

IMPROVEMENT OF TD-TR ALGORITHM FOR

SIMPLIFYING GPS TRAJECTORY DATA

BY

MR. KANASUAN HANSUDDHISUNTORN

A THESIS SUBMITTED IN PARTIAL FULFILLMENT OF THE

REQUIREMENTS FOR THE DEGREE OF MASTER OF

SCIENCE (ENGINEERING AND TECHNOLOGY)

SIRINDHORN INTERNATIONAL INSTITUTE OF TECHNOLOGY

THAMMASAT UNIVERSITY

ACADEMIC YEAR 2019

COPYRIGHT OF THAMMASAT UNIVERSITY

Ref. code: 25626022040684SIJ

IMPROVEMENT OF TD-TR ALGORITHM FOR

SIMPLIFYING GPS TRAJECTORY DATA

BY

MR. KANASUAN HANSUDDHISUNTORN

A THESIS SUBMITTED IN PARTIAL FULFILLMENT OF THE

REQUIREMENTS FOR THE DEGREE OF MASTER

OF SCIENCE (ENGINEERING AND TECHNOLOGY)

SIRINDHORN INTERNATIONAL INSTITUTE OF TECHNOLOGY

THAMMASAT UNIVERSITY

ACADEMIC YEAR 2019

COPYRIGHT OF THAMMASAT UNIVERSITY

Ref. code: 25626022040684SIJ

(1)

Thesis Title IMPROVEMENT OF TD-TR ALGORITHM

FOR SIMPLIFYING GPS TRAJECTORY

DATA

Author Mr. Kanasuan Hansuddhisuntorn

Degree Master of Science (Engineering and

 Technology)

Faculty/University Sirindhorn International Institute of Technology/

Thammasat University

Thesis Advisor Assistant Professor Teerayut Horanont, Ph.D.

Academic Years 2019

ABSTRACT

Over the past decades, the amounts of GPS-enabled devices sold has drastically

increased exponentially, with the rapid growth of modern technologies and

manufacturing cost. The GPS-enabled devices such as smart phones and wearable

devices are capturing massive amounts of users’ spatial and temporal information. Due

to the increasing number of GPS-enabled devices, the volume of spatial and temporal

information recording the footprint of a moving device has increased dramatically. The

massive amounts of trajectory data could easily exceed the existing available data

storage, which leads to three major challenges: storing, transmitting and visualizing the

data.

While dealing with these massive amounts of trajectory data, an effective

compression mechanism is needed. The generic compression technique is called

trajectory simplification, which results in a corresponding approximation of the initial

path and aims to minimize the minimize information loss while preserving the quality

of the information under a specific error threshold. Several of trajectory simplification

algorithms have been proposed to fulfil these demands.

In this study, an improved algorithm for top-down time-ratio (TD-TR) called

top-down time-ratio Reduce (TD-TR Reduce) is proposed. The algorithms were

Ref. code: 25626022040684SIJ

(2)

evaluated using several parameters, such as compression times and errors arising from

trajectory data simplifications. The proposed TD-TR Reduce simplification method is

applied on Geolife GPS trajectory dataset. The results of trajectory simplification are

reported and compared with that from traditional TD-TR algorithm. The effectiveness

of simplification is evaluated.

The results of the simulation reveal that the proposed method can achieve an

attractive trade-off between the compression rate and the simplification error while

having shorter compression time.

Keywords: GPS, Trajectory Data, Trajectory simplification

Ref. code: 25626022040684SIJ

(3)

ACKNOWLEDGEMENTS

First of all, I would like to express my special gratitude to my advisor Assistant

Professor Dr. Teerayut Horanont for his teaching, guidance, and especially his

continuous support during my master’s program.

Second, I would like to express my sincere gratitude to the members of my

Review Committee: Dr. Virach Sornlertlamvanich and Assistant Professor Dr. Apichon

Witayangkurn for their kind participation and comments.

Third, I would like to express my gratitude to Sirindhorn International Institute

of Technology (SIIT), Thammasat University, for the Excellent Foreign Students (EFS)

scholarship program. I would also like to thank the staff of the SIIT and the Secretary

of the School of Information, Computer and Communication Technology who are

helping with the paperwork and providing guidance to my life during my studies.

Finally, I would like to express my deep gratitude to my beloved family,

especially to my father and mother, for always standing beside me and supporting me.

Mr. Kanasuan Hansuddhisuntorn

Ref. code: 25626022040684SIJ

(4)

TABLE OF CONTENTS

 Page

ABSTRACT (1)

ACKNOWLEDGEMENTS (3)

LIST OF TABLES (7)

LIST OF FIGURES (8)

LIST OF SYMBOLS/ABBREVIATIONS (9)

CHAPTER 1 INTRODUCTION

1.1 Background of the study 1

1.2 Problem statement, research aim and research objectives 3

1.3 Thesis organization 3

CHAPTER 2 REVIEW OF LITERATURE 3

2.1 Introduction 3

2.2 Douglas-Peucker 3

2.3 Top-down time-ratio 4

2.4 Multiresolution polygonal approximation 4

CHAPTER 3 DEFINITION AND METRICS 7

3.1 Introduction 7

3.2 Definition 7

3.2.1 GPS Point 7

3.2.2 Trajectory 7

3.2.3 Simplified trajectory 7

3.2.4 Spatial distance 7

Ref. code: 25626022040684SIJ

(5)

3.3 Error metrics 8

3.3.1 Synchronized Euclidean Distance 8

3.3.2 Trajectory Distance Reduction Ratio 8

3.4 Performance metrics 9

3.4.1 Compression ratio 9

3.4.2 Compression time 9

3.5 Discussion 9

CHAPTER 4 PROPOSED APPROACH 10

4.1 General overview 10

4.2 Feature point extraction 10

4.2.1 Movement speed 10

4.2.2 Heading 11

4.2.3 Skip threshold 11

4.3 TD-TR Reduce 12

4.4 Trajectory-Simplification parameter determination 13

CHAPTER 5 EXPERIMENTAL RESULTS AND DISCUSSION 15

5.1 General overview 15

5.2 Data 15

5.3 Experiment settings 15

5.4 Comparison of trajectory simplification algorithm 23

CHAPTER 6 CONCLUSION 24

6.1 General overview 24

6.2 Major findings 24

6.3 Limitation and recommendations for future studies 24

REFERENCES 25

Ref. code: 25626022040684SIJ

(6)

APPENDICES 26

APPENDIX A 27

APPENDIX B 29

APPENDIX C 32

APPENDIX D 34

BIOGRAPHY 37

Ref. code: 25626022040684SIJ

(7)

LIST OF TABLES

Tables Page

2.1 Simplification algorithm summary 4

5.1 Trajectory details 16

Ref. code: 25626022040684SIJ

(8)

LIST OF FIGURES

Figures Page

2.1 Illustration of Douglas-Peucker algorithm 5

2.2 Illustration of TD-TR algorithm 6

3.1 Illustration of Synchronized Euclidean Distance between 𝑃𝑠 and 𝑃𝑒 8

3.2 Example of calculating ASED 9

4.1 Movement speed change point 10

4.2 Transition of transportation mode 11

4.3 Illustration of feature point extraction when 𝑠𝑘𝑖𝑝𝑡ℎ= 2 11

4.4 TD-TR Reduce algorithm 14

5.1 Trajectory one 16

5.2 Trajectory two 17

5.3 Trajectory three 17

5.4 Trajectory details 18

5.5 Compression time 18

5.6 Compression ratio 19

5.7 Trajectory distance reduction ratio (TDDR) 19

5.8 Average SED error (ASED) 20

5.9 Trajectory details 20

5.10 Compression time 21

5.11 Compression ratio 21

5.12 Trajectory distance reduction ratio (TDDR) 22

5.13 Average SED error (ASED) 22

Ref. code: 25626022040684SIJ

(9)

LIST OF SYMBOLS/ABBREVIATIONS

Symbols/Abbreviations Terms

SIIT Sirindhorn International Institute of

 Technology

TU Thammasat University

DP Douglas-Peucker

TD-TR Top-down time-ratio

MRPA Multiresolution Polygonal

 Approximation

PED Perpendicular Euclidean Distance

SED Synchronized Euclidean Distance

ASED Average Synchronized Euclidean

 Distance

TDDR Trajectory distance reduction ratio

Ref. code: 25626022040684SIJ

1

CHAPTER 1

INTRODUCTION

1.1 Background of the study

Over the past decade, the number of GPS-enabled devices has increased

significantly as GPS-enabled portable devices become easily available (Muckell et

al.,2013). Due to the increasing number of GPS-enabled devices, such as mobile phones

or in-car navigation systems, the trajectory data has increased dramatically. GPS

trajectory data contain spatial and temporal information that records the digital footprint

of a moving subject's device activity, such as consecutive points in the trajectory that

may indicate certain activities (e.g. finding parking lots) or routines (e.g. sending

children to school every morning) or changes in the mode of transport (e.g. Switching

from walking to public bus). The massive amounts of trajectory data could easily

exceed the existing available data storage. For example, a calculation due to Meratnia

and de By (2004) shows that without any data compression, storing a trajectory data of

400 objects per day at an interval of 10 seconds requires a storage capacity of 100 Mb.

This creates several problems in location-based services: (1) The amount of storage

spaces required to store an enormous amount of GPS trajectory. (2) The amount of

bandwidth and other overhead generated during the process of data transmission. (3)

The amount of computational power required to visualize the GPS trajectory data. To

solve these problems, a scalable data compression method for trajectories is required.

In order to reduce the amount of trajectory data, trajectory simplification has been

adopted. Many trajectory simplifications types have been introduced in the past which

can be divided into various methods of categorization, lossless compression and lossy

compression or online compression and offline compression. The general of trajectory

simplification is to remove some trajectory points while retaining an acceptable degree

of error.

Ref. code: 25626022040684SIJ

2

1.2 Problem statement, research aim and research objectives

As we have seen, the massive amount of trajectory data could exceed the existing

storage capacity. While dealing with these massive amounts of trajectory data, an

effective mechanism for compression is needed. Due to the computational overhead of

the existing algorithms, we define our problem as a trajectory simplification problem.

This study, therefore, aims to propose an improvement of trajectory simplification

algorithm based on an existing current state of the art algorithm. To achieve the research

aim, the following objectives are defined:

• Introduces an offline lossy trajectory simplification algorithm, which results in

a shorter compression time against the current state of the art compression

algorithms.

• Perform a performance evaluation among the popular trajectory simplification

algorithms: Douglas-Peucker, Top-down time-ratio and Multiresolution

polygonal approximation.

• Suggestions on how to develop future algorithms to performance improvement.

1.3 Thesis organization

This thesis consists of six chapters. The main content of each chapter is described

as follows.

• Chapter 1 introduces background of the study, including the characteristics of

the GPS trajectory. The chapter presents the problem statement, research aim,

and research objectives at the end of the chapter

• Chapter 2 reviews literature related to trajectory simplification algorithm.

• Chapter 3 introduce definition, metrics and discussion of the ideal outcome as

well as the introduction of average time-synchronized euclidean.

• Chapter 4 explains the proposed approach and feature point extraction model.

• Chapter 5 explains dataset, experiment setting and the comparison of trajectory

simplification algorithm. Experiment results are also detailed and discussed in

this chapter.

• Chapter 6 summarizes major findings, limitations, and recommendations for

future research.

Ref. code: 25626022040684SIJ

3

CHAPTER 2

REVIEW OF LITERATURE

2.1 Introduction

Several algorithms have been proposed to simplify trajectory data, different

algorithms use different approaches to find a similar trajectory with fewer points.

Trajectory compression can be categorized as online and offline compression or lossless

and loss compression, depending on the various categorization methods. The advantage

of online compression is that it supports real-time applications and can compress

trajectory data while collecting upcoming trajectory points. Only after all points have

been obtained from the input trajectory, offline compression can be performed.

However, offline compression usually has smaller errors compare to online

compression. Lossless compression enables the original data to be reconstructed

without loss of information, while Lossy compression is not possible. The main

advantage of lossy compression is that it can significantly reduce the trajectory size

while maintaining reasonable error tolerances. The four algorithms in this paper were

compared, three of which have already been mentioned in the literature.

2.2 Douglas-Peucker

Douglas-Peuker (DP) algorithm by Douglas and Peucker (1973), compresses

trajectory data by recursively divides the trajectory to decide which points should be

retained according to user-defined Perpendicular Euclidean Distance (PED) threshold.

This algorithm begins with a rough simplification of the edge, which is the one edge

connecting the initial and the last vertices of the original polyline. Once the recursion

is done, a new performance curve consisting of only those marked as retained will be

generated as demonstrated in Figure 2.1.

Ref. code: 25626022040684SIJ

4

2.3 Top-down time-ratio

Top-down time-ratio (Meratnia and de By 2004) is an extension of the Douglas-

Peucker. The difference between them is that where the Douglas-Peuker algorithm uses

the Euclidean distance as an error metric, the TD-TR algorithm uses a time-

synchronous Euclidean distance called Synchronized Euclidean Distance to overcome

the limitation of ignoring temporal data. Figure 2.2 illustrate how TD-TR algorithm

iteratively simplifies a line.

2.4 Multiresolution polygonal approximation

Multiresolution polygonal approximation or MRPA algorithm (Minjie et al.,2012)

is proposed to compress trajectories in O(N) computational space, where a new error

metric called an integral square synchronous Euclidean distance (ISSD) was

introduced. The MRPA algorithm uses the bottom–up multiresolution approach. The

proposed method made substantial progress in the real-time application solution of the

GPS Trajectory Simplification problem.

Algorithm Time Complexity Error Criterion Offline

DP 𝑂(𝑛2) PED Yes

TD-TR 𝑂(𝑛2) SED Yes

MRPA 𝑂(𝑛2/𝑀) ISSD Yes

Table 2.1: Simplification algorithm summary

Ref. code: 25626022040684SIJ

5

Figure 2.1 Illustration of Douglas-Peucker algorithm.

Ref. code: 25626022040684SIJ

6

Figure 2.2 Illustration of TD-TR algorithm.

Ref. code: 25626022040684SIJ

7

CHAPTER 3

DEFINITION AND METRICS

3.1 Introduction

This section describes both the necessary definition and the metrics for evaluating

the simplification algorithm. First, we introduce a few terms used in this thesis, and

then we define our metric.

3.2 Definition

3.2.1 GPS Point

A GPS point 𝑃𝑖 is a tuple 𝑃𝑖(𝑥𝑖, 𝑦𝑖, 𝑡𝑖) that contain longitude 𝑥, latitude 𝑦 and

timestamp 𝑡 of the i-th point, where i = {1,2, … , 𝑛} and n represent the number of GPS

points in a trajectory.

3.2.2 Trajectory

A trajectory is a temporal ordered sequence of points denoted as 𝑇 =

{𝑃1, … , 𝑃𝑛}, where |𝑇| = 𝑛 represents the size of trajectory 𝑇.

3.2.3 Simplified trajectory

Given an original trajectory 𝑇 = {𝑃1, … , 𝑃𝑛}, a simplified Trajectory 𝑇′ ⊆ 𝑇 is

a subset of the original trajectory 𝑇 and can be express as 𝑇′ = {𝑃𝑠1
, … , 𝑃𝑠𝑚

} where

𝑚 ≤ 𝑛 and 1 = 𝑠1 < ⋯ < 𝑠𝑚 = 𝑛

3.2.4 Spatial distance

Spatial distance is the length of the straight line connected between two points

location 𝑃𝑎 and 𝑃𝑏denoted by DISTANCE (𝑃𝑎 , 𝑃𝑏) and can be calculated as follows:

𝐷𝐼𝑆𝑇𝐴𝑁𝐶𝐸(𝑃𝑎 , 𝑃𝑏) = 6,371.00 × √((𝑙𝑜𝑛𝑔𝑏 − 𝑙𝑜𝑛𝑔𝑎) × 𝐶𝑂𝑆(
𝑙𝑎𝑡𝑎 + 𝑙𝑎𝑡𝑏

2
))2 + (𝑙𝑎𝑡𝑏 − 𝑙𝑎𝑡𝑎)2

Ref. code: 25626022040684SIJ

8

3.3 Error metrics

3.3.1 Synchronized Euclidean Distance

Synchronized Euclidean Distance (SED) is the distance between the actual point

𝑃𝑘(𝑥𝑘, 𝑦𝑘, 𝑡𝑘) and its synchronized point 𝑃𝑘
′ (𝑥𝑘

′ , 𝑦𝑘
′ , 𝑡𝑘

′) created by two points 𝑃𝑠 and 𝑃𝑒

at identical time stamps (see Figure 3.1) and can be calculated as follows:

𝑆𝐸𝐷(𝑃𝑘) = √(𝑥𝑘 − 𝑥𝑘
′)2 + (𝑦𝑘 − 𝑦𝑘

′)2

where

𝑥𝑘
′ = 𝑥𝑠 +

𝑥𝑒 − 𝑥𝑠

𝑡𝑒 − 𝑡𝑠

(𝑡𝑘 − 𝑡𝑠)

𝑦𝑘
′ = 𝑦𝑠 +

𝑦𝑒 − 𝑦𝑠

𝑡𝑒 − 𝑡𝑠

(𝑡𝑘 − 𝑡𝑠)

Figure 3.1 Illustration of Synchronized Euclidean Distance between 𝑃𝑠 and 𝑃𝑒

3.3.2 Trajectory Distance Reduction Ratio

Trajectory distance reduction ratio (TDDR) is the accumulated travel distance

ratio of the simplified trajectory 𝑇′versus its original trajectory 𝑇 and can be calculated

as follows:

𝑇𝐷𝑅𝑅(𝑇, 𝑇′) = 1 −
𝑇𝐷𝐷(𝑇)

𝑇𝐷𝐷(𝑇′)

where

𝑇𝐷𝐷(𝑇𝑖) = ∑ 𝐷𝐼𝑆𝑇𝐴𝑁𝐶𝐸(𝑃𝑖, 𝑃𝑖+1)

|𝑇|−1

𝑖=1

Ref. code: 25626022040684SIJ

9

3.4 Performance metrics

3.4.1 Compression ratio

Compression ratio (CR) is defined as the size of the simplified trajectory 𝑇′

versus its original trajectory T and can be calculated as follows:

𝐶𝑅(𝑇, 𝑇′) = 1 −
|𝑇|

|𝑇′|

3.4.2 Compression time

Compression time (CT) is the amount of time taken for a trajectory to be

simplified.

3.5 Discussion

The trajectory-simplifying algorithm's efficiency is defined as the combination

of error metrics and performance metrics. For the further improvement of error metrics,

in order to measure the average time-synchronized euclidean distance between the

original trajectory T and its simplified trajectory 𝑇′, we introduce Average

Synchronized Euclidean distances (see Figure 3.2). Given Trajectory 𝑇 =

{𝑃1, 𝑃2, 𝑃3, 𝑃4, 𝑃5, 𝑃6} and its simplified trajectory 𝑇′ = {𝑃1, 𝑃4, 𝑃6}. ASED is

calculated as (𝑑1 + 𝑑2 + 𝑑3)/2. The ideal simplified trajectory should be highly

compressed with minimum compression time, TDRR and ASED.

Figure 3.2 Example of calculating ASED.

𝐴𝑆𝐸𝐷(𝑇) = (𝑑1 + 𝑑2 + 𝑑3)
/2/2

Ref. code: 25626022040684SIJ

10

CHAPTER 4

PROPOSED APPROACH

4.1 General overview

In this section we present our feature point extraction mechanism followed by

our proposed algorithm TD-TR Reduce and trajectory simplification parameter

determination.

4.2 Feature point extraction

Some GPS tracking point is redundant in some applications. To retain only the

important part where some events occur (e.g. travel mode transition), we proposed a

feature point extraction model with a focus reducing the trajectory data based on several

of the movement characteristics given as follows.

4.2.1 Movement speed

In the transition mode, node movement speeds typically change significantly

(Zheng et al.,2010) (see Figure 4.1), this includes walking, cycling, driving vehicles or

taking the train. As shown in Figure 4.2, The feature node is the place where the node

changes transportation mode from driving to walking. To detect a feature point caused

by switching between transportation modes. First, we specify the difference of

movement speed as ∆𝑖+1= |𝑆𝑃𝑖+1 − 𝑆𝑃𝑖| , in which 𝑆𝑃𝑖 is an average speed in the line

segment 𝑃𝑖,𝑖+1. When ∆𝑖+1 exceeds a certain threshold, 𝑃𝑖+1 is kept as a feature point.

Because speed changes are usually caused by switches between travel modes. We

propose the usage of the standard deviation of movement speeds as the speed threshold

since the standard deviation can indicate changes in velocity. The speed threshold 𝑆𝑃𝑡ℎ

is expressed as

𝑆𝑃𝑡ℎ = √∑ (𝑆𝑃𝑖 − 𝑆𝑃)
2

𝑛−1
𝑖=1

𝑛 − 1

where

𝑆𝑃 = ∑
𝑆𝑃𝑖

𝑛 − 1
]

𝑛−1

𝑖=1

Ref. code: 25626022040684SIJ

11

Figure 4.1 Movement speed change point

Figure 4.2 Transition of transportation mode

4.2.2 Heading

The heading changes accordingly to the current modes of transport. For

example, when the mode of transport is walking rather than another mode of transport,

the heading will change very often. To detect a feature point caused by a significant

change in the node heading. δ𝑖+1 was defined as the heading different between θ𝑖 and

θ𝑖+1 and can be calculated as follows:

𝛿𝑖+1 = {
 360 − |𝜃𝑖+1 − 𝜃𝑖|, 𝑖𝑓 |𝜃𝑖+1 − 𝜃𝑖| > 180

|𝜃𝑖+1 − 𝜃𝑖|, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

where 𝜃𝑖 represents the current heading on the line segment 𝑃𝑖,𝑖+1, that can be

calculated using the haversine formula. If 𝛿𝑖+1 exceeds a certain 𝛿𝑡ℎ, 𝑃𝑖+1 is kept as a

feature point.

4.2.3 Skip threshold

When the node travels in a straight line at a constant speed (e.g. highway,

tollway), the entire point will be ignored from the two-feature point extraction method

mentioned above. In order to prevent the above scenario from occurring, we introduce

Ref. code: 25626022040684SIJ

12

the skipping threshold 𝑠𝑘𝑖𝑝𝑡ℎ. Figure 4.3 show the illustration of skip threshold.

When the number of points that are ignored from the extraction method of a feature

point above reaches the skipping threshold, which is 2 in this case, the point is kept as

a feature point.

Figure 4.3 Illustration of feature point extraction when 𝑠𝑘𝑖𝑝𝑡ℎ= 2

4.3 TD-TR Reduce

In order to reduce the compression time of the current TD-TR algorithm (see

Figure 4.4), we propose a TD-TR Reduce algorithm to simplify the trajectory by

performing a traditional TD-TR algorithm on a set of extracted feature points. The

following procedure is provided in algorithm 1 below:

1. Add the first from 𝑇 to the feature point array 𝑇𝑓𝑒𝑎𝑡𝑢𝑟𝑒 (line 3)

2. Calculate the standard deviation of speed in T and set it as the speed

threshold 𝑆𝑃𝑡ℎ (line 4)

3. Starting from 𝑖 = 1, iteratively add point 𝑝𝑖+1 to the feature point array

𝑇𝑓𝑒𝑎𝑡𝑢𝑟𝑒 and set skip parameter back to zero if the movement speed different

∆i+1 is greater than or equal to speed threshold 𝑆𝑃𝑡ℎ or the heading different

δ𝑖+1 is greater than or equal to heading threshold δ𝑡ℎ (lines 5-7)

4. If the n point was not added to the feature point array 𝑇𝑓𝑒𝑎𝑡𝑢𝑟𝑒, increase skip

value by one (line 10)

5. If the skip value reaches the certain skip threshold 𝑠𝑘𝑖𝑝𝑡ℎ, add point 𝑝𝑖+1 to

the feature point array 𝑇𝑓𝑒𝑎𝑡𝑢𝑟𝑒 and set skip parameter back to zero (lines

12-15)

Ref. code: 25626022040684SIJ

13

6. Add the last points in T to the feature point array 𝑇𝑓𝑒𝑎𝑡𝑢𝑟𝑒 (line 18)

7. Perform TD-TR algorithm on feature points array 𝑇𝑓𝑒𝑎𝑡𝑢𝑟𝑒 and stored it as

a simplified trajectory 𝑇′. (line 19)

8. Finally, the simplified trajectory 𝑇′ is returned. (line 20)

4.4 Trajectory-Simplification parameter determination

The rest of our approach problems are to evaluate appropriate parameters for

skipping threshold 𝑠𝑘𝑖𝑝𝑡ℎ and heading threshold 𝛿𝑡ℎ for TD-TR Reduce, respectively.

If we reduce the number of 𝑠𝑘𝑖𝑝𝑡ℎ, the resulting number of points in the feature point

array will be lower, resulting in lower total compression time. In the opposite way, if

the number of 𝑠𝑘𝑖𝑝𝑡ℎ was reduced, the resulting simplified trajectory will have higher

ASED error and TDDR, and vice versa. Same as the heading threshold 𝛿𝑡ℎ,if we lower

the number of 𝛿𝑡ℎ, the resulting number of points in the feature point array will lower

the overall compression time. In Section 5.3, in order to determine a proper parameter,

we will conduct an experiment on a real-world dataset to study the outcome.

Ref. code: 25626022040684SIJ

14

Figure 4.4 TD-TR Reduce algorithm

Ref. code: 25626022040684SIJ

15

CHAPTER 5

EXPERIMENTAL RESULTS AND DISCUSSION

5.1 General overview

This section introduces a dataset and then our proposed algorithms are evaluated

based on three aspects: compression ratio, compression time and error metrics. Finally,

we discuss the results and summarize the performance of the proposed algorithms.

Three algorithms (DP, TD-TR, TD-TR Reduce) were written in Python, while MRPA

was written in Matlab. The experiment is conducted on Windows 10 with 4 CPU cores

(Intel i7-7700K with 4.20GHz) and 32 GB RAM.

5.2 Data

The Geolife dataset was collected by 182 participants in the (Microsoft research

Asia) Geolife project (Zheng et al.,2010) for five years (from April 2007 to August

2012). different transport modes, including biking, walking and traveling, are included

in the data set. most of the data collection has taken place in China, Beijing. more than

90% of trajectories are collected in a dense format, e.g. every 1 to 5 seconds or every 5

to 10 meters per point. the data set was cleaned to remove trajectories with high noise

such as large jumps in time and space.

5.3 Experiment settings

For this simulation, three trajectories are chosen to observe the effect of

𝑠𝑘𝑖𝑝𝑡ℎ and δ𝑡ℎ on the number of remaining points. Figures 5.1-5.3 show the number of

stop points under different heading threshold and skip threshold. The details of each

trajectory are shown in Table 5.1. From Figures 5.1-5.3, the curve decreases

dramatically when 𝑠𝑘𝑖𝑝𝑡ℎ increases from 2 to 3 and from 3 to 4. The curve starts to

change slowly when 𝑠𝑘𝑖𝑝𝑡ℎ ≥ 5, so we set 𝑠𝑘𝑖𝑝𝑡ℎ = 5. On the other hand, the number

of remaining points decreases significantly when 𝛿𝑡ℎchange from 45° to 60°and starts

to change constantly when 𝛿𝑡ℎ ≥ 60°, so we set 𝛿𝑡ℎto 60°.

Ref. code: 25626022040684SIJ

16

Trajectory ID # of Points Start Stop

1 4,164
2009-02-20

04:01:36

2009-02-20

14:51:36

2 1,937
2008-10-28

23:51:59

2008-10-29

11:25:00

3 838
2009-02-24

12:16:55

2009-02-24

13:35:55

Table 5.1: Trajectory details

Figure 5.2 Trajectory one

Ref. code: 25626022040684SIJ

17

Figure 5.2 Trajectory two

Figure 5.3 Trajectory three

Ref. code: 25626022040684SIJ

18

Figure 5.4 Trajectory details

Figure 5.5 Compression time

Ref. code: 25626022040684SIJ

19

Figure 5.6 Compression ratio

Figure 5.7 Trajectory distance reduction ratio (TDDR)

Ref. code: 25626022040684SIJ

20

Figure 5.8 Average SED error (ASED)

Figure 5.9 Trajectory details

Ref. code: 25626022040684SIJ

21

Figure 5.10 Compression time

Figure 5.11 Compression ratio

Ref. code: 25626022040684SIJ

22

Figure 5.12 Trajectory distance reduction ratio (TDDR)

Figure 5.13 Average SED error (ASED)

Ref. code: 25626022040684SIJ

23

5.4 Comparison of trajectory simplification algorithm

Our proposed TD-TR Reduce algorithm was compared against three other

algorithms (DP, TD-TR, MRPA) in terms of compression ratio, compression time and

simplification error. To simulate the result, 25 trajectories are selected from the Geolife

dataset and the trajectory details are shown in Figure 5.4. Figures 5.5-5.8 display the

simulation results.

As shown in Figure 5.5, on compression time, DP outperforms other algorithms,

while the compression time of MRPA is significantly longer than other algorithms. The

reason could be that MRPA error metric (LSSD) requires higher computation cost.

Furthermore, TD-TR Reduce achieve shorter compression time than both of TD-TR

and MRPA. This is because the feature point extraction technique was adopted, which

reduces the computational time significantly.

In Figure 5.6, regarding the compression ratio, the plots of DP and MRPA are

close to each other, while the plot of TD-TR and TD-TR Reduce are slightly lower.

Meanwhile, TD-TR Reduce outperforms the traditional TD-TR algorithm.

Figures 5.7 illustrates that both TD-TR and TD-TR Reduce achieve much lower

trajectory distance reduction ratio, while DP obtains the highest trajectory distance

reduction ratio among all algorithms.

In Figures 5.8, the ASED error of DP is generally higher than other algorithms

and the curves of TD-TR Reduce are slightly higher than Traditional TD-TR.

Particularly, TD-TR always achieves the lowest ASED error. Therefore, TD-TR

Reduce makes a favorable trade-off between the compression ratio, the trajectory

distance reduction ratio and the ASED error while having up to 33% lower compression

time on large trajectory compares to the traditional TD-TR algorithm.

To further evaluate the algorithm on large trajectory, 10 large trajectories from

the Geolife dataset are selected and the trajectory details are shown in Figure 5.9. The

simulation results are then display in Figures 5.10-5.13. The result confirms that our

hypothesis is correct, in that our proposed TD-TR Reduce algorithm performs on

average 30 percent faster than the traditional TD-TR algorithm on a large trajectory.

Therefore, TD-TR Reduce enables a favorable tradeoff between the simplification rate

and the simplification error especially on large trajectory.

Ref. code: 25626022040684SIJ

24

CHAPTER 6

CONCLUSION

6.1 General overview

This chapter concludes major findings of the study. Contributions to the

trajectory simplification community, limitations, and recommendations for further

studies are also presented in this chapter.

6.2 Major findings

This study develops the trajectory simplification algorithm utilizing the feature

extraction approach to examine performance in real-world data set and suggest some

strategies for the trajectory simplification community.

In this paper, we presented a new trajectory simplification algorithm called TD-

TR Reduce, which proposes a new method of data reduction based on the extraction of

a feature point. Only the important points will be retained by using this data reduction

method. The algorithm then performs the traditional TD-TR algorithm on the extracted

feature point set. The outstanding advantage of our proposed method is that our

proposed algorithm performs exceptionally well around 30% faster on average on large

trajectory while still maintaining a low error compare to the traditional algorithm.

6.3 Limitation and recommendations for future studies

There are limitations in this study. As our algorithm is being evaluated on a

single data set, some adjustments on experiment setting may need to be made to achieve

the desired result. Another limitation is that our algorithm do not perform well on high

fluctuation trajectory data.

Future studies should focus on investigating an appropriate dynamic parameter

setting (e.g., heading threshold and skip threshold). In addition, an effectiveness of TD-

TR Reduce performance on different datasets should be investigated as well.

Ref. code: 25626022040684SIJ

25

REFERENCES

Muckell, J., Olsen, P. W., Hwang, J.-H., Lawson, C. T., & Ravi, S. S. (2013).

Compression of trajectory data: a comprehensive evaluation and new

approach. GeoInformatica, 18(3), 435–460. doi: 10.1007/s10707-013-

0184-0

Meratnia, N., & By, R. A. D. (2004). Spatiotemporal Compression Techniques for

Moving Point Objects. Advances in Database Technology - EDBT 2004 Lecture

Notes in Computer Science, 765–782. doi: 10.1007/978-3-540-24741-8_44

Zhang, D., Ding, M., Yang, D., Liu, Y., Fan, J., & Shen, H. T. (2018). Trajectory

simplification. Proceedings of the VLDB Endowment, 11(9), 934–946. doi:

10.14778/3213880.3213885

Douglas, D. H., & Peucker, T. K. (1973). Algorithms For The Reduction Of The

Number Of Points Required To Represent A Digitized Line Or Its Caricature.

Cartographica: The International Journal for Geographic Information and

Geovisualization, 10(2), 112–122. doi: 10.3138/fm57-6770-u75u-7727

Chen, M., Xu, M., & Franti, P. (2012). A Fast O(N) Multiresolution Polygonal

Approximation Algorithm for GPS Trajectory Simplification. IEEE

Transactions on Image Processing, 21(5), 2770–2785. doi:

10.1109/tip.2012.2186146

Muckell, J., Hwang, J.-H., Patil, V., Lawson, C. T., Ping, F., & Ravi, S. S. (2011).

Squish. Proceedings of the 2nd International Conference on Computing for

Geospatial Research & Applications - COM.Geo 11. doi:

10.1145/1999320.1999333

Zheng, Y., Chen, Y., Li, Q., Xie, X., & Ma, W.-Y. (2010). Understanding transportation

modes based on GPS data for web applications. ACM Transactions on the Web,

4(1), 1–36. doi: 10.1145/1658373.1658374

Zheng, Y., & Xing Xie, W.-Y. M. (2010) Geolife: a collaborative social networking

service among user, location and trajectory, IEEE Data Engineering Bulletin,

vol. 33, no. 2, pp. 32–40.

Ref. code: 25626022040684SIJ

26

APPENDICES

Ref. code: 25626022040684SIJ

27

APPENDIX A

SOURCE CODE OF TD-TR ALGORITHM

from math import sqrt

import sys

import csv

from math import radians, cos, sin, asin, sqrt

from shapely.geometry import Point

sys.setrecursionlimit(15000)

import time

epsilon = 0.0001

file_in = 'input.csv'

def Calc_SED(start,param,end):

 lat1 = start[0]

 lat2 = param[0]

 lat3 = end[0]

 lon1 = start[1]

 lon2 = param[1]

 lon3 = end[1]

 time1 = start[2]

 time2 = param[2]

 time3 = end[2]

 numerator = int(time2) - int(time1)

 denominator = int(time3) - int(time1)

 if(denominator==0):

 time_ratio = 1

 else:

 time_ratio = numerator / denominator

 lat = float(lat1) + (float(lat3) - float(lat1))*time_ratio

 lon = float(lon1) + (float(lon3) - float(lon1))*time_ratio

 lat_diff = lat - float(lat2)

 lon_diff = lon - float(lon2)

 return sqrt(lat_diff*lat_diff + lon_diff*lon_diff)

def td_tr(points, epsilon):

 dmax = 0.0

 index = 0

 for i in range(1, len(points) - 1):

 d = Calc_SED(points[0],points[i],points[-1])

 if d > dmax:

 index = i

 dmax = d

 if dmax >= epsilon:

 results = td_tr(points[:index+1], epsilon)[:-1] +

td_tr(points[index:], epsilon)

 else:

 results = [points[0], points[-1]]

 return results

start_time = time.time()

all_list = []

with open(file_in) as csvfile:

 readCSV = csv.reader(csvfile, delimiter=',')

 for row in readCSV:

 all_list.append([float(row[0]),float(row[1]),int(row[2])])

Ref. code: 25626022040684SIJ

28

##print(len(all_list))

 result = td_tr(all_list,epsilon)

print(result)

file_out = file_in.split(".")[0]+"_TD.csv"

f= open(file_out,"w+")

for i in range(len(result)):

 lat = '%.6f' % result[i][0]

 lon = '%.6f' % result[i][1]

 time2 = result[i][2]

 re_out = str(lat)+','+str(lon)+','+str(time2)

 f.write(re_out)

 if(i!=len(result)-1):

 f.write("\n")

f.close()

print("--- %s seconds ---" % (time.time() - start_time))

Ref. code: 25626022040684SIJ

29

APPENDIX B

SOURCE CODE OF TD-TR REDUCE ALGORITHM

import sys

import csv

import statistics

from math import radians, cos, sin, asin, sqrt

import math

from shapely.geometry import Point

sys.setrecursionlimit(15000)

import time

epsilon = 0.0001

file_in = 'input.csv'

def Calc_SED(start,param,end):

 lat1 = start[0]

 lat2 = param[0]

 lat3 = end[0]

 lon1 = start[1]

 lon2 = param[1]

 lon3 = end[1]

 time1 = start[2]

 time2 = param[2]

 time3 = end[2]

 numerator = int(time2) - int(time1)

 denominator = int(time3) - int(time1)

 if(denominator==0):

 time_ratio = 1

 else:

 time_ratio = numerator / denominator

 lat = float(lat1) + (float(lat3) - float(lat1))*time_ratio

 lon = float(lon1) + (float(lon3) - float(lon1))*time_ratio

 lat_diff = lat - float(lat2)

 lon_diff = lon - float(lon2)

 return sqrt(lat_diff*lat_diff + lon_diff*lon_diff)

def td_tr(points, epsilon):

 dmax = 0.0

 index = 0

 for i in range(1, len(points) - 1):

 d = Calc_SED(points[0],points[i],points[-1])

 if d > dmax:

 index = i

 dmax = d

 if dmax >= epsilon:

 results = td_tr(points[:index+1], epsilon)[:-1] +

td_tr(points[index:], epsilon)

 else:

 results = [points[0], points[-1]]

 return results

def Calc_speed(lat1, lon1, time1, lat2, lon2, time2):

Ref. code: 25626022040684SIJ

30

 R = 6371

 dLat = radians(float(lat2) - float(lat1))

 dLon = radians(float(lon2) - float(lon1))

 lat1 = radians(float(lat1))

 lat2 = radians(float(lat2))

 timediff = int(time2)-int(time1)

 a = sin(dLat/2)**2 + cos(lat1)*cos(lat2)*sin(dLon/2)**2

 c = 2*asin(sqrt(a))

 if(timediff==0):

 result = 0

 else:

 result = (R * c * 1000)/timediff*3.6

 return result #meter

def Calc_bearing(lat1, lon1, lat2, lon2):

 lat1 = math.radians(float(lat1))

 lat2 = math.radians(float(lat2))

 lon1 = math.radians(float(lon1))

 lon2 = math.radians(float(lon2))

 y= sin(lon2-lon1)*cos(lat2)

 x= cos(lat1)*sin(lat2)-sin(lat1)*cos(lat2)*cos(lon2-lon1)

 bearing = math.atan2(y,x)

 return (bearing + math.radians(360)) % math.radians(360)

def Calc_bearing_diff(b1,b2):

 if(abs(b1-b2)>180):

 return 360-abs(b1-b2)

 else:

 return abs(b1-b2)

 return (bearing + math.radians(360)) % math.radians(360)

start_time = time.time()

all_list = []

speed_list = []

bearing_list = []

list1=[] #p1

fin_list = []

skip = 0

with open(file_in) as csvfile:

 readCSV = csv.reader(csvfile, delimiter=',')

 for row in readCSV:

 if(len(list1)!=0):

 speed =

Calc_speed(list1[0],list1[1],list1[2],row[0],row[1],row[2])

 bearing = Calc_bearing(list1[0],list1[1],row[0],row[1])

 speed_list.append(speed)

 bearing_list.append(math.degrees(bearing))

all_list.append([float(row[0]),float(row[1]),int(row[2])])

 list1=row

 else:

 list1=row

all_list.append([float(row[0]),float(row[1]),int(row[2])])

Ref. code: 25626022040684SIJ

31

mean = statistics.mean(speed_list)

SD_speed = statistics.stdev(speed_list)

fin_list.append(all_list[0])

for i,j in zip(range(0,len(bearing_list)-1),

range(1,len(bearing_list))):

 if(abs(speed_list[i]-speed_list[j])>=SD_speed or

Calc_bearing_diff(bearing_list[i],bearing_list[j])>=60):

 skip=0

 fin_list.append(all_list[i+1])

 else:

 skip+=1

 if(skip==5):

 fin_list.append(all_list[i+1])

 skip=0

fin_list.append(all_list[-1])

result = td_tr(fin_list,epsilon)

file_out = file_in.split(".")[0]+"_TD_RED.csv"

f= open(file_out,"w+")

for i in range(len(result)):

 lat = '%.6f' % result[i][0]

 lon = '%.6f' % result[i][1]

 time2 = result[i][2]

 re_out = str(lat)+','+str(lon)+','+str(time2)

 f.write(re_out)

 if(i!=len(result)-1):

 f.write("\n")

f.close()

print("--- %s seconds ---" % (time.time() - start_time))

Ref. code: 25626022040684SIJ

32

APPENDIX C

SOURCE CODE OF DP ALGORITHM

from math import sqrt

import sys

import csv

from math import radians, cos, sin, asin, sqrt

from shapely.geometry import Point

sys.setrecursionlimit(15000)

import time

epsilon = 0.0001

file_in = 'input.csv'

def distance(a, b):

 return sqrt((a[0] - b[0]) ** 2 + (a[1] - b[1]) ** 2)

def point_line_distance(point, start, end):

 if (start == end):

 return distance(point, start)

 else:

 n = abs(

 (end[0] - start[0]) * (start[1] - point[1]) - (start[0] -

point[0]) * (end[1] - start[1])

)

 d = sqrt(

 (end[0] - start[0]) ** 2 + (end[1] - start[1]) ** 2

)

 return n / d

def rdp(points, epsilon):

 dmax = 0.0

 index = 0

 for i in range(1, len(points) - 1):

 d = point_line_distance(points[i], points[0], points[-1])

 if d > dmax:

 index = i

 dmax = d

 if dmax > epsilon:

 results = rdp(points[:index+1], epsilon)[:-1] +

rdp(points[index:], epsilon)

 else:

 results = [points[0], points[-1]]

 return results

start_time = time.time()

all_list = []

with open(file_in) as csvfile:

 readCSV = csv.reader(csvfile, delimiter=',')

 for row in readCSV:

 all_list.append([float(row[0]),float(row[1]),int(row[2])])

##print(len(all_list))

result = rdp(all_list,epsilon)

Ref. code: 25626022040684SIJ

33

file_out = file_in.split(".")[0]+"_DP.csv"

f= open(file_out,"w+")

for i in range(len(result)):

 lat = '%.6f' % result[i][0]

 lon = '%.6f' % result[i][1]

 time2 = result[i][2]

 re_out = str(lat)+','+str(lon)+','+str(time2)

 f.write(re_out)

 if(i!=len(result)-1):

 f.write("\n")

f.close()

print("--- %s seconds ---" % (time.time() - start_time))

Ref. code: 25626022040684SIJ

34

APPENDIX D

SOURCE CODE OF ERROR CALCULATION

import sys

import csv

from math import radians, cos, sin, asin, sqrt

def Calc_PED(lat1, lon1, lat2, lon2, lat3, lon3):

 if((lat1==lat2 and lon1==lon2) or (lat2==lat3 and lon2==lon3)):

 return 0.0

 else:

 A = float(lon3) - float(lon1)

 B = float(lat1) - float(lat3)

 C = float(lat3)*float(lon1) - float(lat1)*float(lon3)

 if(A==0 and B==0):

 return 0;

 shortDist = abs((A * float(lat2) + B * float(lon2) + C) /

sqrt(A * A + B * B));

 return shortDist

def Calc_SED(lat1, lon1, time1, lat2, lon2, time2, lat3, lon3,

time3):

 numerator = int(time2) - int(time1)

 denominator = int(time3) - int(time1)

 if(denominator==0):

 time_ratio = 1

 else:

 time_ratio = numerator / denominator

 lat = float(lat1) + (float(lat3) - float(lat1))*time_ratio

 lon = float(lon1) + (float(lon3) - float(lon1))*time_ratio

 lat_diff = lat - float(lat2)

 lon_diff = lon - float(lon2)

 return sqrt(lat_diff*lat_diff + lon_diff*lon_diff)

def Calc_speed(lat1, lon1, time1, lat2, lon2, time2):

 R = 6371

 dLat = radians(float(lat2) - float(lat1))

 dLon = radians(float(lon2) - float(lon1))

 lat1 = radians(float(lat1))

 lat2 = radians(float(lat2))

 timediff = int(time2)-int(time1)

 a = sin(dLat/2)**2 + cos(lat1)*cos(lat2)*sin(dLon/2)**2

 c = 2*asin(sqrt(a))

 return (R * c * 1000)/timediff*3.6 #meter

def Calc_dis(lat1, lon1, lat2, lon2):

 R = 6371

 dLat = radians(lat2 - lat1)

 dLon = radians(lon2 - lon1)

 lat1 = radians(lat1)

Ref. code: 25626022040684SIJ

35

 lat2 = radians(lat2)

 a = sin(dLat/2)**2 + cos(lat1)*cos(lat2)*sin(dLon/2)**2

 c = 2*asin(sqrt(a))

 return R * c * 1000

Traj = 'original.csv'

STraj = 'simplified.csv'

list1=[]

list2=[]

Traj_list = []

Straj_list = []

total_ped = 0

total_sed = 0

total_dist1 = 0

total_dist2 = 0

num_line1 = 0

done = True

safe_line = 1

with open(STraj) as before:

 csv_before = csv.reader(before, delimiter=',')

 for row in csv_before:

 list2=list1

 list1=row

 num_line1+=1

 Straj_list.append(row)

 if(len(list1)!=0 and len(list2)!=0):

 with open(Traj) as after:

 csv_after = csv.reader(after, delimiter=',')

 for row2 in csv_after:

 if(list1!=row2):

 if(csv_after.line_num>safe_line):

 total_sed = total_sed + Calc_SED(list2[0], list2[1],

list2[2], row2[0], row2[1], row2[2], list1[0], list1[1], list1[2])

 else:

 safe_line=csv_after.line_num

 break

with open(Traj) as after:

 csv_after = csv.reader(after, delimiter=',')

 for row in csv_after:

 Traj_list.append(row)

for i in range(len(Traj_list)):

 for j in range(len(Traj_list)):

 if(j-i==1):

 total_dist1 = total_dist1 +

Calc_dis(float(Traj_list[i][0]),float(Traj_list[i][1]),float(Traj_lis

t[j][0]),float(Traj_list[j][1]))

for i in range(len(Straj_list)):

 for j in range(len(Straj_list)):

 if(j-i==1):

 total_dist2 = total_dist2 +

Calc_dis(float(Straj_list[i][0]),float(Straj_list[i][1]),float(Straj_

list[j][0]),float(Straj_list[j][1]))

Ref. code: 25626022040684SIJ

36

print("File Name",STraj)

print("ASED:",total_sed/(num_line1-1))

print("Distance Reduction Ratio:",1-(total_dist2/total_dist1))

Ref. code: 25626022040684SIJ

37

BIOGRAPHY

Name Mr. Kanasuan Hansuddhisuntorn

Date of Birth March 29, 1995

Education 2013: Bachelor of Engineering (Computer

Engineering) Sirindhorn International Institute of

Technology Thammasat University

 2017: Master of Science (Engineering and

Technology) Sirindhorn International Institute of

Technology Thammasat University

Publications

Hansuddhisuntorn K. & Horanont T., (2019) . Improvement of TD-TR Algorithm for

Simplifying GPS Trajectory Data. The First International Conference on

Smart Technology & Urban Development (STUD 2019)

Ref. code: 25626022040684SIJ

