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ABSTRACT 
 

Truss topology optimization is one of the most active research areas in the field 

of structural optimization. Many studies on truss topology optimization have been 

done. Most of these studies employ the ground structure approach in performing truss 

topology optimization. In the ground structure approach, a grid of nodes is created, 

and a dense ground structure is usually formed by joining every node of the grid. The 

elements in the ground structure are then used as possible positions of truss elements. 

Since the elements are created by joining all the nodes of the grid, the search space 

becomes large quickly when the number of nodes is increased. In truss topology 

optimization problems, there are commonly many kinematically unstable trusses in 

their search spaces. Oftentimes, trusses are unstable only because of some locally 

unstable truss elements, such as disconnected elements. In addition, many trusses in a 

search space contain useless zero-force elements. Many of these kinematically 

unstable and zero-force elements can be easily identified. In the first part of this study, 

a new representation for truss topology optimization is proposed in which an element-

removal algorithm is used to remove such types of unwanted elements from trusses. 

These elements are removed during the translation of a representation code into its 

corresponding truss in order that the resulting truss may become a stable one. As a 

result, more representation codes in the search space are mapped into kinematically 
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stable and efficient trusses, and the level of competition among representation codes 

is increased. This process alleviates the problem of having large search spaces and 

encourages faster solution convergences. In the second part of the study, a new coding 

scheme is proposed in which a prescribed maximum number of elements is specified 

for truss optimization. In this scheme, there is no need for any ground structure, and 

only a grid of nodes is required. The value of the maximum number of elements is set 

to be lower than the number of elements in a complete ground structure. As a result, 

the number of elements that must be removed during the optimization process to 

obtain the optimal truss is reduced. Another advantage of the proposed scheme is that 

the designer can predefine a maximum limit for the number of members to be present 

in the final optimal truss. Both proposed representations are used in this study with a 

simple multi-population particle swarm optimization algorithm (MPSO). Several 

example problems are solved, and it is found that both proposed representation codes 

significantly improve the performance of the optimization process. 

 

Keywords: Truss topology optimization, Coding scheme, Particle swarm 

optimization, Unwanted elements, Ground structure, Multi-population. 
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INTRODUCTION 

 

1.1 General 

Optimization is the process of obtaining the best result under given constraints 

from a set of available alternatives. There are different approaches available to solve 

optimization problems. Optimization methods, in general, can be broadly classified into 

two types, namely gradient-based methods and heuristic methods. Gradient-based 

methods are traditional methods of optimization, in which the gradients of objective 

functions are found using some mathematical algorithms and subsequently used to 

locate the points on the objective functions where their values are zero. Such points are 

associated with the optimal values of the functions, in their immediate localities. The 

Newton-Raphson method, steepest descent method, conjugate gradient method, and 

generalized reduced gradient method are some examples of gradient-based methods. 

The main disadvantage of gradient-based methods stems from the fact that it is usually 

difficult or computationally expensive to find, for real-life problems, the gradients of 

objective functions. Another disadvantage of these methods is that each of these 

gradient-based methods usually performs its search by iteratively improving one search 

point. Depending on the initial guess, the obtained result can be simply a local best 

solution. Due to these disadvantages, gradient-based methods may not be applicable to 

real-life problems. Especially, gradient-based methods may not be able to handle large 

problems that have many local optimums effectively. 

Heuristic methods are search methods that, in general, do not require the 

gradients of objective functions. Most heuristic methods are conceptualized from 

natural phenomena, such as natural evolution, animal foraging behavior, and swarm 

intelligence. Heuristic methods commonly employ many search points, instead of one, 

at the same time. As a result, the chance of being trapped in local optimal regions is 

reduced. In general, heuristic optimization methods can be used with continuous or 

discrete optimization variables and any types of constraint without difficulty. Because 

of these flexible characteristics of these methods, they are now becoming popular 

among researchers. The biggest drawback of heuristic optimization methods may be 
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that they are in general computationally expensive since many search points must be 

evaluated during their optimization processes. As a result, they may not handle 

significantly large problems well. However, the current and future advancement of 

computers and parallel computing can alleviate this drawback. 

A conventional structural design procedure always aims at finding an acceptable 

or adequate design, which satisfies the functional and other requirements. In general, 

there might be more than one acceptable design, and the purpose of optimization is to 

choose the best one of these many acceptable designs. The definite way to get the best 

result is to compare all alternatives, but this is mostly not possible as the number of 

alternatives is usually remarkably high. To avoid this comparison problem, a structural 

design problem can be treated as an optimization problem and subsequently solved by 

an optimization algorithm. The objective of a structural design optimization problem is 

usually taken as minimizing the material cost. The structural design constraints 

straightforwardly become the constraints of the optimization problem. 

The optimal design of a truss is concerned with the distribution of available 

materials among its structural members to carry a given set of loads as efficiently as 

possible, subjected to mechanical and technological constraints. To obtain the optimal 

design of a truss, three types of optimization can be employed, i.e. size, shape, and 

topology optimization. Size optimization considers the cross-sectional areas of truss 

elements as design variables while shape optimization considers the positions of truss 

joints as design variables. Fundamentally, topology optimization is concerned with the 

number and connectivity of truss elements and joints (Choensiridamrong, Watjatrakul 

& Prayote, 2014; Luh & Lin, 2011; Rajeev & Krishnamoorthy, 1992). However, 

topology optimization usually incorporates size optimization. 

Many research works on truss topology optimization have been done (Deb & 

Gulati, 2001; Gilbert & Tyas, 2003; Hagishita & Ohsaki, 2009; Hajela & Lee, 1995; 

Hasançebi & Erbatur, 2002; Kaveh & Kalatjari, 2003; Kawamura, Ohmori & Kito, 

2002; Luh & Lin, 2011; Martínez, Martí & Querin, 2007; Ohsaki, Fujisawa, Katoh & 

Kanno, 1999; Rajan, 1995; Sokół, 2011; Wu & Tseng, 2010). Most of the works 

consider stabilities, stresses, and displacements as the constraints of optimization (Deb 

& Gulati, 2001; Guo, Cheng & Olhoff, 2005; Wu & Tseng, 2010). To define all possible 

topologies, the ground structure approach, in which a highly interconnected truss is 
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generated by joining some predefined nodes, is generally used. During the optimization 

process, members, whose areas are smaller than some minimum value, are removed 

from the truss (Hajela & Lee, 1995). Since only the removal of elements is possible, to 

get the real optimal structure, the initial ground structure must be sufficiently dense. In 

general, to construct a ground structure, all predefined nodes are connected the other 

nodes in order not to lose any single possible configuration. Considering densest trusses 

naturally requires large computational resources and time. Hence, researchers are now 

thinking of alternatives where it is not mandatory to construct densest ground structures 

(Gao, Liu, Li & Qiao, 2016; Gilbert & Tyas, 2003; Hagishita & Ohsaki, 2009; 

Kawamura, Ohmori & Kito, 2002; Sokól, 2014). The denseness of a ground structure 

can be reduced by not considering all possible node connections. For example, it is 

possible to consider only the connections between neighboring nodes as possible truss 

elements (Beckers & Fleury, 1997). The definition of neighborhood can be adjusted to 

cover a large or small region. In real practice, it is reasonable to use a sparse ground 

structure that does not have a large number of nodes and does not include long 

connections. 

When the objective of a truss topology optimization problem is to minimize the 

volume of the truss under only stress constraints, the optimization problem can be 

formulated as a linear programming problem (Bołbotowski & Sokół, 2016; Gilbert & 

Tyas, 2003; Sokół, 2011). Solving linear programming problems is not computationally 

expensive, and, as a result, significantly large problems of this type can be solved 

efficiently and accurately. Truss topology optimization problems that also involve 

stability and displacement constraints are in general nonlinear programming problems. 

Nonlinear programming problems may contain local optimal solutions and are typically 

difficult to solve. Population-based heuristic optimization methods, whose applicability 

is not limited to certain types of optimization problem and can handle global 

optimization problems well, can be excellent choices for solving nonlinear truss 

topology optimization problems (Hajela & Lee, 1995; Hasançebi & Erbatur, 2002; 

Kaveh & Kalatjari, 2003; Luh & Lin, 2011; Rajan, 1995). Population-based heuristic 

optimization methods employ many search points simultaneously and their chance of 

being trapped in local optimal regions is low. 
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1.2 Statement of the problem 

Most research works on truss topology optimization employ ground structures 

and eliminate unwanted truss members from the ground structures during the 

optimization processes. Although using ground structures to define possible topologies 

is convenient, the problem with this type of scheme is that, when the number of nodes 

in a ground structure is increased, the search space becomes large very quickly. Once 

the search space becomes large, it naturally becomes difficult to find the best solution 

by any optimization method. In addition, large optimization problems require large 

computational resources and time, especially when heuristic optimization methods are 

used to solve them. 

In a ground structure having 𝑁 nodes, if all possible node connections are 

considered, there are a total of 𝑛 = (
𝑁
2

) = 𝑁(𝑁 − 1) 2⁄  different truss members in the 

ground structure. If each element has 𝐶 discrete choices of sections, the number of 

possible trusses in the search space is equal to 𝐶𝑁(𝑁−1) 2⁄ . The size of the search 

increases more than exponentially with 𝑁. If each element has a continuous range of 

possible sectional areas, the number of dimensions of the continuous search space is 

equal to 𝑁(𝑁 − 1)/2, which increases quadratically with 𝑁. However, it is observed 

that the number of elements in an optimal truss is always considerably less than the 

number of elements present in the original ground structure. This implies that most of 

the elements in the original ground structures are removed by the optimization process 

to obtain the optimal truss. Thus, it should be possible to develop an efficient truss 

optimization scheme in which only small numbers of truss elements are considered 

during the optimization process. 

Another difficulty arising from the use of ground structures is that, ground 

structures always produce search spaces that include many kinematically unstable 

trusses. Unstable trusses in a search space range from obvious ones, such as those that 

have disconnected elements, to obscure ones that can only be identified during the 

analysis process. In most cases, kinematically unstable trusses occupy substantial 

portions of search spaces. Having many unstable trusses in the search space of a truss 

optimization problem naturally makes the problem difficult to solve. It is therefore 

desirable to reduce unstable trusses in search spaces. Some types of unstable element, 
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such as disconnected elements, can be easily identified. If these elements are removed 

during the translation of a representation code into its corresponding truss, the resulting 

truss may become a stable one. This results in more representation codes in the search 

space that are mapped into kinematically stable trusses. This subsequently increases the 

competition among representation codes. In addition, in many cases, elements that have 

zero forces can be easily identified. These elements are not useful and can also be 

removed in the same manner as that for unstable elements, mentioned earlier. 

Removing these unwanted elements should alleviate the problem of having large search 

spaces using ground structures and encourages faster solution convergences. 

   

1.3 Objectives of the study 

To increase the efficiency of truss topology optimization using heuristic 

optimization methods, in this study, two new coding schemes are proposed. The 

objectives of this study are as follows: 

1) To develop a coding scheme for removing unstable and zero-force elements 

that can be easily identified from trusses during the decoding process. 

2) To develop a coding scheme for truss topology optimization with a 

prescribed maximum number of truss elements. 

 

1.4 Scope of the study 

The scope of this study is as follows: 

1) Linear elasticity is assumed. 

2) The objective of each truss optimization problem is to minimize the weight 

of the truss. 

3) The constraints include stress and displacement constraints. Buckling 

constraints are not considered. 

4) The weight of each truss is not considered in the calculation of stresses and 

displacements. 

5) Multi-population particle swarm optimization (PSO) is used as the 

optimization algorithm. 
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1.5 Organization of the thesis 

There are five chapters in this thesis. In the first chapter, the introduction to the 

study is given. The second chapter presents the literature review of this research work. 

The third chapter gives the major theoretical background required for this research. The 

fourth chapter gives the details of the proposed coding schemes. The fifth chapter shows 

the results of this effort. Finally, the conclusion of the study is presented. 
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REVIEW OF LITERATURE 

 

Truss topology optimization is one of the popular areas of research in the field 

of structural optimization, and many studies have been done in this area by using 

heuristic optimization methods (Deb & Gulati, 2001; Ghoddosian, Riyahi Vezvari, 

Sheikhi Azqandi & Karimi, 2018; Hajela & Lee, 1995; Nanakorn & Meesomklin, 2001; 

Rajan, 1995; Rajeev & Krishnamoorthy, 1992; Tsiptsis, Liimatainen, Kotnik & 

Niiranen, 2019). This is probably because solutions of truss topology optimization can 

frequently be used in real practice. In most of these research works, a ground structure 

is formed, and the constraints considered are stresses and displacements. When the 

ground structure approach is employed, a uniform grid, in which all nodes are linked, 

is usually used to form a ground structure. Some research works have also been done 

using alternative approaches to form ground structures (Gao, Liu, Li & Qiao, 2016; 

Ghoddosian, Riyahi Vezvari, Sheikhi Azqandi & Karimi, 2018; Hagishita & Ohsaki, 

2009; McKeown, 1998; Smith, 1994). For example, in the work by Gao, Liu, Li and 

Qiao (2016), the locations of nodes in a ground structure are determined from the values 

of principal stresses that are obtained from continuum analysis. Kirsch (1996) proposed 

reduction and expansion processes for topology optimization of trusses. In the reduction 

process, members and joints are eliminated from an initial structural topology. In 

contrast, the expansion process adds members and joints to an initial structural 

topology. An initial structural topology in the expansion process is formed with a 

limited number of members and joints. During the expansion process, modified 

structures are introduced successively by adding members and joints. In the work by 

Hagishita and Ohsaki (2009), a growing ground structure method is used. In this 

method, the initial ground structure does not connect all the nodes with each other. 

Rather, elements are added iteratively during successive generations by using various 

strategies. Three types of problem, i.e. size, shape, and topology optimization problems 

are solved using this method. In the work by Ghoddosian, Riyahi Vezvari, Sheikhi 

Azqandi and Karimi (2018), another growing ground structure method, named the 

minimum growing ground structure method (MGGSM), is used for optimization of 
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discrete truss structures. In MGGSM, a minimum stable structure is first constructed 

instead of constructing a complete ground structure, in which all nodes are linked. In 

this step, nodes that have forces are linked with nodes that represent supports to 

generate this minimum stable structure. In the second step, elements are added to the 

minimum stable structure until the structure is feasible with respect to stress and 

displacement constraints. In the third step, a heuristic optimization method is used to 

perform topology optimization on the structure obtained from the second step. The 

results by MGGSM are compared with those by other methods and the efficiency of 

MGGSM is shown. The main advantage of MGGSM is the reduction in computational 

cost specially for structural analysis. In the work by Kaveh and Kalatjari (2003), 

topology optimization of trusses is done using a genetic algorithm with the help of the 

force method and the graph theory. A graph with all pairs of truss nodes being 

connected by single members is named as a complete graph. A graph with no multiple 

members and loops is known as a simple graph. A graph with no member is called a 

null graph. After studying many basic graphs, a star graph is found to be one of the 

most suitable forms for topology optimization. In a star graph, every node is connected 

to the neighboring nodes only. 

Truss optimization problems mostly have large search spaces and can have 

either continuous or discrete design variables, or both. In addition, they tend to have 

many local optimal solutions. As a result, heuristic optimization methods are more 

suitable for these problems than traditional gradient-based optimization methods. Many 

heuristic optimization algorithms have been used to solve truss optimization problems. 

Some popular ones include genetic algorithms (GAs), particle swarm optimization 

(PSO), and firefly algorithms (FAs).  

GAs have been extensively used for solving truss optimization problems (Cui, 

An & Huang, 2018; Deb & Gulati, 2001; Han & Wang, 2019; Rajan, 1995; Rajeev & 

Krishnamoorthy, 1992). In the work by Rajeev and Krishnamoorthy (1992), a GA is 

first used for truss optimization. In their work, the objective of a truss optimization 

problem is to minimize the weight of a truss under stress and displacement constraints. 

The objective function is modified to incorporate constraints. The fitness of an 

individual is obtained by subtracting the modified objective function from a large 

constant. After the work by Rajeev and Krishnamoorthy (1992), GAs have been 
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continuously used to solve size, shape, and topology optimization problems (Cui, An 

& Huang, 2018; Deb & Gulati, 2001; Neeraja, Kamireddy, Kumar & Reddy, 2017; 

Rajan, 1995; Serpik, Alekseytsev & Balabin, 2017). In size optimization problems, 

design variables are the cross-sectional areas of elements (Assimi, Jamali & Nariman-

zadeh, 2017; Rajan, 1995). The objective of a size optimization problem is simply to 

find the best combination of cross-sectional areas that corresponds to the optimal truss, 

without removing any members. In shape optimization, nodal coordinates are 

considered as design variables, and the optimized shape of a truss is the one that has 

the minimum weight and does not violate its constraints (Deb & Gulati, 2001; Ede et 

al., 2018; Rajan, 1995). In topology optimization, truss topology and element cross-

sectional areas that result in optimized trusses are to be determined (Arnaot, 2019; 

Assimi, Jamali & Nariman-zadeh, 2017; Deb & Gulati, 2001; Ede et al., 2018; Neeraja, 

Kamireddy, Kumar & Reddy, 2017). When the ground structure approach is used, the 

design variable representing the cross-sectional area of an element is allowed to become 

zero, or even negative. The presence or absence of an element in a ground structure is 

determined by comparing the design variable, representing the cross-sectional area of 

the element, with a user-defined small critical cross-sectional area. If the value of the 

design variable is smaller than the critical area, the element is considered absent. In the 

work by Han and Wang (2019), a GA is used to optimize bridge structures, where 

topology optimization of top lateral bracing configurations is done. In the study by Cui, 

An and Huang (2018), a GA is used for truss topology optimization with local buckling 

constraints. Their algorithm also restricts intersections and overlapping of members. 

Some other studies have also been done to eliminate overlapping members (Hagishita 

& Ohsaki, 2009; Kawamura, Ohmori & Kito, 2002). 

In the course of time, many other modifications have been done in truss 

optimization by GAs (Kawamura, Ohmori & Kito, 2002; Nanakorn & Meesomklin, 

2001; Richardson, Adriaenssens, Bouillard & Coelho, 2012; Tsiptsis, Liimatainen, 

Kotnik & Niiranen, 2019). For example, in the work by Nanakorn and Meesomklin 

(2001), an adaptive penalty scheme for structural design optimization by GAs is 

proposed. In GAs, penalty functions are generally used to consider constraints. To 

penalize infeasible structures, their fitness values are simply reduced. The relative 

importance between objective and constraint functions are commonly adjusted via user-
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defined coefficients that are usually problem-dependent and have no physical 

meanings. The adaptive penalty scheme by Nanakorn and Meesomklin (2001) employs 

a coefficient that has a clear physical meaning and allows the penalty to automatically 

adjust itself during the evolution. In the study by Kawamura, Ohmori and Kito (2002), 

a modified GA for eliminating overlapping elements in optimal trusses is proposed. 

Combinations of connected triangles are used instead of single line elements to generate 

trusses. As a result, unstable structures are avoided automatically by using triangles. In 

this modified method, elements are not generated all at once as in the ground structure 

scheme. Rather, triangular elements are generated progressively until all base nodes are 

selected. In their study, a new modified coding system is developed to represent 

triangular elements. In the study by Richardson, Adriaenssens, Bouillard and Coelho 

(2012), a kinematic stability repair approach for GAs is proposed. In their study, 

kinematically unstable trusses are not penalized. Instead, their chromosomes are 

modified to add or remove elements to finally obtain stable trusses. This implies that 

some representation codes are not considered since, when these codes appear, they are 

changed into different ones. It is shown that their method can significantly increase the 

rate of convergence of the algorithm. In the study by Nimtawat and Nanakorn (2009) 

and Nimtawat and Nanakorn (2010), the concept of removing unwanted elements in 

topology or layout optimization is introduced using GAs. A grid is superimposed onto 

a floor plan and serves as a ground structure for beam-slab layouts. Beam patterns 

created from a grid always include patterns that are not valid. Beam patterns are not 

valid if they contain some invalid beams, such as disconnected beams. In these works 

by Nimtawat and Nanakorn (2009) and Nimtawat and Nanakorn (2010), invalid beams 

are removed from their patterns during the decoding process in order to obtain valid 

beam-slab layouts. As a result, the representation of beam-slab layouts includes only 

valid beam-slab layouts. In short, the mapping between the representation codes and 

the corresponding layouts is specially tailored to give only valid beam-slab layouts.  

PSO, developed by Kennedy and Eberhart (1995), is another popular heuristic 

optimization method that is frequently used for truss optimization. This method is 

generally used for continuous variables with continuous nonlinear objective and 

constraint functions. PSO mimics bird flocking, fish schooling, and swarming behavior 

of animals. The concept of PSO is very simple and it can be implemented in a few lines 
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of codes. Truss topology optimization using PSO has also been developed by many 

researchers (Ghoddosian, Riyahi Vezvari, Sheikhi Azqandi & Karimi, 2018; Luh & 

Lin, 2011; Nanakorn, Petprakob & Naga, 2014; Tsiptsis, Liimatainen, Kotnik & 

Niiranen, 2019). In the study by Luh and Lin (2011), two PSO algorithms are used for 

truss topology optimization. First, a binary particle swarm optimization (BPSO) 

algorithm is used to find the best topology. After that, an algorithm based on so-called 

attractive and repulsive particle swarm optimization (ARPSO) is used to find the 

optimal size and shape variables for the obtained topology. In the study by Tsiptsis, 

Liimatainen, Kotnik and Niiranen (2019), PSO is used with isogeometric tools for 

optimization of truss and frame towers. The objective of the study is to explore 

structural optimization by a PSO-based optimizer having non-uniform rational B-spline 

(NURBS) integrated in both the structural analysis solver and PSO. This integration 

increases the accuracy of results. It also reduces computational effort and makes 

parametric studies easy to perform. Multi-population particle swarm optimization 

(MPSO) is shown to be more effective than conventional PSO in the work by Nanakorn, 

Petprakob and Naga (2014). An object-oriented programming (OOP) language is used 

to implement an MPSO algorithm for truss topology optimization. In their paper, it is 

shown that the OOP paradigm can be used suitably for implementing PSO algorithms. 

In OOP, the communications and actions between objects are considered. In PSO, there 

are particles, which can be treated as objects. The communications and actions between 

them can be considered easily under the OOP paradigm. In MPSO, particles are 

swapped among different populations every some iterations. Since many populations 

are used, MPSO reduces the probability of the algorithm to be trapped in local optimal 

regions. Using many populations of particles can be computationally expensive. 

Nevertheless, parallel computing techniques can be used to make the computation more 

effective and efficient. 

FAs, first developed by Yang (2009), are among those heuristic optimization 

algorithms that are considered powerful. FAs mimic the flashing behavior of fireflies. 

Light flashing of fireflies can be formulated in such a way that it is associated with the 

objective functions of optimization problems. There are three basic rules in FAs. The 

first rule is that all fireflies are unisex. Fireflies are attracted to other fireflies regardless 

of their genders. The second rule is that attractiveness of a firefly increases with its 
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brightness. Fireflies that are less bright will move towards brighter fireflies. The third 

rule is that the brightness of a firefly increases with its merit, which is determined from 

the values of its objective and constraint functions. In the work by Miguel, Lopez and 

Miguel (2013), FAs are used to perform size, shape, and topology optimization of truss 

structures. The examples considered in their work emphasize the capabilities of FAs in 

simultaneous optimization of size, shape, and topology of trusses in a single-stage 

procedure. In the problems considered, nodal coordinates are represented by continuous 

variables and cross-sectional areas are taken from a set of discrete variables. As a result, 

each problem has mixed types of variable. FAs are found to be effective in solving this 

type of problems. In the study by Baghlani, Makiabadi and Rahnema (2013), an 

accelerated firefly algorithm (AFA) for size optimization of truss structures is 

developed. In AFA, randomness in the motion of fireflies is reduced to improve the 

stability and performance of the standard FA. In the study by Wu, Li, Hu and Borgart 

(2017), an improved FA (IFA) is developed for size and topology optimization of 

trusses with discrete design variables. In IFA, the positions of initial fireflies and the 

position update formula are modified from the standard ones. Two examples are solved 

to verify the feasibility and efficiency of the algorithm. 

Many other heuristic optimization algorithms have been used for solving truss 

optimization problems (Li & Zhen, 2019; Luh & Lin, 2008; Sönmez, 2011). For 

example, in the work by Sönmez (2011), an artificial bee colony (ABC) algorithm for 

optimization of trusses is developed, and, in the work by Li and Zhen (2019), a bat 

algorithm (BA) is used to optimize trusses. Among all of these algorithms, the most 

popular methods are probably GAs and PSO (Peydro Rasero, Sellés Cantó, Martínez 

Sanz, Plá Ferrando & Sánchez Caballero, 2012). Both methods have been used to solve 

truss topology optimization problems, in which the ground structure approach is 

employed. The ground structure approach is used even for non-orthogonal unstructured 

and concave domains (Zegard & Paulino, 2014). The ground structure approach has 

been found to give good results for small problems. However, for large problems, use 

of ground structures can be ineffective. The main drawback of the ground structure 

approach is that truss elements to be considered in this approach are generally and 

intrinsically dense. This simply means that search spaces can be exceptionally large for 

large problems. That is why this approach is suitable only for small problems.  
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THEORETICAL BACKGROUND 

  

3.1 Particle swarm optimization (PSO) 

This optimization method, developed by Kennedy and Eberhart (1995), is 

modified and used in this study for truss topology optimization. PSO mimics the 

swarming behavior of animals, such as birds and fishes. Birds in a flock know the 

positions of other birds in the flock. As a result, anything interesting that any bird finds 

is transmitted to the entire swarm. All the members become acquainted with and, 

consequently, benefited from the transmitted information. Effectively, there is an 

information pool that is available to every bird. This intelligence helps every bird find 

food for itself. A population in PSO is called a swarm, and each individual in the 

population is called a particle. Each particle represents a position in the search space, 

and it can be thought of as a position of a bird in its flock. The optimal solution can be 

thought of as the position of food that the flock is trying to find. In each iteration, a 

particle moves by considering its own experience and the experience of the whole 

population in order to improve itself. 

Consider an optimization problem in a 𝐷-dimensional search space. In the 

simple PSO algorithm, the movement of particles is governed by the following 

expressions, i.e. 

𝑉𝐼𝑑(𝑡 + 1) = 𝑊𝑉𝐼𝑑(𝑡) + 𝜙1𝑟1𝐼𝑑[𝑝𝐵𝐼𝑑(𝑡) − 𝑋𝐼𝑑(𝑡)] + 𝜙2𝑟2𝐼𝑑[𝑔𝐵𝑑(𝑡) − 𝑋𝐼𝑑(𝑡)]; (3.1) 

𝑋𝐼𝑑(𝑡 + 1) = 𝑋𝐼𝑑(𝑡) + 𝑉𝐼𝑑(𝑡 + 1). (3.2) 

 

 

 

 

 

 

 

 

social 

cognitive 

inertia 
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Figure 3.1 Particle movement in PSO. 
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Here, 𝑉𝐼𝑑(𝑡) and 𝑋𝐼𝑑(𝑡) represent, respectively, the velocity and position of particle 𝐼 

in dimension 𝑑 at iteration 𝑡. In addition, 𝑊, 𝜙1, and 𝜙2 are user-defined positive 

constants while 𝑟1𝐼𝑑 = 𝑟𝑛𝑑[0,1] and 𝑟2𝐼𝑑 = 𝑟𝑛𝑑[0,1] are uniformly distributed random 

numbers on [0,1]. In Equation (3.1), 𝑝𝐵𝐼𝑑(𝑡) denotes the position in dimension 𝑑 of 

the best solution that particle 𝐼 has ever experienced, and this solution is called the 

particle best of particle 𝐼. In addition, 𝑔𝐵𝑑(𝑡) denotes the position in dimension 𝑑 of 

the best solution that the whole population has ever experienced, and this solution is 

called the global best.  

The velocity 𝑉𝐼𝑑  is allowed to vary within a closed interval [−𝑉𝑑𝑚𝑥 , 𝑉𝑑𝑚𝑥], 

where 𝑉𝑑𝑚𝑥  is a user-defined positive constant. If the velocity 𝑉𝐼𝑑(𝑡 + 1) becomes 

larger than 𝑉𝑑𝑚𝑥 , it is set to 𝑉𝑑𝑚𝑥 . If it becomes smaller than −𝑉𝑑𝑚𝑥 , it is set to −𝑉𝑑𝑚𝑥 . 

In addition, the position 𝑋𝐼𝑑 is varied within a user-defined closed interval 

[𝑋𝑑𝑚𝑛 , 𝑋𝑑𝑚𝑥]. If the position 𝑋𝐼𝑑(𝑡 + 1) is larger than 𝑋𝑑𝑚𝑥 , it is set to 𝑋𝑑𝑚𝑥 . If it is 

smaller than 𝑋𝑑𝑚𝑛, it is set to 𝑋𝑑𝑚𝑛. In both of these cases, the velocity 𝑉𝐼𝑑 (𝑡 + 1) is 

also set to its negative. 

To begin the algorithm at 𝑡 = 1, each 𝑉𝐼𝑑(1) is randomly selected from 

[−𝑉𝑑𝑚𝑥 , 𝑉𝑑𝑚𝑥] while each 𝑋𝐼𝑑(1) is randomly selected from [𝑋𝑑𝑚𝑛 , 𝑋𝑑𝑚𝑥], i.e. 

𝑉𝐼𝑑(1) = 𝑟𝑛𝑑[−𝑉𝑑𝑚𝑥 , 𝑉𝑑𝑚𝑥]; (3.3) 

𝑋𝐼𝑑(1) = 𝑟𝑛𝑑[𝑋𝑑𝑚𝑛 , 𝑋𝑑𝑚𝑥]. (3.4) 

As shown in Equation (3.1) and Figure 3.1, the new position of a particle is 

directed by three terms, namely the inertia, the particle best, and the global best. Over 

each iteration, a particle flies towards its particle best and global best positions. Since 

all particles always move and change their positions, the particle and global bests either 

become better or remain the same. The objective of the algorithm is that, at the end, all 

particles converge to the global optimal solution of the considered problem. The inertia 

weight 𝑊 controls the influence of the previous velocity of a particle. A larger value of 

𝑊 has the greater global search ability and enhances exploration, whereas a smaller 

value of 𝑊 has a greater local search ability and enhances exploitation. It is found that 

the value of 𝑊 from 0.9 to 0.4 provides good results (Bansal et al., 2011). Several 

researchers have offered different formulas to dynamically adjust the value of 𝑊 
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(Bansal et al., 2011; Gao, An & Liu, 2008; Malik, Rahman, Mohd Hashim & Ngah, 

2007; Xin, Chen & Hai, 2009). In addition, many researchers have proposed different 

modifications to the standard PSO algorithm, such as adaptive PSO (Hossen, Rabbi & 

Rahman, 2009), self-organizing PSO (Ratnaweera, Halgamuge & Watson, 2004), and 

emotional PSO (Ge & Rubo, 2005). 

PSO technique is very simple when compared to GAs or FAs, and it is 

considered to be one of the most popular techniques of optimization (Peydro Rasero, 

Sellés Cantó, Martínez Sanz, Plá Ferrando & Sánchez Caballero, 2012). Particles in 

PSO have memories and these memories are used during search. GAs do not utilize any 

memory during search. Although PSO was initially developed to optimize functions 

with continuous design variables, with some modifications, it can be used with discrete 

variables (Kennedy & Eberhart, 1997; Li, Huang & Liu, 2009). 

3.2 Multi-population PSO 

Evolutionary and swarm optimization algorithms consider many search points 

at the same time. Using many search points, instead of one, reduces the chance that the 

search is trapped in local optimal regions. To reduce the chance of being trapped even 

further, multiple populations of search points can be used. Certainly, using more 

populations increases the computational time. However, this disadvantage can be 

alleviated by parallel computing. The performance of PSO is found to be improved 

when multiple populations are used by many researchers (Jiang, Hu, Huang & Wu, 

2007; Nanakorn, Petprakob & Naga, 2014; Niu, Zhu, He & Shen, 2008). In the study 

by Jiang, Hu, Huang and Wu (2007), a population is partitioned into several sub-

swarms and information sharing is done among these sub-swarms. In the study by Niu, 

Zhu, He and Shen (2008), a population, consisting of one master swarm and several 

slave swarms, are considered. The particles in the master swarm enhance themselves 

by using their own knowledge and also the knowledge of the particles in the slave 

swarms. In multi-population PSO proposed by Nanakorn, Petprakob and Naga (2014), 

two different populations are used. During the swam evolution process, some particles 

from the two populations are swapped with a probability of 𝑝𝑠 at a certain number of 

interval of iterations.  
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In this study, the simple two-population PSO algorithm by Nanakorn, Petprakob 

and Naga (2014) is employed. In the algorithm, the two populations can have either the 

same or different numbers of particles. Each population employs the simple PSO 

algorithm. They progress independently, except when their particles are swapped with 

a probability of 𝑝𝑠 at every 𝐾 iterations, where 𝑝𝑠 and 𝐾 are user-defined parameters. 

This is done simply by pairing individuals from the two populations and setting each 

pair to have the probability of being swapped equal to 𝑝𝑠. The particles that are swapped 

remember their own particle bests, and these pieces of information are used in their 

respective new populations. Figure 3.2 shows the flowchart of the two-population PSO 

algorithm. 
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Figure 3.2 Two-population PSO algorithm (Nanakorn, Petprakob & Naga, 2014). 
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3.3 Truss topology optimization 

As aforementioned, the objective of each truss optimization problem considered 

in this study is to minimize the weight of the truss under stress and displacement 

constraints. The formal definition of this class of problems is given here. Consider a 

truss topology optimization problem in which boundary conditions and applied forces 

are specified. A ground structure can be created to define all possible topologies that 

are available for topology optimization. Let 𝑀 be the number of all possible elements 

in the ground structure. Let 𝑆𝑖 be the set of all available sections for element 𝑖 of 𝑀 

elements. The set 𝑆𝑖 can be a discrete set or a continuous set. However, 𝑆𝑖 must include 

a zero-area section that in fact represents the absence of element 𝑖. Let 𝚿 =

𝑆1 × 𝑆2 × … × 𝑆𝑀  be the set of all possible combinations of sections for the whole truss. 

Let 𝑠𝑖 ∈ 𝑆𝑖 and 𝒔 = (𝑠1, 𝑠2, … , 𝑠𝑀) ∈ 𝚿. In addition, let 𝐴𝑖 = {area of 𝑠𝑖} and 𝚽 =

𝐴1 × 𝐴2 × … × 𝐴𝑀 be the set of all possible combinations of sectional areas for the 

whole truss. Moreover, let 𝑎𝑖 ∈ 𝐴𝑖, which means that 𝜶 = (𝑎1, 𝑎2, … , 𝑎𝑀) ∈ 𝚽.  

Designate nodes in the ground structure where boundary conditions or applied 

forces are specified as “conditioned nodes.” Designate nodes that are connected to no 

element as “disconnected nodes.” In addition, designate disconnected nodes that are not 

conditioned nodes as “unused nodes.” A truss that results from a combination of 

sections 𝒔 ∈ 𝚿 as a truss in which the section of element 𝑖 is 𝑠𝑖 and all unused nodes 

are removed. From this definition, if there is a disconnected conditioned node that is 

free to move in the resulting truss, the node will render the truss unstable. On the 

contrary, disconnected conditioned nodes that are not free to move simply represent 

hinge supports that are not used. 

The stiffness matrix equation of a truss can be written as 

𝐊(𝒔)𝐔 = [
𝐊11(𝒔) 𝐊12(𝒔)

𝐊21(𝒔) 𝐊22(𝒔)
] {

𝐔1

𝐔2
} = {

𝐅1

𝐅2
} = 𝐅 (3.5) 

where 𝐊  is the stiffness matrix while 𝐔 and 𝐅 are, respectively, the displacement and 

force vectors. In addition, 𝐔1 and 𝐅2 denote, respectively, the unknown displacement 

and force vectors while 𝐔2 and 𝐅1 denote, respectively, the prescribed displacement 

and force vectors.  

A truss topology optimization problem, considered in this study, is written as 

follows: 
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minimize
𝒔∈𝚿

 𝑊 = ∑ 𝜌𝑖 𝐿𝑖𝑎𝑖

𝑀

𝑖=1

 (3.6) 

Subjected to  

𝐊11(𝒔) ≻ 0; i.e. 𝐊11(𝒔) is positive definite 

𝐊(𝒔)𝐔 = 𝐅 

𝜎𝑖 ≤ 𝜎𝑎,𝑖  𝑖 = 1,2, … , 𝑚 

𝛿𝑖 ≤ 𝛿𝑎,𝑖  𝑖 = 1,2, … , 𝑛𝑑𝑜𝑓 

(3.7) 

where  

𝑚:  number of elements in the truss 

𝑛𝑑𝑜𝑓:  number of displacement degrees of freedom of the truss 

𝜌𝑖:  weight density of element 𝑖 of 𝑀 possible elements 

𝐿𝑖:  length of element 𝑖 of 𝑀 possible elements 

𝑊:  weight of the whole truss 

𝜎𝑖:  stress of element 𝑖 of 𝑚 elements of the truss 

𝜎𝑎,𝑖:  allowable stress for element 𝑖 

𝛿𝑖: displacement degree of freedom 𝑖 of 𝑛𝑑𝑜𝑓 displacement 

degrees of freedom of the truss 

𝛿𝑎,𝑖: allowable displacement degree of freedom for displacement 

degree of freedom 𝑖. 

The positive definiteness of 𝐊11(𝒔) means that the optimal truss must be 

kinematically stable. In the stress and displacement constraints, the magnitudes of 

stresses and displacements, which are positive, are used. In addition, constraints that 

are automatically satisfied by appropriate choices of input data, such as the ranges of 

sectional areas, are not included as constraints in the above optimization problem. 
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METHODOLOGY 

 

4.1 Truss topology optimization by two-population PSO 

In this study, the optimization problem in Equations (3.6) and (3.7) is written 

for PSO as 

minimize
𝝃∈𝚪

 𝑊 = ∑ 𝜌𝑖 𝐿𝑖𝑎𝑖

𝑀

𝑖=1

 (4.1) 

Subjected to 

𝐸𝑟 = 0. 

Here, 𝐸𝑟 is the total degree of constraint violation defined as  

𝐸𝑟 = {∑
max(0, 𝜎𝑖 − 𝜎𝑎,𝑖)

𝜎𝑎,𝑖

𝑚

𝑖=1

+ ∑
max(0, 𝛿𝑖 − 𝛿𝑎,𝑖)

𝛿𝑎,𝑖

𝑛𝑑𝑜𝑓

𝑖=1

        if 𝐊11 ≻ 0;        

1010 otherwise.

 (4.2) 

 

If a truss is not feasible, its 𝐸𝑟 is greater than zero. If a truss is kinematically 

unstable and its stiffness matrix is not positive definite, 𝐸𝑟 is given a large value of 

1010. This strategy of giving a large value of 𝐸𝑟 to kinematically unstable structures 

has been employed successfully by many researchers (Deb & Gulati, 2001; Wu & 

Tseng, 2010). If a truss is kinematically stable, its 𝐸𝑟 is computed from the stress and 

displacement constraint violation. It can be seen that, if a truss is kinematically stable 

and does not violate the stress and displacement constraints, its 𝐸𝑟 is zero. 

Given two solutions 𝐴 and 𝐵, PSO needs only to know whether 𝐴 is better than 

𝐵 or vice versa. PSO does not need to know how much exactly one solution is better 

than the other one. Consider two trusses, 𝑇𝑟𝑢𝑠𝑠𝐼 and 𝑇𝑟𝑢𝑠𝑠𝐽. Their weights are 𝑊𝐼  and 

𝑊𝐽 and their total degrees of constraint violation are 𝐸𝑟𝐼 and 𝐸𝑟𝐽. In this study, 𝑇𝑟𝑢𝑠𝑠𝐼 

is better than 𝑇𝑟𝑢𝑠𝑠𝐽 when  

1. 𝐸𝑟𝐼 < 𝐸𝑟𝐽, or 

2. 𝐸𝑟𝐼 = 𝐸𝑟𝐽 and 𝑊𝐼 < 𝑊𝐽. 
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In Equation (4.2), a large positive value of 𝐸𝑟, used for kinematically unstable 

trusses, makes certain that these kinematically unstable trusses are always considered 

worse than kinematically stable trusses that violate the stress or displacement 

constraint. 

In this study, the stability of each truss is first checked by using a variant of 

Grubler’s equations (Deb & Gulati, 2001). The variant is given as 

𝑛𝑑𝑜𝑓𝑟𝑖𝑔𝑖𝑑 = 𝑛𝑑𝑖𝑚 × 𝑛 − 𝑚 − 𝑛𝑑𝑜𝑓𝑝. (4.3) 

Here, 𝑛𝑑𝑜𝑓𝑟𝑖𝑔𝑖𝑑  is the number of rigid-body degrees of freedom of the truss. In addition, 

𝑛𝑑𝑖𝑚 is the number of the spatial dimensions of the problem. Moreover, 𝑛 and 𝑚 are, 

respectively, the number of nodes and the number of elements of the truss while 𝑛𝑑𝑜𝑓𝑝 

is the number of prescribed displacement degrees of freedom. If 𝑛𝑑𝑜𝑓𝑟𝑖𝑔𝑖𝑑  is found to 

be greater than zero, the truss is a mechanism and is not stable. Its stiffness matrix is 

not positive definite, and the truss is infeasible. 

Trusses whose values of 𝑛𝑑𝑜𝑓𝑟𝑖𝑔𝑖𝑑  in Equation (4.3) are not positive can still be 

unstable trusses. The stiffness matrices of all trusses with non-positive values of 

𝑛𝑑𝑜𝑓𝑟𝑖𝑔𝑖𝑑  are constructed by the finite element method (FEM). The positive 

definiteness of the obtained stiffness matrix of each truss is then checked during the 

matrix equation solving process within the finite element analysis process. In this study, 

the Cholesky decomposition is used in the matrix equation solving process. The 

Cholesky decomposition can be used only with symmetric positive definite matrices 

and its algorithm allows matrices that are not positive definite to be detected. If the 

stiffness matrix of a truss is found not to be positive definite by the Cholesky 

decomposition algorithm, the truss is infeasible, and the finite element analysis process 

is stopped. Otherwise, the truss is completely analyzed by FEM for displacements and 

stresses. Since the displacements and stresses are obtained from finite element analysis, 

the stiffness matrix equation, which is one of the constraints, is automatically satisfied. 

Similar to other numerical algorithms, the accuracy of the Cholesky decomposition 

algorithm in detecting non-positive definiteness depends on the machine precision 

used. It is possible that, due to numerical errors, some non-positive definite stiffness 

matrices are successfully decomposed by the Cholesky decomposition algorithm and 
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their non-positive definiteness cannot be detected. However, if these happen, the 

obtained displacements will generally be very large. As a result, these trusses will not 

satisfy the displacement constraint. 

 

4.2 Element-removal algorithm 

In this study, the idea of removing invalid or unwanted elements from 

topologies to create better or acceptable topologies (Nimtawat & Nanakorn, 2009; 

Nimtawat & Nanakorn, 2010) is used to create a representation of trusses for truss 

topology optimization. To develop the representation, unwanted truss elements are first 

defined. These unwanted elements include kinematically unstable elements and useless 

zero-force elements. After that, an algorithm to remove unwanted elements from trusses 

is created, based on the definition of unwanted elements. The algorithm is used in the 

translation of representation codes into corresponding trusses. During the translation of 

a representation code into its corresponding truss, the unwanted elements are removed 

from the original topology to obtain the final topology. Since the removal of unwanted 

elements is included in the coding scheme, this results in more representation codes in 

the search space that are mapped into kinematically stable and efficient trusses. This 

increases the competition among representation codes. In addition, it allows the 

comparison between some representation codes to be done more meaningfully. For 

instance, it is meaningless to compare two representation codes that are both translated 

into kinematically unstable trusses. However, if the two codes are remapped by the 

element-removal algorithm into two kinematically stable trusses, the codes can be 

compared meaningfully. Removing unwanted elements alleviates the problem of 

having large search spaces using ground structures and encourages faster solution 

convergences. 

In this section, the development of a representation of trusses with an element-

removal algorithm is shown. First, unwanted truss elements that are to be removed in 

the decoding process are defined. After that, an algorithm to remove these unwanted 

elements is introduced. The formal description of the proposed representation is also 

presented. Small translation examples, showing how the proposed representation 

works, are also shown. 
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4.2.1  Unwanted elements 

Consider a joint of a truss that is not a support. Unwanted elements are defined 

as follows: 

For 2D trusses: 

(1) If there is only one element connected to the joint, the element is kinematically 

unstable and is considered as an unwanted element. 

(2) If there are two elements connected to the joint and the joint has no external 

applied force, the two elements are either kinematically unstable or zero-force 

members. If the two elements are in the same alignment, they are kinematically 

unstable. If they are not in the same alignment, they are zero-force members. 

Thus, they are considered as unwanted elements. 

For 3D trusses: 

(1) If there are less than three elements connected to the joint, the elements are 

kinematically unstable and are considered as unwanted elements. 

(2) If there are three elements connected to the joint and the joint has no external 

applied force, the three elements are either kinematically unstable or zero-force 

members. If the three elements are in the same plane, they are kinematically 

unstable. If they are not in the same plane, they are zero-force members. Thus, 

they are considered as unwanted elements. 

Figure 4.1 shows examples of unwanted elements. There are certainly other 

patterns of elements that are kinematically unstable or have no force. The above 

definition does not include all of them. Rather, the definition includes only patterns that 

can be easily identified and elements that are clearly known, without much detailed 

checking, to be useless. This is in order to not create too much computational effort 

during the decoding process. 
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4.2.2 Removal of unwanted elements 

In ground-structure-based coding, a code is attached to each possible truss 

element, created from the employed ground structure. Each element code can be either 

a real code or a binary code, and it is usually decoded to give two pieces of information. 

First, each element code tells whether the element is present or absent. Second, if the 

element is present, the element code also provides information about the element 

section. For topology optimization, successful results have been observed when an 

element code provides roughly the same probability of the presence and absence of an 

element (Deb & Gulati, 2001; Wu & Tseng, 2010). 

As an example, consider a truss element that has two possible choices of 

predefined sections, namely sections 𝑠𝑒𝑐𝑡1 and 𝑠𝑒𝑐𝑡2. The element code for this 

element can be a two-bit string. The codes 00 and 01 can be set to mean that the element 

is absent. In addition, 10 and 11 can be set to mean that the element is present, and its 

section is equal to 𝑠𝑒𝑐𝑡1 and 𝑠𝑒𝑐𝑡2, respectively. Instead of the two choices of sections, 

Figure 4.1 Unwanted truss elements. 
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if the area of the element can be selected from a minimum limit of 1 cm2 to a maximum 

limit of 225 cm2, a real code, varied from −225 to 225, can be used as the element code. 

When the value of the code is less than 1, it can be set to mean that the element is absent. 

If the value is from 1 to 225, the value can be used to represent the area directly. 

The translation of representation codes into corresponding truss structures 

without element removal can be written formally as follows. Let 𝐶𝑖 be the set of all 

possible element codes of element 𝑖 in the employed ground structure. Let 𝚪 =

𝐶1 × 𝐶2 × … × 𝐶𝑀 be the set of all possible codes for the whole truss. Note that 𝑀 is 

the number of all possible elements in the ground structure, defined earlier. Let 

𝑇𝑟𝑖: 𝐶𝑖 → 𝑆𝑖 be a function that maps 𝐶𝑖 into 𝑆𝑖, where 𝑆𝑖 is the set of all available 

sections for element 𝑖, also defined earlier. These 𝑇𝑟𝑖’s can be used to create a function 

𝑻𝒓: 𝚪 → 𝚿 that maps 𝚪 into 𝚿. The function 𝑻𝒓 is a translation function that defines 

how representation codes in 𝚪 are translated into corresponding truss structures in 𝚿. 

Let 𝜉𝑖 ∈ 𝐶𝑖 and let 𝝃 = (𝜉1, 𝜉2, … , 𝜉𝑀) ∈ 𝚪 denote a representation code. 

Without an element removal process, the code is decoded into its corresponding truss 

𝑻𝒓(𝝃) ∈ 𝚿. Although the corresponding truss 𝑻𝒓(𝝃) can, in general, be a stable or 

unstable structure, it can be used directly in the optimization process without any 

alteration. If the truss is not stable, it can be penalized in the optimization process. If 

the truss includes some useless zero-force elements, the weight of these elements 

reduces the merit of the truss in the optimization process. As a result, these elements 

are expected to be later removed by the optimization process. In this study, 𝑻𝒓(𝝃) is 

considered as an intermediate truss and is not used directly in the optimization process. 

Instead, 𝑻𝒓(𝝃) has to pass through an element-removal algorithm, denoted by 

𝑹𝒆𝒎[𝑻𝒓(𝝃)], that removes unwanted elements from 𝑻𝒓(𝝃) to obtain the final truss for 

the optimization process. To introduce the element-removal algorithms for 2D and 3D 

trusses, some variables used in the algorithms are introduced below. 

𝑁:  number of nodes in the ground structure 

𝑁𝑜𝑑𝑒𝑗:  node 𝑗 where 𝑗 = 1,2, … , 𝑁 

𝑁𝐸𝐽𝑗:  number of elements that are connected to node 𝑗 

𝐸𝑖𝑗 :  element 𝑖 of node 𝑗 

𝐅𝑒𝑗:  external force at node 𝑗 
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The algorithms for 2D and 3D trusses are given as follows: 

Algorithm: 𝑹𝒆𝒎[𝑻𝒓(𝝃)] for 2D trusses 

Input: An intermediate truss, 𝑻𝒓(𝝃) 

Output: A final truss, 𝑹𝒆𝒎[𝑻𝒓(𝝃)] 

1: Do 

2:  𝑐𝑜𝑢𝑛𝑡 = 0; 

3:  For 𝑗 = 1 to 𝑁 

4:   If 𝑁𝑜𝑑𝑒𝑗 ≠ Support 

5:    If (𝑁𝐸𝐽𝑗 = 1) 

6:     Remove 𝐸1𝑗 ; 

7:     𝑐𝑜𝑢𝑛𝑡 = 𝑐𝑜𝑢𝑛𝑡 + 1; 

8:    Else If (𝑁𝐸𝐽𝑗 = 2)&(𝐅𝑒𝑗 = 𝟎) 

9:     Remove 𝐸1𝑗  and 𝐸2𝑗 ; 

10:     𝑐𝑜𝑢𝑛𝑡 = 𝑐𝑜𝑢𝑛𝑡 + 2; 

11:    End If 

12:   End If 

13:  End For 

14: While (𝑐𝑜𝑢𝑛𝑡 > 0) 

 

Algorithm: 𝑹𝒆𝒎[𝑻𝒓(𝝃)] for 3D trusses 

Input: An intermediate truss, 𝑻𝒓(𝝃) 

Output: A final truss, 𝑹𝒆𝒎[𝑻𝒓(𝝃)] 

1: Do 

2:  𝑐𝑜𝑢𝑛𝑡 = 0; 

3:  For 𝑗 = 1 to 𝑁 

4:   If  𝑁𝑜𝑑𝑒𝑗 ≠ Support 

5:    If (0 < 𝑁𝐸𝐽𝑗 < 3) 

6:     Remove 𝐸𝑖𝑗 , where 𝑖 = 1 to 𝑁𝐸𝐽𝑗; 

7:     𝑐𝑜𝑢𝑛𝑡 = 𝑐𝑜𝑢𝑛𝑡 + 𝑁𝐸𝐽𝑗; 

8:    Else If (𝑁𝐸𝐽𝑗 = 3)&(𝐅𝑒𝑗 = 𝟎) 
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9:     Remove 𝐸𝑖𝑗 , where 𝑖 = 1 to 3; 

10:     𝑐𝑜𝑢𝑛𝑡 = 𝑐𝑜𝑢𝑛𝑡 + 3; 

11:    End If 

12:   End If 

13:  End For 

14: While (𝑐𝑜𝑢𝑛𝑡 > 0) 

 

In summary, the whole mapping can be written as 

𝑻𝒓𝒖𝒔𝒔 = 𝑹𝒆𝒎[𝑻𝒓(𝝃)] = (𝑹𝒆𝒎 ∘ 𝑻𝒓)(𝝃). (4.4) 

Here, 𝑻𝒓𝒖𝒔𝒔 ∈ 𝚿 is the truss obtained from the element-removal algorithm. The input 

of the composite function 𝑹𝒆𝒎 ∘ 𝑻𝒓 is the representation code 𝝃. In contrast to the 

chromosome repairing algorithm in the work by Richardson, Adriaenssens, Bouillard 

and Coelho (2012), in the proposed methodology, the input representation code is not 

modified. Only the mapping between the representation codes and the corresponding 

trusses is changed from using 𝑻𝒓 to using 𝑹𝒆𝒎 ∘ 𝑻𝒓. If an input representation code is 

modified, it means that the location of this search point in the search space is moved. 

In general, the range of 𝑹𝒆𝒎 ∘ 𝑻𝒓 is a subset of 𝚿 that does not include all 

members of 𝚿. The members of 𝚿 that are not included in the range of 𝑹𝒆𝒎 ∘ 𝑻𝒓 are 

those trusses that contain unwanted elements. Although the size of the search space, 

defined by 𝚪, is not reduced by the proposed methodology, the number of resulting 

trusses is reduced by reinterpreting some unstable and inferior trusses as potentially 

better ones. Consequently, more individuals in the search space can be meaningfully 

compared. For example, it is difficult to meaningfully compare two kinematically 

unstable trusses and decide which one is better. However, if the trusses become stable 

and efficient trusses after their unwanted elements are removed, then it is 

straightforward to decide which truss is better, based on the employed objective. 

Having a smaller number of corresponding trusses for the search space, and more stable 

and efficient trusses among them, results in faster convergences to optimal solutions. 

Note that removing unwanted elements defined above does not guarantee the stability 

of the resulting trusses. 
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Figure 4.2 shows an example 2D ground structure having four nodes and six 

possible elements. Assume that the area of each element can vary from 0 to 225 cm2. 

Let the set of all possible element codes of element 𝑖, 𝐶𝑖, be defined as 

𝐶𝑖 = {𝑥| − 225 ≤ 𝑥 ≤ 225}. (4.5) 

Consequently, the set of all possible codes for the whole truss 𝚪 is 

𝐶1 × 𝐶2 × … × 𝐶6. Since the area of each element varies from 0 to 225 cm2, the set of 

all available sections for element 𝑖, 𝑆𝑖, can be expressed directly in terms of area as 

𝑆𝑖 = {𝑎𝑟𝑒𝑎|0 ≤ 𝑎𝑟𝑒𝑎 ≤ 225}. (4.6) 

Clearly, the set of all possible trusses 𝚿 becomes 𝑆1 × 𝑆2 × … × 𝑆6. 

The translation function 𝑇𝑟𝑖: 𝐶𝑖 → 𝑆𝑖 is simply defined as 

𝑠𝑖 = 𝑇𝑟𝑖(𝑥) = {
0 if 𝑥 < 0; 
𝑥 if 𝑥 ≥ 0

 (4.7) 

where −225 ≤ 𝑥 ≤ 225. Note that, in this example, all 𝑇𝑟𝑖’s are the same. The 

translation function 𝑻𝒓: 𝚪 → 𝚿 is written as 

𝑻𝒓(𝝃) = (𝑇𝑟1(𝜉1), 𝑇𝑟2(𝜉2), … , 𝑇𝑟6(𝜉6)) (4.8) 

where −225 ≤ 𝜉𝑖 ≤ 225 and 𝝃 = (𝜉1, 𝜉2, … , 𝜉6) ∈ 𝚪. 

It can be seen from Equations (4.5), (4.6), (4.7), and (4.8) that, within the range 

of 𝜉𝑖 ∈ 𝐶𝑖 from −225 to 225, −225 ≤ 𝜉𝑖 ≤ 0 represents the absence of element 𝑖 while 

0 < 𝜉𝑖 ≤ 225 represents the nonzero area of element 𝑖. In this example, the translation 

from the value of 𝜉𝑖 to the area of element 𝑖 provides the same probability of the 

presence and absence of element 𝑖. 

Some translation examples are shown in Figure 4.2. In case I in Figure 4.2, the 

representation code 𝝃 = (𝝃𝟏, 𝝃𝟐, … , 𝝃𝟔) is equal to (100,150, −10, −90,200,35). By 

using the translation function 𝑻𝒓(𝝃) in Equation (4.8), an intermediate truss, defined 

by the areas of the elements, is obtained as 𝑻𝒓(𝝃) = (100,150,0,0,200, 35). This 

intermediate truss is put through the element-removal algorithm 𝑹𝒆𝒎, and the final 

truss 𝑹𝒆𝒎[𝑻𝒓(𝝃)] is obtained. It can be seen from Figure 4.2 that, although the 

representation codes of cases I, II, and III are different, their final trusses are the same. 

This means that these representation codes are mapped into the same truss. During the 
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translation process, each input representation code 𝝃 is not modified in any way, and its 

position in the search space does not change. Only the translation of the code is 

modified by the element-removal algorithm 𝑹𝒆𝒎. 

 

 

 

Figure 4.2 Translation examples. 
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4.3 Truss topology optimization with a prescribed maximum number of elements 

In addition to the element-removal algorithm discussed above, in this study, a 

new coding scheme for truss topology optimization, in which no ground structure is 

used, is proposed. For a truss topology optimization problem, instead of joining all 

nodes in a selected ground structure to create possible positions of truss elements, the 

maximum number of elements that can appear in the truss is initially set. Practically, 

this number is to be set by the designer of the truss. The main concept of the proposed 

methodology is to use the end positions of these elements and their cross-sectional areas 

as the design variables of the problem. However, if the end positions of these elements 

can vary continuously, it is virtually impossible that these end positions end up at some 

same positions and, subsequently, connect the elements to form a truss. To avoid this 

problem, the end positions are allowed to be located only at some grid points. 
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Figure 4.3 Grid mapping: (a) Grid for the original problem; (b) Substitute grid 

with uniform unit spacing. 

(a) 

(b) 
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(a) 

(b) 

Figure 4.4 Element snapping: (a) Original element position; (b) Snapping of 

element nodes to the nearest grid points. 
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To better explain the proposed concept, a topology optimization problem of a 

2D truss in Figure 4.3 (a) is considered. The truss to be optimized has two supports and 

two applied forces, as shown in the figure. To optimize the truss, a 4 × 3 grid is 

constructed. The grid is intentionally made nonuniform. The vertical and horizontal 

grid lines are separately numbered. In the figure, each of these grid line numbers is 

enclosed in a square. The 12 grid points of the 4 × 3 grid are used as the probable 

positions of the joints of the truss. The grid points are also numbered and, in the figure, 

each of the grid point numbers is enclosed in a circle.  

In this study, the end positions of an element are coded using continuous 

variables. During the decoding process, the end positions are snapped into predefined 

grid points. For the problem in Figure 4.3 (a), these predefined grid points are the 12 

grid points shown in Figure 4.3 (a). The values of the end positions of an element can 

be made to vary continuously in the real space of the problem and the two ends of the 

element can be simply made to snap into the nearest grid points in the real space. 

However, this simple strategy has a flaw when a nonuniform grid, such as the one in 

Figure 4.3 (a), is used. When a nonuniform grid is used, the probabilities of a node 

snapping into different grid points can be different. This creates biases in the 

Figure 4.5 Position of element in the real space after snapping. 
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optimization process. To remove the flaw, the original grid must be mapped into a 

substitute uniform grid. Figure 4.3 (b) shows a substitute grid with uniform unit spacing 

for the original grid in Figure 4.3 (a). The coordinates of element ends can then be made 

to vary in the space of the substitute grid instead of the real space. The coordinates of 

element ends must be set to vary beyond the minimum and maximum coordinates of 

the substitute grid in order that the probabilities of a node snapping into the boundary 

grid points are the same as those of the internal grid points. For example, the minimum 

and maximum 𝑟 coordinates of the substitute grid in Figure 4.3 (b) are, respectively, 

equal to 0.0 and 3.0. However, the 𝑟 coordinate of an element end has to be set to vary 

from -0.5 to 3.5. Similarly, the minimum and maximum 𝑠 coordinates of the substitute 

grid are, respectively, equal to 0.0 and 2.0. The 𝑠 coordinate of an element end has to 

be set to vary from -0.5 to 2.5. 

Figure 4.4 (a) shows an example position of an element before the snapping 

process is employed. It can be seen that the nearest grid point to one end of the element 

is grid point 9 and the nearest grid point to the other end is grid point 3. Thus, the two 

ends are, respectively, snapped into grid points 9 and 3, as shown in Figure 4.4 (b). In 

this study, if the position of an element end in a certain coordinate lies exactly between 

two grid points, the end is snapped into the grid point that has the higher value of that 

coordinate. Figure 4.5 shows the position of the element in Figure 4.4 in the real space 

after snapping. It is possible that, in a truss, there are many elements occupying exactly 

the same position although they can have different cross-sectional areas. In order to 

create the final truss from the representation code, among these elements, only the one 

that has the minimum cross-sectional area is retained. The rest is removed from the 

final truss. Note that, similar to the element-removal algorithm, during the snapping 

process and the removal of elements that occupy the same position, the representation 

code is not modified. Finally, if the two nodes of an element are at the same grid point, 

it is simply interpreted that there is no element. 
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(a) 

(b) 

Figure 4.6 Area selection for repeated elements: (a) Two elements in the 

same position with different cross-sectional areas; (b) Only the element 

with the smallest cross-sectional area retained. 
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As aforementioned, the other design variable that is attached to an element, in 

addition to its end positions, is the cross-sectional area 𝐴 of the element. Thus, in a 2D 

problem, there are five design variables attached to each truss element, i.e. 

𝑟𝑠𝑡𝑎𝑟𝑡 , 𝑠𝑠𝑡𝑎𝑟𝑡 , 𝑟𝑒𝑛𝑑, 𝑠𝑒𝑛𝑑 , and 𝐴, where 𝑟 and 𝑠 are the coordinates of the substitute grid, 

as shown in Figure 4.4. In a 3D problem, there are seven design variables attached to 

an element, i.e. 𝑟𝑠𝑡𝑎𝑟𝑡, 𝑠𝑠𝑡𝑎𝑟𝑡 , 𝑢𝑠𝑡𝑎𝑟𝑡 , 𝑟𝑒𝑛𝑑, 𝑠𝑒𝑛𝑑 , 𝑢𝑒𝑛𝑑 , and 𝐴. Here, 𝑟, 𝑠, and 𝑢 denote the 

coordinates of the 3D substitute grid. The cross-sectional areas of elements can either 

be continuous or discrete variables. In this study, the cross-sectional areas of elements 

are assumed to be continuous variables. If the number of initial elements is set to 𝑛, the 

total number of design variables becomes 5 × 𝑛 for a 2D truss and 7 × 𝑛 for a 3D truss. 

Note that the number of design variables is not a function of the number of grid points. 

Thus, the employed grid can be refined without increasing the size of search space. On 

the contrary, if the ground structure approach is used, refining the employed grid 

quickly increases the size of search space. As mentioned earlier, in the ground structure 

approach, the total number of possible truss elements is 𝑁(𝑁 − 1)/2, where, 𝑁 is the 

number of grid points. In the proposed approach, the size of search space increases only 

linearly with respect to the number of initial elements.  

The design variable that represents the cross-sectional area of an element is in 

fact used not only to represent the area but also to identify whether the element is absent 

or present. The range of the design variable must cover two groups of values that 

represent, respectively, the element being absent and present. The available ranges of 

the two groups used for an element define the probability of the element being absent 

and present. In most studies, the cross sectional area of an element varies from 𝐴𝑐𝑟𝑖𝑡𝑖𝑐𝑎𝑙  

to 𝐴𝑚𝑎𝑥, where 𝐴𝑐𝑟𝑖𝑡𝑖𝑐𝑎𝑙  is the minimum non-zero area and 𝐴𝑚𝑎𝑥 is the maximum area. 

However, as shown in Figure 4.7, the corresponding design variable 𝑋 is usually set to 

vary from a negative number 𝑋𝑚𝑛 to a positive number 𝑋𝑚𝑥. In addition, 𝑋𝑚𝑥 is always 

Figure 4.7 Range of an area design variable. 
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set to be equal to 𝐴𝑚𝑎𝑥 while 𝑋𝑚𝑛 is usually set to be equal to −𝑋𝑚𝑥. When the design 

variable 𝑋 is less than 𝐴𝑐𝑟𝑖𝑡𝑖𝑐𝑎𝑙 , the cross-sectional area is taken as zero and the element 

is absent. When 𝑋 is not less than 𝐴𝑐𝑟𝑖𝑡𝑖𝑐𝑎𝑙 , 𝑋 is usually interpreted directly as the cross-

sectional area. Figure 4.7 demonstrates this coding concept for cross-sectional areas. 

Since 𝐴𝑐𝑟𝑖𝑡𝑖𝑐𝑎𝑙  is normally small, setting 𝑋𝑚𝑛 = −𝑋𝑚𝑥 results in the same probability 

of the presence and absence of an element. 

Generally, the number of elements that remain in the optimal topology of a truss 

is much smaller than the total number of elements found in any reasonable ground 

structures that can be used with that truss problem. This means that, in order to obtain 

the optimal topology, most of the elements in the employed ground structure must be 

removed. It follows that the chance of an element being removed from the final 

topology cannot be set too small. This is the reason that, in most studies that employ 

the ground structure approach, the probability of an element being absent is usually set, 

by setting 𝑋𝑚𝑛, to be approximately equal to 0.5. In the method proposed in this study, 

the maximum number of elements is prescribed, and this number is generally assumed 

to not be significantly larger than the number of elements to be remained in the optimal 

truss. This means that the probability of an element being absent can be reduced from 

those used in the ground structure approach. In this study, a term called the minimum 

area factor, 𝐴𝑚𝑖𝑛𝐹𝑎𝑐𝑡𝑜𝑟 , is introduced for adjustments of the probability of an element 

being absent, i.e. 

−𝑋𝑚𝑥

𝐴𝑚𝑖𝑛𝐹𝑎𝑐𝑡𝑜𝑟
≤ 𝑋 ≤ 𝑋𝑚𝑥 (4.9) 

In this study, when the maximum number of elements is prescribed, the values of 

𝐴𝑚𝑖𝑛𝐹𝑎𝑐𝑡𝑜𝑟  that are greater than one are used. 

Some of the points to be considered when selecting the maximum number of 

elements are as follows: 

1. The maximum number of elements must be enough to create a stable truss 

under the prescribed supports and forces. 

2. The maximum number of elements must be greater than the number of 

elements in the optimal solution in order that the optimal solution can be 

obtained. Since the optimal solution is not known, educated guesswork must 

be employed. 
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3. The maximum number of elements should be quite smaller than the number 

of elements generated by joining all the grid points in order to take full 

advantage of the proposed method. 
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RESULTS  

 

In this chapter, the two proposed coding schemes, namely the element-removal 

algorithm and the truss optimization algorithm with a prescribed maximum number of 

elements, are tested and their results are shown. To demonstrate the effectiveness of the 

proposed representations, they are used in the two-population PSO algorithm 

(Nanakorn, Petprakob & Naga, 2014) to solve several truss topology optimization 

problems. Since the employed PSO algorithm includes stochastic processes, for each 

of the considered problems, the PSO algorithm is run for 1000 times. This is done in 

order to explore both the quality and uniformity of the obtained results. Each set of 

these 1000 runs is called a calculation set. The best solution of a run is called the run 

solution. Since there are 1000 runs in a calculation set, there are 1000 run solutions 

from these 1000 runs. The best solution of these 1000 run solutions is the best solution 

of the calculation set or the calculation-set best. 

The PSO parameters employed for all the example problems are shown in Table 

5.1. Different values of 𝑊, 𝜙1, and 𝜙2 are used for the two populations so that they 

progress differently, and the enhancement of the exploration is therefore ensured. The 

values of 𝑊 = 0.729 and 𝜙1 = 𝜙2 = 1.494, used in one of the populations, are from 

the constriction method (Clerc & Kennedy, 2002; Eberhart & Shi, 2000). In this study, 

𝑉𝑑𝑚𝑥  for each optimization dimension is set to one quarter of the range of all possible 

codes for that dimension.  
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Table 5.1 PSO parameters. 

Parameter 
Population 

1 2 

Population size 10 10 

𝑊 0.500 0.729 

𝜙1 = 𝜙2 2.000 1.494 

𝑉𝑑𝑚𝑥  (𝑋𝑑𝑚𝑥 − 𝑋𝑑𝑚𝑛)/4 (𝑋𝑑𝑚𝑥 − 𝑋𝑑𝑚𝑛)/4 

Number of iterations 1000 1000 

𝑝𝑠 0.4 0.4 

𝐾 50 50 

 

5.1 Element-removal algorithm 

To demonstrate the effectiveness of the proposed element-removal algorithm, 

six problems of truss topology optimization, including two 3D problems, are solved. 

Here, the ground structure approach is still used in order that the advantages of the 

element-removal algorithm can be clearly observed. The problems are solved with and 

without the proposed element-removal algorithm, and their results are compared. This 

is to see how the element-removal algorithm can improve the optimization 

performance. In addition, the obtained results are also compared with those from the 

literature, wherever possible. The comparison with the literature is done only to make 

certain that the results obtained from this study are satisfactory. It is not in the scope of 

this study to discuss the performance of the whole optimization process, which also 

includes the performance of the employed optimization method, namely the two-

population PSO algorithm.  

5.1.1 45-element, 10-node truss 

The first problem is a 2D truss optimization problem from a ground structure 

with 10 nodes. The ground-structure nodes, forces, supports, and problem dimensions 

are shown in Figure 5.1 (Deb & Gulati, 2001; Wu & Tseng, 2010). Here, all possible 

node connections are considered. In this study, the symmetry along the middle vertical 

line of the solutions is assumed. Consequently, the number of the design variables is 
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reduced from 45 to 25. The problem parameters are as follows (Deb & Gulati, 2001; 

Wu & Tseng, 2010): 

Young’s modulus: 𝐸 = 104 ksi 

Weight density: 𝜌 = 0.1 lb/in3 

Allowable stress: 𝜎𝑎 = 25 ksi 

Allowable displacement: 𝛿𝑎 = 2 in 

Area: 𝐴 = 0.09 to 1 in2 

The magnitudes of the stresses in all elements, for tension and compression, are 

limited to 𝜎𝑎. The magnitudes of all displacement degrees of freedom are limited to 𝛿𝑎. 

The design variables of the problem are the areas of all possible elements. Since 

the area of each element varies from 0.09 to 1 in2, the set of all available areas for 

element 𝑖, 𝑆𝑖, is expressed as 

𝑆𝑖 = {𝐴|(𝐴 = 0) or (0.09 ≤ 𝐴 ≤ 1)}. (5.1) 

The set of all possible element codes of element 𝑖, 𝐶𝑖, is defined as 

𝐶𝑖 = {𝑥|𝑋𝑖𝑚𝑛 ≤ 𝑥 ≤ 𝑋𝑖𝑚𝑥} = {𝑥| − 1 ≤ 𝑥 ≤ 1}. (5.2) 

The translation function 𝑇𝑟𝑖: 𝐶𝑖 → 𝑆𝑖 is defined as 

𝑠𝑖 = 𝑇𝑟𝑖(𝑥) = {
0 if 𝑥 < 0.09; 
𝑥 if 𝑥 ≥ 0.09.

 (5.3) 

For this problem, the value of 𝑉𝑑𝑚𝑥  is given as, 𝑉𝑑𝑚𝑥 = [1 − (−1)]/4 = 0.5 

for all optimization dimensions. 

Figure 5.1 Problem 5.1.1: Problem details, ground-structure nodes, and best topology. 
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It is found from the results that all run solutions in the two calculation sets, with 

and without the element-removal algorithm, are feasible. Table 5.2 shows the statistics 

of the run solutions obtained with and without the element-removal algorithm. In the 

table, the minimum, maximum, average, and standard deviation of the weights of the 

1000 run solutions from the 1000 runs of each calculation set are shown. The minimum 

weight obtained with the element-removal algorithm is exactly the same as the one 

obtained without the element-removal algorithm. However, the average and maximum 

weights obtained with the element-removal algorithm are significantly smaller than 

those obtained without the algorithm. The same is true for the standard deviations. 

Table 5.2 also shows the percentage of the run solutions in a calculation set that are not 

heavier than the best solution of the calculation set by greater than 2%. It is considered 

in this study that any weight difference of not more than 2% is insignificant. It can be 

seen from Table 5.2 that, when the element-removal algorithm is employed, 78.9% of 

the run solutions are not heavier than the best solution of the calculation set by more 

than 2%. When the element-removal algorithm is not used, only 50.5% of the run 

solutions are not heavier than the calculation-set best by more than 2%. These results 

show that the element-removal algorithm consistently gives high-quality results. 

 

Table 5.2 Problem 5.1.1: Statistics of the run solutions. 

 

Calculation set of 1000 runs 

With the element-

removal algorithm 

Without the element-

removal algorithm 

Minimum weight (lb) 44.000 44.000 

Average weight (lb) 45.851 49.283 

Maximum weight (lb) 103.685 120.006 

SD of weights (lb) 4.994 7.909 

Percentage of the run solutions 

that are not heavier than the 

minimum weight of the 

calculation set by greater than 

2% (%) 

78.9 50.5 
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The best solutions of the two calculation sets, with and without the element-

removal algorithm, are found to have the same topology that is shown in Figure 5.1. 

This topology is the same as the results by Deb and Gulati (2001) and Wu and Tseng 

(2010). Table 5.3 shows the details of the best solutions from this study and from Deb 

and Gulati (2001) and Wu and Tseng (2010). The results by Deb and Gulati (2001) and 

Wu and Tseng (2010) are presented as originally reported. Note that the symmetry of 

the problem is not considered by Deb and Gulati (2001) and Wu and Tseng (2010). It 

can be seen that the best solutions from this study compare satisfactorily with the best 

solutions from Deb and Gulati (2001) and Wu and Tseng (2010). In fact, the best 

solution of the present study, obtained with the element-removal algorithm, can be 

considered to be same as the result by Wu and Tseng (2010). It can be seen that the 

summation of the areas of elements 5 and 7 and the summation of the areas of elements 

6 and 7 in the results by this study and Wu and Tseng (2010) are the same. The 

difference in the total weights from this study and Wu and Tseng (2010), shown in 

Table 5.3, is only from rounding. 
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Table 5.3 Problem 5.1.1: Best solutions. 

Member 

Area (in2)   

This study 
Deb and 

Gulati 

(2001)b 

Wu and 

Tseng 

(2010)b 

With the 

element-removal 

algorithma 

Without the 

element-removal 

algorithma 

1 0.566 0.566 0.566 0.566 

2 0.447 0.447 0.477 0.447 

3 0.447 0.447 0.477 0.447 

4 0.566 0.566 0.566 0.566 

5 0.118 0.100 0.082 0.09 

6 0.118 0.100 0.080 0.09 

7 0.282 0.300 0.321 0.31 

Weight (lb) 44.000 44.000 44.033 43.99 

Max stress (ksi) 25.000 25.000 − 25.0 

Max displacement (in) 1.250 1.250 − 1.108 

aSymmetry is assumed. 

bSymmetry is not assumed. 

 

The convergences of runs with the element-removal algorithm are found to be 

faster than those without the algorithm. Figure 5.2 shows typical convergences of the 

best weights for runs with and without the element-removal algorithm. The plots clearly 

show that the solution converges faster when the element-removal algorithm is used. 
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5.1.2 39-element, 12-node truss 

The second problem is the 2D truss optimization problem in Figure 5.3 (Deb & 

Gulati, 2001; Wu & Tseng, 2010). The ground structure has 12 nodes, located on grid 

points of 5 × 3 grid lines. The circled numbers 1 to 15 in Figure 5.3 are grid point 

numbers. There are no nodes at grid points 8, 11, and 15. Moreover, only node 

connections shown in Figure 5.3 are considered. In this study, the symmetry along the 

middle vertical line of the solutions is assumed. As a result, the number of the design 

variables is reduced from 39 to 21. The problem parameters are as follows (Deb & 

Gulati, 2001; Wu & Tseng, 2010): 

Young’s modulus: 𝐸 = 104 ksi 

Weight density: 𝜌 = 0.1 lb/in3 

Allowable stress: 𝜎𝑎 = 20 ksi 

Allowable displacement: 𝛿𝑎 = 2 in 

Area: 𝐴 = 0.05 to 2.25 in2 

Figure 5.2 Problem 5.1.1: Typical convergences of the weights. 
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In the PSO, the lower and upper boundaries of the design variables in all 

optimization dimensions are set, respectively, to −2.25 and 2.25 in2. If the value of a 

design variable is less than 0.05, it is interpreted as a section of zero area. In addition, 

𝑉𝑑𝑚𝑥  is set to [2.25 − (−2.25)]/4 = 1.125 for all optimization dimensions. 

 

It is found from the results that all run solutions in the two calculation sets, with 

and without the element-removal algorithm, are feasible. Table 5.4 shows the statistics 

of the run solutions obtained with and without the element-removal algorithm. The 

minimum weight obtained with the element-removal algorithm is the same as the one 

obtained without the element-removal algorithm. The average weight obtained with the 

element-removal algorithm is slightly smaller than the one obtained without the 

algorithm. The maximum weight obtained with the element-removal algorithm is found 

to be greater than that obtained without the algorithm. The standard deviation of the 

weights obtained with the element-removal algorithm is slightly greater than that 

obtained without the algorithm. It can be seen from Table 5.4 that, when the element-

removal algorithm is employed, 17.7% of the run solutions are not heavier than the best 

solution of the calculation set by more than 2%. On the contrary, when the element-

Figure 5.3 Problem 5.1.2: Problem details, ground-structure nodes and elements. 
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removal algorithm is not used, only 9.0% of the run solutions are not heavier than the 

calculation-set best by more than 2%. The element-removal algorithm significantly 

increases the number of excellent solutions in the calculation set. 

 

Table 5.4 Problem 5.1.2: Statistics of the run solutions. 

 

Calculation set of 1000 runs 

With the element-

removal algorithm 

Without the element-

removal algorithm 

Minimum weight (lb) 193.200 193.200 

Average weight (lb) 228.183 228.602 

Maximum weight (lb) 467.072 408.842 

SD of weights (lb) 26.485 25.062 

Percentage of the run solutions 

that are not heavier than the 

minimum weight of the 

calculation set by greater than 

2% (%) 

17.7 9.0 

 

The best solutions of the two calculation sets, with and without the element-

removal algorithm, are found to have the same topology that is shown in Figure 5.4 (a). 

This topology is the same as the result by Wu and Tseng (2010) but is different from 

the result by Deb and Gulati (2001). The best topology obtained by Deb and Gulati 

(2001) is shown in Figure 5.4 (b). Table 5.5 shows the details of the best solutions from 

this study and from Deb and Gulati (2001) and Wu and Tseng (2010). The results by 

Deb and Gulati (2001) and Wu and Tseng (2010) are presented as originally reported. 

The symmetry of the problem is also considered by Deb and Gulati (2001) and Wu and 

Tseng (2010). It can be seen that the best solutions from this study compare 

satisfactorily with the best solutions from Deb and Gulati (2001) and Wu and Tseng 

(2010). The difference in the total weights from this study and Wu and Tseng (2010) is 

negligible. 
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Figure 5.4 Problem 5.1.2: (a) Best topology by this study; (b) Best topology by Deb 

and Gulati (2001). 
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Table 5.5 Problem 5.1.2: Best solutions. 

Member 

Area (in2)   

This study 
Deb and 

Gulati 

(2001)a 

Wu and 

Tseng 

(2010)a 

With the 

element-removal 

algorithma 

Without the 

element-removal 

algorithma 

1,2 1.500 1.500 1.502 1.500 

3,4 − − 0.051 − 

5,6 1.061 1.061 1.063 1.060 

7,8 − − 0.051 − 

9,10 1.061 1.061 1.061 1.060 

11,12 0.750 0.750 0.751 0.750 

13,14 0.250 0.250 0.251 0.250 

15,16 0.559 0.559 0.559 0.559 

17,18 − − 0.052 − 

19 1.000 1.000 1.005 1.000 

20,21 0.050 0.050 − 0.05 

Weight (lb) 193.200 193.200 196.546 193.199 

Max stress (ksi) 20.000 20.000 − 20.000 

Max displacement (in) 1.440 1.440 − − 

aSymmetry is assumed. 

 

Figure 5.5 shows typical convergences of the best weights for runs with and 

without the element-removal algorithm. Similar to the previous problem, the solution 

converges faster when the element-removal algorithm is used. 
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5.1.3 30381-element, 247-node truss 

The third problem is a 2D truss optimization problem from a ground structure 

with 247 nodes. The ground structure nodes, force, supports, and problem dimensions 

are shown in Figure 5.6. The grid spacing of the ground structure is uniform. The 

problem is taken from the work by Faramarzi and Afshar (2012), except for the ground 

structure. In the work by Faramarzi and Afshar (2012), a coarser ground structure 

having 12 nodes is used. In this study, all 30381 connections between 247 nodes are 

considered. Since the behavior of truss elements in tension and compression is 

considered the same, the symmetry along the middle horizontal line of the solutions is 

assumed. This results in the number of design variables equal to 15,333. The problem 

parameters are as follows (Faramarzi & Afshar, 2012): 

Young’s modulus: 𝐸 = 104 ksi 

Weight density: 𝜌 = 0.1  lb/in3 

Allowable stress: 𝜎𝑎 = 5 ksi 

Figure 5.5 Problem 5.1.2: Typical convergences of the weights. 
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Allowable displacement: 𝛿𝑎 = 0.6 in 

Area: 𝐴 = 0.09 to 35 in2  

In PSO, the lower and upper boundaries of the design variables in all 

optimization dimensions are set, respectively, to −560 and 35. If the value of a design 

variable is less than 0.09, it is interpreted as a section of zero area. The very low values 

of the lower boundaries are used to increase the probability of elements being absent. 

This is because there are a large number of elements in the ground structure of this 

problem and, as a result, the probability of elements being removed has to be increased. 

Note that the values of the lower boundaries equal to −560 are obtained by trial and 

error. In this problem, 𝑉𝑑𝑚𝑥  is set to [35 − (−560)]/4 = 148.75 for all optimization 

dimensions. 

 

 

 

Figure 5.6 Problem 5.1.3: Problem details, ground-structure nodes, and best topology. 
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Table 5.6 Problem 5.1.3: Statistics of the run solutions. 

 

Calculation set of 1000 runs 

With the element-

removal algorithm 

Without the element-

removal algorithm 

Minimum weight (lb) 2200.006 100709.914 

Average weight (lb) 5939.536 161614.786 

Maximum weight (lb) 92324.122 239670.624 

SD of weights (lb) 13236.397 22980.185 

Percentage of the run solutions 

that are not heavier than the 

minimum weight of the 

calculation set by greater than 

2% (%) 

0.9 0.1 

Percentage of the run solutions 

that are not heavier than 

2400.000 lb (%) 

81.1 0.0 

 

All run solutions in the two calculation sets, with and without the element-

removal algorithm, are feasible. Table 5.6 shows the statistics of the run solutions 

obtained with and without the element-removal algorithm. All results in the table, 

obtained with the algorithm, are considerably better than those obtained without the 

algorithm. The minimum weight obtained with the element-removal algorithm is much 

lower than the one obtained without the algorithm. In fact, the minimum weight 

obtained without the element-removal algorithm is very large. In addition, the 

minimum weight of 2200.006 lb obtained in this study is lower than the minimum 

weight of 2400.001 lb obtained with a coarser ground structure having 12 nodes by 

Faramarzi and Afshar (2012). Even when the element-removal algorithm is used, the 

percentage of the run solutions that are not heavier than the best solution of the 

calculation set by more than 2% is found to be quite low. This is due to the large size 

of the search space, which makes the problem difficult to solve. Nevertheless, when the 

element-removal algorithm is employed, 81.1% of the run solutions are not heavier than 
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2400.000 lb, which is a rounded down value of the minimum weight obtained by 

Faramarzi and Afshar (2012). When the element-removal algorithm is not used, all run 

solutions are much heavier than 2400.000 lb. 

The topology of the best solution obtained with the element-removal algorithm 

is shown in Figure 5.6. Table 5.7 shows the details of this best solution. The best 

solution obtained without the element-removal algorithm contains a large number of 

elements. Therefore, it is not shown. 

 

Table 5.7 Problem 5.1.3: Best solution obtained with the element-removal algorithm. 

Member Area (in2)a 

1 20.963 

2 20.963 

3 11.267 

4 11.267 

5 6.988 

6 6.988 

7 20.156 

8 20.156 

Weight (lb) 2200.006 

Max stress (ksi) 5.000 

Max displacement (in) 0.550 

aSymmetry is assumed. 

 

Much faster convergences are observed when the element-removal algorithm is 

used, as demonstrated by Figure 5.7. 
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5.1.4 30381-element, 247-node truss with a reduced allowable displacement 

In the previous problem, the maximum displacement of the best solution is equal 

to 0.550 in, which is smaller than the allowable displacement of 0.6 in. The maximum 

stress, however, is found to be equal to the allowable value. This means that the stress 

constraint is the critical constraint of the previous problem. In order to explore the 

situation where the displacement constraint is the only critical constraint, in this 

problem, the allowable displacement in the previous problem is reduced from 0.6 to 0.5 

 in. The other parameters are set to be the same as those used in the previous problem. 

The symmetry along the middle horizontal line of the solutions is also assumed. 

 

 

 

 

Figure 5.7 Problem 5.1.3: Typical convergences of the weights. 
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All run solutions in the two calculation sets, with and without the element-

removal algorithm, are feasible. Table 5.8 shows the statistics of the run solutions 

obtained with and without the element-removal algorithm. The minimum weight 

obtained with the element-removal algorithm is much lower than the one obtained 

without the algorithm. Again, the minimum weight obtained without the element-

removal algorithm is very large. With the element-removal algorithm, the minimum 

weight obtained with the reduced allowable displacement is larger than that obtained 

with the allowable displacement of 0.6 in in the previous problem. This is expected 

because the new allowable displacement of 0.5 in is lower than the maximum 

displacement of the best solution obtained in the previous problem. The average and 

maximum weights obtained with the element-removal algorithm are also much lower 

than those obtained without the algorithm. The standard deviation of the weights 

obtained with the element-removal algorithm is slightly greater than that obtained 

without the algorithm. This is because, when the algorithm is not used, the run solutions 

Figure 5.8 Problem 5.1.4: Problem details, ground-structure nodes, and best topology. 
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consistently have high weights. On the contrary, when the algorithm is used, the 

weights of the run solutions are distributed over a large range, from low weights to high 

weights. Similar to the previous problem, the percentages of the run solutions that are 

not heavier than the best solution of the calculation set by more than 2%, obtained with 

and without the algorithm, are found to be quite low. The percentage obtained with the 

algorithm is in fact lower than that obtained without the algorithm. However, for this 

problem, the best solutions obtained with and without the element-removal algorithm 

are very different. Thus, the comparison is in fact not meaningful. 

 

Table 5.8 Problem 5.1.4: Statistics of the run solutions. 

 

Calculation set of 1000 runs 

With the element-

removal algorithm 

Without the element-

removal algorithm 

Minimum weight (lb) 2405.823 103321.059 

Average weight (lb) 20798.427 162890.811 

Maximum weight (lb) 133687.446 233046.017 

SD of weights (lb) 25037.719 22334.623 

Percentage of the run solutions 

that are not heavier than the 

minimum weight of the 

calculation set by greater than 

2% (%) 

0.1 0.2 

 

The topology of the best solution obtained with the element-removal algorithm 

is shown in Figure 5.8. Table 5.9 shows the details of this best solution. The best 

solution obtained without the element-removal algorithm contains a large number of 

elements. Therefore, it is not shown. The topology in Figure 5.8 is very similar to the 

topology of the best solution of the previous problem in Figure 5.6. The only small 

differences are the positions of joints B and C of the two topologies. It can be seen from 

Table 5.9 that the maximum displacement of the best solution of this problem is equal 

to the allowable displacement while the maximum stress is lower than the allowable 
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stress. Therefore, for this problem, the displacement constraint is the only critical 

constraint as expected. 

 

Table 5.9 Problem 5.1.4: Best solution obtained with the element-removal algorithm. 

Member Area (in2)a 

1 21.971 

2 21.971 

3 13.227 

4 13.227 

5 9.482 

6 9.482 

7 19.926 

8 19.926 

Weight (lb) 2405.823 

Max stress (ksi) 4.614 

Max displacement (in) 0.500 

aSymmetry is assumed. 

 

Much faster convergences are observed when the element-removal algorithm is 

used, as demonstrated by Figure 5.9 
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5.1.5 153-element, 18-node truss 

The fifth problem is a 3D problem from a ground structure with 18 nodes. The 

ground structure is constructed from 3 × 3 × 2 grid lines, shown in Figure 5.10. The 

ground structure nodes, force, supports, and problem dimensions are all shown in 

Figure 5.10. All 153 node connections are considered. The truss can be considered as a 

symmetrical truss, but in this study, the symmetry is not considered. The problem 

parameters are as follows:  

Young’s modulus: 𝐸 = 200 GPa 

Weight density: 𝜌 = 77.0 kN/m3  

Allowable stress: 𝜎𝑎 = 150 MPa 

Allowable displacement: 𝛿𝑎 = 20 mm 

Area: 𝐴 = 0 to 2000 mm2 

In PSO, the lower and upper boundaries of the design variables in all 

optimization dimensions are set, respectively, to −2000 and 2000. If the value of a 

Figure 5.9 Problem 5.1.4: Typical convergences of the weights. 
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design variable is non-positive, it is interpreted as a section of zero area. In addition, 

 𝑉𝑑𝑚𝑥  is set to [2000 − (−2000)]/4 = 1000 for all optimization dimensions. 

 

All run solutions in the two calculation sets, with and without the element-

removal algorithm, are feasible. Table 5.10 shows the statistics of the run solutions 

obtained with and without the element-removal algorithm. The minimum weight 

obtained with the element-removal algorithm is much lower than the one obtained 

without the algorithm. In fact, the minimum weight obtained with the element-removal 

algorithm is the exact optimal weight of this problem. The average weight and the 

standard deviation obtained with the element-removal algorithm are lower than those 

obtained without the algorithm. The maximum weight obtained with the algorithm is 

slightly higher than the one obtained without the algorithm. It can be seen from Table 

5.10 that, when the element-removal algorithm is employed, 69.6% of the run solutions 

Figure 5.10 Problem 5.1.5: Problem details, ground-structure nodes, and best topology. 
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are not heavier than the best weight of the calculation set by more than 2%. On the 

contrary, when the element-removal algorithm is not used, only 0.2% of the run 

solutions are not heavier than the best weight of the calculation set by more than 2%. 

These results show clearly that the element-removal algorithm significantly improves 

the quality of the obtained results. 

 

Table 5.10 Problem 5.1.5: Statistics of the run solutions. 

 

Calculation set of 1000 runs 

With the element-

removal algorithm 

Without the element-

removal algorithm 

Minimum weight (N) 1694.000 1928.329 

Average weight (N) 2194.763 3176.176 

Maximum weight (N) 8976.507 8934.177 

SD of weights (N) 986.153 1102.573 

Percentage of the run solutions 

that are not heavier than the 

minimum weight of the 

calculation set by greater than 2% 

(%) 

69.6 0.2 

 

The topology of the best solution obtained with the element-removal algorithm 

is shown in Figure 5.10. For this problem, the best solutions with a weight of 1694.000 

N, obtained with the element-removal algorithm, are not unique, regarding the 

individual member areas, although they all have the same topology, as shown in Figure 

5.10. In each of these best solutions, the areas of members 1 and 2 are identical. The 

areas of members 3 and 4 are also identical. However, it is not necessary that all four 

members within each best solution have the same area. The topology of the best solution 

obtained without the element-removal algorithm is found to be complex and different 

from Figure 5.10. 

Much faster convergences are again observed when the element-removal 

algorithm is used, as demonstrated by Figure 5.11. 
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5.1.6 153-element, 18-node truss 

The last problem is generated from problem 5.1.5 by making it unsymmetrical, 

as shown in Figure 5.12. All possible node connections are also considered in this 

problem. All problem and PSO parameters are the same as those of problem 5.1.5. 

Figure 5.11 Problem 5.1.5: Typical convergences of the weights. 
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Again, it is found that all run solutions in the two calculation sets, with and 

without the element-removal algorithm, are feasible. Table 5.11 shows the statistics of 

the run solutions obtained with and without the element-removal algorithm. All results 

in the table, obtained with the algorithm, are considerably better than those obtained 

without the algorithm. The minimum weight obtained with the element-removal 

algorithm is the exact optimal weight of this problem. When the element-removal 

algorithm is used, the percentage of the run solutions that are not heavier than the best 

weight of the calculation set by greater than 2% is 68.0. When the element-removal 

algorithm is not used, the percentage of the run solutions that are not heavier than the 

best weight of the calculation set by more than 2% is only 0.4. 

Similar to the previous problem, the best solutions with a weight of 1443.750 

N, obtained with the element-removal algorithm, are not unique, regarding the 

Figure 5.12 Problem 5.1.6: Problem details, ground-structure nodes, and best topology. 
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individual member areas. Their topologies have four members, as shown in Figure 5.12, 

or three members, with member 1 in Figure 5.12 removed. The topology of the best 

solution obtained without the element-removal algorithm is found to be complex and 

different. 

 

Table 5.11 Problem 5.1.6: Statistics of the run solutions. 

 

Calculation set of 1000 runs 

With the element-

removal algorithm 

Without the element-

removal algorithm 

Minimum weight (N) 1443.750 1712.682 

Average weight (N) 1837.071 2811.178 

Maximum weight (N) 7734.456 9727.629 

SD of weights (N) 825.887 956.491 

Percentage of the run solutions 

that are not heavier than the 

minimum weight of the 

calculation set by greater than 2% 

(%) 

68.0 0.4 

 

Similar to the other problems, faster convergences are observed when the 

element-removal algorithm is used, as demonstrated by Figure 5.13. 
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5.2 Truss topology optimization with a prescribed maximum number of elements 

To demonstrate the effectiveness of the proposed truss optimization algorithm 

with a prescribed maximum number of elements, it is used to solve four truss topology 

optimization problems. The problems are also solved using the ground structure 

approach and the obtained results are compared. In both approaches, the two-population 

PSO algorithm is again used. The obtained optimal weights are also compared with 

some existing studies, wherever possible. As aforementioned, the comparison with the 

literature is done only to make certain that the results obtained from this study are 

satisfactory. It is not in the scope of this study to discuss the performance of the whole 

optimization process, which includes the performance of the two-population PSO 

algorithm. The element-removal algorithm developed in section 4.2 is also used while 

solving the problems in this section. 

When the proposed algorithm is used, the value of the minimum area factor, 

𝐴𝑚𝑖𝑛𝐹𝑎𝑐𝑡𝑜𝑟 , is taken as 8 for all the examples presented in this section. The value of the 

Figure 5.13 Problem 5.1.6: Typical convergences of the weights. 
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minimum area factor of 8 is found, by trial and error, to consistently give excellent 

results when the proposed algorithm is employed. On the contrary, the minimum area 

factor is taken as 1 for all the examples when the ground structure approach is used. In 

the proposed algorithm, the maximum number of elements is generally assumed not to 

be significantly larger than the number of elements to be remained in the optimal truss. 

As a result, the probability of an element being absent can be reduced from those used 

in the ground structure approach. As mentioned earlier, 𝑉𝑑𝑚𝑥  for each optimization 

dimension is set to one quarter of the range of all possible codes for that dimension. 

5.2.1 15-element, 6-node truss 

The first problem considered is a simple 2D problem studied by Deb and Gulati 

(2001) and Wu and Tseng (2010). The forces, supports, and problem dimensions are 

shown in Figure 5.14. When the problem is solved by the ground structure approach, 

the ground structure in Figure 5.14, which has 6 nodes and 15 elements, is used and the 

design variables are the areas of all the elements present in the ground structure. When 

the problem is solved by the proposed approach, the six nodes of the ground structure 

in Figure 5.14 are used as the probable positions of the truss joints. This original grid 

of nodes in Figure 5.14 is mapped into a substitute grid with uniform unit spacing as 

stated in section 4.3. 

The problem parameters are given as follows (Deb & Gulati, 2001; Wu & 

Tseng, 2010): 

Young’s modulus: 𝐸 = 104 ksi 

Weight density: 𝜌 = 0.1 lb/in3 

Allowable stress: 𝜎𝑎 = 25 ksi 

Allowable displacement: 𝛿𝑎 = 2 in 

Area: 𝐴 = 0.09 to 35 in2 
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In the proposed algorithm, different values for the maximum number of 

elements are tried, and the lower and upper boundaries of the cross-sectional area in all 

optimization dimensions are set, respectively, to −4.375 and 35 in2. In addition, 𝑉𝑑𝑚𝑥  

is set to [35 − (−4.375)]/4 = 9.844 for all optimization dimensions. When the 

ground structure approach is used, the lower and upper boundaries of the cross-sectional 

area in all optimization dimensions are set, respectively, to −35 and 35 in2, and 𝑉𝑑𝑚𝑥 

is set to [35 − (−35)]/4 = 17.5 for all optimization dimensions. 

Figure 5.14 Problem 5.2.1: Problem details, ground-structure nodes and elements. 

Figure 5.15 Problem 5.2.1: Best topology. 
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Table 5.12 Problem 5.2.1: Statistics of the run solutions. 

 Calculation set of 1000 runs 

 

Ground 

structure 

approach 

Proposed algorithm 

The maximum number of 

elements 

− 6 8 10 12 

Minimum weight (lb) 4730.530 4730.553 4730.499 4730.507 4730.413 

Average weight (lb) 5234.861 5841.331 5339.962 5073.561 5002.485 

Maximum weight (lb) 7416.295 6885.384 7153.192 7114.694 6621.327 

SD of weights (lb) 639.671 379.088 575.636 446.956 362.066 

Percentage of the run 

solutions that are not 

heavier than the 

minimum weight of the 

calculation set by greater 

than 2% (%) 

37.6 4.1 23.7 33.4 36.4 

  

Table 5.12 shows the results obtained with the ground structure approach and 

the proposed approach. All 1000 run solutions are found to be feasible for all the cases 

in Table 5.12 except for the case when the maximum number of elements is equal to 6, 

in which some run solutions are found to be infeasible. The best weights obtained from 

the ground structure and proposed approaches are comparable. The average weights 

from the proposed algorithm with the maximum number of elements equal to 10 and 

12 are better than that obtained by the ground structure approach. All the maximum 

weights and the standard deviations of the weights from the proposed algorithm are 
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better than those obtained by the ground structure approach. All the best solutions from 

the ground structure approach and the proposed approach are found to have the same 

topology that is shown in Figure 5.15. Table 5.12 also shows the percentages of the run 

solutions that are not heavier than the minimum weight of the calculation set by greater 

than 2%. For this performance indicator, the ground structure approach seems to 

perform better than the proposed algorithm. The percentage of the run solutions that are 

not heavier than the minimum weight of the calculation set by greater than 2% obtained 

by the proposed algorithm increases when the maximum number of elements increases. 

When the maximum number of elements is equal to 12, the obtained percentage is 

comparable to that obtained by the ground structure approach. 

The minimum weights given by Deb and Gulati (2001) and Wu and Tseng 

(2010) are 4731.65 lb and 4730.68 lb, respectively, which are comparable with the 

present results. The best topologies obtained by Deb and Gulati (2001) and by Wu and 

Tseng (2010) are exactly the same as that obtained from the proposed algorithm shown 

in Figure 5.15. Table 5.13 shows the details of the best solutions from this study, with 

the maximum number of elements equal to 12, and from Deb and Gulati (2001) and 

Wu and Tseng (2010). The results by Deb and Gulati (2001) and Wu and Tseng (2010) 

are presented as originally reported. Note that there are 6 elements in the best topology 

in Figure 5.15. It follows that the optimal topology in Figure 5.15 cannot be obtained if 

the maximum number of elements is set to be less than 6. 
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Table 5.13 Problem 5.2.1: Best solutions. 

Member 

Area (in2)   

This study 

Deb and 

Gulati 

(2001) 

Wu and 

Tseng 

(2010) 

Ground 

structure 

approach 

Proposed 

algorithm with 

the maximum 

number of 

elements = 12 

1 5.315 5.377 5.219 5.533 

2 14.363 14.375 14.593 14.342 

4 20.321 20.407 20.310 20.281 

7 7.698 7.653 7.772 7.545 

11 20.338 20.363 20.650 20.356 

13 28.974 28.792 28.817 29.046 

Weight (lb) 4730.530 4730.413 4731.650 4730.68 

Max stress (ksi) 18.814 18.597 19.161 18.701 

Max displacement (in) 2.000 2.000 2.000 2.000 

 

5.2.2 45-element, 10-node truss 

The second problem is the same 2D truss optimization problem considered in 

section 5.1.1. When the problem is solved using the ground structure approach, all 

possible node connections are considered. When the problem is solved by the proposed 

approach, the ten nodes of the ground structure are considered as the probable position 

of the truss joints. Symmetry is considered along the middle vertical line while solving 

the problem using both approaches. 

When the proposed approach is used, the lower and upper boundaries of the 

cross-sectional area in all optimization dimensions are set, respectively, to −0.125 and 

1 in2, and 𝑉𝑑𝑚𝑥  is set to [1 − (−0.125)]/4 = 0.281 for all optimization dimensions. 

When the ground structure approach is used, the lower and upper boundaries of the 

cross-sectional area in all optimization dimensions are set, respectively, to −1 and 

1 in2, and 𝑉𝑑𝑚𝑥  is set to [1 − (−1)]/4 = 0.5 for all optimization dimensions. 
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Table 5.14 shows the results obtained with the ground structure approach and 

the proposed approach. The result obtained with the ground structure approach is the 

same as in Table 5.2. It is reported here again for comparison purpose only. All 1000 

run solutions are found to be feasible for all the cases in Table 5.14 except for the case 

when the maximum number of elements is equal to 6, in which some run solutions are 

found to be infeasible. Although not shown here, when the maximum number of 

elements is specified less than 6, all the run solutions are found to be infeasible. This is 

expected since at least 6 elements are required to create a stable truss. 

Table 5.14 Problem 5.2.2: Statistics of the run solutions. 

 

Calculation set of 1000 runs 

Ground 

structure 

approach 

Proposed algorithm 

The maximum number 

of elements 

− 6 8 10 20 30 

Minimum weight (lb) 44.000 44.000 44.000 44.000 44.000 44.000 

Average weight (lb) 45.851 45.586 45.150 44.753 44.142 44.183 

Maximum weight (lb) 103.685 67.871 52.000 52.000 52.000 52.000 

SD of weights (lb) 4.994 3.246 2.798 2.328 1.043 1.142 

Percentage of the run 

solutions that are not 

heavier than the 

minimum weight of 

the calculation set by 

greater than 2% (%) 

78.9 80.1 85.5 90.5 98.2 97.2 
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The best weights obtained from the ground structure and proposed approaches 

are the same for all the cases as shown in Table 5.14. Figure 5.1 shows the best topology 

of the truss obtained using the ground structure approach and the proposed algorithm, 

which contains 7 elements. This topology is the same as the best topologies given by 

Deb and Gulati (2001) and Wu and Tseng (2010). Table 5.14 clearly shows that the 

proposed approach gives the results that are more consistent than those of the ground 

structure approach. The standard deviations of the weights obtained with the proposed 

approach are considerably lower than that obtained with the ground structure approach. 

Also, when the proposed approach is used, the numbers of run solutions that are not 

heavier than the best solution of the calculation set by more than 2% are found to be 

considerably high. The minimum weights reported by Deb and Gulati (2001) and Wu 

and Tseng (2010) are 44.033 lb and 43.99 lb, respectively. The details of the best 

solutions from the proposed approach when the maximum number of elements is set to 

8, 10, 20, and 30 are exactly the same as those obtained in this study using the ground 

structure approach, which is shown in Table 5.3. The same table also shows the details 

of the best solutions by Deb and Gulati (2001) and Wu and Tseng (2010). When the 

maximum number of elements is set to 6, the optimized topology is as shown in Figure 

5.16.  

 

 

Figure 5.16 Problem 5.2.2: Best topology with 6 elements. 
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Table 5.15 shows the details of the best solution from the proposed algorithm 

when the maximum number of elements is set to 6.  

 

Table 5.15 Problem 5.2.2: Best solution obtained with 6 elements. 

Member Area (in2)a 

1 0.566 

2 0.447 

3 0.447 

4 0.566 

5 0.4 

6 0.4 

7 − 

Weight (lb) 44.000 

Max stress (ksi) 25.000 

Max displacement (in) 1.250 

 

5.2.3 66-element, 12-node truss 

The third problem is from Faramarzi and Afshar (2012). The ground structure 

used by Faramarzi and Afshar (2012), which has 12 nodes and 66 elements, is also used 

in this study. The problem dimensions, boundary conditions and ground-structure nodes 

and elements are shown in Figure 5.17. When the problem is solved by the proposed 

approach, the 12 nodes of the ground structure are used as the probable positions of the 

truss joints. Since the behavior of truss elements in tension and compression is 

considered the same, the symmetry along the middle horizontal line of the solutions is 

assumed when the problem is solved by both approaches. 

The problem parameters are also taken from the work by Faramarzi and Afshar 

(2012), which are as follows: 

Young’s modulus: 𝐸 = 104 ksi 

Weight density: 𝜌 = 0.1  lb/in3 
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Allowable stress: 𝜎𝑎 = 5 ksi 

Allowable displacement: 𝛿𝑎 = 0.6 in 

Area: 𝐴 = 0.09 to 35 in2  

 

 

When the problem is solved using the proposed approach, the lower and upper 

boundaries of the cross-sectional area in all optimization dimensions are set, 

respectively, to −4.375 and 35 in2, and 𝑉𝑑𝑚𝑥  is set to [35 − (−4.375)]/4 = 9.844 for 

all optimization dimensions. When the ground structure approach is used, the lower and 

upper boundaries of the cross-sectional area in all optimization dimensions are set, 

respectively, to −35 and 35 in2, and 𝑉𝑑𝑚𝑥 is set to [35 − (−35)]/4 = 17.5 for all 

optimization dimensions. 

Figure 5.17 Problem 5.2.3: Problem details, ground-structure nodes and elements. 
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Figure 5.18 Problem 5.2.3: Example best topologies: (a) maximum number of elements ≥ 2; 

(b) maximum number of elements ≥ 6; (c) maximum number of elements ≥ 8. 

(a) 

(b) 

(c) 
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Table 5.16 shows the results obtained with the ground structure approach and 

the proposed approach. All 1000 run solutions are found to be feasible for all the cases 

in Table 5.16. In the proposed approach, the value of the maximum number of elements 

is varied from 2 to 66. Note that 66 is the total number of elements that are possible in 

the ground structure. When the value of the maximum number of elements is from 2 to 

30, all run solutions in each calculation set have the same weight of 2,400 lb. This fact 

can be clearly seen from the values of the standard deviation of zero for these cases, 

shown in Table 5.16. It also follows that, for these cases, the percentage of the run 

solutions that are not heavier than the minimum weight of the calculation set by greater 

than 2% is 100. The results are slightly changed when the values of the maximum 

number of elements is set to 40 and 50. As seen from Table 5.16, the best weights are 

still the same and the other statistics are still better than those obtained by the ground 

structure approach. When the maximum number of elements is set to 66, the best weight 

is still the same. However, the other statistics are no longer better than those given by 

the ground structure approach. For this problem, several optimized topologies having 

the same minimum weight are obtained from both approaches. Three example best 

topologies are shown in Figure 5.18.  
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Table 5.16 Problem 5.2.3: Statistics of the run solutions. 

 

Calculation set of 1000 runs 

Ground 

structure 

approach 

Proposed algorithm 

The maximum number 

of elements 

− 

2, 4, 6, 8, 

10, 20, 30 

40 50 66 

Minimum weight (lb) 2400.000 2400.000 2400.000 2400.000 2400.000 

Average weight (lb) 2434.195 2400.000 2404.235 2415.563 2458.558 

Maximum weight (lb) 3463.753 2400.000 3134.283 3262.440 4006.070 

SD of weights (lb) 124.191 0 46.117 78.742 152.579 

Percentage of the run 

solutions that are not 

heavier than the 

minimum weight of the 

calculation set by greater 

than 2% (%) 

90.7 100 99.1 95.4 82 

 

 

Table 5.17 shows the details of the element areas of the optimized topologies 

shown in Figure 5.18 (a) and Figure 5.18 (b). The element combinations for the 

optimized topology in Figure 5.18 (c) are not unique. As a result, the details of the 

element areas for this topology are not shown. The minimum weight obtained by 

Faramarzi and Afshar (2012) for this problem is 2400.001 lb. The optimized topology 

given by Faramarzi and Afshar (2012) is the same as that shown in Figure 5.18 (c). The 

details of the best solution from Faramarzi and Afshar (2012) are also listed in Table 

5.17.  
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Table 5.17 Problem 5.2.3: Best solutions. 

aSymmetry is assumed. 

bSymmetry is not assumed. 

 

This problem is also solved with a finer grid in this study. As shown in Figure 

5.19, the number of nodes in the finer grid is equal to 35, which results in 595 possible 

elements in the ground structure. All other problem parameters are kept unchanged. 

When solving this problem with the proposed approach, the nodes of the ground 

structure in Figure 5.19 are used as the probable positions of the truss joints. In addition, 

the value of the maximum number of elements is set to 100. Table 5.18 shows the 

results obtained with the ground structure approach and the proposed approach for the 

problem with 35 nodes. All 1000 run solutions are found to be feasible for all the cases 

in Table 5.18. The optimized topology obtained with the proposed approach is the same 

as that shown in Figure 5.19, which contains 8 elements. From the proposed approach, 

the minimum weight obtained for this 35-node problem is 2232.266 lb, which is lower 

Member 

Area (in2)  

This studya Faramarzi 

and Afshar 

(2012)b 

Ground structure and proposed 

approaches 

Figure 5.18 (a) Figure 5.18 (b)  

1 − 25.000 20.000 

2 − 25.000 7.0263 

3 − 11.180 3.1423 

4 − 11.180 8.9442 

5 − 22.361 17.8885 

6 − 22.361 6.2845 

7 31.623 − 9.0597 

8 31.623 − 20.000 

Weight (lb) 2400.000 2400.000 2400.001 

Max stress (ksi) 5.000 5.000 5.000 

Max displacement (in) 0.60 0.60 0.5999 
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than the one obtained for the 12-node problem. This is generally expected since finer 

grids provide more choices of topologies than rougher grids. The exceptions are those 

cases where the locations of nodes in finer grids cannot represent the optimal solutions 

while those in rougher grids can. For this problem, the best weight obtained with the 

ground structure approach is 2449.642 lb, which is greater than the best weight obtained 

with the proposed approach. The average weight obtained with the proposed approach 

is lower than that obtained with the ground structure approach as also shown in Table 

5.18. The maximum weight and the standard deviation of the weights obtained with the 

proposed approach are found to be slightly higher than those obtained with the ground 

structure approach. When the ground structure approach and the proposed approach are 

used, the percentages of the run solutions that are not heavier than the minimum weight 

of the calculation set by greater than 2% are 0.2 and 1.3, respectively. The topology of 

the best solution obtained with the ground structure approach is found to be complex, 

with 22 elements, and different from Figure 5.19. 

 

 

 
 

Figure 5.19 Problem 5.2.3: Problem details, ground-structure nodes, and best 

topology with a finer grid. 
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Table 5.18 Problem 5.2.3: Statistics of the run solutions for the problem with 35 nodes. 

 

Calculation set of 1000 runs 

Ground structure 

approach 

Proposed algorithm 

The maximum number of 

elements 

− 100 

Minimum weight (lb) 2449.642 2232.266 

Average weight (lb) 4294.971 2866.186 

Maximum weight (lb) 6844.925 9042.204 

SD of weights (lb) 722.519 759.233 

Percentage of the run solutions 

that are not heavier than the 

minimum weight of the 

calculation set by greater than 

2% (%) 

0.2 1.3 

 

5.2.4 153-element, 18-node truss 

The last problem considered here is a 3D problem with 18 nodes and 153 

elements from problem 5.1.5, and the 3 × 3 × 2 grid used is shown in Figure 5.10. 

Here, the symmetry of the truss is not considered. When solving the problem using the 

ground structure approach, all 153 node connections are considered. When the problem 

is solved by the proposed approach, the 18 ground-structure nodes are considered as 

the probable position of the truss joints. All the problem parameters considered for this 

problem are also taken from problem 5.1.5. 

When solving the problem using the proposed approach, the lower and upper 

boundaries of the cross-sectional area in all optimization dimensions are set, 
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respectively, to −250 and  2000 mm2. The value of  𝑉𝑑𝑚𝑥  is set to [2000 − (−250)]/

4 = 562.5 for all optimization dimensions. When the ground structure approach is 

used, the lower and upper boundaries of the cross-sectional area in all optimization 

dimensions are set, respectively, to −2000 and 2000 mm2, and  𝑉𝑑𝑚𝑥  is set to 

[2000 − (−2000)]/4 = 1000 for all optimization dimensions. 

The results obtained with the ground structure approach and the proposed 

approach are shown in Table 5.19. All 1000 run solutions are found to be feasible for 

all the cases in Table 5.19. The result obtained with the ground structure approach is 

the same as in Table 5.10. It is reported here again for comparison purpose only. The 

best solutions from the two approaches have the same topology, shown in Figure 5.10, 

and the same minimum weight of 1694 kN. Again, the best solutions are not unique, 

regarding the individual member areas although they all have the same topology as 

shown in Figure 5.10. When the values of the maximum number of elements are 20 to 

40, all run solutions in each calculation set have the same weight of 1694 kN. As a 

result, the values of the standard deviation is equal to zero for these cases, as shown in 

Table 5.19. It follows that, for these cases, the percentage of the run solutions that are 

not heavier than the minimum weight of the calculation set by greater than 2% is 100. 

When the maximum number of elements is set to 50 and 60, the results are slightly 

changed. The best weights are still the same and the other statistics are still better than 

those obtained by the ground structure approach. When the maximum number of 

elements is set to 100, the best weight is still the same. However, the other statistics are 

no longer better than those given by the ground structure approach. It can be seen from 

Table 5.19 that, the percentage of the run solutions that are not heavier than the best 

weight of the calculation set by more than 2% is equal to 69.6 when the ground structure 

approach is used. When the proposed approach is used, this value is always higher than 

that of the ground structure approach, except when the maximum number of elements 

is set to 100, as shown in Table 5.19. These results clearly show that the proposed 

approach generally gives better results than the ground structure approach. 

 

 

 

Ref. code: 25625722300034CSH



80 

 

 

 

 

Table 5.19 Problem 5.2.4: Statistics of the run solutions. 

 

 Calculation set of 1000 runs 

Ground 

structure 

approach 

 

Proposed algorithm 

The maximum 

number of elements 

− 20, 30, 40 50 60 100 

Minimum weight (lb) 1694.000 1694.000 1694.000 1694.000 1694.000 

Average weight (lb) 2194.763 1694.000 1694.073 1706.473 2650.065 

Maximum weight (lb) 8976.507 1694.000 1757.451 4381.400 7383.833 

SD of weights (lb) 986.153 0 2.011 148.188 1227.485 

Percentage of the run 

solutions that are not 

heavier than the 

minimum weight of 

the calculation set by 

greater than 2% (%) 

69.6 100 99.9 98.8 23.5 
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CONCLUSIONS 

 

In the first part of the study, a new representation for truss topology optimization 

is proposed. The proposed representation uses an element-removal algorithm to remove 

unwanted elements from trusses to obtain final trusses. These unwanted elements 

include kinematically unstable elements and useless zero-force elements. The element-

removal algorithm does not consider all patterns of elements that are kinematically 

unstable or have no force. Rather, it considers only those patterns that can be easily 

identified without much detailed checking. The element-removal algorithm is used in 

the translation of representation codes into corresponding trusses. As a result, more 

representation codes in the search space are mapped into kinematically stable and 

efficient trusses, and the level of competition among representation codes is increased. 

Six example problems are solved, and the results are discussed. It has been found that 

the proposed coding scheme makes the optimization process more effective and 

efficient.  

In the second part of the study, a new coding scheme is proposed in which a 

prescribed maximum number of elements is specified for truss optimization. The main 

advantage of this proposed method is that, for each truss topology optimization 

problem, a dense ground structure is not used. As a result, the number of elements that 

must be removed during the optimization process to obtain the optimal truss is reduced. 

Another advantage of the proposed scheme is that the designer can predefine a 

maximum limit for the number of members to be present in the final design. This type 

of provision is generally not possible when the ground structure approach is used. The 

performance of the proposed scheme is found to depend upon the prescribed value of 

the maximum number of elements. It can be concluded from the examples solved in 

this study that the proper value for the maximum number of elements depends upon the 

total number of elements in the ground structure and the number of elements in the real 

optimal solution. Since the number of elements in the real optimal solution is not 

known, values that are larger than those that may be used in real practice for the 

considered truss may be selected. However, the selected value should not be set too 

large since it will result in a large search space and the employed optimization algorithm 

may not be able to effectively solve the optimization problem. It can be seen from the 
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results of the examples solved in this study that, when a denser ground structure is 

employed, a smaller ratio of the prescribed maximum number of elements to the 

number of elements in the ground structure has to be used in order that good results can 

be obtained. Some of the obtained results obtained from both proposed coding schemes 

are compared with the existing results found in the literature. Good agreement is 

observed.  

In this research, the proposed algorithms are used only with continuous 

variables. Further researches can be done by applying the proposed algorithms to solve 

the problems with discrete variables. Another limitation of this study is that the 

proposed algorithms are implemented using only two-population PSO. The algorithms 

can be further implemented with different optimization algorithms, such as simple PSO, 

GAs, and FAs. Moreover, in this study, only stresses and displacements are considered 

as design constraints. Further studies can be done by considering other additional 

constraints. 

 

  

Ref. code: 25625722300034CSH



83 

 

 

 

 

REFERENCES 

 

Arnaot, F. H. (2019). Effect of loading on optimum weight of planer trusses using 

genetic algorithms. Proceeding of 2019 2nd International Conference on 

Engineering Technology and its Applications, IICETA 2019 (pp. 37-42).  

Assimi, H., Jamali, A., & Nariman-zadeh, N. (2017). Sizing and topology optimization 

of truss structures using genetic programming. Swarm and Evolutionary 

Computation, 37, 90-103. 10.1016/j.swevo.2017.05.009 

Baghlani, A., Makiabadi, M. H., & Rahnema, H. (2013). A new accelerated firefly 

algorithm for size optimization of truss structures. Scientia Iranica, 20(6), 1612-

1625.  

Bansal, J. C., Singh, P. K., Saraswat, M., Verma, A., Jadon, S. S., & Abraham, A. 

(2011). Inertia weight strategies in particle swarm optimization. Proceeding of 

Proceedings of the 2011 3rd World Congress on Nature and Biologically 

Inspired Computing, NaBIC 2011 (pp. 633-640).  

Beckers, M., & Fleury, C. (1997). A primal-dual approach in truss topology 

optimization. Computers and Structures, 64(1-4), 77-88.  

Bołbotowski, K., & Sokół, T. (2016). New method of generating strut and tie models 

using truss topology optimization. Proceeding of Advances in Mechanics: 

Theoretical, Computational and Interdisciplinary Issues - 3rd Polish Congress 

of Mechanics, PCM 2015 and 21st International Conference on Computer 

Methods in Mechanics, CMM 2015 (pp. 97-100).  

Choensiridamrong, C., Watjatrakul, B., & Prayote, A. (2014). A simultaneous topology 

and sizing optimization for plane trusses. Proceeding of 2014 11th Int. Joint 

Conf. on Computer Science and Software Engineering: "Human Factors in 

Computer Science and Software Engineering" - e-Science and High 

Performance Computing: eHPC, JCSSE 2014 (pp. 111-116).  

Clerc, M., & Kennedy, J. (2002). The particle swarm-explosion, stability, and 

convergence in a multidimensional complex space. IEEE Transactions on 

Evolutionary Computation, 6(1), 58-73. 10.1109/4235.985692 

Ref. code: 25625722300034CSH



84 

 

 

 

 

Cui, H., An, H., & Huang, H. (2018). Truss topology optimization considering local 

buckling constraints and restrictions on intersection and overlap of bar 

members. Structural and Multidisciplinary Optimization, 58(2), 575-594. 

10.1007/s00158-018-1910-x 

Deb, K., & Gulati, S. (2001). Design of truss-structures for minimum weight using 

genetic algorithms. Finite Elements in Analysis and Design, 37(5), 447-465. 

10.1016/S0168-874X(00)00057-3 

Eberhart, R. C., & Shi, Y. (2000). Comparing inertia weights and constriction factors 

in particle swarm optimization. Proceeding of Proceedings of the 2000 

Congress on Evolutionary Computation, CEC 2000 (pp. 84-88).  

Ede, A. N., Oshokoya, O. O., Oluwafemi, J. O., Oyebisi, S. O., Olofinnade, O. M., & 

Akpabot, A. I. (2018). Weight optimization of square hollow steel trusses using 

genetic algorithm. Proceeding of IOP Conference Series: Materials Science and 

Engineering (pp.  

Faramarzi, A., & Afshar, M. H. (2012). Application of cellular automata to size and 

topology optimization of truss structures. Scientia Iranica, 19(3), 373-380. 

10.1016/j.scient.2012.04.009 

Gao, G., Liu, Z. Y., Li, Y. B., & Qiao, Y. F. (2016). A new method to generate the 

ground structure in truss topology optimization. Engineering Optimization, 1-

17. 10.1080/0305215X.2016.1169050 

Gao, Y., An, X., & Liu, J. (2008). A particle swarm optimization algorithm with 

logarithm decreasing inertia weight and chaos mutation. Proceeding of 2008 

International Conference on Computational Intelligence and Security (pp. 61-

65).  

Ge, Y., & Rubo, Z. (2005). An emotional particle swarm optimization algorithm. 

Proceeding of Lecture Notes in Computer Science (pp. 553-561).  

Ghoddosian, A., Riyahi Vezvari, M., Sheikhi Azqandi, M., & Karimi, M. A. (2018). 

Topology optimisation of the discrete structures with the minimum growing 

ground structure method. International Journal of Structural Engineering, 9, 

38. 10.1504/IJSTRUCTE.2018.090749 

Gilbert, M., & Tyas, A. (2003). Layout optimization of large-scale pin-jointed frames. 

Engineering Computations (Swansea, Wales), 20(7-8), 1044-1064.  

Ref. code: 25625722300034CSH



85 

 

 

 

 

Guo, X., Cheng, G. D., & Olhoff, N. (2005). Optimum design of truss topology under 

buckling constraints. Structural and Multidisciplinary Optimization, 30(3), 

169-180. 10.1007/s00158-004-0511-z 

Hagishita, T., & Ohsaki, M. (2009). Topology optimization of trusses by growing 

ground structure method. Structural and Multidisciplinary Optimization, 37(4), 

377-393. 10.1007/s00158-008-0237-4 

Hajela, P., & Lee, E. (1995). Genetic algorithms in truss topological optimization. 

International Journal of Solids and Structures, 32(22), 3341-3357. 

10.1016/0020-7683(94)00306-H 

Han, L., & Wang, Y. (2019). Topology optimization of top lateral bracing for steel tub 

girder systems using genetic algorithm. Proceeding of Structural Stability 

Research Council Annual Stability Conference 2019, SSRC 2019 (pp. 51-58).  

Hasançebi, O., & Erbatur, F. (2002). Layout optimisation of trusses using simulated 

annealing. Advances in Engineering Software, 33(7-10), 681-696. 

10.1016/S0965-9978(02)00049-2 

Hossen, S., Rabbi, F., & Rahman, M. (2009). Adaptive particle swarm optimization 

(apso) for multimodal function optimization. International Journal of 

Engineering and Technology, 1(3), 98-103.  

Jiang, Y., Hu, T., Huang, C., & Wu, X. (2007). An improved particle swarm 

optimization algorithm. Applied Mathematics and Computation, 193(1), 231-

239. 10.1016/j.amc.2007.03.047 

Kaveh, A., & Kalatjari, V. (2003). Topology optimization of trusses using genetic 

algorithm, force method and graph theory. International Journal for Numerical 

Methods in Engineering, 58(5), 771-791. 10.1002/nme.800 

Kawamura, H., Ohmori, H., & Kito, N. (2002). Truss topology optimization by a 

modified genetic algorithm. Structural and Multidisciplinary Optimization, 

23(6), 467-472. 10.1007/s00158-002-0208-0 

Kennedy, J., & Eberhart, R. (1995). Particle swarm optimization. Proceeding of IEEE 

International Conference on Neural Networks - Conference Proceedings (pp. 

1942-1948).  

Ref. code: 25625722300034CSH



86 

 

 

 

 

Kennedy, J., & Eberhart, R. C. (1997). Discrete binary version of the particle swarm 

algorithm. Proceeding of Proceedings of the IEEE International Conference on 

Systems, Man and Cybernetics (pp. 4104-4108).  

Kirsch, U. (1996). Integration of reduction and expansion processes in layout 

optimization. Structural Optimization, 11, 13-18. 10.1007/BF01279649 

Li, L. J., Huang, Z. B., & Liu, F. (2009). A heuristic particle swarm optimization 

method for truss structures with discrete variables. Computers and Structures, 

87(7-8), 435-443. 10.1016/j.compstruc.2009.01.004 

Li, Y., & Zhen, Y. (2019). Application of improved bat algorithm in truss optimization. 

KSCE Journal of Civil Engineering, 23, 10.1007/s12205-019-2119-2 

Luh, G. C., & Lin, C. Y. (2008). Optimal design of truss structures using ant algorithm. 

Structural and Multidisciplinary Optimization, 36(4), 365-379. 

10.1007/s00158-007-0175-6 

Luh, G. C., & Lin, C. Y. (2011). Optimal design of truss-structures using particle swarm 

optimization. Computers and Structures, 89(23-24), 2221-2232. 

10.1016/j.compstruc.2011.08.013 

Malik, R., Rahman, T., Mohd Hashim, S., & Ngah, R. (2007). New particle swarm 

optimizer with sigmoid increasing inertia weight. International Journal of 

Computer Science and Security, 1,  

Martínez, P., Martí, P., & Querin, O. M. (2007). Growth method for size, topology, and 

geometry optimization of truss structures. Structural and Multidisciplinary 

Optimization, 33(1), 13-26. 10.1007/s00158-006-0043-9 

McKeown, J. J. (1998). Growing optimal pin-jointed frames. Structural Optimization, 

15(2), 92-100.  

Miguel, L., Lopez, R., & Miguel, L. (2013). Multimodal size, shape, and topology 

optimisation of truss structures using the firefly algorithm. Advances in 

Engineering Software, 56, 23-37. 10.1016/j.advengsoft.2012.11.006 

Nanakorn, P., & Meesomklin, K. (2001). An adaptive penalty function in genetic 

algorithms for structural design optimization. Computers and Structures, 79(29-

30), 2527-2539. 10.1016/S0045-7949(01)00137-7 

Nanakorn, P., Petprakob, W., & Naga, V. C. K. (2014). Object-oriented programming 

for topology optimization of steel truss structures by multipopulation particle 

Ref. code: 25625722300034CSH



87 

 

 

 

 

swarm optimization. Proceeding of Proceedings of the 12th International 

Conference on Steel, Space and Composite Structures.  

Neeraja, D., Kamireddy, T., Kumar, P. S., & Reddy, V. S. (2017). Weight optimization 

of plane truss using genetic algorithm. Proceeding of IOP Conference Series: 

Materials Science and Engineering.  

Nimtawat, A., & Nanakorn, P. (2009). Automated layout design of beam-slab floors 

using a genetic algorithm. Computers and Structures, 87(21-22), 

10.1016/j.compstruc.2009.06.007 

Nimtawat, A., & Nanakorn, P. (2010). A genetic algorithm for beam-slab l design of 

rectilinear floors. Engineering Structures, 32(11), 3488-3500. DOI: 

10.1016/j.engstruct.2010.07.018 

Niu, B., Zhu, Y., He, X., & Shen, H. (2008). A multi-swarm optimizer based fuzzy 

modeling approach for dynamic systems processing. Neurocomputing, 71(7-9), 

1436-1448. 10.1016/j.neucom.2007.05.010 

Ohsaki, M., Fujisawa, K., Katoh, N., & Kanno, Y. (1999). Semi-definite programming 

for topology optimization of trusses under multiple eigenvalue constraints. 

Computer Methods in Applied Mechanics and Engineering, 180(1–2), 203-217. 

http://dx.doi.org/10.1016/S0045-7825(99)00056-0 

Peydro Rasero, M. Á., Sellés Cantó, M. Á., Martínez Sanz, A. V., Plá Ferrando, R., & 

Sánchez Caballero, S. (2012). Recent advances in structural optimization. 

Annals of The University of Oradea, 1(21), 118-127.  

Rajan, S. D. (1995). Sizing, shape, and topology design optimization of trusses using 

genetic algorithm. Journal of Structural Engineering, 121(10), 1480-1487. 

10.1061/(ASCE)0733-9445(1995)121:10(1480) 

Rajeev, S., & Krishnamoorthy, C. S. (1992). Discrete optimization of structures using 

genetic algorithms. Journal of Structural Engineering (United States), 118(5), 

1233-1250. 10.1061/(ASCE)0733-9445(1992)118:5(1233) 

Ratnaweera, A., Halgamuge, S. K., & Watson, H. C. (2004). Self-organizing 

hierarchical particle swarm optimizer with time-varying acceleration 

coefficients. IEEE Transactions on Evolutionary Computation, 8(3), 240-255. 

10.1109/TEVC.2004.826071 

Ref. code: 25625722300034CSH



88 

 

 

 

 

Richardson, J. N., Adriaenssens, S., Bouillard, P., & Coelho, R. F. (2012). 

Multiobjective topology optimization of truss structures with kinematic stability 

repair. Structural and Multidisciplinary Optimization, 46(4), 513-532. 

10.1007/s00158-012-0777-5 

Serpik, I. N., Alekseytsev, A. V., & Balabin, P. Y. (2017). Mixed approaches to handle 

limitations and execute mutation in the genetic algorithm for truss size, shape 

and topology optimization. Periodica Polytechnica Civil Engineering, 61(3), 

471-482. 10.3311/PPci.8125 

Smith, O. (1994). Interactive system for truss topology design with automatic 

generation of the ground structure. Proceeding of International Conference on 

Computational Structures Technology - Proceedings (pp. 103-112).  

Sokól, T. (2014). Multi-load truss topology optimization using the adaptive ground 

structure approach. Proceeding of Recent Advances in Computational 

Mechanics - Proceedings of the 20th International Conference on Computer 

Methods in Mechanics, CMM 2013 (pp. 9-16).  

Sokół, T. (2011). A 99 line code for discretized michell truss optimization written in 

mathematica. Structural and Multidisciplinary Optimization, 43(2), 181-190. 

10.1007/s00158-010-0557-z 

Sönmez, M. (2011). Artificial bee colony algorithm for optimization of truss structures. 

Appl. Soft Comput., 11, 2406-2418. 10.1016/j.asoc.2010.09.003 

Tsiptsis, I. N., Liimatainen, L., Kotnik, T., & Niiranen, J. (2019). Structural 

optimization employing isogeometric tools in particle swarm optimizer. Journal 

of Building Engineering, 10.1016/j.jobe.2019.100761 

Wu, C. Y., & Tseng, K. Y. (2010). Truss structure optimization using adaptive multi-

population differential evolution. Structural and Multidisciplinary 

Optimization, 42(4), 575-590. 10.1007/s00158-010-0507-9 

Wu, Y., Li, Q., Hu, Q., & Borgart, A. (2017). Size and topology optimization for trusses 

with discrete design variables by improved firefly algorithm. Mathematical 

Problems in Engineering, 2017, 10.1155/2017/1457297 

Xin, J., Chen, G., & Hai, Y. (2009). A particle swarm optimizer with multi-stage 

linearly-decreasing inertia weight.  

Yang, X. S. (2009). Firefly algorithms for multimodal optimization.  

Ref. code: 25625722300034CSH



89 

 

 

 

 

Zegard, T., & Paulino, G. H. (2014). Grand — ground structure based topology 

optimization for arbitrary 2d domains using matlab. Structural and 

Multidisciplinary Optimization, 50(5), 861-882. 10.1007/s00158-014-1085-z 

  

Ref. code: 25625722300034CSH



90 

 

 

 

 

BIOGRAPHY 
 

Name Mr. Alin Shakya 

Date of Birth August 05, 1974 

Education 1999: Bachelor of Engineering (Civil Engineering) 

Pulchowk Campus, Institute of Engineering 

Tribhuvan University 

 2003: Master of Science (Structural Engineering) 

Pulchowk Campus, Institute of Engineering 

Tribhuvan University 

Publications 

Shakya, A., Nanakorn, P., & Petprakob, W. (2018). A ground-structure-based 

representation with an element-removal algorithm for truss topology 

optimization. Structural and Multidisciplinary Optimization, 58(2), 657-675. 

10.1007/s00158-018-1917-3 

Shakya, A., and Nanakorn, P. (2017) Two-dimensional truss topology optimization 

with no overlapping elements by multi-population particle swarm optimization. 

In Proceedings of the 15th East Asia-Pacific Conference on Structural 

Engineering and Construction, EASEC-15 11-13 October 2017, Xi’an, P. R. 

China, 1648-1655. 

 

 

 

Ref. code: 25625722300034CSH




