
 

 

DIGESTION OF AGRICULTURAL PRODUCTS BY 

MICROWAVE FACILITATED HYDROLYSIS 

 

 

 

 

BY 

 

MS. SOMRUTHAI PHOTHIPHIPHIT  

 

 

 

 

A THESIS SUBMITTED IN PARTIAL FULFILLMENT OF THE 

REQUIREMENTS FOR THE DEGREE OF MASTER OF SCIENCE 

(ENGINEERING AND TECHNOLOGY)  

SIRINDHORN INTERNATIONAL INSTITUTE OF TECHNOLOGY 

THAMMASAT UNIVERSITY 

ACADEMIC YEAR 2020 

COPYRIGHT OF THAMMASAT UNIVERSITY 

 

 

 

 

Ref. code: 25635822040027JHZ



 

 

 

DIGESTION OF AGRICULTURAL PRODUCTS BY 

MICROWAVE FACILITATED HYDROLYSIS 

 

 

 

 

BY 

 

MS. SOMRUTHAI PHOTHIPHIPHIT 

 

 

 

 

 

 

 

A THESIS SUBMITTED IN PARTIAL FULFILLMENT OF THE 

REQUIREMENTS FOR THE DEGREE OF MASTER OF SCIENCE 

(ENGINEERING AND TECHNOLOGY)  

SIRINDHORN INTERNATIONAL INSTITUTE OF TECHNOLOGY 

THAMMASAT UNIVERSITY 

ACADEMIC YEAR 2020 

COPYRIGHT OF THAMMASAT UNIVERSITY  

Ref. code: 25635822040027JHZ



������������	
���	�
��	�	�������	�������	�����	���	�����������������
�����	���
�������������	������	��	��	�����	������	����	���������	�������������������
��	�����
�����	�	�������
����
�	������������� �������!"�#�$%#$"##&�'!��$�!(����)%"��&�'!��$���!(�� �*�����$����!����$��+"�'+��,�'*"'���"'*��' ���+('�#�*-.��'��%*%�!�/01�232/��(�"������'���&4����' �� �"���� ,���"�!�'!����$������5(�'"'��%��'*'���61��(���.���&4����"��+!��� ,����+"�!�����$�������"���%!!����'-���!!�'�7�#"'1��(���.�,���$��������%�!!(����'�7��'1����'*�.�,���"�!�'!����$��������'�"����"�"��!��+(�7%#1��(���.�



(1) 

 

 

Thesis Title DIGESTION OF AGRICULTURAL 

PRODUCTS BY MICROWAVE 

FACILITATED HYDROLYSIS 

Author  Ms. Somruthai Phothiphiphit 

Degree Master of Science (Engineering and 

Technology) 

Faculty/University  Sirindhorn International Institute of Technology/ 

Thammasat University 

Thesis Advisor  Assistant Professor Wanwipa Siriwatwechakul, 

Ph.D. 

Academic Years 2020 

 

 

ABSTRACT 
 

The thesis covers the experimentation done on microwave assisted digestions 

of coconut copra meal, grey oyster mushroom and jew’s ear mushroom. Jew’s ear 

mushroom (Auricularia A. auricula-judae) and grey oyster mushroom (Pleurotus sajor-

caju) are edible basidiomycetous fungi, and well-known as healthy food in East Asian 

countries. The work focuses on the application of microwave radiation heating with 

HCl as a catalyst to hydrolyze the agricultural products into polysaccharides, 

oligosaccharides and monosaccharides. The study was carried out to screen for the 

reaction temperature and HCl concentration that gives the highest digestion yield of 

CCM, grey oyster mushroom and jew’s ear mushroom to obtain the desirable 

oligosaccharides and soluble polysaccharides. The size determination of the hydrolyzed 

samples was carried out by size exclusion chromatography (SEC). The highest yield of 

oligosaccharides obtained by the hydrolysis of CCM is 66.71% of oligosaccharides 

containing 2 to 18 units of monosaccharide from the hydrolysis conditions at 110 °C, 

the reaction time of 15 min, with 0.2 M HCl solution, and 80:1 (mL/g) ratio of acid 

solution to CCM. The reaction conditions at 170 °C, 15 min, 0.05 M HCl, and 10:1 

(mL/g) ratio of acid solution to CCM provides the highest yield of monosaccharides 

(45.68%). 
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The method to hydrolyze glucan polymers from grey oyster mushroom and 

jew’s ear mushroom using HCl as a catalyst and microwave radiation was investigated 

to obtain the highest yield of glucan-oligosaccharides. The best conditions for the 

hydrolysis of grey oyster mushroom which resulted in oligosaccharides is at 120 °C, 

the reaction time of 15 min with 0.6 M HCl solution provide the maximum yield of 

2.24%. The oligosaccharides obtained at these conditions have around 2-5 units.  The 

best conditions for the hydrolysis on jew’s ear mushroom, which result in 

oligosaccharides is at 130 °C, the reaction time of 15 min, and with 0.6 M HCl solution 

provide the maximum yield of 1.28%. The oligosaccharides obtained at these 

conditions have around 2-20 units. The products were evaluated as a potential immune 

immunomodulatory agent to induce the immune response against the antigen keyhole 

limpet hemocyanin (KLH).  

 

Keywords: Jew’s ear mushroom, Auricularia (A.) auricula-judae, Grey oyster 

mushroom, Pleurotus sajor-caju, Coconut meal, Microwave radiation, 

Hydrolysis, Beta-glucans 
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CHAPTER 1 
INTRODUCTION 

 

Recently, finding potential and affordable prebiotic sources in the food industry 

has drawn much attention in food research. One of the most interesting prebiotics is 

mushrooms because they contain carbohydrates such as β- and α-glucans, mannan, 

xylan, galactan, hemicellulose, and chitin (Roberfroid, 2007). The mixture of lignin, 

polysaccharides, and other plant cell wall constitutes dietary fiber, which is resistant to 

hydrolysis by human enzymes and has interesting properties. It speeds up the transit of 

bowel contents, increases frequency and faucal bulk, and protects from irritable bowel 

syndromes, diverticular diseases, and colon cancer. Additionally, the levels of 

cholesterol in the blood can also be reduced and against coronary disease can also be 

prevented (Roberfroid, 2007; Macfarlane et al., 2008). 

 The different types of glycosidic linkages in most mushroom polysaccharides 

are linear and branched glucan such as (1,3), (1,6) -β-glucan and (1,3) -α-glucans. The 

β-glucan form is the most abundant type of glucan. Some polysaccharides present are 

heteroglycans, including fructose, arabinose, mannose, galactose, xylose and glucose 

as main side-chain components present in different combinations (Roberfroid, 2007; 

Macfarlane et al., 2008; Tuohy et al., 2001). The beneficial properties of mushrooms 

have an important role in the hypothesis, such as enhancement of macrophage function 

and host resistance to many viral, bacterial, parasitic infections and fungal including 

activation of the reduction of blood cholesterol, blood glucose levels, and non-specific 

immune stimulation (Roberfroid, 2007; Macfarlane et al., 2008; Ooi & Liong, 2010). 

For the productions of oligosaccharides, the synthesis of oligosaccharides is 

more difficult than other polymers including nucleic acids and peptides. The reactions 

need to be controlled specifically to prevent degradation of oligosaccharides. The 

synthesis process is more expensive, difficult to reproduce on a large scale, with low 

yields (Brownawell et al., 2012). Extractions of oligosaccharides from abundantly 

available non-cellulosic agricultural products can efficiently provide the valuable 

saccharides for consumptions. The ideal extraction method should simplify the 

oligosaccharide production process, lower the cost, reduce oligosaccharide 

degradation, and give high yields. The efficient oligosaccharide extraction method 

would make commercial-scale production feasible.  
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1.1 Prebiotics 

Certain oligosaccharides which are not­digestible by humans are considered as 

prebiotics. Prebiotics are ingested by the bacteria present in human and animal digestive 

systems (Tuohy et al., 2001; Slavin, 2013). Thus, prebiotics remain in their original 

state when they reach the colon because it cannot be digested and absorbed by the upper 

gastrointestinal tract (Langen et al., 2009). Microflora in human colons, such as 

Bifidobacteria and Lactobacilli, are stimulated by consuming prebiotics.  

Only certain types of fiber are considered as a prebiotic. Mammalian enzymes 

and gastric acid present in the stomach cannot hydrolyze plant fibers, thus the upper 

part of the gastrointestinal tract cannot absorb fibers. Fiber passes through the 

gastrointestinal tract, and it is fermented by the beneficial microflora, Bifidobacteria 

and Lactobacilli, in the colon. Bifidobacteria and Lactobacilli were reported to inhibit 

the pathogen growth in the gut, decrease the cholesterol level, improve the immune 

system, and produce vitamins (Gibson, 1998; Holzapfel et al., 1998; Vanderhoof & 

Young, 1998). Bifidobacteria and Lactobacilli provide various health benefits to the 

host (Slavin, 2013; Langen et al., 2009). 

Benefits of prebiotics include anti­cancer and anti-inflammatory activities, and 

anti-hypercholesterolemia properties. Prebiotics promote bone stability, the lipid 

metabolism, and the absorption of minerals, such as iron, magnesium, and calcium. In 

addition, prebiotics can prevent obesity, and prevent diarrhea. The host gains significant 

benefit from a symbiotic effect of probiotics and prebiotics (Ziemer & Gibson, 1998; 

Hui et al., 2006). 

Prebiotics can be incorporated into many foodstuffs, such as drinks, biscuits, 

yoghurts, spreads, breakfast cereals, beverages, dairy products, bakery products, infant 

foods, pet foods, and animal feeds (Tuohy et al., 2001). The Dietary Guidelines for 

Americans 2010 Committee (DGAC) suggests that an important key to the human 

health is the gut microflora, and thus, human should consume food with high prebiotic 

content (Ziemer & Gibson, 1998). The Europeans and The Americans consume large 

amount of prebiotics each day. The recommendation on the prebiotic intake depends 

on functions of prebiotics, for example, the Korean Food and Drug Admission (FDA) 

suggested that consumption of 9 to 10 grams of inulin per day helps maintaining a 
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healthy blood cholesterol and a postprandial glucose level (Ziemer & Gibson, 1998). In 

the study of Binns (2013), it was reported that the target level for general consumption 

of prebiotics in foods are 2 to 20 grams per day. 

 

1.2 Sources of prebiotics 

1.2.1 Coconut meal (CCM) 

A coconut is an important versatile crop in Asian and South America whose 

parts can be utilized to create a variety of products. Products from coconut, such as 

milk, juice, oil, and meat are sources that feed and nourish populations around the 

world. As a food source one-third of the population around the world rely on coconut 

plants (Ramaswamy, 2014). 

Coconut meal (coconut residue, copra meal, coconut dregs, coconut flour) is a 

by-product from the production of coconut milk (Khuwijitjaru et al, 2014). Coconut 

meal is rich in fibers, minerals, and vitamins. It is believed to be functional food because 

it provides many health benefits beyond its nutritional contents. Coconut meal is 

naturally low in digestible carbohydrates (Khuwijitjaru et al., 2012). The component of 

coconut meal depends on coconut milk or oil extraction methods, including wet and 

dried methods in Table 1.1. 

Even though human enzymes cannot digest coconut meal and utilize the 

available proteins (Khuwijitjaru et al., 2012), coconut meal provides many health 

benefits. It can improve digestion, protect against diabetes, help regulate blood sugar,  

aid in weight loss, and help prevent cancer and heart disease. Utilization of coconut 

meal as a food ingredient provides dietary fiber to human diets. 
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Table 1.1 Proximate components of coconut meal. 

Composition Dry process (%) Wet process (%) 

Moisture 4.5 6.7 

Fat 10.7 10.9 

Crude fiber 40.7 60.9 

Protein  17.5 10.8 

Ash 5.5 3.16 

Carbohydrate 61.8 68.5 

 

Coconut meal contains 45–70% of carbohydrate components depending on the 

source of the coconut meal (Ramaswamy, 2014; Khuwijitjaru et al., 2012; Khuwijitjaru 

et al, 2014). The carbohydrate content in the coconut meal composes of 61% mannan 

polysaccharide along with other polysaccharides, including galactoglucomannan, 

galactomannan, arabinomannogalactan, arabinoxylogalactan, and cellulose. Figure 1.1 

shows structure of various types of monosaccharides found in coconut meal 

(Khuwijitjaru et al., 2012), monosaccharides found in coconut meal are approximately 

1.3% arabinose, 6.1% galactose, 12.8% glucose, and 79.8% mannose. The glycosidic 

linkage found in these polysaccharides is β-1,4 glycosidic bond  (Figure 1.2) With this 

specific linkage, coconut meal cannot be hydrolyzed in the digestive system of human 

and animals (Kusakabe et al., 1983). 
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Figure 1.1 Structures of monosaccharides found in coconut meal; mannose, glucose, 

galactose, and arabinose (Khuwijitjaru et al., 2012). 
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Figure 1.2 The β-1,4 glycosidic linkage in mannan polysaccharide (Kusakabe et al., 

1983). 

 

1.2.2 Grey oyster mushroom and jew’s ear mushroom 

Recent demands of prebiotics in the food industry have increased the need to 

search for a new potential source of prebiotics. Mushrooms can be a potential candidate 

for prebiotics because it contains carbohydrates such as β- and α-glucans, 

hemicellulose, chitin, galactans, xylans and mannans (Aida et al., 2009). 

Most of mushrooms polysaccharides are present as linear and branched glucans 

with different types of glycosidic linkages such as (1,3)-α-glucans and (1,3), (1,6)-β-

glucans.  The most abundant type of glucan present is in beta-glucan form. Other than 

glucans, some polysaccharides are heteroglycans containing glucuronic acids, glucose, 

mannose, arabinose, galactose, fructose, and xylose as main side chain components 

present in different combinations (Aida et al., 2009; Synytsya et al., 2009; Shuqin et 

al., 20212). These compounds have important roles in beneficial properties of 

mushrooms, such as enhancement of host resistance to many viral, bacterial, parasitic 

infections, and fungal and macrophage function; activation of the non-specific immune 

stimulation; and reduction of blood glucose levels and blood cholesterol (Shuqin et al., 

20212; Zhaocheng et al., 2008). 

The most cultivated mushrooms worldwide are oyster mushrooms (Pleurotus 

spp), wood ear mushroom (Auricula auricular), button mushroom (A. bisporus) 

followed by Lentinus edodes (shiitake), straw mushroom (Volvariella volvacea), and 

winter mushroom (Flamulina velutipe) (Jantaramanant et al., 2014; Kadnikova et al., 

2015). 

The structure of mushroom consists of three tissue layers. The outer tissue 

contains the soluble-glucan (mucilage), the second part contains the alkaline-soluble 

glucan (α-1,3-glucan), and inner tissue contains the alkaline-insoluble glucan (β-1,3-

β-1,4 glycosidic  
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glucan) and chitin. About 50-90% of mushroom polysaccharides found in the cell walls 

are beta-glucan (Synytsya et al., 2009; Jantaramanant et al., 2014; Kadnikova et al., 

2015). Other polysaccharides present in the cell wall are glycogen, chitin, xylan and 

cellulose. The structures of polysaccharides found in mushroom include (1,3), (1,6)-β-

glucans and (1,3)-α-glucans. The β-1,3-D-glucan and β-1,6-D-glucan forms the 

backbone chain of the polysaccharides. The health benefits of mushroom 

polysaccharides include reduction of blood cholesterol level, reduction of 

hyperglycemia and hyperinsulinemia; control of diabetes mellitus; reduction of risk 

factors for degenerative diseases such as cardiovascular diseases, cancer, hypertension; 

and promotion of the beneficial gut microflora growth (Aida et al., 2009). 

Oyster mushrooms (Pleurotus sajor-caju) are easy to cultivate and commonly 

found worldwide. This edible fungus can be beneficial to the body and break down 

toxic chemicals. Oyster mushroom polysaccharides can act as a prebiotic and stimulate 

the growth of colon microorganisms (probiotics). Mushrooms extract of P. ostreatus 

and P. eryngii were able to stimulate the growth of probitics such as Lactobacillus spp., 

Bifidobacterium ssp. and Enterococcus faecium. The water-soluble portion of grey 

oyster mushroom consists of protein, mannan, galactose, and glucose. The main 

components of polysaccharides are glucan and mannan (Synytsya et al., 2009; Maftoun 

et al., 2015; Jantaramanant et al., 2014).  

 

 

 

 

 

 

 

 

 

 

 

Figure 1.3 Fresh grey oyster mushroom. 

Jew’s ear mushroom (Auricularia auricula-judae), an ear-like shaped edible 

fungus, belongs to the family of Heterobasidiae. It mainly contains of β-glucan with 

potential antitumor activities. The Auricularia mushroom species is the fourth most 
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cultivated mushroom used by humans worldwide. Auricularia (A.) auricula-judae is 

an edible basidiomycetous fungus, and is well-known as a tonic and health food in East 

Asian countries than other Tremella (T.) species such as T. f uciformis, T. aurantia, and 

T. mesenterica, which belongs to the jelly mushroom group that contains gelatinous 

fruiting bodies (Shuqin et al., 2012; Zhaocheng et al., 2008). 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.4 Fresh jew’s ear mushroom. 

 

 

Beta-glucan is a type of carbohydrates consisting of linked glucose molecules 

in mushroom. They are major cell wall structural components of some bacteria fungi, 

and yeast. Some cereals such as oat and barley contain β-glucans as part of their 

endosperm cell wall (Hui et al., 2006).  The carbohydrate structure and glycosidic bonds 

vary depending on the sources of beta-glucans as shown in Figure 1.5 

 

 

 

 

 

 

 

 

 

 

Figure 1.5 Chemical structures of beta-glucans from; a) fungi; b) cereal; and c) 

yeast (Hui et al., 2006). 
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The polysaccharides that are commonly found in cereals are β-1,3-D-glucan and 

β-1,4-D-glucan (Synytsya et al., 2009; Jantaramanant et al., 2014). The molecule mainly 

consists of cellotriose and cellotetraose blocks separated by β-1,3 linkage. 

The most abundant polysaccharides found in mushroom are β- and α-glucans, 

galactans, xylans, mannans, hemicelluloses, and chitin. Polysaccharides found in 

mushroom are present mostly as linear and branched glucans with different types of 

glycosidic linkage such as β-1,3,/ β-1,6- glucans and α-1,3-glucans (Synytsya et al., 

2009; Jantaramanant et al., 2014; Hui et al., 2006; Shuqin et al., 2012). The β-glucan 

oligosaccharides has been produced by using lichenase and β-glucosidase. 

 

1.3 Microwave extraction 

 A new technique needs to be developed for the extraction of polysaccharides 

and oligosaccharides. It should aim towards increasing the extraction yield. The 

extraction can be done by modifying the structure of the biomass or removing unwanted 

compounds which occur during the traditional extraction step. The traditional 

extraction methods which are cold or hot water treatment will use changes in 

temperature of water and time of extraction to increase the productivity of extraction. 

Currently, the ultrasonic extraction and microwave are used to recover the 

polysaccharides from different plant materials, mainly because of their capacity to 

increase disruption of cell, solvent penetration, and mass transfer (Xie et al, 2010). 

 Microwave radiation is surveyed for utilization as a heat source. It has been 

explored for its promising applications in many industries, such as food drying, food 

processing, polymer syntheses, and organic synthesis (Kappe, 2004). When compared 

to other heating methods, microwave radiation heating has more advantages in many 

aspects, including non-contact heating, energy transfer as a substitute for heat transfer, 

rapid heating, short reaction time, energy savings because of volumetric heating, 

homogeneous heating from the interior of a material, and quick start-up and stopping 

mechanisms (Kappe, 2009; Menéndez, 2010; Haque, 1999). Furthermore, the amount 

of acid catalyst required for biomass hydrolysis reaction with microwave radiation 

heating is reduced by twenty-folds. In addition, the structure and quality of desirable 

products are not affected by microwave radiation heating (Tanaka et al, 2013). 
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In this study, we investigated the combination of microwave heating and acid 

catalysis to promote the hydrolysis of polysaccharides in CCM, grey oyster mushrooms 

and jew’s ear mushroom into possibly more biologically active oligosaccharides. The 

limitations of hydrolysis reaction done previously are 1) long reaction time, 2) low 

yields, and 3) high cost (Shaheen, 2012; Ahmed, 2004; Zhang, 2006). The hydrolysis 

may take a long time to complete, so microwave irradiation is also used in the 

hydrolysis reaction to speed up the process. The microwave facilitated hydrolysis 

would constitute a simple, cost-effective, and reproducible protocol on an industrial 

scale (Thostenson, 1999). 

The method may contribute to solving the complications involved in the scale-

up of oligosaccharide extraction in the food industry. We investigated the effect of acid 

concentrations, reaction temperatures, and optimization conditions on the yield of 

oligosaccharides by microwave facilitated acid hydrolysis of CCM, grey oyster 

mushroom and jew’s ear mushroom. The obtained oligosaccharide products from 

CCM, grey oyster mushroom and jew’s ear mushroom were characterized for their 

molecular weight by using size exclusion chromatography (SEC) analysis method. 1H 

NMR was used to confirm product structure and the product was tested the adjuvant 

activity. 
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CHAPTER 2 

REVIEW OF LITERATURE 
 

Hydrolysis is the process that breaks down the biomass into smaller 

oligosaccharide by the addition of a water molecule (Kusakabe et al, 1983). Hydrolysis 

can be done by using physical method, enzymatic, or chemical methods. Biomass 

treatment should be first step before hydrolysis to remove lignin and cellulose. It allows 

the acid catalyst to access the hydrolysis sites better. 

 

2.1 Biomass treatment methods  

2.1.1 Mechanical size reduction  

Mechanical size reducing includes shredding, grinding, milling, chipping, and 

coarse size reduction. The purpose of mechanical reducing size is to increase the 

specific surface area of biomass and reduce both polymerization and crystallinity of 

cellulose. The optimal size of biomass for good rate and high yield of biomass 

hydrolysis is 0.4 mm. Mechanical size reduction is the first step in the biomass 

treatment (Agbor et al., 2011; Kumar et al., 2009; Zheng et al., 2009). 

 

2.1.2 High energy radiation 

UV radiation, γ-ray, electron beam, electrical field, microwave heating, and 

ultrasound are high energy radiation used to treat biomass. They decrease the 

crystallinity of cellulose and degree of polymerization, hydrolyze hemicellulose, and 

partially de-polymerize lignin (Kumar et al., 2009). However, disadvantages of high 

energy radiation are that they are energy-intensive, and expensive. Moreover, they may 

raise environmental and safety concerns (Zheng et al., 2009). 

 

2.1.3 Biological treatment 

Biological treatment uses fungus, such as brown-rot, white-rot and soft-rot 

fungus, and bacteria as enzymes to treat biomass. Fungus is more common than bacteria 

in the treatment for biomass. White-rot fungus is widely used compared to the soft-rot 

and brown-rot fungus. The fungus produces enzymes that degrade lignin, hemi-

cellulose, and poly-phenols (Agbor et al., 2011; Zheng et al., 2009). Brown-rot fungi 
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primarily attack cellulose whereas the white rot and the soft-rot fungi attack both lignin 

and cellulose (Kumar et al., 2009; Zheng et al., 2009). 

The disadvantages of biological treatment include being too slow for industrial 

purposes. Normally, the biological treatment requires 10–14 days to effectively 

complete the treatment. Therefore, large space and carbohydrate fractions are required 

to perform the treatment industrially (Agbor et al., 2011; Zheng et al., 2009). Advantage 

of the method is that it is safe and environmental friendly (Agbor et al., 2011; Kumar 

et al., 2009; Zheng et al., 2009). 

 

2.2 Current Methods of hydrolyzing coconut meal, Jerusalem artichoke, and β-

glucans 

2.2.1 Acid hydrolysis 

Sulfuric acid, phosphoric acid, hydrochloric acid, and nitric acid with different 

concentrations are used to hydrolyze biomass (Kumar et al., 2009). Higher temperature 

hydrolyzes biomass more efficientl. Two ranges of temperatures are typically used: a 

high-temperature range at T>160 °C and a low-temperature range at T<160 °C. Acid 

hydrolysis degrades lignin and hydrolyzes hemi-cellulose to their monomer units. The 

advantage of this method is that it is powerful enough to hydrolyze biomass. However, 

it requires the use of an alkali solution to neutralize the batch afterward (Agbor et al., 

2011; Kumar et al., 2009). 

The advantage of acid hydrolysis is that it is less expensive than enzymatic 

hydrolysis (Agbor et al., 2011; Kumar et al., 2009). It is simple, fast and easy to control. 

However, acid hydrolysis may lead to further degradation of monosaccharides. When 

monosaccharides are degraded, they form toxic substances such as furfural and 5-

hydroxymethylfurfural and result in lower yield of oligosaccharides. The chain length 

of oligosaccharides cannot be controlled precisely. 

 

2.2.2 Alkaline hydrolysis 

Alkaline hydrolysis showed higher yield with the lowest proportion of the lignin 

in biomass (Agbor et al., 2011; Kumar et al., 2009). Alkaline causes biomass to swell, 

leading to an increase in an internal surface area of biomass and a decrease in both 

degree of polymerization and the crystallinity of cellulose. In addition, cellulose and 

hemicellulose in the hetero matrix are more accessible because the alkaline breaks the 
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bonds between lignin and other biopolymers and disrupts the lignin structure. Calcium 

hydroxide is need for this purpose because it is inexpensive and can be recovered 

afterward (Agbor et al., 2011). The advantage of this method is that it can be done at 

ambient condition. However, the time required for this method is very long, leading to 

high alkaline consumption. The need of using water to wash out residual alkaline is also 

its disadvantage. 

 

2.2.3 Coconut meal 

The hydrolysis of coconut meal has been carried out by different methods, 

including biochemical, chemical, physicochemical, and physical methods. 

Khanongnuch et al. (2006) used enzymes from Bacillus subtilis 5H to hydrolyze 

coconut meal. The result showed that the nutritions, metabolizable 

energy, and the digestibility values of the treated coconut meal were improved. 

Specifically, the percentage of the fiber decreased from 45.35% to 26.62% of the initial 

value. Recently, Rungrassamee et al. used crude mannanase from Bacillus subtilis 

CAe24 to hydrolyze coconut meal for 6 hours. The digested products from the coconut 

meal contains 6.08 % of mannose, 8.81 % of mannobiose, 10.41 % of mannotriose, 

11.87 % of mannotetraose, 1.21 % of mannopentaose, 0.21 % mannohexaose. 

Saitagaroon et al. (1983) hydrolyzed coconut meal with hydrochloric acid as a 

catalyst. Coconut meal was defatted by 36% HCl solution for 3.5 hours with a ratio 

between acid and coconut meal of 5:3. After that the mixture was diluted to 1 M of 

hydrochloric acid, and boiled with reflux system for 5 hours. The result indicated that 

the efficiency of the hydrolysis in terms of the solid loss was 94%, and the reducing 

sugar content was 51%. 

When hydrolyzing coconut meal with sulfuric acid as a catalyst, Bujang et al. 

(2013) demonstrated that nearly 1.95 % of glucose could be obtained from the coconut 

meal using the reaction conditions of 1% H2SO4, 60 minutes, and at 130 °C. In this 

research, by using thermogravimetric infrared, they determined the degradation 

temperature of lignin, hemicellulose, cellulose. The degradation of different biomass 

vary at different ranges:from room temperaure to 900 °C for lignin, from 150 °C to 315 

°C for hemicellulose, from 315 °C to 400 °C for cellulose. 
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Hydrolyzing coconut meal by subcritial water in non­isothermal conditions was 

carried out by Khuwijitjaru et al. (2014). The results showed that the amount of 

carbohydrate content depends largely on temperature. Specifically, an increase from 

3.5 to 9.6 g carbohydrate/100 g of dried coconut meal was corresponded to a 

temperature increase from 100 °C to 175 °C. However, increasing the temperature from 

175 °C to 200 °C led to a decrease in the amount of carbohydrate content from 10.6 to 

6.1 g/100 g of dried coconut meal after 30-40 minutes of the treatment. The 

monosaccharides obtained from the treatment were mannose, glucose, galactose, and 

arabinose. 

 

2.2.4 Jerusalem artichoke 

Inulin from Jerusalem artichoke tuber (JAT) is a major polysaccharide source 

to produce fructo­oligosaccharide prebiotics (Wolfrom et al, 1974). 

Fructo­oligosaccharides can be synthesized by enzymatic methods using inulinases for 

a hydrolysis reaction. Enzymatic methods are limited by low substrate solubility, longer 

reaction time, complicated processes, high operation cost, and narrow range of 

temperature activity of enzymes. 

Jeruselem artichoke and chicory root are the main sources of inulin and 

oligofructose that are used in the food industry (Cuong et al, 2016). Jeruselem artichoke 

tuber powder (JATP) is inulin that contain chain of β-1,2-D-fructose with a glucose 

terminal. The oligofructose and inulin are considered to be the functional food 

ingredients since they affect biochemical and physiological processes in human. They 

can enhance better health and reduce the risk of many diseases. Extraction of inulin in 

the form of oligosaccharides from Jeruselem artichoke tuber powder (JATP) has 

applied as prebiotics and a sugar substitute. 

 

2.2.5 Beta glucan 

A major component of the yeast glucan is β-l,3-glucan (Shuqin et al, 2012). 

Chemical structure of the yeast glucan possesses low degree of branching which may 

be selectively hydrolyzed by bacterial, endo-β-l,3-glucanase. Alternatively, minor 

component (mannan and protein) may be preferentially degraded either enzymatically 

by a fungus, β-1,6-glucanase, or chemically by the Smith-degradation method. 
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The composition of polysaccharides and fractions is usually hydrolysis with 

trifluoroacetic acid (TFA), sulfuric acid (H2SO4), and hydrochloric acid (HCl) at high 

temperature (Zhaocheng et al, 2008). In the human stomach, hydrolysis of acids is 

usually dissolved, sugars may be destroyed and incomplete hydrolysis at temperatures 

of 37 °C and pH 1–1.5. After the HCl and TFA hydrolysis, some amounts of the sample 

may remain unhydrolyzed, with structural change. On the other hand when using 

H2SO4, the hydrolysis to neutral sugars is completed, but some of the monomer units 

may be degraded. 

 

2.3 Microwave radiation 

Microwave heating has been used in chemistry for decades. In conventional 

heat, a reaction will be heated by convection from outside to inside and it will take a 

long time for the whole flask to be heated. In the contrary, microwave heating produces 

a more localized heating, and acts on all parts of the vessel as shown in Figure 2.1. It 

has been suggested that as the material more rapidly and directly absorbs the heat, the 

high temperature can activate a larger percentage of molecules higher than the required 

activation energy for reaction (Boonyarattanakain, 2013). 

 

Figure 2.1 Sample heating by microwave (Richard, 2012). 

 

Microwave radiation has proved to be a new heat source technology that greatly 

assists organic syntheses in an environment friendly fashion (Joshi, 2013). For example, 

Xiaobing Liu et al. reported that microwave irradiation worked efficiently in assisting 

the synthesis of 2,4,5-trisubstituted imidazoles under the catalysis of 

nonchloroaluminate ionic liquids (Xiaobing Liu, 2011). Microwave radiation increases 

reaction rates and reduces reaction time, which is required for the alkaline hydrothermal 

technique (Ameta et al., 2014; Sharifi et al., 1999). Additionally, microwave radiation 
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provides uniform heating to the reaction batch. Microwave radiation’s qualities make 

it the most promising heat source for lactic acid production from the alkaline 

hydrothermal reaction of biomass (Ameta et al., 2014; Epane et al., 2010). Thanks to 

the qualification of microwave radiation on chemical reaction, CEM has been designed 

for development of reaction to obtain high yield product. A safety system associates 

with software that the condition of reaction can be controlled and set up. A scale up 

reaction can be done with this machine also. 

Microwave-assisted extraction is similar to ultrasound-assisted extraction 

except that microwave irradiation is used instead of ultrasound. Xie (2010) used 

microwave to extract polysaccharides from a plant (Chen et al. 2008). Microwave-

assisted extraction was done in closed vessel system where powdered biomass and 

solvent is added. The vessel is sealed closed by using a molded plastic lid. The oven 

power, specified time and temperature were controlled depending on the reaction. After 

the reaction, the vessel was cooled to room temperature before further analysis. The 

optimum conditions for the biomass was 20 minutes, solvent/material ratio was 20:1 

and the temperature was 100°C. Increasing the time to 20 minutes increases the 

polysaccharide yield to 5.06%. Increasing the solvent/material ratio from 5:1 to 20:1 

increases the polysaccharide yield to from 3.46% to 5.03%. Increasing the temperature 

from 60°C to 100°C increases the polysaccharide yield from 3.62% to 5.07%. When 

compared to ultrasound-assisted extraction yield of 4.82%, microwave-assisted 

extraction gives a higher yield of 5.07% (Chen et al. 2008). 

The advantage is that microwave radiation can reduce the extraction time 

significantly. Microwave can heat up a sample from inside to outside in a very short 

amount of time. This gives fast and uniform heating of the samples. It can be used with 

thermal instable substances due to its rapid extraction. The disadvantage is that 

microwave can only be applied to samples that contain dipolar materials or microwave 

absorbents, and it cannot be applied to a flow system due to its closed system. 

 

2.4 Biological test for adjuvant activities  

The analyses of gray oyster mushroom (Sermwittayawong et al, 2020) show that 

the maximum yield fraction, 7S1-1, is different sizes and mainly consists of glucose 

and mannose. The 7S1-1 sample stimulates the breakdown of fat or lipolysis but does 
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not inhibit the creation of fat or adipogenesis. The laminarins also produced similar 

results with polysaccharide mushroom samples, although the effects were less clear. 

These results suggest the anti-obesity potential of polysaccharides and receptors on the 

surface of 3T3-L1 adipocytes for recognition of β-glucan. 

To test for the adjuvant properties (Wattanasiri, 2017), the adjuvant properties 

of the unmasked mannopyranans were evaluated for the IL-1β, IL-2, IL-6, IL-12, and 

TNF-α activation capacities in the RAW 264.7 murine macrophage cells. 1.0 g/mL of 

mannopyranan 3 in a cell culture medium (10% fetal bovine serum) was mixed with 

lipopolysaccharide (LPS) at a concentration of 100 ng/mL. LPS was applied as an 

antigen to define an LPS costimulation sample. RAW 264.7 murine macrophage cells 

were treated with the costimulation sample in a comparison with LPS alone to evaluate 

the adjuvant activity of synthetic glycans of different sizes. The fetal bovine serum 

culture medium was collected at 3.5 hr, 24 hr, and 48 hr. In addition, the secreted IL-

1β IL-2,, IL-6, IL-12, and TNF-α from the macrophages were evaluated. The results 

are shown in figure 3.  

 

 

Figure 2.2 Adjuvant activities of the synthetic lipomamnan (LM) glycans 

(Wattanasiri, 2017).  
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Wattanasiri, 2017 observed that TNF-α secretion after 3.5 hours of stimulation 

was found to be higher in all cultures of costimulation when compared to cultures 

treated with LPS alone. The costsimulation samples had an approximately two-fold 

increase in  the TNF-α response when compared to that of LPS alone. At 24 hours of 

treatment, all cell cultures with LPS and synthetic LM glycans secreted significantly 

higher levels of IL-12 at 70 pg/mL more than that of the treatment with LPS alone. The 

secretion of IL-6 in cultures costimulated at 30 degree of polymerization was 

significantly higher at 48 hr of the treatment when compared with LPS alone. In 

addition, IL-1β secretion is a marker for inflammation activation. The result found that 

the secretion of IL-1β in cultures costimulated with 5 degree of polymerization was 

significantly higher when compared with LPS alone.  Moreover, the supernatant was 

tested for the presence of IL-2, it was found that there is no difference in secretions 

from untreated or LPS-treated cells with or without simulations with LM glycans. The 

research found that the costsimulations by synthetic LM glycans and LPS  increased 

the cytokine productions of IL-2, IL-1β, IL-12, IL-6, and TNF-α by macrophages. Thus, 

the synthetic LM glycans present a reinforcement in macrophages cells.   
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CHAPTER 3 

MATERIALS AND METHODS 
 

3.1 Materials 

3.1.1 CCM, grey oyster mushroom and jew’s ear mushroom pretreatment 

CCM was collected from Tropicana oil Ltd., Nakhon Pathom, Thailand after 

cold press to get oil from coconut meat. Before boiling with reserve osmosis (RO) water 

(6-7times), CCM was ground in a household blender to reduce the particle size. 

Afterward, CCM was dried in a hot air oven at 60 °C for 3 days, and then it was soaked 

overnight in 0.02 M HCl. The treated CCM was washed by RO water until 

reachingneutral pH. The treated CCM was collected and dried for 3 days at 60 °C to 

remove free moisture, and it was ground and sieved to obtain the particle sizes less than 

0.25 µm. The treated CCM was stored in an air-tight container for further usage 

Grey oyster mushroom and jew’s ear mushroom were purchased from Talad 

Thai market, Pathum Thani, Thailand. Grey oyster mushroom and jew’s ear mushroom 

were cut to small pieces, and washed with water three times. After washing, grey oyster 

mushroom and jew’s ear mushroom were dried at 60 °C for 3 days in a hot air oven to 

remove moisture. Afterward, it was ground in a household blender and sieved to obtain 

a particle size of less than 0.25 µm. The dried powder of grey oyster mushroom and 

jew’s ear mushroom were stored in an air-tight container for subsequent usage (Figure 

3.1). 

Beta-glucans were obtained from Dr. Decha Sermwittayawong, Prince Songkla 

University, PSU (Lot007 S1-1, Lot005 AS2-1-2, Lot005 S1-1, Lot005 SG1-1). 

Commercially available beta-glycan from baker's yeast (S. cerevisiae) was purchased 

from Transfer Point (USA). 
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Figure 3.1 Preparation diagram of mushroom sample. 

   

3.1.2 Reagents 

 Hydrochloric acid, 95-97% sulfuric acid, phenol, Coomassie Brilliant Blue G-

250, ethanol (99.8%) and dihydroxyacetone (DHA) were purchased from Merck 

(Germany). Sodium hydroxide, potassium sodium tartrate and 3, 5-dinitrosalicylic acid 

were purchased from Sigma-Aldrich (USA). Pullulan polysaccharide calibration kits 

were purchase from Agilent. Mannose and arabinose were purchased from Senn 

Chemicals (Switzerland). Glucose and galactose were purchased from Fluka (USA). 

All chemicals purchased were analytical grade. 

 
 

3.1.3 Equipment 

Microwave reactor (CEM, USA, Discover SP 909155) was used for hydrolysis. 

High Performance Liquid Chromatography (HPLC) equipped with carbohydrate 

column (Transgenomic CARBOSEP CHO682, LEAD column, CHO-99-9854, USA) 

and PL aquagel-OH 5µm column with PL aquagel-OH guard (PL aquagel - OH 20 SEC 

columns, 5 μm, 7.5 x300 mm) were used for sugar composition analysis and size 

analysis respectively. 

Fresh fruiting bodies of mushroom 

Washing and Slicing 

Drying at 60 °C (3 days) 

Blending 

Sieving 

(Particle size was 

less than 0.25 µm) 

Grey oyster mushroom powder (GP) 

and jew’s ear mushroom powder (EP) 
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3.2 Microwave radiation hydrolysis 

The hydrolysis experiments were carried out in a microwave reactor (CEM, 

USA, Discover SP 909155). Mushroom was hydrolyzed by microwave radiation with 

acid catalyst. Microwave radiation was done in a 10 mL batch-type reactor vessel in a 

closed-system.  The reactions were done in the following conditions: maximum 

pressure at 290 psi, power of 150 watt, and ramping time was 5 min. 0.1g of mushroom 

was mixed with 1 mL of hydrochloric acid (HCl) as a catalyst in the microwave reactor 

for 15 min.  

After the hydrolysis reaction, the samples were cooled to room temperature. 8 

mL of RO water was added and stirred for 1 hr to separate the soluble and insoluble 

portions.  The diluted samples were neutralized and centrifuged at 14000 rpm at 4 °C 

for 15 min, and the residual solid was collected by filtering through a Whatman paper 

No.93 on Buchner filter equipped with a vacuum pump. The residual solid was dried at 

60 °C overnight. The crude product was kept in the refrigerator at 4 °C for further 

analysis. 
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3.3 Methods 

 The digestion methodology of grey oyster mushroom and jew’s ear mushroom 

are shown in Figure 3.2. 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.2 Flowchart for digestion methodology. 

 

 

 

Digestion of Agricultural Product Biomass by Microwave 

Facilitated Hydrolysis 

 

Wash and dry fresh mushroom at 60 °C for 3 days in the oven  
-to remove free moisture 

-measure the solid loss, total carbohydrate, and reducing sugar 

Use vacuum filtration to separate the residue 

solid out of supernatant solution 

Adjust pH of the supernatant to be neutral 
 

Inject sample into High Performance Liquid 

Chromatography (HPLC) 

-to determine amount of polysaccharides, oligosaccharides and 

monosaccharides present 

-to analyze for the number of units of saccharides 

After digestion is completed, add RO water and stir for 1 hour 
-to separate insoluble and soluble portions 

Hydrolyze 0.1 g of mushroom powder in various 

concentrations of HCl solutions, and various temperatures 

-Reaction concentration: 0.2, 0.4, 0.6, 0.8, 1.0 and 2.0 M HCl 
- Reaction temperature: 70, 80, 90, 100, 110, 120, 130, 140 and 150 °C 
 

Blend in household 

blender and sieved 

to obtain sample 

powder 

- particle sizes of 

less than 0.25 µm 

-Initial reaction screening: 

15 and 30 minutes 
-Optimized reaction time: 

15 minutes 

Preparation 

Digestion 

Centrifuge supernatant 

solution 

-14000 rpm at 4 °C  

-15 minutes  

dry the residue solid in the 

oven at 60 °C overnight 

before weighing 

-3 PL aquagel-OH columns  
-Carbohydrate column 
 

Characterization 
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3.3.1 Physicochemical hydrolysis of mushroom by microwave 

Grey oyster mushroom and jew’s ear mushroom were hydrolyzed by using 

microwave radiation and acid catalyst. Microwave radiation was done in a 10 mL batch-

type reactor vessel in a closed-system.  1 mL of HCl solution was mixed with 0.1g of 

sample in the microwave reactor for 15 minutes. The reactions were done in the 

following conditions: maximum pressure at 290 psi, power of 150 watt, and ramping 

time of 5 minutes. 

After the hydrolysis reaction, the samples were cooled down to room 

temperature. 8 mL of RO water was added, and then stirred for 1 hour to separate the 

insoluble and soluble portions.  The diluted samples were neutralized and centrifuged 

at 14000 rpm at 4oC for 15 minutes, and the residual solid is collected by filtering 

through a Whatman paper No.1 on Buchner filter equipped with a vacuum pump. The 

residual solid is dried at 60 °C overnight. The crude product is kept in the refrigerator 

at 4 °C for further analysis. 
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Figure 3.3 Hydrolysis diagram of mushroom. 

 

The sample was prepared to a concentration of 20 mg/mL aqueous solution by 

DI water. The hydrolysis of the sample was done in a closed vessel (10 mL) in the MCR 

reactor (CEM, Discover SP 909155, USA). 1 mL of 0.05 M HCl solution was mixed 

with 0.1 g of sample in a vessel. The reaction was carried out under the set maximal 

pressure of 290 psi, maximal power of 150 watt, and ramping time of 5 minutes. 
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Figure 3.4 Hydrolysis diagram of glucan samples from PSU. 

 

3.3.2 Proximate composition analysis of mushroom powder 

The proximate constituents of mushrooms were analyzed by using the standard 

method set by Association of Official Analytical Chemists (A.O.A.C., 2000). The 

moisture content was obtained by heating 2.0 g of fresh mushroom at 105 °C until a 

constant weight is obtained. Crude protein is determined using Kjeldahl method which 

involves finding the percent of total nitrogen in 2.0 g of sample, then multiply the 

number by 6.25 (Barbano et al., 1991). Crude fat is determined by using petroleum 

ether to extract fat from 5.0 g of sample in a Soxhlet apparatus. Ash is determined by 

taking 10.0 g of sample and incinerating it at 550 °C for 5 hr. Crude fiber is obtained 

by using sulfuric acid and sodium hydroxide to digest 2.0 g of sample, then incinerating 

the residue in a furnace at 550 °C for 5 hr. (Ranganna et al., 1986) 

 

3.3.3 Determination of solid loss 

Solid loss is one way to determine the degree of hydrolysis. More solid loss 

indicates more hydrolysis that has occurred. The main focus is to hydrolyze the 

carbohydrate portions of the biomass, but protein may be hydrolyzed as a side reaction. 

The residual solid was collected by filtering through a Whatman paper No.93 on a 

Keeping in refrigerator 

(4 °C) 

Adding sample and catalyst solution into the vessel 

Mixing 

Hydrolyzing 

Cooling to room temperature 

Adjusting pH  

(Neutralize) 
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Buchner filter equipped with a vacuum pump. The residual solid was dried at 60 °C 

overnight. The solid loss was calculated by the equation shown below (A.O.A.C., 2000; 

Ranganna et al., 1986),  

SL =
IS − RS

IS
× 100 % 

 

SL: Solid loss (%, based on the dried weight of mushroom) 

IS: Weight of starting materials (Initial dried solid, g) 

RS: Weight of dried remain mass (Residual dried solid, g)  

 

3.3.4 Determination of total carbohydrate (TC) 

TC was determined by the phenol-sulfuric acid assay method (A.O.A.C., 2000; 

Ranganna et al., 1986). 0.2 mL of the mushroom solution was diluted to 10 mL using 

RO water in a volumetric flask. 1 mL of diluted sample solution was mixed with 1 mL 

of 5% aqueous phenol solution in test tube.  After that, 5 mL of sulfuric acid (95 - 97%) 

was added to the mixture. The mixture was kept in a water bath at 25 °C for 20 min. 

The absorbance of the sample was measured at 490 nm using a UV-VIS 

spectrophotometer (Thermo Fisher Scientific, G10S UV-VIS, USA). A mixture of RO 

water, aqueous phenol solution (5%), and 95 - 97% sulfuric acid (1:1:5, v/v/v) was set 

as blank. Glucose solutions at different appropriate concentrations were used to create 

a standard curve for TC determination of sample solution of mushroom. TC was 

reported in % (gram of TC in 100 g of the dried weight of mushroom). 

 

3.3.5 Determination of reducing sugar (RS) 

RS was measured by the dinitrosalicylic acid assay (A.O.A.C., 2000; Ranganna 

et al., 1986). To prepare the dinitrosalicylic acid solution, 5.0 g of 3,5-dinitrosalicylic 

acid and 150 g of potassium sodium tartrate were mixed together in 100 mL of 2.0 M 

NaOH. The mixture was adjusted to 500 mL by using RO water. 0.2 mL of the sample 

solution and 2 mL of the dinitrosalicylic acid solution were mixed in a test tube.  The 

mixture was soaked in boiling water for 10 minutes before speedily cooled to room 

temperature using ice water. A UV-VIS spectrophotometer (Thermo Fisher Scientific, 

G10S UV-VIS, and USA) was used to measure the UV absorbance at 570 nm. A 

mixture of RO water and dinitrosalicylic acid solution (0.2:2, v/v) was set as a blank. 
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Glucose solutions at different appropriate concentrations were used to create a standard 

curve for RS determination of sample solution of mushroom. RS was reported in % 

(gram of RS in 100g of the dried weight of mushroom). 

 

3.3.6 Monosaccharide analysis 

The saccharide compositions of the hydrolyzed sample were analyzed using 

HPLC (Agilent 1260 Infinity, G1329B, Germany) equipped with a carbohydrate 

column (Transgenomic CARBOSEP CHO682, LEAD column, CHO-99-9854, USA). 

The sample was diluted and neutralized. Then, it was filtered through a 0.2 µm 

membrane. The sample at 20 µL was injected into HPLC. The mobile phase is DI water 

with a flow rate of 0.4 mL/min and the column is temperature controlled at 80 °C. The 

oligosaccharides and monosaccharides were monitored using a refractive index 

detector. 

 

3.3.7 HPLC size exclusion chromatography (SEC) analysis 

The SEC analysis was done by using HPLC (Agilent 1260 Infinity, G1329B, 

Germany) equipped with a PL aquagel guard and 3 of PL aquagel-OH columns (PL 

aquagel-OH 20 SEC columns, 5 µm, 7.5x300 mm). The sample was diluted and 

neutralized. Then, it was filtered through a 0.2 µm membrane. The sample at 100 µL 

was injected into HPLC. DI water was used as the mobile phase with a flow rate of 0.9 

mL/min and the column’s temperature at 36 °C. A refractive index detector on the 

HPLC was used to monitor the molecular weights of monosaccharides, 

oligosaccharides, and polysaccharides in samples. 

 

3.3.8 Purification 

The sample was evaporated at 40 °C until the solution became viscous to obtain 

saccharide solution. 4.5 mL of propanol was added to 0.5 mL of the saccharide solution 

and incubate for 16 hr at 40 °C with orbital shaking at 60 rpm. The sample was 

centrifuged at 13,000 rpm for 3 min at 4 °C to separate any precipitated solids. The 

solid material was kept in hot air oven at 60 °C for 2 hr and the supernatant was kept in 

test tube. 
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3.3.9 NMR spectroscopy 

The purified polysaccharide was characterized by 1H nuclear magnetic 

resonance (NMR). NMR spectra were recorded at 298 K with a Bruker Ascend TM 600 

spectrometer operating at 600 MHz. Chemical shifts are expressed in ppm. Deuterium 

oxide (D2O) was used as a solvent for NMR analyses. The purified polysaccharide was 

dissolved in D2O at 30 °C and kept at that temperature during the measurement. 

 

3.3.10 Biological test for adjuvant activities 

To test for their adjuvant properties, the extracted polysaccharides were 

evaluated for the IL-1β, IL-2, IL-6, IL-12, and TNF-α activation capacities in RAW 

264.7 murine macrophage cells. The extracted polysaccharides at a concentration of 20 

µg/mL in complete medium (3 mL/well) were mixed with 1.5 mL of keyhole limpet 

hemocyanin (KLH) and 1.5 mL of lipopolysaccharide (LPS) which use as an antigen 

to formulate an LPS costimulation sample. RAW 264.7 murine macrophage cells were 

treated with the costimulation sample compared with KLH alone to evaluate the 

adjuvant activity of synthetic glycans with different sizes. The complete medium was 

collected at 4, 12, 24, and 48 hr and the sample was kept in 4 °C. Moreover, the secreted 

IL-1β, IL-2, IL-6, IL-12, and TNF-α from the macrophages were evaluated. 
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CHAPTER 4 

RESULTS AND DISCUSSION 
 

4.1 Saccharides standard curves on HPLC 

HPLC chromatogram of standard solutions with three columns of PL aquagel-

OH for monosaccharides (MW 180 g/mol), oligosaccharides (MW 6100, 9600, 21100, 

and 47100 g/mol), polysaccharides (MW 342, 667 g/mol) were obtained at 36 °C and 

the analysis time of 40 minutes.  

The number of units of saccharides in the sample was assessed by using size 

exclusion chromatography (SEC) with three columns. Calibration curve of saccharides 

standards by SEC (Figure 4.1) revealed a linear relationship between logarithm of 

molecular weight of saccharides and logarithm of retention time. For example, the 

highest molecular weight (Mw = 47100 g/mol) with 261 repeated units while lowest 

molecular weight (Mw = 180 g/mol) has 1 monosaccharide unit. The oligosaccharides 

and polysaccharides have 2-20 units and more than 30 units, respectively. 

 

 
Figure 4.1 Calibration curve of saccharides standard. 

 

Calibration curve of saccharides standards between the logarithm of molecular 

weight (Mw) and retention time shows linear relationship. The number of units of 

saccharides in the samples were calculated by the equation y = -0.1916x + 8.3461 where 

y is the logarithm of molecular weight, and x is the retention time. The molecular weight 

range of the saccharides standard is 180 (monosaccharides) to 47100 (polysaccharides) 

g/mol. 
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4.1.1 Coconut Copra Meal (CCM) 

The optimized hydrolysis conditions developed previously by Cuong et al 

(2016) involves using acid as a catalyst and microwave radiation. The reaction 

conditions to obtain the highest yield of monosaccharides from the hydrolysis of 

coconut meal (CCM) is at 170 °C , the reaction time of 15 min, 0.05 M HCl solution, 

and 1:10 (g/mL) ratio of CCM to acid solution volume. The conditions which gave in 

the highest yield of oligosaccharides is at 110 °C , the reaction time of 15 min, 0.2 M 

HCl solution, and 1:80 (g/mL) ratio of CCM to acid solution volume in Figure 4.2. The 

chromatogram was analyzed by integrating the range of retention time that covers one 

unit. For example, for monosaccharide with 1 unit, the retention time is from 30.87 

minutes to 33.36 minutes, for oligosaccharide with 5 units, the retention time is from 

27.93 minutes to 28.38 minutes. The yield of oligosaccharide in the range of units 2 to 

18 units is 66.71%, yield of monosaccharides 30.38%, and theyield of polysaccharides 

with 36 repeated units is 2.91%. Higher temperature and lower reaction volume to CCM 

ratio results in higher yield of monosaccharides. The reaction conditions of CCM at 170 

°C, the reaction time of 15 min, 0.05 M HCl solution, 1:10 (g/mL) ratio of CCM to acid 

volume (Figure 4.3) generated the yield of polysaccharides (21 to 630 units) to be 

50.12%, oligosaccharide with 2 to 20 units to be 4.20%, and highest yield of 

monosaccharides to be 45.68% with 1 unit. 

 

 

Figure 4.2 SEC chromatogram of the reaction condition at 110 °C, 15 min, 0.2 M HCl, 

ratio of CCM mass to reaction volume of 1:80 (w/v) with PL aquagel guard and 3 

columns of PL aquagel-OH. 

 

 

Monosaccharide Oligosaccharide 

Oligosaccharide 

Polysaccharide 
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Figure 4.3 SEC chromatogram of the reaction condition at 170 °C, 15 min, 0.05 M HCl, 

ratio of CCM mass to reaction volume of 1:10 (w/v) with PL aquagel guard and 3 

columns of PL aquagel-OH. 

 

Table 4.1 Summary of reaction condition and size of CCM obtained. 

The Reaction 

condition of CCM 

Size of 

polysaccharides 

Size of 

oligosaccharides  

Size of 

monosaccharides  

110oC, 0.2 M HCl, 

80:1, 15 min 

36 units up 

(2.91%) 

18 units (0.09%) 

16 units (0.22%) 

15 units (0.33%) 

14 units (0.76%) 

13 units (1.08%) 

12 units (1.38%) 

11 units (2.12%) 

10 units (3.15%) 

9 units (4.17%) 

8 units (5.25%) 

7 units (10.25%) 

6 units (2.38%) 

4 units (2.44%) 

3 units (4.58%) 

2 units (28.51%) 

1 unit (30.38%) 

170oC, 0.05 M HCl, 

10:1, 15 min 

21 to 630 units 

(50.12%) 

20 units (0.21%) 

19 units (0.17%) 

18 units (0.19%) 

17 units (0.23%) 

16 units (0.17%) 

1 unit (45.68%) 

Monosaccharide 

Oligosaccharides Polysaccharides 
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15 units (0.23%) 

14 units (0.25%) 

2 units (2.74%) 

 

4.1.2 Beta-glucan from PSU 

Beta-glucan samples were obtained from Dr. Decha Sermwittayawong, Prince 

of Songkla University, PSU. The samples were used to verify the size of beta-glucan. 

The samples included Lot007 S1-1, Lot005 S1-1, Lot005 SG1-1, and Lot005 AS2-1-2.  

Polysaccharides in the samples were hydrolyzed using microwave radiation and 

0.05 M HCl as a catalyst to obtain monosaccharides. Monosaccharides can be observed 

at the retention time of 31 minutes. After the hydrolysis, both oligosaccharides and 

monosaccharides were observed. The predominant monosaccharide observed in all of 

the samples at a reaction temperature of 150 °C was glucose, with mannose as a minor 

component. The highest yield of monosaccharide was achieved at 150 °C with 0.05 M 

HCl, and 15-minute reaction time (Figure 4.4-4.7, Table 4.2).  

The type of oligosaccharides and monosaccharides present in the samples were 

determined by HPLC equipped with the carbohydrate column. The retention times for 

the common monosaccharides such as mannose, arabinose, galactose, and glucose were 

29.5, 27.1, 24.5, and 20.5 minutes, respectively. The retention times of oligosaccharides 

were found to be less than 20 minutes. 

 

 

Figure 4.4 SEC chromatogram of the reaction conditions at 150 °C, 15 min, 0.05 M 

HCl of beta-glucan (Lot005 S1-1), after size exclusion column purifications with 3 

columns of PL aquagel-OH. 
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Figure 4.5 SEC chromatogram of the reaction conditions at 150 °C, 15 min, 0.05 M 

HCl of beta-glucan (Lot005 SG1-1), after size exclusion column purifications with 3 

columns of PL aquagel-OH. 

 

 

Figure 4.6 SEC chromatogram of the reaction conditions at 150 °C, 15 min, 0.05 M 

HCl of beta-glucan (Lot005 AS2-1-2), after size exclusion column purifications with 3 

columns of PL aquagel-OH. 

 

 

Figure 4.7 SEC chromatogram of the reaction conditions at 150 °C, 15 min, 0.05 M 

HCl of beta-glucan (Lot007 S1-1), after size exclusion column purifications with 3 

columns of PL aquagel-OH. 
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Table 4.2 Summary the reaction conditions for the beta-glucan samples from PSU to 

evaluate the number of repeated units. 

Sample Condition 

Result 

Before hydrolysis After hydrolysis 

Lot005 S1-1 
150 °C, 0.05M HCl, 15 

min 

3437 units (50.93%), 

2928 units (28.84%), 

2233 units (20.23%) 

1 unit (26.11%), 

10 units (11.50%), 

13 units (62.39%) 

Lot05 SG1-1 
150 °C, 0.05M HCl, 15 

min 

3487 units (49.84%), 

2651 units (30.19%), 

2088 units (11.61%), 

1776 units (5.61%), 

1429 units (2.74%) 

1 unit (29.22%), 

10 units (11.11%), 

13 units (59.67%) 

Lot005 AS2-1-2 
150 °C, 0.05M HCl, 15 

min 

2980 units (68.20%), 

2751 units (21.64%), 

1899 units (10.16%) 

1 unit (22.18%), 

10 units (12.58%), 

14 units (65.25%) 

Lot007 S1-1 
150 °C, 0.05M HCl, 15 

min 

2740 units (51.10%), 

2427 units (26.00%), 

1772 units (12.87%), 

1286 units (10.02%) 

1 unit (26.3%), 

14 units (13.06%), 

19 units (60.63%) 

 

The samples Lot005 S1-1, Lot005 SG1-1, Lot005 AS2-1-2, and Lot007 S1-1 

were hydrolyzed by using microwave radiation with HCl solution as a catalyst at 

different conditions to obtain the optimal condition to obtain the highest 

oligosaccharides yield. The reaction conditions at 150 °C, 0.05M HCl, and 15 min 

reaction time were found to degrade polysaccharides to form oligosaccharides and 

monosaccharides. In general, the yield of monosaccharides increased gradually with 

increasing temperature, while the oligosaccharides steadily decreased. The 

predominant monosaccharides present in all samples was glucose, which were 

maximized at a reaction temperature of 150 °C. Oligosaccharides were observed at the 

retention time around 10-18 minutes while glucose and mannose were observed at the 

retention times of 20 minutes and 29 minutes, respectively (Figure 4.8-4.11). 
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Figure 4.8 Lot005 S1-1 sample after the hydrolysis at under the reaction conditions at 

150 °C, 0.05 M HCl solution, 15 minutes. 

 
 

 

Figure 4.9 Lot005 SG1-1 sample after the hydrolysis at under the reaction conditions 

at 150 °C, 0.05 M HCl solution, 15 minutes. 

 
 

 

Figure 4.10 Lot005 AS2-1-2 sample after the hydrolysis at under the reaction 

conditions at 150 °C, 0.05 M HCl solution, 15 minutes. 
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Figure 4.11 Lot007 S1-1 sample after the hydrolysis at under the reaction conditions 

at 150 °C, 0.05 M HCl solution, 15 minutes. 

 

This study shows that temperature, HCl concentration, and reaction time results 

in higher selectivity of monosaccharides and/or oligosaccharides from the samples. The 

highest amount of glucose was extracted out of samples at low HCl concentration and 

high temperature. In this study for SEC analysis found that polysaccharides were 

completely hydrolyzed to monosaccharides under the reaction conditions at high 

temperature (150 °C), low concentration (0.05 M HCl), and reaction time 15 min. The 

summary of the reaction conditions for the PSU samples are given in Table 4.3. 

 

 Table 4.3 Summary the reaction conditions of samples from PSU for oligosaccharides 

and type of monosaccharides. 

Sample Condition 
Result 

Before hydrolysis After hydrolysis 

Lot005 S1-1 

150oC, 

0.05M HCl, 

15 min 

Polysaccharides 

(100%) 

Oligosaccharides 73.90%, 

Glucose 21.43%, 

Mannose 4.67% 

Lot05 SG1-1 

150oC, 

0.05M HCl, 

15 min 

Polysaccharides 

(100%) 

Oligosaccharides 72.95%, 

Glucose 22.10%, 

Mannose 4.95% 

Lot005 AS2-1-2 

150oC, 

0.05M HCl, 

15 min 

Polysaccharides 

(100%) 

Oligosaccharides 82.11%, 

Glucose 14.81%, 

Mannose 3.08% 

Lot007 S1-1 

150oC, 

0.05M HCl, 

15 min 

Polysaccharides 

(100%) 

Oligosaccharides 75.38%, 

Glucose 21.07%, 

Mannose 3.55% 
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4.2 Proximate composition analysis of grey oyster mushroom and jew’s ear 

mushroom  

 The results of the proximate composition analyses of the mushrooms are 

summarized in Table 4.4. Carbohydrate, moisture, lipid, and crude fiber content from 

jew’s ear mushroom was higher than that of grey oyster mushroom (Pleurotus sajor-

caju). The ash content, and protein of jew’s ear mushroom were lower than that of grey 

oyster mushroom. 

Table 4.4 Proximate composition of mushrooms. 

 Grey oyster mushroom Jew's ear mushroom 

Moisture (%) 1.26 ± 0.03 1.48 ± 0.01 

Lipid (%) 1.30 ± 0.03 1.60 ± 0.06 

Protein (%) 24.59 ± 0.21 11.54 ± 0.14 

Crude fiber (%) 0.97 ± 0.00 1.25 ± 0.02 

Ash (%) 6.94 ± 0.09 3.03 ± 0.02 

Carbohydrate (%) 64.94 ± 0.26 81.10 ± 0.15 

  

 Based on dried weights, carbohydrates contribute 65% and 81% in grey oyster 

and jew's ear mushrooms, respectively. Carbohydrates are mainly present in mushroom 

as polysaccharides in the forms of glycogen, indigestible fibers (α- and β-glucans, 

dietary fibers, chitin, and cellulose) and other hemicelluloses (galactans, xylans and 

mannans). 

 

4.3 Digestion of grey oyster mushrooms 

The first step is digestion of grey oyster mushroom under the conditions 

according to Cuong et al., 2016. The conditions that provided the highest amount of 

monosaccharide (glucose) from konjac is 100 °C, 15 minutes, and 1.2 M HCl. The 

samples were digested at various reaction temperatures and HCl concentrations. The 

hydrolyzed mushroom crudes were analyzed by HPLC methods such as SEC analysis 

and saccharide composition analysis. 
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4.3.1 Effects of the extracting temperature 

 The reaction temperature plays an important role in the hydrolysis reaction of 

grey oyster mushroom. Generally, solid loss (SL), total carbohydrate (TC) and reducing 

sugar (RS) of the hydrolyzed grey oyster mushroom increased with increasing 

temperature. SL reached the maximum value of 93.63% under 150 °C, 15 min and 0.2 

M HCl (Fig. 4.12a). TC reached the maximum value of 65.61% at 130 °C for 15 min 

with 0.2 M HCl (Fig. 4.12b). RS reached the maximum value of 50.92% at 140 °C for 

15 min with 0.4 M HCl (Fig. 4.12c). The maximum values of SL, TC, and RS are in 

the reaction temperature range of 130 – 150 °C. Intermediate Decomposition Interaction 

of Maillard Browning and Caramelization (MBCR) is generated from the degradation 

of proteins and carbohydrates (Namiki, 1988). Beyond this reaction temperature, SL, 

TC, and RS decreased because some of the carbohydrates and proteins in the 

hydrolyzed mushroom were converted to a residual black solid at higher temperatures. 

The high yield of glucan obtained in this study can be attributed due to the 

utilization of a combination of HCl as a catalyst and microwave radiation heating. 
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Figure 4.12 The effect of reaction temperature on the hydrolysis of grey oyster 

mushroom: a) solid loss, b) total carbohydrates, and c) reducing sugars at reaction time 

15 min, ratio of grey oyster mushroom mass to reaction volume of 1:10 w/v and repeat 

3 times. 
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Table 4.5 The effect of reaction temperature on solid loss (SL), total carbohydrate 

(TC), and reducing sugar (RS) of hydrolyzed grey oyster mushroom. 
 

0.2M HCl 0.4M HCl 0.6M HCl 0.8M HCl 

Temperature (°C) SL TC RS SL TC RS SL TC RS SL TC RS 
 

(%, based on dried weight of mushroom) 

  

70 39.24 14.38 1.31 40.63 13.25 1.06 50.85 21.12 3.51 41.35 14.55 1.35 

80 36.96 12.42 1.75 41.77 18.46 2.56 44.08 18.81 2.70 46.21 14.85 2.92 

90 40.08 16.09 1.97 47.88 19.46 3.54 51.18 24.02 5.22 52.51 22.78 5.44 

100 74.60 30.53 12.24 56.92 40.29 6.21 60.31 37.74 9.24 62.13 20.47 7.49 

110 47.49 23.84 4.71 55.28 30.29 12.31 58.58 34.85 16.91 61.09 31.35 20.56 

120 61.60 38.93 6.54 74.20 39.70 22.35 77.01 48.57 25.97 88.28 55.43 48.84 

130 87.96 65.61 36.85 91.75 43.07 41.35 93.52 42.77 43.50 92.53 39.52 40.40 

140 87.39 53.01 45.80 91.92 54.72 50.92 91.72 40.76 41.13 91.57 44.31 39.38 

150 93.63 51.11 42.70 92.75 45.49 42.92 92.49 44.07 37.11 90.55 32.48 32.80 

 Note: at reaction time 15 min, ratio of mushroom mass to reaction volume of 1:10 (w/v) 

 

4.3.2 Effects of HCl concentration 

The concentration level of HCl has an important role in the hydrolysis of grey 

oyster mushroom. SL, TC, and RS significantly increased with increasing HCl 

concentrations. SL, TC, and RS increased dramatically when the HCl concentration 

was increased from 0.2 to 0.8 M. SL of grey oyster mushroom reached a maximum 

value of 93.63% at 150 °C for 15 min with 0.2 M HCl (Fig. 4.13a). TC of grey oyster 

mushroom reached a maximum value of 65.61% at 130 °C for 15 min with 0.2 M HCl 

(Fig. 4.13b). RS of grey oyster mushroom reached a maximum value of 50.92% at 140 

°C for 15 min with 0.4 M HCl (Fig. 4.13c). Intermediate products of MBCR is created 

when the extracted carbohydrates are degraded by high concentrations of HCl (Namiki, 

1988). 
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Figure 4.13 The effect of HCl concentration on the hydrolysis of grey oyster 

mushroom: a) solid loss, b) total carbohydrates, and c) reducing sugars at the reaction 

time15 min, ratio of grey oyster mushroom mass to reaction volume of 1:10 w/v and 

repeat 3 times. 
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4.3.3 Size Exclusion Chromatography (SEC) analysis 

To see the effects of the reaction conditions on the oligosaccharides’ sizes, the 

products were analyzed by size exclusion chromatography. The retention time of 

oligosaccharides with 2-20 is 29 min. Polysaccharide shows up at less than 25 min, 

while the retention time of monosaccharides is 31 min. After the hydrolysis reaction, 

the retention times of polysaccharides (short-chain) and oligosaccharides were less than 

29 min while the retention time for monosaccharides was around 31 min. 

Monosaccharides were obtained at higher reaction temperatures of 140-150 °C. The 

reaction temperature around 120-130 °C provides oligosaccharides, while lower 

temperatures result in higher polysaccharide portions. The length of shorter 

polysaccharides obtained was more than 36 units with a yield of 74.25% at 90 °C, 15 

min with 0.2 M HCl. Oligosaccharides with 2-5 units were obtained under the 

conditions at 120 °C for 15 min, and 0.6 M HCl solution. Monosaccharides were 

obtained at 150 °C for 15 min, and 0.6 M HCl solution. 

 

4.3.4 HPLC analyses for types of monosaccharides 

Polysaccharides in grey oyster mushroom were hydrolyzed by a combination of 

the heat generated by microwave radiation at the temperature range of 70 °C to 150 °C, 

HCl concentration of 0.2 M to 0.8 M, and reaction time of 15 min, to produce 

oligosaccharides and monosaccharides. After the hydrolysis reaction, the 

monosaccharides glucose, arabinose, and mannose were observed by using 

carbohydrate column, with the retention times at 20, 25 and 30 min, respectively 

(Figure 4.14). As expected, glucose is the major monomer building block of the 

polysaccharides in grey oyster mushroom. 
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Figure 4.14 The HPLC chromatogram of the grey oyster mushroom after hydrolysis 

by using carbohydrate column. 

 

4.3.5 1H NMR analysis 

The 1H NMR spectrum of the extracted grey oyster mushroom (at the conditions 

of 120 °C, 0.6 M HCl solution, 15 min) in D2O is shown in Figure 4.15. The NMR 

spectrum shows a good agreement with the previously reported data (Zhaocheng et al., 

2008). The signal of the spectrum is reported in chemical shifts, δ (ppm). The signal at 

δ 4.42 - 4.43 ppm corresponds to the proton signal (H-1) of β – anomeric protons. The 

signal at δ 4.5 - 4.8 ppm corresponds to the internal H-1 resonances of (1,3) backbone 

chain of grey oyster mushroom. The signal at δ 3.09 - 4.5 ppm corresponds to the 

internal H-1 of (1,3) - β - linked backbone chain and (1,6) - β - linked side chain. The 

1H NMR signals described above confirm the hydrolysis of grey oyster mushroom from 

polysaccharides into oligosaccharides with the repeating units of (1,3) and (1,6) - β-

glucan form. 

 

 

 

Figure 4.15 1H NMR spectrum of extracted glucans from grey oyster mushroom in 

D2O at 30 °C. 
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4.4 Digestion of jew’s ear mushroom 

From the optimum conditions, the samples were digested at various reaction 

temperatures and HCl concentration. Mushroom samples were analyzed by HPLC 

methods such as SEC analysis and saccharide composition analysis. 

 

4.4.1 Effects of the extracting temperature 

The reaction temperature has an important role in the hydrolysis reaction of 

Jew’s ear mushroom. Generally, solid loss (SL), total carbohydrate (TC) and reducing 

sugar (RS) of the hydrolyzed mushroom increased with increasing temperature. SL 

reached the maximum value of 98.27% under 130 °C, 15 min, and 0.8 M HCl (Figure 

4.16a). TC reached the maximum value of 83.47% under 150 °C, 15 min, 0.2 M HCl 

(Figure 4.16b). RS reached the maximum value of 55.76% at 150 °C for 15 min with 

0.2 M HCl (Figure 4.16c). The maximum values of SL, TC, and RS are in the reaction 

temperature range of 130 – 150 °C. Beyond this reaction temperature, SL, TC and RS 

decreased because some the carbohydrates and proteins in the hydrolyzed mushroom 

may be decomposed into a residual black solid at higher temperatures. 
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Figure 4.16 The effect of reaction temperature on the hydrolysis of jew’s ear 

mushroom: a) solid loss, b) total carbohydrates, and c) reducing sugars at reaction time 

15 min, ratio of jew’s ear mushroom mass to reaction volume of 1:10, w/v and repeat 

3 times. 
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4.4.2 Effects of HCl concentration 

Jew’s ear mushroom was hydrolyzed by a combination of the heat generated by 

microwave radiation with HCl as a catalyst, to produce polysaccharides and 

oligosaccharides. In general, the total amount of monosaccharides increased gradually 

with increasing temperature while the polysaccharides and oligosaccharides steadily 

decreased. Glucan and mannan are the two main polysaccharides of the cell wall of 

jew’s ear mushroom, which was in agreement with literature (Synytsya et al. 2009). 

Polysaccharides that are subjected to high heat will result in hydrolysis to 

monosaccharides. The monosaccharides decreased when the reaction temperature was 

higher than 160 °C because the monosaccharides degraded to form intermediate 

degradation products of Maillard browning and caramelization reactions, and some 

residual black solid. Since the objective is to obtain oligosaccharides, the reaction 

temperature must not be too high. High extraction temperatures cause saccharides to 

break down faster. Higher temperatures also lead to more solvent loss and increased 

cost of the extraction processes. The high yield of glucan obtained in this study can be 

attributed due to the utilization of a combination of HCl as a catalyst and microwave 

radiation heating.  

 

Table 4.6 The effect of reaction temperature on solid loss (SL), total carbohydrate 

(TC), and reducing sugar (RS) of hydrolyzed jew’s ear mushroom. 
 

0.2M HCl 0.4M HCl 0.6M HCl 0.8M HCl 

Temperature (°C) SL TC RS SL TC RS SL TC RS SL TC RS 
 

(%, based on dried weight of mushroom) 

  

70 31.61 15.20 0.95 23.05 10.41 1.39 34.39 20.29 3.00 38.54 25.38 3.62 

80 35.62 23.31 3.03 31.45 17.39 2.19 43.95 28.99 4.86 44.29 27.81 4.27 

90 34.36 24.14 3.03 44.42 26.80 4.71 49.61 28.22 5.95 44.74 41.77 10.04 

100 44.40 22.01 4.64 49.90 32.66 8.11 55.88 37.92 12.71 62.96 47.51 21.77 

110 45.97 40.41 7.27 56.50 48.33 15.30 58.35 41.18 15.01 55.03 45.67 18.45 

120 61.45 50.88 24.58 72.60 48.81 29.84 72.52 53.89 31.92 82.58 65.85 50.15 

130 86.71 72.59 43.72 96.70 52.00 47.34 98.32 69.34 49.24 98.01 58.39 52.31 

140 96.34 74.30 64.10 96.50 74.13 61.95 96.34 70.52 56.29 94.20 75.43 59.21 

150 96.01 70.70 64.87 94.94 66.32 56.43 91.04 43.48 41.49 90.15 38.75 34.30 

 Note: at reaction time 15 min, ratio of mushroom mass to reaction volume of 1:10, w/v) 
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The concentration of HCl has an important role in the hydrolysis of mushroom. 

SL, TC, and RS significantly increased with increasing HCl concentrations. SL, TC, 

and RS increased dramatically when the HCl concentrations increased from 0.2 to 0.8 

M. SL gradually increased and reached the maximum value of 98.27% under 130 °C, 

15 min, and 0.8 M HCl (Figure 4.17). TC gradually increased and reached the 

maximum values of 83.47% under 150 °C, 15 min, and 0.2 M HCl. RS gradually 

increased and reached the maximum value of 55.76% under the reaction conditions of 

150 °C, the reaction time of 15 min, and 0.2 M HCl solution, respectively. 
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Figure 4.17 The effect of HCl concentration on the hydrolysis of jew’s ear mushroom: 

a) solid loss, b) total carbohydrates, and c) reducing sugars at the reaction time15 min, 

ratio of jew’s ear mushroom mass to reaction volume of 1:10, w/v and repeat 3 times. 

 

0

20

40

60

80

100

Water 0.2M 0.4M 0.6M 0.8M

P
er

ce
n

t 
o
f 

so
li

d
 l

o
ss

(%
)

HCl Concentrations (M)

70 °C

80 °C

90 °C

100 °C

110 °C

120 °C

130 °C

140 °C

150 °C

0

20

40

60

80

100

0.2 0.4 0.6 0.8

P
er

ce
n

t 
o
f 

to
ta

l 
ca

rb
o
h

y
d

ra
te

s

(%
)

HCl concentrations (M)

70°C

80°C

90°C

100°C

110°C

120°C

130°C

140°C

150°C

0

20

40

60

80

0.2 0.4 0.6 0.8

P
er

ce
n

t 
o
f 

re
d

u
ci

n
g

 s
u

g
a
r

(%
)

HCl concentration (M)

70°C

80°C

90°C

100°C

110°C

120°C

130°C

140°C

150°C

b.) 

a.) 

c.) 

Ref. code: 25635822040027JHZ



   48 

  

 

 

4.4.3 Size Exclusion Chromatography (SEC) analysis 

To see the effects of the reaction conditions on the oligosaccharides’ sizes, the 

products were analyzed by size exclusion chromatography. Oligosaccharides with 2-20 

units had retention times at 29 min, and polysaccharides had reaction times less than 25 

min. Monosaccharides had reaction times of 31 min. After the hydrolysis reaction, 

monosaccharides were obtained at higher reaction temperatures of 140-150 °C. The 

reaction conditions with the extraction temperatures around 120-130 °C provided 

oligosaccharides while the low temperatures resulted in higher polysaccharides. The 

length of shorter polysaccharides obtained were 883-1037 units with the yield of 

61.82% at 70 °C, 15 min, and 0.6 M HCl.  Oligosaccharides with 2-20 units were 

obtained under 130 °C, 15 min, and 0.6 M HCl. Monosaccharides were obtained under 

120 °C, 15 min, and 0.8 M HCl. 

 

4.4.4 HPLC analyses for types of monosaccharides 

Polysaccharides in jew’s ear mushroom were hydrolyzed by a combination of 

the heat generated by microwave radiation at the temperature range of 70 °C to 150 °C, 

HCl concentration of 0.2 M to 0.8 M, and reaction time of 15 min to produce 

oligosaccharides and monosaccharides. After the hydrolysis reaction, polysaccharides 

and oligosaccharides were present at the retention time of less than 20 minutes. The 

monosaccharides that were present were glucose, arabinose, and mannose with the 

retention times of 20, 25 and 30 min, respectively (Figure 4.18). 

 

 

Figure 4.18 The HPLC chromatogram of the jew’s ear mushroom after hydrolysis by 

using carbohydrate column. 
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4.4.5 1H NMR analysis 

The 1H NMR spectrum of the extracted jew’s ear mushroom (at the reaction 

conditions of 130 °C, 0.6 M HCl solution, 15 min) in D2O is shown in Figure 4.19. The 

NMR spectrum shows a good agreement with the previously reported data (Zhaocheng 

et al., 2008). The signal of the spectrum is reported in chemical shifts, δ (ppm). The 

signal at δ 4.42 - 4.43 ppm corresponds to the proton signal (H-1) of β – anomeric 

protons. The signal at δ 4.5 - 4.8 ppm corresponds to the internal H-1 resonances of 

(1,3) backbone chain of grey oyster mushroom. The signal at δ 3.09 - 4.5 ppm 

corresponds to the internal H-1 of (1,3) - β - linked backbone chain and (1,6) - β - linked 

side chain. The 1H NMR signals described above confirm the hydrolysis of grey oyster 

mushroom from polysaccharides into oligosaccharides with the repeating units of (1,3) 

and (1,6) - β-glucan form. 

 

 
 

Figure 4.19 1H NMR spectrum of extracted glucans from jew’s ear mushroom in D2O 

at 30 °C. 

 

4.5 Biological test for adjuvant activities 

The extracted oligosaccharides (with 2-20 units) from grey oyster mushroom 

and jew's ear mushroom solution at the conditions of 120 °C, 15 min, 0.6 M HCl 

solution (G7) and 130 °C, 15 min, 0.6 M HCl solution (E15) was purified by 

precipitations with propanol. Each extracted oligosaccharide sample was mixed with 

Keyhole Limpet Hemocyanin (KLH) antigen to observe the immunomodulatory effects 

of the extracted oligosaccharide when compared with KLH alone. KLH can be used to 

enhance the immune response against small peptides and it is used extensively as a 

carrier protein in the production of antibodies. It is a cytokine signaling molecule in 

the immune system that regulates the activities of white blood cells (leukocytes, 

often lymphocytes) that are responsible for immunity. 
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Raw 264.7 macrophages were treated with 10 µg/mL of KLH antigen with or 

without the reagents (E is jew’s ear mushroom and G is grey oyster mushroom) at a 

concentration of 10.0 µg/mL in a 6-well plate with a density of 500,000 cells per well. 

200 µL of supernatants without adding the medium were collected for each indicated 

times. After that, the supernatant was analyzed by ELISA to measure the level of IL-2. 

Data are presented as mean±SEM (***p < 0.0001; ** p < 0.01; * p < 0.05; all relative 

to the KLH control). 

Grey oyster mushroom (G7 and G16) showed an inflammatory property by 

significantly increase the production of Interleukin-2 (IL-2), a type of cytokine 

signaling molecule at 4 hr and 12 hr of the treatment when compared with KLH alone. 

The oligosaccharides (G7 and G16) enhanced the KLH stimulation of raw white blood 

cells 264.7 macrophages to secrete cytokines called IL-2 show in Figure 4.20. 
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Figure 4.20 β-glucan activities from grey oyster mushroom solution after treatment 

with antigen (KLH); KLH+G7 is the grey oyster mushroom solution at the reaction 

condition 120 °C, 0.6 M HCl, 15 min mixed with KLH antigen. 

 

For jew’s ear mushroom, at 4 hr, E15 and E8 did not significantly enhanced the 

KLH stimulation of raw white blood cells 264.7 macrophages to secrete cytokines 

called IL-2 when compared with KLH alone in Figure 4.21. On the other hand, E8 

showed an anti-inflammatory property by significantly decrease the production of IL-
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2.  At 24h of the treatment, the IL-2 productions were decreased by the presence of E8 

and E15. 
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Figure 4.21 β-glucan activities from jew’s ear mushroom solution after treatment with 

antigen (KLH); KLH+E15 is the jew’s ear mushroom solution at the reaction condition 

130 °C, 0.6 M HCl, 15 min mixed with KLH antigen. 

 

 The adjuvant activity of different mushrooms showed different responses, 

depending on the saccharide structures in each mushroom, the number of saccharide’s 

unit and the concentration of the samples. The result showed that the oligosaccharides 

from grey oyster mushroom showed an inflammatory property by significantly increase 

the production of IL-2 better than jew’s ear mushroom. The result from SEC analysis 

showed the oligosaccharides obtained from grey oyster mushroom have a smaller 

number of saccharide’s repeated unit than those obtained from jew’s ear mushroom. 

Therefore, the oligosaccharides from grey oyster mushroom have higher adjuvant 

activity than the oligosaccharides from jew’s ear mushroom. A similar trend was 

observed by Sermwittayawong et al. (2020). The study showed that a small -glucan 

can stimulate the breakdown of fat or lipolysis in the fat cells, suggesting a potential 

anti-obesity effect (Sermwittayawong et al., 2020). 
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CHAPTER 5  

CONCLUSIONS 
 

In this study, we successfully developed an efficient method to extract 

oligosaccharides from CCM, grey oyster mushroom and jew’s ear mushroom by a 

combination of microwave and acid hydrolysis to obtain mannan and glucan.  

The optimized hydrolysis conditions of CCM using acid as a catalyst and 

microwave radiation to obtain the highest yield of monosaccharides from the hydrolysis 

of CCM is at 170 °C, the reaction time of 15 min, 0.05 M HCl solution, and 1:10 (g 

/mL) ratio of CCM mass to acid solution. The highest yield of oligosaccharides in the 

range of units 2 to 18 units was obtained at 110 °C, the reaction time 15 min, 0.2 M 

HCl solution, and 1:80 (g/mL) ratio of CCM mass to acid solution. Higher temperature 

and lower reaction volume to CCM ratio results in higher yield of monosaccharides. 

The major saccharide compositions of grey oyster mushroom and jew’s ear 

mushroom are glucan. The effects of the extraction temperature and acid concentration 

were investigated to determine the optimized conditions which provide the highest 

oligosaccharide yield. The best conditions for the hydrolysis of grey oyster mushroom 

which resulted in oligosaccharides is at 120 °C, the reaction time of 15 min with 0.6 M 

HCl solution provide the maximum yield of 2.24%. The oligosaccharides obtained at 

these conditions have around 2-5 units.  The best conditions for the hydrolysis on jew’s 

ear mushroom, which result in oligosaccharides is at 130 °C, the reaction time of 15 

min, and with 0.6 M HCl solution provide the maximum yield of 1.28%. The 

oligosaccharides obtained at these conditions have around 2-20 units. The present 

findings emphasize the importance of microwave radiation to obtain the 

oligosaccharides in shorter extraction times when compared to enzyme hydrolysis 

procedures. It shows that temperature and HCl concentration have considerable effects 

on glucan oligosaccharides selective production from grey oyster mushroom and jew’s 

ear mushroom. High temperature effectively promotes the hydrolysis of grey oyster 

mushroom and jew’s ear mushroom, resulting in higher monosaccharide production, 

but not many oligosaccharides were obtained because oligomers were hydrolyzed to 

monomers. HCl at a high concentration effectively catalyzed the hydrolysis of grey 

oyster mushroom and jew’s ear mushroom at a medium temperature. The highest 

amount of carbohydrates were extracted out of grey oyster mushroom and jew’s ear 
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mushroom by high HCl concentration, while medium temperature slowed down the 

possible hydrolysis of oligosaccharides to monosaccharides. 

The purified polysaccharide was characterized using 1H nuclear magnetic 

resonance (NMR) to confirms that the hydrolysis of grey oyster mushroom and jew’s 

ear mushroom from polysaccharides into oligosaccharides has repeat units of (1,3) and 

(1,6) - β-glucan form.  

In addition, the extracted oligosaccharide from grey oyster mushroom and jew's 

ear mushroom solution after purification by precipitations with propanol was as mixed 

with KLH antigen to observe the immunomodulatory effects when compared with KLH 

alone. The IL-2 productions were significantly decreased by the presence of the 

products from the reaction conditions of jew’s ear mushroom at 130 °C, 15 min, 0.6 M 

HCl solution at 24 hr of the treatment. On the other hand, the IL-2 productions were 

significantly increased by the presence of the products from the reaction conditions of 

grey oyster mushroom at 120 °C, 15 min, 0.6 M HCl solution at 4 hr and 12 hr of the 

treatment. The adjuvant activity of the grey oyster mushroom components shows an 

inflammatory property by significantly increase the production of IL-2 better than jew’s 

ear mushroom. 
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APPENDIX A 

STANDARD CURVE 

 

Total carbohydrate standard curve 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1 Standard curve for TC determination of mushrooms 

 

Reducing sugar standard curve 

 

 

 

 

 

 

 

 

 

 

Figure 2 Standard curve for RS determination of mushrooms 
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Saccharides standard curves on High Performance Liquid Chromatography 

 

 

 

 

 

 

 

 

 

 

Figure 3 Glucose standard curve 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4 Galactose standard curve 
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Figure 5 Arabinose standard curve 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6 Mannose standard curve 
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Figure 7 Fructose standard curve 

 

High Performance Liquid Chromatography chromatogram of standard 

saccharides 

 

 

 

 

 

 

 

 

Figure 8 HPLC chromatogram of standard monosaccharide (glucose) 

 

 

 

 

 

 

 

 

 

 

 Figure 9 HPLC chromatogram of standard monosaccharide (galactose) 
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Figure 10 HPLC chromatogram of standard monosaccharide (arabinose) 

 

 

Figure 11 HPLC chromatogram of standard monosaccharide (mannose) 

 

 

 

Figure 12 HPLC chromatogram of standard monosaccharide (fructose) 
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Table 1 The range of retention time of interest for oligosaccharides with 2 to 

more than 1000 units. 

 

No. of sugar unit Molecular Weight Retention time (min) 

2-10 342-1,638 29.4072 - 26.0806 

11-20 1,800-3,258 25.8803 - 24.6203 

21-50 3,420-8,118 24.5172 - 22.6814 

51-100 8,280-16,218 22.6395 - 21.2117 

101-1,000 16,380-162,018 21.1906 - 16.3239 

>1,001 >162,180 <16.3218 
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APPENDIX B 

COMMERCIALLY AVAILABLE BETA-GLUCAN FROM 

BAKER'S YEAST (S. CEREVISIAE) 

The commercially available beta-glucan from baker's yeast (S. cerevisiae) was 

used as a control sample. The beta-glucan from baker's yeast (S. cerevisiae) purchased 

from Transfer Point, Inc is the best immunity product selling in USA with the highest 

purity of beta-glucan. The structure of the commercially available sample consists of 

1,3-linked glucose (86.6%), 1,6-linked glucose (2.1%), 2,3-linked glucose (5.8%), 3,6-

linked glucose (1.9%), and terminal glucose (3.6%). The structure of beta-glucan from 

mushroom and yeast linkage has the same β-1,6-D glucopyranose branching on the poly 

β-1,3-glucopyranose backbone.  

The reaction conditions used for size analysis of beta-glucan from baker's yeast 

(S. cerevisiae) was the same conditions as those used for grey oyster mushroom and 

jew’s ear mushroom. The reaction temperature range of 70oC to 150oC and HCl 

concentration range of 0.2 to 0.8M was used to hydrolyze the product. By using three 

columns of PL aquagel-OH equipped with PL aquagel-OH guard, monosaccharides 

with 1 unit were obtained at the retention time of 30 minutes while the retention time 

for polysaccharides and oligosaccharides were at less than 29 minutes. Polysaccharides 

in baker's yeast (S. cerevisiae) were converted to monosaccharides at high temperatures 

of 110- 150oC. Before hydrolysis of beta-glucan from baker's yeast (S. cerevisiae) has 

a peak at the retention time around 16-17 minutes which shows most of the sugars 

present were 600 to 900 units (Figure 1). 

 

Figure 1 SEC analyzed chromatogram of beta-glucan from baker's yeast 

(S. cerevisiae) before hydrolyzed 
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Polysaccharides in baker's yeast (S. cerevisiae) were hydrolyzed by using 

microwave radiation and HCl as catalyst to produce polysaccharides (short chain) and 

oligosaccharides which have the retention time of less than 20 minutes. The 

predominant monosaccharide present in baker’s yeast (S. cerevisiae) is glucose. 

Glucose was obtained at reaction temperatures of 110 °C to 150 °C for screening 

purposes. The HPLC chromatogram for beta-glucan from baker's yeast (S. cerevisiae) 

before the hydrolysis reaction is shown in Figure 35. The peaks shown are at retention 

time around 9-10 minutes which indicates polysaccharides (69.63%), 19 minutes which 

indicates oligosaccharides (7.03%), 26 minutes which indicates arabinose (2.71%), and 

30 minutes which indicates mannose (20.64%) as shown in Figure 2.  

Figure 2 Saccharides HPLC chromatogram of beta-glucan from baker's yeast 

(S. cerevisiae) before hydrolysis with carbohydrate column 
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APPENDIX C 

BIOLOGICAL ANALYSIS 
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Figure 1 The supernatant was analyzed by ELISA to measure the level of IL-

1beta. Data are presented as mean±SEM (***p < 0.0001; ** p < 0.01; * p < 0.05; all 

relative to the KLH control). 
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 Figure 2 The supernatant was analyzed by ELISA to measure the level of IL-

12. Data are presented as mean±SEM (***p < 0.0001; ** p < 0.01; * p < 0.05; all 

relative to the KLH control). 
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Figure 3 The supernatant was analyzed by ELISA to measure the level of TNF-α. 

Data are presented as mean±SEM (***p < 0.0001; ** p < 0.01; * p < 0.05; all relative 

to the KLH control). 
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Figure 4 The supernatant was analyzed by ELISA to measure the level of IL- 2 . 

Data are presented as mean±SEM (***p < 0.0001; ** p < 0.01; * p < 0.05; all relative 

to the KLH control). 
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Figure 5 The supernatant was analyzed by ELISA to measure the level of IL- 6 . 

Data are presented as mean±SEM (***p < 0.0001; ** p < 0.01; * p < 0.05; all relative 

to the KLH control). 
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