi(θ)
· q′i(θ) ·

(
1

2ν(2− d)2
+

d− 1

ν(2− d)3

)]
=

1

2ν(2− d)2

m∑
i=1

fiq
′
i(θ)

qi(θ)
+

d− 1

ν(2− d)3

m∑
i=1

fiq
′
i(θ)

qi(θ)

=
d

2ν(2− d)3

m∑
i=1

fiq
′
i(θ)

qi(θ)
, (3.28)

where q′i(θ) = ∂
∂θ
qi(θ). Substituting (3.28) in (3.27),

∂

∂d
lcd(ν, d) = 0

ν
2
(e0 +

∑m
i=1 fi)−

1
2−d
∑m

i=1 ifi

+ d
2ν(2−d)3

∑m
i=1

fiq
′
i(θ)

qi(θ)

 = 0. (3.29)

Rewrite (3.29) as

m∑
i=1

fiq
′
i(θ)

qi(θ)
=

2ν(2− d)3

d

[
1

2− d

m∑
i=1

ifi −
ν

2
(e0 +

m∑
i=1

fi)

]
=

2ν(2− d)2

d

m∑
i=1

ifi −
ν2(2− d)3

d
(e0 +

m∑
i=1

fi). (3.30)
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Substituting (3.30) in (3.26),
(
d−3

2

)
(e0 +

∑m
i=1 fi) + 1

ν

∑m
i=1 ifi

+ (d−1)(2−d)
2d

(e0 +
∑m

i=1 fi)−
d−1
νd

∑m
i=1 ifi

 = 0

1

νd

m∑
i=1

ifi −
1

d
(e0 +

m∑
i=1

fi) = 0

1

νd

m∑
i=1

ifi =
1

d
(e0 +

m∑
i=1

fi)

ν̂ =

∑m
i=1 ifi

e0 +
∑m

i=1 fi
. (3.31)

Substituting (3.31) in (3.30),
m∑
i=1

fiq
′
i(θ̂)

qi(θ̂)
=

2ν̂(2− d)2

d

m∑
i=1

ifi −
ν̂2(2− d)3

d
(e0 +

m∑
i=1

fi)

=
2ν̂2(2− d)2

d
(e0 +

m∑
i=1

fi)−
ν̂2(2− d)3

d
(e0 +

m∑
i=1

fi)

= [ν̂(2− d)]2(e0 +
m∑
i=1

fi). (3.32)

The MLE of parameter d be found by solving (3.32). The package hermite in program

R allows to estimate parameter d given an univariate sample by means of the function

glm.hermite, see (Moriña, Higueras, Puig, & Oliveira, 2015) for more details.

The population size estimator based on Hermite distribution through the

Horvitz-Thomson approach is

N̂Herm =
n

1− eν̂
(
d̂−3
2

) . (3.33)

3.2.1 EM algorithm

In practical terms, the EM algorithm is implemented as follows.

Step 0: Choose initial value ν̂(0), d̂(0), set t = 0.

Step 1: Compute e(t+1)
0 = neν̂

(t)( d̂
(t)−3
2 )

1−eν̂
(t)( d̂

(t)−3
2 )

.

Step 2: Use complete data e(t+1)
0 , f1, f2, ..., fm to compute the new MLEs of

ν̂(t+1) =

∑m
i=0 ifi

e
(t+1)
0 +

∑m
i=1 fi

d̂(t+1) = glm.hermite(e
(t+1)
0 , f1, ..., fm ∼ 1, link = ”log”, start = NULL,m? = 2).
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Step 3: Set t = t+ 1 and repeat to step 1. Steps 1 and 2 are repeated until:∣∣∣ν̂(t+1) − ν̂(t)
∣∣∣ ≤ 10−4 and

∣∣∣d̂(t+1) − d̂(t)
∣∣∣ ≤ 10−4.

3.3 Confidence interval estimation for population sizeN based upon

the profile likelihood

In this section focuses on inferring the unknown size N of a closed popula-

tion. In capture-recapture studies, derivation of V ar(N̂) to form the confidence interval

of N is not easy. Bootstrapping approach can be used to construct confidence inter-

vals. Alternatively, profile likelihood could be used to construct confidence intervals

(Norris III & Pollock, 1996; Norris & Pollock, 1998). We construct confidence interval

estimation of N based upon the profile likelihood as follows.

3.3.1 Profile likelihood of Poisson-Normal mixture models

Let Y be the number of times that a unit was identified over the observational

period. Assume count Y is modeled with a Hermite distribution having probability

function

p(y|ν, d) = eν( d−3
2

)[ν(2− d)]y
[y/2]∑
j=0

(
d− 1

2ν(2− d)2

)j
1

(y − 2j)!j!
, (3.34)

where y = 0, 1, 2, ...; ν > 0 and 1 < d < 2. The unconditional likelihood function is

given by

L(N, ν, d) =
N !

f0!f1!...fm!

m∏
i=0

(
p(i|ν, d)

)fi
. (3.35)

The unconditional likelihood is described by full parameter (N, ν, d), but we are inter-

ested only in N . Nuisance parameters ν and d are eliminated by replacing they with

their MLEs at each fixed value of N (Pawitan, 2001). The resulting is called a profile

likelihood.

Since N = n+ f0, finding a profile likelihood of N is equivalent to finding

a profile likelihood of f0. The full likelihood (3.35) can be rewritten as

L(n+ f0, ν, d) =
(n+ f0)!

f0!f1!...fm!

m∏
i=0

(
p(i|ν, d)

)fi
. (3.36)
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Given fixed f0, the log-likelihood function of (3.36), with the constant terms are omit-

ted, takes the form

l(ν, d|f0) =
m∑
i=0

fi log p(i|ν, d)

=
m∑
i=0

fi log

[
eν( d−3

2
)[ν(2− d)]i

[i/2]∑
j=0

(
d− 1

2ν(2− d)2

)j
1

(i− 2j)!j!

]

=
m∑
i=0

fi

[
ν

(
d− 3

2

)
+ i log ν(2− d) + log qi(θ)

]
=

m∑
i=0

fiν

(
d− 3

2

)
+

m∑
i=0

ifi log ν(2− d) +
m∑
i=0

fi log qi(θ). (3.37)

Here, qi(θ) =
∑[i/2]

j=0
θj

(i−2j)!j!
and θ = d−1

2ν(2−d)2
. MLEs of unknown parameters ν and d

for any fixed f0 be found by differentiating (3.37) with respect to ν and d, and setting

the result to 0:

∂

∂ν
l(ν, d|f0) = 0

m∑
i=0

fi

(
d− 3

2

)
+

1

ν

m∑
i=0

ifi +
∂

∂ν

[ m∑
i=1

fi log qi(θ)

]
= 0. (3.38)

Substituting (3.25) in (3.38),

∂

∂ν
l(ν, d|f0) = 0

m∑
i=0

fi

(
d− 3

2

)
+

1

ν

m∑
i=0

ifi −
d− 1

2ν2(2− d)2

m∑
i=0

fiq
′
i(θ)

qi(θ)
= 0(

d− 3

2

) m∑
i=0

fi +
1

ν

m∑
i=0

ifi −
d− 1

2ν2(2− d)2

m∑
i=0

fiq
′
i(θ)

qi(θ)
= 0. (3.39)

∂

∂d
l(ν, d|f0) = 0

ν

2

m∑
i=0

fi −
1

2− d

m∑
i=0

ifi +
∂

∂d

[ m∑
i=1

fi log qi(θ)

]
= 0. (3.40)

Substituting (3.28) in (3.40),

∂

∂d
l(ν, d|f0) = 0

ν

2

m∑
i=0

fi −
1

2− d

m∑
i=0

ifi +
d

2ν(2− d)3

m∑
i=0

fiq
′
i(θ)

qi(θ)
= 0. (3.41)
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Rewrite (3.41) as

m∑
i=0

fiq
′
i(θ)

qi(θ)
=

2ν(2− d)3

d

[
1

2− d

m∑
i=0

ifi −
ν

2

m∑
i=0

fi

]
=

2ν(2− d)2

d

m∑
i=0

ifi −
ν2(2− d)3

d

m∑
i=0

fi. (3.42)

Substituting (3.42) in (3.39),(
d− 3

2

) m∑
i=0

fi +
1

ν

m∑
i=0

ifi +
(d− 1)(2− d)

2d

m∑
i=0

fi −
d− 1

νd

m∑
i=0

ifi = 0

1

νd

m∑
i=0

ifi −
1

d

m∑
i=0

f0 = 0

1

νd

m∑
i=0

ifi =
1

d

m∑
i=0

fi

ν̂ =

∑m
i=0 ifi∑m
i=0 fi

. (3.43)

Substituting (3.43) in (3.42),

m∑
i=0

fiq
′
i(θ̂)

qi(θ̂)
=

2ν̂(2− d)2

d

m∑
i=0

ifi −
ν̂2(2− d)3

d

m∑
i=0

fi

=
2ν̂2(2− d)2

d

m∑
i=1

fi −
ν̂2(2− d)3

d

m∑
i=0

fi

= [ν̂(2− d)]2
m∑
i=0

fi. (3.44)

MLE of parameter d be found by solving (3.44). The package hermite in program

R allows to estimate parameter d given an univariate sample by means of the function

glm.hermite, see (Moriña et al., 2015) for more details. The profile MLEs of ν and d

for any fixed f0 are

ν̂(f0) =

∑m
i=0 ifi∑m
i=0 fi

(3.45)

d̂(f0) = glm.hermite(f0, f1, f2, ..., fm ∼ 1, link = ”log”, start = NULL,m? = 2).

(3.46)

The profile log-likelihood for any fixed f0 be achieved as

l

(
f0, ν̂(f0), d̂(f0)

)
= log Γ(n+f0+1)−

m∑
i=0

log Γ(fi+1)+
m∑
i=0

fi log p

(
i | ν̂(f0), d̂(f0)

)
.

(3.47)
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The population size estimator under Hermite distribution based on profile likelihood is

N̂Profile = n+ f̂0 (3.48)

which f̂0 is the value of f0 that maximizes (3.47).

3.3.2 Confidence interval estimation for population size N

Let N̂Profile be profile maximum likelihood estimator (profile MLE) based

on Hermite distribution. Since N̂Profile = n+ f̂0, the likelihood ratio is defined by

2
[
l
(
n+ f̂0, ν(f̂0), d(f̂0)

)
− l
(
n+ f0, ν̂(f0), d̂(f0)

)]
∼ χ2(1).

Using the log-likelihood ratio statistic, all Ns corresponding to

2
[
l
(
n+ f̂0, ν(f̂0), d(f̂0)

)
− l
(
n+ f0, ν̂(f0), d̂(f0)

)]
≤ (z1−α/2)2

form the 100(1 − α)% confidence set for N̂Profile. Therefore, the 95% confidence

interval for N̂Profile is the range of N̂Profile that satisfies

2
[
l
(
n+ f̂0, ν(f̂0), d(f̂0)

)
− l
(
n+ f0, ν̂(f0), d̂(f0)

)]
− (1.96)2 ≤ 0. (3.49)

3.4 Simulation plan

3.4.1 Point estimation part

A simulation was used to study the performance of proposed estimator (N̂Herm)

and to compare with those of other well-known estimators based upon homogeneous

and heterogeneous case. The maximum likelihood (N̂MLE) and Turing’s estimator

(N̂Turing) were used as estimators in homogeneous case. Two population estimators

Chao’s lower bound estimator (N̂Chao) and Censored estimator (N̂Censored) were used

as estimators in heterogeneous case. The count data were generated by Monte Carlo

technique using program R. The population size was N = 100, 500, and 1, 000 with

following distribution:

i. The Poisson distribution with parameters λ ∈ {1, 2, 3}.
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ii. The Hermite distribution with

pi = eν(−1+ d−1
2

)[ν(2− d)]i
∑[i/2]

j=0 ( d−1
2ν(2−d)2

)j 1
(i−2j)!j!

.

Here, parameters ν ∈ {1, 2, 3, 4} and dispersion parameters d ∈ {1.2, 1.4, 1.6, 1.8}.

iii. The negative binomial distribution with

pi = Γ(k+i)
Γ(i+1)Γ(k)

pk(1− p)i,

where parameters p ∈ {0.6, 0.7, 0.8} and dispersion parameters k ∈ {3, 4, 5}.

Here, expected value and variance are given as k(1−p)
p

and k(1−p)
p2

, respectively.

iv. The geometric distribution with

pi = p(1− p)i,

where parameters p ∈ {0.1, 0.2, 0.3, 0.4, 0.5}.

The criteria of comparing the performance of estimators were relative bias

(Rbias) and relative root mean square error (RRMSE) from 1,000 repeated times:

Rbias =
E(N̂)−N

N

RRMSE =
1

N

√
V ar(N̂) + (E(N̂)−N)2.

Here, E(N̂) = 1
1,000

∑1,000
t=1 N̂(t), V ar(N̂) = 1

999

∑1,000
t=1 {N̂(t) − E(N̂)}2, and N̂(t) de-

notes the estimated values of the population size at replication t.

3.4.2 Interval estimation part

A simulation was used to investigate performance of confidence intervals

based on the profile likelihood. Further simulation was conducted to compare confi-

dence intervals obtained from the proposed one and several estimators including N̂MLE ,

N̂Turing, N̂Chao, and N̂Censored that were done by means of normal approximation,

N̂ ± z1−α
2
Ŝe(N̂). The count data were generated by Monte Carlo technique using

program R. The population size was N = 100 and 1, 000. Count data were generated

from the following distribution:
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i. The Poisson distribution with parameters λ ∈ {1, 3}.

ii. The Hermite distribution with

pi = eν(−1+ d−1
2

)[ν(2− d)]i
∑[i/2]

j=0 ( d−1
2ν(2−d)2

)j 1
(i−2j)!j!

.

Here, parameters ν ∈ {2, 4}, and dispersion parameters d ∈ {1.2, 1.4, 1.6, 1.8}.

The percentage of 100 simulated data in which the 95% confidence inter-

val covered the true N called coverage probability (CP) and average lengths (AL) of

achieved confidence intervals were the criteria for comparing the performance of esti-

mation. The CP and AL be calculated as

CP =

∑100
t=1C(t)

100
, (3.50)

where C(t) equal to 1 if the true population size N contain in the confidence interval,

and 0 otherwise.

AL =

∑100
t=1(N̂U(t)

− N̂L(t)
)

100
, (3.51)

where N̂U(t)
and N̂L(t)

are the upper and lower estimation of N at replication t, respec-

tively.

3.5 Simulation results

3.5.1 Point estimation part

3.5.1.1 Simulation results based on the Poisson distribu-

tion

From the simulation results showed in Table 3.1, the Rbias of N̂MLE , N̂Turing,

N̂Chao, and N̂Herm converged to zero when the population size increases, they were

asymptotically unbiased with respect to the population size. N̂MLE and N̂Turing were

derived on the basis of homogeneity Poisson model, they might be expected to be an ap-

propriated choice. They gave the smallest Rbias among the other estimators. If parame-

ter λ and population size N increased, the Rbias of all estimators decreased . N̂Censored

provided severe overestimation for all population size, especially for small λ.
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RRMSE of all estimators were presented in Table 3.2, revealed that N̂MLE

and N̂Turing produced the smallest RRMSE for all cases. N̂Herm provided smaller

RRMSE than N̂Chao and N̂Censored when parameter λ = 3 for all population sizes.

N̂Censored provided the largest RRMSE for all population size, especially for small λ.

Therefore, N̂Herm is an efficient estimator for estimating the population size N based

on Poisson distribution when N > 500 and λ > 2.

Table 3.1: The relative bias of estimators with different parameters in the Poisson dis-

tribution.

λ MLE Turing Chao Censored Herm

N=100

1 0.0223 0.0216 0.0427 0.5621 0.1222

2 0.0053 0.0058 0.0154 0.2721 0.0347

3 0.0023 0.0019 0.0075 0.1312 0.0116

N=500

1 0.0020 0.0019 0.0049 0.5179 0.0614

2 0.0020 0.0016 0.0024 0.2605 0.0124

3 0.0001 0.0000 0.0009 0.1280 0.0031

N=1,000

1 0.0007 0.0009 0.0035 0.5150 0.0379

2 -0.0003 -0.0007 -0.0006 0.2569 0.0055

3 0.0002 0.0000 0.0003 0.1270 0.0021
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Table 3.2: The relative root mean square error of estimators with different parameters

in the Poisson distribution.

λ MLE Turing Chao Censored Herm

N=100

1 0.1295 0.1343 0.1927 0.6262 0.2650

2 0.0483 0.0517 0.0732 0.2916 0.0878

3 0.0259 0.0279 0.0401 0.1432 0.0362

N=500

1 0.0489 0.0504 0.0674 0.5284 0.1429

2 0.0214 0.0231 0.0318 0.2647 0.0368

3 0.0110 0.0122 0.0167 0.1306 0.0127

N=1,000

1 0.0383 0.0395 0.0516 0.5213 0.0944

2 0.0154 0.0165 0.0219 0.2591 0.0194

3 0.0079 0.0086 0.0114 0.1282 0.0089
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Figure 3.2: The relative bias of estimators with different parameters in the Poisson

distribution.

Figure 3.3: The relative root mean square error of estimators with different parameters

in the Poisson distribution.
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3.5.1.2 Simulation results based on the Hermite distribu-

tion

N̂Herm was derived on the basis of Hermite distribution, it might be expected

to be an appropriated choice. From Table 3.3, N̂Herm gave the smallest Rbias among

the other estimators for all cases. N̂Herm converged to zero when the population sizes

increases, it was asymptotically unbiased with respect to the population size. N̂Censored

provided severe overestimation when dispersion parameter d = 1.2, and severe under-

estimation when dispersion parameter d = 1.8 for all population size, especially for

small ν. Moreover, N̂MLE , N̂Turing, and N̂Chao provided severe underestimation when

dispersion parameter d = 1.6 and d = 1.8 for all population size, especially for small

ν.

From Table 3.4, N̂Herm produced the smallest RRMSE in almost all cases.

N̂Censored provided the largest RRMSE when dispersion parameter d = 1.2 for all pop-

ulation sizes and ν. Moreover, N̂MLE , N̂Turing, and N̂Chao provided larger RRMSEs

than N̂Censored and N̂Herm when dispersion parameter d = 1.6 and d = 1.8 for all pop-

ulation size, especially for small ν. Therefore, N̂Herm is the best performing estimator

for estimating the population size N based on Hermite distribution.
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Table 3.3: The relative bias of estimators with different parameters in the Hermite dis-

tribution.

ν d MLE Turing Chao Censored Herm
N=100

1

1.2 -0.1183 -0.1087 -0.0695 0.3382 0.0453
1.4 -0.2454 -0.2377 -0.2108 0.1004 -0.0061
1.6 -0.3617 -0.3693 -0.3810 -0.1596 0.0250
1.8 -0.4649 -0.4918 -0.5193 -0.3985 0.0620

2

1.2 -0.0466 -0.0361 -0.0110 0.2283 0.0262
1.4 -0.1049 -0.0907 -0.0611 0.1511 -0.0004
1.6 -0.1701 -0.1616 -0.1510 0.0273 -0.0180
1.8 -0.2487 -0.2576 -0.2724 -0.1559 0.0040

3

1.2 -0.0223 -0.0153 -0.0013 0.1277 0.0086
1.4 -0.0492 -0.0377 -0.0173 0.1113 0.0056
1.6 -0.0885 -0.0775 -0.0619 0.0556 -0.0130
1.8 -0.1410 -0.1393 -0.1435 -0.0551 -0.0120

4

1.2 -0.0104 -0.0062 0.0024 0.0694 0.0034
1.4 -0.0240 -0.0163 -0.0020 0.0700 0.0056
1.6 -0.0480 -0.0390 -0.0257 0.0471 -0.0043
1.8 -0.0771 -0.0725 -0.0714 -0.0099 -0.0093

N=500

1

1.2 -0.1283 -0.1162 -0.0894 0.3213 0.0125
1.4 -0.2521 -0.2444 -0.2329 0.0833 0.0034
1.6 -0.3635 -0.3707 -0.3900 -0.1662 0.0108
1.8 -0.4657 -0.4923 -0.5218 -0.4024 0.0165

2

1.2 -0.0491 -0.0382 -0.0213 0.2226 0.0153
1.4 -0.1061 -0.0921 -0.0718 0.1453 -0.0017
1.6 -0.1722 -0.1642 -0.1606 0.0201 -0.0042
1.8 -0.2494 -0.2572 -0.2741 -0.1564 0.0007

3

1.2 -0.0206 -0.0132 -0.0039 0.1298 0.0037
1.4 -0.0506 -0.0389 -0.0240 0.1076 0.0040
1.6 -0.0885 -0.0776 -0.0678 0.0532 -0.0073
1.8 -0.1386 -0.1367 -0.1431 -0.0523 0.0011

4

1.2 -0.0094 -0.0051 -0.0005 0.0698 0.0014
1.4 -0.0241 -0.0162 -0.0073 0.0689 0.0033
1.6 -0.0460 -0.0371 -0.0284 0.0480 -0.0010
1.8 -0.0793 -0.0747 -0.0758 -0.0129 -0.0011

N=1,000

1

1.2 -0.1316 -0.1195 -0.0943 0.3163 0.0112
1.4 -0.2527 -0.2442 -0.2321 0.0836 -0.0101
1.6 -0.3644 -0.3712 -0.3910 -0.1668 0.0062
1.8 -0.4661 -0.4924 -0.5218 -0.4028 0.0084

2

1.2 -0.0483 -0.0373 -0.0206 0.2236 0.0099
1.4 -0.1064 -0.0919 -0.0716 0.1462 -0.0027
1.6 -0.1730 -0.1645 -0.1608 0.0205 -0.0035
1.8 -0.2496 -0.2574 -0.2745 -0.1565 0.0002

3

1.2 -0.0215 -0.0143 -0.0062 0.1274 0.0012
1.4 -0.0502 -0.0382 -0.0238 0.1088 0.0046
1.6 -0.0882 -0.0769 -0.0668 0.0551 -0.0048
1.8 -0.1388 -0.1368 -0.1435 -0.0526 0.0003

4

1.2 -0.0098 -0.0056 -0.0017 0.0683 0.0002
1.4 -0.0246 -0.0168 -0.0088 0.0678 0.0015
1.6 -0.0464 -0.0374 -0.0288 0.0479 -0.0011
1.8 -0.0785 -0.0737 -0.0751 -0.0115 0.0000

Ref. code: 25615809320038LCH



44

Figure 3.4: The relative bias of estimators with different parameters in the Hermite

distribution.
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Table 3.4: The relative root mean square error of estimators with different parameters

in the Hermite distribution.

ν d MLE Turing Chao Censored Herm
N=100

1

1.2 0.1576 0.1540 0.1776 0.4068 0.2215
1.4 0.2610 0.2550 0.2475 0.2086 0.2357
1.6 0.3696 0.3772 0.3909 0.2088 0.2775
1.8 0.4692 0.4956 0.5225 0.4079 0.3004

2

1.2 0.0688 0.0649 0.0827 0.2527 0.1015
1.4 0.1167 0.1061 0.1013 0.1848 0.0978
1.6 0.1776 0.1703 0.1656 0.0971 0.1046
1.8 0.2538 0.2625 0.2773 0.1724 0.1071

3

1.2 0.0365 0.0346 0.0456 0.1421 0.0486
1.4 0.0587 0.0511 0.0545 0.1297 0.0561
1.6 0.0949 0.0857 0.0799 0.0857 0.0580
1.8 0.1464 0.1449 0.1494 0.0793 0.0614

4

1.2 0.0206 0.0199 0.0285 0.0795 0.0247
1.4 0.0318 0.0274 0.0357 0.0824 0.0323
1.6 0.0537 0.0466 0.0442 0.0653 0.0357
1.8 0.0827 0.0787 0.0787 0.0450 0.0418

N=500

1

1.2 0.1367 0.1261 0.1117 0.3365 0.1354
1.4 0.2550 0.2477 0.2391 0.1154 0.1497
1.6 0.3650 0.3721 0.3917 0.1756 0.1177
1.8 0.4665 0.4930 0.5223 0.4041 0.1073

2

1.2 0.0540 0.0449 0.0391 0.2273 0.0649
1.4 0.1086 0.0953 0.0793 0.1525 0.0644
1.6 0.1737 0.1659 0.1632 0.0462 0.0597
1.8 0.2504 0.2582 0.2751 0.1597 0.0447

3

1.2 0.0239 0.0186 0.0192 0.1326 0.0227
1.4 0.0525 0.0417 0.0318 0.1113 0.0335
1.6 0.0899 0.0794 0.0709 0.0604 0.0366
1.8 0.1397 0.1379 0.1443 0.0587 0.0276

4

1.2 0.0121 0.0097 0.0114 0.0720 0.0106
1.4 0.0258 0.0189 0.0154 0.0714 0.0166
1.6 0.0473 0.0388 0.0318 0.0520 0.0208
1.8 0.0804 0.0758 0.0771 0.0236 0.0181

N=1,000

1

1.2 0.1355 0.1242 0.1057 0.3241 0.1184
1.4 0.2542 0.2459 0.2354 0.1012 0.1188
1.6 0.3651 0.3719 0.3918 0.1714 0.0791
1.8 0.4666 0.4928 0.5221 0.4037 0.0763

2

1.2 0.0507 0.0408 0.0314 0.2261 0.0485
1.4 0.1075 0.0934 0.0753 0.1497 0.0517
1.6 0.1738 0.1654 0.1621 0.0353 0.0443
1.8 0.2501 0.2579 0.2750 0.1582 0.0329

3

1.2 0.0234 0.0174 0.0150 0.1290 0.0152
1.4 0.0512 0.0397 0.0282 0.1108 0.0266
1.6 0.0889 0.0778 0.0685 0.0587 0.0274
1.8 0.1394 0.1374 0.1441 0.0557 0.0189

4

1.2 0.0112 0.0081 0.0082 0.0694 0.0068
1.4 0.0255 0.0182 0.0129 0.0691 0.0124
1.6 0.0471 0.0383 0.0307 0.0499 0.0151
1.8 0.0791 0.0743 0.0758 0.0178 0.0123
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Figure 3.5: The relative root mean square error of estimators with different parameters

in the Hermite distribution.
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3.5.1.3 Simulation results based on the geometric distribu-

tion

N̂Censored was derived on the basis of geometric distribution, it might be ex-

pected to be an appropriated choice. From Table 3.5, N̂Censored gave the smallest Rbias

among the other estimators for all cases. N̂Censored converged to zero when the popula-

tion sizes increases, it was asymptotically unbiased with respect to the population size.

N̂MLE and N̂Turing provided severe underestimation for all population size, especially

for large p. Moreover, N̂Chao and N̂Herm provided underestimation for all population

size, especially for large p.

From Table 3.6, N̂Censored produced the smallest RRMSE for all cases.

N̂MLE and N̂Turing provided the largest RRMSE for all population size, especially for

large p. Moreover, N̂Chao and N̂Herm provided the large RRMSE for all population

size, especially for large p. Therefore, N̂Censored is the best performing estimator for

estimating the population size N based on geometric distribution.

Ref. code: 25615809320038LCH
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Table 3.5: The relative bias of estimators with different parameters in the geometric

distribution.

p MLE Turing Chao Censored Herm

N=100

0.1 -0.1012 -0.0921 -0.0354 -0.0010 -0.0973

0.2 -0.1958 -0.1684 -0.0865 -0.0011 -0.1571

0.3 -0.2677 -0.2293 -0.1339 0.0033 -0.1873

0.4 -0.3231 -0.2824 -0.1767 0.0078 -0.2051

0.5 -0.3598 -0.3217 -0.2110 0.0282 -0.1974

N=500

0.1 -0.0995 -0.0904 -0.0474 0.0005 -0.0959

0.2 -0.1941 -0.1664 -0.0969 0.0011 -0.1566

0.3 -0.2687 -0.2291 -0.1433 0.0042 -0.1918

0.4 -0.3260 -0.2842 -0.1954 0.0029 -0.2179

0.5 -0.3713 -0.3326 -0.2449 0.0023 -0.2401

N=1,000

0.1 -0.0994 -0.0903 -0.0479 0.0009 -0.0959

0.2 -0.1940 -0.1663 -0.0986 0.0003 -0.1566

0.3 -0.2690 -0.2296 -0.1465 0.0021 -0.1925

0.4 -0.3270 -0.2850 -0.1971 0.0016 -0.2206

0.5 -0.3722 -0.3333 -0.2482 0.0007 -0.2434
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Table 3.6: The relative root mean square error of estimators with different parameters

in the geometric distribution.

p MLE Turing Chao Censored Herm

N=100

0.1 0.1059 0.0974 0.0834 0.0499 0.1022

0.2 0.1999 0.1737 0.1240 0.0764 0.1633

0.3 0.2720 0.2353 0.1697 0.1020 0.1964

0.4 0.3289 0.2906 0.2248 0.1396 0.2237

0.5 0.3694 0.3341 0.2692 0.1895 0.2503

N=500

0.1 0.1004 0.0915 0.0525 0.0219 0.0969

0.2 0.1950 0.1674 0.1021 0.0334 0.1579

0.3 0.2695 0.2302 0.1489 0.0433 0.1936

0.4 0.3271 0.2858 0.2027 0.0612 0.2206

0.5 0.3729 0.3347 0.2532 0.0789 0.2455

N=1,000

0.1 0.0999 0.0909 0.0504 0.0156 0.0964

0.2 0.1944 0.1668 0.1011 0.0233 0.1573

0.3 0.2695 0.2302 0.1495 0.0327 0.1934

0.4 0.3276 0.2858 0.2006 0.0439 0.2220

0.5 0.3729 0.3342 0.2520 0.0537 0.2457
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Figure 3.6: The relative bias of estimators with different parameters in the geometric

distribution.

Figure 3.7: The relative root mean square error of estimators with different parameters

in the geometric distribution.

Ref. code: 25615809320038LCH



51

3.5.1.4 Simulation results based on the negative binomial

distribution

From Table 3.7, N̂Herm produced the smallest Rbias among the other estima-

tors for k = 3 and k = 4 when N = 500 and N = 1, 000. N̂Herm gave the smallest

Rbias among the other estimators for k = 3 and N = 100 . N̂Chao gave the smallest

Rbias for k = 5 in all population size. N̂MLE and N̂Turing provided underestimation for

all population size. N̂Censored provided severe overestimation for all population size,

especially for large p. Moreover, Rbias of all estimators decreased when parameter p

decreased.

From Table 3.8, N̂Herm produced the smallest RRMSE among the other

estimators for k = 3 when N = 500 and N = 1, 000. N̂Chao gave the smallest RRMSE

for k = 4 and k = 5 when N = 500 and N = 1, 000. Moreover, N̂Turing provided

the smallest RRMSE in almost all cases for N = 100. N̂Censored provided the largest

RRMSE for all cases, especially for large p. Therefore, N̂Herm is an efficient estimator

for estimating the population size N based on negative binomial distribution when the

population size greater than 500.
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Table 3.7: The relative bias of estimators with different parameters in the negative bi-

nomial distribution.

k p MLE Turing Chao Censored Herm

N=100

3

0.6 -0.1240 -0.0960 -0.0382 0.1798 0.0096

0.7 -0.1574 -0.1315 -0.0633 0.2538 0.0142

0.8 -0.1678 -0.1493 -0.0755 0.3733 0.0754

4

0.6 -0.0769 -0.0552 -0.0168 0.1462 0.0277

0.7 -0.1047 -0.0824 -0.0315 0.2328 0.0320

0.8 -0.1231 -0.1060 -0.0524 0.3581 0.0678

5

0.6 -0.0485 -0.0324 -0.0062 0.1103 0.0242

0.7 -0.0726 -0.0539 -0.0161 0.1979 0.0353

0.8 -0.0926 -0.0769 -0.0310 0.3318 0.0515

N=500

3

0.6 -0.1267 -0.0983 -0.0514 0.1734 0.0075

0.7 -0.1620 -0.1345 -0.0801 0.2429 0.0108

0.8 -0.1905 -0.1696 0.1192 0.3271 0.0295

4

0.6 -0.0785 -0.0563 -0.0246 0.1427 0.0230

0.7 -0.1099 -0.0862 -0.0452 0.2248 0.0399

0.8 -0.1379 -0.1185 -0.0773 0.3325 0.0490

5

0.6 -0.0488 -0.0323 -0.0114 0.1098 0.0273

0.7 -0.0769 -0.0565 -0.0254 0.1952 0.0465

0.8 -0.1059 -0.0874 -0.0511 0.3145 0.0577

N=1,000

3

0.6 -0.1282 -0.0995 -0.0529 0.1714 0.0016

0.7 -0.1624 -0.1351 -0.0831 0.2408 0.0099

0.8 -0.1942 -0.1733 -0.1262 0.3181 0.0205

4

0.6 -0.0789 -0.0566 -0.0256 0.1425 0.0233

0.7 -0.1111 -0.0870 -0.0465 0.2243 0.0379

0.8 -0.1406 -0.1206 -0.0791 0.3295 0.0517

5

0.6 -0.0492 -0.0326 -0.0121 0.1097 0.0267

0.7 -0.0776 -0.0571 -0.0269 0.1943 0.0473

0.8 -0.1078 -0.0888 -0.0531 0.3119 0.0599

Ref. code: 25615809320038LCH



53

Figure 3.8: The relative bias of estimators with different parameters in the negative

binomial distribution.

Ref. code: 25615809320038LCH



54

Table 3.8: The relative root mean square error of estimators with different parameters

in the negative binomial distribution.

k p MLE Turing Chao Censored Herm

N=100

3

0.6 0.1345 0.1113 0.1021 0.2126 0.0850

0.7 0.1754 0.1547 0.1508 0.3055 0.1551

0.8 0.2210 0.2109 0.2527 0.4904 0.3321

4

0.6 0.0853 0.0685 0.0685 0.1677 0.0689

0.7 0.1222 0.1065 0.1115 0.2708 0.1179

0.8 0.1674 0.1573 0.1799 0.4303 0.2303

5

0.6 0.0567 0.0451 0.0492 0.1259 0.0510

0.7 0.0858 0.0734 0.0845 0.2240 0.0949

0.8 0.1273 0.1197 0.1431 0.3808 0.1795

N=500

3

0.6 0.1287 0.1013 0.0652 0.1807 0.0385

0.7 0.1657 0.1397 0.0985 0.2549 0.0731

0.8 0.1993 0.1806 0.1501 0.3526 0.1554

4

0.6 0.0804 0.0594 0.0371 0.1474 0.0366

0.7 0.1131 0.0911 0.0641 0.2326 0.0729

0.8 0.1458 0.1284 0.1041 0.3475 0.1373

5

0.6 0.0505 0.0352 0.0236 0.1133 0.0346

0.7 0.0798 0.0611 0.0438 0.2009 0.0674

0.8 0.1125 0.0962 0.0777 0.3250 0.1234

N=1,000

3

0.6 0.1293 0.1011 0.0596 0.1749 0.0264

0.7 0.1643 0.1377 0.0928 0.2470 0.0494

0.8 0.1983 0.1785 0.1407 0.3309 0.1121

4

0.6 0.0798 0.0581 0.0323 0.1449 0.0307

0.7 0.1128 0.0894 0.0560 0.2282 0.0576

0.8 0.1445 0.1254 0.0935 0.3373 0.1096

5

0.6 0.0501 0.0341 0.0191 0.1114 0.0305

0.7 0.0791 0.0593 0.0365 0.1970 0.0586

0.8 0.1110 0.0932 0.0675 0.3173 0.1018
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Figure 3.9: The relative root mean square error of estimators with different parameters

in the negative binomial distribution.
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3.5.2 Interval estimation part

3.5.2.1 Simulation results based on the Poisson distribu-

tion

The coverage probabilities of the 95% CIs based on the Poisson distribution

were presented in Table 3.9. A comparison of the estimators showed that N̂Herm pro-

vided overestimation for small parameter λ = 1 and small population size N = 100.

N̂Censored provided severe overestimation for all cases, especially for small λ.

The CPs of proposed CI gave the highest CP for all cases. CIs of N̂Chao per-

formed the second best in which the CP increased with increasing N . CIs of N̂Censored

provided low CP for all cases, and did not cover the true population size forN = 1, 000.

CIs of N̂MLE and N̂Turing provided low CP for small parameter λ = 1, and increased

to the nominal level when the parameter λ increase.

Since ALs of proposed CI were quite shorter than those of N̂Chao, the pro-

posed CI is the best choice for estimating the CI of population size N based on Poisson

distribution, especially for small parameter λ = 1 and population size N = 100 and for

large parameter λ = 3 and population size N = 1, 000.
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Table 3.9: Comparison of various estimators and 95% CI ofN with different parameters

in the Poisson distribution.

Estimators
Average Average Coverage Average

N̂ ŝe(N̂) probability length

N=100

Poi(1)

MLE 101.41 6.14 0.80 24.06

Turing 101.90 4.08 0.49 15.98

Chao 105.72 17.41 0.91 68.26

Censored 156.61 28.57 0.50 111.97

Herm 114.91 - - -

Profile 103.22 - 1.00 30.62

Poi(3)

MLE 100.41 2.22 0.95 8.69

Turing 100.30 2.27 0.92 8.90

Chao 100.71 3.58 0.92 14.03

Censored 112.77 6.64 0.59 26.04

Herm 101.40 - - -

Profile 101.20 - 0.99 16.73

N=1,000

Poi(1)

MLE 997.46 19.13 0.71 74.99

Turing 997.79 12.87 0.51 50.44

Chao 1,000.08 47.46 0.95 186.02

Censored 1,509.51 84.54 0.00 331.38

Herm 1,029.80 - - -

Profile 1,027.85 - 1.00 196.00

Poi(3)

MLE 999.88 7.06 0.90 27.66

Turing 1,000.25 7.37 0.87 28.88

Chao 1,001.41 11.28 0.93 44.22

Censored 1,128.99 21.56 0.00 84.52

Herm 1,002.48 - - -

Profile 1,001.75 - 0.99 33.21
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3.5.2.2 Simulation results based on the Hermite distribu-

tion

The coverage probabilities of the 95% CIs based on the Hermite distribution

were presented in Tables 3.10 and 3.11. A comparison of the estimators showed that

N̂MLE , N̂Turing, and N̂Chao provided severe underestimation for small parameter ν =

2, especially for d = 1.6 and d = 1.8, in all population size. N̂Censored provided

overestimation for small parameter ν = 2 for d = 1.2 and d = 1.4, in all population

size.

For N = 100, the proposed CI provided the highest CP in all cases. The CIs

of N̂MLE , N̂Turing, N̂Chao, and N̂Censored provided low CP in almost all cases. The CIs

of N̂Turing, N̂Chao, and proposed CI were close to the nominal level when the count data

was generated from Herm(4, 1.2). The CP of N̂Censored was similar to the proposed

CI when the count data were generated from Herm(2, 1.6) and Herm(4, 1.6), but the

ALs of the proposed CI were shorter than those of N̂Censored.

For N = 1, 000, the proposed CI provides the highest CP for all cases. The

CIs of N̂MLE , N̂Turing, N̂Chao, and N̂Censored do not cover the true population size N

in almost all cases. The CP of N̂Censored is higher than the proposed CI when the count

data were generated from Herm(2, 1.6). The CI of N̂Censored gives a smaller AL in this

case.

The proposed CI provided the highest CP and quite short AL for all cases.

Therefore, the proposed CI is the best choice for estimating the CI of population size N

based on Hermite distribution.
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Table 3.10: Comparison of various estimators and 95% CI of N for N = 100 with

different parameters in the Hermite distribution .

Estimators
Average Average Coverage Average Average Average Coverage Average
N̂ ŝe(N̂) probability length N̂ ŝe(N̂) probability length

Herm(2, 1.2) Herm(4, 1.2)

MLE 95.07 3.40 0.61 13.34 99.14 1.34 0.88 5.27
Turing 96.26 3.30 0.66 12.92 99.62 1.60 0.94 6.26
Chao 98.79 7.42 0.86 29.08 100.74 2.92 0.96 11.43
Censord 122.73 11.97 0.59 46.92 107.52 4.83 0.80 18.93
Herm 102.50 - - - 100.73 - - -
Profile 102.41 - 0.96 40.24 100.68 - 0.99 11.93

Herm(2, 1.4) Herm(4, 1.4)

MLE 89.69 3.06 0.25 12.00 97.65 1.26 0.57 4.94
Turing 91.21 3.09 0.34 12.12 98.46 1.62 0.75 6.34
Chao 94.76 7.32 0.70 28.70 100.15 3.28 0.87 12.85
Censored 115.36 11.11 0.83 43.54 107.12 5.05 0.82 19.80
Herm 100.16 - - - 100.78 - - -
Profile 97.69 - 0.97 39.23 99.79 - 0.97 12.26

Herm(2, 1.6) Herm(4, 1.6)

MLE 82.62 2.69 0.04 10.55 95.17 1.18 0.25 4.63
Turing 83.46 2.75 0.04 10.78 96.04 1.58 0.41 6.18
Chao 84.57 5.27 0.23 20.66 97.37 3.01 0.68 11.78
Censored 101.97 9.20 0.93 36.07 104.43 4.96 0.94 19.44
Herm 98.16 - - - 99.22 - - -
Profile 94.98 - 0.91 32.08 97.88 - 0.93 13.12

Herm(2, 1.8) Herm(4, 1.8)

MLE 75.56 2.29 0.00 8.96 92.51 1.09 0.02 4.26
Turing 74.77 2.15 0.00 8.44 92.98 1.35 0.07 5.31
Chao 73.30 2.39 0.00 9.37 93.09 1.80 0.19 7.07
Censored 84.99 6.22 0.39 24.39 99.18 4.17 0.88 16.33
Herm 100.33 - - - 99.53 - - -
Profile 99.27 - 0.96 36.25 98.59 - 0.95 14.27
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Table 3.11: Comparison of various estimators and 95% CI of N for N = 1, 000 with

different parameters in the Hermite distribution .

Estimators
Average Average Coverage Average Average Average Coverage Average
N̂ ŝe(N̂) probability length N̂ ŝe(N̂) probability length

Herm(2, 1.2) Herm(4, 1.2)

MLE 950.04 10.77 0.00 42.21 989.98 4.18 0.34 16.40
Turing 961.47 10.49 0.12 41.12 994.31 4.98 0.73 19.54
Chao 979.39 22.46 0.78 88.02 998.34 7.69 0.86 30.13
Censored 1,222.35 37.47 0.00 146.86 1,068.98 14.91 0.00 58.45
Herm 1,007.43 - - - 1,000.15 - - -
Profile 1,008.40 - 0.93 176.35 999.36 - 0.94 26.62

Herm(2, 1.4) Herm(4, 1.4)

MLE 893.26 9.78 0.00 38.33 974.74 4.02 0.01 15.76
Turing 907.99 9.89 0.00 38.78 982.63 5.20 0.16 20.37
Chao 930.04 21.43 0.14 83.99 991.06 8.93 0.75 35.00
Censored 1,146.70 34.99 0.00 137.15 1,067.63 16.01 0.00 62.75
Herm 987.74 - - - 1,000.77 - - -
Profile 983.08 - 0.97 189.93 1,000.55 - 0.96 52.04

Herm(2, 1.6) Herm(4, 1.6)

MLE 825.46 8.58 0.00 33.64 953.37 3.80 0.00 14.91
Turing 834.04 8.82 0.00 34.59 962.45 5.13 0.00 20.12
Chao 837.76 15.82 0.00 62.00 970.95 8.84 0.16 34.64
Censored 1,018.50 29.18 0.99 114.37 1,048.05 16.04 0.14 62.88
Herm 992.91 - - - 996.58 - - -
Profile 972.39 - 0.96 159.42 994.33 - 0.93 55.98

Herm(2, 1.8) Herm(4, 1.8)

MLE 750.09 7.23 0.00 28.33 921.15 3.47 0.00 13.61
Turing 742.42 6.90 0.00 27.04 926.11 4.40 0.00 17.26
Chao 725.44 7.31 0.00 28.66 924.75 5.44 0.00 21.32
Censored 842.95 19.66 0.00 77.08 989.06 13.46 0.87 52.78
Herm 1,000.03 - - - 1,000.29 - - -
Profile 998.92 - 0.96 121.51 999.52 - 0.95 46.67
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3.6 Conclusion

The basic model for the count data is homogeneous Poisson model, but it

rarely occurs in real situations. It is more reasonable to assume that the population

may consist of a set of subgroups. Heterogeneous Poisson model might be more re-

alistic. The negative binomial and geometric distributions have been commonly used

as a model of capture-recapture data. The failure of a dispersion parameter estimation

in negative binomial distributions which results in a spurious estimate for the popula-

tion size N have been demonstrated in many studies. Therefore, the Poisson-Normal

distribution is proposed in this study.

The new population size N̂Herm based on the Poisson-Normal mixture or

Hermite distribution is derived using the maximum likelihood estimation. The simu-

lation study is used to consider the performance of the proposed estimator under ho-

mogeneous and heterogeneous count data. The simulation results reveal that N̂Herm is

an asymptotic estimator under Poisson and Hermite distributions. For Hermite distri-

bution, N̂Herm works very well compared with others. Its performance is close to the

N̂MLE and N̂Turing for N > 500 and λ > 2 under Poisson distribution. In addition,

N̂Herm is an efficient estimator for estimating the population size N based on negative

binomial distribution when N > 500.

The profile likelihood is used to construct the confidence intervals for the

population size N . The proposed CI provided CPs close to the nominal level at 95%

under Poisson distribution. The average lengths of proposed CI were quite shorter than

those of others, which gave CPs close to the nominal level in Poisson distribution.

Therefore, proposed CI is an appropriate choice for estimating the CI of population

size N based on Poisson distribution. Based on Hermite distribution, the proposed CI

provided CPs close to the nominal level at 95% while the others gave low CPs. It is

clear that the proposed CI is the best choice for estimating the CI of population size N

based on Hermite distribution.
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CHAPTER 4

DISCRETE MIXTURES OF HERMITE DISTRIBUTIONS

A mixture model is a flexible approach to cope with data from a population

which is known or suspected to contain contaminated parts. Mixture model has been

widely used in many fields. For example, Böhning et al. (2005) proposed the NPMLE

of population size based on the zero-truncated count mixture model. Viwatwongkasem,

Kuhnert, and Satitvipawee (2008) proposed the estimator of population size based on

the mixtures of zero-truncated Poisson distributions. Böhning and Kuhnert (2006)

showed the equivalence of the zero-truncated count mixture distributions and the mix-

tures of zero-truncated count distributions. Therefore, estimating the population size N

of two estimators associated with the two models provides equal values. Lerdsuwansri

and Böhning (2017) proposed discrete mixtures of bivariate, conditional independent

Poisson model to estimate an unknown population size in two-source situation. The

results for estimating the parameters of zero-truncated count mixtures of Hermite dis-

tributions implying a unique estimator for the population size N are proposed in this

study.

4.1 Maximum likelihood estimation of discrete mixtures of Her-

mite distributions

Let Y be the number of times that a unit was identified over the study period.

Assume Y is mixture of the Hermite distribution that consists of s components with

component specific mean νk and weight qk. Furthermore, all components have the

same dispersion d. The marginal distribution of Y is

f(y;Q) =
s∑

k=1

qkp(y|νk, d). (4.1)

Here, p(y|νk, d) = eνk( d−3
2

)[νk(2− d)]yqyk(θk), qyk(θk) =
∑[y/2]

j=0

θjk
(y−2j)!j!

, and

θk = d−1
2νk(2−d)2

. The finite mixture distribution arises as the marginal distribution with
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respect to the unobserved variables Z with distribution Q. A discrete mixing distribu-

tionQ =


ν1 ν2 · · · νs

d d · · · d

q1 q2 · · · qs

 gives weight qk to parameters νk and d for k = 1, 2, ..., s,

where s is the number of unobserved components. Note that qk ≥ 0 and
∑s

k=1 qk = 1.

Assume Y1, Y2, ..., Yn are observed and drawn from mixture density. The incomplete

data likelihood is

L(Q) =
m∏
i=1

( ∑s
k=1 qkp(i|νk, d)

1−
∑s

k=1 qkp(0|νk, d)

)fi
.

The incomplete data log-likelihood is

l(Q) =
m∑
i=1

fi log

( ∑s
k=1 qkp(i|νk, d)

1−
∑s

k=1 qkp(0|νk, d)

)
. (4.2)

An estimate of Q be achieved by maximizing (4.2), giving the NPMLE. The EM algo-

rithm has become common for maximum likelihood estimation in mixture models. To

carry on the EM algorithm, the complete data log-likelihood is required.

At the E-step, the unobserved frequency f0 is replaced by its expected value

given observed frequencies and current values of Q. Let the expected value of f0 de-

noted by f̂0 be written as

f̂0 = E(f0|observed data;Q)

=
nf(0;Q)

1− f(0;Q)

=
n
∑s

k=1 qkp(0|νk, d)

1−
∑s

k=1 qkp(0|νk, d)
. (4.3)

The log-likelihood for the complete data is given by

lcd(Q) = f̂0 log
s∑

k=1

qkp(0|νk, d) +
m∑
i=1

fi log
s∑

k=1

qkp(i|νk, d). (4.4)

To manipulate the MLE of Q, the log-likelihood is maximized by applying

the EM algorithm as well. In this case, a variable indicating component to which the

count i belongs is ignored. Let zik be indicator variables defined as:

zik =

 1 if count i arose from component k

0 otherwise.
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If zik are observable, the complete data log-likelihood is

lcd(Q) =
m∑
i=0

fi

s∑
k=1

zik log qk +
m∑
i=0

fi

s∑
k=1

zik log p(i|νk, d). (4.5)

At the E-step, the unobserved indicator zik is replaced by eik, its expected

value conditioning on the observed data and current values of Q

eik = E(zik|observed data;Q) =
qkp(i|νk, d)∑s
k=1 qkp(i|νk, d)

. (4.6)

Substituting eik into (4.5), the expected of the complete data log-likelihood is given by

E[lcd(Q)] =
m∑
i=0

fi

s∑
k=1

eik log qk +
m∑
i=0

fi

s∑
k=1

eik log p(i|νk, d). (4.7)

M-step: in mathematical optimization, Lagrange’s method is a strategy for

finding the local maximum of a function subject to equality constraints. To maximize

(4.7) subject to the constraint
∑s

k=1 qk = 1, the Lagrange function is

L(Q, γ) =
m∑
i=0

fi

s∑
k=1

eik log qk +
m∑
i=0

fi

s∑
k=1

eik log p(i|νk, d) + γ(1−
s∑

k=1

qk). (4.8)

Differentiating (4.8) with respect to γ, qk, νk, and d, and setting the result to 0:

∂

∂γ
L(Q, γ) = 0

1−
s∑

k=1

qk = 0

s∑
k=1

qk = 1. (4.9)

∂

∂qk
L(Q, γ) = 0∑m

i=0 fieik
qk

− γ = 0

qk =

∑m
i=0 fieik
γ

s∑
k=1

qk =

∑m
i=0

∑s
k=1 fieik
γ

. (4.10)

Solving equation (4.9) and (4.10) provides

γ =
m∑
i=0

s∑
k=1

fieik.
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Therefore,

q̂k =

∑m
i=0 fieik∑m

i=0

∑s
k=1 fieik

=

∑m
i=0 fieik

N̂
. (4.11)

∂

∂νk
L(Q, γ) = 0

∂

∂νk

( m∑
i=0

fi

s∑
k=1

eik log p(i|νk, d)

)
= 0

∂

∂νk

( m∑
i=0

fi

s∑
k=1

eik log

[
eνk( d−3

2
)[νk(2− d)]iqik(θk)

])
= 0

∂

∂νk

( m∑
i=0

fi

s∑
k=1

eik

[
νk
(d− 3

2

)
+ i log[νk(2− d)] + log qik(θk)

])
= 0

d− 3

2

m∑
i=0

fieik +
1

νk

m∑
i=0

ifieik +
∂

∂νk

[ m∑
i=1

fi

s∑
k=1

eik log qik(θk)

]
= 0.

(4.12)

Consider

∂

∂νk

[ m∑
i=1

fi

s∑
k=1

eik log qik(θk)

]
=

m∑
i=1

fi
∂

∂νk

[ s∑
k=1

eik log qik(θk)

]
=

m∑
i=1

fieik
∂

∂νk

[
log qik(θk)

]
=

m∑
i=1

fieik

[
1

qik(θk)
· ∂
∂θk

qik(θk) ·
∂θk
∂νk

]
=

m∑
i=1

fieik

[
1

qik(θk)
· q′ik(θk) ·

∂

∂νk

(
d− 1

2νk(2− d)2

)]
=

m∑
i=1

fieik

[
1

qik(θk)
· q′ik(θk) ·

(
− d− 1

2ν2
k(2− d)2

)]
= − d− 1

2(2− d)2νk2

m∑
i=0

fieikq
′
ik(θk)

qik(θk)
, (4.13)

where q′ik(θk) = ∂
∂θk
qik(θk). Substituting (4.13) in (4.12),
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∂

∂νk
L(Q, γ) = 0

∂

∂νk

( m∑
i=0

fi

s∑
k=1

eik log p(i|νk, d)

)
= 0

d− 3

2

m∑
i=0

fieik +
1

νk

m∑
i=0

ifieik −
d− 1

2(2− d)2νk2

m∑
i=0

fieikq
′
ik(θk)

qik(θk)
= 0.

(4.14)

∂

∂d
L(Q, γ) = 0

∂

∂d

( m∑
i=0

fi

s∑
k=1

eik log p(i|νk, d)

)
= 0

∂

∂d

( m∑
i=0

fi

s∑
k=1

eik log

[
eνk( d−3

2
)[νk(2− d)]iqik(θk)

])
= 0

∂

∂d

( m∑
i=0

fi

s∑
k=1

eik

[
νk
(d− 3

2

)
+ i log[νk(2− d)] + log qik(θk)

])
= 0

1

2

m∑
i=0

fieikνk −
1

2− d

m∑
i=0

ifieik +
∂

∂d

[ m∑
i=1

fi

s∑
k=1

eik log qik(θk)

]
= 0.

(4.15)

Consider

∂

∂d

[ m∑
i=1

fi

s∑
k=1

eik log qik(θk)

]
=

m∑
i=1

fi
∂

∂d

[ s∑
k=1

eik log qik(θk)

]
=

m∑
i=1

fieik
∂

∂d

[
log qik(θk)

]
=

m∑
i=1

fieik

[
1

qik(θk)
· ∂
∂θk

qik(θk) ·
∂θk
∂d

]
=

m∑
i=1

fieik

[
1

qik(θk)
· q′ik(θk) ·

∂

∂d

(
d− 1

2νk(2− d)2

)]
=

m∑
i=1

fieik

[
q′ik(θk)

qik(θk)
·
(

1

2νk(2− d)2
+

d− 1

νk(2− d)3

)]
=

d

2νk(2− d)3

m∑
i=0

fieikq
′
ik(θk)

qik(θk)
, (4.16)
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where q′ik(θk) = ∂
∂θk
qik(θk). Substituting (4.16) in (4.15),

∂

∂d
L(Q, γ) = 0

∂

∂d

( m∑
i=0

fi

s∑
k=1

eik log p(i|νk, d)

)
= 0

νk
2

m∑
i=0

fieik −
1

2− d

m∑
i=0

ifieik +
d

2νk(2− d)3

m∑
i=0

fieikq
′
ik(θk)

qik(θk)
= 0.

(4.17)

Rewrite (4.17) as
m∑
i=0

fieikq
′
ik(θk)

qik(θk)
=

2(2− d)3νk
d

(
1

2− d

m∑
i=0

ifieik −
νk
2

m∑
i=0

fieik

)
=

2(2− d)2νk
d

m∑
i=0

ifieik −
(2− d)3ν2

k

d

m∑
i=0

fieik. (4.18)

Substituting (4.18) in (4.14),
d−3

2

∑m
i=0 fieik + 1

νk

∑m
i=0 ifieik

− d−1
2(2−d)2νk2

[
2(2−d)2νk

d

∑m
i=0 ifieik −

(2−d)3ν2k
d

∑m
i=0 fieik

]
 = 0

(
d− 3

2
+

(d− 1)(2− d)

2d

) m∑
i=0

fieik +

(
1

νk
− d− 1

νkd

) m∑
i=0

ifieik = 0

−1

d

m∑
i=0

fieik +
1

νkd

m∑
i=0

ifieik = 0

1

νkd

m∑
i=0

ifieik =
1

d

m∑
i=0

fieik

ν̂k =

∑m
i=0 ifieik∑m
i=0 fieik

.

(4.19)

Substituting (4.19) in (4.18),
m∑
i=0

fieikq
′
ik(θk)

qik(θk)
=

2(2− d)2ν̂2
k

d

m∑
i=0

fieik −
(2− d)3ν̂2

k

d

m∑
i=0

fieik

= [(2− d)ν̂k]
2

m∑
i=0

fieik. (4.20)

Parameter d be found by solving (4.20). The package hermite in program R al-

lows to estimate the parameter d given an univariate sample by means of the function

glm.hermite, see (Moriña et al., 2015) for more details.
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The population size estimator based on discrete mixtures of Hermite distri-

butions through the Horvitz-Thomson approach is

N̂CMLE =
n

1−
∑s

k=1 q̂ke
ν̂k( d̂−3

2
)
. (4.21)

The EM algorithm used to compute the estimate of population size is given as follows.

4.1.1 EM algorithm

Step 0: Choose initial value Q̂(0) =


ν̂

(0)
1 ν̂

(0)
2 · · · ν̂

(0)
s

d̂(0) d̂(0) · · · d̂(0)

q̂
(0)
1 q̂

(0)
2 · · · q̂

(0)
s

, set t = 0.

Step 1: Compute

f̂
(t+1)
0 =

nf(0; Q̂(t))

1− f(0; Q̂(t))

e
(t)
ik =

q
(t)
k p(i|ν

(t)
k , d

(t))∑s
k=1 q

(t)
k p(i|ν

(t)
k , d

(t))
, for k = 1, 2, ..., s.

Step 2: Use complete data f̂ (t+1)
0 , f1, f2, ..., fm to compute the new MLEs of

q̂
(t+1)
k =

∑m
i=0 fie

(t)
ik

n+ f̂
(t+1)
0

, for k = 1, 2, ..., s

ν̂
(t+1)
k =

∑m
i=0 ifie

(t)
ik∑m

i=0 fie
(t)
ik

d̂
(t+1)
k = glm.hermite(f̂

(t+1)
0 , f1, ..., fm ∼ 1, link = ”log”, start = NULL,m? = 2).

Step 3: Set t = t+ 1 and repeat Step 1. Steps 1 and 2 are repeated until:∣∣∣q̂(t+1) − q̂(t)
∣∣∣ ≤ 10−4,

∣∣∣ν̂(t+1) − ν̂(t)
∣∣∣ ≤ 10−4, and

∣∣∣d̂(t+1) − d̂(t)
∣∣∣ ≤ 10−4.

4.2 Mixture model and the boundary problem

The maximum likelihood estimation discussed above faces two major prob-

lems, a boundary problem and a lack of identification. The boundary problem deals with

the circumstance in which the mixing distribution equates component parameters nearly

0+ with positive weight (J.-P. Wang & Lindsay, 2008). Kuhnert et al. (2008) demon-

strated that mixtures also suffer under the boundary problem, results in overestimation
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of population size N . The lack of identifiability problem also affects the inference of

population size N (Link, 2003). Different models providing different estimates of N

might have identical distributions.

To illustrate the boundary problem of maximum likelihood estimation dis-

cussed above, the example data were generated from two-components Hermite mix-

ture 0.5Herm(1, 1.6) + 0.5Herm(4, 1.6) with N = 500. Counts are shown in Table

4.1 which observed data n = 369. The MLEs of Q for each s are computed from

s = 1, 2, 3, ... until the log-likelihood stops increasing. Details of the likelihood anal-

ysis for s = 1 to s = 3 components are presented in Table 4.2. It can be seen that

the differences in the log-likelihood for models with s = 2 and s = 3 components

are minor, which is clearly evident when the Bayesian Information Criterion (BIC) is

considered:

BIC = −2 logL(Q̂s) + k log n, (4.22)

where logL(Q̂s) is the maximum log-likelihood of the model with s components and k

is the number of parameters estimated by the model. For s = 1, ν and d are parameter

estimates. If s = 2, the number of parameters estimated by the model is 4 including

q1, ν1, ν2, and d. For s = 3, the estimated parameters consist of q1, q2, ν1, ν2, ν3, and

d. Therefore, the number of parameters estimated by the model with s components is

2s. Models are selected on the basis of small BIC-values. From the result show in

Table 4.2, the appropriate model is the two-component model. The mixing distribution

equates component parameters νk nearly 0+ with positive weight. The boundary prob-

lem occurs, results in overestimation of population size N . Consequently, we suggest

to improve the estimation by using penalized maximum likelihood.

Table 4.1: Examples data from 0.5Herm(1, 1.6) + 0.5Herm(4, 1.6) with N = 500.

i 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

fi 131 76 92 60 52 26 25 18 13 1 3 2 0 0 1
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Table 4.2: Mixture likelihood analysis for the example data in Table 4.1.

s q̂k ν̂k d̂ logL(Q̂k) BIC f̂0 N̂CMLE

1 1.0000 3.1151 1.5720 -743.1164 1,497.9657 43 412

2 0.5048 0.0006 1.8198 -734.8085 1,493.0829 558 927

0.4952 2.6376

3 0.3119 0.0000 1.8286 -736.8547 1,508.9082 808 1,177

0.2972 0.0007

0.3909 2.6231

4.2.1 Penalized maximum likelihood estimation of discrete

mixtures of Hermite distributions

Let Y be the number of times that a unit was identified over the study period.

Assume Y is mixture of the Hermite distribution that consists of s components with

component specific mean νk and weight qk. Furthermore, all components have the

same dispersion d. The marginal distribution of Y is

f(y;Q) =
s∑

k=1

qkp(y|νk, d). (4.23)

Here, p(y|νk, d) = eνk( d−3
2

)[νk(2 − d)]yqyk(θk), qyk(θk) =
∑[y/2]

j=0

θjk
(y−2j)!j!

, and

θk = d−1
2νk(2−d)2

with respect to the unobserved variables Z having distribution Q. A

discrete mixing distribution Q =


ν1 ν2 · · · νs

d d · · · d

q1 q2 · · · qs

 gives weight qk to parameters νk

and d for k = 1, 2, ..., s, where s is the number of unobserved components. Note that

qk ≥ 0 and
∑s

k=1 qk = 1. Assume Y1, Y2, ..., Yn are observed and drawn from mixture

density. The incomplete data likelihood is

L(Q) =
m∏
i=1

( ∑s
k=1 qkp(i|νk, d)

1−
∑s

k=1 qkp(0|νk, d)

)fi
.

The incomplete data log-likelihood is

l(Q) =
m∑
i=1

fi log

( ∑s
k=1 qkp(i|νk, d)

1−
∑s

k=1 qkp(0|νk, d)

)
. (4.24)
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An estimate of Q can be achieved by maximizing (4.24) giving the NPMLE. The EM

algorithm is used for maximum likelihood estimation in mixture models. To carry on

the EM algorithm, the complete data log-likelihood is required.

At the E-step, the unobserved frequency f0 is replaced by its expected value

given observed frequencies and current values of Q. Let the expected value of f0 de-

noted by f̂0 be written as

f̂0 = E(f0|observed data;Q)

=
nf(0;Q)

1− f(0;Q)

=
n
∑s

k=1 qkp(0|νk, d)

1−
∑s

k=1 qkp(0|νk, d)
. (4.25)

The log-likelihood for the complete data is given by

lcd(Q) = f̂0 log
s∑

k=1

qkp(0|νk, d) +
m∑
i=1

fi log
s∑

k=1

qkp(i|νk, d). (4.26)

To manipulate the MLE of Q, the log-likelihood is maximized by applying

the EM algorithm as well. In this case, a variable indicating component to which the

count i belongs is ignored. Let zik be indicator variables defined as following

zik =

 1 if count i arose from component k

0 otherwise.

If zik are observable, the complete data log-likelihood is

lcd(Q) =
m∑
i=0

fi

s∑
k=1

zik log qk +
m∑
i=0

fi

s∑
k=1

zik log p(i|νk, d). (4.27)

At the E-step, the unobserved indicators zik are replaced by eik, the expected

values conditioning on the observed data and current values of Q

eik = E(zik|observed data;Q) =
qkp(i|νk, d)∑s
k=1 qkp(i|νk, d)

. (4.28)

The expected log-likelihood is given by

E[lcd(Q)] =
m∑
i=0

fi

s∑
k=1

eik log qk +
m∑
i=0

fi

s∑
k=1

eik log p(i|νk, d). (4.29)

Boundary problem can be found in mixture models. As a result, the plug-in estimator

of the parameters involving the probability at the boundary points are usually biased.
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Wang and Lindsay (J.-P. Wang & Lindsay, 2008) used a partial prior for Q and simpli-

fied into a penalized likelihood to improve the estimation. The expected log-likelihood

under the exponential partial prior is written as

Ep[lcd(Q)] =


∑m

i=0 fi
∑s

k=1 eik log qk +
∑m

i=0 fi
∑s

k=1 eik log p(i|νk, d)

− log

( ∑s
k=1 qkp(0|νk,d)

1−
∑s
k=1 qkp(0|νk,d)

)
 . (4.30)

M-step: In mathemathical optimization, the method of Lagrange multipliers

is a strategy for finding the maximum or minimum of a function subject to equality

constraints. To maximize (4.30) subject to the constraint
∑s

k=1 qk = 1, the Lagrange

function is defined by

Lp(Q, γ) =


∑m

i=0 fi
∑s

k=1 eik log qk +
∑m

i=0 fi
∑s

k=1 eik log p(i|νk, d)

− log

( ∑s
k=1 qkp(0|νk,d)

1−
∑s
k=1 qkp(0|νk,d)

)
+ γ(1−

∑s
k=1 qk)

 . (4.31)

Differentiating (4.31) with respect to γ , qk, νk, and d, and setting the result to 0:

∂

∂γ
Lp(Q, γ) = 0

1−
s∑

k=1

qk = 0

s∑
k=1

qk = 1. (4.32)
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∂

∂qk
Lp(Q, γ) = 0

∂

∂qk


∑m

i=0 fi
∑s

k=1 eik log qk

− log

( ∑s
k=1 qkp(0|νk,d)

1−
∑s
k=1 qkp(0|νk,d)

)
+ γ(1−

∑s
k=1 qk)

 = 0

∂

∂qk


∑m

i=0 fi
∑s

k=1 eik log qk − log
∑s

k=1 qkp(0|νk, d)

+ log(1−
∑s

k=1 qkp(0|νk, d)) + γ(1−
∑s

k=1 qk)

 = 0

∑m
i=0 fieik
qk

− p(0|νk, d)∑s
k=1 qkp(0|νk, d)

− p(0|νk, d)

(1−
∑s

k=1 qkp(0|νk, d))
− γ = 0∑m

i=0 fieik
qk

− p(0|νk, d)∑s
k=1 qkp(0|νk, d)(1−

∑s
k=1 qkp(0|νk, d))

− γ = 0∑m
i=0 fieik
qk

− p(0|νk, d)∑s
k=1 qkp(0|νk, d)(1−

∑s
k=1 qkp(0|νk, d))

= γ

m∑
i=0

fieik −
qkp(0|νk, d)∑s

k=1 qkp(0|νk, d)(1−
∑s

k=1 qkp(0|νk, d))
= qkγ.

(4.33)

∴ q̂k =

∑m
i=0 fieik −

qkp(0|νk,d)∑s
k=1 qkp(0|νk,d)(1−

∑s
k=1 qkp(0|νk,d))

γ
. (4.34)

From (4.33), it follows that

s∑
k=1

m∑
i=0

fieik −
∑s

k=1 qkp(0|νk, d)∑s
k=1 qkp(0|νk, d)(1−

∑s
k=1 qkp(0|νk, d))

= γ

s∑
k=1

qk.

Since
∑s

k=1 qk = 1,

γ =
s∑

k=1

m∑
i=0

fieik −
∑s

k=1 qkp(0|νk, d)∑s
k=1 qkp(0|νk, d)(1−

∑s
k=1 qkp(0|νk, d))

=
s∑

k=1

m∑
i=0

fieik −
1

1−
∑s

k=1 qkp(0|νk, d)
. (4.35)

Substituting (4.35) in (4.34) provides

q̂k =

∑m
i=0 fieik −

qkp(0|νk,d)
1−

∑s
k=1 qkp(0|νk,d)∑s

k=1

∑m
i=0 fieik −

1
1−

∑s
k=1 qkp(0|νk,d)

=

∑m
i=0 fieik − P1∑m

i=0

∑s
k=1 fieik − P2

. (4.36)

Here, P1 = qkp(0|νk,d)
1−

∑s
k=1 qkp(0|νk,d)

and P2 = 1
1−

∑s
k=1 qkp(0|νk,d)

.
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∂

∂νk
Lp(Q, γ) = 0

∂

∂νk

( m∑
i=0

fi

s∑
k=1

eik log p(i|νk, d)− log

[ ∑s
k=1 qkp(0|νk, d)

1−
∑s

k=1 qkp(0|νk, d)

])
= 0

∂

∂νk

( m∑
i=0

fi

s∑
k=1

eik log p(i|νk, d)

)
− ∂

∂νk
log

[ ∑s
k=1 qkp(0|νk, d)

1−
∑s

k=1 qkp(0|νk, d)

]
= 0.

(4.37)

From (4.14),

∂

∂νk

( m∑
i=0

fi

s∑
k=1

eik log p(i|νk, d)

)
=


d−3

2

∑m
i=0 fieik + 1

νk

∑m
i=0 ifieik

− d−1
2(2−d)2νk2

∑m
i=0

fieikq
′
ik(θk)

qik(θk)

 .

(4.38)

Consider

∂

∂νk
log

[ ∑s
k=1 qkp(0|νk, d)

1−
∑s

k=1 qkp(0|νk, d)

]
=


∂
∂νk

log
∑s

k=1 qkp(0|νk, d)

− ∂
∂νk

log
(
1−

∑s
k=1 qkp(0|νk, d)

)
 .

(4.39)

∂

∂νk
log

s∑
k=1

qkp(0|νk, d) =
∂

∂νk
log

s∑
k=1

qke
νk

(
d−3
2

)
=

1∑s
k=1 qke

νk( d−3
2

)
· qkeνk( d−3

2
) ·
(
d− 3

2

)
=

(
d− 3

2

)
qke

νk( d−3
2

)∑s
k=1 qke

νk( d−3
2

)
. (4.40)

∂

∂νk
log
(
1−

s∑
k=1

qkp(0|νk, d)
)

=
∂

∂νk
log
(
1−

s∑
k=1

qke
νk

(
d−3
2

))
=

1

1−
∑s

k=1 qke
νk( d−3

2
)
·
(
− qkeνk( d−3

2
)
)
·
(
d− 3

2

)
= −

(
d− 3

2

)
qke

νk( d−3
2

)

1−
∑s

k=1 qke
νk( d−3

2
)
. (4.41)
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Substituting (4.40) and (4.41) in (4.39),

∂

∂νk
log

[ ∑s
k=1 qkp(0|νk, d)

1−
∑s

k=1 qkp(0|νk, d)

]
=


(
d−3

2

)
qke

νk(
d−3
2 )∑s

k=1 qke
νk(

d−3
2 )

+

(
d−3

2

)
qke

νk(
d−3
2 )

1−
∑s
k=1 qke

νk(
d−3
2 )


=

(
d− 3

2

)
qke

νk( d−3
2

)∑s
k=1 qke

νk( d−3
2

)
(
1−

∑s
k=1 qke

νk( d−3
2

)
) .

(4.42)

Substituting (4.38) and (4.42) in (4.37),

∂

∂νk
Lp(Q, γ) = 0

(
d−3

2

)∑m
i=0 fieik + 1

νk

∑m
i=0 ifieik −

d−1
2ν2k(2−d)2

∑m
i=0

fieikq
′
ik(θk)

qik(θk)

−
(
d−3

2

)
qke

νk(
d−3
2 )∑s

k=1 qke
νk(

d−3
2 )
(

1−
∑s
k=1 qke

νk(
d−3
2 )
)

 = 0.

(4.43)

∂

∂d
Lp(Q, γ) = 0

∂

∂d

( m∑
i=0

fi

s∑
k=1

eik log p(i|νk, d)− log

[ ∑s
k=1 qkp(0|νk, d)

1−
∑s

k=1 qkp(0|νk, d)

])
= 0

∂

∂d

( m∑
i=0

fi

s∑
k=1

eik log p(i|νk, d)

)
− ∂

∂d
log

[ ∑s
k=1 qkp(0|νk, d)

1−
∑s

k=1 qkp(0|νk, d)

]
= 0.

(4.44)

From (4.17),

∂

∂d

( m∑
i=0

fi

s∑
k=1

eik log p(i|νk, d)

)
=


νk
2

∑m
i=0 fieik −

1
2−d
∑m

i=0 ifieik

+ d
2νk(2−d)3

∑m
i=0

fieikq
′
ik(θk)

qik(θk)

 .

(4.45)

Consider

∂

∂d
log

[ ∑s
k=1 qkp(0|νk, d)

1−
∑s

k=1 qkp(0|νk, d)

]
=


∂
∂d

log
∑s

k=1 qkp(0|νk, d)

− ∂
∂d

log
(
1−

∑s
k=1 qkp(0|νk, d)

)
 .

(4.46)
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∂

∂d
log

s∑
k=1

qkp(0|νk, d) =
∂

∂d
log

s∑
k=1

qke
νk

(
d−3
2

)
=

1∑s
k=1 qke

νk( d−3
2

)
· qkeνk( d−3

2
) ·
(
νk
2

)
=

(
νk
2

)
qke

νk( d−3
2

)∑s
k=1 qke

νk( d−3
2

)
. (4.47)

∂

∂d
log
(
1−

s∑
k=1

qkp(0|νk, d)
)

=
∂

∂d
log
(
1−

s∑
k=1

qke
νk

(
d−3
2

))
=

1

1−
∑s

k=1 qke
νk( d−3

2
)
·
(
− qkeνk( d−3

2
)
)
·
(
νk
2

)
= −

(
νk
2

)
qke

νk( d−3
2

)

1−
∑s

k=1 qke
νk( d−3

2
)
. (4.48)

Substituting (4.47) and (4.48) in (4.46),

∂

∂d
log

[ ∑s
k=1 qkp(0|νk, d)

1−
∑s

k=1 qkp(0|νk, d)

]
=


(
νk
2

)
qke

νk(
d−3
2 )∑s

k=1 qke
νk(

d−3
2 )

+

(
νk
2

)
qke

νk(
d−3
2 )

1−
∑s
k=1 qke

νk(
d−3
2 )


=

νk
2

(
qke

νk( d−3
2

)

1−
∑s

k=1 qke
νk( d−3

2
)

)
. (4.49)

Substituting (4.45) and (4.49) in (4.44),

∂

∂d
Lp(Q, γ) = 0

νk
2

∑m
i=0 fieik −

1
2−d
∑m

i=0 ifieik

+ d
2νk(2−d)3

∑m
i=0

fieikq
′
ik(θk)

qik(θk)
− νk

2

(
qke

νk(
d−3
2 )

1−
∑s
k=1 qke

νk(
d−3
2 )

)
 = 0. (4.50)

Rewrite (4.50) as

m∑
i=0

fieikq
′
ik(θk)

qik(θk)
=


2νk(2−d)2

d

∑m
i=0 ifieik −

ν2k(2−d)3

d

∑m
i=0 fieik

+
ν2k(2−d)3

d
qke

νk(
d−3
2 )

1−
∑s
k=1 qke

νk(
d−3
2 )

 . (4.51)

Substituting (4.51) in (4.43),
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(
d−3

2

)∑m
i=0 fieik + 1

νk

∑m
i=0 ifieik

−d−1
νkd

∑m
i=0 ifieik −

(d−1)(2−d)qke
νk(

d−3
2 )

2d

(
1−

∑s
k=1 qke

νk

(
d−3
2

))
+ (d−1)(2−d)

2d

∑m
i=0 fieik −

(
d−3

2

)
qke

νk(
d−3
2 )

1−
∑s
k=1 qke

νk

(
d−3
2

)


= 0

−1

d

m∑
i=0

fieik +
1

νkd

m∑
i=0

ifieik +
qke

νk( d−3
2

)

d

(
1−

∑s
k=1 qke

νk

(
d−3
2

)) = 0

−
m∑
i=0

fieik +
1

νk

m∑
i=0

ifieik +
qke

νk( d−3
2

)

1−
∑s

k=1 qke
νk

(
d−3
2

) = 0

1

νk
=

∑m
i=0 fieik −

qke
νk(

d−3
2 )

1−
∑s
k=1 qke

νk(
d−3
2 )∑m

i=0 ifieik

ν̂k =

∑m
i=0 ifieik∑m

i=0 fieik −
qke

νk(
d−3
2 )

1−
∑s
k=1 qke

νk(
d−3
2 )

. (4.52)

Substituting (4.52) in (4.51),

m∑
i=0

fieikq
′
ik(θk)

qik(θk)
=


2ν̂k(2−d)2

d

∑m
i=1 ifieik −

ν̂2k(2−d)3

d

∑m
i=0 fieik

+
ν̂2k(2−d)3

d
qke

νk(
d−3
2 )

1−
∑s
k=1 qke

ν̂k(
d−3
2 )
.


= [ν̂k(2− d)]2

[ m∑
i=0

fieik −
qke

νk( d−3
2

)

1−
∑s

k=1 qke
ν̂k( d−3

2
)

]
.

(4.53)

Parameter d be found by solving (4.53). The package hermite in program R al-

lows to estimate the parameter d given an univariate sample by means of the function

glm.hermite.

The penalized maximum likelihood estimator (PMLE) based on discrete

mixtures of Hermite distributions through the Horvitz-Thomson approach is

N̂PMLE =
n

1−
∑s

k=1 q̂ke
ν̂k( d̂−3

2
)
. (4.54)

The EM algorithm used to compute the estimate of population size is given as follows.
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4.2.1.1 EM algorithm

Step 0: Choose initial value Q̂(0) =


ν̂

(0)
1 ν̂

(0)
2 · · · ν̂

(0)
s

d̂(0) d̂(0) · · · d̂(0)

q̂
(0)
1 q̂

(0)
2 · · · q̂

(0)
s

, set t = 0.

Step 1: Compute

f̂
(t+1)
0 =

nf(0; Q̂(t))

1− f(0; Q̂(t))

e
(t)
ik =

q
(t)
k p(i|ν

(t)
k , d

(t))∑s
k=1 q

(t)
k p(i|ν

(t)
k , d

(t))
, for k = 1, 2, ..., s

P
(t)
1 =

e
(t)
0k

1−
∑s

k=1 q
(t)
k p(0|ν

(t)
k , d

(t))

P
(t)
2 =

1

1−
∑s

k=1 q
(t)
k p(0|ν

(t)
k , d

(t))
.

Step 2: Use complete data f̂ (t+1)
0 , f1, f2, ..., fm to compute the new MLEs of

q̂
(t+1)
k =

∑m
i=0 fie

(t)
ik − P

(t)
1

n+ f̂
(t+1)
0 − P (t)

2

, for k = 1, 2, ..., s

ν̂
(t+1)
k =

∑m
i=0 ifie

(t)
ik∑m

i=0 fie
(t)
ik − P

(t)
1

d̂
(t+1)
k = glm.hermite(f̂

(t+1)
0 , f1, ..., fm ∼ 1, link = ”log”, start = NULL,m? = 2).

Step 3: Set t = t+ 1 and repeat Step 1. Steps 1 and 2 are repeated until:∣∣∣q̂(t+1) − q̂(t)
∣∣∣ ≤ 10−4,

∣∣∣ν̂(t+1) − ν̂(t)
∣∣∣ ≤ 10−4, and

∣∣∣d̂(t+1) − d̂(t)
∣∣∣ ≤ 10−4.

To illustrate that the penalized likelihood improves the boundary problem,

we look at the example data in Table 4.1 again. Table 4.3 provides the results of mixture

model based on penalized likelihood analysis. There is no difference between the log-

likelihoods for models with s = 2 and s = 3 components. On the basis of selection

criteria, the model that give smaller BIC is better. As a consequence, the appropriate

model is two components model leading to an estimate of 506 for the population size.

Evidently, PMLE can improve the problem and provides the estimation close to the

population size N .
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Table 4.3: Penalized likelihood analysis for the example data in Table 4.1.

s q̂k ν̂k d̂ logL(Q̂k) BIC f̂0 N̂CMLE

1 1.0000 3.1324 1.5655 -743.3534 1,498.4397 42 411

2 0.1350 0.1675 1.7519 -726.0088 1,475.4835 137 506

0.8650 2.7871

3 0.0342 0.1675 1.7519 -726.0090 1,487.2168 137 506

0.1008 0.1675

0.8650 2.7871

4.2.2 Confidence interval estimation for population size N

based on the profile mixture likelihood

Inferring the unknown sizeN of closed population is discussed in this section.

Chao (1989) pointed out that derivation of V ar(N̂) to form the confidence interval ofN

is not easy task in capture-recapture studies. A bootstrapping approach can be used to

construct confidence intervals. Alternatively, profile likelihood can be used to construct

confidence intervals (Norris III & Pollock, 1996; Norris & Pollock, 1998). Confidence

interval estimations ofN based on the profile mixture likelihood of Hermite distribution

can be constructed as follows.

4.2.2.1 Profile mixture likelihood of Poisson-Normal mix-

ture models

The full likelihood function is given by

L(N,Q) =
N !

f0!f1!...fm!

( s∑
k=1

qkp(0|νk, d)

)N−n m∏
i=1

( s∑
k=1

qkp(i|νk, d)

)fi
. (4.55)

The likelihood is described by full parameter (N,Q), but we are interested only in N .

Consequently, a nuisance parameter Q is eliminated by replacing it with its MLE at

each fixed value of N .

Since N = n+ f0, finding a profile likelihood of N is equivalent to finding
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a profile likelihood of f0. The full likelihood function (4.55) can be rewritten as

L(f0, Q) =
(n+ f0)!

f0!f1!...fm!

( s∑
k=1

qkp(0|νk, d)

)f0 m∏
i=1

( s∑
k=1

qkp(i|νk, d)

)fi
. (4.56)

Given a fixed f0, the log-likelihood function of (4.56), with the constant terms are omit,

takes the form

l(Q|f0) =
m∑
i=0

fi log
s∑

k=1

qkp(i|νk, d). (4.57)

Here, p(i|νk, d) = eνk( d−3
2

)[νk(2 − d)]iqik(θk), qyk(θk) =
∑[y/2]

j=0

θjk
(y−2j)!j!

, and

θk = d−1
2νk(2−d)2

with respect to the unobserved variables Z having distribution Q. A

discrete mixing distribution Q =


ν1 ν2 · · · νs

d d · · · d

q1 q2 · · · qs

 gives weight qk to parameters νk

and d for k = 1, 2, ..., s, where s is the number of unobserved components. Note that

qk ≥ 0 and
∑s

k=1 qk = 1.

To find the MLE of Q for any fixed f0, (4.57) is maximized by using the EM

algorithm as well. Let zik be indicator variables that defined as following

zik =

 1 if count i arose from component k

0 otherwise.

If zik are observable, the log-likelihood is

l(Q|f0) =
m∑
i=0

fi

s∑
k=1

zik log qk +
m∑
i=0

fi

s∑
k=1

zik log p(i|νk, d). (4.58)

At the E-step, the unobserved indicator zik is replaced by eik, its expected

value conditional given the observed data and current values of Q

eik = E(zik|observed data;Q) =
qkp(i|νk, d)∑s
k=1 qkp(i|νk, d)

. (4.59)

Substituting eik into (4.58), the expected log-likelihood is given as

l(Q|f0) =
m∑
i=0

fi

s∑
k=1

eik log qk +
m∑
i=0

fi

s∑
k=1

eik log p(i|νk, d). (4.60)

M-step: In mathematical optimization, the method of Lagrange multipliers

is a strategy for finding the local maximum or minimum of function subject to equality
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constraints. To maximize (4.60) subject to the constraint
∑s

k=1 qk = 1, the Lagrange

function is given by

L(Q|f0, λ) =
m∑
i=0

fi

s∑
k=1

eik log qk+
m∑
i=0

fi

s∑
k=1

eik log p(i|νk, d)+γ(1−
s∑

k=1

qk). (4.61)

Differentiating (4.61) with respect to γ, qk, νk, and d, and setting the result to 0:

∂

∂γ
L(Q|f0, γ) = 0

1−
s∑

k=1

qk = 0

s∑
k=1

qk = 1. (4.62)

∂

∂qk
L(Q|f0, γ) = 0∑m

i=0 fieik
qk

− γ = 0

qk =

∑m
i=0 fieik
γ

s∑
k=1

qk =

∑m
i=0

∑s
k=1 fieik
γ

. (4.63)

Solving equation (4.62) and (4.63) provides

γ =
m∑
i=0

s∑
k=1

fieik.

Therefore,

q̂k =

∑m
i=0 fieik∑m

i=0

∑s
k=1 fieik

=

∑m
i=0 fieik

N̂
. (4.64)

∂

∂νk
L(Q|f0, γ) = 0

∂

∂νk

m∑
i=0

fi

s∑
k=1

eik log p(i|νk, d) = 0. (4.65)

Substituting (4.38) in (4.65),

∂

∂νk
L(Q|f0, γ) = 0

d− 3

2

m∑
i=0

fieik +
1

νk

m∑
i=0

ifieik −
d− 1

2(2− d)2νk2

m∑
i=0

fieikq
′
ik(θk)

qik(θk)
= 0. (4.66)
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∂

∂d
L(Q|f0, γ) = 0

∂

∂d

m∑
i=0

fi

s∑
k=1

eik log p(i|νk, d) = 0. (4.67)

Substituting (4.45) in (4.67),

∂

∂d
L(Q|f0, γ) = 0

1

2

m∑
i=0

fieikνk −
1

2− d

m∑
i=0

ifieik +
d

2(2− d)3νk

m∑
i=0

fieikq
′
ik(θk)

qik(θk)
= 0. (4.68)

Rewrite (4.68) as
m∑
i=0

fieikq
′
ik(θk)

qik(θk)
=

2(2− d)3νk
d

(
1

2− d

m∑
i=0

ifieik −
νk
2

m∑
i=0

fieik

)
=

2(2− d)2νk
d

m∑
i=0

ifieik −
(2− d)3ν2

k

d

m∑
i=0

fieik. (4.69)

Substituting (4.69) in (4.66),(
d− 3

2
+

(d− 1)(2− d)

2d

) m∑
i=0

fieik +

(
1

νk
− d− 1

νkd

) m∑
i=0

ifieik = 0

−1

d

m∑
i=0

fieik +
1

νkd

m∑
i=0

ifieik = 0

1

νkd

m∑
i=0

ifieik =
1

d

m∑
i=0

fieik

ν̂k =

∑m
i=0 ifieik∑m
i=0 fieik

.

(4.70)

Substituting (4.70) in (4.69),
m∑
i=0

fieikq
′
ik(θk)

qik(θk)
=

2(2− d)2ν̂2
k

d

m∑
i=0

fieik −
(2− d)3ν̂2

k

d

m∑
i=0

fieik

= [(2− d)ν̂k]
2

m∑
i=0

fieik. (4.71)

Parameter d be found by solving (4.71). The package hermite in program R al-

lows to estimate the parameter d given an univariate sample by means of the function

glm.hermite, see (Moriña et al., 2015) for more details. The profile MLE of qk, νk,

and d for any fixed f0 are

q̂k(f0) =

∑m
i=0 fieik∑m

i=0

∑s
k=1 fieik

(4.72)
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ν̂k(f0) =

∑m
i=0 ifieik∑m
i=0 fieik

(4.73)

d̂(f0) = glm.hermite(f0, f1, f2, ..., fm ∼ 1, link = ”log”, start = NULL,m? = 2).

(4.74)

The profile log-likelihood for any fixed f0 under discrete mixture of Hermite distribu-

tion can be achieved as

l
(
f0, Q̂(f0)

)
=


log Γ(n+ f0 + 1)−

∑m
i=0 log Γ(fi + 1)

+
∑m

i=0 fi log

(∑s
k=1 q̂k(f0)p

(
i|ν̂k(f0), d̂(f0)

))
 . (4.75)

The population size estimator under discrete mixtures of Hermite distributions based on

profile mixture likelihood is

N̂profileMix = n+ f̂0 (4.76)

which f̂0 is the value of f0 that maximizes (4.75).

4.2.2.2 Confidence interval estimation for population size

N

Let N̂profileMix be profile nonparametric maximum likelihood estimator (pro-

file NPMLE) based on discrete mixture of Hermite distribution. Since N̂profileMix =

n+ f̂0, the likelihood ratio given by

2
[
l
(
n+ f̂0, Q(f̂0)

)
− l
(
n+ f0, Q̂(f0)

)]
∼ χ2(1).

Using the log-likelihood ratio statistic, all Ns corresponding to

2
[
l
(
n+ f̂0, Q(f̂0)

)
− l
(
n+ f0, Q̂(f0)

)]
≤ (z1−α/2)2

form the 100(1 − α)% confidence set for N̂profileMix. Therefore, the 95% confidence

interval for N̂profileMix is the range of N̂profileMix that satisfies

2
[
l
(
n+ f̂0, Q(f̂0)

)
− l
(
n+ f0, Q̂(f0)

)]
− (1.96)2 ≤ 0. (4.77)
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Table 4.4: Frequencies of test-positives for subjects with the disease.

i 0 1 2 3 ... m

fi ? f1 f2 f3 ... fm

4.3 Mixture model with validation information

In the medical field, several screening test are applied to detect a clinical

disease. Due to low sensitivity of the test and human error, any screening test is not

100% accurate. It is possible to find people with negative test but they have the disease

so that there are hidden cases. Assume that we analyze a specific disease which status

can be tested at m occasions. Also let the count i denotes the number of times the

screening test is positive, called a positive sample as show in Table 4.4. If the test is

negative at all m times, the true status of the person is unknown. Estimation of f0 is

needed.

Table 4.5: Frequencies of test-positives for a repeated diagnostic testing subjects with

the disease.

i 0 1 2 3 ... m

gi g0 g1 g2 g3 ... gm

Sometimes addition information on the observed units is available from an-

other sub-sample of the target population, called a validation sample. In this sample,

the size are usually smaller than positive sample, and contain no hidden cases, so that

zero counts are observed. It is possible to add the information from validation sample

into the model to decrease the bias of estimation of N . Also let g0, g1, ..., gm be the

frequency of units identified exactly 0, 1, 2, ...,m times. Note that g0 is known. Table

4.5 provides the example data of the validation sample.

Real data example is surveillance data from Durusoy and Karababa (2010)

on Syphilis in Izmir (Turkey) between 21/01/2003 and 25/03/2005 as shown in Table

4.6. Data were collected by one of the two university hospitals, or one of the other six

public hospitals. In addition, 133 serology laboratories participated in the study with

cases frequently identified by multiple laboratories. As can be seen in Table 4.6 the
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frequency distribution counts of positive sample from each serology laboratory in Izmir.

There are 73 subjects who tested positively once, 52 subjects who tested positively

twice and so on. Data were checked for duplicates and matched with the cases that

identified by hospitals. Data from hospitals sample showed that there were 18 persons

with Syphilis which the diagnostic test was negative at all times.

Table 4.6: Frequencies of Syphilis cases by hospital and count of laboratory identifica-

tions.

i
laboratory

Total
0 1 2 3 4 5 6

hospital
0 - 73 52 17 6 1 0 -

1 18 25 22 10 9 1 1 86

- 98 74 27 15 2 1 235

Böhning et al. (2016) mentioned the capture-recapture modeling using val-

idation sample in extension of generic ratio regression approach. In addition, Arnold

et al. (2017) demonstrated that the use of validation sample not only substantially in-

creases the estimation efficiency but also reduces the bias considerably. With this mo-

tivation the development of estimation to include validation information in the capture-

recapture modeling are proposed in this study, to increase the accuracy and efficiency

of population size estimation.

4.3.1 Conditional nonparametric maximum likelihood

estimation with validation information

Let Y be the number of times that a unit was identified over the study period.

Let Y is mixture of the Hermite distribution. The marginal distribution of Y is

f(y;Q) =
s∑

k=1

qkp(y|νk, d), (4.78)

where p(y|νk, d) = eνk( d−3
2

)[νk(2 − d)]yqyk(θk), qyk(θk) =
∑[y/2]

j=0

θjk
(y−2j)!j!

, and

θk = d−1
2νk(2−d)2

with respect to the unobserved variables Z having distribution Q. A
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discrete mixing distribution Q =


ν1 ν2 · · · νs

d d · · · d

q1 q2 · · · qs

 gives weight qk to parameters νk

and d for k = 1, 2, ..., s, where s is the number of unobserved components. Note that

qk ≥ 0 and
∑s

k=1 qk = 1. Assume the mixing distribution Q is valid for both positive

and validation samples.

Assume Y1, Y2, ..., Yn are observed and drawn from mixture density. The

incomplete data likelihood is

L(Q) =
m∏
i=1

( ∑s
k=1 qkp(i|νk, d)

1−
∑s

k=1 qkp(0|νk, d)

)fi
×

m∏
i=0

( s∑
k=1

qkp(i|νk, d)
)gi .

The incomplete data log-likelihood is

l(Q) =
m∑
i=1

fi log

( ∑s
k=1 qkp(i|νk, d)

1−
∑s

k=1 qkp(0|νk, d)

)
+

m∑
i=0

gi log
( s∑
k=1

qkp(i|νk, d)
)
. (4.79)

An estimate of Q be achieved by maximizing (4.79) leading to the NPMLE. The EM

algorithm has become common for maximum likelihood estimation in mixture models.

To apply the EM algorithm, the complete data log-likelihood is required.

At the E-step, the unobserved frequency f0 is replaced by its expected value

given observed frequencies and current values of Q. Let the expected value of f0,

denoted by f̂0, be written as

f̂0 = E(f0|observed data;Q)

=
nf(0;Q)

1− f(0;Q)

=
n
∑s

k=1 qkp(0|νk, d)

1−
∑s

k=1 qkp(0|νk, d)
. (4.80)

The log-likelihood for the complete data is given by

lcd(Q) =
m∑
i=0

fi log
( s∑
k=1

qkp(i|νk, d)
)

+
m∑
i=0

gi log
( s∑
k=1

qkp(i|νk, d)
)

=
m∑
i=0

(fi + gi) log
( s∑
k=1

qkp(i|νk, d)
)
. (4.81)

To manipulate the MLE of Q̂, (4.81) is maximized by applying the EM

algorithm as well. In this case, a variable indicating component to which the count i

Ref. code: 25615809320038LCH



87

belongs is ignored. Let zik be indicator variables defined as following

zik =

 1 if count i arose from component k

0 otherwise.

If zik are observable, the complete data log-likelihood is

lcd(Q) =
m∑
i=0

(fi + gi)
s∑

k=1

zik log qk +
m∑
i=0

(fi + gi)
s∑

k=1

zik log p(i|νk, d). (4.82)

At the E-step, the unobserved indicator zik is replaced by eik, its expected

value conditional given the observed data and current values of Q

eik = E(zik|observed data;Q) =
qkp(i|νk, d)∑s
k=1 qkp(i|νk, d)

. (4.83)

The expected log-likelihood is defined as

EV [lcd(Q)] =
m∑
i=0

(fi + gi)
s∑

k=1

eik log qk +
m∑
i=0

(fi + gi)
s∑

k=1

eik log p(i|νk, d). (4.84)

M-step: In mathematical optimization, the method of Lagrange multipliers

is a strategy for finding the local maximum or minimum of a function subject to equality

constraints. To maximize (4.84) subject to the constraint
∑s

k=1 qk = 1, the Lagrange

function is given by

LV (Q, γ) =
m∑
i=0

(fi+gi)
s∑

k=1

eik log qk+
m∑
i=0

(fi+gi)
s∑

k=1

eik log p(i|νk, d)+γ(1−
s∑

k=1

qk).

(4.85)

Differentiating (4.85) with respect to parameters γ , qk, νk, and d, and setting the result

to 0 yield

∂

∂γ
LV (Q, γ) = 0

1−
s∑

k=1

qk = 0

s∑
k=1

qk = 1. (4.86)
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∂

∂qk
LV (Q, γ) = 0∑m

i=0(fi + gi)eik
qk

− γ = 0

qk =

∑m
i=0(fi + gi)eik

γ
s∑

k=1

qk =

∑m
i=0

∑s
k=1(fi + gi)eik
γ

. (4.87)

Solving equation (4.86) and (4.87) provides

γ =
m∑
i=0

s∑
k=1

(fi + gi)eik

q̂k =

∑m
i=0(fi + gi)eik∑m

i=0

∑s
k=1(fi + gi)eik

q̂k =

∑m
i=0(fi + gi)eik

N̂
. (4.88)

∂

∂νk
LV (Q, γ) = 0

∂

∂νk

( m∑
i=0

(fi + gi)
s∑

k=1

eik log p(i|νk, d)

)
= 0

∂

∂νk

( m∑
i=0

(fi + gi)
s∑

k=1

eik log

[
eνk( d−3

2
)[νk(2− d)]iqik(θk)

])
= 0

∂

∂νk

( m∑
i=0

(fi + gi)
s∑

k=1

eik

[
νk
(d− 3

2

)
+ i log[νk(2− d)] + log qik(θk)

])
= 0

d−3
2

∑m
i=0(fi + gi)eik + 1

νk

∑m
i=0 i(fi + gi)eik

+ ∂
∂νk

[∑m
i=1(fi + gi)

∑s
k=1 eik log qik(θk)

]
 = 0.

(4.89)
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Consider

∂

∂νk

[ m∑
i=1

(fi + gi)
s∑

k=1

eik log qik(θk)

]
=

m∑
i=1

(fi + gi)
∂

∂νk

[ s∑
k=1

eik log qik(θk)

]
=

m∑
i=1

(fi + gi)eik
∂

∂νk

[
log qik(θk)

]
=

m∑
i=1

(fi + gi)eik

[
1

qik(θk)
· ∂
∂θk

qik(θk) ·
∂θk
∂νk

]
=

m∑
i=1

(fi + gi)eik

[
q′ik(θk)

qik(θk)
· ∂

∂νk

(
d− 1

2νk(2− d)2

)]
=

m∑
i=1

(fi + gi)eik

[
q′ik(θk)

qik(θk)
·
(
− d− 1

2ν2
k(2− d)2

)]
= − d− 1

2(2− d)2νk2

m∑
i=0

(fi + gi)eikq
′
ik(θk)

qik(θk)
,

(4.90)

where q′ik(θk) = ∂
∂θk
qik(θk). Substituting (4.90) in (4.89),

∂

∂νk
LV (Q, γ) = 0

∂

∂νk

( m∑
i=0

(fi + gi)
s∑

k=1

eik log p(i|νk, d)

)
= 0

d−3
2

∑m
i=0(fi + gi)eik + 1

νk

∑m
i=0 i(fi + gi)eik

− d−1
2(2−d)2νk2

∑m
i=0

(fi+gi)eikq
′
ik(θk)

qik(θk)

 = 0. (4.91)

∂

∂d
LV (Q, γ) = 0

∂

∂d

( m∑
i=0

(fi + gi)
s∑

k=1

eik log p(i|νk, d)

)
= 0

∂

∂d

( m∑
i=0

(fi + gi)
s∑

k=1

eik log

[
eνk( d−3

2
)[νk(2− d)]iqik(θk)

])
= 0

∂

∂d

( m∑
i=0

(fi + gi)
s∑

k=1

eik

[
νk
(d− 3

2

)
+ i log[νk(2− d)] + log qik(θk)

])
= 0

1
2

∑m
i=0(fi + gi)eikνk − 1

2−d
∑m

i=0 i(fi + gi)eik

+ ∂
∂d

[∑m
i=1(fi + gi)

∑s
k=1 eik log qik(θk)

]
 = 0.

(4.92)
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Consider

∂

∂d

[ m∑
i=1

(fi + gi)
s∑

k=1

eik log qik(θk)

]
=

m∑
i=1

(fi + gi)
∂

∂d

[ s∑
k=1

eik log qik(θk)

]
=

m∑
i=1

(fi + gi)eik
∂

∂d

[
log qik(θk)

]
=

m∑
i=1

(fi + gi)eik

[
1

qik(θk)
· ∂
∂θk

qik(θk) ·
∂θk
∂d

]
=

m∑
i=1

(fi + gi)eik

[
q′ik(θk)

qik(θk)
· ∂
∂d

(
d− 1

2νk(2− d)2

)]
=

d

2νk(2− d)3

m∑
i=0

(fi + gi)eikq
′
ik(θk)

qik(θk)
, (4.93)

where q′ik(θk) = ∂
∂θk
qik(θk). Substituting (4.93) in (4.92),

∂

∂d
LV (Q, γ) = 0

∂

∂d

( m∑
i=0

(fi + gi)
s∑

k=1

eik log p(i|νk, d)

)
= 0

1
2

∑m
i=0(fi + gi)eikνk − 1

2−d
∑m

i=0 i(fi + gi)eik

+ d
2(2−d)3νk

∑m
i=0

(fi+gi)eikq
′
ik(θk)

qik(θk)

 = 0. (4.94)

Rewrite (4.94) as

m∑
i=0

(fi + gi)eikq
′
ik(θk)

qik(θk)
=

2(2− d)3νk
d

(
1

2− d

m∑
i=0

i(fi + gi)eik −
νk
2

m∑
i=0

(fi + gi)eik

)
=

2(2− d)2νk
d

m∑
i=0

i(fi + gi)eik −
(2− d)3ν2

k

d

m∑
i=0

(fi + gi)eik.

(4.95)

Substituting (4.95) in (4.91),
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(
d−3

2
+ (d−1)(2−d)

2d

)∑m
i=0(fi + gi)eik

+

(
1
νk
− d−1

νkd

)∑m
i=0 i(fi + gi)eik

 = 0

−1

d

m∑
i=0

(fi + gi)eik +
1

νkd

m∑
i=0

i(fi + gi)eik = 0

1

νkd

m∑
i=0

i(fi + gi)eik =
1

d

m∑
i=0

(fi + gi)eik

ν̂k =

∑m
i=0 i(fi + gi)eik∑m
i=0(fi + gi)eik

.

(4.96)

Substituting (4.96) in (4.95),
m∑
i=0

(fi + gi)eikq
′
ik(θk)

qik(θk)
=

2(2− d)2ν̂2
k

d

m∑
i=0

(fi + gi)eik −
(2− d)3ν̂2

k

d

m∑
i=0

(fi + gi)eik

= [(2− d)ν̂k]
2

m∑
i=0

(fi + gi)eik. (4.97)

Parameter d be found by solving (4.97). The package hermite in program R al-

lows to estimate the parameter d given an univariate sample by means of the function

glm.hermite.

The population size estimator based on discrete mixtures of Hermite distri-

bution with validation information through the Horvitz-Thomson approach is

N̂V alid =
n

1−
∑s

k=1 q̂ke
ν̂k( d̂−3

2
)
. (4.98)

4.3.1.1 EM algorithm

In practical terms, the EM algorithm is implemented as follows.

Step 0: Choose initial value Q̂(0) =


ν̂

(0)
1 ν̂

(0)
2 · · · ν̂

(0)
s

d̂(0) d̂(0) · · · d̂(0)

q̂
(0)
1 q̂

(0)
2 · · · q̂

(0)
s

, set t = 0.

Step 1: Compute

f̂
(t+1)
0 =

nf(0; Q̂(t))

1− f(0; Q̂(t))

e
(t)
ik =

q
(t)
k p(i|ν

(t)
k , d

(t))∑s
k=1 q

(t)
k p(i|ν

(t)
k , d

(t))
, for k = 1, 2, ..., s.

Ref. code: 25615809320038LCH



92

Step 2: Use complete data f̂ (t+1)
0 , f1, f2, ..., fm and validation data g0, g1, ..., gm to com-

pute the new MLEs of

q̂
(t+1)
k =

∑m
i=0(fi + gi)e

(t)
ik∑m

i=0

∑s
k=1(fi + gi)e

(t)
ik

, for k = 1, 2, ..., s.

ν̂
(t+1)
k =

∑m
i=0 i(fi + gi)e

(t)
ik∑m

i=0(fi + gi)e
(t)
ik

d̂
(t+1)
k = glm.hermite(f̂

(t+1)
0 , ..., fm, g0, ..., gm ∼ 1, link = ”log”, start = NULL,m? = 2)

Step 3: Set t = t+ 1 and repeat Step 1. Steps 1 and 2 are repeated until:∣∣∣q̂(t+1) − q̂(t)
∣∣∣ ≤ 10−4,

∣∣∣ν̂(t+1) − ν̂(t)
∣∣∣ ≤ 10−4, and

∣∣∣d̂(t+1) − d̂(t)
∣∣∣ ≤ 10−4.

4.3.2 Confidence interval estimation for population size N

based on the profile mixture likelihood with valida-

tion information

In this section, focuses on inferring the unknown population size N . Deriva-

tion of V ar(N̂) to form the confidence interval of N is not easy in capture-recapture

studies. The profile mixture likelihood is used to construct confidence intervals estima-

tion of N as follows.

4.3.2.1 Profile mixture likelihood of Poisson-Normal mix-

ture models with validation information

The unconditional nonparametric likelihood is

L(N,Q) =
N !

f0!f1!...fm!g0!g1!...gm!

( s∑
k=1

qkp(0|νk, d)
)N−n+g0 m∏

i=1

( s∑
k=1

qkp(i|νk, d)
)fi+gi

.

(4.99)

The likelihood is described by full parameter (N,Q), but we are interested only in N .

A nuisance parameter Q is eliminated and replaced by its MLE at each fixed value of

N (Pawitan, 2001). This is called a profile mixture likelihood.

Since N = n+ f0, finding a profile likelihood of N is equivalent to finding
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a profile likelihood of f0. The full likelihood function (4.99) can be rewritten as

L(f0, Q) =
(n+ f0)!

f0!f1!...fm!g0!g1!...gm!

( s∑
k=1

qkp(0|νk, d)
)f0+g0 m∏

i=1

( s∑
k=1

qkp(i|νk, d)
)fi+gi

.

(4.100)

Given fixed f0, the log-likelihood function which the constants term are omit takes the

form

l(Q|f0) =
m∑
i=0

(fi + gi) log
( s∑
k=1

qkp(i|νk, d)
)
. (4.101)

To obtain the MLEs of Q at given fixed f0, we uses the EM algorithm similar to one

proposed previously. Let zik be indicator variables defined as following

zik =

 1 if count i arose from component k

0 otherwise.

If zik were observed, the log-likelihood for the complete data is given by

l(Q|f0) =
m∑
i=0

(fi + gi)
s∑

k=1

zik log qk +
m∑
i=0

(fi + gi)
s∑

k=1

zik log p(i|νk, d). (4.102)

At the E-step, the unobserved indicator zik is replaced by eik, its expected

value conditional given the observed data and current values of Q

eik = E(zik|observed data;Q) =
qkp(i|νk, d)∑s
k=1 qkp(i|νk, d)

. (4.103)

The expected log-likelihood is given by

EV [l(Q|f0)] =
m∑
i=0

(fi + gi)
s∑

k=1

eik log qk +
m∑
i=0

(fi + gi)
s∑

k=1

eik log p(i|νk, d). (4.104)

M-step: In mathematical optimization, the method of Lagrange multipliers

is a strategy for finding the local maximum or minimum of a function subject to equality

constraints. To maximize (4.104) subject to the constraint
∑s

k=1 qk = 1, the Lagrange

function is

LV (Q|f0, γ) =
m∑
i=0

(fi+gi)
s∑

k=1

eik log qk+
m∑
i=0

(fi+gi)
s∑

k=1

eik log p(i|νk, d)+γ(1−
s∑

k=1

qk).

(4.105)

Differentiating (4.105) with respect to γ , qk, νk, and d , and setting the result to 0:
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∂

∂γ
LV (Q|f0, γ) = 0

1−
s∑

k=1

qk = 0

s∑
k=1

qk = 1. (4.106)

∂

∂qk
LV (Q|f0, γ) = 0∑m

i=0(fi + gi)eik
qk

− γ = 0

qk =

∑m
i=0(fi + gi)eik

γ
s∑

k=1

qk =

∑m
i=0

∑s
k=1(fi + gi)eik
γ

. (4.107)

Solving equation (4.106) and (4.107) provides

γ =
m∑
i=0

s∑
k=1

(fi + gi)eik

q̂k =

∑m
i=0(fi + gi)eik∑m

i=0

∑s
k=1(fi + gi)eik

q̂k =

∑m
i=0(fi + gi)eik

N̂
. (4.108)

∂

∂νk
LV (Q|f0, γ) = 0

∂

∂νk

m∑
i=0

(fi + gi)
s∑

k=1

eik log p(i|νk, d) = 0. (4.109)

Substituting (4.91) in (4.109),

∂

∂νk
LV (Q|f0, γ) = 0

d−3
2

∑m
i=0(fi + gi)eik + 1

νk

∑m
i=0 i(fi + gi)eik

− d−1
2(2−d)2νk2

∑m
i=0

(fi+gi)eikq
′
ik(θk)

qik(θk)

 = 0. (4.110)

∂

∂d
LV (Q|f0, γ) = 0

∂

∂d

m∑
i=0

(fi + gi)
s∑

k=1

eik log p(i|νk, d) = 0. (4.111)
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Substituting (4.94) in (4.111),

∂

∂d
LV (Q|f0, γ) = 0

1
2

∑m
i=0(fi + gi)eikνk − 1

2−d
∑m

i=0 i(fi + gi)eik

+ d
2(2−d)3νk

∑m
i=0

(fi+gi)eikq
′
ik(θk)

qik(θk)

 = 0. (4.112)

Rewrite (4.112) as
m∑
i=0

(fi + gi)eikq
′
ik(θk)

qik(θk)
=

2(2− d)3νk
d

(
1

2− d

m∑
i=0

i(fi + gi)eik −
νk
2

m∑
i=0

(fi + gi)eik

)
=

2(2− d)2νk
d

m∑
i=0

i(fi + gi)eik −
(2− d)3ν2

k

d

m∑
i=0

(fi + gi)eik.

(4.113)

Substituting (4.113) in (4.110),
(
d−3

2
+ (d−1)(2−d)

2d

)∑m
i=0(fi + gi)eik

+

(
1
νk
− d−1

νkd

)∑m
i=0 i(fi + gi)eik

 = 0

−1

d

m∑
i=0

(fi + gi)eik +
1

νkd

m∑
i=0

i(fi + gi)eik = 0

1

νkd

m∑
i=0

i(fi + gi)eik =
1

d

m∑
i=0

(fi + gi)eik

ν̂k =

∑m
i=0 i(fi + gi)eik∑m
i=0(fi + gi)eik

.

(4.114)

Substituting (4.114) in (4.113),

m∑
i=0

(fi + gi)eikq
′
ik(θk)

qik(θk)
=

2(2− d)2ν̂2
k

d

m∑
i=0

(fi + gi)eik −
(2− d)3ν̂2

k

d

m∑
i=0

(fi + gi)eik

= [(2− d)ν̂k]
2

m∑
i=0

(fi + gi)eik. (4.115)

Parameter d be found by solving (4.115). The package hermite in program R al-

lows to estimate the parameter d given an univariate sample by means of the function

glm.hermite. The profile MLEs of qk, νk, and d for any fixed f0 are

q̂k(f0) =

∑m
i=0(fi + gi)eik∑m

i=0

∑s
k=1(fi + gi)eik

(4.116)
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ν̂k(f0) =

∑m
i=0 i(fi + gi)eik∑m
i=0(fi + gi)eik

(4.117)

d̂(f0) = glm.hermite(f0, ..., fm, g0, ..., gm ∼ 1, link = ”log”, start = NULL,m? = 2).

(4.118)

The profile log-likelihood for any fixed f0 under discrete mixture of Hermite distribu-

tion with validation information be achieved as

lV
(
f0, Q̂(f0)

)
= log Γ(n+ f0 + 1)−

m∑
i=0

log Γ(fi + 1)−
m∑
i=0

log Γ(gi + 1)

+
m∑
i=0

(fi + gi) log

( s∑
k=1

q̂k(f0)p
(
i|ν̂k(f0), d̂(f0)

))
. (4.119)

The population size estimator under discrete mixture of Hermite distribution with vali-

dation information based on profile mixture likelihood is

N̂profileV alid = n+ f̂0 (4.120)

which f̂0 is the value of f0 that maximizes (4.119).

4.3.2.2 Confidence interval estimation for population size

N

Let N̂profileV alid be profile NPMLE based upon discrete mixture of Hermite

distribution with validation information.

Since N̂profileV alid = n+ f̂0, the likelihood ratio given by

2
[
lV
(
n+ f̂0, Q(f̂0)

)
− lV

(
n+ f0, Q̂(f0)

)]
∼ χ2(1).

Using the log-likelihood ratio statistic, all Ns corresponding to

2
[
lV
(
n+ f̂0, Q(f̂0)

)
− lV

(
n+ f0, Q̂(f0)

)]
≤ (z1−α/2)2

form the 100(1 − α)% confidence set for N̂profileV alid. Therefore, the 95% confidence

interval for N̂profileV alid is the range of N̂profileV alid that satisfies

2
[
lV
(
n+ f̂0, Q(f̂0)

)
− lV

(
n+ f0, Q̂(f0)

)]
− (1.96)2 ≤ 0. (4.121)
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4.4 Simulation plan

4.4.1 Point estimation part

A simulation was used to study the performance of proposed estimators,

N̂PMLE and N̂V alid, and to compare with those of other well-known estimators based

on homogeneous and heterogeneous case. N̂MLE and N̂Turing were used as estimators

in homogeneous case. Two population size estimators N̂Chao and N̂Censored were used

as estimators in heterogeneous case. The count data were generated by Monte Carlo

technique using program R. The population size was N = 100, 500, and 1, 000 with

25% and 50% validation sample as following distribution:

i. The two-components Poisson mixture model with equal weight

pi = 0.5Poi(1) + 0.5Poi(λ) .

Here, parameters λ ∈ {2, 3, 4} indicating weak, moderate, and strong heterogeneity,

respectively.

ii. The two-components Hermite mixture model with equal weight

pi = 0.5Herm(1, d) + 0.5Herm(ν, d)

Here, parameters ν ∈ {2, 3, 4} indicating weak, moderate, and strong heterogeneity,

respectively, and dispersion parameters d ∈ {1.2, 1.4, 1.6, 1.8}.

The criteria of comparing the performance of estimators were relative bias

(Rbias) and relative root mean square error (RRMSE) from 1,000 repeated times as

follow:

Rbias =
E(N̂)−N

N

RRMSE =
1

N

√
V ar(N̂) + (E(N̂)−N)2.

Here, E(N̂) = 1
1,000

∑1,000
t=1 N̂(t), V ar(N̂) = 1

999

∑1,000
t=1 {N̂(t) − E(N̂)}2, and N̂(t) de-

notes the estimated values of the population size at replication t.
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4.4.2 Interval estimation part

A simulation was used to investigate the performance of proposed confidence

intervals. The CI based on the profile mixture likelihood without validation information

called CI ProfileMix. The CI based on the profile mixture likelihood with validation

information called CI ProfileValid. Further simulation was conducted to compare the

proposed CIs and several estimators including N̂MLE , N̂Turing, N̂Chao, and N̂Censored

that were done by means of normal approximation, N̂ ± z1−α
2
Ŝe(N̂). The count data

were generated by Monte Carlo technique using program R. The population size was

N = 100 and 1, 000 with 25% and 50% validation sample. Count data were generated

from the following distribution:

i. The two-components Poisson mixture model with equal weight

pi = 0.5Poi(1) + 0.5Poi(λ) .

Here, parameters λ ∈ {2, 4} indicating weak and strong heterogeneity,

respectively.

ii. The two-components Hermite mixture model with equal weight

pi = 0.5Herm(1, d) + 0.5Herm(ν, d)

Here, parameters ν ∈ {2, 4} indicating weak and strong heterogeneity,

respectively, and dispersion parameters d ∈ {1.2, 1.4, 1.6, 1.8}.

The percentage of 100 simulated data in which the 95% confidence inter-

val covered the true N called coverage probability (CP) and average lengths (AL) of

achieved confidence intervals were the criteria for comparing the performance of esti-

mators. The CP and AL be calculated as

CP =

∑100
t=1C(t)

100
, (4.122)

where C(t) equal to 1 if the true population size N contain in the confidence interval,

and 0 otherwise.

AL =

∑100
t=1(N̂U(t)

− N̂L(t)
)

100
, (4.123)

where N̂U(t)
and N̂L(t)

are the upper and lower estimation of N at replication t, respec-

tively.
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4.5 Simulation results

4.5.1 Point estimation part

4.5.1.1 Simulation results based on the two-components

Poisson mixture model

Table 4.7 provided the Rbias of all estimators, which used validation infor-

mation and did not used validation information. N̂V alid with 50% validation sample

provided the smallest Rbias for weak and strong heterogeneity when N = 500, 1, 000.

N̂V alid with 25% validation sample performed the second best in these cases. N̂PMLE

gave the smallest Rbias for moderate heterogeneity in all population size. In addi-

tion, N̂V alid with 50% validation sample performed the second best for these cases. For

weak and strong heterogeneity inN = 100, N̂Chao produced the smallest Rbias. N̂MLE ,

N̂Turing, and N̂Chao provided underestimation for all cases. N̂Censored gave severe over-

estimation for all cases, especially for weak heterogeneity.

From the simulation results showed in Table 4.8, N̂V alid with 50% validation

sample provided the smallest RRMSE in almost all cases. N̂V alid with 25% validation

sample and N̂PMLE performed the second best. N̂PMLE gave the smallest RRMSE for

moderate heterogeneity whenN = 1, 000. N̂Censored provided high RRMSE, especially

for weak and moderate heterogeneity. N̂MLE and N̂Turing produced high RRMSE,

especially for strong heterogeneity. In addition, RRMSE of N̂Chao decreased when the

population size N increased.

Simulation results indicated that N̂V alid tends to perform reasonably well.

It can be an appropriate method for population size estimation for N > 500 in weak

and strong heterogeneity. The larger validation sample size, the more efficient estima-

tion. N̂PMLE is an appropriate estimator for population size estimation for moderate

heterogeneity in all population size.
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Table 4.7: The relative bias of estimators with different parameters in the two-

components Poisson mixture model pi = 0.5Poi(1) + 0.5Poi(λ) with 25% and 50%

validation sample.

λ
Without validation With validation

MLE Turing Chao Censored PMLE Valid

25% 50%

N=100

2 -0.0610 -0.0460 -0.0050 0.3227 0.0371 0.0511 0.0252

3 -0.1129 -0.0895 -0.0377 0.1736 0.0139 0.0486 0.0387

4 -0.1443 -0.1129 -0.0345 0.1106 -0.0692 -0.0428 -0.0369

N=500

2 -0.0600 -0.0483 -0.0265 0.3058 0.0560 0.0106 0.0085

3 -0.1149 -0.0904 -0.0460 0.1739 -0.0070 0.0365 0.0282

4 -0.1448 -0.1127 -0.0441 0.1119 -0.0644 -0.0452 -0.0414

N=1,000

2 -0.0628 -0.0508 -0.0297 0.3012 0.0642 0.0125 0.0058

3 -0.1179 -0.0922 -0.0446 0.1738 -0.0131 0.0386 0.0272

4 -0.1475 -0.1149 -0.0453 0.1104 -0.0672 -0.0486 0.0251
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Table 4.8: The relative root mean square error of estimators with different parameters

in the two-components Poisson mixture model pi = 0.5Poi(1) + 0.5Poi(λ) with 25%

and 50% validation sample.

λ
Without validation With validation

MLE Turing Chao Censored PMLE Valid

25% 50%

N=100

2 0.0933 0.0877 0.1177 0.3583 0.1510 0.1053 0.0619

3 0.1276 0.1097 0.0989 0.2130 0.0867 0.0860 0.0652

4 0.1523 0.1247 0.1034 0.1504 0.0920 0.0626 0.0512

N=500

2 0.0684 0.0590 0.0529 0.3131 0.1199 0.0368 0.0285

3 0.1171 0.0933 0.0566 0.1789 0.0462 0.0511 0.0368

4 0.1460 0.1144 0.0526 0.1169 0.0693 0.0493 0.0445

N=1,000

2 0.0666 0.0556 0.0434 0.3047 0.1220 0.0316 0.0191

3 0.1188 0.0934 0.0506 0.1766 0.0260 0.0459 0.0328

4 0.1480 0.1156 0.0515 0.1138 0.0691 0.0501 0.0286
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Figure 4.1: The relative bias of estimators with different parameters in the two-

components Poisson mixture model.

Figure 4.2: The relative root mean square error of estimators with different parameters

in the two-components Poisson mixture model.
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4.5.1.2 Simulation results based on the two-components

Hermite mixture model
Table 4.9 presented the Rbias of estimators, which used validation informa-

tion and did not used validation information. The count data were generated based on

two-components Hermite distribution with N = 100. The results showed that N̂V alid

with 50% validation sample provided the smallest Rbias in almost all cases. N̂V alid

with 25% validation sample performed the second best in almost all cases. N̂PMLE

gave the smallest Rbias in the case of weak heterogeneity with d = 1.8 and moderate

heterogeneity with d = 1.2. N̂Censored gave the smallest Rbias in the case of strong

heterogeneity with d = 1.4. Based on the estimators which did not used validation

information, N̂PMLE gave the smallest Rbias in the case of weak, moderate, and strong

heterogeneity with d = 1.2 and d = 1.8. In addition, N̂MLE , N̂Turing, and N̂Chao

provided severe underestimation for all cases, and Rbias increased with increasing d.

Table 4.10 presented the RRMSE of estimators for count data based on two-

components Hermite distribution when N = 100. The results showed that N̂V alid with

50% validation sample provided the smallest RRMSE in all cases. N̂V alid with 25% val-

idation sample performed the second best in all cases. Others gave quite high RRMSE,

and RRMSE increased with increasing d. Furthermore, N̂PMLE provided the smallest

RRMSE compare to other estimators which did not used validation information in the

case of moderate heterogeneity with d = 1.8 and strong heterogeneity with d = 1.2.

Tables 4.11 and 4.13 presented the Rbias of estimators for count data based

on two-components Hermite distribution when N = 500 and N = 1, 000, respectively.

The results showed that N̂V alid with 50% validation sample provided the smallest Rbias

in almost all cases. N̂V alid with 25% validation sample performed the second best.

N̂PMLE produced the smallest Rbias in the case of weak heterogeneity with d = 1.2.

Based on strong heterogeneity with d = 1.4, N̂Censored gave the smallest Rbias. N̂PMLE

and N̂Censored gave underestimation in almost all cases. N̂MLE , N̂Turing, and N̂Chao

provided severe underestimation for all cases, especially for d = 1.6 and d = 1.8.

Based on the without validation estimators, N̂PMLE gave the smallest Rbias in the case

of weak heterogeneity.

Tables 4.12 and 4.14 presented the RRMSE of estimators for count data
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based on two-components Hermite distribution when N = 500 and N = 1, 000, re-

spectively. The results showed that N̂V alid with 50% validation sample provided the

smallest RRMSE in all cases. N̂V alid with 25% validation sample performed the second

best in almost all cases. N̂PMLE provided the smallest RRMSE of all estimators which

did not used validation information in the case of weak and moderate heterogeneity.

N̂MLE , N̂Turing, and N̂Chao gave quite high RRMSE.

Simulation results indicated that N̂V alid tends to perform reasonably well. It

can be an appropriate method for estimating population size based on the two-components

Hermite mixture model. The larger validation sample size, the more efficient estima-

tion. N̂PMLE is an appropriate estimator for population size estimation in the case of

weak and moderate heterogeneity.

Table 4.9: The relative bias of estimators with different parameters in the two-

components Hermite mixture model pi = 0.5Herm(1, d) + 0.5Herm(ν, d) with 25%

and 50% validation sample for N = 100.

ν d
Without validation With validation

MLE Turing Chao Censored PMLE Valid

25% 50%

2

1.2 -0.1128 -0.0961 -0.0534 0.2360 0.0381 0.0488 0.0270

1.4 -0.2012 -0.1868 -0.1548 0.0819 -0.0419 0.0366 0.0338

1.6 -0.2728 -0.2647 -0.2577 -0.0565 0.0698 0.0713 0.0406

1.8 -0.3703 -0.3832 -0.4023 -0.2833 0.0250 0.0593 0.0335

3

1.2 -0.1588 -0.1336 -0.0774 0.1119 -0.0085 0.0530 0.0406

1.4 -0.1914 -0.1685 -0.1251 0.0492 -0.0948 0.0522 0.0355

1.6 -0.2562 -0.2411 -0.2221 -0.0746 -0.1433 0.0565 0.0232

1.8 -0.3086 -0.3087 -0.3169 -0.2142 -0.1420 0.0426 0.0252

4

1.2 -0.1678 -0.1383 -0.0701 0.0716 0.0470 0.0600 0.0414

1.4 -0.2087 -0.1814 -0.1202 0.0082 -0.1380 0.0764 0.0416

1.6 -0.2440 -0.2258 -0.2005 -0.0842 0.3334 0.0777 0.0358

1.8 -0.3040 -0.2979 -0.2991 -0.2162 0.1412 0.0592 0.0227
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Table 4.10: The relative root mean square error of estimators with different parameters

in the two-components Hermite mixture model pi = 0.5Herm(1, d) + 0.5Herm(ν, d)

with 25% and 50% validation sample for N = 100.

ν d
Without validation With validation

MLE Turing Chao Censored PMLE Valid

25% 50%

2

1.2 0.1398 0.1282 0.1262 0.2869 0.2318 0.0995 0.0611

1.4 0.2102 0.1965 0.1741 0.1400 0.2294 0.0955 0.0621

1.6 0.2805 0.2746 0.2739 0.1420 0.7151 0.1199 0.0783

1.8 0.3744 0.3870 0.4058 0.2929 0.3475 0.1017 0.0698

3

1.2 0.1653 0.1428 0.1182 0.1507 0.1580 0.1003 0.0769

1.4 0.1972 0.1761 0.1468 0.1056 0.1159 0.1080 0.0655

1.6 0.2619 0.2477 0.2342 0.1203 0.1661 0.0956 0.0534

1.8 0.3122 0.3126 0.3210 0.2258 0.1625 0.0982 0.0525

4

1.2 0.1724 0.1453 0.1087 0.1137 0.1023 0.0925 0.0685

1.4 0.2153 0.1899 0.1474 0.0953 0.1505 0.1220 0.0651

1.6 0.2486 0.2312 0.2112 0.1159 0.1993 0.1147 0.0660

1.8 0.3083 0.3026 0.3042 0.2287 0.8122 0.0899 0.0413
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Figure 4.3: The relative bias of estimators with different parameters in the two-

components Hermite mixture model for N = 100.

Figure 4.4: The relative root mean square error of estimators with different parameters

in the two-components Hermite mixture model for N = 100.

Ref. code: 25615809320038LCH



107

Table 4.11: The relative bias of estimators with different parameters in the two-

components Hermite mixture model pi = 0.5Herm(1, d) + 0.5Herm(ν, d) with 25%

and 50% validation sample for N = 500.

ν d
Without validation With validation

MLE Turing Chao Censored PMLE Valid

25% 50%

2

1.2 -0.1329 -0.1128 -0.0767 0.2142 0.0203 0.0442 0.0283

1.4 -0.2043 -0.1860 -0.1585 0.0903 -0.0510 0.0444 0.0251

1.6 -0.2856 -0.2778 -0.2764 -0.0821 -0.0914 0.0267 0.0158

1.8 -0.3662 -0.3776 -0.3979 -0.2796 -0.0823 0.0206 0.0117

3

1.2 -0.1578 -0.1303 -0.0809 0.1218 -0.0503 0.0440 0.0290

1.4 -0.2066 -0.1820 -0.1430 0.0371 -0.1035 0.0306 0.0212

1.6 -0.2598 -0.2449 -0.2332 -0.0825 -0.1375 0.0257 0.0150

1.8 -0.3198 -0.3202 -0.3312 -0.2306 -0.1494 0.0274 0.0195

4

1.2 -0.1791 -0.1474 -0.0802 0.0650 -0.1018 0.0452 0.0332

1.4 -0.2153 -0.1880 -0.1390 -0.0032 -0.1403 0.0493 0.0290

1.6 -0.2566 -0.2376 -0.2173 -0.0972 -0.1754 0.0508 0.0267

1.8 -0.3025 -0.2963 -0.3007 -0.2165 -0.1975 0.0485 0.0260
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Table 4.12: The relative root mean square error of estimators with different parameters

in the two-components Hermite mixture model pi = 0.5Herm(1, d) + 0.5Herm(ν, d)

with 25% and 50% validation sample for N = 500.

ν d
Without validation With validation

MLE Turing Chao Censored PMLE Valid

25% 50%

2

1.2 0.1360 0.1173 0.0910 0.2237 0.0744 0.0592 0.0406

1.4 0.2059 0.1880 0.1633 0.1040 0.0827 0.0569 0.0357

1.6 0.2868 0.2792 0.2782 0.0940 0.1155 0.0453 0.0284

1.8 0.3670 0.3783 0.3985 0.2811 0.1017 0.0413 0.0305

3

1.2 0.1596 0.1330 0.0902 0.1317 0.0603 0.0583 0.0391

1.4 0.2079 0.1838 0.1480 0.0612 0.1080 0.0432 0.0313

1.6 0.2605 0.2457 0.2344 0.0888 0.1428 0.0351 0.0225

1.8 0.3206 0.3210 0.3319 0.2326 0.1547 0.0348 0.0289

4

1.2 0.1802 0.1491 0.0890 0.0779 0.1052 0.0568 0.0451

1.4 0.2163 0.1893 0.1431 0.0388 0.1429 0.0647 0.0377

1.6 0.2576 0.2388 0.2191 0.1035 0.1779 0.0630 0.0339

1.8 0.3035 0.2973 0.3016 0.2185 0.2004 0.0564 0.0313
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Figure 4.5: The relative bias of estimators with different parameters in the two-

components Hermite mixture model for N = 500.

Figure 4.6: The relative root mean square error of estimators with different parameters

in the two-components Hermite mixture model for N = 500.
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Table 4.13: The relative bias of estimators with different parameters in the two-

components Hermite mixture model pi = 0.5Herm(1, d) + 0.5Herm(ν, d) with 25%

and 50% validation sample for N = 1, 000.

ν d
Without validation With validation

MLE Turing Chao Censored PMLE Valid

25% 50%

2

1.2 -0.1307 -0.1100 -0.0729 0.2190 0.0136 0.0388 0.0241

1.4 -0.2061 -0.1872 -0.1578 0.0891 -0.0671 0.0397 0.0240

1.6 -0.2807 -0.2731 -0.2727 -0.0748 -0.0763 0.0276 0.0159

1.8 -0.3661 -0.3783 -0.3994 -0.2811 -0.0756 0.0164 0.0091

3

1.2 -0.1609 -0.1341 -0.0878 0.1147 -0.0521 0.0377 0.0256

1.4 -0.2069 -0.1819 -0.1427 0.0388 -0.1017 0.0268 0.0137

1.6 -0.2551 -0.2392 -0.2260 -0.0701 -0.1323 0.0216 0.0110

1.8 -0.3203 -0.3206 -0.3324 -0.2306 -0.1450 0.0317 0.0154

4

1.2 -0.1773 -0.1460 -0.0822 0.0656 -0.0995 0.0408 0.0265

1.4 -0.2114 -0.1844 -0.1377 -0.0012 -0.1368 0.0423 0.0249

1.6 -0.2538 -0.2349 -0.2151 -0.0945 -0.1747 0.0433 0.0290

1.8 -0.3009 -0.2950 -0.3001 -0.2161 -0.1929 0.0431 0.0259
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Table 4.14: The relative root mean square error of estimators with different parameters

in the two-components Hermite mixture model pi = 0.5Herm(1, d) + 0.5Herm(ν, d)

with 25% and 50% validation sample for N = 1, 000.

ν d
Without validation With validation

MLE Turing Chao Censored PMLE Valid

25% 50%

2

1.2 0.1324 0.1122 0.0796 0.2233 0.0495 0.0494 0.0323

1.4 0.2070 0.1884 0.1607 0.0987 0.0854 0.0508 0.0332

1.6 0.2813 0.2738 0.2737 0.0815 0.0891 0.0363 0.0238

1.8 0.3665 0.3787 0.3997 0.2821 0.0833 0.0340 0.0193

3

1.2 0.1618 0.1352 0.0910 0.1191 0.0580 0.0456 0.0325

1.4 0.2076 0.1828 0.1452 0.0517 0.1046 0.0352 0.0190

1.6 0.2554 0.2398 0.2271 0.0763 0.1345 0.0274 0.0146

1.8 0.3207 0.3210 0.3328 0.2316 0.1475 0.0376 0.0193

4

1.2 0.1779 0.1467 0.0854 0.0704 0.1009 0.0469 0.0309

1.4 0.2118 0.1850 0.1394 0.0251 0.1378 0.0509 0.0308

1.6 0.2542 0.2354 0.2159 0.0975 0.1758 0.0500 0.0343

1.8 0.3013 0.2954 0.3005 0.2171 0.1938 0.0470 0.0288
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Figure 4.7: The relative bias of estimators with different parameters in the two-

components Hermite mixture model for N = 1, 000.

Figure 4.8: The relative root mean square error of estimators with different parameters

in the two-components Hermite mixture model for N = 1, 000.
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4.5.2 Interval estimation part

4.5.2.1 Simulation results based on the two-components

Poisson mixture model

The coverage probabilities of the 95% CIs based on the two-components

Poisson mixture model were presented in Table 4.15. A comparison of the estimators

showed that N̂Censored provided severe overestimation for all cases, especially for weak

heterogeneity. N̂MLE and N̂Turing provided severe underestimation for all cases, espe-

cially for strong heterogeneity. N̂Chao provided underestimation for all cases, especially

for strong heterogeneity with N = 1, 000.

The CI ProfileValid with 25% and 50% validation information gave the high-

est CP for all cases. The average lengths of CI ProfileValid with 50% validation infor-

mation were shorter than those of 25% validation information for all cases. CI Pro-

fileMix performed the second best for weak heterogeneity. CI ProfileMix produced

low CP in strong heterogeneity for N = 1, 000. CIs of N̂MLE , N̂Turing, N̂Chao, and

N̂Censored provided low CP for all cases. CIs of N̂MLE , N̂Turing, and N̂Censored did not

cover the true population size in weak and strong heterogeneity for N = 1, 000.

Simulation results indicated that CI ProfileValid tends to perform reason-

ably well. It can be an appropriate method for estimating CI of population size N based

on the two-components Poisson mixture model. The larger validation sample size, the

more efficient estimation. In addition, CI ProfileMix is an appropriate method for esti-

mating CI of population size N in the case of weak heterogeneity.
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Table 4.15: Comparison of various estimators and 95% CI of N in the two-components

Poisson mixture model pi = 0.5Poi(1) + 0.5Poi(λ) with 25% and 50% validation

sample.

Without validation With validation

λ
MLE Turing Chao Censored ProfileMix ProfileValid

25% 50%

N=100

2

Average N̂ 95.25 96.15 98.97 132.34 101.48 99.66 99.54

Average ŝe(N̂) 4.47 3.76 10.33 16.74 - - -

Coverage probability 0.67 0.61 0.88 0.53 0.99 1.00 1.00

Average length 17.51 14.75 40.50 65.60 40.87 38.12 31.87

4

Average N̂ 85.57 88.71 96.55 111.06 92.27 97.26 97.87

Average ŝe(N̂) 2.13 2.68 8.29 9.89 - - -

Coverage probability 0.04 0.15 0.76 0.88 0.84 1.00 1.00

Average length 8.34 10.50 32.49 38.75 26.36 32.44 27.40

N=1,000

2

Average N̂ 938.11 949.25 970.29 1,301.22 1,053.20 998.56 998.68

Average ŝe(N̂) 13.76 11.82 30.71 51.35 - - -

Coverage probability 0.06 0.15 0.80 0.00 0.96 1.00 1.00

Average length 53.93 46.35 120.36 201.29 201.78 140.67 114.65

4

Average N̂ 852.53 885.15 954.71 1,110.35 931.94 979.58 984.55

Average ŝe(N̂) 6.73 8.58 24.97 31.47 - - -

Coverage probability 0.00 0.00 0.51 0.01 0.11 1.00 1.00

Average length 26.36 33.62 97.87 123.37 75.25 94.58 83.76
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4.5.2.2 Simulation results based on the two-components

Hermite mixture model

The coverage probabilities of the 95% CIs for N = 100 and N = 1, 000

based on the Hermite distribution were presented in Tables 4.16 and 4.17, respectively.

A comparison of the estimators showed that N̂MLE , N̂Turing, and N̂Chao provided se-

vere underestimation for all case, especially for large d in all population size. N̂Censored

provided overestimation in weak heterogeneity for d = 1.2, and gave severe underesti-

mation in weak and strong heterogeneity for d = 1.8 in all population size . N̂ProfileMix

produced severe under estimation for strong heterogeneity.

For N = 100, CI ProfileValid with 25% and 50% validation information

gave the highest CP for all cases. The average lengths of CI ProfileValid with 50%

validation information were shorter than those of 25% validation information for all

cases. CI ProfileMix performed the second best for weak heterogeneity, and ALs of

CI ProfileMix were slightly larger than those of CI ProfileValid. On the other hand,

CI ProfileMix produced low CP in strong heterogeneity. CIs of N̂MLE and N̂Turing

provided low CP for all cases, and did not cover the true population size in almost all

cases. CPs of CI of N̂Chao were low for all cases. CPs of CI of N̂Censored were close

to the nominal level in weak and strong heterogeneity for d = 1.2 and 1.4, but they

produced the largest ALs compare to the proposed CIs.

For N = 1, 000, CI ProfileValid with 25% and 50% validation information

gave the highest CP in almost all cases. The average lengths of CI ProfileValid with

50% validation information were shorter than those of 25% validation information for

all cases. CI ProfileMix performed the second best for weak heterogeneity, but ALs

of CI ProfileMix were larger than those of CI ProfileValid. On the other hand, CI

ProfileMix did not cover the true population size in strong heterogeneity. CIs of N̂MLE ,

N̂Turing, and N̂Chao did not cover the true population size for all cases. CPs of CI of

N̂Censored were low in almost all cases. CI of N̂Censored gave the highest CP in strong

heterogeneity for d = 1.4, but it produced the largest ALs compare to the proposed CIs.

Simulation results indicated that CI ProfileValid tends to perform reasonably

well. It can be an appropriate method for estimating CI of population size N based
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on the two-components Hermite mixture model. The larger validation sample size,

the more efficient estimation. In addition, CI ProfileMix is an appropriate method for

estimating CI of population size N in the case of weak heterogeneity.
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Table 4.16: Comparison of various estimators and 95% CI of N for N = 100 in the

two-components Hermite mixture model pi = 0.5Herm(1, d) + 0.5Herm(ν, d) with

25% and 50% validation sample .

Without validation With validation

d
MLE Turing Chao Censored ProfileMix ProfileValid

25% 50%

ν = 2

1.2

Average N̂ 87.96 89.75 94.18 122.91 97.23 99.21 99.93

Average ŝe(N̂) 3.99 3.55 10.08 15.41 - - -

Coverage probability 0.32 0.35 0.83 0.78 1.00 1.00 1.00

Average length 15.62 13.91 39.53 60.42 40.82 38.16 36.67

1.4

Average N̂ 80.12 81.88 85.60 109.70 91.23 97.97 98.78

Average ŝe(N̂) 3.48 3.26 8.63 13.32 - - -

Coverage probability 0.04 0.06 0.52 0.95 0.99 0.98 1.00

Average length 13.64 12.78 33.84 52.21 39.83 39.41 35.54

1.6

Average N̂ 72.01 72.81 73.79 92.96 85.10 97.64 98.18

Average ŝe(N̂) 2.99 2.87 5.98 10.47 - - -

Coverage probability 0.00 0.00 0.13 0.77 0.86 0.98 0.99

Average length 11.71 11.26 23.43 41.03 41.45 35.12 32.85

1.8

Average N̂ 64.14 62.97 61.13 73.22 90.72 101.00 100.03

Average ŝe(N̂) 2.48 2.24 2.54 6.60 - - -

Coverage probability 0.00 0.00 0.00 0.07 0.86 0.94 0.95

Average length 9.74 8.78 9.95 25.86 36.64 30.77 28.32

ν = 4

1.2

Average N̂ 82.49 85.59 93.76 106.73 88.87 94.89 95.58

Average ŝe(N̂) 1.96 2.56 8.30 9.48 - - -

Coverage probability 0.00 0.04 0.69 0.97 0.66 1.00 1.00

Average length 7.70 10.05 32.55 37.18 22.39 34.14 30.40

1.4

Average N̂ 78.74 81.38 87.28 99.72 85.15 93.23 95.07

Average ŝe(N̂) 1.80 2.39 6.87 8.61 - - -

Coverage probability 0.00 0.01 0.49 0.95 0.45 0.98 0.98

Average length 7.04 9.37 26.93 33.75 21.19 36.42 33.22

1.6

Average N̂ 74.79 76.60 79.22 90.50 81.91 93.02 95.25

Average ŝe(N̂) 1.62 2.12 4.68 7.18 - - -

Coverage probability 0.00 0.00 0.14 0.66 0.34 0.96 0.99

Average length 6.34 8.31 18.35 28.14 19.62 38.54 34.5

1.8

Average N̂ 70.63 71.28 71.13 79.74 80.41 96.55 97.56

Average ŝe(N̂) 1.43 1.70 2.26 5.25 - - -

Coverage probability 0.00 0.00 0.01 0.14 0.24 1.00 0.98

Average length 5.61 6.66 8.84 20.59 19.60 37.78 35.2
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Table 4.17: Comparison of various estimators and 95% CI of N for N = 1, 000 in the

two-components Hermite mixture model pi = 0.5Herm(1, d) + 0.5Herm(ν, d) with

25% and 50% validation sample .

Without validation With validation

d
MLE Turing Chao Censored ProfileMix ProfileValid

25% 50%

ν = 2

1.2

Average N̂ 878.67 889.88 923.02 1,215.18 1,012.69 1,002.06 1,000.51

Average ŝe(N̂) 12.58 11.22 29.79 47.81 - - -

Coverage probability 0.00 0.00 0.26 0.00 1.00 1.00 1.00

Average length 49.32 43.97 116.79 187.41 266.37 161.56 131.23

1.4

Average N̂ 792.52 810.02 837.07 1,081.42 932.82 987.06 990.57

Average ŝe(N̂) 10.93 10.32 25.57 41.41 - - -

Coverage probability 0.00 0.00 0.01 0.57 1.00 1.00 1.00

Average length 42.86 40.46 100.22 162.31 236.86 165.10 137.00

1.6

Average N̂ 713.80 719.58 717.46 908.74 919.77 980.42 986.77

Average ŝe(N̂) 9.35 9.03 16.67 31.72 - - -

Coverage probability 0.00 0.00 0.00 0.20 0.85 1.00 1.00

Average length 36.66 35.38 65.33 124.34 189.11 172.10 147.94

1.8

Average N̂ 634.44 621.73 600.84 715.74 925.68 994.26 995.86

Average ŝe(N̂) 7.70 6.95 7.05 19.82 - - -

Coverage probability 0.00 0.00 0.00 0.00 0.72 1.00 1.00

Average length 30.18 27.24 27.62 77.71 156.42 172.71 156.29

ν = 4

1.2

Average N̂ 822.20 853.03 914.33 1,061.96 898.77 969.44 976.27

Average ŝe(N̂) 6.27 8.20 23.10 29.87 - - -

Coverage probability 0.00 0.00 0.07 0.42 0.00 0.93 0.94

Average length 24.58 32.14 90.54 117.10 72.49 94.77 88.47

1.4

Average N̂ 787.48 814.12 860.32 996.09 860.99 954.30 964.27

Average ŝe(N̂) 5.73 7.64 19.78 27.19 - - -

Coverage probability 0.00 0.00 0.00 0.96 0.00 0.67 0.70

Average length 22.45 29.95 77.55 106.57 66.97 96.90 85.60

1.6

Average N̂ 747.97 766.39 784.92 904.94 827.63 945.80 958.60

Average ŝe(N̂) 5.12 6.77 13.59 22.74 - - -

Coverage probability 0.00 0.00 0.00 0.02 0.00 0.72 0.72

Average length 20.05 26.53 53.25 89.16 68.67 113.31 95.17

1.8

Average N̂ 701.64 707.13 701.75 784.53 810.35 973.93 982.03

Average ŝe(N̂) 4.42 5.25 6.11 15.90 - - -

Coverage probability 0.00 0.00 0.00 0.00 0.00 1.00 1.00

Average length 17.32 20.60 23.96 62.32 64.58 159.84 133.54
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4.6 Conclusion

Since mixture model is a flexible approach to cope with data from a popula-

tion which contain contaminated parts, it has been widely used in many fields. With this

motivation, the discrete mixtures of Poisson-Normal or Hermite distributions is adopted

to model the heterogeneity of an unobserved population. The results for estimating the

parameters of zero-truncated count mixtures of Hermite distributions implying a unique

estimator for the population size N are proposed in this study.

The penalized maximum likelihood estimator, N̂PMLE , based on discrete

mixtures of Hermite distributions is proposed. The simulation study was used to con-

sider the performance of the proposed estimator under two-components Poisson and

two-components Hermite mixture models. Based on two-components Poisson mixture

model, N̂PMLE is an appropriate estimator for population size estimation for moderate

heterogeneity. Moreover, N̂PMLE is an appropriate estimator for population size es-

timation in the case of weak and moderate heterogeneity in two-components Hermite

mixture model.

The development of estimation to include validation information in the capture-

recapture model is proposed in this research, to increase the accuracy and efficiency of

population size estimation. The simulation study was used to consider the performance

of the proposed estimator, N̂V alid, under two-components Poisson and two-components

Hermite mixture models. In the case of two-components Poisson mixture model, N̂V alid

can be an appropriate method for estimate the population size when N > 500 in weak

and strong heterogeneity. It is tends to perform reasonably well, and is the best method

for estimating population size based on the two-components Hermite mixture model.

The simulation results revealed that the larger validation sample size, the more efficient

estimation.

The profile mixture likelihood is used to construct the confidence intervals

for the population size N . Based on the two-components Poisson and two-components

Hermite mixture models, CI ProfileMix is an appropriate method for estimating CI of

population size N in the case of weak heterogeneity.

In addition, the profile mixture likelihood which include validation infor-
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mation is proposed. Simulation results indicated that CI ProfileValid tends to perform

reasonably well. It can be an appropriate method for estimating CI of population sizeN

based on the two-components Poisson and two-components Hermite mixture models.

The larger validation sample size, the more efficient estimation.
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CHAPTER 5

REAL DATA EXAMPLES

Real data example was applied in this chapter. The proposed estimators were

used to estimate the number of heroin users in Chiang Mai, Thailand (Sanfan, Chan-

ngam, & Chaiarporn, 2019). The number of heroin users that contacts the treatment

centers were presented in Table 5.1. Data of heroin users were collected by a hospi-

tal and a health treatment center in Chiang Mai from 1 October 2016 to 30 September

2017. The observed frequencies were f1 = 316, f2 = 57, f3 = 12, f4 = 2, f5 = 0,

f6 = 2, and the observed number of heroin users n = 389. Using the graphical ap-

proach to identify a distribution, the frequencies distribution and the ratio plot with

weighted regression line of heroin users in Chiang Mai were shown in Figures 5.1 and

5.2, respectively. Since the ratio plot showed a straight line with a positive slope, the

heterogeneous Poisson model seemed to appropriate for this data.

Table 5.1: Frequencies of heroin users in Chiang Mai.

i 1 2 3 4 5 6

fi 316 57 12 2 0 2

Figure 5.1: Frequency distribution of heroin users in Chiang Mai.
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Figure 5.2: Ratio plot with weighted regression line of heroin users in Chiang Mai.

The proposed and other well-known estimators were used to estimate the

number of heroin users in Chiang Mai. Results were showed in Table 5.2. Since the

ratio plot revealed that the model of heterogeneity was appropriate than the Poisson

model, N̂MLE and N̂Turing were not valid. N̂Chao, N̂Censored, N̂Herm, and N̂PMLE were

appropriate for estimating the number of heroin users in Chiang Mai.

From Table 5.2, N̂MLE provided the lowest estimate 1,049 with 95% of CI

(999, 1,099). N̂Turing provided a low estimate 1,112 with 95% of CI (1,090, 1,134). The

N̂Censored gave the largest estimate 2,073 with 95% of CI (1,606, 2,540). The number

of heroin users that estimated by N̂Herm were 1,390. The Chao lower bound estimator,

N̂Chao, estimated 1,265 which smaller than N̂Herm. Analysis of N̂PMLE was presented

in Table 5.3. The results showed that one component of the zero-truncated Hermite

model was the best fit with the highest log-likelihood and smallest BIC. The estimated

number of heroin users was 1,324 which close to N̂Herm. Analysis of N̂ProfileMix was

presented in Table 5.4. The results showed that one component of the zero-truncated

Hermite model was the best fit. The profileMix provided the estimate 1,388 for the

number of heroin users with 95% of CI (994, 1,889).

Table 5.5, compared frequency distribution of heroin users among the ob-

served counts, zero-truncated Poisson, and zero-truncated Hermite with ν = 0.35 and

ν = 0.37. The differences between the observed frequencies and fitted frequencies

of the zero-truncated Hermite distributions are minor. This was supported by Chi-
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square goodness-of-fit test with χ2 = 4.44 (p − value = 0.0351) and χ2 = 4.41

(p − value = 0.0357), df=1. At a 0.025 level of significance, there was sufficient evi-

dence to conclude that the distribution of heroin users was not different from the zero-

truncated Hermite distribution with parameters ν = 0.35 and ν = 0.37 for d = 1.12.

The homogeneous Poisson model gave the poorest goodness-of-fit compared with the

zero-truncated Hermite distribution. In addition, Figure 5.3 supported that the zero-

truncated Hermite distribution fitted than the zero-truncated Poisson distribution.

Table 5.2: Estimated total number of heroin users in Chiang Mai.

Estimator N̂ Ŝe(N̂) 95% Confidence Interval

Approximate Profile

normal likelihood

MLE (λ̂ =0.4634) 1,049 25.69 (999, 1,099) -

Turing 1,112 11.41 (1,090, 1,134) -

Chao 1,265 146.53 (978, 1,552) -

Censored 2,073 238.30 (1,606, 2,540) -

Herm (ν̂ =0.35, d̂ =1.12) 1,390 - - -

PMLE (ν̂ =0.37, d̂ =1.12) 1,324 - - -

ProfileMix 1,388 - - (994, 1,889)

Table 5.3: N̂PMLE analysis for heroin users in Chiang Mai.

s N̂PMLE q̂k ν̂k d̂ logL(Q̂k) BIC

1 1,324 1.0000 0.3681 1.1099 -246.5136 504.9544

2 7,225 0.5688 0.0002 1.2958 -251.9496 527.7535

0.4312 0.1561

3 12,868 0.3837 0.0000 1.3092 -253.3989 542.5793

0.3428 0.0000

0.2736 0.1382
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Table 5.4: N̂ProfileMix analysis for heroin users in Chiang Mai.

s N̂ProfileMix q̂k ν̂k d̂ logL(Q̂k) BIC

1 1,388 1.0000 0.3501 1.1223 -19.8613 51.6498

2 2,389 0.1753 0.0000 1.2226 332.9126 -641.9710

0.8247 0.2466

3 2,389 0.4108 0.1480 1.2226 337.9245 -640.0675

0.2618 0.2831

0.3274 0.2094

Table 5.5: Observed data and fitted frequencies based on zero-truncated Poisson and

zero-truncated Hermite of heroin users in Chiang Mai.

x Obseved data f̂x (MLE) f̂x (Herm) f̂x (PMLE)

1 316 306 307 306

2 57 71 69 69

3 12 11 11 12

4 4 1 2 2

χ2 12.18 4.44 4.41

Figure 5.3: Frequency distribution of heroin users among the observed counts, zero-

truncated Poisson, and zero-truncated Hermite .
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Addition information on the observed of heroin users was available from

another observational period. Data of heroin users were collected by a hospital and a

health treatment center in Chiang Mai from 1 October 2017 to 30 September 2018. Data

were checked for duplicates and matched with the cases that identified from 1 October

2016 to 30 September 2017. The number of heroin users that contacts the treatment

centers were presented in Table 5.6. The observed frequencies were g0 = 304, g1 = 59,

g2 = 19, g3 = 2, g4 = 2, g5 = 2, g6 = 1. Using the graphical approach to identify a

distribution, the frequency distribution of validation data and the ratio plots of positive

and validation sample with weighted regression lines were shown in Figures 5.4 and 5.5,

respectively. Both ratio plots were similar, and showed a straight line with a positive

slope. Therefore, the heterogeneous Poisson model seemed to appropriate for this data.

Table 5.6: Frequencies in positive sample and validation sample of heroin users in

Chiang Mai.

x 0 1 2 3 4 5 6

fx - 316 57 12 2 0 2

gx 304 59 19 2 2 2 1

Figure 5.4: Frequency distribution of the validation data.
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Figure 5.5: Ratio plot of positive and validation sample with weighted regression line

of heroin users in Chiang Mai

The proposed estimators were used to estimate the number of heroin users

in Chiang Mai. Results were showed in Table 5.7. Analysis of N̂V alid was presented

in Table 5.8. The results showed that one component of the zero-truncated Hermite

model was the best fit with the highest log-likelihood and smallest BIC. The estimated

number of heroin users was 1,664. Analysis of N̂ProfileV alid was presented in Table 5.9.

The results showed that two component mixture of the zero-truncated Hermite model

with the mixing distribution Q =


0.2175 0.4121

1.2189 1.2189

0.6003 0.3997

 was the best fit. The ProfileValid

provided the estimate 1,687 for the number of heroin users with 95% of CI (1,405,

2,044).

Table 5.10 and Figure 5.6, compared frequency distribution of heroin users

among the observed counts, zero-truncated Poisson, and zero-truncated Hermite with

and without validation information. Chi-square goodness-of-fit test of zero-truncated

Hermite with validation information was χ2 = 7.84 (p− value = 0.00511), df=1. At a

0.005 level of significance, there was sufficient evidence to conclude that the distribu-
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tion of heroin users was not different from the zero-truncated Hermite distribution with

parameters ν = 0.30 and d = 1.22. Comparing to the previous N̂PMLE and N̂Herm, the

predicted frequencies from N̂PMLE provided the best fit to the observed data. N̂Herm

performed the second best.

Table 5.7: Estimated total number of heroin users in Chiang Mai, Thailand.

Estimator N̂ Ŝe(N̂) 95% Confidence Interval

Approximate Profile

normal likelihood

MLE (λ̂ =0.4634) 1,049 25.69 (999, 1,099) -

Turing 1,112 11.41 (1,090, 1,134) -

Chao 1,265 146.53 (978, 1,552) -

Censored 2,073 238.30 (1,606, 2,540) -

Herm (ν̂ =0.35, d̂ =1.12) 1,390 - - -

PMLE(ν̂ =0.37, d̂ =1.12) 1,324 - - -

Valid (ν̂ =0.30, d̂ =1.22) 1,664 - - -

ProfileMix 1,388 - - (994, 1,889)

ProfileValid 1,687 - - (1,405, 2,044)

Table 5.8: N̂V alid analysis for heroin users in Chiang Mai, Thailand.

s N̂V alid q̂k ν̂k d̂ logL(Q̂k) BIC

1 1,664 1.0000 0.2985 1.2171 -912.5820 1,837.0910

2 1,810 0.1306 0.0031 1.2293 -937.9518 1,899.7580

0.8694 0.3201

3 1,810 0.1306 0.0031 1.2293 -940.2486 1,916.2790

0.2618 0.2831

0.3274 0.2094
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Table 5.9: N̂ProfileV alid analysis for heroin users in Chiang Mai, Thailand.

s N̂ProfileV alid q̂k ν̂k d̂ logL(Q̂k) BIC

1 1,664 1.000 0.2985 1.2171 -1,977.6440 3,967.2150

2 1,687 0.6003 0.2175 1.2189 -1.976.2860 3,976.4250

0.3997 0.4121

3 1,678 0.4034 0.2146 1.2181 -1,976.6499 3,989.0810

0.2683 0.4122

0.3283 0.4122

Table 5.10: Observed data and fitted frequencies based on zero-truncated Poisson and

zero-truncated Hermite with and without validation information.

x Obseved data f̂x (MLE) f̂x (Herm) f̂x (PMLE) f̂x (Valid)

1 316 306 307 306 298

2 57 71 69 69 76

3 12 11 11 12 12

4 4 1 2 2 2

χ2 12.18 4.44 4.41 7.84
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Figure 5.6: Observed frequencies and fitted frequencies of heroin users in Chiang Mai,

Thailand.
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CHAPTER 6

CONCLUSIONS AND FUTURE WORK

6.1 Conclusions

Capture-recapture is a powerful method for estimating the size of an elusive

target population. Capture-recapture sampling provide the frequency count data that

observed during the observational period. The basic model for the count data is homo-

geneous Poisson model, but it rarely occurs in real situations. It is more reasonable to

assume that the population may consist of a set of subgroups. Heterogeneous Poisson

model might be more realistic. The negative binomial distribution have been commonly

used as a model of capture-recapture data. The failure of a dispersion parameter esti-

mation in negative binomial distribution which results in a spurious estimate for the

population size N have been demonstrated in many studies. Therefore, the Poisson-

Normal distribution is proposed in this study.

The Laplace’s method is applied to approximate the Poisson-Normal distri-

bution. The resulting distribution is called Hermite distribution which has two parame-

ters ν and d. It is also flexible in terms of its ability to allow a moderate over-dispersion

in the data. The EM algorithm is used to estimate the MLE of two parameters. A new

estimator, N̂Herm, is proposed based on zero-truncated Hermite distribution through the

Horvitz-Thomson approach. The simulation results reveal that N̂Herm is an asymptotic

estimator under Poisson and Hermite distributions. For Hermite distribution, N̂Herm

works very well compared with others. Its performance is close to the N̂MLE and

N̂Turing for N > 500 and λ > 2 under Poisson distribution. N̂Herm is an efficient

estimator for estimating the population size N based on negative binomial distribution

when N > 500. In addition, the profile likelihood is used to construct the confidence

intervals for the population size N . The proposed CI is an appropriate choice for esti-

mating the CI of population size based on Poisson distribution, and is the best choice

for Hermite distribution.
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Mixture model is a flexible approach to cope with data from a population

which contain contaminated parts. With this motivation, the discrete mixtures of a Her-

mite distributions is adopted to model the heterogeneity of an unobserved population.

The results for estimating the parameters of zero-truncated count mixtures of Hermite

distributions implying a unique estimator for the population size N are proposed in

this study. The penalized maximum likelihood estimator, N̂PMLE , based on discrete

mixtures of Hermite distribution is proposed. The simulation study was used to con-

sider the performance of N̂PMLE . Based on two-components Poisson mixture model,

N̂PMLE is an appropriate estimator for population size estimation in moderate hetero-

geneity. Moreover, N̂PMLE is an appropriate estimator for population size estimation

in the case of weak and moderate heterogeneity in two-components Hermite mixture

model. The profile mixture likelihood, CI ProfileMix, is used to construct the confi-

dence intervals for the population size N . Based on the two-components Poisson and

two-components Hermite mixture models, CI ProfileMix is an appropriate method for

estimating CI of population size N in the case of weak heterogeneity.

Sometimes addition information on the observed units is available from an-

other sub-sample of the target population, called a validation sample. Böhning et al.

(2016) mentioned the capture-recapture modeling using validation sample in extension

of generic ratio regression approach. In addition, Arnold et al. (2017) demonstrated

that the use of validation sample not only substantially increases the estimation effi-

ciency but also reduces the bias considerably. With this motivation the development

of estimation to include validation information in the capture-recapture modeling is

proposed in this study, to increase the accuracy and efficiency of population size esti-

mation. The nonparametric maximum likelihood estimator is developed based on zero-

truncated Hermite distribution which include validation information, denoted N̂V alid.

The simulation study was used to consider the performance of N̂V alid. In the case of

two-components Poisson mixture model, N̂V alid can be an appropriate method for esti-

mate the population size when N > 500 in weak and strong heterogeneity. It is tends

to perform reasonably well, and is the best method for estimating population size based

on the two-components Hermite mixture model. In addition, the simulation results in-

dicated that the larger validation sample size, the more efficient estimation. The profile
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mixture likelihood which include validation information, CI ProfileValid, is proposed.

Simulation results indicated that CI ProfileValid tends to perform reasonably well. It

can be an appropriate method for estimating CI of population size N based on the two-

components Poisson and two-components Hermite mixture models.

6.2 Future work

Although the proposed methods in this study tend to perform reasonably well,

there are some important aspects that could be developed in the future.

1. This research proposed the penalized maximum likelihood estimator (PMLE) to

improve the boundary problem. The PMLE can improve the problem and pro-

vides the estimation close to the population size N . Therefore, it might be valu-

able to include the PMLE with validation information for comparison.

2. The mixture model provides a reasonably well estimation, but derivation of its

variance to form the confidence interval of N is not easy. The profile mixture

likelihood was used to construct confidence interval estimation of N , which is

computation-intensive task. Further study should focus on the estimation of the

variance of mixture model.

3. In this study, the profile mixture likelihood is used to construct confidence inter-

vals estimation ofN . It might be beneficial to use bootstrap resampling technique

to construct confidence intervals, and compare with the CI from the profile mix-

ture likelihood .
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