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ABSTRACT 

 

This dissertation introduces a novel approach to improve the reliability in the 

short-term prediction of power generation for wind farms. The wind forecasting models 

need to be improved, and appropriate methods of wind measurement are also essential 

to yield accurate data for wind power prediction. Therefore, in this work, the study is 

divided into two parts, which are the study of wind measurement and the study of wind 

power forecasting.   

   In wind measurement, the sampling rate is a crucial factor in wind data 

acquisition, for good accuracy in wind analysis. A high sampling rate is preferable for 

wind speed measurement. However, when a measurement at a high sampling rate is 

performed, a large amount of data is obtained for storage and computation. The 

Nyquist-based adaptive sampling rate method adapts the sampling rate to be the 

Nyquist frequency, according to actual wind conditions. In this study, the wind data at 

a high sampling rate of 10 Hz is used as a benchmark. The proposed Nyquist-based 

methodology is capable of providing high accuracy of analytical results, with 

percentage relative differences of less than 1% in wind analysis. In addition, the amount 

of wind data is significantly decreased (by 4000 times) from the benchmark. 

In forecasting wind power, the predictions of the autoregressive moving average 

model, the artificial neural network model, and the grey prediction model are 

comparatively studied for wind power generation. In this study, the weighting method 
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systematically combines the predicted values of those three predictive models over 

time, based on their forecasting performance by the root mean square errors (RMSEs) 

between the actual values and the predicted values. The multiple forecasting models are 

applied to predict the wind power generation of a wind farm 1 h, 3 h, and 6 h ahead. 

The RMSEs of the multiple forecasting models are significantly the lowest values 

among those three predictive models and the benchmark by the persistence model. 

Furthermore, the prediction interval around the predicted value is statistically 

determined, to indicate the feasible range of wind power generation with a prescribed 

percentage of confidence under uncertainty. Uncertainty caused the historical 

prediction errors. 

 

Keywords: Wind energy, Renewable energy, Energy system, Wind measurement, 

Wind analysis, Sampling rate, Missing data, Stochastic process, Energy 

planning, Time series forecasting, Neural network, Multiple forecasting 

models 
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CHAPTER 1 

INTRODUCTION 

 

1.1 Statement of problem 

In the present, humans consume energy from fossil fuels at a high rate. Fossil 

fuels are the majority of energy resources in various types of industries. Since fossil 

fuels, which refers to coal, petroleum, and natural gas, are not a type of energy resource 

that can regenerate itself, the depletion of fossil fuels due to overconsumption is a 

serious problem in the world, nowadays. An effective way to mitigate this critical 

situation is to increase the use of renewable energy resources. Renewable energy 

resources are considered as free energy resources. Thus, these resources are not 

depleted, no matter how much of them are consumed.   

Wind energy is a renewable energy resource that is currently used as an 

alternative energy source in various applications, especially in the production of 

electricity. In Thailand, the high growth of electricity consumption has increasingly 

demanded the effective production of electricity from wind energy (Thaku & 

Mithulananthan, 2010). This trend occurs similarly on a worldwide scale. Recently, 

there has been research in harvesting wind energy under extreme wind conditions, such 

as low availability due to low wind speeds and minimal reliability due to the high 

variance of wind. However, wind power generation remains favorable because wind 

energy is clean and available as a free resource. Therefore, many practical techniques 

have been proposed to overcome the limitations of wind power generation. For 

example, a wind booster was proposed as an augmentation device that suitably directed 

wind with low speeds through guiding nozzles to efficiently impact blades of a vertical-

axis wind turbine (Korprasertsak & Leephakpreeda, 2015; Korprasertsak & 

Leephakpreeda, 2016). The sensitivity analysis of wind power generation to design the 

parameters of wind turbines strongly recommended wind turbines with low cut-in 

speeds, to be installed for low wind speed regions (Quan & Leephakpreeda, 2015). 

Inconsistent wind in nature results in the uncertainty in the energy production of wind 

farms. Therefore, the forecasting of wind power generation under wild wind conditions 

is required for the preparation of real-time grid operations, ancillary service costs, 
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power quality, and the stability and reliability of power systems (Chang, 2014; Lund, 

2005). 

As wind integration grows dramatically, improvement of wind forecasting is 

required for the reliable operation of wind farms. The forecasting models need to be 

improved, and appropriate methods of wind measurement are also essential for the 

accuracy of data used in wind prediction. Therefore, in this work, the study is divided 

into two parts, which are the study of wind measurement and the study of wind power 

forecasting.   

 

1.1.1 Wind measurement 

 In wind measurement, all-inclusive data of the speed and direction are important 

to accurately quantify the statistical interpretation and wind energy resources, such as 

wind power density and annual energy production. For wind analysis, missing wind 

data results in the decreased accuracy of wind analysis and wind resource assessment. 

The causes are failures in data acquisition during wind measurement. Up to now, most 

studies of missing wind data have focused on solving the missing data problems. It was 

reported that 10% of wind speed data, which were not recorded by a data acquisition 

system due to icing accretion, might cause a 3.8% bias of determination on annual 

energy production. A seasonality model was proposed to eliminate the bias of wind data 

in winter (Coville et al., 2011). Alternatively, an adaptive neuro-fuzzy inference system 

model was used to simulate the dynamic changes in wind velocity for interpolating 

missing wind data (Yang et al., 2011). With long-term observation, spectral analysis 

was capable of forecasting wind speed data, consisting of missing values over long 

horizons (Akçay & Filik, 2017). 

 Implicitly, missing wind data can be caused by an insufficient sampling rate in 

wind measurement under varying wind conditions. In other words, the wind data are 

collected with not enough values to obtain all-inclusive information on the dynamic 

behaviors of wind. Technically, this effect is called aliasing. To prevent this problem, 

a high sampling rate of 10 Hz was recommended. The wind speed is measured for 

accurate estimation of wind turbulence intensity and turbulence power spectral density 

in small wind turbine analysis (Tabrizi et al., 2015). Therefore, along with 

instrumentation in good condition, the sampling rate is one of the most crucial factors 
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in data acquisition, to yield genuine characteristics of wind signals. In Ref. (Kwon et 

al., 2016), the measurement data at short sampling rates caused severe distortions of a 

continuous signal, which was reconstructed from samples. Those aliasing signals are 

not able to form the original information of the signals. Apart from wind measurement, 

many studies have aliasing problems in signals, in various applications. For example, 

it was found that aliased content resulted in appreciable errors for the arithmetic 

computation of integration, degradation of radiography in medical imaging, oversight 

in an ultrasonic gas flowmeter, and deterioration in high accuracy measurement 

(Edwards, 2007; Hatagawa & Delsing, 1994; Hatagawa et al., 1997; Vasconcellos & 

Campos, 2012). 

A high sampling rate is preferable for any application, as it captures the data 

without aliasing. However, when measurement at a high sampling rate is performed, a 

large amount of data is obtained for storage and computation. For wind measurement, 

the IEC 61400-12-1 standard recommends that a single sample of wind measurements 

be carried out per second. The wind data is averaged every 10 min (1.7×10-3 Hz) for 

recording, to reduce the amount of wind data. Statistical methods are applied for wind 

analysis where the wind data are usually treated as random variables in the Weibull 

probability distribution (Ozay & Celiktas, 2016). Although the Weibull probability 

distribution is widely used to represent the statistical distribution of wind data, the wind 

data may not always be modeled well (Akgül et al., 2016; Harris & Cook, 2014; 

Mohammadi et al., 2016). This study assesses how accurately the wind analysis is 

retrieved from the prepared data by this conventional practice. The statistical results of 

wind data at a high sampling rate are used as the benchmark for this investigation. For 

a tradeoff between accuracy and the amount of wind data, the Nyquist-based adaptive 

sampling rate is used to adjust the sampling rate in real-time measurement. The 

sampling rate is adapted to be suitable for actual wind conditions in a given cycle period 

by utilizing the Nyquist sampling theorem. The Nyquist sampling theorem has been 

widely applied in various applications that are related to data analytics in signal 

processing. In neuroscience, the variability of waveforms was reduced by Nyquist-

based interpolation in an efficient computation time (Blanche & Swindale, 2006). In 

Ref. (Faust et al., 2012), the Nyquist rate was used as a benchmark for compressed 

samples in heart rate measurements. The Nyquist criterion was implemented to analyze 
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the stability of thermoacoustic systems, for when the low-order formulation was not 

appropriate or not available (Kopitz & Polifke, 2008). In this study, a novel and 

significant contribution is that the Nyquist sampling theorem is applied to 

systematically determine the optimal sampling rates for wind measurement under 

varying wind conditions. Unlike the IEC 61400-12-1 standard with a fixed sampling 

rate, the proposed methodology solves the excessive/missing wind data problem due to 

insufficient wind data causing the inaccuracy of wind analysis and energy resource 

assessment.  

Theoretically, the sampling rate is equal to or greater than the Nyquist 

frequency, to prevent aliasing in signals (Diniz et al., 2002). From Fourier analysis 

(Bracewell, 2000), the wind data signal has harmonic components in the frequency 

domain. The sampling rate is chosen to maintain the dominant information of wind data 

while the amount is reduced. There have been studies of Fourier analysis for wind 

applications. For example, floating vertical-axis wind turbine aerodynamic loads were 

analyzed for frequency-domain characteristics (Borg & Collu, 2015). A short-time 

Fourier transform algorithm was used to identify the dominant frequency of wind 

response in buildings (Nagarajaiah & Varadarajan, 2005). In the literature, there have 

not been any relevant studies about: 1. the effects of sampling rate on wind 

measurement via spectrum analysis, and 2. Nyquist-based adaptations of the sampling 

rate under varying wind conditions, to improve the accuracy of wind analysis and wind 

resource assessment. These are the concerns of this work.   

 

1.1.2 Wind forecasting 

Recently, there have been advanced studies in wind forecasting where the 

predicted variables, such as the wind speed, wind direction, and wind power generation, 

were obtained. In Ref. (Hu & Wang, 2015), the wind speed was predicted hourly by an 

empirical wavelet transform coupled with the Gaussian regression method. The spatial-

statistical technique was developed to estimate wind speeds (Liu et al., 2010). The 

effects of wind speed and direction were simultaneously analyzed for the forecasting of 

power generation (Dadkhah et al., 2018). The historical wind data, numeric weather 

prediction, and geographical property data of wind farms were used in the probabilistic 

forecasting of wind energy resources (Kim & Hur, 2018). A neural network was 
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extensively used in the prediction of wind power generation (Mason et al., 2018; Wang 

et al., 2018). In Ref. (Wang et al., 2016), the forecasting of a chaotic wind power series 

was obtained by a neural network combined with the Bernstein polynomial. In addition, 

fuzzy inputs to a neural network were used to forecast hourly the wind power and wind 

speed (Hong et al., 2010).  

In short-term wind forecasting of up to 6 h ahead, the predictive models are 

frequently applied due to simplicity and affordability of implementation, compared 

with the theoretical models of atmospheric phenomena (Wang et al., 2011). The 

persistence model is used as a simple forecasting technique. The predicted value at the 

next time is assumed as the present value during a short time horizon. Actually, the 

predicted values of the persistence model are regarded as the benchmark, to evaluate 

the forecasting performance of other forecasting models (Xie et al., 2014). The 

predictive models, based on a statistical approach, are usually implemented for short-

term wind forecasting. The fundamental Bayesian method was presented to develop an 

autoregressive model in 1-h ahead wind forecasting (Miranda & Dunn, 2006). In wind 

energy, the forecasting of wind speed and direction was employed with the 

autoregressive moving average (ARMA) method (Erdem & Shi, 2011; Kavasseri & 

Seetharaman, 2009). The ARMA model is widely used for prediction from the 

knowledge of past data in a time series (Lahouar & Slama, 2017). The ARMA model 

yields a higher accuracy of forecasting than the persistence model (Jiang et al., 2017). 

Due to linear characteristics, the prediction of the ARMA model is effective for the 

given operating conditions (Torres et al., 2005). In addition, the accuracy of the ARMA 

model is acceptable for a few hours ahead (Korprasertsak & Leephakpreeda, 2018). 

The ARMA model is limited from dealing with high-variance prediction data even 

though the ARMA model, integrated with differencing (ARIMA), can be used for non-

stationary data (Alencar et al., 2017). In short-term wind forecasting, the data are 

considered to be stationary where the values of the mean and variance do not change 

significantly over the considered period. Besides, the degree of differencing in the 

ARIMA model needs to be subjectively determined, at present. The ARMA model or 

the ARIMA with the zero-degree integrated part is applied in the statistical analysis of 

time series. Recently, an artificial neural network (ANN) has been extensively used for 

prediction based on the best fit between the predicted value and the past data. Unlike 
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the ARMA model, the ANN model possesses a non-linear activation function in the 

model, which effectively emulates wind data with high variance (Dong et al., 2013). 

For instance, the Ridgelet neural network (RNN) owning ridge functions were 

introduced for the short-term forecasting of wind power (Amjady et al., 2011). 

However, the RNNs lack the memory of past events to process sequences of inputs. 

Their study found that the ANN model fails to predict data of power generation during 

calm wind conditions due to the intensely non-linear conditions. The grey prediction 

(GP) model is an ordinary differential equation of accumulated generating operations 

for predicting exponential growths of data in nature (El-Fouly, 2006; Kayacan et al., 

2010, Leephakpreeda, 2008). The GP model requires fewer past data values for 

prediction than other forecasting models. In this study, the GP model is capable of 

efficiently mimicking wind data with exponential variation. 

To obtain accurate forecasting, each predictive model should be selected to 

match the actual data of wind power generation under uncertainty over time. In other 

words, a single forecasting model predicts effectively for a certain period while it does 

not estimate well in other periods. To solve this problem, a combination of forecast 

models was suggested for forecasting time-series data. This can reduce large errors 

between the actual values and the predicted values that can be produced from a single 

model (Bates & Granger, 1969; Hibon & Evgeniou, 2005). This study uses the 

weighting method to systematically combine the predicted values of the ARMA model, 

the ANN model, and the GP model, based on the historical forecasting performance of 

each model. The multiple forecasting models are applied to predict the wind power 

generation of a wind farm, 1 h, 3 h, and 6 h ahead. Additionally, the prediction interval 

is determined statistically from historical prediction errors. The prediction interval 

indicates a feasible range of the actual power generation with a prescribed percentage 

of confidence. The predicted value with the prediction interval is meaningful, to 

robustly predict the future power generation under uncertainty.  

The proposed methodology of multiple forecasting models is capable of 

reducing errors in wind prediction compared to a single statistical model. However, it 

should be remarked that forecasting accuracy still immensely decease at long time 

horizon, due to the limitation of statistics-based method. Thus, the proposed 

methodology can be performed effectively in short-term prediction up to 6 h ahead. 
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Besides, high reliable wind measurement device is required to obtain accurate data of 

power generation, since accurate historical error is needed in this method. 

 

1.2 Objectives and scope of study 

 To investigate the effects of sampling on the accuracy and number of recorded 

values in varying wind conditions. 

 To provide a tradeoff between the accuracy of wind analysis and the number of 

recorded values by the Nyquist-based adaptive sampling rate. 

 To propose a weighting method, to combine the multiple forecasting models 

used in predicting wind power. 

 To implement the multiple forecasting model for the short-term prediction of 

wind power, up to 6 hours ahead. 

 To determine the prediction interval, indicating the feasible range of the wind 

power generation with a prescribed percentage of confidence. 

  

1.3 Significance of this study 

 In the field of wind measurement, this work investigates the effects of sampling 

rate when recording wind data on the accuracy of wind analysis and number of wind 

data values. The Nyquist-based adaptive sampling rate approach is proposed, to provide 

a tradeoff between the accuracy of wind information and number of wind records. 

Hence, this research yields some benefits to any application where the accuracy of wind 

data is important while the cost and time to deal with a large amount of data are limited. 

For example, wind prediction by statistical forecasting models running on a standard 

personnel computer is limited by the CPUs and memory. This scenario requires a high 

accuracy of historical wind data but not a high number of recorded data values for 

computation.   

 In wind farms, the short-term prediction of power generation is necessary for 

reliable operation. The multiple forecasting models are more reliable than the single 

forecasting model in the prediction of power generation under uncertainty of wind 

conditions. A weighting method to combine multiple forecasting models is proposed in 

this work. The proposed methodology has improved the accuracy of prediction over an 

individual model. In addition, this work presents a method to determine the prediction 
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interval around the point forecasts. The prediction interval indicates the feasible range 

where future data are in a prescribed percentage of confidence. This makes the 

prediction results more informative and more practical for applications in real-world 

situations. 
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CHAPTER 2 

REVIEW OF LITERATURE 

 

2.1 Missing wind data problem  

During wind measurement, it is likely that missing wind data can occur due to 

many causes, such as a bad-condition measurement device, extreme weather 

conditions, etc. The missing wind data directly affects the accuracy of wind data. The 

more wind data losses during measurement, the lower the accuracy of the wind data 

that represent the wind in the real world. Up to now, most studies of missing wind data 

have focused on solving missing data problems. 

Coville et al. (2011) reported that 10% of wind speed data, which were not 

recorded by a data acquisition system due to icing accretion, might cause a 3.8% bias 

of determination on annual energy production. This issue causes a bias in the estimation 

of wind energy resources for a potential wind turbine site. Their study proposed a 

seasonality-based model to diminish the bias in wind data (in winter). 

Yang et al. (2011) mentioned the significance of wind data for wind farm design 

and planning. The missing wind data problem is found during wind measurement where 

it complicates wind energy resource assessment. An adaptive neuro-fuzzy inference 

system model was used to simulate the dynamic changes of wind velocity for 

interpolating missing wind data. 

Akçay & Filik (2017) found that missing wind data was due to a failure of the 

measuring sensor. With long-term observation, spectral analysis was capable of 

forecasting wind speed data, consisting of missing values over long horizons. It was 

reported that the proposed method outperforms the persistence method. 

Implicitly, missing wind data can be caused by an insufficient sampling rate in 

wind measurement under varying wind conditions.  

Tabrizi et al. (2015) investigated the effect of sampling rate on the estimation 

of wind turbulence intensity and turbulence power spectral density for small wind 

turbine applications. Different sampling rates were tested in wind measurements. It was 

found that a high sampling rate of 10 Hz was recommended to measure wind speeds. 
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In other words, wind data are usually collected with not enough values to obtain 

all-inclusive information on the dynamic behaviors of wind. Technically, this effect is 

called aliasing. This problem is found in various applications.  

Håkansson & Delsing (1994) revealed that the sampling rate is a major 

parameter when using an ultrasonic gas flowmeter for flow measurements. A mismatch 

between the sampling parameters in the flowmeter and the frequency of the pulsations 

can result in large errors due to aliasing. 

In computed radiography for medical imaging, Hatagawa et al. (1997) stated 

that aliasing errors occur when the image is sparsely sampled. This causes the quality 

of the image to degrade on the imaging plate. 

Edwards (2007) demonstrated that an aliasing problem could cause an 

appreciable error in the numerical integration of acceleration data to obtain estimates 

of velocity or displacement. 

Vasconcellos & Campos (2012) made an error analysis of high-accuracy digital 

measurements. Their study found that the aliasing errors due to the low pass filtering 

performed prior to digital sampling caused the deterioration of high accuracy 

measurement. 

Kwon et al (2016) found that measurement data at short sampling rates caused 

severe distortions of a continuous signal that was reconstructed from samples. Those 

aliasing signals are not able to form the original information of signals. 

 

2.2 Conventional methods of wind measurement 

For wind measurement, the International Electrotechnical Commission (2005) 

recommends that a single sample of wind measurements be carried out per second. The 

wind data is averaged every 10 min (1.7×103 Hz) for recording, to reduce the amount 

of wind data. This approach is the IEC 61400-12-1 standard. 

Ozay & Celiktas (2016) applied a statistical method, the Weibull probability 

distribution. The wind data are usually treated as random variables in the Weibull 

distribution with two parameters: shape and scale. Their study supports that the Weibull 

distribution can provide general knowledge of wind energy potential in regions. 
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Nevertheless, although the Weibull probability distribution is widely used to 

represent the statistical distribution of wind data, the wind data may not always be 

modeled well.  

Harris & Cook (2014) stated that the Weibull probability distribution is a purely 

empirical form, which cannot physically describe why the wind speed should follow 

the distribution. 

Akgül et al. (2016) mentioned that the wind speed data might not always be 

effectively modeled by using the Weibull distribution in real-world situations. In other 

words, it may not represent all wind speed characteristics encountered in nature.  

Mohammadi et al. (2016) found that by changing the methods to estimate the 

shape and scale parameter of the Weibull distribution, the accuracy of the calculated 

wind power density changes with a different method.  

To sum up, the conventional method of wind measurement may not provide 

accurate information on wind data in certain cases. Inaccurate wind data can cause 

uncertainty in the parameters of wind analysis such as power density, annual energy 

production, and capacity factor. 

 

2.3 Nyquist theorem and Fourier analysis  

To obtain accurate wind data, a high sampling rate is preferable for any 

application, including wind measurement. The high sampling rate means a large amount 

of data is recorded. Hence, this can prevent an aliasing problem in the data. However, 

when measurement at a high sampling rate is performed, a large amount of data is 

obtained for storage and computation. Therefore, the Nyquist theorem is applied in this 

work for providing a tradeoff between the accuracy and the amount of wind data in 

real-time measurement. The Nyquist sampling theorem has been widely applied in 

various applications that are related to data analytics in signal processing. 

Blanche & Swindale (2006) applied the Nyquist theorem in neuroscience. The 

variability of a waveform was reduced by Nyquist-based interpolation in an efficient 

computation time. Besides, the bandwidth and storage requirements can be greatly 

reduced by using data acquisition rates at or slightly above the Nyquist frequency. 
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Kopitz & Polifke (2008) implemented the Nyquist criterion for thermo-acoustic 

instabilities. Their study analyzed the stability of thermoacoustic systems for when the 

low-order formulation was not appropriate or not available. 

 Faust et al. (2012) used the Nyquist rate as a benchmark for compressed 

samples in heart rate measurements.  

Fourier analysis is a useful tool for finding the frequency components of a 

signal. A wind data signal can be considered harmonic components in the frequency 

domain where the sampling rate is chosen to maintain the dominant information of the 

wind data while the amount is reduced.  

There have been studies of Fourier analysis for wind applications.  

Nagarajaiah & Varadarajan (2005) applied the short-time Fourier transform 

algorithm to identify the dominant frequency of wind response to buildings.  

Mukhopadhyay et al. (2014) used the fast Fourier transform for wind speed data 

to observe the distribution of Fourier coefficients in the Fourier plane.  

Borg & Collu (2015) analyzed floating vertical-axis wind-turbine aerodynamic 

loads in the frequency domain. 

 

2.4 Short-term wind forecasting 

 In nature, the characteristics of wind are inconsistent. They cause uncertainty in 

the energy production by wind farms. The technique of wind forecasting is useful for 

providing knowledge of wind and energy production in the future, so that wind farms 

are able to operate reliably.  

Chang (2014) mentioned that the unpredictability and variability of wind power 

generation due to a change of wind affect the reliability of an electric system. Effective 

wind forecasting can reduce risks from the unreliability of the electricity supply. The 

forecasting of wind power generation under wild wind conditions is required for the 

preparation of real-time grid operations, ancillary service costs, power quality, and the 

stability and reliability of power systems.  

Wind forecasting can be classified based on the forecasting horizon into two 

categories: 1. short-term wind forecasting of up to several hours ahead and 2. long-term 

wind forecasting of up to several days ahead. 
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The methodology of wind forecasting can also be classified into two categories: 

1. Physical approach and 2. Statistical approach. The physical approach is based on 

numerical weather prediction, which is directly obtained from the measurement of 

weather parameters in the atmosphere. Although the physical approach is usually more 

reliable, especially for long-term forecasting, than the statistical approach, it is costly 

to perform. In contrast, the statistical approach, which is based on knowledge of 

historical data, can be done with a low budget. 

Wang et al. (2011) stated that the predictive models are frequently applied to 

short-term forecasting of up to 6 hours ahead. Using short-term models is simple and 

affordable to implement, compared to the theoretical models of atmospheric 

phenomena. 

Recently, there have been advanced studies in wind forecasting where the 

predicted variables, such as the wind speed, wind direction, and wind power generation, 

were obtained. 

Liu et al. (2010) developed a spatial statistical technique called "Kriging" to 

improve the performance of short-term wind speed prediction. The proposed method 

outperforms the autoregressive integrated moving average method for the mean 

absolute error and the root mean square error. 

Hong et al. (2010) developed the multi-layer feedforward neural network with 

fuzzy input to forecast the hourly wind power and wind speed. It yields a lower 

forecasting error when compared to the traditional forecasting method. 

Hu & Wang (2015) utilized an empirical wavelet transform coupled with the 

Gaussian regression method, to deal with the high uncertainty of wind speed data in 

hourly wind speed forecasting. Their proposed model can respond to wind speed 

changes and the forecasting environment. 

Wang et al., 2016 proposed wind power prediction based on the forecasting of 

a chaotic wind power series using neural networks combined with the Bernstein 

polynomial. Their model has lower forecasting errors compared to many predictive 

models in the short-term prediction of wind power generation. 

Dadkhah et al. (2018) analyzed simultaneously the wind speed and wind 

direction for power output, for the forecasting of power generation. 
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Kim & Hur (2018) used the ensemble method in the forecasting of wind energy 

resources. Their method yields predictions from historical wind data, numeric weather 

predictions, and geographical data of wind farms. 

Mason et al. (2018) proposed a novel machine learning method called 

"evolutionary neural networks", based on a recurrent neural network. The proposed 

method yields reasonable forecasts in the prediction of wind power up to 2.5 hours 

ahead. 

 

2.5 Wind forecasts with predictive models 

In wind forecasting, the persistence model is the simplest forecasting technique. 

It is suitable for predicting the future data in a short time horizon. The model is typically 

regarded as the benchmark to evaluate the performance of other forecasting models. 

Xie et al. (2014) used the persistence method as the benchmark to evaluate how 

much their proposed novel method is able to improve the short-term forecasting 

accuracy. 

The predictive models, based on a statistical approach, are usually implemented 

for short-term wind forecasting. For wind energy, the forecasting of wind speed and 

direction was employed with the autoregressive moving average (ARMA) method. 

Lahouar & Slama (2017) stated that the ARMA model is one of the most widely-used 

models to predict the next data points in a time series. Jiang et al (2017) mentioned that 

an ARMA model usually yields a higher forecasting accuracy than the persistence 

model for a long time horizon. 

Due to linear characteristics, the prediction of the ARMA model is effective for 

the given operating conditions. Recently, many studies employ the ARMA model in 

the forecasting of wind data and wind power generation. 

Torres et al. (2005) forecasted the average wind speed with the ARMA model 

up to 10 hours ahead. The results show that the ARMA model behaves significantly 

better in the forecast than the persistence model. However, The ARMA model is only 

valid for short-term forecasting. 

Kavasseri & Seetharaman (2009) used the fractional ARMA model integrated 

with differencing, to predict the wind speed 24 hours ahead and 48 hours ahead. It was 
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found that the proposed model yields a significant improvement from the persistence 

model. 

Erdem & Shi (2011) presented predictive approaches based on the ARMA 

model for forecasting wind speed and wind direction. The proposed approaches were 

tested, to forecast wind an hour ahead for given observation sites. The results show that 

the approaches improve the accuracy of the traditional ARMA model. 

Korprasertsak & Leephakpreeda (2018) investigated the performance of the 

ARMA model in wind speed forecasting for an airborne wind turbine. Their study 

suggests that the prediction accuracy of the ARMA model is acceptable for a few hours 

ahead. 

However, the ARMA model is limited from dealing with high-variance 

prediction data. Unlike the ARMA model, the ANN model possesses a non-linear 

activation function in the model, which effectively emulates wind data with high 

variance.  

Dong et al. (2013) mentioned that most of the time, the ANN model is superior 

to other kinds of statistical models, as many real systems, including wind data, possess 

nonlinearity and uncertainty. 

Applications of the ANN model in wind forecasts have been widely studied. 

For example, Amjady et al. (2011) introduced the Ridgelet neural network (RNN) 

owning ridge functions for the short-term forecasting of wind power generation. The 

proposed RNN model provides acceptable results for the forecasting of the wind power 

output of wind farms and the aggregated wind generation of power systems. However, 

the RNNs lack the memory of past events, to process sequences of inputs. 

Korprasertsak & Leephakpreeda (2018) applied ANN models in the short-term 

wind speed prediction of up to 6 hours. They found that the ANN model outperforms 

the ARMA model and the persistence model for single-step and multi-step forecasting. 

However, it is found in their study that the ANN model fails to predict the data of power 

generation during calm wind conditions. 

The GP model is a mathematical model, which is based on an ordinary 

differential equation of an Accumulated Generating Operation (AGO) series for 

predicting exponential growths of data in nature. The advantage of the GP model is that 

it requires fewer past data values for prediction than other forecasting models. In this 
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study, it is observed that the GP model is capable of efficiently mimicking wind data 

with exponential variation. Although there are only a few studies that employ the GP 

model in wind forecasting, the GP model has been often used in other kinds of 

forecasting. 

 El-Fouly (2006) applied the GP model in wind energy conversion systems for 

output power prediction. The presented results reveal the effectiveness and the accuracy 

of the technique for wind speed forecasting and wind power prediction. The GP model 

significantly outperforms the persistence method. 

Leephakpreeda (2008) employed the GP model to determine the indoor comfort 

temperature for an efficient heating, ventilating, and air-conditioning system under a 

dynamic environment. It was found that the GP model has viability in this application. 

Kayacan et al. (2010) proposed a forecasting model based on the grey system 

theory for time-series prediction. The proposed model was used to predict the highly 

noisy data of the United States dollar to Euro parity. 

 

In this chapter 2, all literature reviews by each author are summarized as listed 

in Table 2.1. 

Table 2.1 Summary of literature reviews 

Author Main finding 

Coville et al. (2011) 

Some periods of wind speed data were not recorded due to 

icing accretion. This might cause bias of determination on 

annual energy production. 

Yang et al. (2011) 

The missing wind data problem is found during wind 

measurement where it complicates wind energy resource 

assessment. 

Akçay & Filik 

(2017) 

Missing wind data happens due to a failure of the measuring 

sensor. 

Tabrizi et al. (2015) 

A high sampling rate of 10 Hz was recommended to measure 

wind speeds for estimation of wind turbulence intensity and 

turbulence power spectral density for small wind turbine 

applications 
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Håkansson & 

Delsing (1994) 

A mismatch between the sampling parameters in the 

ultrasonic flowmeter and the frequency of the pulsations can 

result in large errors due to aliasing. 

Hatagawa et al. 

(1997) 

Aliasing errors causes the quality of the image to degrade on 

the imaging plate in computed radiography for medical 

imaging. 

Edwards (2007) 

Aliasing problems could cause an appreciable error in the 

numerical integration of acceleration data to obtain estimates 

of velocity or displacement. 

Vasconcellos & 

Campos (2012) 

Aliasing errors due to the low pass filtering performed prior 

to digital sampling caused the deterioration of high accuracy 

measurement. 

Kwon et al (2016) 

Measurement data at short sampling rates caused severe 

distortions of a continuous signal that was reconstructed from 

samples. 

International 

Electrotechnical 

Commission (2005) 

A single sample of wind measurements is recommended to 

be carried out per second. The wind data is averaged every 

10 min (1.7×103 Hz) for recording. 

Ozay & Celiktas 

(2016) 

Although the Weibull probability distribution is widely used 

to represent the statistical distribution of wind data, the wind 

data may not always be modeled well. 

Harris & Cook 

(2014) 

Weibull probability distribution is a purely empirical form, 

which cannot physically describe why the wind speed should 

follow the distribution. 

Akgül et al. (2016) 
Wind speed data might not always be effectively modeled by 

using the Weibull distribution in real-world situations. 

Mohammadi et al. 

(2016) 

Different methods to estimate the shape and scale parameter 

of the Weibull distribution yield different accuracy of the 

calculated wind power density. 

Blanche & Swindale 

(2006) 

In neuroscience, the variability of a waveform was reduced 

by Nyquist-based interpolation in an efficient computation 
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time. The bandwidth and storage requirements can be greatly 

reduced by using data acquisition rates at or slightly above 

the Nyquist frequency. 

Kopitz & Polifke 

(2008) 

The author implement Nyquist criterion for thermo-acoustic 

instabilities. 

Faust et al. (2012) 
The author used the Nyquist rate as a benchmark for 

compressed samples in heart rate measurements. 

Nagarajaiah & 

Varadarajan (2005) 

The short-time Fourier transform algorithm to identify the 

dominant frequency of wind response to buildings 

Mukhopadhyay et al. 

(2014) 

Fast Fourier transform is used for wind speed data to observe 

the distribution of Fourier coefficients in the Fourier plane. 

Borg & Collu (2015) 
The author analyzed floating vertical-axis wind-turbine 

aerodynamic loads in the frequency domain. 

Chang (2014) 

The forecasting of wind power generation under wild wind 

conditions is required for the preparation of real-time grid 

operations, ancillary service costs, power quality, and the 

stability and reliability of power systems. 

Wang et al. (2011) 

Using short-term models is simple and affordable to 

implement, compared to the theoretical models of 

atmospheric phenomena. 

Liu et al. (2010) 

A spatial statistical technique called "Kriging" is developed 

to improve the performance of short-term wind speed 

prediction. 

Hong et al. (2010) 

A Multi-layer feedforward neural network with fuzzy input 

is developed to forecast the hourly wind power and wind 

speed. 

Hu & Wang (2015) 

Empirical wavelet transform coupled with the Gaussian 

regression method is used to deal with the high uncertainty 

of wind speed data in hourly wind speed forecasting. 
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Wang et al., 2016 

The author proposes wind power prediction based on the 

forecasting of a chaotic wind power series using neural 

networks combined with the Bernstein polynomial. 

Dadkhah et al. 

(2018) 

The wind speed and wind direction are analyzed 

simultaneously for the forecasting of power generation. 

Kim & Hur (2018) 

The author combines predictions from historical wind data, 

numeric weather predictions, and geographical data of wind 

farms in the forecasting of wind energy. 

Mason et al. (2018) 
Evolutionary neural networks based on a recurrent neural 

network is develop for prediction of wind power. 

Xie et al. (2014) 
The persistence method is used as the benchmark to evaluate 

short-term forecasting accuracy. 

Lahouar & Slama 

(2017) 

An ARMA model is one of the most widely-used models to 

predict the next data points in a time series. 

Jiang et al (2017) 
An ARMA model usually yields a higher forecasting 

accuracy than the persistence model for a long time horizon. 

Torres et al. (2005) 

The ARMA model behaves significantly better in the wind 

speed forecast than the persistence model. However, The 

ARMA model is only valid for short-term forecasting. 

Kavasseri & 

Seetharaman (2009) 

The fractional ARMA model integrated with differencing is 

used to predict wind speed up to 48 h. It yields a significant 

improvement from the persistence model. 

Erdem & Shi (2011) 
Predictive approaches based on the ARMA model is 

developed for forecasting wind speed and wind direction. 

Korprasertsak & 

Leephakpreeda 

(2018) 

ARMA model is acceptable for a few hours ahead in wind 

speed forecasting for an airborne wind turbine. 

Dong et al. (2013) 

The ANN model is superior to other kinds of statistical 

models, as many real systems, including wind data, possess 

nonlinearity and uncertainty. 
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Amjady et al. (2011) 

The Ridgelet neural network (RNN) owning ridge functions 

is introduced for the short-term forecasting of wind power 

generation. 

Korprasertsak & 

Leephakpreeda 

(2018) 

ANN model outperforms the ARMA model and the 

persistence model for single-step and multi-step forecasting. 

However, ANN model fails to predict the data of power 

generation during calm wind conditions. 

El-Fouly (2006) 
The GP model significantly outperforms the persistence 

method in wind power prediction. 

Leephakpreeda 

(2008) 

The GP model is viable to determine the indoor comfort 

temperature for an efficient heating, ventilating, and air-

conditioning system under a dynamic environment. 

Kayacan et al. 

(2010) 

Forecasting model based on the grey system theory is 

proposed for time-series prediction. 
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CHAPTER 3 

METHODOLOGY 

 

3.1 Determination of sampling rate for wind measurement 

The data of wind velocity in wind analysis is usually obtained from 

measurements at the anticipated location and hub height of wind turbines. After 

installation, a few years of wind measurement are performed, long enough for 

confidence in wind data with seasonal and inter-annual changes. 

In the IEC 61400-12-1 standard (International Electrotechnical Commission, 

2005), a 10-min recording is typically recommended for typical wind measurements. 

In fact, how frequently measurements are taken depends on atmospheric variations, 

irregular terrain, or oriented obstructions. For example, if potential sites consist of 

mountainous and rough lands, there may be severe wind variations within the duration 

of measurements. The number of measured values per unit time, which is called the 

sampling rate, should be implemented according to particular wind conditions for given 

cycle periods. A high sampling rate is employed to capture the true characteristics of 

wind in those cases. The extraction of relevant information from data can be completed 

from wind analysis. 

Effective decision making on wind farm development can be compromised. 

However, the more frequently data are recorded, the more expensive the data 

acquisition, and the more data values there are to analyze. Hence, data that are collected 

with a well-predetermined sampling rate can be used to effectively determine wind 

resources, wind prediction, wind turbine selection, and economic values with 

quantitative and qualitative accuracy. In particular, the sampling rate must be set 

according to the real dynamic behaviors of wind. 

From common observation, the wind speed is a more variable measurement than 

wind direction. A sampling rate for wind speed can be conveniently implemented for 

wind direction, in practice. In this study, the sampling rate of wind speed measurement 

is studied. Figure 3.1 shows an analog signal of wind speed, which is sampled as values 

of measured wind speed v  at every sampling time t  during a given cycle period T
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. A set of wind speed data at time 
1110 ,,,,,  niii ttttt  , respectively, can be written 

as  1110 ,,,,,  niii vvvvvv   where n  is the total number of wind values. 

For a given sampling time t , the sampling rate is expressed as:  

  

t
f s




1
 (3.1) 

  

The total number of wind speed values is proportional to the sampling rate. It 

can be calculated by: 

  

  sn fttn 101    (3.2) 

  

 

 

Figure 3.1 Wind measurement with a sampling time during a given cycle period. 

 

In the time domain, there are observed effects of sampling rate on completeness 

of measured data for wind analysis. A signal of wind speed is transformed from the 

time domain to the frequency domain. The Fourier transformation is applied to a 

continuous-time signal of wind speed, which is explicitly decomposed into harmonic 

components at different frequencies, as illustrated in Figure 3.2. In other words, the 
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measured signal of wind speed is the algebraic sum of sinusoids with different 

amplitudes and frequencies. 

 

 

Figure 3.2 Fourier transform of wind data from (a) time domain to (b) frequency 

domain. 

 

Since the wind speed is sampled at every sampling time, the Discrete Fourier 

Transformation is performed by using the Discrete Fourier Transform (DFT) equation 

over the collecting cycle period. 
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where lV  is a complex number of data at l , which is from 0 to 1n , and 1j . 

The amplitudes of each sinusoid 
laV ,
 at a generic frequency lF  is determined 

by: 

  

n

V
V

l

la

2
,   (3.4) 

  

with 

  

n

lf
F s

l   (3.5) 
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In Figure 3.2(b), plots show a graphical frequency-domain representation of 

sinusoidal amplitudes of wind data against frequencies. To acquire the dynamic 

characteristics of wind, the sampling rate has to be high enough to record all dominant 

amplitudes up to the maximum frequency. The Nyquist sampling theorem states that 

all information in a measured signal with a maximum frequency component of maxf  

can be captured with a minimum sampling rate, the so-called "Nyquist rate" of: 

  
 

max2 ff N

s   (3.6) 

  

In other words, an aliasing signal that is a combination of harmonics with low 

frequencies, can be obtained when the wind signal is sampled at less than the Nyquist 

rate,  N

sf . During wind measurement, it is necessary that the sampling rate is selected 

and adapted based on the Nyquist rate in accordance of wind condition in each cycle 

period, to be genuinely representative of wind from measurements. This is because the 

quality of statistical results from wind data affects the final findings of wind analysis, 

as explained in the next section. 

 

3.1.1 Wind analysis 

The wind has inherent variances. Its speed may vary within a second or a 

minute, a season of the year, and to some extent from year to year. In a statistical 

approach (Quan & Leephakpreeda, 2015), the wind data are treated as random 

variables, which are drawn from on-site measurements during a finite cycle period. 

Usually, the frequency of wind speed in the cycle period is not symmetric. Strong winds 

are relatively rare compared to moderate and weak wind speeds. The Weibull 

distribution is useful to govern the wind-speed frequency distribution. Unlike the 

normal distribution, Weibull distribution provide flexibility of the distribution curve 

with the shape parameter and the scale parameter. Even though similar distribution 

function, such as log-normal distribution and Burr distribution, may be used to fit wind 

speeds, Weibull distribution is the norm when fitting wind speed distribution in most 

wind study. 

The Weibull probability density function is given as: 
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where  vf  is the probability density function of wind speed v , k  is the shape 

parameter, and c  is the scale parameter. 

The shape parameter and scale parameter of the Weibull distribution function 

can be, respectively, determined by Eqs. (3.8) and (3.9): 
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where   is the standard deviation of wind speed, v  is the mean value of wind speed, 

and    is the gamma function.  

The mean value and the standard deviation of wind speed are, respectively, 

determined by Eqs. (3.10) and (3.11): 
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where sn  is the total number of wind values for statistical analysis. 

From Equation (3.7), a high value of the shape parameter indicates a small 

deviation from the mean wind speed, and vice versa. The scale parameter is directly 

proportional to the mean wind speed, as governed by Equation (3.9). The wind 

characteristics are defined by the shape parameter and the scale parameter, which 

correspond to the operating range of a wind turbine. The shape parameter and scale 

parameter of the Weibull distribution are important for reliability and maintainability 

analysis, for determining electricity generation of a wind turbine under statistical wind 
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conditions. In general, the power density of wind flowing through a wind turbine is 

determined by: 

  

 dvvfvP 



0

3

2

1
  (3.12) 

  

where    is the air density. 

With the shape parameter and scale parameter, the power density in Equation 

(3.12), based on the Weibull probability density function, is calculated by: 
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The power density is the energy availability of wind, which is independent of 

the capacity of wind turbines. In wind energy analysis, mechanical power, which is 

generated from a wind turbine under annual wind probability, is transformed into 

electrical power via an electric generator. Annual energy production (AEP) is used to 

indicate how much electrical power an individual wind turbine can potentially produce 

in a year. The AEP is determined by: 

  

   dvvfvP
co

ci

v

v

t 8760AEP  (3.14) 

  

where civ  is the cut-in wind speed of the wind turbine, cov  is the cut-out wind speed of 

the wind turbine, and tP  is the power curve of the wind turbine. 

The capacity factor is regarded as the efficiency of electrical energy generation 

of a wind turbine under real wind conditions, compared with rated speed. The capacity 

factor is defined by: 

  

r

f
P

C
8760

AEP
  (3.15) 

  

where 
fC  is the capacity factor and rP  is the rated power output of the wind turbine. 
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From Equations (3.7) - (3.15), the accuracy and reliability of the parametric 

indices are dependent on the quality of wind data, which is collected from 

measurements. The wind data is deemed of high quality when it completely represents 

real wind variations, in terms of the wind speed frequency distribution. The wind speed 

frequency distribution is a statistical function of the mean wind speed and standard 

deviation, as defined in Equations (3.8) - (3.9). Therefore, it is important that the values 

of the measured wind velocity be sampled at a well-predetermined rate according to 

real wind conditions. 

 

3.1.2 Nyquist-based adaptive sampling rate 

The objective of Nyquist-based adaptive sampling rate is to determine the 

Nyquist rate  N

sf  in Equation (3.6) at given cycle period T , as illustrated in Figure 

3.1. This determination can be done with Fourier analysis for wind speed v  at sampling 

rate sf , which is proposed in Section 3.1 from Equations (3.3) - (3.5). The sampling 

rate sf  is implemented for data acquisition in real time to ensure that information on all 

wind conditions can be extracted. To reduce the amount of wind data in the given cycle 

period T , unnecessary data is disregarded. 

As illustrated in Figure 3.3, the approach is to remove all small amplitudes at 

high frequencies where the cut-out amplitude is defined as   at a maximum frequency 

component of maxf . This is because those small amplitudes at high frequencies are 

insignificant in wind analysis. 

 

 

Figure 3.3 Determination of cut-out amplitude  at maximum frequency component 

of maxf . 
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 With  
max2 ff N

s   in Equation (3.6), the Nyquist rate  N

sf  can be less than 

or equal to the sampling rate sf . However, it is greater than or equal to 
T

1
 since wind 

speed data in that cycle period must be selected. At the given cycle period mT  in time 

sequence m , define the wind speed 
mpv , . 

mpv ,  is sampled from the wind data v  with 

the Nyquist rate  N

msf ,
, where  mmmm tttp ,,3,2,,0   ,  N

ms

s
m

f

f
t

,

 , and 

    mm tnn  mod11 , as shown in Figure 3.4. 

It should be noted that   mtn  mod1  is the remainder after division of  1n  

by mt . 

 

 

Figure 3.4 Collection of wind speed sampled at  N

msf ,
 from wind speed data v  at 

sampling rate sf . 

 

In the Nyquist-based adaptive sampling rate approach, the Nyquist rate  N

msf ,
 is 

different at each cycle period mT . With the weighed mean and standard deviation 

method (Watkins, n.d.), the mean wind speed and standard deviation of wind speed data 

are determined, respectively, by Eqs. (3.16) and (3.17): 
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where M  is the total number of cycle periods, mT . 

Likewise, the power density P and AEP for a given wind turbine are, 

respectively, determined by Eqs. (3.18) and (3.19): 
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where M̂  is the total number of cycle periods, mT , in a year. 

The influences of various sampling rates are considered by Equations (3.18) and 

(3.19), which are applied to determine the power density and annual energy production, 

respectively. However, the wind data are unequally sampled in each cycle period. This 

data collection form may not be applied conveniently to conventional statistical analysis 

when equally-sampled data is required. In Appendix A, Table A1 recommends an 

alternative conversion from the unequally-sampled data of wind speed to the equivalent 

equally-sampled data, according to a weighting factor in each cycle period. 

 

3.2 Short-term wind forecasting models 

Wind energy is usually integrated with other renewable energy sources into 

electricity grids for variable demands in time. Due to fluctuations in wind velocity, 

forecasting of wind power generation is needed to quantify the electricity production of 

wind turbines for optimal energy management. Forecasts can be expressed in terms of 

available wind power generation in MW or kWh in a given period. There are two main 

forecasting methods for resolving this: theoretical modeling and predictive modeling. 

In the former, forecasting models are structured based on the principles of 
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meteorological physics where numerical outcomes are obtained, according to model 

inputs of atmospheric conditions from observations. In the latter, forecasting models 

are statistically formed from time-series equations where numerical outcomes are 

obtained, according to model inputs of past and present outcomes. Unlike theoretical 

modeling, huge computation costs and advanced simulation techniques are not required 

for the efficiency of predictive modeling. Therefore, most well-known predictive 

models are selected in this study according to their advantages in short-term forecasting 

for wind power generation in an hour to 6 h ahead. 

 

3.2.1 Persistence model 

The persistence model is the simplest forecasting model. It is assumed that data 

at the next time is estimated by data at the present time. It can be mathematically written 

as: 

  
 

ttt xx 

Pˆ  (3.20) 

  

where  Pˆ
ttx   is the data at the next time tt  , tx  is the data at the present time t , and 

t  is the sampling time, or equivalently, the forecasting horizon. 

From using only the data at the present time, the persistence model lacks 

knowledge about the tendency or rate of change in data for a prediction (with accuracy) 

at a long forecasting horizon. The persistence model can be applied with acceptable 

accuracy when a short forecasting horizon is needed since the data at the next time is 

potentially close to the present data. The performance from the predicted results is used 

as a benchmark of the worst case within the same forecasting horizon. 

 

3.2.2 Autoregressive moving average (ARMA) model 

The ARMA model is a time-series model where the data at the next time has 

statistical correlation to the past and present data. The ARMA model has an 

autoregressive part and white noise with a moving average part (Box et al., 1994). In 

the autoregressive part, data at the next time can be extrapolated from linear regression 

of the past and present data in a time series. The moving average part involves the linear 
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regression of white noise, causing deviation of prediction. The  qp,ARMA  model is 

written as: 
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ARMAˆ  (3.21) 

  

where   is the parameter of the autoregressive part,   is the parameter of the moving 

average part, and   is the zero-mean white noise. p  is the order of autoregressive part, 

or equivalently, the total number of input data at the present time and past time. q  is 

the order of the moving average part. 

The forecasting performance of the ARMA model is based on how to find the 

best curve fit to a set of data, corresponding to the parameters of the ARMA model. 

Akaike information criterion (AIC) and Bayesian Information Criterion (BIC) are 

viable methods to determine the parameters of ARMA model. However, AIC has 

tendency of overfitting the dataset compared to the other, theoretically. Hence, the 

orders p and q are determined by using the Bayesian Information Criterion (BIC) where 

the performance index,  qp,BIC , in Equation (3.22) is minimized (Breid et al., 1991). 

  

       tt NqpNqp log1MSElog,BIC   (3.22) 

  

where MSE is the mean square error between the actual data and predicted data at the 

next time, and tN  is the number of training data values for parametric determination. 

The parameters of the ARMA model,   and  , are determined using the 

maximum likelihood estimation, which is expressed as Equation (3.23). The likelihood 

function  XL ,  is defined as the probability density function of   for a given X  

(Claeskens & Hjort, 2008). 

  

 XL ,maxargARMA 


  (3.23) 

  

where   is the vector of model parameters,  pp  ,,,,,,, 2121  , X  is the 

vector of time-series data,   tptttttt xxxx  12 ,,,,  , and ARMA  is the parameters of 

the ARMA model. 
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The ARMA model is used for information on the behavior of data that slightly 

deviates from a mean value at each forecasting horizon. In other words, the ARMA 

model is valid in the vicinity of the mean value. If the mean values vary widely, other 

high-order models must be used. 

 

3.2.3 Artificial neural network (ANN) model 

The ANN model is a mathematical model for computing quantitative 

information, based on a collection of high-order functional operations that mimic the 

learning of neurons in the human brain (Atthajariyakul & Leephakpreeda, 2005). The 

recurrent neural network is proposed as an ideal type for approximating time-series 

data. As shown in Figure 3.5, the ANN model is inputted with the past and present data 

from an input layer through a hidden layer. At the hidden layer, the delayed outputs of 

the hidden layer are also cycled, as memory in the ANN model. Subsequently, the data 

at the next time is determined at an output layer. The numerical relations between the 

past and present data and data at the next time are captured by the weights and biases 

of the ANN model. 

 

 

Figure 3.5 Forecasting with ANN model. 
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With past and present data   tpttitttt xxxx  1,,,,,  , the output iy  at each 

hidden node j  in the hidden layer is obtained by: 
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where 
jiw ,
 is the weight between input node i  and hidden node j , hn  is the 

number of hidden nodes j  in the hidden layer, 
jJy ,

  is the delayed output of the hidden 

layer from node J  to node j , 
jJw ,

  is the weight of the delayed output between hidden 

node J  and hidden node j , and 
jb  is the bias of hidden node j . 

In the hidden layer of the ANN model, the hyperbolic tangent function is 

selected from a performance investigation of the activation functions: hyperbolic 

tangent function, log-sigmoid function, rectified linear units' function, and softmax 

function. The setup details of the ANN model are listed in Table B1 in Appendix B. 

From the hidden layer to the output layer, the data at the next time is 

determined by: 

  

  bwyx
hn

j

jjtt 




1

ANNˆ  (3.25) 

  

where 
jw  is the weights between hidden node j  and the output node, and b  is the 

bias of the output node. 

The weights and biases of the ANN model in Equations (3.24) and (3.25) are 

determined by the Levenberg-Marquardt backpropagation algorithm. This algorithm 

minimizes the mean squared errors between the predicted data and actual data at the 

next time for given past and present data. The ANN model is iteratively trained with 

sets of those predetermined input/output data (Levenberg, 1944; Marquardt, 1963). The 

ANN model is applied for data with large variation; therefore, it may fail to predict data 

at the next time that has a dynamic behavior around a given mean value due to 

overfitting of the model. 
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3.2.4 Grey prediction (GP) model 

The GP model is a mathematical model, which is based on an ordinary 

differential equation of an Accumulated Generating Operation (AGO) series. It is used 

for predicting exponential growths of data in nature (Deng, 1989). If the input data at 

the present time and past time of the GP model is obtained as

    tpttitttt xxxx  11 ,,,,,  , then the AGO series of the input data is defined as 

   
 

 
 

  1

1

1

1

11 ,,,,, tpttitttt xxxx    with: 
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The ordinary differential equation for the GP model is written as: 
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 (3.27) 

  

with 
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The Inverse Accumulated Generating Operation (IAGO) is applied to Equation 

(3.27). The data at the next time is calculated by: 
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It should be noted that Equation (3.28) is valid for a mathematical operation 

when the number of data values p  must not be less than three. For observations in this 

study, the number of data values is from four to eight. In addition, the GP model in 

Equation (3.31) requires a few model parameters to predict the data at the next time. 

The GP model has a short computation time. In addition, the GP model is implemented 

as a forecasting model in this study since it is mostly neutral to the dynamic behaviors 

of data, which can be governed by the rate of change or a differential equation in time. 

In other words, the GP model is capable of predicting data at the next time under 

moderate variations, to bridge the gap between the ARMA model and the ANN model. 

 

3.3 Robust prediction of multiple forecasting model under uncertainty 

For the conventional forecasting procedure, predictive models such as the 

persistence model, ARMA model, ANN model, and GP model, are individually applied 

to predict the data at the next time, according to the input data at the present time and 

past time. Furthermore, there are comparative studies of forecasting performance 

among those predictive models under different conditions where the persistence model 

is usually applied as the benchmark but not as a usable forecasting model. In Section 

3.2, the forecasting performance of each model is dependent on the allowable capability 

of the functional characteristics in describing the dynamic behaviors of data at that time. 

Therefore, the real-time implementation of a single model may be applicable to data 

prediction at one time, but it may not be effective at another time. To overcome this 

problem, a prediction from multiple forecasting models is proposed, to determine a 

single number taken as a balanced representation of those predictive values by using 

weighting multipliers according to historical forecasting performance. This technique 

quantitatively improves the accuracy of the multiple forecasting models from accessible 

knowledge of the uncertainty of each model in the past. The predicted value ttx 
ˆ  of 

multiple forecasting models is determined by: 
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           GPGPANNANNARMAARMA ˆˆˆˆ
tttttttt xwxwxwx    (3.32) 

  

where 
 ARMAw , 

 ANNw , and 
 GPw  are the weighting multipliers of the ARMA model, 

ANN model, and GP model, respectively. 

The weighting multiplier of the ARMA model 
 ARMAw  is determined by the root 

mean square errors of the ARMA model, 
 ARMARMSE , ANN model, 

 ANNRMSE , and 

GP model, 
 GPRMSE , as written in Equation (3.33). The RMSE is used as a 

performance index. The accuracy of the forecasting models is indicated by the RMSEs 

that are used in prediction. 
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with the 
 ARMARMSE , which is expressed as: 
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 (3.34) 

  

where x  is the actual value of x̂  from the ARMA model. 

Likewise, the weighting multipliers and RMSEs  of the ANN model and GP 

model are determined by changing the numerators corresponding to the predictive 

models in Equations (3.33) and (3.34), respectively. Equation (3.33) can be interpreted 

as: the less the magnitude of 
 ARMARMSE , the more the weighting multiplier 

 ARMAw  

contributes to the predicted value in Equation (3.32), and vice versa. Therefore, the use 

of weighting multipliers for the predicted values compensates for the uncertainty in 

forecasting, based on historical performance around the present time. 

ARMA model, ANN model, and GP model are widely-used statistical method 

for wind prediction. The idea of multiple forecasting models with weighting multiplier 

is to raise the strength and diminish the weakness of each predictive model according 

to the wind condition in nature. With combined prediction from ARMA model, ANN 

model, and GP model, the model can be assumed to deal with wind at any speed and 

variation, effectively. However, it should be remarked that the proposed methodology 
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of multiple forecasting model is not limited to ARMA model, ANN model, and GP 

model. Other predictive model can be added or substituted, in the same manner of 

Equation 3.2.    

To be confident in forecasting wind power generation under uncertainty, the 

prediction interval is reported with a prescribed percentage of confidence. The level of 

confidence can be determined from statistical occurrences of the forecasting error. 

Define the forecasting error as the difference between the actual value tx  and the 

predicted value tx̂  at a given time t , as written in Equation (3.35). 

  

ttt xxe ˆ  (3.35) 

  

The mean value of the forecasting error and the standard deviation of the 

forecasting error can be, respectively, defined by Eqs. (3.36) and (3.37): 
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where en  is the number of error data values. 

The upper limit and lower limit of forecasting errors for e  are determined as: 

  

e

nL
n

see
e

1
1t 1,2    (3.38) 

  

where 
1,2t en  is the t multiplier, corresponding to the percentage of confidence 

100%(1-  ) with 1en  degrees of freedom. 

Hence, the prediction interval PI  is written as: 

  

  Ltt ex  
ˆPI   (3.39) 

  

Under uncertainty in forecasting, the prediction interval is statistically 

determined from the most recent errors at the present time and past time. This yields 
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the upper value and lower value of the predictive value, which is expected to have a 

specified probability and a prescribed percentage of confidence. 

Figure 3.6 shows a schematic diagram of the proposed methodology in 

determining the predicted values of multiple forecasting models. In step 1, a forecasting 

horizon is specified as a requirement of a prediction ahead of time, e.g., one hour ahead 

of the present time. A set of N  measurement data values of power generation from a 

wind farm is collected to determine orders p  and q , model parameters of the ARMA 

model, weights, and biases of the ANN model. In step 2, the order p  indicates the total 

number of input data values at the present time and past time for the ARMA model, 

ANN model, and GP model, as graphically presented in Figure 3.7. The p  input data 

values are used by each model to determine the predicted values of the ARMA model, 

ANN model, and GP model. In step 3, the predicted values are obtained, and they also 

stored as the predicted values at the past time after passing the time delay. The predicted 

values at the past time are used to determine the weighting multipliers. Finally, the 

predicted values of the ARMA model, ANN model, and GP model (including the 

corresponding weighting multipliers) are used to determine the predicted values of the 

multiple forecasting models, as illustrated in Figure 3.8.   
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Figure 3.6 Schematic diagram of multiple forecasting models. 
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Figure 3.7 Prediction of ARMA model, ANN model, and GP model, based on actual 

input data. 

 

 

Figure 3.8 Prediction of multiple forecasting models, based on historical 

performance. 

 

Figure 3.9 shows the procedure steps for the determination of the prediction 

interval. The forecasting errors between the actual values and predicted values at the 

present time and past time are determined as statistical data for determining the 
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prediction interval under uncertainty. The predicted value of multiple forecasting 

models is in the prediction interval with a probability of the percentage of confidence 

100%(1-  ), as depicted in Figure 3.10. The proposed methodology of multiple 

forecasting models and procedural steps of calculation are applied to the measurement 

data of power generation, which are obtained from a given wind farm under actual wind 

conditions. 

 

 

Figure 3.9 Schematic diagram of determination of the prediction interval. 

 

 

Figure 3.10 Determination of the prediction interval, based on historical performance. 
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CHAPTER 4 

RESULTS AND DISCUSSION 

 

4.1 Results and discussion on study of wind measurement 

Wind measurements were performed from October 2015 to October 2016 on 

the rooftop of a laboratory building with a height of 20 m, as shown in Figure 4.1. A 

three-cup anemometer and a wind vane (Theodor Friedrichs™ 4035.0000BG) were 

installed for measuring the wind speed and wind direction, respectively. The measured 

range of wind speed was 0-60 m/s with an accuracy of ±0.2 m/s. A sampling rate of 10 

Hz for data recording was set in order to perceive the actual dynamic behaviors of wind 

for this study. The data recovery rate of annual wind velocity measurements is 99.9%. 

There were a few missing wind data values during short periods of data transfer from 

the data acquisition system (probably due to a power failure). 

 

 

Figure 4.1 Installation of three-cup type anemometer and wind vane on building 

rooftop. 
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A plot of wind speeds against time for 30 s is shown in Figure 4.2, where the 

evolution of wind speed in time can be observed explicitly. The wind data with a high 

sampling rate was representative of real continuous wind. A high sampling rate can lead 

to accurate results and interpretation in wind analysis. 

 

 

Figure 4.2 Illustration of wind speeds, sampled at a rate of 10 Hz. 

 

 

4.1.1 Effects of sampling rate on wind data 

The sampling rate in wind measurement has strong influences on the mean wind 

speed and standard deviation of wind data. Without loss of generality, one-day wind 

speed data is randomly selected from the annual wind data. As reported in Table 4.1, 

the mean wind speeds, standard deviations, and number of values are determined from 

the data at different sampling rates. It is noticed that the values of the mean wind speed 

and standard deviation at lower sampling rates tend to diverge from the values at a 

sampling rate of 10 Hz. 
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Table 4.1 Statistical analysis of 24-h wind data. 

Sampling rate 

(Hz) 

Mean speed 

(m/s) 

Standard deviation 

(m/s) 
Number of values 

10 6.43 1.82 864000 

1 6.43 1.82 86400 

10-1 6.43 1.82 8640 

10-2 6.45 1.80 864 

1.7×10-3* 6.43 1.35 86400 

10-3 6.21 1.62 86 

10-4 4.91 1.63 8 

* IEC 61400-12-1 standard 

 

The characteristics of wind data are fuzzy when low sampling rates are 

implemented. However, the higher the sampling rate, the more data values. It can be 

seen that the number of wind data values at a sampling rate of 10 Hz is relatively high 

in this case. There is an unnecessary amount of wind data, to be used in the analysis. 

The optimal sampling rate, in this case, may be 0.01 Hz. This is a tradeoff between the 

accuracy and number of data values since the values of mean wind speed and standard 

deviation are equal to the values at a sampling rate of 10 Hz while the amount of data 

is reduced significantly. 

For the IEC 61400-12-1 standard, wind speed measurements are performed at a 

sampling rate of 1 Hz. The wind data values are recorded, and averaged every 10 min 

(1.7×10-3 Hz). The results have less accuracy due to using averaged values of wind data. 

 

4.1.2 Sensitivity analysis on parameters of Weibull distribution 

In Figure 4.3, a sensitivity analysis is used to determine how different values of 

the mean wind speed and standard deviation affect the shape parameter and scale 

parameter of the Weibull distribution function, which are determined by Equations (3.8) 

and (3.9), respectively.  

As illustrated in Figures 4.3(a) and 4.3(b), the percentage changes in the mean 

wind speed affect the percentage changes in the shape parameter and scale parameter. 

The percentage increases in the shape parameter and scale parameter are proportional 

to the percentage increase in the mean wind speed. In Figure 4.3(b), the percentage 

increase in the scale parameter is enlarged when the magnitude of the standard deviation 
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rises. In contrast, the percentage increases in the shape parameter and scale parameter 

are proportional to the percentage decrease in the standard deviation, as depicted in 

Figures 4.3(c) and 4.3(d). However, the relation of the scale parameter to the standard 

deviation in Figure 4.3(d) is reversed for low magnitudes of standard deviation, such as 

v4.0  and v2.0 . This shift is caused by a critical point of the Gamma function 

between the negative and positive slopes. 

 

 

Figure 4.3 Sensitivity of Weibull parameters to changes in mean wind speed and 

standard deviation: (a) shape parameter with mean wind speed, (b) scale parameter 

with mean wind speed, (c) shape parameter with standard deviation, and (d) scale 

parameter with standard deviation. 
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In general, the variances in the shape parameter and scale parameter are 

sensitive to changes/uncertainties in the mean wind speed and standard deviation. It is 

important that the sampling rate is determined to yield the most accurate statistical 

results while obtaining the least number of wind data values. In Figure 4.4, the 

probability distribution of the wind speed and wind rose are plotted with yearly wind 

data at a sampling rate of 10 Hz. Around the measurement field, low wind speeds (<6 

m/s) are frequently observed. The wind direction is from the tropical southwest 

monsoon and trade winds. The wind speed data at a sampling rate of 10 Hz are used to 

prepare the wind speed data according to the IEC 61400-12-1 standard for a case study. 

Consequently, the shape and scale parameters are determined to be 1.29 and 2.51 m/s, 

respectively, for the Weibull probability density function in Equation (3.7). In Figure 

4.4(a), the Weibull probability density function does not match the frequency 

distribution of wind data at low wind speeds. 

 

 

Figure 4.4 Yearly wind data at a sampling rate of 10 Hz: (a) probability distribution 

and (b) wind rose. 

 

The assumptions of the Weibull distribution limit the extent of statistical results 

even though the wind data are sampled at different rates. This is because the variations 

of wind data are assumed to be governed by the Weibull distribution function with a 

shape parameter and a scale parameter. Therefore, power estimation without the 
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distributional assumptions yields genuine values of power production from the 

information of the sampled wind data, as determined by Equations (3.18) - (3.19). 

 

4.1.3 Wind analysis from wind data at different sampling rates 

The power curve of the low-speed horizontal-axis wind turbine from Ref. 

(Kishore & Priya, 2013) is proposed for the AEP calculation, as shown in Figure 4.5. 

Tables 4.2 and 4.3 list the corresponding statistical values of the wind speed, power 

density, AEP, and capacity factor. From Equations (3.7) - (3.15), the numerical values 

tend to deviate from the values at a sampling rate of 10 Hz. The percentage relative 

differences of analytical results in Tables 4.2 and 4.3 quantitatively indicate the 

information loss of wind data at different sampling rates, compared with the 

benchmark. 

 

 

Figure 4.5 Power curve of wind turbine for AEP calculation. 

 

 

 

 

 

 

 

Ref. code: 25625822300561TJA



48 

 

 

 

 

Table 4.2 Statistical analysis of wind data at different sampling rates (mean speed and 

standard deviation). 

 

 

Cycle 

period 

Number of 

values 

Mean speed  

(m/s) 

Standard deviation 

(m/s) 

10 Hz - 3.15×108 2.32 1.84 

IEC 61400-12-1 

standard 
- 3.15×107 

2.32 

 (0.00%) 

1.68  

(-8.70%) 

Adaptive 
05.0  

10 min 8.80×106 
2.32  

(0.00%) 

1.84  

(0.00%) 

hour 2.80×106 
2.32  

(0.00%) 

1.84  

(0.00%) 

day 4.00×105 
2.33  

(+0.43%) 

1.85  

(+0.54%) 

week 6.33×104 
2.37  

(+2.16%) 

1.88  

(+2.17%) 

month 9.30x103 
2.36  

(+1.72%) 

1.92  

(+4.35%) 

Adaptive 
1.0  

10 min 2.76×106 
2.32  

(0.00%) 

1.84  

(0.00%) 

hour 1.02×106 
2.32  

(0.00%) 

1.84  

(0.00%) 

day 7.44×104 
2.33  

(+0.43%) 

1.85  

(+0.54%) 

week 8.69×103 
2.35  

(+1.29%) 

1.88  

(+2.17%) 

month 2.53×103 
2.37  

(+2.16%) 

1.86  

(+1.09%) 

Adaptive 
15.0  

10 min 1.51×106 
2.32 

 (0.00%) 

1.84  

(0.00%) 

hour 5.06×105 
2.32  

(0.00%) 

1.84  

(0.00%) 

day 2.23×104 
2.34  

(+0.86%) 

1.86  

(+1.09%) 

week 4.16×103 
2.35  

(+1.29%) 

1.90  

(+3.26%) 

month 1.38×103 
2.34  

(+0.86%) 

1.96  

(+6.52%) 

Remark: Percentage of relative difference to wind data at a 10-Hz sampling rate, in 

parentheses. 
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Table 4.3 Statistical analysis of wind data at different sampling rates (power density, 

AEP, and capacity factor). 

 

 

Cycle 

period 

Number of 

values 

Power 

density 

(W/m2) 

Annual Energy 

Production 

(Wh) 

Capacity 

factor 

10 Hz - 3.15×108 32.50 2460.0 0.2808 

IEC 61400-

12-1 

standard 

- 3.15×107 
22.63 

 (-30.37%) 

2793.1  

(+13.54%) 

0.3188  

(+13.54%) 

Adaptive 

05.0  

10 

min 
8.80×106 

32.50  

(0.00%) 

2462.6  

(+0.11%) 

0.2811  

(+0.11%) 

hour 2.80×106 
32.43 

 (-0.22%) 

2465.8  

(+0.24%) 

0.2815  

(+0.24%) 

day 4.00×105 
32.86  

(+1.11%) 

2452.8 

 (-0.29%) 

0.2800 

 (-0.29%) 

week 6.33×104 
34.36  

(+5.72%) 

2351.3 

 (-4.62%) 

0.2684 

 (-4.62%) 

month 9.30x103 
35.58  

(+9.48%) 

1984.1 

 (-23.99%) 

0.2265 

 (-23.99%) 

Adaptive 

1.0  

10 

min 
2.76×106 

32.52  

(+0.06%) 

2469.1 

 (+0.37%) 

0.2819  

(+0.37%) 

hour 1.02×106 
32.54  

(+0.12%) 

2469.5  

(+0.38%) 

0.2819  

(+0.38%) 

day 7.44×104 
32.79  

(+0.89%) 

2439.9  

(-0.82%) 

0.2785  

(-0.82%) 

week 8.69×103 
34.32 

 (+5.60%) 

2327.7 

 (-5.68%) 

0.2657  

(-5.68%) 

month 2.53×103 
32.44  

(-0.18%) 

2049.2  

(-20.05%) 

0.2339  

(-20.05%) 

Adaptive 

15.0  

10 

min 
1.51×106 

32.51  

(+0.03%) 

2476.3  

(+0.66%) 

0.2827  

(+0.66%) 

hour 5.06×105 
32.58  

(+0.25%) 

2478.2  

(+0.73%) 

0.2829 

(+0.73%) 

day 2.23×104 
33.05  

(+1.69%) 

2486.3  

(+1.06%) 

0.2838  

(+1.06%) 

week 4.16×103 
35.75  

(+10.00%) 

2307.8 

 (-6.60%) 

0.2634 

 (-6.60%) 

month 1.38×103 
37.56  

(+15.57%) 

1847.0 

 (-33.19%) 

0.2108  

(-33.19%) 

Remark: Percentage of relative difference to wind data at a 10-Hz sampling rate, in 

parentheses. 
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With IEC 61400-12-1 standard, the percentages of relative differences are listed 

as 30.37% and 13.54% for the power density and AEP, respectively, while the 

differences with less wind speed data values are smaller. The averaged values of wind 

data at every 10 min may cause flaws in wind information. However, the mean wind 

speed is close to the mean value at a sampling rate of 10 Hz because the information 

about the mean values every 10 min is kept in the wind data. To obtain more accuracy 

and fewer values, the Nyquist-based adaptive sampling rate approach is implemented 

for various cycle periods mT  on the collected wind data. The cut-out amplitude   is 

varied from 0.05 to 0.15 m/s, and the cycle period mT  is 10 min, an hour, a day 

(highlighted), a week, and a month, as indicated in Tables 4.2 and 4.3. It is found that 

the higher the accuracy of results and number of wind speed values, the lower the values 

of   and mT . The Nyquist rate  N

msf ,
 is chosen at a high rate when the values of   and 

mT  are low. Therefore, the tradeoff between the number of wind values and the 

accuracy can be specified by the Nyquist rate  N

msf ,
. It is found that a recommended   

of 0.1 and mT  of a day provide acceptable results (highlighted). The percentages of 

errors are less than 1% for all statistical results at a sampling rate of 10 Hz. The number 

of values can be decreased by approximately 4000 times. 

Table 4.4 illustrates the corresponding analysis for wind direction. The 

measurement data of wind direction are recorded with the same sampling rates that are 

implemented for wind speed. It can be seen that the percentage differences in most 

cases are significantly low, compared with wind speed. This result shows that there is 

less information loss in wind direction since the variation of wind direction is not high, 

as expected. Therefore, the sampling rates of wind direction can be determined from 

wind speed, in practice. It is noted that the variation of wind direction is low. In this 

case, a mode wind direction is more statistically suitable, referring to the prevailing 

wind direction, than a mean wind direction, which is usually determined as an indicator 

in wind analysis. 
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Table 4.4 Statistical analysis of wind data at different sampling rates (wind direction). 

 

 

Cycle 

period 

Number of 

values 

Mean direction 

(degrees) 

Standard deviation  

(degrees) 

10 Hz - 3.15×108 211.37 96.38 

IEC 61400-12-1 

standard 
- 3.15×107 

211.37  

(0.00%) 

92.26 

 (-4.27%) 

Adaptive 
05.0  

10 min 8.80×106 
211.37  

(0.00%) 

96.38 

 (0.00%) 

hour 2.80×106 
211.37  

(0.00%) 

96.38  

(0.00%) 

day 4.00×105 
211.38  

(0.00%) 

96.38  

(0.00%) 

week 6.33×104 
211.44  

(+0.03%) 

96.36 

 (-0.02%) 

month 9.30x103 
211.68  

(+0.15%) 

96.33  

(-0.05%) 

Adaptive 
1.0  

10 min 2.76×106 
211.37  

(0.00%) 

96.38 

 (0.00%) 

hour 1.02×106 
211.37  

(0.00%) 

96.38  

(0.00%) 

day 7.44×104 
211.32  

(-0.02%) 

96.37  

(-0.01%) 

week 8.69×103 
211.04 

 (-0.15%) 

96.48  

(+0.10%) 

month 2.53×103 
211.69  

(+0.15%) 

96.58 

 (+0.21%) 

Adaptive 
15.0  

10 min 1.51×106 
211.37  

(0.00%) 

96.38  

(0.00%) 

hour 5.06×105 
211.37  

(0.00%) 

96.38 

 (0.00%) 

day 2.23×104 
211.46  

(+0.04%) 

96.33  

(-0.05%) 

week 4.16×103 
211.33 

 (-0.02%) 

96.27 

 (-0.11%) 

month 1.38×103 
212.52  

(+0.54%) 

95.36 

 (-1.05%) 

Remark: Percentage of relative difference to wind data at a 10-Hz sampling rate, in 

parentheses. 

 

The mean wind speed and standard deviation are commonly reported to perceive 

the statistical characteristics of wind in engineering practice. The analysis of wind data 

in terms of higher-order statistics, such as skewness and kurtosis, yields a similar 
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tendency of information loss at different sampling rates, which is listed for 

completeness of information in Table 4.5. 

 

Table 4.5 Statistical analysis of wind data at different sampling rates (skewness and 

kurtosis). 

 

 

Cycle 

period 

Number of 

values 
Skewness Kurtosis 

10 Hz - 3.15×108 1.66 7.67 

IEC 61400-12-1 

standard 
- 3.15×107 

1.79  

(7.83%) 

9.26 

 (20.73%) 

Adaptive 
05.0  

10 min 8.80×106 
1.66  

(0.00%) 

7.69  

(0.26%) 

hour 2.80×106 
1.66  

(0.00%) 

7.67 

 (0.00%) 

day 4.00×105 
1.65  

(-0.60%) 

7.57 

 (-1.30%) 

week 6.33×104 
 1.68  

(1.20%) 

 7.74 

(0.91%) 

month 9.30x103 
1.81  

(9.04%) 

8.65  

(12.78%) 

Adaptive 
1.0  

10 min 2.76×106 
1.66  

(0.00%) 

7.70  

(0.39%) 

hour 1.02×106 
1.66  

(0.00%) 

7.65  

(-0.26%) 

day 7.44×104 
1.65 

 (-0.60%) 

7.60  

(-0.91%) 

week 8.69×103 
1.62 

(-2.41%) 

7.35  

(-4.17%) 

month 2.53×103 
1.62 

(-2.41%) 

7.22  

(-5.87%) 

Adaptive 
15.0  

10 min 1.51×106 
1.66  

(0.00%) 

7.68  

(0.13%) 

hour 5.06×105 
1.67 

(0.60%) 

7.67  

(0.00%) 

day 2.23×104 
1.71  

(3.01%) 

7.82  

(1.96%) 

week 4.16×103 
1.63 

 (-1.81%) 

7.47  

(-2.61%) 

month 1.38×103 
1.98  

(19.28%) 

9.75  

(27.12%) 

Remark: Percentage of relative difference to wind data at a 10-Hz sampling rate, in 

parentheses. 
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Correspondingly, Figure 4.6 shows a plot of the Nyquist rate, which is 

determined from the proposed methodology for the whole year. The sampling rate 

changes day by day to acquire all-inclusive wind information, based on the Nyquist 

sampling theorem. It can be observed that the sampling rate is defined to be well-suited 

to varying wind conditions in each day. This implementation ensures that excessive 

wind data is not collected under a low variation of wind speed, whereas necessary wind 

data is fully recorded under a high variation of wind speed, without missing data. 

 

 

Figure 4.6 Adaptation of sampling rate with Nyquist frequency against time. 

 

 It is remarked that, due to the limitation of apparatuses and sites, the rooftop of 

building where the wind measurement is performed is 20 m height, approximately. 

However, the proposed Nyquist-based adaptive sampling rate approaches can be 

applied regardless of altitude. The results are in the same way at any altitude, which 

high sampling rate is preferred for high wind speed, and vice versa. As explained in 

Appendix D, wind speed and altitude is proportional according to the wind profile 

power law. The characteristic of wind speeds at different altitude do not change, as 

shown in Figure D1.   
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4.2 Results and discussion on the study of wind power forecasting 

Measurement data of power generation from the 17.8-MW Sotavento 

experimental wind farm was retrieved from the webpage of Sotavento Galicia, S.A. at 

http://www.sotaventogalicia.com from November to December, 2018. The data was 

retrieved in real time at a sampling time of 2 seconds to obtain accurate information of 

the data. The wind farm is located in Galicia, A Coruña, Spain, which is approximately 

700 m above sea level, as shown in Figure 4.7. There are twenty-four wind turbines of 

nine models with generation capacities from 640 kW to 1320 kW, as listed in Table 4.6. 

The power curves against wind speed are graphically presented in Figure 4.8. Figure 

4.9 shows a layout of wind turbines and meteorological masts, which are aligned along 

a roadway. It is reported that the annual average wind speed at the site is 6.4 m/s 

(prevailing east-west wind direction). The electricity production of this wind farm over 

time is used as case scenarios to verify the real-time implementation of multiple 

forecasting models under varying wind conditions.    

 

 

Figure 4.7 Location of Sotavento experimental wind farm. 
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Table 4.6 Specification of wind turbines. 

Model 
Rotor diameter 

(m) 

Hub height 

(m) 
Number 

Rated power 

(kW) 

Ecotecnia 44/640 44 46 4 640 

Gamesa G-47 47 45 4 660 

Izar-Bonus 1.3 MW 62 49 1 1300 

Izar-Bonus MK-IV 44 40 4 660 

Made AE-46 46 45 4 660 

Made AE-52 52 50 1 800 

Made AE-61 61 60 1 1320 

Neg Micon NM-48 750 48 45 4 750 

Neg Micon NM-52 900 48 45 1 900 

 

 

 

Figure 4.8 Power curves of wind turbines. 
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Figure 4.9 Layout of wind turbines and meteorological masts. 

 

4.2.1 Performance investigation of forecasting models 

To demonstrate the capability of each predictive model, one-week measurement 

data of hourly power generation is subjectively selected from the Sotavento 

experimental wind farm, as shown in Figure 4.10. Two different periods are used. One 

period has a high variance with a standard deviation of 830 kWh, while the other period 

has a low variance with a standard deviation of 395 kWh.   

 

 

Figure 4.10 Plots of hourly energy output data against time. 
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According to the procedure steps of calculation in Figure 3.6, Figure 4.11 

presents a time-series plot of one-hour ahead forecasting by the persistence model, 

ARMA model, ANN model, GP model, and multiple forecasting models. The 

differences between the actual data in Figure 4.10 and predicted data in Figure 4.11 are 

used to determine RMSEs for forecasting performance. RMSEs of each forecasting 

model at two different periods are listed in Table 4.7. As expected, RMSEs of the 

persistence model are the highest values among all the predictive models at two 

different periods. In the conventional approach of a single predictive model, the ANN 

model is superior in dealing with high variation as it yields the lowest RMSE, compared 

to the ARMA model and GP model. In contrast, the RMSE of the ARMA model is the 

lowest value at a low variance of power generation. This can be interpreted that there 

is no most-effective forecasting model at all times. However, the multiple forecasting 

models yield predicted data with the lowest RMSEs at two different periods. The 

proposed method has the capability to weigh the predicted values from the ARMA 

model, ANN model, and GP model based on historical errors of prediction. Compared 

to the persistence model as the benchmark, the accuracy of the multiple forecasting 

models is significantly improved by 57% and 39% during periods of high variance and 

low variance, respectively.   

 

 

Figure 4.11 Plot of hourly-predicted energy output data against time. 
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Table 4.7 Root mean square error of forecasting models. 

Forecasting model 
RMSEs (kWh) 

At high variance  At low variance  

Persistence model 301 153 

ARMA model 217 129 

ANN model 165 133 

GP model 193 136 

Multiple forecasting model 128 93 

 

To understand the functionality of multiple forecasting models, Figures 4.12 

and 4.13 show adjustments of the weighting multipliers during forecasting at high 

variance and low variance, respectively. The linear regressions of weighting multipliers 

from three models are determined, to present average weighting multipliers over a 

period. In Figure 4.12, the predicted data of the ANN model is dominant at a high-

variance period since the weighting multipliers are the highest values. In Figure 4.13, 

the weighting multipliers of the ARMA model are the most dominant at a low variance 

period. This is in good agreement with the forecasting performance from the RMSEs 

in Table 4.7.   

 

 

Figure 4.12 Plot of weighting multiplier against time at high variance. 
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Figure 4.13 Plot of weighting multiplier against time at low variance. 

 

4.2.2 Prediction of power generation with multiple forecasting models  

To demonstrate the effectiveness of the proposed methodology for short-term 

prediction, the multiple forecasting models are applied to predict the power generation 

with time horizons of 1 hour, 3 hours, and 6 hours. In Fig. 4.14, the one-week power 

generation (in kW) is collected from the Sotavento experimental wind farm under open 

field conditions. It can be seen that the wind power varies drastically with respect to 

time where the following case studies of power prediction are worthy of investigation. 

 

 

Figure 4.14 One-week power generation of the wind farm. 
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According to the flowchart in Figure 3.6, Figure 4.15(a) shows the hourly 

prediction of power generation with respect to time. The actual power generation (in 

kWh) from Figure 4.14 is presented in Figure 4.15(b) for comparison. The multiple 

forecasting models yield predicted values that are close to the actual values with an 

RMSE of 321 kWh over a week, as listed in Table 4.8. The benchmark of prediction 

from the persistence model is obtained with an RMSE of 695 kWh, which is 

significantly inferior, compared to the multiple forecasting models. 

 

 

Figure 4.15 Hourly power generation: (a) predicted values and (b) actual values. 
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Table 4.8 Performances of multiple forecasting models with various time horizons. 

Time horizon (h) 
RMSEs (kWh) 

Persistence model Multiple forecasting models 

1 695 321 

3 4340 2532 

6 10445 5021 

 

To determine the corresponding prediction intervals of multiple forecasting 

models, errors in forecasting are needed with the number of data values en  at the 

present and past times for Equations (3.35) - (3.37), or  1en  degrees of freedom for 

Equation (3.38). The number of data values en  at the present and past times are chosen 

so that the actual value at the next time is within the small prediction interval. The 

prediction interval is enlarged by decreasing the number of data values en  according 

to Equation (3.38) while increasing the number of data values en  results in large 

computation time and less sensitivity to the prediction interval. In this study, the number 

of data values en  at the present and past times are defined from the least number that 

has the smallest PI. For example, the different number of data values en  at the present 

and past times are considered at the 50th h in Figure 4.15. As shown in Figure 4.16, en

is recommended to be 15 for the narrowest prediction interval of 2250 kWh. In this 

case, the prediction interval is comparatively large due to the acute increase of power 

generation at this time where the errors of prediction are significantly large. 
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Figure 4.16 Determination of number of error values en , at the present and past 

times. 

 

After the number of error data values is determined at each time, Figure 4.17 

shows the predicted values of the multiple forecasting models, and the corresponding 

prediction intervals with 95% confidence during the whole week. It can be observed 

that the prediction intervals are large when the predicted values change rapidly. This 

result indicates that the prediction intervals cover the feasible ranges of the actual 

values. 

 

 

Figure 4.17 Plots of hourly predicted values and prediction intervals with 95% 

confidence, with respect to time. 
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Figure 4.18 and Figure 4.19 present the predicted values and the prediction 

interval (95% confidence) for the one-week power generation with time horizons of 3 

hours and 6 hours, respectively. It is noticed that the widths of PIs increase as the time 

horizon increases. This result is explained by the increase of RMSEs at a high time 

horizon, as listed in Table 3. Additionally, most of the actual values of power generation 

are included within the PIs. For three cases, it is found that 96.25% of the actual values 

are within the PIs.  

 

 

Figure 4.18 Plots of 3-hourly predicted values and prediction interval with 95% 

confidence, with respect to time. 

 

 

Figure 4.19 Plots of 6-hourly predicted values and prediction interval with 95% 

confidence, with respect to time. 
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In addition, the prediction intervals in Figure 4.17, 4.18, and 4.19 can be 

alternatively presented in a continuous series along with the predicted values, as shown 

in Figure C1, C2, and C3 in Appendix C, respectively. These figures show the 

interpolated trend line of the prediction intervals in-between the forecasting horizon. 

 

To be concise, all the main results in this Chapter 4 are summarized as listed on 

Table 4.9. 

 

Table 4.9 Summary of results 

Section Summary 

4.1.1 Effects of sampling 

rate on wind data 

The sampling rate has significant impact on wind 

analysis. As the sampling rate decreases, the value of 

mean speed and standard deviation tend to deviate from 

the benchmark of 10 Hz. In turn, the amount of values 

is reduced.   

4.1.2 Sensitivity analysis 

on parameters of Weibull 

distribution 

The variances in the shape parameter and scale 

parameter are sensitive to changes/uncertainties in the 

mean wind speed and standard deviation.  

The Weibull probability density function does not 

match the frequency distribution of wind data at low 

wind speeds in this case study. 

4.1.3 Wind analysis from 

wind data at different 

sampling rates 

IEC 61400-12-1 standard approach yields significant 

percentages of relative differences are listed as 30.37% 

and 13.54% for the power density and AEP, 

respectively.   

The tradeoff between the number of wind values and 

the accuracy can be specified by the Nyquist rate  N

msf ,

. It is found that a recommended   of 0.1 and mT  of a 

day provide acceptable results. The percentages of 

errors are less than 1% for all statistical results at a 
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sampling rate of 10 Hz. The number of values can be 

decreased by approximately 4000 times. 

4.2.1 Performance 

investigation of forecasting 

models 

The RMSEs of the persistence model are highest 

among all the predictive models. Except the multiple 

forecasting model, ANN model yields the lowest 

RMSE at a high variance of power generation and the 

ARMA model yields the lowest RMSE at a variance of 

power generation.  

Multiple forecasting model yields the lowest RMSEs at 

both different periods. Compared to the persistence 

model, the accuracy of the multiple forecasting models 

is significantly improved by 57% and 39% during 

periods of high variance and low variance, 

respectively. 

4.2.2 Prediction of power 

generation with multiple 

forecasting models 

Compared to the benchmark of persistence model, the 

multiple forecasting models significantly improve the 

accuracy in short-term prediction of power generation 

at time horizons of 1, 3, and 6 hours. 

The widths of PIs with 95% confidence increase as the 

time horizon increases since it yields high RMSE.  

Most of the actual values of power generation are 

included within the PIs. It is found that 96.25% of the 

actual values are within the PIs.  
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CHAPTER 5 

CONCLUSION AND FUTURE RESEARCH 

 

The wind measurements were performed from October 2015 to October 2016. 

The wind data at a high sampling rate of 10 Hz is defined as the benchmark. The data 

recovery rate of the annual wind speed data measurement is 99.9%. In the IEC 61400-

12-1 standard, the wind data are sampled every second, and the mean values are 

recorded every 10 min. The standard wind analysis yields an accurate mean wind speed 

but an inaccurate standard deviation, compared with the benchmark. In sensitivity 

analysis, increasing the standard deviation by 5% results in changes of the shape 

parameter by -5%, and the scale parameter by -1% to 0.5% for the Weibull wind 

distribution function for wind energy assessment. It is observed that the percentage 

deviations of the power density, AEP, and capacity factor from the corresponding 

results of the benchmark are 30.37%, 13.54%, and 13.54%, respectively, while the 

differences with less wind speed data are small. Without consideration of wind 

conditions, it is confirmed that there are various deviations of analytical results, with 

excessive or missing wind data at high and low sampling rates. Conventional wind 

measurements with a fixed sampling rate cause significant excessive or missing wind 

data since the wind velocity changes differently in time. It is necessary to adjust the 

sampling rates of measurement, according to the wind conditions. The sampling rate is 

determined by the Nyquist frequency, covering all dominant amplitudes of wind speed. 

The Nyquist-based adaptive sampling rate method is proposed to systematically adapt 

the sampling rate to be the optimal Nyquist frequency, according to varying wind 

conditions. For time series analysis, the measurement data are formed by an array of 

cycle periods with optimal sampling rates, which determine the necessary amount of 

wind data. The proposed methodology is capable of providing high accuracy of 

analytical results with a percentage relative difference of less than 1% in wind analysis 

with the recommended parameters of the cut-out amplitude and cycle period. In 

addition, the amount of wind data is significantly decreased by 4000 times from the 

benchmark. 

This study of wind measurement addresses the problem of sampling rate in the 

measured wind data and how the common approach of IEC 61400-12-1 standard and 
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Weibull probability density function does not yield acceptable results in wind analysis.  

Very few studies in the literature reviews provide enough investigation on how 

significance the sampling rate in wind measurement is. The study in this part focuses 

on obtaining tradeoff between the accuracy of wind data and the amount of data from 

wind measurement. The novel approach for selecting the sampling rate in wind 

measurement called Nyquist-based adaptive sampling rate is proposed. Unlike the IEC 

61400-12-1 standard, the sampling rate is determined and adapted according to the wind 

condition where the wind measurement is performed. The research can provide benefits 

for any application where the accuracy of wind data is important while the cost and 

time to deal with a large amount of data are limited. 

For wind power forecasting, comparative studies of well-known predictive 

models, such as the ARMA model, the ANN model, and the GP model, for the short-

term forecasting of power generation from a wind farm are presented in this work. It is 

confirmed that each model has a limited capability of prediction in a certain variance 

of wind power generation. In contrast to this, the ANN model has been applied as a 

universal approximation even though much effort is required in computation. The 

traditional implementation of a single predictive model is not effective, to forecast wind 

power generation under uncertainty all the time. The proposed methodology of the 

multiple forecasting models is applied by weighting the predicted value of each 

individual model for the best-predicted value, based on the preceding performances of 

those predictive models. The RMSEs of the multiple forecasting models are 

significantly lower than the benchmark from the persistence model in all cases of one 

hour, three hours, and six hours ahead. In addition, the prediction intervals with 95% 

confidence are statistically determined from the historical errors of prediction where it 

is found that 96.25% of the actual values are in the prediction intervals. The proposed 

multiple forecasting models with the prediction interval yield reliable forecasts with 

statistical confidence under variances of wind power generation. 

The study of wind power forecasting shows that the traditional implementation 

of a single predictive model is not effective to predict short-term wind power generation 

in real world. This research develops a novel combined prediction with weighting 

method called multiple forecasting models. The forecasts are presented in form of the 

prediction intervals to make the prediction results more informative and more practical 
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to applications. The multiple forecasting models yields significant improvement 

compared to the traditional approach. For the contribution to wind farms, the proposed 

methodology can be implemented to for effective prediction of power generation up to 

6 hours ahead. This provides reliable operation in wind farms for the preparation of 

real-time grid operations, ancillary service costs, power quality, and the stability and 

reliability of power systems. 

 In future research, there is still some adaptation that can be tested and 

experimented in multiple forecasting models scheme for improvement. More advanced 

predictive models can be added/substituted to the method of multiple forecast models. 

Variant of ARMA model, ANN model, and high order of GP model may be considered 

to be included, for example, fractional-ARIMA model, Radial Basis Function ANN 

model, Convolutional ANN model, etc. For wind prediction at longer time horizon, it 

is a good idea to combine prediction from physical approaches or numerical weather 

prediction into the multiple forecasting model schemes. Since, the physical approach 

of wind forecasting is much more superior at long time horizon. Anyway, deep analysis 

and performance investigation is needed. Both proposed method of wind prediction and 

wind power forecasting may not limited to the wind energy area. Similar 

implementation can be consider to be used in applications of other renewable energy, 

such as solar energy, hydro energy, etc. However, specific investigation and experiment 

for the corresponding type of data is necessary. 
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APPENDIX A 

CONVERSION OF UNEQUALLY-SAMPLED DATA 

 

Table A1 Conversion from unequally-sampled data to equivalent equally-sampled 

data. 

Wind speed 

Sampled at 

10 Hz 
Sampled at Nyquist rate 

Equivalent equally- 

sampled data 

Data Cycle period = 1 s Data 
Weight  

( )(N
ss ff ) 

Data 

2.05 

1st cycle period 

with 5 Hz 

2.05 2 2.05 

2.16   2.05 

2.11 2.11 2 2.11 

2.09   2.11 

2.15 2.15 2 2.15 

2.22   2.15 

2.26 2.26 2 2.26 

2.18   2.26 

2.17 2.17 2 2.17 

2.20   2.17 

2.18 

2nd cycle period 

with 2 Hz 

2.18 5 2.18 

2.12   2.18 

2.34   2.18 

2.12   2.18 

2.32   2.18 

2.12 2.12 5 2.12 

2.30   2.12 

2.18   2.12 

2.30   2.12 

2.21   2.12 

2.40 

3rd cycle period 

with 10 Hz 

2.40 1 2.40 

2.36 2.36 1 2.36 

2.36 2.36 1 2.36 

2.47 2.47 1 2.47 

2.51 2.51 1 2.51 

2.47 2.47 1 2.47 

2.47 2.47 1 2.47 

2.53 2.53 1 2.53 

2.54 2.54 1 2.54 

2.62 2.62 1 2.62 

• 
• 

• 
• 

• 
• 

• 
• 

• 
• 
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APPENDIX B 

SETUP DETAILS OF ANN MODEL 

 

In the ANN model, the layrecnet function in MATLAB™ software is used to 

run the recurrent neural network with a single hidden layer. The number of nodes in the 

hidden layer is set to be 5 for best practice. In training, the trainlm function is 

implemented with the data of training set, validation set, and test set by the ratio of 

70:15:15. The maximum number of epoch is set to be 1000 to ensure that the 

minimization of errors in training is completed. The RMSEs of the ANN with the four 

activation functions are obtained from forecasting the power generation data in Figure 

4.10 where the hyperbolic tangent function (tanh) is applied in the ANN model since 

yields the lowest RMSE, according to Table B1.  

 
Table B1 Performances of ANN model with different activation functions.  

Activation function RMSEs (kWh) 

Hyperbolic tangent 150 

Log-sigmoid 156 

Rectified linear units 196 

Softmax 228 
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APPENDIX C 

ALTERNATIVE PRESENTATION OF PREDICTION INTERVAL 

 

The prediction intervals in Figure 4.17, 4.18, and 4.19 are alternatively 

presented in continuous series along with the predicted values as shown in Figure C1, 

C2, and C3 in respectively. 

 

 

Figure C1 Plots of hourly predicted values and prediction intervals with 95% 

confidence in continuous trend line. 

 

 

Figure C2 Plots of 3-hourly predicted values and prediction intervals with 95% 

confidence in continuous trend line. 
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Figure C3 Plots of 6-hourly predicted values and prediction intervals with 95% 

confidence in continuous trend line. 
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APPENDIX D 

WIND PROFILE POWER LAW 

 

 According to wind profile power law, wind speed at any altitude can be 

estimated from the known wind speed at the corresponding altitude. The profile power 

law is expressed by:  

  
143.0
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



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r

r
z

z
vv  (D1) 

  

where v  is the wind speed at the altitude z  and rv   is the known wind speed at the 

reference altitude rz . 

 The wind speed data in Figure 4.2 is extrapolated to various altitude as 

illustrated in Figure D1. The characteristic of the wind speed curves do not change by 

different altitude.    

 

Figure D1 Illustration of wind speeds at various altitude.  
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