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ABSTRACT

The KIT-6 (a highly ordered mesoporous silica with cubic la3d symmetry)
and acid functionalized KIT-6 as a solid acid catalyst have been studied extensively for
dehydration of xylose to furfural, esterification of fusel oil (isoamyl alcohol) to isoamyl
acetate and etherification of glycerol to glycerol n-butyl ether. The KIT-6-SO;H catalysts
were synthesized by co-condensation method in different ratios of tetraethyl
orthosilicate (TEOS, 99%) to 3-(mercaptopropyl) methyldimethoxysilane (MPMDS, 99%)
and subsequent oxidation. Highly performance and selective dehydration of xylose to
furfural were achieved using KIT-6-SOsH as a catalyst in a water/toluene biphasic
system. The highest xylose conversion and furfural selectivity were reached 97.50 and
94.65%, respectively at the optimized condition at 170 °C for 2 h of 0.2-KIT-6-SO3H
catalyst. This catalyst could be reused up to three cycles without any treatment. The
KIT-6-SOsH catalyst presented a high turnover frequency in the xylose dehydration
reaction due to the three-dimensional structure of the KIT-6 mesoporous silica.

In the second part, the production of isoamyl acetate using KIT-6-SO;H as
a heterogeneous catalyst in the esterification reaction of fusel oil and acetic acid was
achieved. The highest yield of isoamyl acetate was reached at 95.05% in the reaction

condition of reaction temperature at 80 °C for 3 h. Moreover, the turnover frequency
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(2)

(TOF) was controlled by accessibility and the amount of acid site which was manipulated
by variation the ratio of MPMDS:TEOS and the highest TOF were achieved by 0.1-SO3H-
KIT-6. Whereas, 0.3-SO;H-KIT-6 catalyst performed the excellent reusability over three
cycles with the decrease in isoamyl acetate yield is not significant in each cycle.

In the last part, the etherification of glycerol and n-butanol using KIT-6-
SO;H as a heterogeneous catalyst was achieved. The 0.3-KIT-6-SO3H catalyst contained
the highest acidity would be selected as a catalyst for this reaction. The highest di
glycerol n-butyl ether (di-GNBEs) selectivity was 51.50% at the optimized reaction
condition of 140 °C for 6 h.

In this research, the KIT-6-SO;H catalyst was prepared by sequential co-
condensation and oxidation method. The KIT-6-SOs;H played the good performance in
acid catalysis reaction including furfural production from xylose dehydration, isoamyl
acetate production from fusel oil esterification and glycerol n-butyl ether production

from glycerol etherification.

Keywords: KIT-6-SO;H; Acid catalyst; Dehydration of xylose; Esterification of fusel oil;
Etherification of glycerol; Fuel additive
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CHAPTER 1
INTRODUCTION

1.1 Dissertation motivation

In the issue of future energy, fossil resources are running out due to the
hish demand in many industries including energy, polymers, fine chemicals and
materials with limited resources. Moreover, regarding environmental degradation, the
use of fossil fuels also exerted a negative impact on the environment (Alipour,
Omidvarborna, & Kim, 2017; Jezak, Dzida, & Zorebski, 2016; Yuan, Zhang, Zheng, & Lin,
2015; Zhou & Zhang, 2016). Against this background, the scientists must find new
energy resources that were renewable and clean to replacement of conventional fossil
fuel due to their low pollution, net-zero carbon emissions, complete recyclability and
potential to mitigate global warming (Alipour et al., 2017; Jezak et al., 2016; Lam, Lee,
& Mohamed, 2010; Sajid, Zhao, & Liu, 2018; Yuan et al., 2015; Zhou & Zhang, 2016).
Therefore, these problems are becoming more significant for scientists to take the
responsibility of searching for renewable and sustainable resources.

Among renewable resources, biomass plays the most potential renewable
resources due to its abundance and viability. In addition, biomass also presents an
important role in carbon balance to capture CO, through photosynthesis and
completely carbon cycle (Alipour et al.,, 2017; Jezak et al,, 2016; Yuan et al,, 2015;
Zhang & Deng, 2015; Zhou & Zhang, 2016). Biomass is an organic material that was
widely available in waste materials and plants such as crops, forestry wastes,
agricultural residues, urban solid waste, animal residues, industrial residues, etc.
(Kumar, Kumar, Baredar, & Shukla, 2015; Saidur, Abdelaziz, Demirbas, Hossain, &
Mekhilef, 2011). Moreover, it is one of the most important renewable energy sources
that don’t affect food supply although competition for arable land use between
biomass and edible biomass occurs in some cases and widely available in a various
agricultural countries such as Viet Nam, Thailand, Indonesia, Malaysia, etc. (Kumar et

al.,, 2015; Saidur et al,, 2011). Generally, the utilization of biomass as a feedstock for
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valuable platform chemicals and fuels is called “biorefinery or bio-base g¢reen
chemistry”. The biomass composed of three main different components of cellulose,
hemicellulose and lignin. These components could be used as feedstock for synthesis
different products through catalytic transformation including dehydration, hydrolysis,
isomerization, reforming, aldol condensation, hydrogenation and esterification
reactions, etc. (Tong, Ma, & Li, 2010). The catalyst development plays a key role to
improve the production efficiency in biofuels and biorefineries (Mitsutani, 2002;
Sheldon & Van Bekkum, 2008). Many of these processes involved the use of traditional
Brgnsted acids (H,SO,, HF, HCL, p-toluenesulfonic acid) or Lewis acids (AlCls, ZnCl,, BF3)
in liquid-phase homogeneous systems or acid on inorganic supports in vapor phase
systems. However, this catalyst has many drawbacks which have a serious impact on
the environment, process instrument and cost of separation and cleaning (Corma &
Garcia, 2003; Hoelderich, 2000). An obvious solution to this problem is the replacement
of traditional Brgnsted and Lewis acids with reusable solid acids. Acid catalyst
constitute one of the most important for the heterogeneous catalyst (Hoelderich,
2000). They include mixed oxides such as silica—alumina and sulfated zirconia, acidic
clays, zeolite (Yoshida et al.,, 2017), supported heteropoly acids (Dias, Pillinger, &
Valente, 2005; Guo et al,, 2018), organic ion exchange resin, polymer resin (Aellig,
Scholz, Dapsens, Mondelli, & Perez-Ramirez, 2015), acid carbon (Antonyraj & Haridas,
2018), hybrid organic—inorganic materials such as mesoporous oxides containing organic
sulfonic acid moieties and acidic mesoporous silica (Hu et al., 2018). Solid acid catalysts
can be divided into three groups: amorphous mixed oxides including acid treated clays,
the crystalline zeolites and related materials (zeotype) catalyst, and solid acids catalyst
containing surface sulfonic acid group. The solid acids catalyst containing sulfonic acid
groups such as Amberlyst®-15, Amberlyst®-35, Nafion® resins, and Nafion-silica
composites were used in various reactions. However, a serious drawback is their limited
thermal stability and low surface area (< 0.02 m? g'!) (Sheldon, Arends, & Hanefeld,
2007; Sheldon & Van Bekkum, 2008).

One of the most interesting types is highly ordered mesoporous silica
framework with one-dimensional (1D), two-dimensional (2D) and three-dimensional

(3D) channels which could be presented high selective to the product. In this research,
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the KIT-6 with three-dimensional structure containing sulfonic groups as shown in
Figure 1.1 would be the main catalyst. It was prepared by a sol-gel technique involving
copolymerization of functionalized and non-functionalized silanes. The sol-gel process
affords material with a high surface area (300 — 800 m? g™*), high porosity and large
mesopore. This material combines a high surface area, high thermal stability and acid
strength with excellent accessibility to the active site and orderly mesopores of the
uniform pore size distribution (Sheldon et al., 2007). The functionalization method is
one of the most important factors that affect the catalyst properties. There are three
different functionalization techniques including post-synthetic functionalization silica
or grafting, co-condensation and preparation of periodic mesoporous with
organosilicas. However, there are many advantages of co-condensation method
including non-pore blocking, and homogeneous distributed of the acid site. The direct
co-condensation  of  tetraethoxysilane  (TEOS)  with  3-(mercaptopropyl)-
methyldimethoxysilane (MPMDS) in the presence of poly(ethylene oxide)-
poly(propylene oxide) block copolymer, commercially (Pluronic 123) as a templating
agent have been use under acidic conditions. When hydrogen peroxide is added to
the sol-gel mixture, the -SH groups are oxidized, affording the -SOsH functionalized
mesoporous silica within one step. In addition, the modification of surface
hydrophobicity affected rate of conversion and reusability of catalyst (Kaiprommarat,

Kongparakul, Reubroycharoen, Guan, & Samart, 2016).

Figure 1.1 Schematic diagram of three-dimensional structure of KIT-6-SOsH catalyst
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Among these mesoporous silica, KIT-6 type mesoporous silica presents
attractive properties including its pore selective properties, well-ordered structure, high
surface area, high thermal stability and good molecular transport inside the pore (Ayad,
Salahuddin, El-Nasr, & Torad, 2016; Pirez, Caderon, Dacquin, Lee, & Wilson, 2012).
Therefore, KIT-6 mesoporous silica is interesting mesoporous silica for catalyst support.
In this research, the author focused on using the KIT-6 mesoporous silica with acid
functional group as a catalyst for xylose dehydration to produce furfural, esterification
of fusel oil and glycerol etherification with n-butanol. In addition, the effect of reaction
condition including reaction temperature (°C), reaction time (h), catalyst loading (wt.%)

on catalyst performance would be investigated.

1.2 Review of literature

Currently, KIT-6 mesoporous silica catalyst has received more attention for
potential acid catalysts. Many research papers interested in KIT-6 in various applications.

(Merkache et al., 2015) studied the first catalytic behavior of conversion of
methylcyclopentane (MCP) and hydrogenation of carbon dioxide (CO,) with Fe-KIT-6
catalyst. The mesopore structure helped to improve the loading of iron molecules.
The author suggested that the molar ratio of Si/Fe mainly affected to form CO products
from CO, hydrogenation at high reaction temperature (500 °C). The catalytic activity
significantly increased with decreasing of Si/Fe molar ratio. Moreover, the low reaction
temperature provides high selectivity (100%) to n-hexane from methylcyclopentane
conversion.

(Xu et al, 2014) synthesized an acid-based bifunctional Al-KIT-6-NH,
catalyst through post-grafting and alumination method. The 3D structure of KIT-6
preferred more active sites distribution along the pore channels and prevented
agglomeration. The acid site of A-KIT-6-NH, was varied by the aluminum concentration.
The catalytic performance in Knoevenagel condensation reaction was investigated. As
the results, the catalytic activity significantly increased with increasing number of both

weak acid and weak basic sites.

Ref. code: 25625909320250YIN



(Ma et al, 2012) synthesized a Co;0,4-KIT-6 catalyst by sol-gel and
impregnation method for N,O decomposition. The author studied the effect of
hydrothermal treatment temperature in range 45 to 120 °C on pore size distribution of
KIT-6 support catalyst and different amounts of Co;04 loading. The catalyst showed
high thermal stability at reaction temperature of 350 °C and time on stream for 20 h
with 51.2% N,O conversion. As the results, the pore size and pore volume of catalyst
was affected by hydrothermal temperature which increased from 3.6 nm to 8.7 nm
when increased hydrothermal temperature from 45 to 120 °C. The author also
suggested this catalyst would approach other reactions such as oxidation of CO.

In addition, the Ag/KIT-6 catalyst was prepared by a one-pot co-
condensation method and applied to the CO oxidation reaction (Yang et al., 2017).
The co-condensation method showed well-dispersed Ag nanoparticles on KIT-6
structure which gave good catalytic activity with CO conversion up to 100% at 90 °C.
Besides, the three-dimensional mesopore structure also helped to enhance turnover
frequency (TOF).

(Zhou et al., 2013) studied CuO/KIT-6 catalyst in acetaldehyde production
from ethanol oxidation. The highly ordered bicontinuous mesoporous structure and
well-dispersed CuO particles on the KIT-6 presented the excellent catalytic activity in
ethanol conversion and acetaldehyde selectivity up to 93.8% and 96.6%, respectively.

(Pirez et al., 2012) investigated the catalytic behavior to PrSO;H-KIT-6. Both
KIT-6 and PrSO;H-KIT-6 catalysts presented a three-dimensional mesopore structure
and a large surface area up to 600 m? g''. This catalyst was applied to the fatty acid
esterification process under mild conditions. The three-dimensional structure of the
PrSOsH-KIT-6 catalyst enhanced the turnover frequency (TOF) to compare with the
Amberlyst-15 catalyst and PrSOs;H-SBA-15 catalyst with a 2D structure. The pore
accessibility affected the rate reaction of the lauric and palmitic acid esterification
process.

(Hafizi et al., 2016) synthesized the mesoporous silica KIT-6 functionalized
with propylsulfonic acid by sol-gel method for production of 5-hydroxymethylfurfural
(HMF) from fructose. The highest HMF yield and fructose conversion was 84.1% and
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100%, respectively at 165 °C after 30 min. In addition, this catalyst could be reused
five times without losing catalytic activity.

(Najafi-Chermahini & Assar, 2019) studied a mesoporous KIT-6 catalyst
functionalized with sulfonic acid (KIT-6-SOsH) and alumina-incorporated KIT-6 (Al-KIT-
6) by post-grafting and alumination method, respectively. The catalytic activity of the
Brgnsted acid catalyst (KIT-6-SO;H) and Lewis acid catalyst (Al-KIT-6) were compared
to the with esterification reaction between levulinic acid and n-butanol. As the results,
the AL-KIT-6 catalyst presented higher thermal stability than KIT-6-SOs;H catalyst.
Moreover, the AlKIT-6 catalyst could be reused up to the six cycles and slightly
deceased after the fifth cycle. However, the KIT-6-SOs;H catalyst was signification
decreased after the fourth cycle. Besides that, the KIT-6-SOs;H catalyzed for
esterification reaction could be carried out under milder conditions than Al-KIT-6.

(Najafi-Chermahini et al,, 2018) prepared a mesoporous KIT-6 silica
functionalized with sulfonic acid (-SOsH) groups by post-grafting method. The KIT-6-
PrSO;H catalyst was applied to synthesis of aryl tetrazoles derivatives from aromatic
nitrilesaryl. As the results, the aprotic solvents such as DMF was achieved a highest yield
of product (89%) at optimize conditions. The catalyst could be reused up to five times.

For the above-mentioned, the author has expressed interest and
conducted studies on the KIT-6 mesoporous catalyst and developed this catalyst for
the conversion of biomass to fuel and fine chemicals. This catalyst was prepared by
the sol-gel method and functionalization by consequent co-condensation and
oxidation method. Moreover, the surface of KIT-6 mesoporous silica was modified with
3-(mercaptopropyl)-methyldimethoxysilane (MPMDS), which contains the alkyl group
to increase their surface hydrophobicity. The accumulation of polar compounds on

the catalyst surface would be decreased.

1.3 Objectives of the research

The main objective of this dissertation has investigated the synthesis and

application of the KIT-6 catalyst to biomass conversion.
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1. To synthesis the KIT-6 mesoporous acid catalyst by a co-condensation
method and the effect of different molar ratios between tetraethyl orthosilicate (TEQOS)
and 3-(mercaptopropyl)methyldimethoxysilane (MPMDS).

2. To study the physicochemical characteristics of acid functionalized KIT-
6 catalyst by using small-angle X-ray scattering (SAXS), N, sorption analysis, X-ray
photoelectron  spectroscopy (XPS), and ammonia temperature-programmed
desorption (NH5-TPD).

3. To apply the acid-functionalized KIT-6 mesoporous silica (KIT-6-SO3H)
catalyst for furfural production from xylose dehydration in a biphasic system. The
effect of experimental condition in xylose dehydration by KIT-6 SOsH catalyst including
reaction temperature (130 - 170 °C) and reaction time (1 - 3 h), and catalyst loading
(10, 25, 50 wt.%) were investigated.

4. To study the catalytic activity of KIT-6-SOsH catalyst in esterification
between fusel oil and acetic acid. The effect of experimental condition in fusel oil
esterification comprises reaction temperature (60 — 120 °C), reaction time (1 - 5 h), the
molar ratio of acetic acid/fusel oil (1:1 - 4:1) and catalyst loading (3, 5, 7 wt.%) has
been investigated.

5. To study the catalytic activity of KIT-6-SOsH catalyst in glycerol
etherification with n-butanol. The effect of experimental condition in glycerol
etherification consists of reaction temperature (120 — 160 °C), reaction time (2 - 10 h),
the molar ratio of n-butanol/glycerol (6:1 — 12:1) and catalyst loading (5, 10, 15 wt.%)

were investigated.
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CHAPTER 2
SYNTHESIS OF SULFONIC ACID FUNCTIONALIZED KIT-6 CATALYST FOR
FURFURAL PRODUCTION BY XYLOSE DEHYDRATION REACTION

2.1 Introduction

Recently, regarding environmental pollution, the uses of alternative and
clean fuel sources also exerted a positive impact on the environment and mitigate
global warming (Alipour et al.,, 2017; Jezak et al., 2016; Yuan, Zhang et al., 2015; Zhou
& Zhang, 2016). In this concept, biomass has been interested in the field of “biorefinery
or bio-based green chemistry” and considered as renewable resources for biofuels and
bio-based chemicals. Biomass has consisted of various constituents such as cellulose
(40 - 50%), hemicellulose (25 — 35%)), lignin (15 — 25%) and other (protein, wax, etc.) as
shown in Figure 2.1. Among these components, biomass hemicellulose is the second
main composition behind cellulose which is composed of hetro-polysaccharides with
different 5- and 6-carbon monosaccharide sugar monomers (xylose, mannose, glucose,
galactose, uronic acid).

The technology of biomass conversion can be divided into thermal,
thermochemical, chemical and biochemical methods. However, all of them either
require high energy or come at a large cost (Tran et al., 2018). The catalytic conversion
has been of interest in the biomass conversion to fuel and valuable platform
chemicals. In addition, the catalytic process could selectively generate the desired
product (Agirrezabal Telleria, Gandarias, & Arias, 2014). There are many different
interests in biomass dehydration as shown in Figure 2.2. On the other hand, the
production of furfural has drawn attention from scientists and has become a significant
and valuable platform chemical in the furan-based biofuel and biorefinery industry.
From these derivatives, furfural production from acid-catalyzed xylose dehydration is
an important conversion process factor and has attracted a lot of attention from

scientists (Titirici, White, Falco, & Sevilla, 2012; Zhou & Zhang, 2016). The process allows
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not only low energy requires but also the residue that could be used as fertilizer on

agricultural plantations (Hoydonckx, Van Rhijn, Van Rhijn, De Vos, & Jacobs, 2007).
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Figure 2.1 The representative structures of constituent components in biomass
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Figure 2.2 Chemicals derived through dehydration from biomass

Owing to the abundance of hydroxyl groups in a wide diversity of natural
substances, dehydration reactions are one of the most important ways to modify and
valorize biomass. Dehydration reaction is a condition that involves when reacting
molecule has lost of water (typically an alcohol), produce an alkene or other
unsaturated product depending on the reacting compound. Dehydration are common
reaction under Lewis or Bronsted acids as shown in Figure 2.3. The Bronsted acid
catalyst makes easier the dehydration by protonating the hydroxyl group as shown in
step 1. The protonated alcohol group (R-H,O) is a more wisely leaving group than the
hydroxyl group and forms as water. Simultaneously, a carbon-carbon double bond
(C=Q) is formed in the carbon skeleton of the substrate, according to Zaitsev’s rule,
through release of the B-proton and concurrently closing the catalytic cycle (step 2)

(Li, Assary, Atesin, Curtiss, & Marks, 2014). In addition, the dehydration can be active
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under Lewis acid catalyst as well. This reaction occurs through the bonding of the
Lewis acid to the lone pair electron of the hydroxyl oxygen (step 1). The electrophilic
nature of the Lewis acid lowers the electron density in the alcohol C-O bond, resulting
in segmentation of the alcohol C-O bond and the formation of alkene and Lewis acid
hydroxide types (step 2). The Lewis acid hydroxide reacts with the released B-proton,
forming water and the original catalyst types (step 3) (Li et al., 2014).

Bronsted acid catalyzed dehydration

OH OHy*
)\4_ H+ Step1 ()\ Step 2 WO+ HOH
R Ej

Lewis acid catalyzed dehydration

ﬁ

OH Step1 HO" Step 2
LA ——= D + —— _~~_ +LA+H,0
R)\ 2 R H* X
LA=Lewis acid |l|‘)

Figure 2.3 The dehydration mechanisms with Bronsted and Lewis acid catalysts

Xylose undergo dehydration to produce furfural with loss three molecules of water
under simultaneous of heat and acid catalyzed reaction conditions. More than one
reaction mechanism of furfural production from xylose dehydration has been studied
based on different techniques and different reaction conditions could be discussed in
three kinds as shown in Figure 2.4 (Binder, Blank, Cefali, & Raines, 2010; Danon,
Marcotullio, & de Jong, 2014). Firstly, from the acyclic of pentoses, either via a 1,2-
enediol, intermediate (2) and then dehydration (Figure 2.4 a) or directly via a 2,3-(Q,
B-) unsaturated aldehyde (4) (Figure 2.4 b). In addition, from the pyranose of pentoses,
the acid catalyst coverts xylose to 2,5-anhydroxylose furanose intermediate and then
dehydrates to forms furfural (Figure 2.4 c). The 1,2-enediol derivative would provide
the 2,3-unsaturated aldehyde as a prime intermediate in the presumption of the
acyclic pathway. At lower acidities, enolization and subsequent isomerization is
favored, although the formation of furfural is decelerated and there are more options

for undesirable reactions (Danon et al., 2014).
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Figure 2.4 Mechanism of furfural production from xylose dehydration (a) via 1,2-
enolization, (b) B-elimination, (c) via cyclic intermediates

Furfural has been recognized as “one of the top chemicals from biorefinery
carbohydrates” by the US Department of Energy's in 2010 (Bozell & Petersen, 2010). In
this sense, the researcher focuses on developing of homogeneous, heterogeneous acid
catalysis and improving the reaction media. The homogeneous acid catalyst has
effective and widely used for this process such as mineral acids (H,SO4 (Antal,
Leesomboon, Mok, & Richards, 1991; Montané, Salvado, Torras, & Farriol, 2002; Suxia
et al,, 2012), HsPO,4, HCl, HNO; (Marzialetti et al., 2008), tungsten based Keggin-type
heteropolyacid (Dias, Pillinger, & Valente, 2005b), etc). However, there appeared to

have some drawbacks such as high reaction temperature, side reaction, costly, large
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amount of toxic chemicals, and difficult catalyst recycling and environmental pollution
(Isikgor & Becer, 2015; Li, Pan, Deng, Fu, & Xu, 2015). Against these drawbacks, the
heterogeneous catalyst emerged as the potential of advancement solution to these
problems. Many researchers have expressed their interest and conducted studies on
zeolites (Galarneau et al., 2003), sulfonic ion-exchange resins (Agirrezabal-Telleria,
Larreategui, Requies, GUemez, & Arias, 2011; Tuteja, Nishimura, & Ebitani, 2012) and
mesoporous silica (Agirrezabal-Telleria, Gandarias, & Arias, 2014). The acid strength,
acidity, surface area and porosity of catalyst can affect the yields, selectivity of product.
In addition, the acid functional group with a hydrophobic surface and suitable pore
size also affect the rate of conversion and furfural selectivity (Morales, Paniagua,
Melero, & lglesias, 2017). Hence, the growing interest in sulfonic acid mesoporous silica
and its rapid development because of high surface area, high acid property, good
thermal and chemical stability and adjustable in pore size. To avoid the undesired
product and increase the selectivity to desired product, they replaced the solvent
system of the reaction from single-phase to biphasic system. Accordingly, the water-
immiscible organic solvent biphasic system to separate the product simultaneous. The
organic solvent widely applied in this system such as n-butanol, 2-methyltetrahydrofuran
(2-MTHF), dimethylsulfoxide (DMSO), methyl isobutyl ketone (MIBK) and toluene.

In this chapter, the methyl propyl sulfonic acid functionalized on
mesoporous silica as KIT-6 catalyst (KIT-6-SOsH) with a three-dimensional structure was
used as catalyst for conversion of xylose to furfural under the biphasic system to
expect increase the conversion rate. The study would investigate the effect of reaction
condition on the catalytic performance. Furthermore, catalyst reusability was also

investigated.

2.2 Review of literature

(Gairola & Smirnova, 2012) synthesized furfural from hemicellulose and D-

xylose by simultaneous furfural extraction with supercritical CO, (SC-CO,) technique

without using catalyst. At the optimized conditions, 4% D-xylose loading with reaction
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temperature 230 °C for 25 min under CO, flow rate (3.6 ¢/min) with the pressure of 12
MPa gave the highest yield of furfural (68%).

(Morais et al., 2016) produced furfural production from D-xylose without
using catalyst in a biphasic system of the water, tetrahydrofuran (THF) and methyl
isobutyl ketone (MIBK) mixture. The reaction was taking place at 180 °C for 1 h, 50 bar
CO,. The furfural yield and furfural selectivity were 56.6 mol% and 63.3 mol%,
respectively. Moreover, the author also studied with hemicellulose hydrolysate
dehydration at the same conditions, the results showed the furfural yield of 43 mol%
and furfural selectivity of 44 mol%.

(Rong et al., 2012) studied furfural production from dehydration of D-xylose
under mixture of sulfuric acid catalyst and an inorganic-salts (NaCl or FeCls) as a
promoter under biphasic system (toluene/water). The highest furfural yield could reach
83% at the reaction conditions 10 wt.% of H,SO4 mixed with 2.4 ¢ NaCl, 10wt.% of
xylose and reaction time for 5 h. This research proposed that the biphasic system
could enhance the selectivity of furfural. Moreover, the addition of FeCl; promoter
decreased the ion activity in reaction system and thus, to develop more efficiency
than NaCl.

(Zhang et al,, 2013) studied the dehydration of different raw materials
including lignocellulosic biomass, xylan and D-xylose under AlCl; catalyst in ionic liquid
(1-butyl-3- methylimidazolium chloride). The highest furfural yield was 84.8 % at 170
°C for 10 seconds with dehydration of D-xylose. Besides, the furfural yields of
lignocellulosic biomass were in the range of 16.0% to 33.0%. The low furfural yield
caused by impurities in biomass.

(Choudhary et al, 2012) presented furfural production from xylose
dehydration with HCl and CrCl; catalyst. Among these, the mixture of Bronsted acid
(HCD) and Lewis (CrCls) catalyst have studied in aqueous phase and biphasic system
(water and toluene) at 140 °C for 2 h. The furfural yield increased from 29.0 to 39.0%
in aqueous phase and 76.3% in biphasic system. As the results, the Lewis acid sites
could enhance the xylose conversion rate meanwhile, the Bronsted acid sites could
improve the furfural selectivity (Figure 2.5). Moreover, the biphasic system performs a

high percentage of furfural yield.
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Figure 2.5 The pathway to form furfural production in the presence of a Bronsted acid

catalyst and combination of Lewis and Bronsted acid catalysts (Choudhary et al., 2012)

(Lam et al, 2012) studied the effect of a different graphitic catalysts
including graphene, graphene oxide, sulfonic acid functionalized graphene, and
sulfonic acid functionalized graphene oxide for xylose dehydration. At the condition of
200 °C for 35 minutes and 2 wt.% catalyst, the sulfonic acid functionalized graphene
oxide catalyst showed the highest furfural yield and furfural selectivity of 62.0% and
75.0%, respectively. The author suggested that the presence of sulfonic functional
group (-SO;H) improved the catalytic activity.

(Lourvanij & Rorrer, 1997) investigated the effect of pore size of catalyst on
the catalytic activity in dehydration reaction of carbohydrates. The microporous
structure zeolite Y gave less yield of 5-hydroxymethylfurfural (HMF) production than
the mesoporous structure.

Recently, many researches have focused on the mesoporous structure to
improve the catalytic activity of xylose dehydration. (Dias, Pillinger, & Valente, 2005a)
investigated an acid functionalized with 2D hexagonally mesoporous structure (MCM-
41) in xylose dehydration reaction. This was the first report for preparing a sulfonic
functionalized mesoporous catalyst using (3-mercaptopropyl)-trimethoxysilane as the
sulfonic precursor. This catalyst presented high catalytic activity in xylose dehydration.
However, the reusability of catalyst was still low due to the low thermal stability.

(Kaiprommarat et al., 2016) investigated the sulfonated MCM-41 (PrSO;H-
MCM-41) and methyl-propyl sulfonated MCM-41 (MPrSOs;H-MCM-41) catalysts for

producing furfural from xylose under biphasic system (water and toluene). The methyl-
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propyl sulfonated MCM-41 catalyst could improve the xylose conversion rate because
of the methyl group in anti-adsorption of furfural or water at active site, which
enhances the number of converted xyloses per active site in terms of turn over
frequency (TOF). At the optimized reaction conditions, 155 °C for 2 h, the yield and
selectivity of furfural were 93.0%, 98.0%, respectively. The author also presented the
effect of pore size on the product selectivity. The suitable pore diameter should be
between 3-6 nm which could give over 93% of furfural selectivity.

(Agirrezabal-Telleria et al., 2012) investigated and tunable the porous
structure of propyl sulfonated SBA-15 catalyst to produce furfural from xylose. The
highest furfural yield of 82% could be achieved under biphasic system (water and
toluene mixture). The author proposed that xylose diffusion was limited owing to the
low catalyst pore size. However, toluene solvent as the extracting agent could be
improved the furfural selectivity.

As mentioned above, the sulfonated functionalized mesoporous catalyst
has attracted a lot of interest and has been selected as a catalyst to be used in xylose
dehydration reaction in the biphasic system. The catalyst which contains the alkyl
group helped to increase the hydrophobicity and decrease the agglomeration of polar

compounds on the catalyst surface.
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All chemicals and equipment used in this research are shown in Table

2.1 and Table 2.2, respectively
2.3.1 Chemicals

Table 2.1 List of the chemicals used in this research

Chemicals Manufacturer Country
Acetone, Comercial grade RCI Labscan USA
Acetonitrile, HPLC grade RCI Labscan USA
n-butanol, AR grade RCI Labscan USA
D-Xylose Sigma-Aldrich USA

Ethanol Absolute, 99%

Hydrogen peroxide, AR grade, 30%
Hydrochloric acid, AR grade, 37%
Methanol, HPLC grade

3-Mercaptopropyl methyldimethoxysilane,
AR grade, 95%

Pluronic P123 triblock copolymer, poly
(ethylene glycol)-block-poly (propylene
glycol)-block-poly (ethylene glycol),

Mw = 5800, AR grade

Tetraethyl orthosilicate, AR grade, 98%

Toluene, AR grade
Sodium carbonate anhydrous (Na,COs)
Sodium sulfate anhydrous (Na,SO,)

Sulfuric acid, 98%

QReC
Sigma-Aldrich
QReC

RCl Labscan

Sigma-Aldrich

Sigma-Aldrich

Sigma-Aldrich
RCl Labscan
Ajax Finechem
Ajax Finechem

QReC

New Zealand

USA

New Zealand

USA

USA

USA

USA

USA

Australia

Australia

New Zealand

Ref. code: 25625909320250YIN



2.3.2 Equipment

22

Table 2.2 List of the instrument used in this research

Company

Autoclave reactor, 50ml

Autoclave reactor, 100ml

Autoclave reactor, 400 ml

Gas Chromatography-Mass Spectrometry
(GC-MS)

High Performance Liquid Chromatograph
(HPLQO)

Oven

Surface area & Porosimetry analyzer
Scanning Electron Microscope (SEM)
Temperature Programed Desorption of
amonia (NH5-TPD)

X-ray diffraction (SAXD)

X-ray photoelectron Spectroscopy (XPS)

Parr, model 4744, USA
Custom made by company, Thailand
Amar Equipment, India

Shimadzu, GCMS-QP 2010, Japan

Shimadzu, Japan, LC-20AT (pump),
SPD-20A (UV dectector)

Memmert UF 110

Gold App Instrument, V-sorb 2800P
JEOL, Japan, JSM-6510LV

BET-CAT (BEL, Japan)

Rigaku, TTRAX Ill and Bruker, D8 advance
ULVAC-PHI, PHI 500 VersaProbe I, Japan

2.4 Methods

2.4.1 Synthesis of sulfonic acid functionalized KIT-6-SOs;H catalyst

The sulfonic acid functionalized KIT-6 catalyst was synthesized by

co-condensation method. The molar ratio of the mixture was (1-x) TEOS: xMPMDS:

0.017P123: 1.83HCL: 1.31Butanol: 195H,0 (Tran et al., 2019).

First, 2.0 g of Pluronic P123 triblock polymer was dissolved in 73.0 g

of de-ionized water and 3.75 g of HCl 37 % at room temperature. After that, 2.0 ¢ of

n-butanol was added dropwise under stirred vigorously at 35 °C kept for 1 h. Then, the

mixture of 4.3 g of tetraethyl orthosilicate (TEOS) and a g of 3-Mercaptopropyl

methyldimethoxysilane (MPMDS) follow the ratio as mentioned before were added

dropwise and kept agitated vigorously for 24 h. Thereafter, the mixture was heated to
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a temperature 100 °C and maintained at this temperature for 24 h. The white solid
powder obtained was filtered and dried at 60 °C for 16 h. The as-synthesized sample
was removed the template by Soxhlet extraction with the mixture of ethanol/HCl
solvent at 70 °C for 24 h. Finally, the catalyst was oxidized by 30% H,O, solution for
24 h to obtain the methyl-propyl sulfonic acid functionalized KIT-6 catalyst (MPr-KIT-
6-SO;H). The catalyst was filtered, washed with DI water, and dried at 60 °C for 16 h.
The sulfonic acid functionalized KIT-6 catalyst with an x molar content of MPMDS (x:
0.1 - 0.3) was denoted as x-KIT-6-SOsH. The synthesis of this catalyst was illustrated

by Figure 2.6.

oe
\—> EtOH:HCI
10/1 (viv)
Dissolved the mixture Stirred for 24 h Hydrothermal at 100 °C - 24 h Extraction for 24 h

(P123, HCI and DI water)

OH Lo OH :
HO- 0\ H3C\ H,0, 0\ HSC\
. SN Q— o s SH
SO.H 0—Si —
N / T Oxidation \c|-|3 /
CHs 0
HO 0 HO
OH OH

KIT-6-SO4H KIT-6-SH
Figure 2.6 Synthesis scheme of the KIT-6-SOsH catalyst by the co-condensation method

2.4.2 Characterization of KIT-6 and KIT-6-SO;H catalyst
The structure ordering of KIT-6 and KIT-6-SO;H catalyst were studied
by small angle X-ray diffraction pattern (SAXD) on Rigaku TTRAX Ill X-Ray diffractometer
using Cu Kot (A = 0.154 nm) radiation, a 40kV beam voltage and a 40mA beam current
in the 20 angle of 0.5 - 5° with a resolution of 0.02° and scan speed 0.1 second per step.
The surface area and pore properties of KIT-6 and KIT-6-SOsH
catalysts were analyzed by N, sorption at -196 °C with a volumetric V-Sorb 2800P from

Gold APP Instruments. Before analysis, the samples were degassed at 50 °C for 60
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minutes, and next 60 °C for 960 minutes. The surface area was calculated by using the
Brunauer-Emmett-Teller (BET) equation. The desorption isotherm was used to get the
pore size distribution by Barrett-Joiner-Halender (BHJ) method. The total pore volume
of sample depends on the adsorbed volume of N, at a relative pressure of 0.99.

The surface chemical compositions and functional groups of the
catalysts were analyzed by X-ray photoelectron spectroscopy (XPS, ULVAC-PHI, PHI
500 VersaProbe II) with AlKoL radiation (hv = 117.40 eV) radiation. The binding energy
(BE) was corrected by the Cls peak at 284.5 eV, with S2p spectra fitted using a common
Gaussian/Lorentzian peak shape to confirm the presence of sulfonic acid on the KIT-6
surface.

The acidity and acid strength of KIT-6 and KIT-6-SOsH catalyst were
studied by using temperature programed desorption of ammonia (NH5-TPD), BETCAT
(BEL). In a typical acidity measurement, the catalyst was placed in an u-shaped quartz
cell and preheated at 750 °C for 1 h under He flow in order to get rid of moisture and
impurities within the catalyst structure. Subsequently, the catalyst was saturated with
a mixed of 5 % NH; and 95 % He at room temperature for 1 h with flow rate of 50
cm?/min. After stabilization, NH; desorption was carried out by heating from 50 °C to
400 °C at heating rate of 5 °C/min under He flow. The NHs-desorption peak was
recorded using a TCD and the adsorbed NH; concentration was quantified from the
peak area which was calibrated by the standard gas.

2.4.3 Catalytic activity in furfural production via xylose dehydration
2.4.3.1 Xylose dehydration

The mixture of xylose solution (0.5 ¢ xylose dissolved in 12.5
mL DI water), 12.5 mL toluene and KIT-6-SOsH catalysts was transferred in an autoclave
reactor (Amar Equipments, India, 400.0 mL). Then, the reactor was heated to desired
reaction temperature (130 °C, 150 °C and 170 °C) and stirred at a constant rate of 500
rpm for suspected reaction time (1 - 3 h). After being finished and cooled down, the
product was washed from the reactor by 12.5 mL DI water and 12.5 mL toluene.
Thereafter, the catalyst was separated by filtration and washed with 25 mL DI water
and 25 mL toluene to obtain the liquid product with two layers in separatory funnel.

The upper layer was collected and removed water by anhydrous sodium sulfate.
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2.4.3.2 Product analysis

The furfural yield of both two phases (toluene and aqueous
phase) were determined by high-performance liquid chromatography (Shimadzu,
Japan) connected with UV detector at Amax equals 276 nm with Agilent Eclipse XDB-
C18 column (4.6 mm ID, 250 mm length, prominence, Shimadzu, Japan) at column
temperature of 40 °C. The mobile phase at flow 1.0 mL/min with volume ratio of
acetonitrile/DI water (v/v) is 15/85, and 20.0 uL of sample would be injected.

The xylose conversion was determinized by headspace gas
chromatography-mass spectrometry (GCMS-QP2010, Shimadzu, Japan) with HP-5
column (0.25 mm ID, 30 m length, 0.25 mm film thickness). The injection temperature
was at 105 °C. The column oven temperature was started at 70 °C and heat up to 90
°C with 2 °C/min (Kaiprommarat et al., 2016; Li, Liu, Zhang, & Zhan, 2014; Tran et al., 2019).

The furfural yield, furfural selectivity, xylose conversion and
turnover frequency were calculated by Equation 2.1, 2.2, 2.3 and 2.4, respectively

(Kaiprommarat et al., 2016; Xu et al., 2015).

. Moles of produced furfural
Furfural yield = x 100 (2.1)

Moles of initial xylose

o Moles of produced furfural
Furfural selectivity = x 100 (2.2)

Moles of reacted xylose

; Moles of reacted xylose
Xylose conversion = x 100 (2.3)

Moles of initial xylose

Number of converted xylose
Turnover frequency (TOF) = (2.4)

Number of acid sites x reaction time

2.5 Results and discussion

2.5.1 Characterization of KIT-6-SO;H catalyst
2.5.1.1 Small angle X-ray diffraction (SAXD)
The structure and three dimension bi-continuous cubic

mesoporous silica of KIT-6 and KIT-6-SO;H catalyst were investigated by SAXD as shown
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in Figure 2.7. Both KIT-6 and KIT-6-SO;H catalyst presented a distinct-peak and two
weak broad peaks at 20 of 0.76°, 0.89° and 1.53° which corresponded consecutively
(211), (220), and (332) reflection plane (Liu et al., 2018; Pirez et al., 2012). However, the
intensity of SAXD peak decreased with increasing molar ratio of MPMDS:TEOS resulting
that the structure of KIT-6-SOsH catalyst became disordered. The less order structure
caused from stuffing of the mercaptoalkoxide (Si-O-R-SH) molecules hinder the
formation of ordered porous structure (Ng, Mohd Subari, Marie, Mukti, & Juan, 2013;
Wang, Lin, Chan, & Cheng, 2005). Besides, the reflection peak KIT-6-SO;H catalyst was
shifted to higher 20 than KIT-6 due to the reduction of pore size. As the results, it
could prove that functionalization has occurred inside the mesopore channel.

Therefore, all x-KIT-6-SO3H catalyst gave smaller pore size than pristine KIT-6.

211
w
c
>
S 0.3-KIT-6-SO;H
2
2
3 0.2-KIT-6-SOzH
=
0.1-KIT-6-SO,H
220
e KIT-6
0.5 1 1.5 2 2.5 3

2 Theta (degree)
Figure 2.7 SAXD patterns of KIT-6 and KIT-6-SOsH catalyst

2.5.1.2 N, sorption analysis
The textural properties of KIT-6 and KIT-6-SOsH catalyst were
studied by nitrogen sorption which their isotherms are presented in Figure 2.8 (a). The
isotherm of both KIT-6 and KIT-6-SOsH catalyst revealed an IUPAC type IV indicating

mesoporous structure. The isotherm of KIT-6 presented a hysteresis type H1 to imply
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a well-defined open cylindrical pore structure and facile pore connectivity. Meanwhile,
the KIT-6-SOsH catalyst isotherm presented a hysteresis type H4 corresponded to a
narrow-slit pore, particles with internal voids of regular shape and broad size
distribution and disordered structure. An increase of MPMDS:TEOS ratio resulted in
increased degree in the disorder mesoporous structure, perhaps because of the steric
effect and close packing of the alkyl-sulfonic chain to prevent the pore arrangement
(Rac, Molnar, Forgo, Mohai, & Bertoti, 2006; Wang et al., 2005). The increasing of
MPMDS:TEOS molar ratio affected to decrease of the BET surface area, porosity was
presented in Figure 2.8 (b) and Table 2.3. The KIT-6 presented large surface area (Sger
= 872 m?/g) which was higher than the 0.3-KIT-6-SO;H mesoporous silica catalyst (Sger
= 225 m?/g). In addition, pore size of KIT-6-SOsH catalyst decreased from 4.70 nm to
4.50 nm with increased MPMDS:TEOS molar ratio from 0.1 to 0.3. The excessive swelling
MPMDS may destroy the mesoporous structure that reflected to continuously enlarge
the pore size of KIT-6-SO;H catalyst (Rac et al., 2006).

Table 2.3 Textural properties and acidity of KIT-6 and KIT-6-SO;H catalysts

BJH pore
Surface Pore size Acidity Acid density
Catalyst volume
area (m%g)  (nm) (mmol/g)  (mmol/m?)
(cm?/9)
KIT-6 872 6.2 0.88 0.02 n/d
0.1-KIT-6-SOzH 269 a.7 Q.2 0.69 0.003
0.2-KIT-6-503H 157 4.6 0.13 1.25 0.008
0.3-KIT-6-SO3H 225 4.5 0.10 1.53 0.007
3" used of
17 2.8 0.12 n/d n/d

0.2-KIT-6-SO5H
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Figure 2.8 (a) Nitrogen sorption isotherms and (b) pore size distribution of (i) KIT-6,
(i) 0.1-KIT-6-SO3H, (iii) 0.2-KIT-6-SOsH and (iv) 0.3-KIT-6-SO;H catalyst
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2.5.1.3 X-ray photoelectron spectroscopy (XPS)

The surface chemical compositions of KIT-6 catalysts were
investigated by X-ray photoelectron spectra of Cls, Si2p, S2p and O1s (Figure 2.9). The
Cls peaks at binding energy 284.8 eV, 286 eV, and 289 eV were corresponded to C-C,
C-O and -COO bonds, respectively. Furthermore, XPS spectra of Si2p showed
sequential peaks of Si-O-Si and C-Si-O- at binding energy 103.3 eV and 101.4 eV
attributed of SiO, on the KIT-6 structure. The peak of S2p at 168.8 eV assigned to
sulfonic acid groups (-SOsH) on KIT-6 structure (Moulder, 1995; Russo et al., 2014). This
result revealed of the precursor thiol (-SH) group was successful oxidized to the

sulfonic acid group.

(@) Ols

(i) Cls s2p g0,

L R

(if)

o e AN faul/ |

Intensity (a.u.)

0
il WA -

800 600 400 200 0
Binding energy (eV)

Figure 2.9 XPS spectra of (a) Wide scan, (b) Cls, (c) Si2p, (d) S2p and (e) Ols of
(i) 0.1-KIT-6-SO3H, (ii) 0.2-KIT-6-SO5H and (i) 0.3-KIT-6-SO;H catalyst
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Figure 2.9 XPS spectra of (a) Wide scan, (b) Cls, (c) Si2p, (d) S2p and (e) O1s of
(i) 0.1-KIT-6-SO3H, (ii) 0.2-KIT-6-SO;H and (iii) 0.3-KIT-6-SO5H catalyst (cont.)
2.5.1.4 Ammonia temperature programmed desorption (NH;-TPD)
The NH;-TPD of catalysts presented two different acid sites as
shown in Figure 2.10 and Table 2.3. The low and high desorption temperature of
ammonia corresponded weak and strong acid sites (Roman Aguirre, Gochi, Sanchez, de
la Torre, & Aguilar Elguezabal, 2008). The first peak as weak acid sites was observed at

the temperature range of 130 — 150 °C that represent desorption of ammonia from
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silanol group (Si-OH), Si-O-Si bridge, and O-H group. Meanwhile, the second peak

presented at high temperature of 260 — 300 °C which ascribed to strong acid sites (-

SOsH group). The total acidity decreased from 1.53 to 0.69 mmol/g when the

MPMDS:TEOS molar ratio decreasing from 0.3 to 0.1 because of the decreased number

of sulfonic acid sites on KIT-6 structure.
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Figure 2.10 NH;-TPD profile of KIT-6 and KIT-6-SOs;H catalysts

2.5.2 Catalytic activity in furfural production via xylose dehydration

The catalytic performance in xylose dehydration to furfural was

studied by sulfonic acid-functionalized mesoporous silica (KIT-6-SO;H) catalyst in the

water/toluene bi-phasic system. In this part, the experiment was carried out at different

reaction temperatures, reaction times, catalyst loadings. Besides, the effects of acid

density of catalyst, MPMDS:TEOS molar ratio on the yield and selectivity of furfural

were investigated.
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2.5.2.1 Effect of catalytic activity and catalyst loading

The effects of catalytic activity and selectivity on xylose
conversion at three different molar ratios of MPMDS:TEOS on catalyst are shown in
Table 2.4. Among these, the difference in MPMDS:TEOS molar ratios had influenced
the acidity and pore diameter of the catalyst. The 0.3-KIT-6-SO;H catalyst gave the
highest xylose conversion (98.01%) because of the highest acidity. The xylose
conversion decreased with decreasing molar ratios of MPMDS:TEQS. Meanwhile, the
turnover frequency (TOF) increased. Hence, the catalytic activity was affected by
acidity and acid density as well. The 0.1-KIT-6-SO;H catalyst presented low acid density
but still save high xylose conversion due to the fast reaction rate, the reactant good
accessibility toward the catalyst sites than 0.2-KIT-6-SOs;H which was higher acid
density. However, the 0.3-KIT-6-SOsH catalyst presented high acidity but TOF was
lowed owing to the disruption of the 3D catalyst structure. Besides that, (Cortés,
Pineros-Castro, & Campos Rosario, 2013) reported the xylose dehydration carried out
without catalyst at 170 °C for 4 h as shown in Table 2.4. The xylose conversion was
reached to 86.20% but the furfural selectivity was low (17.10%) since many by-
products were formed. Normally, side reactions, such as isomerization, condensation,
and resinification could occur during the production of furfural from D-xylose resulting
in the formation of organic acids as undesired by-products (Termvidchakorn et al., 2017).

Therefore, the 3D structure of KIT-6 catalyst could enhance
the reaction rate and diffusion of reactant to the catalyst sites. In addition, the 0.2-KIT-
6-SO3H catalyst gave the highest furfural selectivity (94.65%) and furfural yield (92.29%)
which was affected by the highest acid density. As mention above, the 0.2-KIT-6-SO;H
catalyst was not only shown the high conversion of xylose, but also high yield and
selectivity of furfural which was selected as an optimized catalyst for the variation

reaction conditions.
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Table 2.4 The catalytic activity in the dehydration of xylose process under different

x-KIT-6-SO;H catalysts

Catalyst Conversion (%) Yield (%) Selectivity (%)  TOF (h™)
0.3-KIT-6-SO3H 98.01 88.41 90.21 8.58
0.2-KIT-6-SO3H 97.50 92.29 94.65 10.43
0.1-KIT-6-SO3H 96.47 58.66 60.81 18.54
*No catalyst

86.20 n/d 17.10 n/d

(Cortés et al., 2013)

*Reaction conditions: 170 °C — 4 h, D-xylose (0.75 g), and deionized water (25 mL) as a solvent

Figure 2.11 shows the effect of catalyst loading on xylose

conversion, yield and selectivity of furfural. At catalyst loading 10 wt.%, the yield and

selectivity of furfural were low due to the less amount of acid sites. Accordingly, the

higher catalyst loading gave a higher amount of acid sites to give a high yield and

selectivity of furfural. However, an excess amount of catalyst is not essential for this

reaction to reduce furfural yield and furfural selectivity (Halilu et al., 2016). This may

be due to poor mixing in the high viscosity of the reaction mixture, creating resistance

to mass transfer in the multi-phase system. Therefore, the suitable catalyst loading

was 25 wt.% to produce 97.50%, 92.50% and 93.90% of xylose conversion, furfural

selectivity, and furfural yield, respectively.
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Figure 2.11 Catalytic activity of xylose dehydration at 170 °C for 2 h with different
KIT-6-SOsH catalyst loading

2.5.2.2 Effect of reaction temperature

The reaction temperature was studied at 130 °C, 150 °C and
170 °C. The xylose conversion, furfural selectivity and furfural yield were significantly
affected by reaction temperature as shown in Figure 2.12. The xylose conversion
increased from 83.10% to 97.50% when the temperature increased from 130 °C to 170
°C, due to endothermic reaction (Huiling-Li et al., 2014; J. Zhang, Zhuang, Lin, Liu, &
Zhang, 2012). A higher temperature also favored the furfural selectivity, which
increased from ~43% at 130 °C to nearly 95.00% at 170 °C. The highest furfural yield
and furfural selectivity were 92.50% and ~ 95.00%, respectively at 170 °C. Therefore,

the optimal reaction temperature was 170 °C.
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Figure 2.12 Catalytic activity of xylose dehydration at reaction time of 2 h with
different reaction temperature under 25wt.% of 0.2-KIT-6-SO;H catalyst

2.5.2.3 Effect of reaction time

The xylose conversion, furfural yield and furfural selectivity at
different reaction time present in Figure 2.13. The reaction time slightly affected
conversion of xylose because the chemical equilibrium was approached very fast (Tran
et al,, 2019; Tran et al., 2018). The xylose conversion could be achieved 97.70 % within
2 h, while the furfural selectivity initially increased from 80.90% to 94.70% after 2 h.
As the results suggested that the reaction rate of xylose dehydration was fast due to
the 3D structure of the catalyst, which could enhance the diffusion of reactant to the
catalyst sites. However, the furfural selectivity decreased to 85.20% after 3 h. Hence,
the longer reaction time could be going to further reactions including polymerization
and olisomerization to furanic resins, a solid residue and formation of soluble
degradation products (Huiling-Li et al., 2014). Besides, the yield of furfural was affected
by reaction temperature and reaction time which obeyed a similar trend to the furfural

selectivity. The optimal reaction time was 2 h.
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Figure 2.13 Catalytic activity of xylose dehydration at 170 °C with different reaction
time under 25wt.% of 0.2-KIT-6-SO;H catalyst

2.5.2.4 Reusability of catalyst

The stability of the KIT-6-SOs;H catalysts was carried out with
0.2-KIT-6-SO;H over three cycles at optimize conditions (170 °C — 2 h — 25 wt.% catalyst
loading) as shown in Figure 2.14. The xylose conversion was slightly decreased from
98.69 % to 93.02 % after 3" cycle. Beside that the furfural selectivity decreased by 29
% after 3™ cycle. The reduction of the catalytic activity and the significantly decreased
in furfural selectivity was resulted by the deactivation of catalyst (Kaiprommarat et al,,
2016; Tran et al., 2019). Moreover, the loss of active site from further reaction was
reached to the deposition of coke on the catalyst surface.

This deactivation of catalyst could be confirmed by the
characteristic N, sorption and SEM micrographs of spent catalyst. The structures of the
spent 0.2-KIT-6-SOsH catalyst after 3 cycles presented H3 hysteresis loop with
aggregates of plate-like particles forming slit-like pores. The low BET surface area (17

m?/g) was given due to pore blocking, the pore size of spent catalyst decreased from
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4.60 to 2.82 nm were reported in Figure 2.15 and Table 2.3. The surface area spent
0.2-KIT-6-SOsH catalyst decreased due to the surface covered by reactants and/or
products which could be observed by SEM as shown in Figure 2.16. In addition, the
surface area of the spent KIT-6-SO;H catalyst dramatically decreased owning to loss of
internal surface area. The SEM micrographs of the spent 0.2-KIT-6-SO;H catalyst

presented the agglomeration of the covered by reacting and product compounds.

mConversion (%) OYield (%) O Selectivity (%)
100

S (o)) (o]
o o o
L L 1

furfural selectivity (%)

N
o
1

Xylose conversion, furfural yield,

Fresh 1st 2nd 3rd
Cycle

Figure 2.14 Catalytic activity of xylose dehydration of fresh and reused catalyst at
170 °C for 2 h under 25 wt.% 0.2-KIT-6-SO;H catalyst loading
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Figure 2.15 N, sorption and pore size distribution of 3 used 0.2-KIT-6-SO5H catalyst
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Figure 2.16 SEM micrograph of (a) fresh 0.2-KIT-6-SO;H catalyst and (b) after 1*" used
and (c, d) after 3" used catalyst at 170 °C for 2 h under 25 wt.% catalyst loading
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2.6 Conclusions

The KIT-6-SO;H catalyst could be prepared by sequential co-condensation
and oxidation method with different molar ratios between MPMDS and TEOS. The pure
KIT-6 and KIT-6-SO5H catalysts were presented large surface area up to 872 m%/g. The
KIT-6 and KIT-6-SO3H catalyst contained the mesopore structure. Besides that, SAXD
has demonstrated the ordered structure with cubic la3d symmetry three-dimensional
structure of both KIT-6 and KIT-6 catalyst. The 3D structure of the catalyst was
discovered to be an important factor for enhanced the xylose conversion rate. The
catalyst was tested the catalytic performance in dehydration of xylose to produce
furfural. The highest furfural yield, furfural selectivity, and xylose conversion at
optimized conditions were 92.5 %, 94.7 %, 97.7 %, respectively. The 0.2-KIT-6-SO5H
catalyst was the best catalyst in terms of xylose conversion, selectivity and yield of
furfural, as well as the high TOF. The 0.2-KIT-6-SO3H catalysts could be reused up to
three cycles. The deactivation of catalyst was mainly caused by coke deposition to
cover the active sites. In conclusion, the KIT-6-SOs;H catalyst can be a candidate the
heterogeneous solid acid catalyst to perform the good performance in xylose

dehydration.
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CHAPTER 3
PRODUCTION OF ISOAMYL ACETATE FROM FUSEL OIL USING A
SULFONIC ACID FUNCTIONALIZED KIT-6 CATALYST

3.1 Introduction

Nowadays, it is well known that the amount of fossil fuels all over the
world is limited and non-renewable. The consumption of energy generated from fossil
fuels tends to increase with the development of the economy and the growth of the
global population. Moreover, the use of fossil fuels results in an increase of greenhouse
gas which leads to global warming. (AlNouss, McKay, & Al-Ansari, 2019; Gebremariam &
Marchetti, 2018) Therefore, the utilization of renewable resources for fossil fuel
replacement has been interested. (Dasan, Lam, Yusup, Lim, & Lee, 2019; Janampelli &
Darbha, 2018; Kakakhel et al., 2019; Wu, Wang, Zheng, Wang, & Han, 2019) Recently,
gasohol, a mixture of gasoline and ethanol has been promoted and completely
replaced conventional gasoline leading to the fast growth of bioethanol industry. As a
result, fusel oil a by-product of bioethanol fermentation (C5-Cs alcohols mixture) was
also concurrently produced during the production of bioethanol which is close to 0.25
vol.% of bioethanol. In Brazil, a main bioethanol production country, the amount of
this by-product was reached more than 59 million gallons (Pereira et al., 2015). Hence,
the value-added of fusel oil is an interesting topic for adding economic viability to
bioethanol industry. It is interesting that isoamyl alcohol (Cs) is found as the main
component in fusel oil which could be used to produce isoamyl acetate which is used
in pharmaceutical manufactures, food and fragrance. This component could be
obtained via both esterification routes: enzymatic catalyst and chemical catalyst.
(Corregidor, Acosta, Gonzo, & Destéfanis, 2020; Zare, Golmakani, & Niakousari, 2019)
The esterification reaction is both slow and reversible. Esterification is mainly the
reaction between a carboxylic acid RCOOH and an alcohol R'OH (where R and R' can
be the same or different) to form esters. The isoamyl alcohol esterification and

mechanism of this process is shown in Figure 3.1. First, the acetic acid took a proton
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of (hydrogen ion) from acid catalyst to form the protonation of the carboxyl group of
the acetic acid and was attacked by the nucleophilic alcohol group on the carbonyl,
presenting with a tetrahedral intermediate. (1,2) Then, this tetrahedral intermediate
undertook transfer of the proton to produce a water molecule followed by loss of a
proton and made easy the breakdown of the transition state. (3,4) Next, the carbonyl
group regenerated and dehydrated the molecule of water results in isoamyl acetate
product when protonation on the oxygen of the carbonyl group was captured by a
water molecule and produced the HsO" (5) (Feygroupchem, January 8, 2014; Teo &
Saha, 2004).
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Figure 3.1 The fusel oil esterification to synthesis of isoamyl acetate (banana oil)

under acid catalyst (Feygroupchem, January 8, 2014; Teo & Saha, 2004)

On the view of approaches, process improvement and development of
catalyst have been focused on. Process improvement prefers to increase the purity of
ester product with a separation process while development of catalyst focuses on the
use of biocatalysts and chemical catalysts. Typical achievements in process

improvement were distillation procedure which reduced operating cost up to 40% (Li,
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Zhou, Sun, & Zhang, 2019). Furthermore, vapor-liquid equilibrium thermodynamics in
binary mixture of ester product was investigated (Sanchez, Sanchez, Orjuela, Gil, &
Rodriguez, 2017). On the other hand, the use of supported lipase-based enzyme in
both batch and continuous system was studied in esterification process (Vilas-Boas,
Ceron, Bento, & de Castro, 2018). Conversion level at 95% of isoamyl butyrate was
observed without any required organic solvent under microwave irradiation for 2 h
(Bansode & Rathod, 2018). Moreover, the reaction time was six times reduction when
applying ultrasonic to the esterification reaction system (Nyari et al., 2018). However,
the purity of the product was low and large amount of waste from the reaction.
Meanwhile, a chemical catalyst performed high potential in commercial
scale of fusel oil esterification. (Osorio-Viana, Duque-Bernal, Fontalvo, Dobrosz-Gomez,
& Gomez-Garcia, 2013) found that the reaction rate was strongly affected by the
sorption affinity when investigating kinetic behavior in esterification reaction of amyl
alcohol and acetic acid with Amberlite IR-120 catalyst. Nevertheless, (Wang, Liu, Yuan,
& Guo, 2013) reported that the ion exchange resin catalyst performed the catalytic
performance in isoamyl acetate synthesis as 95% of ester yield within reaction time of
2 h. However, those polymeric material catalysts were low thermal stability and
surface area leading to the limitation in practical use. On the other hand, inorganic
materials appeared a good candidate to take over the drawbacks of polymeric based
catalyst. (Jiang, Xu, Zeng, Xue, & Li, 2018) investigated kinetic pathway of the
esterification reaction of isoamyl alcohol and lactic acid using sodium hydrogen
sulphate on silica gel support catalyst (silica gel-based catalyst). The author reported
that the dynamic model Eley-Rideal (ER) was the most appropriate for this esterification
reaction. The lactic acid conversion could be over 90% at 90 °C for 1500 minutes and
lactic acid:alcohol molar ratio of 1:5. Isoamyl acetate yield could be reached 94% with
sulfated TiO, at the reaction condition of temperature of 130 °C for 5 h with acetic
acid:alcohol molar ratio of 1.7 (Afshar et al, 2015). Moreover, isoamyl alcohol
conversion was reached to 98% when HZSM-5 zeolite catalyst was used in the reaction
between isoamyl alcohol and vinyl acetate. However, the selectivity of isoamyl acetate
competed with di-isoamyl alcohol acetal (Corregidor et al., 2020). In addition, iso-

pentanol and acetic acid esterification was also conducted in a membrane reactor
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(Xue et al,, 2019). The formation of water was separated during the reaction leading to
a remarkable increase in isoamyl acetate yield up to 98% for 160 h of operation.
However, in order to archive higher yield of isoamyl acetate, high temperature of
reaction and long reaction time were required. Moreover, reusability of the catalyst
was poor due to water from the reaction. Low surface area and small pore size caused
the limiting for accessibility of reaction site and leading to deactivation. Therefore,
highly effective and selective catalyst would be developed. Sulfonated carbon and
sulfonic acid functionalized mesoporous silica were solid catalyst to perform
outstanding performance in catalyzing the organic reaction (Islam et al., 2019; Nowicki,
Jaroszewska, Nowakowska-Bogdan, Szmatota, & Itowska, 2018). (Karnjanakom,
Maneechakr, Samart, & Guan, 2019; Ramdani et al., 2019) studied the carbohydrate
glycosylation and sugar transformation. The author found that sulfonated carbon gave
the excellent catalytic performance with high reusability. In addition, (Ponnuru et al,,
2018) studied enantioselective nitroaldol reaction using sulfonic functionalized
mesoporous silica SBA-15. The author found that the catalyst showing high catalytic
performance and high product selectivity.

In this chapter, the author proposed a new mesoporous silica KIT-6
functionalized with sulfonic acid catalyst for esterification reaction between acetic acid
and fusel oil. This catalyst was expected to improve diffusion effect of intra-particle
(Karnjanakom et al., 2016) due to its three dimensional porous structure. The catalyst
would be synthesized by hydrothermal process and characterized its physical
properties including NH;-TPD, XPS, SAXS, N, sorption. The fusel oil, without purification
was collected from a KTIS bioethanol company. The study would be investigated the
effect of reaction condition on the catalytic performance. The catalytic performance
of the catalyst was benchmarked with conventional catalyst under optimized

conditions. Furthermore, catalyst reusability was also investigated.

3.2 Review of literature

(Bi et al., 2008) studied preparation of isopentyl acetate from esterification

of acetic acid and isoamyl alcohol by immobilized Cadida Antarctica Lipase. At the
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optimized conditions of 9% enzyme loading with reaction temperature 40 °C for 6 h
and molar ratio of acid:alcohol was 1:2, 92% vyield of ester could be achieved. In
addition, this enzyme could be reused up to six times.

(Krishna et al,, 2001) synthesized isopentyl acetate using Rhizomucor
miehei lipase catalyst. The author investigated the effect of reaction parameters
including molar ratio of substrate (acid): nucleophile (alcohol) and enzyme
concentration. At the optimizing conditions of 10 g/L enzyme content with reaction
temperature 40 °C for 72 h and molar ratio of acid:alcohol was 1:2, the yield of product
could be reached above 80% with reusability of catalyst up to ten times.

(Zare et al,, 2019) synthesized isoamyl acetate with different acyl donors
(acetic acid, acetic anhydride, and ethyl acetate) using lipase catalyst under microwave
irradiation. This research also compared different reactor systems including microwave,
ohmic, ultrasound, and incubator. The author suggested that the microwave technique
gave the highest isoamyl acetate yield up to 100% at the optimize conditions of
reaction time 1 h, 1% Novozyme 435, acetic anhydride: isoamyl alcohol ratio of 1:1,
agitation speed of 120 rpm and microwave power 100W. The catalyst could be reused
up to seven times.

The application of biocatalyst for isoamyl acetate production could be
carried out at low reaction temperature and gave high purity of product. Furthermore,
the enzyme could be reused. However, the rate of the reaction was low to take long
reaction time. Hence, many researchers have focused on the heterogeneous catalyst
to improve the catalytic activity.

(Pang et al,, 2008) studied the isoamyl alcohol esterification using an
expandable graphite catalyst. At the optimizing conditions, the yield of isoamyl acetate
could be obtained 96.0%.

(Teo & Saha, 2004) examined the esterification of isoamyl alcohol
esterification using cation-exchange resin (Purolite CT-175) catalyst in batch reactor.
The kinetics of heterogeneous catalyzed esterification was studied. At the optimizing
conditions of 85 °C for 6 h, molar ratio of isoamyl alcohol to acetic acid of 2:1 and 10
wt.% catalyst loading resulted in the equilibrium conversion of acetic acid about 80%.

This catalyst studied reusability up to three times. The author reported that the
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Langmuir-Hinshelwood-Hougen-Watson (LHHW) kinetic model was the most
appropriate for this esterification reaction.

As mentioned above, the sulfonated functionalized group has attracted a
lot of interests and has been selected as a functional group for KIT-6 catalyst to be
used in fusel oil esterification reaction. This catalyst was expected to improve the
diffusion effect of intra-particle (Karnjanakom et al., 2016) due to its three dimensional

porous structure.

3.3 Materials

All chemicals and equipment used in this research were shown in Table

3.1 and Table 3.2, respectively.

3.3.1 Chemicals

Table 3.1 List of the chemicals used in this research

Chemicals Manufacturer Country
Acetone, commercial grade RCI Labscan USA

Acetic acid, AR grade QReC New Zealand
n-Butanol, AR grade RCl Labscan USA

Ethanol Absolute, 99% QReC New Zealand
Fusel oil KTIS Thailand
Hexane, AR grade, 99% QReC New Zealand
Hydrogen peroxide, AR grade, 30% QReC New Zealand
Hydrochloric acid, AR grade, 37% QReC New Zealand

3-Mercaptopropyl methyldimethoxysilane,
AR grade, 95%

Methyl heptadecanoate, 99.99%

Pluronic P123 triblock copolymer, poly
(ethylene glycol)-block-poly (propylene
glycol)-block-poly (ethylene glycol),

Mw = 5800, AR grade

Sigma-Aldrich

Sigma-Aldrich
Sigma-Aldrich

USA

USA
USA
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Table 3.1 List of the chemicals used in this research (cont.)

Tetraethyl orthosilicate, AR grade, 98%

Sodium bicarbonate anhydrous (NaHCO5)

Sodium carbonate anhydrous (Na,COs)
Sodium sulfate anhydrous (Na,SO,)
Sulfuric acid, 98%

Sigma-Aldrich USA

Ajax Finechem Australia
Ajax Finechem Australia
Ajax Finechem Australia

QReC New Zealand

3.3.2 Equipment

Table 3.2 List of the instrument used in this research

Company

Autoclave reactor, 50ml

Gas Chromatography-Mass Spectrometry
(GC-MS)

High Performance Liquid Chromatograph
(HPLQ)

Oven

Surface area & Porosimetry analyzer
Scanning Electron Microscope (SEM)
Temperature Programed Desorption of
amonia (NH5-TPD)

X-ray diffraction (SAXD)

X-ray photoelectron Spectroscopy (XPS)

Parr, model 4744, USA
Shimadzu, GCMS-QP 2010, Japan

Shimadzu, Japan, LC-20AT (pump),
SPD-20A (UV dectector)

Memmert UF 110

Gold App Instrument, V-sorb 2800P
JEOL, Japan, JSM-6510LV

BET-CAT (BEL, Japan)

Rigaku, TTRAX Ill and Bruker, D8 advance
ULVAC-PHI, PHI 500 VersaProbe I, Japan

3.4 Methods

3.4.1 x-KIT-6-SO3;H catalyst synthesis

Co-condensation method was used for the preparation of the KIT-6-SOsH

catalyst, in generally, with a molar compositions mixture of 195 H,O: 1.31 n-butanol: 0.017

Pluronic triblock copolymer (P123): 1.83 HCl: x 3-mercaptopropyl(methyl)dimethoxysilane

(MPMDS): (1-x) tetraethoxysilane (TEOS), where x was from 0.1-0.3 (Tran et al., 2019).
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The synthesis method was as follow: using a mixture of 1.88 ¢ HCl
(37%) and 37.0 ¢ DI water completely dissolve 1.0 ¢ of P123 (P123 acts as structure-
directing agent). After that, under vigorous stirring, 1.0 ¢ n-butanol was added with
continuous stirring for 1 h at temperature of 35 °C. Then, a solution of 2.15 ¢ of TEOS
and a ¢ MPMDS follow the ratio as mentioned before was dropped wisely to the
mixture and stirring for 24 h with the temperature of 35 °C before treating the mixture
in autoclave for hydrothermal at the condition of 100 °C for 24 h. After hydrothermal
treating step, the solid particle was collected and dried for 12 h at temperature of 80
°C. In the following step, Soxhlet extraction was used to remove remained surfactant
with the solvent mixture of HCl: ethanol volume ratio at 1:10 to obtain sulfhydryl
functionalized KIT-6 mesoporous silica (KIT-6-SH). At final step, the collected solid was
oxidized with 30% H,O, at ambient temperature for 24 h, the sulfonic acid-
functionalized KIT-6 catalyst was finally obtained. This catalyst was designated as x-
KIT-6-SO5H catalyst (x: molar content of MPMDS).

3.4.2 Characterization of synthesized catalyst

Small-angle X-ray diffraction (SAXD) was used to characterize pore
arrangement of catalyst within 20 range of 0.5° to 5°, a resolution of 0.02° and scan
speed 0.1 second per step using radiation of Cu Ko on a Rigaku TTRAX IlI X-ray
diffractometer.

Nitrogen (N,) sorption technique was used to measure BET surface
area and pore properties, pore diameter was calculated by Barrett-Joyner-Halenda
(BJH) using the data of N, desorption region of the isotherm. The nitrogen (N,) sorption
was conducted by a V-sorb 2800 P (Gold APP Instruments Corporation) with the
condition of -196 °C.

X-ray photoelectron spectroscopy (XPS) was applied to analyze
elemental composition and chemical state of catalyst. The XPS carried out with Al Kot
X-ray radiation on a ULVAC-PHI, PHI500 VersaProbe Il. Cls peak at 284.5 eV was used
to correct other peaks. To prove the present of sulfonic acid functional group on KIT-6
surface, S2p spectra was fitted with Gaussian/Lorentzian peak shape for the confirmation.

Ammonia-temperature programmed desorption (NHs-TPD) was

employed to measure acidity of the catalyst obtained by using a BELCAT (BEL
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instrument). In a measurement, u-shaped quartz cell was used to pack the catalyst
inside. Then the cell was preheated under 50 cm?/min He for 1 h at 750 °C to remove
moisture remaining in the structure of catalyst. In the following step, a mixture of 5
%NH3/95 %He was flown to the cell for saturating environment surrounding of catalyst
in the cell at ambient temperature for 1 h. When the system inside the cell was stable,
NH; desorption process was conducted by heating the cell to 400 °C under He flow at
heating rate 5 °C/min. The amount of desorbed NH; was detected by TCD detector.
3.4.3 Catalytic activity in isoamyl acetate production via fusel oil and
acetic acid esterification
3.4.3.1 Fusel oil esterification
Isoamyl alcohol was determined as the main chemical
composition of fusel oil used for this work as listed in Table 3.3. Esterification of fusel
oil and acetic acid formed isoamyl acetate as a desired product. First, the mixture of
the reactants and catalysts was stirred at 800 rpm in a small glass bottle. The
conditions of the reaction, such as reaction time, reaction temperature, catalyst loading
was set according to the investigation requirement. After reaction finished, the reaction
mixture was cooled and separated catalyst from the mixture. The liquid product was
collected and washed with cold water several times. The remain acetic acid was
neutralized by 5 wt.% solution of NaHCO; prior to obtain the final product. The
moisture in organic phase was removed by anhydrous sodium sulfate. For the
reusability study of catalyst, the used catalyst was washed by acetone, then dried at
70 °C and re-oxidized by H,0, (Hua et al., 2013). The catalytic activity of used catalyst

with and without re-oxidation were compared under the same reaction condition.
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Table 3.3 Chemical composition of fusel oil

Component Concentration (%)
Isopropyl alcohol 3.32
Butanol (n, t, i-BuOH) 9.95
3-Methyl-2-butanol 1.42
Isoamyl alcohol 71.83
3-Methyl-2-pentanol 0.54
1-Hexanol 0.44
2-Heptanol (§25 )
Acetyl furan 0.77
Acetic acid 0.84
Other 10.58

3.4.3.2 Product analysis

The isoamyl acetate vyield was determined by gas
chromatography (Shimadzu GC-17A, flame ionization detector). The capillary column
was DB-WAX (30.0 m length, 0.25 mm internal diameter and 0.25 mm film thickness).
The injection was split mode with 27 mL/min of split rate. The temperature program
was heated to 50 °C, hold equilibration for 3 min, heated to 100 °C at heating rate of
30 °C/min and hold for 2 min, followed by increasing to 220 °C at heating rate of 25
°C/min, hold for 3 min and the temperature of injector and detector was 250 °C. The
isoamyl acetate yield was calculated by integration area of the peak of methyl

heptadecanoate (C17) as an internal standard by Equation 3.1.

) Isoamyl acetate CEI X VEI
Isoamyl acetate yield = X x 100 (3.1)
Ag m

Aisoamyt acetate 1S the peak area of isoamyl acetate production

Ag is the peak area of internal standard (methyl heptadecanoate)
Cg is the concentration of the internal standard (mg/mL)

Ve is the volume of the internal standard solution (mL)

m is the mass of the sample (mg)

Ref. code: 25625909320250YIN



56

3.5 Results and discussion

3.5.1 Physicochemical properties of catalyst
3.5.1.1 N, sorption analysis

N, sorption isotherms confirmed porous structures of KIT-6
and the KIT-6-SO;H catalysts as shown in Figure 3.2. Isotherms of either KIT-6 or KIT-
6-SO3H catalysts approached IUPAC type IV isotherms. The isotherm of KIT-6 presented
H1 hysteresis which indicated a well-defined cylindrical mesoporous structure
meanwhile, the isotherms of KIT-6-SOsH catalysts presented H4 hysteresis which
indicated a narrow-slit like mesoporous structure. The presence of mercaptoalkyl
silane affected the formation of ordered structure which remained distribution of pore
size evenly. Table 3.4 presented the textural properties of the KIT-6 and KIT-6-SO;H
catalysts. Comparing to the KIT-6, the surface area of the KIT-6-SO;H catalysts was
significantly decreased over 80 % due to loss of ordered porous structure. It was also
found that an increase in sulfonic acid concentration resulted in a decrease in pore
diameter. Pore formation was hindered by the existence of sulfhydryl eroup during
porous formation. However, the porous structure was derived from space of inter-
particle of uniformly particle size (Nowicki et al., 2018). It was interesting to observe
that the surface area and pore size were larger when the ratio of MPMDS:TEOS
increased from 0.2 to 0.3 (0.3-KIT-6-SO3H) indicating the generation of hierarchical
mesoporous structure. Hence, the pore structure of the catalyst could be obtained by
adjusting the ratio between MPMDS:TEQS. However, the excessing amount of MPMDS
could result in the change in the structure of KIT-6. Therefore, in this research, the

maximum ratio of MPMDS:TEOS would be limited at 0.3.
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Figure 3.2 Nitrogen sorption isotherms and pore size distribution of (i) KIT-6, (ii) 0.1-
KIT-6-SO3H catalyst, (iii) 0.2-KIT-6-SO3H catalyst, and (iv) 0.3-KIT-6-SO;H catalyst

Table 3.4 Textural properties and acidity of KIT-6 and x-KIT-6-SO3H catalysts

BJH pore
Surface Pore size Acidity Acid density
Catalyst volume
area (m%g)  (nm) : (mmol/g)  (mmol/m?)
(cm/¢g)
KIT-6 872 6.2 0.88 0.02 n/d
0.1-KIT-6-503H 269 a.7 0.21 0.69 0.003
0.2-KIT-6-503H 157 4.6 0.13 1.25 0.008
0.3-KIT-6-503H 225 4.5 0.10 1.53 0.007

3.5.1.2 Small angle X-ray diffraction (SAXD)
Figure 3.3 shows the porous structure from SAXD pattern.
Three-dimensional (3D) ordered porous structure was observed on KIT-6 with the
evidence at 20 of 0.76°, 0.89°, and 1.53° which ascribed to scattering plane of (2 1 1),
(2 20), (3 3 2), respectively. Partially collapse of 3D structure was observed by the
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disappearance of (3 3 2) scattering plane and broader peaks of (2 1 1) and (2 2 0) due
to the presence of sulfonic acid functional group. However, the ordered structure of

catalyst was remained even though its 3D structure was lost.

211
m
c
>
3 0.3-KIT-6-SO,H
>
2
3 0.2-KIT-6-SO3H
=
0.1-KIT-6-SO3H
220
0 KIT-6
0.5 1 1.5 2 2.5 3

2 Theta (degree)
Figure 3.3 Small angle XRD patterns of KIT-6 and x-KIT-6-SO;H catalyst

3.5.1.3 X-ray photoelectron spectroscopy (XPS)

With XPS analysis, shown in Figure 3.4, the surface functional
groups of the KIT-6-SOsH catalyst were determined. Besides, spectral of Si2p and Cls
at BE of 103.5 eV and 284.8 eV were observed in the wide scan. In Figure 3.4 (b), the
presence of SiO, in the framework of mesoporous silica (Si-O-Si) and sulfonic acid (S-
O-H) was reflected by the peak of O1s with a broad spectrum at BE range of 530 eV to
535 eV (Kumar & Srivastava, 2019). Furthermore, in the S2p spectrum, the presence of
alkyl sulfonic structure has been detected by the peak at 168.9 eV, as shown in Figure
3.4 (c). Moreover, the conversion of sulfhydryl (-SH) groups to the sulfonic acid (-SO;H)
group was completed as represented by single peak of S2p spectra. However, the
active sites lost and/or contaminated by impurities from fusel oil could be probably
caused by the decreasing in intensity of S2p spectra of spent catalyst (iv). Also, there

is a peak at BE 103.5 eV indicating the presence of an SiO, framework (Figure 3.4 (d))
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while Cls spectra confirms the presence of functionalized sulfonic acid on the surface
of KIT-6 as shown in Figure 3.4 (e) including three separated peaks: BE equal 284 eV
(C-C bonds in alkyl sulfonic molecules), 285 eV (C-O bonds) and 289 eV (O-C=0 bonds)
(Song, An, Lu, Guo, & Leng, 2015; Y. Wang et al., 2015).
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Figure 3.4 XPS spectral of (a) Wide scan, (b) O1s, (c) S2p, (d) Si2p and (e) C1s of (i) 0.1-
KIT-6-SO5H, (ii) 0.2-KIT-6-SO3H, (iii) 0.3-KIT-6-SO,H catalyst and (iv) used 0.3-KIT-6-SO,H

catalysts after 3" cycle.

3.5.1.4 Ammonia temperature programmed desorption (NH;-TPD)

NH5-TPD profiles shows in Figure 3.5. In order to prevent the

decomposition of sulfonic acid functionalized molecules, the measurement of NH;
desorption was limited at 400 °C (Hafizi, Najafi-Chermahini, Saraji, & Mohammadnezhad,
2016). The decomposition of the functionalized group was proved by thermogravimetric
analysis as shown in Figure 3.6. From NHs-TPD profiles, an individual peak appeared at
130 °C in the KIT-6 indicating the weak acid sites of silanol group (Si-OH) while two
distinct peaks were observed on KIT-6-SOs;H catalysts. The first peak was similar to the
KIT-6 but this peak on 0.3-KIT-6-SOs;H has appeared at higher temperature of 143 °C
due to the effect of sulfonic acid (Roman-Aguirre, Gochi, Sanchez, de la Torre, & Aguilar-
Elguezabal, 2008). The second peak was presented at higher temperature of 260 - 300
°C indicating the sulfonic acid sites. When the concentration of sulfonic acid increased,
the position of NHs-TPD peaks was shifted to higher temperatures because of strong
charge-charge interaction between the sulfonic acid site and NH; molecule. The
integration area of desorption peaks was related with the acidity as shown in Table

3.4. The acidity increased with increasing the sulfonic acid concentration. An increase
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of MPMDS:TEOS molar ratio from 0.1 to 0.3 had resulted in an increase the acidity from

0.69 mmol/g to 1.53 mmol/g. In this study, it is well known that the performance of

catalysts, as well as the accessibility of the reactant, has been affected by acidity (Tran

et al.,, 2019).
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Figure 3.5 NH;-TPD profile of KIT-6 and x-KIT-6-SO;H catalysts
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Figure 3.6 Thermogravimetric analysis of 0.3-KIT-6-SO;H catalysts

3.5.2 Catalytic activity in the esterification of fusel oil
3.5.2.1 Effect of MPMDS:TEOS molar ratio

The catalytic activities of the catalysts in term of isoamyl

acetate yield and turnover frequency (TOF) were investigated as shown in Figure 3.7.
The isoamyl acetate yield was depended on the ratio of MPMDS:TEOS. When the ratio
was increased from 0.1 to 0.3, the increase in the isoamyl acetate yield was observed
from 86.64% to 95.27% and the mechanism of acid-catalyzed isoamyl acetate is well
investigated (Corregidor et al., 2020). The isoamyl acetate yield was strongly depended
on the number of acid sites because these sites initiated the formation of electrophilic
carbonyl carbon to react with nucleophilic isoamyl alcohol yielding isoamyl acetate.
Therefore, the 0.3-KIT-6-SO;H gave the highest isoamyl acetate yield because of the
highest acidity. Whereas, the highest TOF was presented in 0.1-KIT-6-SO3H catalyst. The
increase in ratio of MPMDS:TEQOS reduced the TOF number. The higher TOF indicates
that more isoamyl acetate could be produced per active site (Trejda, Nurwita, &
Kryszak, 2019). The higher ratio of MPMDS:TEQS containing higher acid density resulted

as a barrier against the approach of reactant to the active site from neighboring active
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site. As mention above, the 0.3-KIT-6-SO;H catalyst performed the highest yield of

isoamyl acetate which was selected as an optimized catalyst for further study.
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Figure 3.7 Catalytic activity in the fusel oil esterification process under different

x-KIT-6-SOsH catalysts for 3 h and 5 wt.% of catalyst loading

3.5.2.2 Effect of reaction time and reaction temperature

The 0.3-KIT-6-SO;H catalyst was chosen to study the effect of
reaction time and reaction temperature. The isoamyl acetate yield was increased
continuously with increasing reaction temperature. The highest isoamyl acetate yield
was observed at the reaction temperature of 80 °C. The isoamyl acetate yield would
be decreased at the reaction temperature over 80 °C due to the vaporization of acetic
acid leading (Ni, Li, Wang, Wang, & Gao, 2019). The result shows in Figure 3.8. As
reaction time increase, the yield of isoamyl acetate was initial increase and reach
equilibrium at 3 h. At longer reaction time the isoamyl acetate yield was slightly
decreased due to the accessibility of reactant to active site was controlled by diffusion
effect and the number of unoccupied sites. In this investigation, the optimized reaction

condition using the catalyst was identified at 80 °C in 3 h.
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Figure 3.8 Catalytic activity of fusel oil esterification of different reaction temperatures
and reaction times at 5 wt.% of catalyst loading and 2:1 molar ratio between acetic

acid/fusel oil

3.5.2.3 Effect of acetic acid:fusel oil molar ratio
Isoamyl acetate yield remarkable increased when the acetic
acid:fusel oil ratio was increased from 1:1 to 2:1 as shown in Figure 3.9 (a). However,
the stoichiometry number of esterification reaction requires a 1:1. According reversible
reaction, the reaction favor to produce isoamyl acetate with excess of acetic acid.
Hence, the unreacted acetic acid was remained in the reaction mixture at the end of
reaction which could be recovered by evaporation for economic reasons. At the ratio
was greater than 2:1, the isoamyl acetate yield gradually decreased because of the
mixing problem. Therefore, the optimal molar ratio for the esterification reaction
between acetic acid and fusel oil was 2:1.
3.5.2.4 Effect of catalyst loading
The effect of catalyst loading on isoamyl acetate yield was
shown in Figure 3.9 (b). The yield of isoamyl acetate also increased with increasing

the catalyst loading indicating that more available active sites to enhance the efficiency
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of esterification reaction. However, the isoamyl acetate yield decreased with increase
catalyst loading to 7 wt.% due to the non-homogeneity of reaction mixture (Ni et al.,
2019). Poorly mixing at highly viscous slurries reduced the mass transfer between solid-
liquid phases in the system. Moreover, at high catalyst loading level, acetic anhydride
was produced from some acetic acid which suppressed the isoamyl acetate formation
(Yang, Zhou, Zhang, Li, & Chen, 2010). Nevertheless, under highly acidic conditions, the
formation of water also increased leading to catalyst deactivation. The optimal catalyst
loading for esterification reaction between acetic acid and fusel oil was 5 wt.%. Besides,
the mechanism of the synthesis reaction of isoamyl acetate by the esterification route
was proposed (Yang et al.,, 2010). At the initial stage, the protonated C=0O group of
acetic acid was formed by acid catalyst. In the next state, this protonated group reacted
with the isoamyl alcohol leading to the tetrahedral intermediate formation. Also, in
this stage, the second intermediate is formed from a proton loss of one oxygen atom
and a protonated ester formed by the removing of water. A final stage, isoamyl acetate

product was formed by proton transfer to a molecule of acetic or water. (Figure 3.1)
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Figure 3.9 Catalytic activity of fusel oil esterification of different (a) molar ratio

(acetic acid/fusel oil) and (b) catalyst loading at 80 °C - 3 h

3.5.2.5 Catalyst reusability and comparison with coommercial catalysts

The reusability of the catalyst, 0.3-KIT-6-SOsH was carried out

under the optimized conditions at 80 °C in 3 h, with the molar ratio of acetic acid:fusel
oil was 2:1 and 5 wt.% of catalyst loading. Besides, the catalyst was regenerated by re-

oxidized with H,O, after washed by acetone and dried at 70 °C. The reusability of
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catalyst with and without regeneration were compared as shown in Figure 3.10. In the
reusability study of catalyst without regeneration, the isoamyl acetate yield decreased
by 7%, 9% and 11% over 1%, 2™ and 3™ cycles, respectively and the yield were
remarkably decreased by 24% as further cycles due to the impurities in fusel oil. This
deduction of active sites was verified by XPS spectra (Figure 3.4). On the other hand,
the catalyst with re-oxidized was not significant reduction of the isoamyl acetate yield
over the three-cycle as shown in Figure 3.10 (b). The isoamyl acetate yield always
was obtained over 92.0%. After reaction, the white color of the fresh catalyst was
turned to brown and turned to white again after re-oxidation (Figure 3.11). The catalyst
used in this study demonstrates an excellent activity at the mild condition with the
reaction temperature of 80 °C for 3 h to obtain 95.25% isoamyl acetate yield. The
catalyst showing a very good performance even though the fusel oil did not treat prior
to use. Therefore, the KIT-6-SOsH catalyst was a promising candidate for isoamyl
acetate production through esterification reaction of fusel oil with acetic acid.

In comparison with the commercial catalyst, a homogeneous
catalyst of H,SO, and a heterogeneous catalyst of Amberlyst-35, the performance of
KIT-6-SO3H catalyst was conducted at 80 °C for 3 h as summarized in Figure 3.10 (a).
The KIT-6-SOsH catalyst gave the highest yield of isoamyl acetate because of its large
surface area and high acidity. Moreover, the 3D structure of the catalyst enhances a
reaction rate leading to the fast equilibrium of the reaction within 3 h. Despite higher
in acidity, the conventional heterogeneous catalyst such as Amberlyst-35 (with acidity
>5.00 mmol/g) demonstrated a lower catalytic activity compare to the KIT-6-SOsH
catalyst at the same reaction condition. The high acidity of Amberyst-35 had promoted
the side-product formation and the strong hydrophilic structure to attract hydrophilic
molecules like water and absorb onto its surface leading to blocking active site as well
as the deactivation by leaching of active site. The excellent performance of KIT-6-SO;H
catalyst could be explained by the presence of both methyl and sulfonic group. The
polar molecules like H,O were well repelled by methyl groups leading to the
adsorption of these molecules was partially inhibited to active sites and catalyst

stability enhancement (Teo & Saha, 2004).
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0.3-KIT-6-SO3H (Fresh) After reaction After treatment with H,O,

Figure 3.11 0.3-KIT-6-SO;H catalyst before and after regeneration

3.6 Conclusions

The isoamyl acetate production from fusel oil and acetic acid via the
esterification route was acquired with high conversion using the KIT-6-SOsH catalyst.
The catalyst was prepared by the co-condensation method with the difference molar
ratio of MPMDS:TEOS. The number of acid site, as well as the accessibility of reactants
strongly affected the catalyst performance. In conclusion, the 0.3-KIT-6-SO;H catalyst
performed the highest isoamyl acetate yield, while 0.1-KIT-6-SOsH gave the highest
TOF number. The accessibility of reactant to active site was hindered by increasing the
number of acid sites. The optimal reaction condition was reaction temperature at 80
°C for 3 h, 5 wt.% of catalyst loading and molar ratio of acetic acid:fusel oil as 2:1. In
comparison to commercial catalysts, the KIT-6-SOsH catalyst showed higher efficiency

than Amberlyst-35 catalyst.
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CHAPTER 4
GLYCEROL ETHERIFICATION USING A SULFONIC ACID FUNCTIONALIZED
KIT-6 CATALYST FOR FUEL ADDITIVE

4.1 Introduction

Currently, it is well known that as economic growth, the demand for energy
is also in the same trend rising concerns about environmental problems such as global
warming and environmental pollution. However, traditional energy or non-renewable
energy resources are limited. In this circumstance, the development of bioenergy is
accelerated with sustainable technologies that are based on renewable resources. In
various bioenergy technologies, biodiesel is one of the most used liquid fuels in the
market (Cornejo, Barrio, Campoy, Lazaro, & Navarrete, 2017). Biodiesel is synthesized
from animal fats, vegetable oils and waste cooking oil which are non-toxic,
biodegradable and renewable resources (Bozbas, 2008; Dominguez, Romero, & Santos,
2019). However, a byproduct of biodiesel production, glycerol, is increased as the
demand of biodiesel. It is about 11kg of glycerol is produced with 100kg of biodiesel
in a typical transesterification reaction (Agency & Laboratory, 2009; Byrnett et al., 2009;
Cornejo et al., 2017). Glycerol could not present in biodiesel due to its characteristics
of poor thermal stability, high viscosity and low solubility. Thus, it would be interesting
to create value-added to the glycerol which could enhance the economy of the
process and avoid the abundance of glycerol in the market (Cornejo et al., 2017). There
are several industrial processes use glycerol as raw material such as catalytic oxidation,
dehydration, acetylation and ammoxidation to produce citric acid, lactic acid, acrolein,
hydrogen, ethanol, etc. (Kong, Aroua, & Daud, 2016; Luo, Ge, Cui, & Li, 2016). The glycerol
carbonate, green solvent for cosmetics and medicine could be produced using the
catalytic oxidative carbonylation of glycerol (Gabriele et al., 2011). One of a process of
increasing value of glycerol that stands out from other ¢lycerol valorization serving for
energy industry, etherification is converting of glycerol to glycerol ether for higher value

fuel-oxygenates (Melero, Vicente, Paniagua, Morales, & Munoz, 2012) which is considered
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as additives in liquid fuels (Demirbas, 2007; Pico, Romero, Rodriguez, & Santos, 2012).
The product of glycerol etherification as fuel additive could enhance the combustion
efficiency leading to the reduction of pollutant emission including particulate matter,
hydrocarbons, carbon monoxide and unregulated aldehydes (Frusteri et al., 2009).
Furthermore, the ethers can also act as cold flow improver (Melero et al., 2008). The
etherification of glycerol could be obtained by acid catalyst either homogeneous or
heterogeneous systems (Lee, Seung, Filimonov, & Kim, 2011; Lee, Seung, Jung, Kim, &
Filimonov, 2010; Pico et al, 2012). However, in the concerning environmental
pollutions, heterogeneous catalysts are preferable. Solid catalysts have been studied
such as Amberlyst-15 (Frusteri et al., 2009; Klepapova, Mravec, Hajekova, & Bajus, 2003),
Amberlyst-35 (Klepacova, Mravec, Kaszonyi, & Bajus, 2007), Nafion®, H-Y & H—B zeolite
(Klepacova et al., 2007; Samoilov, Ramazanov, Nekhaev, & Maksimov, 2016), propyl
sulfonic acid functionalized SBA-15 mesoporous catalyst (Hermida, Abdullah, &
Mohamed, 2011), sulfonic acid-modified mesostructured silicas (Di Serio, Casale,
Tesser, & Santacesaria, 2010). (Gu, Azzouzi, Pouilloux, Jérédme, & Barrault, 2008) studied
the etherification reaction between glycerol and different alcohols (alkyl alcohols,
olefins and dibenzyl alcohol) under acid-functionalized silica catalyst. The yields of
mono and di glycerol ethers were reached 61 and 96%, respectively due to highly
acidity. (Melero et al., 2008) studied the etherification of glycerol and isobutylene using
propyl sulfonic acid functionalized mesoporous silica (Pr-SO;H-SBA-15) catalyst at 75
°C, 5 wt.% catalyst loading and reaction time for 4 h. The catalyst presented highly
selective toward di- and tri- glycerol tert-butyl ethers (GTBE) up to 92%. The acid
strength, acidity, surface area and porosity of catalyst were the key factors which
affected the glycerol conversion (Nandiwale, Patil, & Bokade, 2014). Hence, the more
attractive in sulfonic acid mesoporous silica and its rapid development because it is
not only high surface area, high acid property, adjustable in porosity but high thermal
and chemical stabilities also present.

On the other hand, the etherification reactions of glycerol could be
conducted with various reactants such as olefins (mainly isobutylene) and alcohol
(mainly tert-butyl alcohol). The tert-butyl alcohol could be also used as reaction

solvent. Hence, the reactive phase could be a single phase but the disadvantage is
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low conversion of glycerol (Pico et al,, 2012). However, even that tert-butyl alcohol is
mainly used alcohol in etherification of glycerol, n-butanol has recently found to be
an alternative due to the similar performance of both alcohols (Nandiwale et al., 2014).
n-butanol could act as a dual function of both reactant and solvent in the reaction
system which simplified the technology problem and avoids the drawbacks of a
complex three-phase system like mass transfer phenomena (Frusteri et al,, 2009;
Klepacova, Mravec, & Bajus, 2005). The glycerol etherification with n-butanol and
mechanism of this process is shown in Figure 4.1.

In this chapter, the mesoporous silica KIT-6 functionalized with methyl
propyl sulfonic acid catalyst would be prepared and applied for etherification reaction
between n-butanol and glycerol. This catalyst was expected to improve reaction rate
due to its three-dimensional porous structure and high acidity. The effect of reaction

condition on the catalytic performance was investigated.
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Figure 4.1 Rection mechanism of glycerol etherification with acid catalyst
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4.2 Review of literature

(Liu et al.,, 2013) reported the use of the homogeneous catalyst including
Lewis acid and Brgnsted acid for glycerol etherification with n-butanol. As the results
in Table 4.1, the Lewis acids catalyst especially Bi(OTf); catalyst showed the highest
both glycerol conversion and mono-ethers yield of 30% and 70%, respectively. The
Brgnsted acid catalyst could convert glycerol to ethers but it is still less activity and

selectivity to mono-ether than Lewis acid catalyst.

Table 4.1 Catalytic etherification of glycerol with n-butanol in the presence of Lewis
acids and Brgnsted acids catalyst at 150 °C for 24 h, 1:4 molar ratio of glycerol to n-

butanol and 6.5 mol% of catalyst

Glycerol Butanol Mono-ethers  Di-ethers

Catalyst conversion conversion (B1G1) yield  (B2G1)

(%) (%) (%) yield (%)

Bi(OTf); 30 91 70 7

Ga(OTf), 23 80 62 2

A(OTH), 18 65 48 0
Lewis IN(OTf), 197 70 45 0
acid ATFSI), 10 55 32 0
catalyst  Sc(OTf), 12 Byl 28 0

Fe(OTf), 5 30 19 0

Fe(TFSI); 6 52 17 0

Nd(OTf; 4 20 12 0

DBSA 22 63 a6 0

MSA a5 90 56 0
Brgnsted

H,SO4 a6 89 a6 0
acid

Bet.HCl 8 6 2 0
catalyst

Bet.H,SO; 0 0 0 0

TFSI 20 71 56 6
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(Nandiwale et al,, 2014) studied the etherification of glycerol with n-
butanol as an alkylating agent under different solid acid catalysts including H-beta
zeolite, DTPA/K-10, HZSM-5, and K-10. The glycerol conversion was 55% under the H-
beta zeolite catalyst which was the highest activity. The catalytic performance was
affected by the surface area and acidity of the catalyst. In addition, the H-beta zeolite
catalyst could be reused up to four cycles under optimized condition at 140 °C for 4h,
15 wt.% catalyst loading.

(Samoilov et al., 2016) examined the glycerol etherification with n-butyl
alcohol under sulfonated cation exchange resins and various zeolite catalysts. The
sulfonated cation exchange resins catalyst including Amberlyst-36, and Amberlyst-70
selective to glycerol mono-n-butyl ethers (MGNBEs) up to 88 mol% with 98 mol% of
glycerol conversion. Besides, the Y zeolite and [3 zeolite catalyst preferred glycerol di-
n-butyl ethers (diGNBEs) production with 28 mol% selectivity of diGNBEs and 25 mol%
of glycerol conversion at the same reaction condition.

(Srinivas et al., 2014) studied glycerol etherification with tert-butyl alcohol
using Tungstophosphoric acid catalysts supported on Y-zeolite (TPA/Y-zeolite). The
effect of reaction parameters including the molar ratio of t-butanol to glycerol and
catalyst concentration were investigated. The results show that the catalytic activity
was affected by the acidity of catalyst. The 20%TPA/Y-zeolite catalyst containing the
highest acidity gave the highest glycerol conversion and mono-ether selectivity up to
84% and 85%, respectively. In addition, the 20%TPA/Y-zeolite catalyst could be reused
up to four times.

(Frusteri et al., 2009) synthesized the glycerol etherification with tert-butyl
alcohol took place on various solid acid catalysts including silica supported acid
catalyst (Nafion® ionomer (N-17) and tungstophosphoric heteropoly acid (HPW-17)),
commercial ion-exchange resins (Nafion® on amorphous silica (SAC-13), and
Amberlyst®15 dry (A-15)). The author investigated the effects of reaction temperature
in the range of 30 - 90 °C, reaction times, catalyst loading and molar ratio of
alcohol/glycerol on glycerol conversion and selectivity of di-ether products. The
Amberlyst®15 dry catalyst containing the highest acidity (4.7 mmol/g) and large pore
diameter (300 A°) showed the highest glycerol conversion up to 95% and selectivity of
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di-ether of 29.7% at 90 °C for 6 h under the pressure of 0.1 MPa, 4:1 molar ratio of
alcohol/glycerol molar ratio and 7.5 wt.% catalyst loading. The catalytic performance
and reaction rate were affected by acidity and pore size distribution. The large pore
size distribution enhanced the turnover frequency due to the accessibility of reactant
to an active site. In addition, the increasing of reaction temperature enhanced the
formation of di-ether products.

(Melero et al,, 2008) synthesized glycerol tert-butyl ethers (GTBE) over
glycerol etherification with isobutylene in the presence of propyl sulfonated
mesoporous  silica  (Pr-SO;H-SBA-15) and  arenesulfonic acid functionalized
mesostructured silica (Ar-SBA-15) catalysts. The results indicated that the Ar-SO;H-SBA-
15 catalyst containing the higher acidity (1.24 H™ meg/g) showed higher selective
toward di-GTBE (54%) and tri-GTBE (41%) than Pr-SO;H-SBA-15 catalyst containing
acidity (1.20 H" meg/g) showed di-GTBE (56%) and tri-GTBE (35%) at 75 °C for 4 h, 4:1
molar ratio of isobutylene to glycerol, and 5 wt.% catalyst loading. Therefore, the
effect of acidity on catalytic performance was observed.

The sulfonated mesoporous silica catalyst with large surface area, high
acidity and high selective to di-GNBEs production. Hence, this catalyst has attracted a

lot of interests and has been selected in glycerol etherification reaction.

4.3 Materials

All chemicals and equipment used in this research are listed in Table 4.2
and Table 4.3, respectively
4.3.1 Chemicals

Table 4.2 List of the chemicals used in this research

Chemicals Manufacturer Country
Acetone, commercial grade RCI Labscan USA
n-butanol, AR grade QReC New Zealand
Ethanol Absolute, 99% QReC New Zealand

Glycerol, AR grade QReC New Zealand
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micals used in this research (cont.)

Hydrogen peroxide, AR grade, 30%
Hydrochloric acid, AR grade, 37%
Methanol, HPLC grade

Methyl heptadecanote, AR grade, 99%
3-Mercaptopropyl methyldimethoxysilane,
AR grade, 95%

Pluronic P123 triblock copolymer, poly
(ethylene glycol)-block-poly (propylene
glycol)-block-poly (ethylene glycol), Mw =
5800, AR grade

Tetraethyl orthosilicate, AR grade, 98%
Sodium sulfate anhydrous (Na,SO,)
Sulfuric acid, 98%

QReC New Zealand
QReC New Zealand
RCl Labscan USA
Sigma-Aldrich USA
Sigma-Aldrich USA
Sigma-Aldrich USA
Sigma-Aldrich USA

Ajax Finechem  Australia

QReC New Zealand

4.3.2 Equipment

Table 4.3 List of the instrument used in this research

Company

Autoclave reactor, 50ml

Gas Chromatography-Mass Spectrometry
(GC-MS)

Oven

Surface area & Porosimetry analyzer
Temperature Programed Desorption of
amonia (NH;-TPD)

Thermogravimetric analysis (TGA)

Thermo scientific stirrer reactor
X-ray diffraction (SAXD)

X-ray photoelectron Spectroscopy (XPS)

Parr, model 4744, USA
GC-Agilent 7890A, MS-Agilent 5975C

Memmert UF 110
Gold App Instrument, V-sorb 2800P
BET-CAT (BEL, Japan)

Mettler Toledo, TGA/DSC, STAR system,
USA

Japan

Rigaku, TTRAX Ill and Bruker, D8 advance
ULVAC-PHI, PHI 500 VersaProbe I, Japan
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4.4 Methods
4.4.1 Preparation of KIT-6-SO;H catalyst

The sulfonic acid functionalized KIT-6 catalyst was prepared by co-
condensation method, with a molar composition mixture of 0.017 Pluronic P123:1.83
HCl:1.31 n-butanol:195 H,O: (1-x) (TEOS):x MPMDS, where an x was molar content of
MPMDS. The sample was designate as x-KIT-6-SO3H (x: 0.1 - 0.3)

First, the mixture of 4.0 g of Pluronic P123 triblock co-polymer, 7.5 g
of HCl and 145.0 mL of de-ionized water was dissolved at room temperature. After
that, 4.0 ¢ of n-butanol was added dropwise and stirred for 1 h at 35 °C. Then, a
solution of 8.6 ¢ of TEOS and a ¢ MPMDS base on the different ratios was dropped to
the previous solution and kept the mixture for 24 h with the temperature at 35 °C with
stirring. Thereafter, the mixture was hydrothermally treated in autoclave at
temperature 100 °C for 24 h with autogenous pressure. After hydrothermal treatment,
the white solid powder was collected and dried at 80 °C for 12 h. In the following step,
the as-synthesized sample was removed the remaining of organic template by Soxhlet
extraction with the mixture solvent of ethanol/HCl at 70 °C for 24 h in order to obtain
sulfhydryl functionalized KIT-6 mesoporous silica. Finally, the sulfhydryl group was
oxidized by 30% H,O, solution for 24 h to obtain the methyl-propyl sulfonic acid
functionalized KIT-6 catalyst (KIT-6-MPr-SO;H). The catalyst was filtered, washed with
DI water, and dried at 60 °C for 16 h.

4.4.2 Characterization of KIT-6 and KIT-6-SO;H catalyst

The structure of KIT-6 and KIT-6-SO;H catalyst were investigated by
small angle X-ray diffraction pattern (SAXD) on Rigaku TTRAX Il X-Ray diffractometer
using Cu Kot (A = 0.154 nm) radiation, a 40kV beam voltage and a 40 mA beam current
in the 20 angle of 0.5 - 5° with a resolution of 0.02° and scan speed 0.1 second per step.

The surface area, pore volume, and pore size distribution of KIT-6
and KIT-6-SO;H catalysts were derived by N, sorption isotherms using a volumetric V-
Sorb 2800P, Gold APP Instruments. Before analysis, the samples were consequently
degassed at 50 °C for 60 minutes and 60 °C for 960 minutes, respectively. The surface
area was calculated by Brunauer-Emmett-Teller (BET) equation. The desorption

isotherm was used to get the pore size distribution by Barrett-Joiner-Halender (BH)J)
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method. The total pore volume of the sample depended on the adsorbed N, volume
at a relative pressure of approximately 0.99.

X-ray photoelectron spectroscopy (XPS) was used to analyze surface
chemical composition of catalyst. The characterization was carried out with AlKQl X-ray
radiation on a ULVAC-PHI, PHI500 VersaProbe Il. The binding energy (BE) of Cls peak at
284.5 eV was used to correct other peaks. To prove the present of the sulfonic functional
group on KIT-6 surface, S2p spectra was fitted with Gaussian/Lorentzian peak shape.

The acidity and acid strength of KIT-6 and KIT-6 catalysts were
studied by temperature programed desorption of ammonia (NH;-TPD), BETCAT (BEL).
In a typical acidity measurement, the catalyst was charged in an u-shaped quartz cell
and preheated at 750 °C for 1 h under He flow in order to remove moisture remain in
the structure of catalyst. Subsequently, the catalyst was saturated with a mixed gas of
5 % NH5 and 95 % He at room temperature for 1 h with the flow rate of 50 cm?/min.
After stabilization, NH; desorption was carried out from 50 °C to 400 °C at a heating
rate of 5 °C/min under He flow. Thermal conductivity detector (TCD) was used to
detect the desorbed NH; and the amount of NH; absorbed on the catalyst was
determined from peak area based on standard gas.

4.4.3 Catalytic activity in glycerol n-butyl ethers (GNBEs) production
via glycerol etherification with n-butanol
4.4.3.1 Glycerol etherification

First, the mixture of glycerol, n-butanol and catalysts was
transferred in a small glass bottle and stirred at 1000 rpm. The reaction conditions
including reaction time (120 °C, 140 °C and 160 °C), reaction temperature (2 — 10 h),
catalyst loading (5, 10, 15 wt.%) was investigated. After reaction finish, the catalyst was
separated by filtration. The liquid product was collected and dehydrated with
anhydrous sodium sulfate. The methyl heptadecanoate was used as an internal standard

diluted on methanol in the concentration of 5 mg/ml before analysis with GC-MS.

4.4.3.2 Product analysis
The composition of liquid product was identified by GC-MS
(GC-Agilent 7890A, MS-Agilent 5975C) equipped with a HP-Innowax column (0.25 mm
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ID, 30 m length, 0.25 mm film thickness) using He carrier gas at a flow rate of 1 mL/min.
Then 1 uL of this solution was injected into the GC-MS with a split ratio of 40:1. The
initial oven temperature was held at 70 °C for 3 min, then raised to 250 °C at 10 °C/min
and held for 10 min. The injector and detector temperature were maintained at 260
°C. The composition of the product was identified based on the NIST Mass Spectral
Library. The product yield, selectivity of each compound and glycerol conversion was
calculated by normalization with the total peak area in the GC-MS follow Equation

4.1, 4.2, and 4.3, respectively.

, Moles of produced product
Productyield = x 100 4.1)

Moles of initial glycerol

i Moles of obtained product
Product selectivity = x 100 4.2)

Total moles of product

, Moles of reacted glycerol
Glycerol conversion = x 100 (4.3)

Moles of initial glycerol

4.5 Results and discussion

4.5.1 Characterization of KIT-6 and KIT-6-SO;H catalyst
4.5.1.1 Small angle X-ray diffraction (SAXD)

The three-dimensional porous structure (3D) of KIT-6 and KIT-
6-SO3H catalysts were confirmed by SAXD patterns as shown in Figure 4.2. Both KIT-6
and KIT-6-SO;H catalysts presented a distinct-peak, and two weak broad peaks at 20
of 0.76° 0.89° and 1.53° which were corresponded to scattering plane of (211), (220),
and (332), respectively (Liu et al., 2018; Pirez, Caderon, Dacquin, Lee, & Wilson, 2012).
However, the intensity of SAXD peak decreased with increasing molar ratio of
MPMDS:TEOS resulting that the structure of KIT-6-SOsH catalyst became disordered.
The decreasing in order of porous structure caused from hindrance of the
mercaptoalkoxide (Si-O-R-SH) molecules to the formation of ordered porous structure
(Ng, Mohd Subari, Marie, Mukti, & Juan, 2013; Wang, Lin, Chan, & Cheng, 2005). Besides,
the reflection peak KIT-6-SO;H catalyst was shifted to higher 26 indicating the reduction
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of pore size. Therefore, all x-KIT-6-SO;H catalyst presented smaller pore size than

pristine KIT-6.
211
m
c
>S5
8 0.3-KIT-6-SO,H
>
2
[} 0.2-KIT-6-SO5H
c
0.1-KIT-6-SO5H
220
S KIT-6
0.5 1 1.5 2 25 3

2 Theta (degree)
Figure 4.2 SAXD patterns of KIT-6 and KIT-6-SO;H catalysts

4.5.1.2 N, sorption analysis

Figure 4.3 presented the N, sorption isotherm of KIT-6 and
KIT-6-SOsH catalysts. Both isotherms of KIT-6 and KIT-6-SOsH catalysts revealed an
IUPAC type IV isotherms indicating mesoporous structure. The H1 hysteresis was
observed in the KIT-6 which indicated a well-defined open cylindrical pore structure
and facile pore connectivity. Meanwhile, the isotherms of KIT-6-SOsH catalysts
presented H4 hysteresis which corresponded to a narrow-slit pore, particles with
internal voids of regular shape. An increase of MPMDS:TEOS ratio decreased the order
of mesoporous structure because of the steric effect and close packing of the alkyl-
sulfonic chain to prevent the pore arrangement (Rac, Molnar, Forgo, Mohai, & Bertéti,
2006; Wang et al., 2005). The increasing of MPMDS:TEQS molar ratio decreased the BET
surface area and pore size as shown in Figure 4.3 (b) and Table 4.4. The KIT-6
presented a large surface area (Sger = 872 m?/g) which was higher than the 0.3-KIT-6-
SOsH mesoporous silica catalyst (Sger = 225 m?/g). In addition, pore size of KIT-6-SOsH
catalyst decreased from 4.70 nm to 4.50 nm with increased MPMDS:TEOS molar ratio
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from 0.1 to 0.3. The excess MPMDS destroy mesoporous structure that reflected to

continuously enlarge the pore size of KIT-6-SO;H catalyst. (Rac et al., 2006). Therefore,

in this research, the maximum ratio of MPMDS:TEOS was 0.3.
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Figure 4.3 (a) Nitrogen sorption isotherms and (b) pore size distribution of (i) KIT-6,

(i) 0.1-KIT-6-SO5H, (iii) 0.2-KIT-6-SOsH and (iv) 0.3-KIT-6-SOsH catalyst
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Table 4.4 A comparison of the physical and chemical properties, along with the catalytic performance in glycerol etherification reaction

of the different KIT-6-SOs;H catalysts with other reported acid catalysts

Surface Pore BJH pore Acid Glycerol di-GNBEs
Acidity di-GNBEs TOF
Catalyst area size volume density conversion selectivity References
(mmol/g) yield (%) (h-1)
(m%g)  (hm)  (cm?/g) (mmol/m?) (%) (%)
KIT-6 872 6.2 0.88 0.02 0.00002 n/d n/d n/d n/d This work
0.1-KIT-6-SOsH 269 a.7 0.21 0.69 0.003 48.64 10.74 22.09 12.77 This work
0.2-KIT-6-SO3H 157 4.6 0.13 1.25 0.008 53.28 21.49 40.34 7.51 This work
0.3-KIT-6-SO3H 225 4.5 0.10 1755 0.007 59.09 30.43 51.50 7.08 This work
3rd used of
19 29.0 0.14 n/d n/d 43.62 15.51 35.56 n/d This work
0.3-KIT-6-SO3H
Amberlyst-35 (Samoilov
50 24.0 0.20 53 0.106 91 14 a4 1.87
(140 °C -5 h) et al,, 2016)
Amberlyst-36 (Samoilov
33 24.0 0.20 5.4 0.164 94 20 6 1.89
(140°C-5h) et al,, 2016)
H-Beta Zeolite (Nandiwale
560 n/d 0.38 0.54 0.001 72 n/d 32.60 24.15
(180 °C -4 h) et al,, 2014)
HZSM-5 (Nandiwale
390 n/d 0.22 0.51 0.001 10 n/d n/d 3.56
(140 °C -4 h) et al,, 2014)
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4.5.1.3 X-ray photoelectron spectroscopy (XPS)

The surface chemical compositions of KIT-6-SOs;H catalysts
were determined by X-ray photoelectron spectroscopy. The Cls, Si2p, S2p and O1s
spectral were observed as shown in Figure 4.4. The presence of C-C bonding, C-O and
—-COO functional groups were reflected by the peak of Cls with a broad spectrum at
binding energy 284.8 eV, 286 eV, and 289 eV, respectively (Song, An, Lu, Guo, & Leng,
2015; Wang et al.,, 2015). Furthermore, the presence of SiO, in the framework of
mesoporous KIT-6 structure (Si-O-Si, C-Si-O-) has been detected by the peak of Si2p
and O1s at binding energy 103.3 eV and 101.4 eV, respectively (Kumar & Srivastava,
2019). In addition, the single spectrum of S2p at 169 eV assigned to sulfonic acid groups
(-SO3H) on KIT-6 structure. (Moulder, 1995; Russo et al., 2014) This result demonstrated
the complete conversion of sulfhydryl (-SH) group to the sulfonic acid (SOsH) group.

(@) O1ls

(i) Cls s2p g0,

BULL Lo IR BTN

Intensity (a.u.)

(i)

0]

800 600 400 200 0
Binding energy (eV)

Figure 4.4 XPS spectra of (a) Wide scan, (b) Cls, (c) Si2p, (d) S2p and (e) O1s of
(i) 0.1-KIT-6-SO3H, (ii) 0.2-KIT-6-SOsH and (iii) 0.3-KIT-6-SO3H catalyst
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Figure 4.4 XPS spectra of (a) Wide scan, (b) Cls, (c) Si2p, (d) S2p and (e) Ols of
(i) 0.1-KIT-6-SO3H, (ii) 0.2-KIT-6-SO5H and (i) 0.3-KIT-6-SO5H catalyst (cont.)

4.5.1.4 Ammonia temperature programmed desorption (NH;-TPD)

The NH4-TPD profiles presented the acid properties of the KIT-

6 and KIT-6-SOsH catalysts as shown in Figure 4.5. The NH.-TPD profile of KIT-6
presented an individual peak appears at 130 °C indicating the weak acid sites of silanol
group (Si-OH). Meanwhile, the two distinct desorption peaks were observed on KIT-6-

SOsH catalysts corresponded to weak and strong acid sites (Roman-Aguirre, Gochi,
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Sanchez, de la Torre, & Aguilar-Elguezabal, 2008). The first peak was similar to the KIT-
6 as belonging to acid sites of silanol group (Si-OH). In the case of 0.3-KIT-6-SO3H, this
desorption peak was shifted to higher temperatures because of large interaction
between the sulfonic acid site and NH; molecule (Roman-Aguirre et al.,, 2008). The
second peak was appeared at the temperature range of 260 — 300 °C indicating the
sulfonic acid. The total acidity increased from 0.69 to 1.53 mmol/g with increasing
MPMDS:TEOS molar ratio from 0.1 to 0.3 due to the increasing number of sulfonic acid

sites on KIT-6 structure (Table 4.4).
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Figure 4.5 NH;-TPD profile of KIT-6 and KIT-6-SOsH catalysts

4.5.2 Catalytic activity in glycerol n-butyl ethers (GNBEs) production
via glycerol etherification
4.5.2.1 Effect of reaction temperature

The effects of reaction temperature on catalytic activity
including glycerol conversion, yield of di-GNBEs, and selectivity of di-glycerol n-butyl
ethers (di-GNBEs) are shown in Figure 4.6. The glycerol conversion increased from
48.19% to 58.39% with increased reaction temperature from 120 °C to 140 °C and then
the catalytic activity slightly increased at 160 °C (59.97%) due to approaching

thermodynamic equilibrium. Otherwise, at the high reaction temperature, glycerol
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could not convert to di-GNBEs production due to the occurrence of de-etherification
(dehydrative etherification) reactions (Frusteri et al., 2009; Huang & Kim, 2015). Besides,
the di-GNBEs selectivity was also slightly decreased at higher reaction temperature
since the undesired side reaction and further reaction of product occurred. Therefore,

the optimized reaction temperature was selected at 140 °C.
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Figure 4.6 Catalytic activity of glycerol etherification at different reaction

temperature for 6 h under 10 wt.% of 0.3-KIT-6-SO3H catalyst

4.5.2.2 Effect of reaction time

The sglycerol conversion, di-GNBEs vyield and di-GNBEs
selectivity at different reaction times were presented in Figure 4.7. The glycerol
conversion increased with time and reached to 50.09% after 6 h. At the longer reaction
time, the di-GNBEs was preferred due to the reaction between mono-GNBEs and
available n-butanol (Nandiwale et al., 2014). However, after 6 h the selectivity of di-
GNBEs was decreased due to the side-product formation and/or the formation of water
absorb onto its surface leading to blocking active site of catalyst. The di-GNBEs
selectivity was increased from 22.85% at 2 h to 51.50% at 6 h and then it decreased
to 37.75% after 10 h. According, the di-GNBEs and tri-GNBEs are considered as good

additives for diesel fuels (diesel, biodiesel and their mixtures) compare with mono-
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GNBEs due to the low solubility of mono-GNBEs in diesel fuel (Lee et al., 2010; Melero
et al., 2008; Pico et al., 2012). Meanwhile, the tri-GNBEs was not formed as a result of
steric hindrance (Dominguez et al., 2019). Therefore, di-GNBEs was a desire product in
the application of diesel fuel additive. From the study, the optimized reaction

condition at 140 °C for 6 h was obtained and used for further study.
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Figure 4.7 Catalytic activity of glycerol etherification at 140 °C with different reaction
time under 10 wt.% of 0.3-KIT-6-SOsH catalyst

4.5.2.3 Effect of catalyst loading and molar ratio of n-butanol to glycerol

The effect of catalyst loading on di-GNBEs selectivity, GNBEs

yield and glycerol conversion was shown in Figure 4.8 (a). At catalyst loading 5 wt.%,
the yield and selectivity of di-GBNEs were low due to the less amount of acid sites.
The vyield of di-GNBEs also increased from 15.33% to 30.42% with increasing the
catalyst loading from 5 wt.% to 10 wt.% indicating that more available active sites to
enhance the etherification reaction. However, the di-GBNEs yield and di-GBNEs
selectivity decreased with increasing catalyst loading up to 15 wt.% due to a poorly
diffusional of the reactant at highly catalyst loadings reduced the mass transfer
between solid-liquid phases in the system (Nandiwale et al., 2014). Moreover, at high

catalyst loading level was affected the etherification of glycerol with n-butanol toward
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side reactions such as glycerol oligomerization or dehydration for instance. Hence, the
optimal catalyst loading for glycerol etherification reaction was 10 wt.%

The effect of n-butanol to glycerol molar ratio on the
etherification reaction was shown in Figure 4.8 (b). The etherification reaction is a
reversible reaction, the increasing amount of n-butanol could enhance the conversion
of glycerol and favor to produce di-GNBEs production (Srinivas et al., 2014; Dominguez
et al., 2019). For further increases in the molar ratio above 9:1, the glycerol conversion
was unchanged (48.30%). Besides that, the di-GNBEs selectivity was slightly decreased
from 37.93% to 34.53%. This may be due to more n-butanol is available on the active
catalyst surface, which hinders its activity and more side reaction occurs such as
dehydration or oligomerization, etc. (Karinen & Krause, 2006). Thus, the optimized n-

butanol/glycerol molar ratio for etherification was 9:1.
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Figure 4.8 Catalytic activity of glycerol etherification of different (a) catalyst loading at
140 °C - 6 h and (b) molar ratio (n-butanol/glycerol) at 120 °C for 6 h, 10 wt.% of 0.3-
KIT-6-SOsH catalyst

4.5.2.4 Effect of MPMDS:TEOS molar ratio and catalyst reusability

The catalytic activity and selectivity of KIT-6-SO3H catalyst with

three different molar ratios of MPMDS:TEQS are shown in Figure 4.9 and Table 4.4.
The 0.3-KIT-6-SOsH catalyst gave the highest glycerol conversion (59.09%) and di-GNBEs
selectivity (51.50%) due to the highest acidity. The glycerol conversion increased with
increasing molar ratios of MPMDS:TEOS. Hence, the di-GNBEs selectivity, di-GNBEs yield,

and sglycerol conversion was strongly dependent on the number of acid sites.
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Meanwhile, the highest TOF was presented in 0.1-KIT-6-SOsH catalyst because of the
effect of 3D structure, the reactant has good accessibility toward the catalyst sites. The
increase in the ratio of MPMDS:TEOS reduced the TOF number due to the decreased
3D ordered structure of the catalyst. The 0.3-KIT-6-SOsH catalyst was not only shown
the high glycerol conversion, but also high yield and selectivity of di-GNBEs which was
selected as an optimized catalyst for the various reaction conditions.

(Zhao, Yang, Yi, Lei, & Xu, 2010) reported that the di- and tri-
GNBEs production are miscible with diesel fuels and contain high oxygen contents of
23.5% (di-GNBEs) and 18.5% (tri-GNBEs). Moreover, the high-octane numbers of 112-
128 (blending research octane number, BRON) and 91-99 (blending motor octane
number, BMON) could be enhanced the combustion efficiency in internal combustion
engines and reduced pollution. In comparison with previously reported acid catalysts
including Amberlyst-35, Amberlyst-36, H-Beta Zeolite and HZSM-5 catalysts, the
performance of the KIT-6-SO3H catalyst was conducted at 140 °C for 6 h as summarized
in Table 4.4. The KIT-6-SO;H catalyst gave the highest di-GBNEs selectivity because of
its large surface area and high acidity. Moreover, the 3D structure of catalyst enhances
the reaction rate. Besides, the methyl group in anti-adsorption of product or water at
active site, which improves the di-GBNES selectivity.

The reusability of the 0.3-KIT-6-SO;H catalyst was carried out
over three cycles at the optimum conditions at 140 °C in 6 h, with the molar ratio of
n-butanol/glycerol was 9:1 as shown in Figure 4.9. The glycerol conversion was
decreased from 59.09% to 43.92% after 3" cycle. The di-GBNEs selectivity also
decreased 16% after 3™ cycle. The reduction of glycerol conversion and di-GBNEs
selectivity and di-GBNEs yield could be explained by deactivation of catalyst.
Moreover, the loss of active site and disordered 3D structure of catalyst from side
products was cover the surface of catalyst.

The deactivation of catalyst could be confirmed by the
characteristic N, sorption were reported in Figure 4.10 and Table 4.4. The structure of
the spent 0.3-KIT-6-SO5H catalyst after 3" used presented type Il isotherm represented
non-porous structure. The low BET surface area of spent 0.3-KIT-6-SO;H catalyst decreased

from 225 to 19 m?/g due to the surface coverage with reactants and/or products.
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Figure 4.9 Catalytic activity of glycerol etherification of fresh and reused catalyst at

140 °C for 6 h under 10 wt.% 0.3-KIT-6-SO;H catalyst loading
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Figure 4.10 N, sorption and pore size distribution of 3™ used 0.3-KIT-6-SO;H catalyst
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4.6 Conclusions

The sulfonic acid functionalized mesoporous catalyst (KIT-6-SOsH) was
prepared by the co-condensation method with the different molar ratios of MPMDS:
TEOS. The 0.3-KIT-6-SOsH catalyst gave the highest acidity and was selected as a
catalyst for synthesis the glycerol n-butyl ethers from etherification of glycerol and n-
butanol. The number of acid sites, as well as the accessibility of reactants strongly
affected the catalytic performance. The sulfonated functionalized mesoporous
catalyst preferred to produce di-GNBEs production. The highest di-GNBEs selectivity
was up to 51.50% at the optimized reaction condition of 140 °C for 6 h with a 9:1
molar ratio of n-butanol to glycerol and 10 wt.% catalyst loading. In conclusion, the
KIT-6-SO;H catalyst can be a candidate of solid acid catalyst for diglycerol n-butyl

ethers production by etherification reaction.
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CHAPTER 5
CONCLUSIONS AND RECOMMENDATIONS

5.1 Conclusions

The sulfonic acid functionalized mesoporous KIT-6 catalyst (x-KIT-6-SO;H)
was successfully synthesized by sequential co-condensation and oxidation method
with different molar ratios between MPMDS and TEQOS. The KIT-6 was presented with
a pore size of 6.2 nm and a large surface area up to 872 m?/g. The pore size of the
KIT-6-SO;H catalyst decreased from 4.70 nm to 4.50 nm with increased MPMDS:TEOS
molar ratio from 0.1 to 0.3. However, both KIT-6 and KIT-6-SO;H catalyst still presented
the mesoporous structure with a cubic 1a3d symmetry three-dimensional structure.
The 3D structure was discovered to be an important factor to enhance the catalytic
performance. This catalyst contained high acidity up to 1.53 mmol/g at the
MPMDS:TEOS molar ratio of 0.3. The conversion of sulfhydryl (-SH) groups successfully
converted to the sulfonic acid (-SOsH) group which could be confirmed by a single
peak of S2p XPS spectra.

The KIT-6-SOsH catalysts were studied their catalytic performance in xylose
dehydration to synthesis furfural production. The catalyst performed good catalytic
activity to obtain the highest furfural yield, furfural selectivity, and xylose conversion
at optimized conditions were 92.5%, 94.7%, 97.7%, respectively. The 0.2-KIT-6-SO;H
catalyst was selected the best catalyst in term of xylose conversion, selectivity and
yield of furfural, as well as the high TOF (10.43 h™!) due to the highest acid density
(0.008 mmol/m?). The catalytic activity in the xylose dehydration route was affected
by the number of acid sites per catalyst surface area or acid density. The reusability of
catalyst was also investigated at the optimum condition (170 °C for 2 h, 25 wt.%
catalyst loading) up to three cycles. The xylose conversion slightly decreased from
98.70% to 93.00% after three cycles. The deactivation was mainly caused by coke

deposition to cover the active sites.
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Besides, the KIT-6-SO;H catalyst was applied to the catalytic performance
in fusel oil esterification to synthesis isoamyl acetate. The 0.3-KIT-6-SO;H catalyst
performed good catalytic activity with a 95.05% yield of isoamyl acetate at the reaction
condition of 80 °C for 3 h, 5 wt.% catalyst loading and 2:1 molar ratio of acetic acid to
fusel oil. The acidity or number of acid sites, as well as the accessibility of reactants
strongly affected the catalyst performance. The 0.3-KIT-6-SOsH catalyst performed the
highest isoamyl acetate yield, while 0.1-KIT-6-SO;H gave the highest TOF (78.15 h').
The reusability of catalysts was also investigated at the optimum condition which
could be reused up to three cycles. In the reusability study without re-oxidation, the
isoamyl acetate yield decreased by 24.0% after three cycles. However, with the
reusability study together with the re-oxidation of catalyst, there was no significant
reduction of the isoamyl acetate yield (>92.00%) over the three cycles. Comparing to
the Amberlyst-35 as conventional catalyst, the KIT-6-SOsH catalyst showed a higher
efficiency than the Amberlyst-35 catalyst.

The last part, KIT-6-SOsH catalyst was applied to the glycerol etherification
for synthesis glycerol n-butyl ethers production. The 0.3-KIT-6-SO;H catalyst contained
the highest acidity would be selected as a catalyst for synthesis the glycerol n-butyl
ethers from glycerol and n-butanol via the etherification reaction. The sulfonated
functionalized mesoporous catalyst was selective to produce di-GNBEs. The highest di-
GNBEs selectivity was 51.50% at the optimized reaction condition of 140 °C for 6 h with
a 1:9 molar ratio of glycerol to n-butanol and 10 wt.% catalyst loading.

In conclusion, the KIT-6-SOsH catalyst could be a candidate catalyst to
perform the good performance in acid catalyst related reactions including dehydration,
esterification and etherification reaction. Moreover, the sulfonated mesoporous silica
could be further applied as an alternative acid catalyst for various biomass conversion

processes to produce bio-based chemicals and fuels.
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5.2 Recommendations

The KIT-6-SO;H can be further developed to improve the catalytic activity,
acid strength, chemical and thermal stability of catalyst to obtain higher efficiency in
the biomass conversion process.

The KIT-6 catalyst can be modified with different acid functional groups
such as phosphoric (-PO,), phenylboronic (-BO), carboxylic (-COO). Moreover, it could
combination between Lewis acid and Brgnsted acid sites to enhance the biomass
conversion and product selectivity.

The removal of produced water in the reaction during dehydration,
esterification and etherification process should be considered for preventing the catalyst
deactivation and an improvement in production. Follow this idea, the mixture of zeolite
as water adsorbents with the catalyst should be placed inside the flow reactor.

The xylose dehydration process can be investigated with different solvents
such as butanol, alcohol, THF to comparison the furfural selectivity and optimized
condition. The raw fusel oil can be pretreated to remove water and the impurities
before studied the esterification reaction. Moreover, the author can study with the
microwave-assisted system. The glycerol etherification could be investigated by adding
a solvent (toluene, 1,4-dioxane, and ethanol) able to selectively dissolve ethers

product generated in the progress of the reaction to improve the reaction rate.
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APPENDIX A
SYNTHESIS OF SULFONIC ACID FUNCTIONALIZED KIT-6 CATALYST FOR FURFURAL
PRODUCTION BY XYLOSE DEHYDRATION REACTION

A.1 Xylose

Xylose, one of carbohydrate, is a monosaccharide of pentose sugar
comprises five carbon atoms and a formyl or aldehyde functional group. It was
originated in biomass hemicellulose with free carbonyl group can adopt various
structures (Binder, Blank, Cefali, & Raines, 2010). Xylose is widely applied in industries
include pharmaceutical (as intermediate in medicine manufacturing), food production
(as sweetener in beverage and food), cosmetics (as additive used to reduce the loss
of moisture in cleanser, fragrance ingredient, moisture creams and body lotions),
human consumption, agriculture/animal feed, etc. ("Applications and uses of D-Xylose,"
2015). Moreover, xylose is a precursor to synthetic polymers, solvent in industry and
several chemicals such as furan-based biofuel, bioethanol, furfuryl alcohol, furfural,
xylitol, THF, organic acids, carbon materials, etc.

The usage of xylose has drawn attention with the development of high-
value utilization of biomass. Xylose can be transformed into a variety of valuable
chemicals by different technique such as fermentation to ethanol, dehydration to
furfural, electrochemical reduction of xylose to xylitol, hydrothermal carbonization.
Acid catalyzed dehydration and hydrolysis of the pentose sugars draw up the basis of

such industry.
A.2 Furfural

Furfural (CsHgO,) is a cyclic formyl compound that can be derived from
biomass hemicellulose (pentose sugar) such as wheat straw, sugarcane, corn stover,

almond husks, wood, cottonseed hulls, rice husks, etc.) The furfural has been utilized

as a biofuel precursor or furan-based chemicals with widely apply in an industry
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comprised  bioplastic, agrochemicals pharmaceuticals and organic solvent
(tetrahydrofuran (THF), methyl tetrahydrofuran (MeTHF)), etc. In the world, about 60 -
70 % of furfural production has been converted to furfuryl alcohol. (Hoydonckx, Van-
Rhijn, Van-Rhijn, De Vos, & Jacobs, 2007) The remaining part is used as

«  “Extractant for aromatics from lubricating oils.

+  Purification solvent for C4 and C5 hydrocarbons.

+  Reactive solvent and wetting agent.

«  Chemical feedstock for other furan derivatives.

« Nematode control agent”.
To illustrate, a hemicellulose hydrolysis into monomeric sugars and the xylose
dehydration into furfural and furfural undergoes with typical reactions will be shown
in Figure A.1.

Furfural is a viscous, colorless liquid that has an aromatic scent
similar to almonds which quickly darkens or black color when exposed to air. The

physical properties of furfural will be shown in Table A.1 (Hoydonckx et al., 2007)

A.2.1 Standard calibration curve for furfural production (HPLC)

First, a furfural solution was prepared 0.01 g of furfural (AR grade,
99%, Sigma-Aldrich) was dissolved in Toluene and titrated in 10 mL volumetric flasks.
Then, using that solution to prepare several standard solutions in 10 mL volumetric
flasks (0.2, 0.4, 0.6, 0.8 and 1.0 mM) follow by Equation (3.5):

CVy =GV, (3.5)

C;: Initial concentration of furfural solution (~10.05 mM)

V,: Amount of initial furfural solution (mL)

C,: Desired concentration of furfural solution (0.2 — 1 mM)

V,: Amount of desired furfural solution (10 mL)

A.2.2 Standard calibration curve for xylose conversion (HS-GC-MS)

Xylose solution was prepared with xylose concentration (~5 - 30
ppm). First, the mixture of 1.0 mL xylose solution and 5.0 mL H,SO, (98%, QReC) was
transferred to the bottle. After that, the bottle was put in the water batch at 70 °C for

Ref. code: 25625909320250YIN



107

15 min. Finally, 100 pL of this product was pipetted into headspace vials that
contained Na,CO3 anhydrous for analysis with HS-GC-MS.
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Figure A.1 Furfural derivatives from biomass hemicellulose
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Table A.1 Physical properties of furfural production

Property

Molar mass (g¢/mol)

Boiling point at 101.3 kPa (°C)

Flash point, tag closed cup (°C)

p at 20 °C (g/cm’)

Vapor density (Air = 1)

Critical pressure Pc (MPa)

Viscosity, 25°C (mPa.s)

Critical temperature Tc (°C)
Solubility, in water, wt.% (25 °C)
Ethyl alcohol, diethyl ether
Spectroscopic polarity (E")
Dielectric constant at 20 °C

Heat of vaporization (liquid) (kJ/mol)
Heat capacity (liquid, 20 — 100 °C) Jg''K™)
Heat of combustion (liquid) (kJ/mol)
AH (1), (kJ/mol)

AH (), (k)/mol)

Explosion limits (in air), (vol.%)

Surface tension at 29.9 °C (mN/m)

96.08

161.7

61.7

1.1598

3.3

5.502

1.49

50 11

8.3

0.426

41.9

42.8

11.74

2344

-201.65

-151.05

2.1-193

40.7
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APPENDIX B
PRODUCTION OF ISOAMYL ACETATE FROM FUSEL OIL ESTERIFICATION USING A
SULFONIC ACID FUNCTIONALIZED KIT-6 CATALYST

B.1 Fusel oil

Fusel alcohols, fuselol or fusel oil are mixtures of several alcohols (chiefly
amyl alcohol) such as isoamyl alcohol, isobutyl alcohol, and propanol obtained as a
by-product during bioethanol fermentation. Fusel oil production is a natural part of
fermentation, thus present in all wines, whiskey, rum, bourbon, vodka, beer, cider and
other products. Fusel oil has a high boiling point between 130 and 132 °C and must
be removed from the low volatility fractions during distillation. The GC-FID

chromatogram of fusel oil compositions as shown in Figure B.1.

Butanol (n, t, i-BuOH)

3-Methyl-
2-butanol

0 1 2 3 4 5 6 7 8 9 10
Retention time (min)

Intensity (mv)

Isopropyl alcohol

Ethanol \
W

Figure B.1 The GC-FID chromatogram of raw fusel oil

B.2 Isoamyl acetate

Isoamyl acetate, isopentyl acetate or banana oil (C;H;40,) is an organic
compound that is the ester formed with reaction between isoamyl alcohol and acetic
acid as shown in Figure B.1. It is a colorless liquid and slightly soluble in water but
dissolved in most organic solvents. Isoamyl acetate has a strong odor which is also

described as like both banana and pear. Isoamyl acetate is made naturally and
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synthetically. The natural version has a sweet, fruity, fragrance. The synthetic version
has a lighter scent. Whether natural or synthetic, it's used various ways.

Isoamyl acetate is a natural flavor ester, widely used as a source of banana
flavor by the food industry. Moreover, isoamyl acetate are used in cements and glues,
paper coatings, lacquers and paints, leather finishes, flavoring, perfume, nail enamels,
plastic wood, textile sizing and finishes, printing compounds, and photographic film.
They are used in extraction of penicillin, as a warning odor, as a solvent for
nitrocellulose and ethyl cellulose, and as a solvent for phosphors in fluorescent lamps.

(Quilter, Hurley, Lynch, & Murphy, 2003)

(o) (0]
Catalyst

Isoamyl alcohol Acetic acid Isoamyl acetate

Figure B.2 Isoamyl acetate production from fusel oil esterification with acetic acid
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APPENDIX C
GLYCEROL ETHERIFICATION USING A SULFONIC ACID FUNCTIONALIZED KIT-6
CATALYST FOR FUEL ADDITIVE

C.1 Glycerol

Glycerol or glycerin (C3HgO3) is a simple polyol compound or sugar alcohol.
It is a colorless, odorless, viscous liquid that is sweet-tasting and non-toxic. The glycerol
backbone is found in those lipids known as glycerides. It is widely used in a variety of
personal care products, including toothpaste, hair conditioner, cosmetics, and
moisturizers. It can also be used as an effective marker to measure liver disease. It is
also widely used as a sweetener in the food industry and as a humectant in
pharmaceutical formulations. Owing to the presence of three hydroxyl groups, slycerol
is miscible with water and is hygroscopic in nature. The U.S. Food and Drug
Administration (FDA) is the primary regulator of over-the-counter products and food
packaging materials. FDA has approved glycerol for use as an additive to food packaging
materials. Glycerol also has been approved for use in skin care products. To illustrate,
a transformation of glycerol into valuable chemicals with typical reactions will be

shown in Figure C.1.

C.2 Glycerol n-butyl ethers

Glycerol n-butyl ethers-based fuel additives were tested as cold flow
improvers on the viscosity of biodiesel (Bradin, Grune, & Trivette, 2009; Garcia, Laca,
Pérez, Garrido, & Peinado, 2008; Melero, Vicente, Morales, Paniagua, & Bustamante,
2010; Noureddini, 2000; Smith, Ngothai, Nguyen, & O'Neill, 2010). The blending of
glycerol-based additives with diesel fuel has reduced the amount of particulate
emissions (NO,), increased the lubricity of diesel, increased engine performance, and
increased the distillation temperature of diesel (Kesling, Karas, & Liotta, 1994,

Lovestead & Bruno, 2011; Mukhopadhyay & Chakraborty, 2015; Oprescu et al., 2014).
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Moreover, these additives also show increased performance for the wear preventive
characteristics of lubricating grease (Samoilov, Ramazanov, Nekhaev, Maximov, &

Bagdasarov, 2016) To illustrate, a side reaction of glycerol and n-butanol will be shown

in Figure C.2.
] Hydrogenolysis 1,2/1,3-propanediol
Increase production of Ethylene glycol
crude glycerol worldwide . Glycerol carbonate
—{ Carboxylation ,
Glycidol

Decrease in price

of pure glycerol —  Etherification Mono/diltri-butyl ethers l

1,3-dioxane
1.3-dioxolane

— Acetalization
To economize the e
biodiesel production

process Glycerol as
platform chemical

Esterification Mono/diftri-glycerides

— Dihydroxy acetone,
— Oxidation Glyceraldehyde,
Hydroxyl pyruvic acid

Acetol, acrolein

Glycerol
|
\

B Dehydratlon Propylene glycol
. Propylene glycol

— Polymerization jrene gy
Polyglycol esters
|  Chlorination Epichlorohydrin

Figure C.1 The pathways for the transformation of glycerol into value-added

chemicals and products
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Figure C.2 The possible side reaction of etherification of glycerol and n-butanol
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Figure C.3 The GC-MS chromatogram of glycerol etherification at 140 °C - 6 h, 10 wt.%

catalyst loading
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