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ABSTRACT 

 

Over the past decades, the amounts of GPS-enabled devices sold has drastically 

increased exponentially, with the rapid growth of modern technologies and 

manufacturing cost. The GPS-enabled devices such as smart phones and wearable 

devices are capturing massive amounts of users’ spatial and temporal information. Due 

to the increasing number of GPS-enabled devices, the volume of spatial and temporal 

information recording the footprint of a moving device has increased dramatically. The 

massive amounts of trajectory data could easily exceed the existing available data 

storage, which leads to three major challenges: storing, transmitting and visualizing the 

data. 

While dealing with these massive amounts of trajectory data, an effective 

compression mechanism is needed. The generic compression technique is called 

trajectory simplification, which results in a corresponding approximation of the initial 

path and aims to minimize the minimize information loss while preserving the quality 

of the information under a specific error threshold. Several of trajectory simplification 

algorithms have been proposed to fulfil these demands. 

In this study, an improved algorithm for top-down time-ratio (TD-TR) called 

top-down time-ratio Reduce (TD-TR Reduce) is proposed. The algorithms were 
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evaluated using several parameters, such as compression times and errors arising from 

trajectory data simplifications. The proposed TD-TR Reduce simplification method is 

applied on Geolife GPS trajectory dataset. The results of trajectory simplification are 

reported and compared with that from traditional TD-TR algorithm. The effectiveness 

of simplification is evaluated. 

The results of the simulation reveal that the proposed method can achieve an 

attractive trade-off between the compression rate and the simplification error while 

having shorter compression time. 

 

Keywords: GPS, Trajectory Data, Trajectory simplification 
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CHAPTER 1 

INTRODUCTION 

 

1.1 Background of the study 

Over the past decade, the number of GPS-enabled devices has increased 

significantly as GPS-enabled portable devices become easily available (Muckell et 

al.,2013). Due to the increasing number of GPS-enabled devices, such as mobile phones 

or in-car navigation systems, the trajectory data has increased dramatically. GPS 

trajectory data contain spatial and temporal information that records the digital footprint 

of a moving subject's device activity, such as consecutive points in the trajectory that 

may indicate certain activities (e.g. finding parking lots) or routines (e.g. sending 

children to school every morning) or changes in the mode of transport (e.g. Switching 

from walking to public bus). The massive amounts of trajectory data could easily 

exceed the existing available data storage. For example, a calculation due to Meratnia 

and de By (2004) shows that without any data compression, storing a trajectory data of 

400 objects per day at an interval of 10 seconds requires a storage capacity of 100 Mb. 

This creates several problems in location-based services: (1) The amount of storage 

spaces required to store an enormous amount of GPS trajectory. (2) The amount of 

bandwidth and other overhead generated during the process of data transmission. (3) 

The amount of computational power required to visualize the GPS trajectory data. To 

solve these problems, a scalable data compression method for trajectories is required.  

In order to reduce the amount of trajectory data, trajectory simplification has been 

adopted. Many trajectory simplifications types have been introduced in the past which 

can be divided into various methods of categorization, lossless compression and lossy 

compression or online compression and offline compression. The general of trajectory 

simplification is to remove some trajectory points while retaining an acceptable degree 

of error.  
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1.2 Problem statement, research aim and research objectives 

As we have seen, the massive amount of trajectory data could exceed the existing 

storage capacity. While dealing with these massive amounts of trajectory data, an 

effective mechanism for compression is needed. Due to the computational overhead of 

the existing algorithms, we define our problem as a trajectory simplification problem. 

This study, therefore, aims to propose an improvement of trajectory simplification 

algorithm based on an existing current state of the art algorithm. To achieve the research 

aim, the following objectives are defined:  

• Introduces an offline lossy trajectory simplification algorithm, which results in 

a shorter compression time against the current state of the art compression 

algorithms.  

• Perform a performance evaluation among the popular trajectory simplification 

algorithms: Douglas-Peucker, Top-down time-ratio and Multiresolution 

polygonal approximation. 

• Suggestions on how to develop future algorithms to performance improvement. 

 

1.3 Thesis organization 

This thesis consists of six chapters. The main content of each chapter is described 

as follows. 

• Chapter 1 introduces background of the study, including the characteristics of 

the GPS trajectory. The chapter presents the problem statement, research aim, 

and research objectives at the end of the chapter 

• Chapter 2 reviews literature related to trajectory simplification algorithm. 

• Chapter 3 introduce definition, metrics and discussion of the ideal outcome as 

well as the introduction of average time-synchronized euclidean. 

• Chapter 4 explains the proposed approach and feature point extraction model. 

• Chapter 5 explains dataset, experiment setting and the comparison of trajectory 

simplification algorithm. Experiment results are also detailed and discussed in 

this chapter. 

• Chapter 6 summarizes major findings, limitations, and recommendations for 

future research.  
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CHAPTER 2 

REVIEW OF LITERATURE 

 

2.1 Introduction 

Several algorithms have been proposed to simplify trajectory data, different 

algorithms use different approaches to find a similar trajectory with fewer points. 

Trajectory compression can be categorized as online and offline compression or lossless 

and loss compression, depending on the various categorization methods. The advantage 

of online compression is that it supports real-time applications and can compress 

trajectory data while collecting upcoming trajectory points. Only after all points have 

been obtained from the input trajectory, offline compression can be performed. 

However, offline compression usually has smaller errors compare to online 

compression. Lossless compression enables the original data to be reconstructed 

without loss of information, while Lossy compression is not possible. The main 

advantage of lossy compression is that it can significantly reduce the trajectory size 

while maintaining reasonable error tolerances. The four algorithms in this paper were 

compared, three of which have already been mentioned in the literature.  

 

2.2 Douglas-Peucker 

Douglas-Peuker (DP) algorithm by Douglas and Peucker (1973), compresses 

trajectory data by recursively divides the trajectory to decide which points should be 

retained according to user-defined Perpendicular Euclidean Distance (PED) threshold. 

This algorithm begins with a rough simplification of the edge, which is the one edge 

connecting the initial and the last vertices of the original polyline. Once the recursion 

is done, a new performance curve consisting of only those marked as retained will be 

generated as demonstrated in Figure 2.1. 
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2.3 Top-down time-ratio 

Top-down time-ratio (Meratnia and de By 2004) is an extension of the Douglas-

Peucker. The difference between them is that where the Douglas-Peuker algorithm uses 

the Euclidean distance as an error metric, the TD-TR algorithm uses a time-

synchronous Euclidean distance called Synchronized Euclidean Distance to overcome 

the limitation of ignoring temporal data. Figure 2.2 illustrate how TD-TR algorithm 

iteratively simplifies a line. 

 

2.4 Multiresolution polygonal approximation 

Multiresolution polygonal approximation or MRPA algorithm (Minjie et al.,2012) 

is proposed to compress trajectories in O(N) computational space, where a new error 

metric called an integral square synchronous Euclidean distance (ISSD) was 

introduced. The MRPA algorithm uses the bottom–up multiresolution approach. The 

proposed method made substantial progress in the real-time application solution of the 

GPS Trajectory Simplification problem. 

 

Algorithm Time Complexity Error Criterion Offline 

DP 𝑂(𝑛2) PED Yes 

TD-TR 𝑂(𝑛2) SED Yes 

MRPA 𝑂(𝑛2/𝑀) ISSD Yes 

 

Table 2.1: Simplification algorithm summary 
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Figure 2.1 Illustration of Douglas-Peucker algorithm. 
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Figure 2.2 Illustration of TD-TR algorithm. 
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CHAPTER 3 

DEFINITION AND METRICS 

 

3.1 Introduction 

This section describes both the necessary definition and the metrics for evaluating 

the simplification algorithm. First, we introduce a few terms used in this thesis, and 

then we define our metric. 

 

3.2 Definition 

3.2.1 GPS Point 

A GPS point 𝑃𝑖 is a tuple 𝑃𝑖(𝑥𝑖, 𝑦𝑖, 𝑡𝑖) that contain longitude 𝑥, latitude 𝑦 and 

timestamp 𝑡 of the i-th point, where i = {1,2, … , 𝑛} and n represent the number of GPS 

points in a trajectory. 

 

3.2.2 Trajectory 

A trajectory is a temporal ordered sequence of points denoted as 𝑇 =

{𝑃1, … , 𝑃𝑛}, where |𝑇| = 𝑛 represents the size of trajectory 𝑇.  

 

3.2.3 Simplified trajectory 

Given an original trajectory 𝑇 = {𝑃1, … , 𝑃𝑛}, a simplified Trajectory  𝑇′ ⊆  𝑇 is 

a subset of the original trajectory 𝑇 and can be express as 𝑇′ = {𝑃𝑠1
, … , 𝑃𝑠𝑚

} where 

𝑚 ≤ 𝑛 and 1 = 𝑠1 < ⋯ < 𝑠𝑚 = 𝑛 

 

3.2.4 Spatial distance 

 

Spatial distance is the length of the straight line connected between two points 

location 𝑃𝑎 and 𝑃𝑏denoted by DISTANCE (𝑃𝑎 , 𝑃𝑏) and can be calculated as follows: 

 

𝐷𝐼𝑆𝑇𝐴𝑁𝐶𝐸(𝑃𝑎 , 𝑃𝑏)  = 6,371.00 × √((𝑙𝑜𝑛𝑔𝑏 − 𝑙𝑜𝑛𝑔𝑎) × 𝐶𝑂𝑆(
𝑙𝑎𝑡𝑎 + 𝑙𝑎𝑡𝑏

2
))2 + (𝑙𝑎𝑡𝑏 − 𝑙𝑎𝑡𝑎)2 
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3.3 Error metrics 

3.3.1 Synchronized Euclidean Distance 

Synchronized Euclidean Distance (SED) is the distance between the actual point 

𝑃𝑘(𝑥𝑘, 𝑦𝑘, 𝑡𝑘) and its synchronized point 𝑃𝑘
′ (𝑥𝑘

′ , 𝑦𝑘
′ , 𝑡𝑘

′ ) created by two points 𝑃𝑠 and 𝑃𝑒 

at identical time stamps (see Figure 3.1) and can be calculated as follows: 

 

𝑆𝐸𝐷(𝑃𝑘) = √(𝑥𝑘 − 𝑥𝑘
′ )2 + (𝑦𝑘 − 𝑦𝑘

′ )2 

where 

 

𝑥𝑘
′ = 𝑥𝑠 +

𝑥𝑒 − 𝑥𝑠

𝑡𝑒 − 𝑡𝑠

(𝑡𝑘 − 𝑡𝑠) 

𝑦𝑘
′ = 𝑦𝑠 +

𝑦𝑒 − 𝑦𝑠

𝑡𝑒 − 𝑡𝑠

(𝑡𝑘 − 𝑡𝑠) 

 

 
Figure 3.1 Illustration of Synchronized Euclidean Distance between 𝑃𝑠 and 𝑃𝑒 

 

3.3.2 Trajectory Distance Reduction Ratio 

Trajectory distance reduction ratio (TDDR) is the accumulated travel distance 

ratio of the simplified trajectory 𝑇′versus its original trajectory 𝑇 and can be calculated 

as follows: 

 

𝑇𝐷𝑅𝑅(𝑇, 𝑇′) = 1 −
𝑇𝐷𝐷(𝑇)

𝑇𝐷𝐷(𝑇′)
 

where 

 

𝑇𝐷𝐷(𝑇𝑖) = ∑ 𝐷𝐼𝑆𝑇𝐴𝑁𝐶𝐸(𝑃𝑖, 𝑃𝑖+1)

|𝑇|−1

𝑖=1
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3.4 Performance metrics 

3.4.1 Compression ratio 

Compression ratio (CR) is defined as the size of the simplified trajectory 𝑇′ 

versus its original trajectory T and can be calculated as follows: 

 

𝐶𝑅(𝑇, 𝑇′) = 1 −
|𝑇|

|𝑇′|
 

 

3.4.2 Compression time 

Compression time (CT) is the amount of time taken for a trajectory to be 

simplified. 

 

3.5 Discussion 

The trajectory-simplifying algorithm's efficiency is defined as the combination 

of error metrics and performance metrics. For the further improvement of error metrics, 

in order to measure the average time-synchronized euclidean distance between the 

original trajectory T and its simplified trajectory 𝑇′, we introduce Average 

Synchronized Euclidean distances (see Figure 3.2). Given Trajectory 𝑇 =

{𝑃1, 𝑃2, 𝑃3, 𝑃4, 𝑃5, 𝑃6} and its simplified trajectory 𝑇′ = {𝑃1, 𝑃4, 𝑃6}. ASED is 

calculated as (𝑑1 + 𝑑2 + 𝑑3)/2. The ideal simplified trajectory should be highly 

compressed with minimum compression time, TDRR and ASED. 

 

 

Figure 3.2 Example of calculating ASED. 

 

 

𝐴𝑆𝐸𝐷(𝑇)  =  (𝑑1 + 𝑑2 + 𝑑3)
/2/2 
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CHAPTER 4 

PROPOSED APPROACH 

 

4.1 General overview 

In this section we present our feature point extraction mechanism followed by 

our proposed algorithm TD-TR Reduce and trajectory simplification parameter 

determination. 

 

4.2 Feature point extraction 

Some GPS tracking point is redundant in some applications. To retain only the 

important part where some events occur (e.g. travel mode transition), we proposed a 

feature point extraction model with a focus reducing the trajectory data based on several 

of the movement characteristics given as follows.  

 

4.2.1 Movement speed 

In the transition mode, node movement speeds typically change significantly 

(Zheng et al.,2010) (see Figure 4.1), this includes walking, cycling, driving vehicles or 

taking the train. As shown in Figure 4.2, The feature node is the place where the node 

changes transportation mode from driving to walking. To detect a feature point caused 

by switching between transportation modes. First, we specify the difference of 

movement speed as ∆𝑖+1= |𝑆𝑃𝑖+1 − 𝑆𝑃𝑖| , in which 𝑆𝑃𝑖 is an average speed in the line 

segment 𝑃𝑖,𝑖+1. When ∆𝑖+1 exceeds a certain threshold, 𝑃𝑖+1  is kept as a feature point. 

Because speed changes are usually caused by switches between travel modes. We 

propose the usage of the standard deviation of movement speeds as the speed threshold 

since the standard deviation can indicate changes in velocity. The speed threshold 𝑆𝑃𝑡ℎ 

is expressed as  

 

𝑆𝑃𝑡ℎ = √∑ (𝑆𝑃𝑖 − 𝑆𝑃)
2

𝑛−1
𝑖=1

𝑛 − 1
 

where 

 

𝑆𝑃 = ∑
𝑆𝑃𝑖

𝑛 − 1
]

𝑛−1

𝑖=1
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Figure 4.1 Movement speed change point 

 
Figure 4.2 Transition of transportation mode 

 

4.2.2 Heading 

The heading changes accordingly to the current modes of transport. For 

example, when the mode of transport is walking rather than another mode of transport, 

the heading will change very often. To detect a feature point caused by a significant 

change in the node heading. δ𝑖+1 was defined as the heading different between θ𝑖 and 

θ𝑖+1 and can be calculated as follows: 

 

𝛿𝑖+1 = {
     360 − |𝜃𝑖+1 − 𝜃𝑖|,               𝑖𝑓 |𝜃𝑖+1 − 𝜃𝑖| > 180

|𝜃𝑖+1 − 𝜃𝑖|,               𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 

 

where 𝜃𝑖 represents the current heading on the line segment 𝑃𝑖,𝑖+1, that can be 

calculated using the haversine formula. If 𝛿𝑖+1 exceeds a certain 𝛿𝑡ℎ, 𝑃𝑖+1 is kept as a 

feature point. 

 

4.2.3 Skip threshold 

When the node travels in a straight line at a constant speed (e.g. highway, 

tollway), the entire point will be ignored from the two-feature point extraction method 

mentioned above. In order to prevent the above scenario from occurring, we introduce 
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the skipping threshold 𝑠𝑘𝑖𝑝𝑡ℎ. Figure 4.3 show the illustration of skip threshold. 

When the number of points that are ignored from the extraction method of a feature 

point above reaches the skipping threshold, which is 2 in this case, the point is kept as 

a feature point. 

 

 

 

 

Figure 4.3 Illustration of feature point extraction when 𝑠𝑘𝑖𝑝𝑡ℎ= 2 

 

4.3 TD-TR Reduce 

In order to reduce the compression time of the current TD-TR algorithm (see 

Figure 4.4), we propose a TD-TR Reduce algorithm to simplify the trajectory by 

performing a traditional TD-TR algorithm on a set of extracted feature points. The 

following procedure is provided in algorithm 1 below: 

 

1. Add the first from 𝑇 to the feature point array 𝑇𝑓𝑒𝑎𝑡𝑢𝑟𝑒 (line 3) 

2. Calculate the standard deviation of speed in T and set it as the speed 

threshold 𝑆𝑃𝑡ℎ (line 4) 

3. Starting from 𝑖 = 1, iteratively add point 𝑝𝑖+1 to the feature point array 

𝑇𝑓𝑒𝑎𝑡𝑢𝑟𝑒 and set skip parameter back to zero if the movement speed different 

∆i+1 is greater than or equal to speed threshold 𝑆𝑃𝑡ℎ or the heading different 

δ𝑖+1 is greater than or equal to heading threshold δ𝑡ℎ (lines 5-7) 

4. If the n point was not added to the feature point array 𝑇𝑓𝑒𝑎𝑡𝑢𝑟𝑒, increase skip 

value by one (line 10) 

5. If the skip value reaches the certain skip threshold 𝑠𝑘𝑖𝑝𝑡ℎ, add point 𝑝𝑖+1 to 

the feature point array 𝑇𝑓𝑒𝑎𝑡𝑢𝑟𝑒 and set skip parameter back to zero  (lines 

12-15) 
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6. Add the last points in $T$ to the feature point array 𝑇𝑓𝑒𝑎𝑡𝑢𝑟𝑒 (line 18) 

7. Perform TD-TR algorithm on feature points array 𝑇𝑓𝑒𝑎𝑡𝑢𝑟𝑒 and stored it as 

a simplified trajectory 𝑇′. (line 19) 

8. Finally, the simplified trajectory 𝑇′ is returned. (line 20) 

 

4.4 Trajectory-Simplification parameter determination 

The rest of our approach problems are to evaluate appropriate parameters for 

skipping threshold 𝑠𝑘𝑖𝑝𝑡ℎ and heading threshold 𝛿𝑡ℎ for TD-TR Reduce, respectively. 

If we reduce the number of 𝑠𝑘𝑖𝑝𝑡ℎ, the resulting number of points in the feature point 

array will be lower, resulting in lower total compression time. In the opposite way, if 

the number of 𝑠𝑘𝑖𝑝𝑡ℎ was reduced, the resulting simplified trajectory will have higher 

ASED error and TDDR, and vice versa. Same as the heading threshold 𝛿𝑡ℎ,if we lower 

the number of 𝛿𝑡ℎ, the resulting number of points in the feature point array will lower 

the overall compression time. In Section 5.3, in order to determine a proper parameter, 

we will conduct an experiment on a real-world dataset to study the outcome.  

Ref. code: 25626022040684SIJ



14 

 

 

 

 

 

 

Figure 4.4 TD-TR Reduce algorithm 
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CHAPTER 5 

EXPERIMENTAL RESULTS AND DISCUSSION 

 

5.1 General overview 

This section introduces a dataset and then our proposed algorithms are evaluated 

based on three aspects: compression ratio, compression time and error metrics. Finally, 

we discuss the results and summarize the performance of the proposed algorithms. 

Three algorithms (DP, TD-TR, TD-TR Reduce) were written in Python, while MRPA 

was written in Matlab. The experiment is conducted on Windows 10 with 4 CPU cores 

(Intel i7-7700K with 4.20GHz) and 32 GB RAM. 

 

5.2 Data 

The Geolife dataset was collected by 182 participants in the (Microsoft research 

Asia) Geolife project (Zheng et al.,2010) for five years (from April 2007 to August 

2012). different transport modes, including biking, walking and traveling, are included 

in the data set. most of the data collection has taken place in China, Beijing. more than 

90% of trajectories are collected in a dense format, e.g. every 1 to 5 seconds or every 5 

to 10 meters per point. the data set was cleaned to remove trajectories with high noise 

such as large jumps in time and space. 

 

5.3 Experiment settings 

For this simulation, three trajectories are chosen to observe the effect of 

𝑠𝑘𝑖𝑝𝑡ℎ and δ𝑡ℎ on the number of remaining points. Figures 5.1-5.3 show the number of 

stop points under different heading threshold and skip threshold. The details of each 

trajectory are shown in Table 5.1. From Figures 5.1-5.3, the curve decreases 

dramatically when  𝑠𝑘𝑖𝑝𝑡ℎ increases from 2 to 3 and from 3 to 4. The curve starts to 

change slowly when 𝑠𝑘𝑖𝑝𝑡ℎ ≥ 5, so we set 𝑠𝑘𝑖𝑝𝑡ℎ = 5. On the other hand, the number 

of remaining points decreases significantly when 𝛿𝑡ℎchange from 45° to 60°and starts 

to change constantly when 𝛿𝑡ℎ ≥ 60°, so we set 𝛿𝑡ℎto 60°. 
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Trajectory ID # of Points Start Stop 

1 4,164 
2009-02-20 

04:01:36 

2009-02-20 

14:51:36 

2 1,937 
2008-10-28 

23:51:59 

2008-10-29 

11:25:00 

3 838 
2009-02-24 

12:16:55 

2009-02-24 

13:35:55 

 

Table 5.1: Trajectory details 

 

Figure 5.2 Trajectory one 
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Figure 5.2 Trajectory two 

Figure 5.3 Trajectory three 
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Figure 5.4 Trajectory details 

Figure 5.5 Compression time 
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Figure 5.6 Compression ratio 

Figure 5.7 Trajectory distance reduction ratio (TDDR) 
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Figure 5.8 Average SED error (ASED) 

Figure 5.9 Trajectory details 
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Figure 5.10 Compression time 

Figure 5.11 Compression ratio 
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Figure 5.12 Trajectory distance reduction ratio (TDDR) 

Figure 5.13 Average SED error (ASED) 
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5.4 Comparison of trajectory simplification algorithm 

Our proposed TD-TR Reduce algorithm was compared against three other 

algorithms (DP, TD-TR, MRPA) in terms of compression ratio, compression time and 

simplification error. To simulate the result, 25 trajectories are selected from the Geolife 

dataset and the trajectory details are shown in Figure 5.4. Figures 5.5-5.8 display the 

simulation results.  

As shown in Figure 5.5, on compression time, DP outperforms other algorithms, 

while the compression time of MRPA is significantly longer than other algorithms. The 

reason could be that MRPA error metric (LSSD) requires higher computation cost. 

Furthermore, TD-TR Reduce achieve shorter compression time than both of TD-TR 

and MRPA. This is because the feature point extraction technique was adopted, which 

reduces the computational time significantly.  

In Figure 5.6, regarding the compression ratio, the plots of DP and MRPA are 

close to each other, while the plot of TD-TR and TD-TR Reduce are slightly lower. 

Meanwhile, TD-TR Reduce outperforms the traditional TD-TR algorithm.  

Figures 5.7 illustrates that both TD-TR and TD-TR Reduce achieve much lower 

trajectory distance reduction ratio, while DP obtains the highest trajectory distance 

reduction ratio among all algorithms.  

In Figures 5.8, the ASED error of DP is generally higher than other algorithms 

and the curves of TD-TR Reduce are slightly higher than Traditional TD-TR. 

Particularly, TD-TR always achieves the lowest ASED error. Therefore, TD-TR 

Reduce makes a favorable trade-off between the compression ratio, the trajectory 

distance reduction ratio and the ASED error while having up to 33% lower compression 

time on large trajectory compares to the traditional TD-TR algorithm. 

To further evaluate the algorithm on large trajectory, 10 large trajectories from 

the Geolife dataset are selected and the trajectory details are shown in Figure 5.9. The 

simulation results are then display in Figures 5.10-5.13. The result confirms that our 

hypothesis is correct, in that our proposed TD-TR Reduce algorithm performs on 

average 30 percent faster than the traditional TD-TR algorithm on a large trajectory. 

Therefore, TD-TR Reduce enables a favorable tradeoff between the simplification rate 

and the simplification error especially on large trajectory. 
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CHAPTER 6 

CONCLUSION 

 

6.1 General overview 

This chapter concludes major findings of the study. Contributions to the 

trajectory simplification community, limitations, and recommendations for further 

studies are also presented in this chapter. 

 

6.2 Major findings 

This study develops the trajectory simplification algorithm utilizing the feature 

extraction approach to examine performance in real-world data set and suggest some 

strategies for the trajectory simplification community.  

In this paper, we presented a new trajectory simplification algorithm called TD-

TR Reduce, which proposes a new method of data reduction based on the extraction of 

a feature point. Only the important points will be retained by using this data reduction 

method. The algorithm then performs the traditional TD-TR algorithm on the extracted 

feature point set. The outstanding advantage of our proposed method is that our 

proposed algorithm performs exceptionally well around 30% faster on average on large 

trajectory while still maintaining a low error compare to the traditional algorithm. 

 

6.3 Limitation and recommendations for future studies 

There are limitations in this study. As our algorithm is being evaluated on a 

single data set, some adjustments on experiment setting may need to be made to achieve 

the desired result. Another limitation is that our algorithm do not perform well on high 

fluctuation trajectory data. 

Future studies should focus on investigating an appropriate dynamic parameter 

setting (e.g., heading threshold and skip threshold). In addition, an effectiveness of TD-

TR Reduce performance on different datasets should be investigated as well. 
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APPENDIX A 

SOURCE CODE OF TD-TR ALGORITHM 

from math import sqrt 

import sys 

import csv 

from math import radians, cos, sin, asin, sqrt 

from shapely.geometry import Point 

sys.setrecursionlimit(15000) 

import time 

epsilon = 0.0001 

file_in = 'input.csv' 

  

def Calc_SED(start,param,end): 

    lat1 = start[0] 

    lat2 = param[0] 

    lat3 = end[0] 

    lon1 = start[1] 

    lon2 = param[1] 

    lon3 = end[1] 

    time1 = start[2] 

    time2 = param[2] 

    time3 = end[2] 

    numerator = int(time2) - int(time1) 

    denominator = int(time3) - int(time1) 

    if(denominator==0): 

      time_ratio = 1 

    else: 

      time_ratio = numerator / denominator 

    lat = float(lat1) + (float(lat3) - float(lat1))*time_ratio 

    lon = float(lon1) + (float(lon3) - float(lon1))*time_ratio 

    lat_diff = lat - float(lat2) 

    lon_diff = lon - float(lon2) 

    return sqrt(lat_diff*lat_diff + lon_diff*lon_diff) 

  

def td_tr(points, epsilon): 

    dmax = 0.0 

    index = 0 

    for i in range(1, len(points) - 1): 

        d = Calc_SED(points[0],points[i],points[-1]) 

        if d > dmax: 

            index = i 

            dmax = d 

    if dmax >= epsilon: 

        results = td_tr(points[:index+1], epsilon)[:-1] + 

td_tr(points[index:], epsilon) 

    else: 

        results = [points[0], points[-1]] 

    return results 

  

start_time = time.time() 

all_list = [] 

with open(file_in) as csvfile: 

    readCSV = csv.reader(csvfile, delimiter=',') 

    for row in readCSV: 

        all_list.append([float(row[0]),float(row[1]),int(row[2])]) 
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##print(len(all_list)) 

    result = td_tr(all_list,epsilon) 

##    print(result) 

  

file_out = file_in.split(".")[0]+"_TD.csv" 

  

f= open(file_out,"w+") 

for i in range(len(result)): 

    lat = '%.6f' % result[i][0] 

    lon = '%.6f' % result[i][1] 

    time2 = result[i][2] 

    re_out = str(lat)+','+str(lon)+','+str(time2) 

    f.write(re_out) 

    if(i!=len(result)-1): 

        f.write("\n") 

f.close() 

print("--- %s seconds ---" % (time.time() - start_time)) 
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APPENDIX B 

SOURCE CODE OF TD-TR REDUCE ALGORITHM 

 
import sys 

import csv 

import statistics 

from math import radians, cos, sin, asin, sqrt 

import math 

from shapely.geometry import Point 

sys.setrecursionlimit(15000) 

import time 

  

epsilon = 0.0001 

file_in = 'input.csv' 

  

def Calc_SED(start,param,end): 

    lat1 = start[0] 

    lat2 = param[0] 

    lat3 = end[0] 

    lon1 = start[1] 

    lon2 = param[1] 

    lon3 = end[1] 

    time1 = start[2] 

    time2 = param[2] 

    time3 = end[2] 

    numerator = int(time2) - int(time1) 

    denominator = int(time3) - int(time1) 

    if(denominator==0): 

      time_ratio = 1 

    else: 

      time_ratio = numerator / denominator 

    lat = float(lat1) + (float(lat3) - float(lat1))*time_ratio 

    lon = float(lon1) + (float(lon3) - float(lon1))*time_ratio 

    lat_diff = lat - float(lat2) 

    lon_diff = lon - float(lon2) 

    return sqrt(lat_diff*lat_diff + lon_diff*lon_diff) 

  

def td_tr(points, epsilon): 

    dmax = 0.0 

    index = 0 

    for i in range(1, len(points) - 1): 

        d = Calc_SED(points[0],points[i],points[-1]) 

        if d > dmax: 

            index = i 

            dmax = d 

    if dmax >= epsilon: 

        results = td_tr(points[:index+1], epsilon)[:-1] + 

td_tr(points[index:], epsilon) 

    else: 

        results = [points[0], points[-1]] 

    return results 

  

  

def Calc_speed(lat1, lon1, time1, lat2, lon2, time2): 
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      R = 6371  

      dLat = radians(float(lat2) - float(lat1)) 

      dLon = radians(float(lon2) - float(lon1)) 

      lat1 = radians(float(lat1)) 

      lat2 = radians(float(lat2)) 

      timediff = int(time2)-int(time1) 

  

      a = sin(dLat/2)**2 + cos(lat1)*cos(lat2)*sin(dLon/2)**2 

      c = 2*asin(sqrt(a)) 

      if(timediff==0): 

          result = 0 

      else: 

          result = (R * c * 1000)/timediff*3.6 

  

      return result #meter 

  

def Calc_bearing(lat1, lon1, lat2, lon2): 

      lat1 = math.radians(float(lat1)) 

      lat2 = math.radians(float(lat2)) 

      lon1 = math.radians(float(lon1)) 

      lon2 = math.radians(float(lon2)) 

      y= sin(lon2-lon1)*cos(lat2) 

      x= cos(lat1)*sin(lat2)-sin(lat1)*cos(lat2)*cos(lon2-lon1) 

      bearing = math.atan2(y,x) 

      return (bearing + math.radians(360)) % math.radians(360) 

  

def Calc_bearing_diff(b1,b2): 

      if(abs(b1-b2)>180): 

            return 360-abs(b1-b2) 

      else: 

            return abs(b1-b2) 

      return (bearing + math.radians(360)) % math.radians(360) 

  

     

start_time = time.time() 

all_list = [] 

speed_list = [] 

bearing_list = [] 

list1=[] #p1 

fin_list = [] 

skip = 0 

with open(file_in) as csvfile: 

    readCSV = csv.reader(csvfile, delimiter=',') 

    for row in readCSV: 

        if(len(list1)!=0): 

            speed = 

Calc_speed(list1[0],list1[1],list1[2],row[0],row[1],row[2]) 

            bearing = Calc_bearing(list1[0],list1[1],row[0],row[1]) 

            speed_list.append(speed) 

            bearing_list.append(math.degrees(bearing)) 

            

all_list.append([float(row[0]),float(row[1]),int(row[2])]) 

            list1=row 

        else: 

            list1=row 

            

all_list.append([float(row[0]),float(row[1]),int(row[2])]) 
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mean = statistics.mean(speed_list) 

SD_speed = statistics.stdev(speed_list) 

fin_list.append(all_list[0]) 

for i,j in zip(range(0,len(bearing_list)-1), 

range(1,len(bearing_list))): 

    if(abs(speed_list[i]-speed_list[j])>=SD_speed or 

Calc_bearing_diff(bearing_list[i],bearing_list[j])>=60): 

        skip=0 

        fin_list.append(all_list[i+1]) 

    else: 

        skip+=1 

    if(skip==5): 

        fin_list.append(all_list[i+1]) 

        skip=0 

fin_list.append(all_list[-1]) 

result = td_tr(fin_list,epsilon) 

  

file_out = file_in.split(".")[0]+"_TD_RED.csv" 

  

f= open(file_out,"w+") 

for i in range(len(result)): 

    lat = '%.6f' % result[i][0] 

    lon = '%.6f' % result[i][1] 

    time2 = result[i][2] 

    re_out = str(lat)+','+str(lon)+','+str(time2) 

    f.write(re_out) 

    if(i!=len(result)-1): 

        f.write("\n") 

f.close() 

print("--- %s seconds ---" % (time.time() - start_time)) 
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APPENDIX C 

SOURCE CODE OF DP ALGORITHM 

 
from math import sqrt 

import sys 

import csv 

from math import radians, cos, sin, asin, sqrt 

from shapely.geometry import Point 

sys.setrecursionlimit(15000) 

import time 

  

epsilon = 0.0001 

file_in = 'input.csv' 

def distance(a, b): 

    return  sqrt((a[0] - b[0]) ** 2 + (a[1] - b[1]) ** 2) 

  

def point_line_distance(point, start, end): 

    if (start == end): 

        return distance(point, start) 

    else: 

        n = abs( 

            (end[0] - start[0]) * (start[1] - point[1]) - (start[0] - 

point[0]) * (end[1] - start[1]) 

        ) 

        d = sqrt( 

            (end[0] - start[0]) ** 2 + (end[1] - start[1]) ** 2 

        ) 

        return n / d 

  

def rdp(points, epsilon): 

    dmax = 0.0 

    index = 0 

    for i in range(1, len(points) - 1): 

        d = point_line_distance(points[i], points[0], points[-1]) 

        if d > dmax: 

            index = i 

            dmax = d 

    if dmax > epsilon: 

        results = rdp(points[:index+1], epsilon)[:-1] + 

rdp(points[index:], epsilon) 

    else: 

        results = [points[0], points[-1]] 

    return results 

  

start_time = time.time() 

all_list = [] 

with open(file_in) as csvfile: 

    readCSV = csv.reader(csvfile, delimiter=',') 

    for row in readCSV: 

        all_list.append([float(row[0]),float(row[1]),int(row[2])]) 

##print(len(all_list)) 

result = rdp(all_list,epsilon) 
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file_out = file_in.split(".")[0]+"_DP.csv" 

  

f= open(file_out,"w+") 

for i in range(len(result)): 

    lat = '%.6f' % result[i][0] 

    lon = '%.6f' % result[i][1] 

    time2 = result[i][2] 

    re_out = str(lat)+','+str(lon)+','+str(time2) 

    f.write(re_out) 

    if(i!=len(result)-1): 

        f.write("\n") 

f.close() 

print("--- %s seconds ---" % (time.time() - start_time)) 
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APPENDIX D 

SOURCE CODE OF ERROR CALCULATION 

 
import sys 

import csv 

from math import radians, cos, sin, asin, sqrt 

  

def Calc_PED(lat1, lon1, lat2, lon2, lat3, lon3): 

    if((lat1==lat2 and lon1==lon2) or (lat2==lat3 and lon2==lon3)): 

        return 0.0 

    else: 

        A = float(lon3) - float(lon1) 

        B = float(lat1) - float(lat3) 

        C = float(lat3)*float(lon1) - float(lat1)*float(lon3) 

        if(A==0 and B==0): 

            return 0; 

        shortDist = abs((A * float(lat2) + B * float(lon2) + C) / 

sqrt(A * A + B * B)); 

        return shortDist 

  

def Calc_SED(lat1, lon1, time1, lat2, lon2, time2, lat3, lon3, 

time3): 

  numerator = int(time2) - int(time1) 

  denominator = int(time3) - int(time1) 

  if(denominator==0): 

      time_ratio = 1 

  else: 

      time_ratio = numerator / denominator 

  lat = float(lat1) + (float(lat3) - float(lat1))*time_ratio 

  lon = float(lon1) + (float(lon3) - float(lon1))*time_ratio 

  lat_diff = lat - float(lat2) 

  lon_diff = lon - float(lon2) 

  return sqrt(lat_diff*lat_diff + lon_diff*lon_diff) 

  

def Calc_speed(lat1, lon1, time1, lat2, lon2, time2): 

  

      R = 6371  

      dLat = radians(float(lat2) - float(lat1)) 

      dLon = radians(float(lon2) - float(lon1)) 

      lat1 = radians(float(lat1)) 

      lat2 = radians(float(lat2)) 

      timediff = int(time2)-int(time1) 

  

      a = sin(dLat/2)**2 + cos(lat1)*cos(lat2)*sin(dLon/2)**2 

      c = 2*asin(sqrt(a)) 

  

      return (R * c * 1000)/timediff*3.6 #meter 

  

def Calc_dis(lat1, lon1, lat2, lon2): 

  

      R = 6371  

  

      dLat = radians(lat2 - lat1) 

      dLon = radians(lon2 - lon1) 

      lat1 = radians(lat1) 
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      lat2 = radians(lat2) 

  

      a = sin(dLat/2)**2 + cos(lat1)*cos(lat2)*sin(dLon/2)**2 

      c = 2*asin(sqrt(a)) 

  

      return R * c * 1000 

     

Traj = 'original.csv' 

STraj = 'simplified.csv' 

list1=[] 

list2=[] 

Traj_list = [] 

Straj_list = [] 

total_ped = 0 

total_sed = 0 

total_dist1 = 0 

total_dist2 = 0 

num_line1 = 0 

done = True 

safe_line = 1 

with open(STraj) as before: 

  csv_before = csv.reader(before, delimiter=',') 

  for row in csv_before: 

    list2=list1 

    list1=row 

    num_line1+=1 

    Straj_list.append(row) 

    if(len(list1)!=0 and len(list2)!=0): 

      with open(Traj) as after: 

        csv_after = csv.reader(after, delimiter=',') 

        for row2 in csv_after: 

          if(list1!=row2): 

            if(csv_after.line_num>safe_line): 

              total_sed = total_sed + Calc_SED(list2[0], list2[1], 

list2[2], row2[0], row2[1], row2[2], list1[0], list1[1], list1[2]) 

          else: 

            safe_line=csv_after.line_num 

            break 

  

with open(Traj) as after: 

  csv_after = csv.reader(after, delimiter=',') 

  for row in csv_after: 

    Traj_list.append(row) 

  

for i in range(len(Traj_list)): 

    for j in range(len(Traj_list)): 

        if(j-i==1): 

            total_dist1 = total_dist1 + 

Calc_dis(float(Traj_list[i][0]),float(Traj_list[i][1]),float(Traj_lis

t[j][0]),float(Traj_list[j][1])) 

  

for i in range(len(Straj_list)): 

    for j in range(len(Straj_list)): 

        if(j-i==1): 

            total_dist2 = total_dist2 + 

Calc_dis(float(Straj_list[i][0]),float(Straj_list[i][1]),float(Straj_

list[j][0]),float(Straj_list[j][1])) 
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print("File Name",STraj) 

print("ASED:",total_sed/(num_line1-1)) 

print("Distance Reduction Ratio:",1-(total_dist2/total_dist1)) 
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