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ABSTRACT 

 

This study focuses on developing a mathematical model for an Aggregate 

Production Planning (APP) problem in a Supply Chain (SC) including multiple 

suppliers, a production plant, and multiple customers under uncertain environments. 

The uncertain conditions including uncertainties of customer demand, operation costs 

(purchasing cost, production cost, transportation cost, and so on), production plant’s 

allowable defective rate of raw material, and supplier’s service level. The proposed 

model considers simultaneously four conflicting different objective functions, which 

are (1) minimizing the total cost of Supply Chain (SC), (2) the minimizing of total 

product shortages to enhance the customer’s satisfaction, (3) minimizing the variation 

in changing workforce level and (4) maximizing total of purchasing cost. To solve the 

proposed Fuzzy Multiple objective Mixed Integer Linear Programming (FMOMILP) 

model, a hybrid approach has been developed by combining the Fuzzy Chance-

constrained Programming (FCCP) and the Fuzzy Multiple Objective Programming 
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(FMOP). Firstly, the proposed fuzzy multiple objectives model is transformed into the 

equivalent crisp multiple objectives model by using chance-constrained programming 

based on the credibility measure of a fuzzy event. Secondly, the Fuzzy Multiple 

Objective Linear Programming (FMOLP) integrating the concept of the weight-

consistent solution is applied to find the optimal efficient solutions. Then, a sensitivity 

analysis is carried out to explore the impact of the uncertainty and generate a set of 

optimal solutions (both the balance and unbalance compromise solution among four 

conflicting objective functions and decision variables). The obtained outcomes can 

assist to satisfy the decision-maker's aspiration, as well as provide more alternative 

strategy selections based on their preferences. Finally, a case experiment is given to 

demonstrate the validity and effectiveness of the proposed formulation model. 

 

Keywords: Aggregate production planning, Supply chain, Credibility, Chance-

constrained modelling, Fuzzy Multiple Objective Optimization, Weight-

consistent solution. 
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 CHAPTER 1  

INTRODUCTION 

 

Nowadays, the globalization of markets and international trade is rapid 

development. Besides, the customer’s expectation is increasingly higher and higher in 

many different aspects. Therefore, satisfying customer’s requirement in a competitive 

and uncertain market like that pose a significant challenge for companies and 

enterprises. To exist in this harsh environment, it requires the companies and enterprises 

to plan and control efficiently the production and operational activities through Supply 

Chain Management (SCM). A Supply Chain (SC) is defined as a set of activities that 

are coordinated among suppliers, manufacturers, distribution centers, and customers so 

that the final products are manufactured and distributed to customers with the right 

quantities at the right time. Based on this definition, Supply Chain Management (SCM) 

has become the core value of operations management in production planning for the 

entire supply chain. Its impacts have an important role in the performance of an 

organization for competitiveness based on sales price, commodity quality, customer 

reliability, quick responsiveness, and flexibility in the market.  

Without Aggregate Production Planning (APP), procurement, production, 

transportation, and distribution activities will be implemented independently and 

separately, causing conflicts in operations and with the given goals. Hence, APP is one 

of the most crucial issues that should be addressed in supply chain management. APP 

is acknowledged as an essential stage in production systems because of its links with 

business strategies. It makes a significant contribution to the planning for enterprise 

resources and organizational integration. APP is a process by which a company 

identifies the planned levels of production, capacity, inventory, subcontracting, 

stockouts, and even pricing in an intermediate time frame (3 to 12 or even 18 months). 

Most organizations attempt to create an effective aggregate production plan that meets 

customer requirements and has a minimum total cost (Chiadamrong & Sutthibutr, 

2020). 

In the presence of such a competitive environment, Decision-Makers (DMs) 

have to cope with two important problems that can affect the performance of the entire 
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supply chain. The first problem is the conflicting objectives from the properties of 

operations and the configuration of an SC when adjusting the targets of the different 

partners in the SC. Each partner in the SC, it has its own goals or interests (e.g. 

minimizing the total cost of the supply chain, maximizing the satisfaction of customers, 

or maximizing the value of purchasing). The second problem is the uncertainty of data. 

The uncertainty of data could arise from two sources: (1) Environmental uncertainty 

due to the performance of suppliers and the behavior of customers in terms of supply 

and demand, and (2) System uncertainty due to the unreliability of operations and 

processes inside an organization (Cha-ume & Chiadamrong, 2012). Therefore, it is 

necessary to address these two problems when designing and operating a supply chain. 

From the abovementioned problems, the purposes of this thesis involving two 

intentions, Firstly, propose a multiple objectives model for APP in a SC including 

multiple suppliers, a production plant and multi-customers which integrate the plan of 

procurement, production, and distribution considering imprecise parameters such as 

operation costs, customer demands, acceptable failure ratio, and average service level. 

Secondly, introduce a hybrid approach that helps decision-makers to deal with the 

fuzziness of data and multiple objective decision-making.  

  

1.1 Problem statement 

Nowadays, two of the most difficult problems in planning that the decision-

makers always meet are to handle with the ambiguity of data and satisfy many goals at 

the same time. In this thesis, to cope with two main abovementioned issues, a hybrid 

approach which is a coordination of the defuzzification method (Credibility-based 

Fuzzy Chance-constrained Programming – CFCCP) and Fuzzy Multiple Objective 

Programming (FMOP) is proposed. CFCCP can support the Decision-Makers (DMs) 

to handle the vagueness of data while FMOP is utilized to satisfy simultaneously many 

goals. Fuzzy Chance-constrained Programming (FCCP) using the credibility measure 

currently is known as a defuzzification method that can be used to substitute for the 

traditional fuzzy programming. It is based on the measurement of possibility or the 

necessity for a fuzzy event. The capability of CFCCP not only deals with non-

deterministic parameters that are denoted as fuzzy sets, but also provides a credibility 

level that indicates the confidence level of the created (efficient) management 
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strategies. With FMOP, many approaches have been researched and applied, but one of 

the common approaches is fuzzy programming with several objective functions that 

was proposed by Zimmermann (1978). This model is known as the symmetric model 

because there is no priority for any fuzzy objective functions (All of the fuzzy objective 

functions are considered to have the same importance). Therefore, the symmetric model 

cannot be suitable for making decisions for multiple objectives in a practical 

environment. Being aware of a deficiency in the above problem, Tiwari, Dharmahr, and 

Rao (1978) proposed an improved approach, called the weighted additive method. By 

assigning a specific weight to represent the importance of each fuzzy objective function, 

this method can provide an efficient compromise solution that can satisfy the aspiration 

level of each objective function according to the preferences of the DMs. Subsequently, 

some extended approaches (e.g. the LH method, LZL method, SO method, and TH 

method) were introduced by Lai and Huang (1994), Li, Zhang, and Li (2006), Selim 

and Ozkarahan (2006), and Torabi and Hassini (2008), respectively. However, these 

approaches still did not consider the weight-consistent solution (the homogeneity of 

ranking objective function weights and their satisfaction levels). As a result, these 

approaches do not satisfy the aspiration level of the DMs in some cases. Taking into 

consideration of this matter, a weight-consistent constraint is further proposed to add to 

FMOP. This ensures that the obtained solutions can be more consistent with DM 

expectations. 

 

1.2 Objective of the research   

The research objectives of this thesis including:  

1. To develop a multi-objective Mixed-Integer Linear Programming (MILP) 

model for the Aggregate Production Planning (APP) problem in a Supply 

Chain (SC). 

2. To embed the fuzziness of data into the model. 

3. To propose a hybrid resolution for solving the multiple objective Aggregate 

Production Planning (APP) problem in a Supply Chain (SC) under uncertain 

environment. 
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1.3 Organization of the thesis 

This thesis is divided into 7 Chapters that are arranged as follows: Chapter 1 

includes introduction, problem statement, objectives and overview of the thesis. 

Chapter 2 provides a literature review that contains a synopsis about characteristics, 

contributions of the previous related studies, which help to identify the research gap 

that this study attempts to fill. Next, Chapter 3 gives the description, assumption, 

notation, and mathematical formulation of the APP problem in an SC. Chapter 4 

presents the proposed methodology for solving the multiple-objective APP model in an 

SC under uncertainty. Then, Chapter 5 gives an illustration of a case experiment. 

Subsequently, Chapter 6 shows the obtained results of the proposed mathematical 

model and discussions. Finally, Chapter 7 draws the conclusions, gives the limitation, 

and recommends directions for further work. 

Ref. code: 25636122040626BKR



15 
 
 

    

CHAPTER 2 

LITERATURE REVIEWS 

 

The literature review can be divided into two parts. The first part focus on the 

relevant studies which define the structure of APP model. Several important issues (e.g 

multiple product items, product characteristics, labor characteristics, and supply chain 

concept) are embedded in the proposed APP model. The second part reviews previous 

approaches that are related to the application of modeling optimization under 

uncertainty. 

 

2.1 Aggregate Production Planning (APP) 

Aggregate production planning is the intermediate-time capacity plan that 

identifies the cost minimization of production plan and human resources to fulfill 

market needs in the most effective way. Its purpose is to identify a suitable quantity of 

production and inventory level in a term of aggregation. The time period ranging of 

aggregate production planning is from 2 to 12, or even 18 months (Techawiboonwong 

& Yenradee, 2003). APP brings a connection between strategic and operations 

management. In addition, APP operating strategies play a significant role in 

organizational integration and enterprise resource planning. The target of making APP 

in manufacturing enterprise is to acquire minimum cost and the maximum profit by 

determining the quantity of produced product, the quantity of subcontracting product, 

the levels of labor, and so forth., to fulfill the market demand (Iris & Cevikcan, 2014).  

Based on the uncertainty level in the APP model, the APP model can be 

categorized into two different groups. The input data is used in the APP models that 

could change from deterministic value to fuzzy value, or stochastic value. There is 

another significant criterion that can also impact the structure of the APP model is the 

consideration of the number of objective functions in the model. By combining these 

two above mentioned criteria, the APP model can be separated into six major structural 

groups. These six main structural groups are shown more detail in Figure 1.1. 
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2.1.1 Single objective function 

With a single-objective function model, the most optimal solution is related to 

the value of minimizing or maximizing of a single objective function. The integration 

of all different objectives is then found. It is valuable as a model that gives DMs an 

insight into the properties of the problem. However, it is often impossible to give 

alternative solutions (compromise solutions), which is a trade-off among the different 

conflicting objectives. Sillekens, Koberstein, and Suhl (2011) introduced a new 

modeling approach in Mixed-Integer Linear Programming (MILP) for APP problems 

in the automobile industry. Their single- objective function is the total cost 

minimization including production cost, holding cost, fixed cost, and cost of changing 

the production capacity. Zhang, Zhang, Xiao, and Kaku (2012) presented a MILP 

model for APP problems in a production system with capacity extension and many 

activity centers. In the model formulation, the objective function minimizes the total 

costs of the APP plan that consists of production cost, holding cost, and investment cost 

in the whole planning horizon. Wang and Yeh (2014) studied Particle Swarm 

Optimization (PSO) for the APP problem. They presented an APP model for a 

manufacturing company specializing in garden equipment. Their APP model is 

Figure 2.1 Schemes for APP models. 
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formulated as a Mixed Integer Linear Programming (MILP) model in which the main 

objective function minimizes the total relevant cost. The total cost consists of 

production cost (regular time and overtime production cost, inventory cost, backorder 

cost, and subcontracting cost), and labor cost (hiring cost and firing cost). Erfanian and 

Pirayesh (2016) studied the integration of APP with the maintenance activity using the 

MILP model. They proposed a model, which is limited by workforce resources and 

equipment. The formulated objective function of the model minimizes the total cost, 

including production and maintenance costs. 

 

2.1.2 Multiple objective function 

For a multiple-objective function model, the objective functions in the model 

can conflict with each other.  Thus, its solution is an interaction among different 

objective functions. The multiple-objective model can provide a set of different 

efficient solutions (compromise solutions) that are widely known as non-dominated or 

Pareto-optimal solutions. The consideration of many objective functions 

(simultaneously) in the model can help to determine a larger scope of these different 

options, to makes the model of a problem more realistic.  Silva and Marins. (2014) 

presented a multiple-objective model for APP in sugar and ethanol milling companies. 

In their study, a Fuzzy Goal Programming (FGP) model is used to cope with the 

multiple objective APP problem in vague conditions. The outcome of the proposed 

model brings an efficient analysis of the problem, providing more dependable and more 

accurate outcomes from the perspectives of technology and the economy. Entezaminia, 

Heydari, and Rahmani (2016) developed a multiple-objective APP model in a Green 

Supply Chain (GSC) considering a reverse logistic network. The main goal of their 

study is to generate compromise solutions among costs and green criteria. The objective 

functions simultaneously minimize the total Supply Chain (SC) cost and maximize the 

total environmental commodity scores. The obtained outcome of their model is a set of 

Pareto-optimal solutions that show the trade-off among the conflicting objective 

functions. Mehdizadeh, Niaki, and Hemati (2018) presented a bi-objective optimization 

model for APP considering labor skills and machine degradation. The first objective 

function of the model maximizes the total profit, and the second objective function 

improves customer satisfaction. 
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2.1.3 Deterministic model 

In APP, the input data in the APP model can be deterministic, fuzzy, or stochastic 

values. Thus, the approaches or methodologies that are applied can be categorized 

according to the different types of input data that are used in the model. In the 

deterministic model for APP problems, parameters such as production cost, inventory 

cost, labor cost, subcontracting cost, backorder cost, machine capacity, market demand, 

sale price, etc. are assumed to be exactly known before planning and to be deterministic. 

The first model of APP problem was proposed by Holt, Modigliani, and Simon (1955) 

along with its linear decision rules. Since then, a lot of researchers have evolved many 

models to tackle APP problems. Based on the complications of an APP problem, it is 

often modeled by the MILP model. MILP is well-known for solving APP problems with 

inputs of data that are deterministic or crisp values (Paiva & Morabito 2009; Chaturvedi 

& Bandyopadhyay, 2015; Chakrabortty & Hasin, 2013). 

 

2.1.4 Uncertain model 

In contrast, fuzzy data are imprecise data. Their boundaries are not defined 

explicitly. This is often encountered in the field of human judgment, where assessment 

and decisions are crucial, such as reasoning, learning, decision-making, etc. (Bellman 

& Zadeh, 1970). The fuzzy data can be described and analyzed based on the fuzzy set 

theory. The fuzzy set theory can be applied with an APP models in unclear situations. 

Some uncertain data in the APP model such as production time, production capacity, 

customer demand, etc. are not suitable for the probability distribution. Therefore, an 

APP model needs to be formulated based on the principle of fuzzy set theory and fuzzy 

optimization approaches so that the APP models can handle and be optimized with 

uncertainty (Zadeh, 1965; Zimmerman, 1976). 

Stochastic data is a type of uncertain data that can be described by the theory of 

randomness and probability. Stochastic model and its method are restricted to tackling 

uncertainties with probability distributions (Tang, Fung, & Yung, 2003). Besides, its 

method requires a great amount of collected historical data which is hard to obtain in 

case of APP problem. In addition, Lai and Hwang (1992) argued that the application of 

stochastic models can be lack of computational efficiency and the theory of probability 

could not be able to provide the right meaning to solve some decision-making problems 
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in practice. Therefore, stochastic model and its method will be not mentioned in the 

next section of the literature review. 

 

2.1.5 Important issues in the APP models 

The complexity of APP problems is largely caused by the requirement of 

coordinating interactive variables so that the company can meet the market demand 

most efficiently (Kumar & Suresh, 2009). Some primary problems that are mostly used 

in any APP model such as production capacity, inventory, backorder, warehouse space, 

market demand, costs of production, subcontracting, labor level, hiring and firing cost, 

and product price. In addition, there have been some supplementary problems (or new 

assumptions) considered as “crucial problems” that are also integrated into the APP 

model (e.g. multiple product items, product characteristics, labor characteristics, degree 

of DM satisfaction for a solution, set up decisions, multiple production plants, time 

value of money, machine utilization, financial concepts, supply chain concepts, and 

multiple product markets). These supplementary problems were discussed and 

explained in detail by Cheraghalikhani, Khoshalhan, and Mokhtari (2019). Based on 

these crucial problems, APP problems can be developed and modeled more effectively, 

which helps to enhance their capacities as well as their compatibility in a real-life 

environment. 

 

2.2 Mathematical approaches 

In practice, the input data of APP problems are regularly imprecise due to some 

information that is incomplete or cannot be accurately obtained. In these circumstances, 

fuzzy logic can provide a form of reasoning that allows approximate human inference 

skills to be used as knowledge-based systems. Zadeh (1965) first introduced the theory 

of fuzzy logic, and a mathematical framework was provided to incorporate the 

uncertainty related to human operations, such as reasoning and thinking. The theory of 

fuzzy sets has been extensively adopted in many fields (e.g. management science, 

operations research, artificial intelligence, and control theory). By applying the theory 

of fuzzy sets, Fuzzy Mathematical Programming (FMP) has become a well-known 

method for decision-making. Zimmermann (1976) first proposed the fuzzy set theory 

in a typical Linear Programming (LP) model that has fuzzy objectives and fuzzy 
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constraints. An equivalent single-goal linear programming model is obtained by 

combining a linear membership function and the fuzzy decision-making method of 

Bellman and Zadeh (1970) that is introduced in this study. Subsequently, some fuzzy 

optimization methods for handling APP problems in ambiguous conditions have been 

developed based on FMP. Moreover, Zadeh (1978) introduced the possibility theory, 

which is related to the fuzzy set theory. The possibility distribution concept is defined 

as a vague limitation, which can work as a flexible constraint on the values that may be 

allocated to a variable. The research also shows the significance of the possibility theory 

because most of the information about human decisions is understood to be possibilistic 

instead of being probabilistic (as in nature). The uncertainties of these types of data 

cannot be completely depicted by frequency-based probability distributions. Therefore, 

it is necessary to use the fuzzy set theory and fuzzy optimization approaches in 

formulating and optimizing the APP model. 

 

2.2.1 Fuzzy programming  

Fuzzy Linear Programming (FLP) is an approach that can be used to associate 

fuzzy input data that should be modeled by subjective preference-based membership 

functions. Tang, Wang, and Fung (2000) developed a fuzzy optimization method to 

deal with multiple product APP problems. This was the first time an APP problem with 

fuzzy demands and fuzzy capacities was formulated by utilizing the concept of fuzzy 

equation in terms of a degree of accuracy. They also explained the satisfaction levels in 

making production and inventory plans to meet the market demand. The fuzzy solution 

of this approach can offer Decision-Makers (DMs) more options in constructing an 

aggregate production plan, in order to guarantee the feasibility of the family 

disaggregation plan, especially in an uncertain environment. Wang and Fang (2001) 

studied an APP problem with some fuzzy parameters that consist of the product price, 

subcontracted cost, production quantity, workforce level, market demand, and the fuzzy 

satisfaction levels of objective functions. Their proposed approach provided a 

systematic framework to interactively support DMs until satisfactory results were 

achieved. An aggregation operator was deployed at the final step to acquire the 

compromise solution of the proposed system. Iris and Cevikcan (2014) provided a 

mathematical programming framework for aggregate production planning problem 
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under imprecise data environment. After providing background information about 

fuzzy linear programming and APP problem, the fuzzy linear programming model of 

APP was solved on an illustrative example for different α-cut values. Chen and Huang 

(2014) proposed a novel methodology for solving the APP problem in uncertain 

conditions. After constructing the membership function by applying Zadeh’s extension 

principle and fuzzy solutions, an equivalent mathematical parametric programming is 

formed to identify the lower and upper bound of the total cost with the different levels 

of α. The objective value is represented based on a membership function. Thus, the 

achieved solutions can have more information with more accuracy, which provides 

more opportunities to gain the optimal solution on the disaggregate plan. That is also 

beneficial to DMs in practical applications. 

 

2.2.2 Credibility-based Fuzzy Chance-constrained Programming (CFCP) 

Credibility-based Fuzzy Chance-constrained Programming (CFCP) is known as 

a fuzzy optimization approach based on the concept of credibility measure of fuzzy 

numbers in the theory of fuzzy sets (as the average of possibility and necessity 

measure). This method is used in order to ensure that the satisfaction of both fuzzy 

objectives and fuzzy constraints can be solved at a minimum allowed of a confident 

level (Liu & Liu, 2002). Currently, the CFCP has been applied to solve some uncertain 

problems in a practical environment. Zhu and Zhang (2009) investigated a model for 

an APP problem under uncertainty. By applying credibility-based fuzzy chance-

constrained programming, the fuzzy APP model is converted into an equivalent crisp 

model and then solved with different confidence levels. Zhang, Zhu, and Hua (2010) 

studied an APP model with uncertain information in the realistic condition of a 

manufacturing company. To solve the proposed fuzzy APP model, a fuzzy chance-

constrained programming was formulated based on the theory of credibility. 

Throughout the results of this model, it was found that the theory of credibility is 

capable of decreasing the influence of uncertainty. Pishvaee, Torabi, and Razmi (2012) 

studied a mathematical model to design the configuration of green logistics in an 

ambiguous environment. They proposed a credibility-based fuzzy mathematical 

optimization model that integrates the expected value of fuzzy numbers and chance-

constrained programming in which the expected value of fuzzy numbers are applied to 
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handle fuzzy parameters in the objective function while the chance-constrained 

programming is used to manipulate the confident levels for the satisfaction of fuzzy 

constraints. Zhang, Huang, Lu, and He (2015) presented a comprehensive credibility-

based chance-constrained programming approach by applying the concept of credibility 

theory into the fuzzy mathematical optimization model. The proposed approach not 

only assists to cope with the imprecise parameters in both the right-hand side as well as 

the left-hand-side of fuzzy constraints but also yields a level of credibility that 

represents how much confidence the DMs are able to trust on the obtained solution. 

 

2.2.3 Goal Programming (GP) 

To simultaneously satisfy many conflicting objectives in an APP problem, Goal 

Programming (GP) is an optimization method that is used to solve an APP problem 

with multiple objectives by order of priority. The lower- priority goal is solved later 

without decreasing the relative importance of a higher-priority goal. Leung, Wu, and 

Lai (2003) proposed a GP approach for a multiple site APP model with multiple 

objectives that maximizes the total profit, minimizes the variation of the workforce 

level, and maximizes the utilization of import quotas. By changing the hierarchy of the 

priority that corresponds to each objective, DMs can realize the flexibility and 

robustness of the proposed model.  Leung and Ng (2007) formulated a pre-emptive GP 

model to optimize the APP problem for perishable products in ambiguous conditions. 

The model of their study considered three objective functions which minimize the 

operational cost, minimize the inventory cost, and minimize the labor cost. Leung and 

Chan (2009) presented a multi-objective model for the APP problem with constraints 

on resource utilization. Maximizing the profit, minimizing the repairing cost, and 

maximizing the utilization of machine are the three main objective functions, with goal 

values that are optimized hierarchically. To cope with multiple goals in the APP 

problem, a goal programming model was applied. The flexibility and robustness of the 

model were illustrated by different scenarios. 

 

2.2.4 Fuzzy Goal Programming (FGP) 

FGP is an extension of traditional GP, in which the satisfaction level of each 

objective is taken as unity. FGP is concerned with the achievement of the highest degree 
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of fuzzy goals based on the linear membership function. Jamalnia and Soukhakian 

(2009) presented a Hybrid Fuzzy Multi-Objective Nonlinear Programming (H-

FMONLP) model with different goal priorities for a multiple-product multiple-period 

APP problem under an uncertain environment. Liang and Cheng (2011) designed a 

fuzzy multiple-objective LP model for the APP problem that simultaneously minimizes 

the total costs, total carrying and back-ordering levels, and total changing rates of labor 

levels. These parameters are related to the machine capacity, inventory holding levels, 

labor levels, warehouse storage space, and budget availability. A two-phase FGP 

approach for handling multiple-objective APP decision problems with multiple 

products and multiple periods was developed. Madadi and Wong (2014) studied a 

multiple-objective APP model in a fuzzy environment. Based on the fuzzy membership 

function, FGP was used for solving the APP decision problem by minimizing the total 

costs while maximizing the quality of products and customer service levels. Mosadegh, 

Khakbazan, Salmasnia, and Mokhtari (2017) presented a multiple objective APP 

problem. In their study, the FGP model is applied for solving the APP problem with 

four objectives (goals): (1) lost sales and inventory, (2) idle time and overtime, (3) labor 

level, and (4) exchange savings. Chauhan, Aggarwal, and Kumar (2017) studied fuzzy 

multiple-objective MILP for the APP decision problem in an uncertain environment. In 

their study, FGP was introduced to optimize APP problems for multiple products and 

multiple periods. 

 

2.2.5 Weight-consistent solution 

Taking into the consideration of the achieved solutions of the Fuzzy Goal 

Programming (FGP) approach, the weight-consistent solution implies that the 

satisfaction level of each fuzzy goal must be compatible with the expected relative 

important weight of its goal. In other words, the ranking of achieved satisfaction levels 

for fuzzy goals must be the same as the ranking of the goal’s weight. For instance, it is 

assumed that the goal’s weights (𝜃ℎ)  are ranked as follows: 𝜃1 ≥ 𝜃2 ≥ 𝜃3 ≥ 𝜃4. Where 

h represents the index of a goal. As a result, the weight-consistent solution will have 

the ranking of achieved satisfaction level of goals 𝜇ℎ as follows: 𝜇1 ≥ 𝜇2 ≥ 𝜇3 ≥ 𝜇4 

(Amid, Ghodsypour, & O’Brien, 2011). Generally, if a goal is assigned with a high 

Ref. code: 25636122040626BKR



24 
 
 

    

important weight, that means the expectation of the DMs will be able to obtain a high 

satisfaction level for that goal, and otherwise. 

 

2.3 Summary of literature review  

Table 2.1 A summary of the literature on APP problem. 
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Techawiboonwong and 

Yenradee (2003) 
S D  – ✓ – – – ✓ – – MILP LDR 

Iris and Cevikcan (2014) S F – ✓ – – – ✓ – – FMILP ParP 

Sillekens, Koberstein, and Suhl 
(2011) 

S D – ✓ – ✓ – ✓ – – MILP H 

Zhang, Zhang, Xiao, and Kaku 

(2012) 
S D – ✓ – ✓ – ✓ – – MILP H 

Wang and Yeh (2014) S D – – – ✓ – ✓ – – MILP PSO 

Erfanian and Pirayesh (2016) S D – ✓ – – – ✓ – – MILP SS 

Da Silva and Marins (2014) M D – ✓ ✓ – S-P ✓ – – MOMILP SS 

Entezaminia, Heydari, and 

Rahmani (2016) 
M D – ✓ – – 

S-P-C-

Co-R 
✓ – – MOMILP SS 

Mehdizadeh, Niaki, and 

Hemati (2018) 
M D – ✓ – – – ✓ – – MOMILP GA 

Paiva and Morabito (2009) S D – ✓ ✓ – S-P ✓ – – MILP SS 

Chakrabortty and Hasin (2013) M D – ✓ – – – ✓ – – MILP GA 

Chaturvedi and 

Bandyopadhyay (2015) 
S D – – – – – – – – MILP H 

Tang et al. (2000) S F – ✓ – – – ✓ ✓ – FMILP FLP 

Wang and Fang (2001) M F – ✓ – – – ✓ ✓ – FMOMILP FLP 

Chen and Huang (2014) S F – ✓ – – – ✓ – – FMILP ParP 

Zhu and Zhang (2009) S F ✓ ✓ – – – ✓ – – FMILP FCCP 

Zhang, Zhu, and Hua (2010) S F ✓ ✓ – – – ✓ – – FMILP FCCP 

Leung, Wu, and Lai (2003) M D – ✓ – – – ✓ ✓ – MOMILP GP 

Leung and Ng (2007) M D – ✓ ✓ – – ✓ – – MOMILP GP 

Leung and Chan (2009) M D – ✓ – – – ✓ – – MOMILP GP 

Jamalnia and Soukhakian 

(2009) 
M F – ✓ – – – ✓ ✓ – FMONILP FLP+GA 

Liang and Cheng (2011) M F – ✓ – – – ✓ ✓ – FMOMILP FGP 

Madadi and Wong (2014) M F – ✓ ✓ – – ✓ ✓ – FMOMILP FLP 

Mosadegh, Khakbazan, 

Salmasnia, and Mokhtari 

(2017) 

M F – ✓ – – – ✓ ✓ – FMOMILP FGP 

Chauhan, Aggarwal, and 
Kumar (2017) 

M F – ✓ ✓ – S-P-C ✓ ✓ – FMOMILP FLP 

This study M F ✓ ✓ ✓ ✓ S-P-C ✓ ✓ ✓ FMOMILP FCCP+FGP 

Notes: S: Single, M; Multiple, D: Deterministic, F: Fuzzy, MP: Multiple products, LC: 

Labor characteristic, PC: Product characteristic, SCc: Supply chain concept. S: Supplier, 

P: Production Plant, C: Customer, Co: Collection center, R: Recycling center, MILP: 
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Mix-integer linear programming, FMILP: Fuzzy mix-integer linear programming, 

MOMILP: Multiple objective mix-integer linear programming, FMOMILP: Fuzzy 

multiple objective mix-integer linear programming, FMONILP: Fuzzy multiple objective 

mix-integer non-linear programming, LDR: Linear decision rules, ParP: Parametric 

Programming, PSO: Particle Swarm Optimization, SS: Solver software (i.e. Lingo, Gam, 

Cplex), H: Heuristic, GA: Genetic algorithm, FLP: Fuzzy linear programming , GP: goal 

programming, FGP: Fuzzy goal programming, FCCP: Fuzzy chance constraint 

programming. 

 

Based on a literature review, some research gaps related to APP models were 

identified, such as the integration of new concepts (important issues) into APP models, 

the consideration of uncertain data, and optimization approaches under uncertainty. 

Therefore, to fill the research gaps, this study focuses on developing a mathematical 

model for an Aggregate Production Planning (APP) problem in an uncertain 

environment. To make the APP problem more effective, informative, and more 

compatible with a real-life environment, the APP problem is considered with multiple 

objectives and integrated into a Supply Chain (SC) including a production plant, multiple 

suppliers, and multiple customers. In addition, several important problems such as 

multiple products, product characteristics, and labor characteristics are embedded in the 

model. Then, a hybrid approach that integrates Fuzzy Chance-constrained Programming 

(FCCP) and Fuzzy Multiple Objective Programming (FMOP) is proposed for solving the 

proposed model. FCCP is utilized to deal with fuzzy parameters in the proposed model 

while FMOP is applied to deal with multiple objective functions. For FMOLP, by 

applying an aggregation function and integrating the concept of weight-consistent 

solution. The proposed approach can achieve the optimal solutions under the balanced 

and unbalanced compromise solutions among conflicting objective functions. It can also 

achieve weight-consistent solutions that can satisfy the decision-maker's aspirations and 

provide more alternative strategy selections based on their preferences. A summary of 

the literature on APP problems is presented in Table 2.1. 
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CHAPTER 3 

DEVELOPMENT OF AGGREGATE PRODUCTION PLANNING 

(APP) MODEL IN A SUPPLY CHAIN UNDER UNCERTAINTIES 

 

This chapter focus on developing a Fuzzy Multi-Objective Mixed-Integer 

Linear Programming (FOMILP) to express a comprehensive multi-site, multi-product 

and multi-period Aggregate Production Planning (APP) problem in Supply Chain (SC) 

under uncertain environment.   

There are three main stages in the model development. The first stage 

concentrates on the characterization of the problem. This is an important step to 

understand a detail description of the problem. The second stage is to present a list of 

notations of parameters and decision variables used in the model. In addition, some 

assumptions are also outlined and justified at this stage. These assumptions express the 

restrictions of the developed model to make sure that the model is controllable to be 

solved. Finally, the third stage shows the formulating mathematical model procedure 

representing the relations between parameters and decision variables. At this stage, the 

objective functions and constraints are constructed. 

 

3.1 Model Formulation 

3.1.1 Problem Description 

In this study, the proposed fuzzy multiple-objective, multi-product, multi-period 

APP problem in a supply chain (SC) can be described as follows: 

An Aggregate Production Planning (APP) problem is built for the type of raw 

material R that is provided from supplier S to assemble and produce the type of product 

N in the production plant, and finally transfer to customer J so that the customer demand 

can be fulfilled in planning time period T. Each product is manufactured by determining 

the rate of raw materials. The structure of the supply chain network is depicted in Figure 

3.1. In fact, this problem aggregates three sub-problems of planning including the (1) 

procurement plan for purchasing raw materials from suppliers, (2) production plan for 

producing finished products, and (3) distribution plan for delivering each finished 

product to each customer in each period. This study concentrates on developing a Fuzzy 
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Multiple-Objective Mixed Integer Linear Programming (FMOMILP) model to 

optimize the APP plan in a supply chain (SC) under an uncertain environment. 

Therefore, customer demand, operating costs (e.g. regular time production cost, 

overtime production cost, subcontracting cost, purchasing cost, salary, hiring cost, 

firing cost, transportation cost, and penalty cost) and some other influential parameters 

are considered as imprecise parameters over each planning period. The fuzzy numbers 

are considered to represent uncertain parameters. Four conflicting objective functions 

are formulated simultaneously in the mathematical model. The first objective is to 

minimize the total Supply Chain (SC) cost. The second objective is to minimize the 

total maximum product shortages. The third objective is to minimize the rate of changes 

in human resources, and the fourth objective is to maximize the total value of 

purchasing.  

 

3.1.2 Problem Assumption 

The basic assumptions of the fuzzy multiple objectives mathematical 

programming model are as follows. 

• Only the demand for the final product is known but it is imprecise. 

• The capacities of the machines and storage are limited by the maximum level at 

the production plant. 

• A set of qualified suppliers is given. 

Suppliers (S) Production plant Customers (C) 

 1 

 2 

 s 

1 

2 

c 

Production plan 

 

Distribution plan 

 

Procurement plan 

 

Figure 3.1 Structure of supply chain network 
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• A production plant produces many types of products to meet customer demand 

during the planning horizon. 

• Before the beginning of the planning period, there is no demand for the finished 

products. 

• The initial labor level is known at the beginning of the planning period. 

• The production capacities of suppliers and plant are estimated by taking into 

consideration of various contingent situations (setups, machine break down, 

etc.) and achievable capacity supplements (overtime or/and subcontracting 

production). 

• A shortage of products is allowed in the supply chain. However, it will be 

charged as a penalty cost for compensation if a shortage occurs. 

• The acceptable defect rate and service level of suppliers at the production plant 

are imprecise. They are determined based on the manufacturer’s preferences. 

• Lead-time is considered as zero. 

• The pattern of a triangular fuzzy number is utilized to represent uncertain 

parameters. 

• The membership function of objective functions is expressed in a linear form 

for all fuzzy sets.  

 

3.1.3 Problem Notation 

The notations that are used to formulate the mathematical model of the APP 

problem in a supply chain are expressed as follows: 

To formulate the mathematical model, the tilde symbol ( ᷉ ) refers to ambiguous 

data that are used in this numerical case study. 

• Set of Indices 

R             Index of raw materials (r = 1, …, R) 

S       Index of suppliers (s = 1, …, S) 

J        Index of customers, (j = 1, …, J) 

N       Index of products (n = 1, …, N) 

K        Index of worker levels (k = 1, …, K) 

T        Index of periods in planning horizon (t = 1, …, T) 
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• Fuzzy Parameters 

Production cost 

𝑅𝑇𝑃𝐶̃𝑡      Fuzzy regular-time production unit cost at the production plant in period t 

($/min) 

𝑂𝑇𝑃𝐶̃𝑡    Fuzzy overtime production unit cost at the production plant in period t 

($/min) 

𝑆𝑇𝑃𝐶̃𝑖𝑡      Fuzzy subcontracting production unit cost at the production plant in period 

t ($/min) 

Purchasing cost 

𝑅𝑀𝑆𝐶̃𝑠𝑟𝑡    Fuzzy purchasing unit cost of supplier s for raw material r in period t ($/unit) 

Labor cost 

𝑆𝐶̃𝑘𝑡      Fuzzy salary of a worker at level k in period t ($/person) 

𝐻𝐶̃𝑘𝑡      Fuzzy hiring cost of a worker at level k in period t ($/person) 

𝐹𝐶̃𝑘𝑡      Fuzzy firing cost of a worker at level k in period t ($/person) 

Inventory cost 

𝐼𝑅𝑀𝐶̃𝑟𝑡     Fuzzy inventory unit cost of raw material r at the production plant in 

period t ($/unit) 

𝐼𝑃𝐶̃𝑛𝑡      Fuzzy inventory unit cost of product n at the production plant in period 

t ($/unit) 

Transportation cost 

𝑇𝑅𝑀𝐶̃𝑠𝑡    Fuzzy shipping unit cost of raw material from supplier s to the 

production plant in period t ($/unit) 

𝑇𝑃𝐶̃𝑗𝑡      Fuzzy transportation unit cost of finished product from the production 

plant to customer j in period t ($/unit) 

Penalty cost 

𝑃𝑆𝐶̃𝑛𝑗𝑡      Fuzzy penalty unit cost of shortage of product n for customer j in period 

t ($/unit) 

Others 

𝐴𝐹𝑅𝑆̃𝑠𝑟   Fuzzy average failure rate of raw material r supplied from supplier s to 

the production plant (%) 
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𝐴𝐹𝑅𝑃̃𝑟      Fuzzy acceptable failure rate of the production plant for raw material r 

(%) 

𝐴𝑆𝐿̃𝑠      Fuzzy average service level of supplier s (%) 

𝐴𝑆𝐿𝑃̃      Fuzzy acceptable service level of the production plant (%) 

𝐷̃𝑛𝑗𝑡      Fuzzy demand of customer j for final product n in period t (units) 

• Deterministic Parameters 

𝑀𝑎𝑥𝑃𝑆𝑛𝑡    Maximum capacity allowed for subcontracting product n in period t 

(units) 

𝑀𝑎𝑥𝑀𝐴𝑛𝑡   Maximum machine capacity available for product n at the production 

plant in period t (machine-hours) 

𝑀𝑎𝑥𝑊𝑆𝐴𝑡   Maximum warehouse space available at the production plant in period t 

(m2) 

𝑀𝑎𝑥𝑅𝑆𝑠𝑟    Maximum capacity of raw material r provided by supplier s (units) 

𝑀𝐻𝑈𝑛𝑡         Machine hourly usage for a unit of product n at the production plant in 

period t (machine-hours/unit) 

𝑊𝑆𝑃𝑛𝑡         Warehouse space for a unit of product n at the production plant in period 

t (m2/unit) 

𝑊𝑆𝑅𝑀𝑟𝑡      Warehouse space for a unit of raw material r at the production plant in 

period t (m2/unit) 

𝑁𝑜𝑅𝑀𝑟𝑛        Number of raw material r needed to produce for a unit of product n (units) 

𝑁𝑜𝐿𝑘
0             Number of initial workers at level k at the production plant (persons) 

𝑅𝑇𝑃𝐴𝑡         Available regular time at the production plant in period t (hours) 

𝑂𝑇𝑃𝐴𝑡         Available over-time at the production plant in period t (hours) 

𝑆𝑇𝑃𝐴𝑡          Available subcontracting time at the production plant in period t (hours) 

𝑃𝑇𝑃𝑛            Production time required for producing product n at the production plant 

(min) 

𝑆𝐶𝑅𝑀          Storage capacity of raw material at the production plant (units) 

𝑆𝐶𝑃              Storage capacity of final product at the production plant (units) 

𝑃𝑟𝑜𝑑𝑘           Productivity of workers at level k (0 < 𝑃𝑟𝑜𝑑𝑘 < 1)  

𝐹𝑊𝑉            Acceptable fraction of workforce variation in period t (%) 

𝑇𝑆𝑆𝑄𝑠           Total score of supplier s by considering quality of raw material (%) 
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• Decision variables  

𝑄𝑅𝑇𝑃𝑛𝑡       Quantity of product n produced in regular time at the production plant 

in period t (units) 

𝑄𝑂𝑇𝑃𝑛𝑡       Quantity of product n produced in overtime at the production plant in 

period t (units) 

𝑄𝑆𝑇𝑃𝑛𝑡        Subcontracting quantity of product n produced at the production plant 

in period t (units) 

𝑄𝑅𝑀𝑆𝑠𝑟𝑡     Quantity of raw material r provided by supplier s to the production plant 

in period t (units) 

𝑄𝑃𝑆𝐶𝑛𝑗𝑡      Quantity of final product n from the production plant to customer j in 

period t (units) 

𝑄𝑊𝑘𝑡           Number of workers at level k at the production plant in period t (persons) 

𝑄𝑊𝐻𝑘𝑡        Number of hired workers at level k at the production plant in period t 

(persons) 

𝑄𝑊𝐹𝑘𝑡         Number of fired workers at level k at the production plant in period t 

(persons) 

𝐼𝑃𝑛𝑡              Inventory of final product n at the production plant at the end of period 

t (units) 

𝐼𝑅𝑀𝑟𝑡           Inventory of raw material r at the production plant in period t (units) 

𝑄𝑆𝑃𝑛𝑗𝑡          Shortage of product n for customer j in period t (unit) 

 

3.1.4 Mathematical Model 

The FMOMINLP model for supply chain (SC) production planning is 

formulated below: 

 

3.1.4.1 Objective functions 

The current global market of competition forces companies to consider multiple 

objectives for effective aggregation of procurement, production and distribution 

planning at the same time. By considering important decisions of the practical APP 

problem in a supply chain, it is found that objective functions related to the 

minimization of the overall cost, minimization of product shortages, minimization of 
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changes in workforce levels, and maximization of the total value of purchasing are 

considered as multiple conflicting objective functions. 

 

1. Minimizing the total supply chain costs (𝑍1): 

Minimizing the total overall cost is the most popular objective that is used in 

supply chain planning models. The total overall costs of the model in this study 

comprise the production costs, purchasing cost, labor costs, inventory costs, 

transportation costs, and shortage costs. The mathematical formulations and 

explanations of these components are presented as follows: 

Total supply chain costs (TC) = Production costs (C1) + Purchasing cost (C2) + 

Labor costs (C3) + Inventory costs (C4) + Transportation costs (C5) + Shortage cost (C6) 

 

Production costs (C1) include the cost of regular time production, overtime 

production, and subcontracting production. They are described as follows: 

𝐶1 = ∑ ∑ 𝑃𝑇𝑃𝑛 × 𝑅𝑇𝑃𝐶̃𝑡 × 𝑄𝑅𝑇𝑃𝑛𝑡
𝑇
𝑖=1

𝑁
𝑛=1   

       +∑ ∑ 𝑃𝑇𝑃𝑛 × 𝑂𝑇𝑃𝐶̃𝑡 × 𝑄𝑂𝑇𝑃𝑛𝑡
𝑇
𝑖=1

𝑁
𝑛=1   

       +∑ ∑ 𝑃𝑇𝑃𝑛 × 𝑆𝑇𝑃𝐶̃𝑡 × 𝑄𝑆𝑇𝑃𝑛𝑡
𝑇
𝑖=1

𝑁
𝑛=1   

 

Purchasing cost (C2) of raw materials from suppliers can be defined as follows: 

𝐶2 = ∑ ∑ ∑ 𝑅𝑀𝑆𝐶̃𝑠𝑟𝑡 × 𝑄𝑅𝑀𝑆𝑠𝑟𝑡   
𝑇
𝑖=1

𝑅
𝑟=1

𝑆
𝑠=1   

 

Labor costs (C3) are the costs that the manufacturer pays for a worker including 

salary, hiring cost, and firing cost, which are presented as follows: 

𝐶3 = ∑ ∑ 𝑆𝐶̃𝑘𝑡 × 𝑄𝑊𝑘𝑡
𝑇
𝑡=1

𝐾
𝑘=1   

       +∑ ∑ 𝐻𝐶̃𝑘𝑡 × 𝑄𝑊𝐻𝑘𝑡
𝑇
𝑡=1

𝐾
𝑘=1   

       +∑ ∑ 𝐹𝐶̃𝑘𝑡 × 𝑄𝑊𝐹𝑘𝑡
𝑇
𝑡=1  𝐾

𝑘=1   

 

Inventory costs (C4) are the summation of the holding cost of raw materials and 

final product at the production plant. This is expressed as: 

𝐶4 = ∑ ∑ 𝐼𝑅𝑀𝐶̃𝑟𝑡 × 𝐼𝑅𝑀𝑟𝑡
𝑇
𝑡=1

𝑅
𝑟=1   

     +∑ ∑ 𝐼𝑃𝐶̃𝑛𝑡 × 𝐼𝑃𝑛𝑡
𝑇
𝑡=1

𝑁
𝑛=1   

Ref. code: 25636122040626BKR



33 
 
 

    

Transportation costs (C5) from suppliers to the production plant and from the 

production plant to customers for different kinds of raw materials and the final product 

are defined as follows: 

𝐶5 = ∑ ∑ ∑ 𝑇𝑅𝑀𝐶̃𝑠𝑡𝑄𝑅𝑀𝑆𝑠𝑟𝑡
𝑇
𝑡=1

𝑅
𝑟=1

𝑆
𝑠=1   

       +∑ ∑ ∑ 𝑇𝑃𝐶̃𝑗𝑡𝑄𝑃𝑆𝐶𝑛𝑗𝑡
𝑇
𝑡=1

𝐽
𝑗=1

𝑁
𝑛=1   

 

The shortage cost (C6) is the cost of shortages for not being able to fulfill the 

customer demand which is defined as follows: 

𝐶6 = ∑ ∑ ∑ 𝑃𝑆𝐶̃𝑛𝑗𝑡𝑄𝑆𝑃𝑛𝑗𝑡
𝑇
𝑡=1

𝐽
𝑗=1

𝑁
𝑛=1   

 

Generally, the first objective function for minimizing the total supply chain costs can 

be summarized as follows: 

𝑀𝑖𝑛 𝑇𝐶̃ = ∑ ∑ 𝑃𝑇𝑃𝑛 × 𝑅𝑇𝑃𝐶̃𝑡 × 𝑄𝑅𝑇𝑃𝑛𝑡
𝑇
𝑖=1

𝑁
𝑛=1   

               +∑ ∑ 𝑃𝑇𝑃𝑛 × 𝑂𝑇𝑃𝐶̃𝑡 × 𝑄𝑅𝑇𝑃𝑛𝑡
𝑇
𝑖=1

𝑁
𝑛=1   

               +∑ ∑ 𝑃𝑇𝑃𝑛 × 𝑅𝑇𝑃𝐶̃ × 𝑄𝑅𝑇𝑃𝑛𝑡
𝑇
𝑖=1

𝑁
𝑛=1   

               +∑ ∑ ∑ 𝑅𝑀𝑆𝐶̃𝑠𝑟𝑡 × 𝑄𝑅𝑀𝑆𝑠𝑟𝑡
𝑇
𝑖=1

𝑅
𝑟=1

𝑆
𝑠=1   

               +∑ ∑ 𝑆𝐶̃𝑘𝑡 × 𝑄𝑊𝑘𝑡
𝑇
𝑡=1

𝐾
𝑘   

          +∑ ∑ 𝐻𝐶̃𝑘𝑡 × 𝑄𝑊𝐻𝑘𝑡
𝑇
𝑡=1

𝐾
𝑘   

          +∑ ∑ 𝐹𝐶̃𝑘𝑡 × 𝑄𝑊𝐹𝑘𝑡
𝑇
𝑡=1

𝐾
𝑘   

          +∑ ∑ 𝐼𝑅𝑀𝐶̃𝑟𝑡 × 𝐼𝑅𝑀𝑟𝑡
𝑇
𝑡=1

𝑅
𝑟=1   

          +∑ ∑ 𝐼𝑃𝐶̃𝑛𝑡 × 𝐼𝑃𝑛𝑡
𝑇
𝑡=1

𝑁
𝑛=1   

          +∑ ∑ ∑ 𝑇𝑅𝑀𝐶̃𝑠𝑡𝑄𝑅𝑀𝑆𝑠𝑟𝑡
𝑇
𝑡=1

𝑅
𝑟=1

𝑆
𝑠=1   

          +∑ ∑ ∑ 𝑇𝑃𝐶̃𝑗𝑡𝑄𝑃𝑆𝐶𝑛𝑗𝑡
𝑇
𝑡=1

𝐽
𝑗=1

𝑁
𝑛=1   

          +∑ ∑ ∑ 𝑃𝑆𝐶̃𝑛𝑗𝑡𝑄𝑆𝑃𝑛𝑗𝑡
𝑇
𝑡=1

𝐽
𝑗=1

𝑁
𝑛=1   

(3.1)  

 

Equation (3.1) shows the first objective function that tries to minimize total cost 

of supply chain (SC) including production costs, purchasing cost, labor wage, hiring 

cost, firing cost, inventory cost, transportation cost, and shortage cost. 

 

2. Minimizing the shortages of product to improve the customer satisfaction (𝑍2): 
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Customer satisfaction makes a significant contribution in business APP 

problems. It is the indicator that is used to recognize the dissatisfied customers, measure 

the loyalty of customers, and enhance revenue. It also is an important point of 

differentiation that can help companies to attract new customers in competitive business 

environments. In this study, the customer’s satisfaction is assessed through product 

shortages as follows:  

 𝑀𝑖𝑛 𝐶𝑆 = ∑ ∑ ∑ 𝑄𝑆𝑃𝑛𝑗𝑡
𝑇
𝑡=1

𝐽
𝑗=1

𝑁
𝑛=1  (3.2)  

 

This second objective function aims to improve the customer’s satisfaction by 

minimizing the summation of shortage product n among customer j in all periods, as is 

presented in Equation (3.2)  

 

3. Minimizing the rate of changes in the workforce level (𝑍3): 

In an actual situation of APP, through aggregating the forecast demand in 

advance, companies are able to estimate the workforce requirements. However, it is 

difficult to have a varying workforce plan because of worker skills, employment law, 

and other factors related to the benefits of the workforce. Thus, the workforce levels 

are required to be stable, to easily manage workforce, and can be presented as follows: 

 𝑀𝑖𝑛 𝑅𝐶𝑊 = ∑ ∑ (𝑄𝑊𝐻𝑘𝑡 + 𝑄𝑊𝐹𝑘𝑡)
𝑇
𝑡=1

𝐾
𝑡  (3.3)  

 

Equation (3.3) shows the third objective function that considers the rate of 

changes in workforce levels by minimizing the variation between the number of fired 

and hired workers.  

 

4. Maximizing the total value of purchasing (𝑍4): 

The fourth objective function shown in Equation (4) maximizes the total value 

of purchasing. The total value of purchasing can be described as purchasing criteria 

(such as sale price, quality of provided raw material, and service level) that influence 

the selection of the best supplier in procurement planning. It can be calculated by 

multiplying the overall assessed score of supplier s with the purchased quantity of raw 

materials from that supplier, and presented as follows: 
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 𝑀𝑎𝑥 𝑇𝑉𝑃 = ∑ 𝑇𝑆𝑆𝑄𝑠
𝑆
𝑠=1 × ∑ ∑ 𝑄𝑅𝑀𝑆𝑠𝑟𝑡

𝑇
𝑡=1

𝑅
𝑟=1  (3.4)  

 

Note that: 
s

TSSQ denotes the supplier’s overall score (weight). Based upon the 

knowledge and experience of DMs, the supplier’s overall score (weight) can be 

determined in an efficient way. For example, the Technique for Order Preference by 

Similarities to Ideal Solution (TOPSIS) is an efficient approach that can help the DMs 

to calculate the appropriate score (weight) of each supplier.  

 

3.1.4.2 Constraints  

• Constraint on finished product inventory. 

𝐼𝑃𝑛𝑡 = 𝐼𝑃𝑛(𝑡−1) + 𝑄𝑅𝑇𝑃𝑛𝑡 + 𝑄𝑂𝑇𝑃𝑛𝑡 + 𝑄𝑆𝑇𝑃𝑛𝑡 − ∑ 𝑄𝑃𝑆𝐶𝑛𝑗𝑡 
𝐽
𝑗=1 ;   ∀ 𝑛, 𝑡  (3.5)  

 

Equation (3.5) is related to the finished product inventory balance at the production 

plant. The inventory quantity of finished products at the end of period t should be equal 

to the inventory quantities in the previous period (t – 1) plus the number of products 

manufactured at the production plant minus the sum of the quantity of the finished 

products transferred to the customers. 

 

• Constraint on raw materials inventory. 

𝐼𝑅𝑀𝑟𝑡 = 𝐼𝑅𝑀𝑟(𝑡−1) + ∑ 𝑄𝑅𝑀𝑆𝑠𝑟𝑡
𝑆
𝑠=1   

                             −∑ (𝑄𝑅𝑇𝑃𝑛𝑡 + 𝑄𝑂𝑇𝑃𝑛𝑡 + 𝑄𝑆𝑇𝑃𝑛𝑡)
𝑁
𝑛=1 × 𝑁𝑜𝑅𝑀𝑟𝑛;   ∀ 𝑟, 𝑡   

(3.6)  

 

Equation (3.6) presents the balance of raw material inventory constraint at 

production plants. This constraint shows that the inventory quantity of raw materials in 

period t is equal to the inventory quantities in the prior period (t – 1) plus the sum of 

the quantity of provided raw materials from all suppliers minus the quantity of needed 

raw materials at the production plant. 

 

• Constraint on assigning the initial workforce level. 

𝑄𝑊𝑘𝑡 = 𝑁𝑜𝐿
0
𝑘;   ∀ 𝑘, 𝑡 < 2       (3.7)  
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Equation (3.7) corresponds to one of the assumptions that assigns the initial 

workforce level to the first period of planning (t < 2). 

 

• Constraint on balancing for the workforce level. 

𝑄𝑊𝑘𝑡 = 𝑄𝑊𝑘(𝑡−1) + 𝑄𝑊𝐻𝑘𝑡−𝑄𝑊𝐹𝑘𝑡;    ∀ 𝑘, 𝑡 > 1    (3.8)  

 

Equation (3.8) is the balancing constraint of the workforce level. This 

constraint guarantees that the number of workers at level k in period t must equal the 

change in workforce in the current period plus the number of workers in the previous 

period (t – 1). 

 

• Constraint on limiting available production time owing to the limited 

workforce. 

∑ 𝑄𝑊𝑘𝑡 × 𝑃𝑟𝑜𝑑𝑘 × (𝑅𝑇𝑃𝐴𝑡 + 𝑂𝑇𝑃𝐴𝑡)
𝐾
𝑘=1   

                                             ≥ ∑ (𝑄𝑅𝑇𝑃𝑛𝑡 + 𝑄𝑂𝑇𝑃𝑛𝑡) × 𝑃𝑇𝑃𝑛; 
𝑁
𝑛=1  ∀ 𝑡    

(3.9)  

 

Constraint (3.9) shows that the available production time is limited by the 

available regular-time and overtime workers along with their productivity. This implies 

that the available production time is determined by the number of workers in regular 

production and overtime production. 

 

• Constraint on limiting the available production time of the subcontractor. 

∑ 𝑄𝑆𝑇𝑃𝑛𝑡 × 𝑃𝑇𝑃𝑛 ≤ 𝑆𝑇𝑃𝐴𝑡; 
𝑁
𝑛=1  ∀ 𝑡    (3.10)  

 

Equation (3.10) shows that the available subcontracting time is limited by the 

allowed subcontracting time at each production plant. 

 

• Constraint on limiting the maximum quantity of produced products from the 

subcontractor. 

𝑄𝑆𝑇𝑃𝑛𝑡 ≤ 𝑀𝑎𝑥𝑃𝑆𝑛𝑡;    ∀ 𝑛, 𝑡    (3.11)  
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Equation (3.11) means that the quantity of produced products from a 

subcontractor of production plant must not exceed the allowable maximum quantity of 

products of the subcontractor. 

 

• Constraint on the machine capacity. 

𝑀𝐻𝑈𝑛𝑡 × (𝑄𝑅𝑇𝑃𝑛𝑡 + 𝑄𝑂𝑇𝑃𝑛𝑡) ≤ 𝑀𝑎𝑥𝑀𝐴𝑛𝑡;   ∀ 𝑛, 𝑡    (3.12)  

  

Equation (3.12) presents the limitation of machine capacity, where the machine 

hour usage for producing all the products at the production plant in each period should 

not surpass the maximum available machine capacity. 

 

• Constraint on the shortages of customer demand. 

𝑄𝑆𝑃𝑛𝑗𝑡 = 𝑄𝑆𝑃𝑛𝑗(𝑡−1) + 𝐷̃𝑛𝑗𝑡 − 𝑄𝑃𝑆𝐶𝑛𝑗𝑡;   ∀ 𝑛, 𝑗, 𝑡    (3.13)  

 

Equation (3.13) computes the shortage of products in supplying customer j in 

each period t. This constraint is one of the fuzzy constraints used in the model because 

it contains a fuzzy parameter, which is customer demand 𝐷̃𝑛𝑗𝑡. 

 

• Constraint on limiting the warehouse space. 

∑ (𝑊𝑆𝑃𝑛𝑡 × 𝐼𝑃𝑛𝑡)
𝑁
𝑛=1 + ∑ (𝑊𝑆𝑅𝑀𝑟𝑡 × 𝐼𝑅𝑀𝑟𝑡)

𝑅
𝑟=1 ≤ 𝑀𝑎𝑥𝑊𝑆𝐴𝑡;    ∀ 𝑡    (3.14)  

 

Equation (3.14) shows that the total inventory quantities of the finished products 

and raw materials at the production plant is limited by the maximum warehouse space. 

 

• Constraint on limiting the storage capacity for raw materials. 

∑ 𝐼𝑅𝑀𝑟𝑡 
𝑅
𝑟=1 ≤ 𝑆𝐶𝑅𝑀;   ∀ 𝑡      (3.15)  

 

• Constraint on limiting the storage capacity for the finished products. 

∑ 𝐼𝑃𝑛𝑡 
𝑁
𝑛=1 ≤ 𝑆𝐶𝑃;   ∀ 𝑡    (3.16)  

 

Equations (3.15) and (3.16) show that the inventory quantities of finished 
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products and raw materials are limited by the storage allowable capacities at each 

production plant. 

 

• Constraint on the proportion of workforces in each period. 

∑ (𝑄𝑊𝐻𝑘𝑡 + 𝑄𝑊𝐹𝑘𝑡)
𝐾
𝑘=1 ≤ 𝐹𝑊𝑉 × ∑ 𝑄𝑊𝑘(𝑡−1); 

𝐾
𝑘=1   ∀ 𝑡     (3.17)  

 

Equation (3.17) guarantees that the change in the workforce level in period t 

cannot surpass the fraction of variation allowed in the previous period. 

 

• Constraint on supplier capacity. 

𝑄𝑅𝑀𝑆𝑠𝑟𝑡 ≤ 𝑀𝑎𝑥𝑅𝑆𝑠𝑟𝑡;    ∀ 𝑠, 𝑟, 𝑡      (3.18)  

 

Equation (3.18) shows that the purchased quantity of raw material r is limited 

by the capacity of supplier s. 

 

• Constraint on balancing flow among the suppliers and production plants. 

∑ 𝑁𝑜𝑅𝑀𝑟𝑛 × (𝑄𝑅𝑇𝑃𝑛𝑡 + 𝑄𝑂𝑇𝑃𝑛𝑡
𝑁
𝑛=1 + 𝑄𝑆𝑇𝑃𝑛𝑡) ≤ ∑ 𝑄𝑅𝑀𝑆𝑠𝑟𝑡

𝑆
𝑠=1 ;   ∀ 𝑟, 𝑡    (3.19)  

 

Equation (3.19) displays the flow balances of raw materials from the suppliers 

to the production plant. 

 

• Constraint on the quality of raw materials. 

∑ 𝐴𝐹𝑅𝑆̃𝑠𝑟 × 𝑄𝑅𝑀𝑆𝑠𝑟𝑡
𝑆
𝑠=1  ≤ 𝐴𝐹𝑅𝑃̃𝑟 × ∑ 𝑄𝑅𝑀𝑆𝑠𝑟𝑡

𝑆
𝑠=1 ;   ∀ 𝑟, 𝑡    (3.20)  

 

• Constraint on service level (on-time delivery). 

∑ ∑ 𝐴𝑆𝐿̃𝑠 × 𝑄𝑅𝑀𝑆𝑠𝑟𝑡 ≥
𝑆
𝑠=1

𝑅
𝑟=1 𝐴𝑆𝐿𝑃̃ × ∑ ∑ 𝑄𝑅𝑀𝑆𝑠𝑟𝑡

𝑆
𝑠=1 ;𝑅

𝑟=1   ∀ 𝑡    (3.21)  

 

The quality of raw materials and the service level (on-time delivery) are crucial 

quantitative criteria that are used to evaluate the performance of each supplier. These 

requirements are presented in Equations (3.20) and (3.21). 

 

Ref. code: 25636122040626BKR



39 
 
 

    

• Constraints on non-negativity of decision variables.  

𝑄𝑊𝑘𝑡, 𝑄𝑊𝐻𝑘𝑡, 𝑄𝑊𝐹𝑘𝑡 ≥ 0 & 𝑖𝑛𝑡𝑒𝑟𝑔𝑒𝑟; ∀𝑘, 𝑡 

𝑄𝑅𝑇𝑃𝑛𝑡, 𝑄𝑂𝑇𝑃𝑛𝑡, 𝑄𝑆𝑇𝑃𝑛𝑡 ≥ 0;  ∀𝑛, 𝑡      

𝑄𝑅𝑀𝑆𝑠𝑟𝑡 ≥ 0;  ∀𝑠, 𝑟, 𝑡  

𝑄𝑃𝑆𝐶𝑛𝑗𝑡 ≥ 0;  ∀𝑛, 𝑗, 𝑡 

𝐼𝑅𝑀𝑟𝑡  ≥ 0;  ∀𝑟, 𝑡:  𝐼𝑃𝑛𝑡 ≥ 0;  ∀𝑛, 𝑡  

𝑄𝑆𝑃𝑛𝑗𝑡  ≥ 0;  ∀𝑛, 𝑗, 𝑡    

(3.22)  

 

Equation (3.22) shows that most of the decision variables are non-negative, and 

some of them are non-negative and integer. 
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CHAPTER 4 

SOLUTION APPROACH 

 

Transforming the fuzzy mathematical model into an analogous crisp model is a 

widely used approach to deal with the uncertainty in the fuzzy mathematical model. 

The transformation of the fuzzy model can be completed based on the measurement of 

possibility, necessity, or the integration of the possibility and necessity (credibility) 

(Liu, 2002). In this study, the theory of credibility measure is applied for transforming 

the fuzzy model into a crisp model. To cope with the multiple-objective function 

problem, a fuzzy multiple-objective programming approach with the weight-consistent 

solution is introduced to solve the crisp multiple-objective model. 

In this chapter, an appropriate hybrid solution approach for solving the Fuzzy 

Multi-Objective Mixed-Integer Linear Programming (FMOMILP) model (as explained 

in Chapter 3) is developed. To solve the FMOMILP model, a proposed approach with 

two-phased solution is implemented. In the first phase of the solution, the FMOMILP 

model is transformed into an analogous crisp model by using the credibility measure 

(credibility theory). In the second phase, fuzzy multiple-objective programming, 

integrating a weight-consistent constraint and an aggregation function, is used for finding 

compromise efficient solutions. The consistency of solutions will be ensured by the 

weight-consistent constraint, while the aggregation function can generate the balanced 

and unbalanced compromise efficient solutions for the different conflicting objectives. 

 

4.1 First phase: transforming the fuzzy MOMILP model into the equivalent crisp 

model based on FCCP with credibility measure 

4.1.1 Credibility-Based Fuzzy Chance-constrained Programming (CFCCP) 

CFCCP is an efficient fuzzy mathematical programming approach based on the 

credibility measure of fuzzy numbers (Azadeha, Kokabia, & Hallaj, 2017; Rastaghi, 

Barzinpour, & Pishvaee, 2018). This method assists DMs in solving some chance 

constraints at a minimum confidence level. It can also be applied for uncertain 

parameters with different membership functions such as the triangular, trapezoidal, and 

nonlinear membership functions, in symmetric and asymmetric forms (Liu & Liu, 
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2002). For a good understanding of credibility-based fuzzy chance-constrained 

programming, some basic knowledge of credibility theory and fuzzy chance-

constrained programming is introduced in the next sub-sections. 

 

4.1.1.1 Credibility fundamentals 

The theory of fuzzy sets was introduced by Zadeh in 1965. Since then, it has 

been developed and applied in various practical situations. In the fuzzy world, there are 

three main types of measures for dealing with ambiguous parametric information: 

possibility, necessity, and credibility. In opposition to the possibility and necessity 

measures that have no self-dual nature, the credibility measure is a self-dual measure 

(Li & Liu, 2006). Therefore, if the credibility value of a fuzzy event attains 1, the fuzzy 

event will surely occur. However, when the possibility value of a fuzzy event attains 1, 

the fuzzy event may fail to occur. In other words, if the possibility value of a fuzzy 

event achieves 1, that event may fail to occur, and if the necessity value of a fuzzy event 

is 0, that fuzzy event may occur. If the credibility value of a fuzzy event attains 1, the 

fuzzy event will occur and if the credibility value of a fuzzy event attains 0, the fuzzy 

event will not occur (Huang, 2007). 

Let 𝜉 be a fuzzy variable with membership function µ and let u and R be real 

numbers. The possibility of a fuzzy event, characterized by R, is defined by: 

𝑃𝑜𝑠{𝜉 ≤ 𝑅} = 𝜇(𝑢) 𝑢≤𝑅
𝑠𝑢𝑝

    (4.1)  

 

The necessity degree of occurrence of this fuzzy event can be specified as follows: 

𝑁𝑒𝑐{𝜉 ≤ 𝑅} = 1 − 𝑃𝑜𝑠{𝜉 ≤ 𝑅} = 1 − 𝜇(𝑢)𝑢>𝑅
𝑠𝑢𝑝

    (4.2)  

 

The credibility measure (Cr) can be determined as an average of the possibility 

and necessity measures as follows: 

𝐶𝑟{𝜉 ≤ 𝑅} =
1

2
(𝑃𝑜𝑠{𝜉 ≤ 𝑅} = 1 + 𝑁𝑒𝑐{𝜉 ≤ 𝑅})    (4.3)  

 

Let the fuzzy variable 𝜉 be fully determined by the triplet (𝑎, 𝑎, 𝑎) of crisp 

numbers with (𝑎 ≤ 𝑎 ≤ 𝑎) (Figure 4.1), whose membership function is presented as 

follows: 
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𝜇(𝑅) =  

{
 
 

 
 
𝑅 − 𝑎

𝑎 − 𝑎
                                 if 𝑎 ≤ 𝑅 < 𝑎             

𝑅 − 𝑎

𝑎 − 𝑎
                                if  𝑎 ≤ 𝑅 ≤  𝑎           

0                                        otherwise.              

 (4.4)  

 

 

 

 

 

 

 

 

 

According to Equations (4.1) – (4.3), the possibility, necessity, and credibility of 

𝜉 ≤ 𝑅 and 𝜉 ≥ 𝑅 are as follows: 

𝑃𝑜𝑠{𝜉 ≤ 𝑅}  =  

{
 

 
0,               𝑅 ≤ 𝑎            

𝑅 − 𝑎

𝑎 − 𝑎
,      𝑎 ≤ 𝑅 ≤ 𝑎 ; 

1,               𝑅 ≥ a             

 

𝑁𝑒𝑐{𝜉 ≤ 𝑅}  =  {

0,               𝑅 ≤ 𝑎            
𝑅 − 𝑎

𝑎 − 𝑎
,      𝑎 ≤ 𝑅 ≤ 𝑎 ; 

1,               𝑅 ≥ 𝑎               

 

(4.5)  

𝑃𝑜𝑠{𝜉 ≥ 𝑅}  =  {

0,              𝑅 ≥ 𝑎             
𝑎 − 𝑅

𝑎 − 𝑎
,     𝑎 ≤ 𝑅 ≤ 𝑎 ; 

1,              𝑅 ≤ a            

 

𝑁𝑒𝑐{𝜉 ≥ 𝑅}  =  

{
 

 
0,              𝑅 ≥ 𝑎           
𝑎 − 𝑅

𝑎 − 𝑎
,     𝑎 ≤ 𝑅 ≤ 𝑎  

1,             𝑅 ≤ 𝑎            

 

(4.6)  

 

Credibility is the quality of being believable or worthy of trust. An event will 

definitely occur when the credibility value is 1. The credibility of {𝜉 ≤ 𝑅} and {𝜉 ≥ 𝑅} 

are presented by: 

𝑎1 𝑎 𝑎 
 

𝑅 

𝜇(𝑅) 

0 

1 

 

𝑎 𝑎2 

Figure 4.1 A triangular fuzzy variable 𝜉 = (𝑎, 𝑎, 𝑎) 
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𝐶𝑟{𝜉 ≤ 𝑅} =

{
  
 

  
 
0,                       𝑅 ≤ 𝑎          

𝑅 − 𝑎

2(𝑎 − 𝑎)
,        𝑎 ≤ 𝑅 ≤ 𝑎 

𝑎 − 2𝑎 + 𝑅

2(𝑎 − 𝑎)
,   𝑎 ≤ 𝑅 ≤  𝑎

1,                       𝑅 ≥ 𝑎          

 

𝐶𝑟{𝜉 ≥ 𝑅} =

{
  
 

  
 
0,                       𝑅 ≥ 𝑎          
𝑎 − 𝑅

2(𝑎 − 𝑎)
,        𝑎 ≤ 𝑅 ≤ 𝑎 

2𝑎 − 𝑎 − 𝑅

2(𝑎 − 𝑎)
,    𝑎 ≤ 𝑅 ≤ 𝑎 

1,                        𝑅 ≤ 𝑎         

 

 

(4.7)  

To illustrate the three types of measurements in the fuzzy world, consider a 

triangular fuzzy set 𝜉 = (𝑎, 𝑎, 𝑎), the possibility, necessity, and credibility of 𝜉 ≤ 𝑅 

are depicted in Figure 4.2. 

𝑎 𝑎 𝑎 𝑅 

(a) Fuzzy set 

0 

1 

 

0.5 

𝑎 𝑎 𝑎 𝑅 

(b) Possibility 

0 

1 

 

0.5 

𝑎 𝑎 𝑎 𝑅 

(c) Necessity 

0 

1 

 

0.5 

𝑎 𝑎 𝑎 𝑅 

(d) Credibility 

0 

1 

 

0.5 

𝑎1 𝑎2 

𝑎1 𝑎2 

0.8 

Figure 4.2 Measures of fuzzy events: (a) fuzzy set, (b) possibility, (c) necessity, and (d) 

credibility. 
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Figure 4.2 shows the triangular fuzzy variable 𝜉 = (𝑎, 𝑎, 𝑎) as a specific case. 

Let 𝑃𝑜𝑠{𝜉 ≤ 𝑅} = 1 when 𝑅 ≥ 𝑎. Nevertheless, it is obvious that the event {𝜉 ≤ 𝑅} 

will not hold when 𝑅 = 𝑎 which implies that the desired event will not surely occur 

even when the confidence level is set as high as “1”. Moreover, for two real number 𝑎1 

and 𝑎2 where 𝑎 ≤ 𝑎1 ≤ 𝑎2 ≤ 𝑎, clearly, there is no different information about the 

fuzzy events when the possibility values of the event {𝜉 ≤ 𝑎1} and {𝜉 ≤ 𝑎2}  are 1. 

However, when applying credibility, 𝐶𝑟{𝜉 ≤ 𝑎1} ≤ 𝐶𝑟{𝜉 ≤ 𝑎2}, which means fuzzy 

event {𝜉 ≤ 𝑎2} will have more chance to happen than fuzzy event {𝜉 ≤ 𝑎1} does. Once 

𝑅 ≥ 𝑎 then 𝐶𝑟{𝜉 ≤ 𝑅} = 1, which implies that when the confidence level is 1, the 

desired event would certainly occur. Based on the credibility measure, it is obvious that 

no feature of fuzzy sets is missing. The higher the credibility value is, the more reliable 

the result is.  

Let 𝜉 = (𝑎, 𝑎, 𝑎) and 𝑅̃ = (𝑏, 𝑏, 𝑏). According to the credibility definition 

and the rule of fuzzy operations, the credibility of a fuzzy event characterized 

by{𝜉 ≤ 𝑅̃} and {𝜉 ≥ 𝑅̃} are as follows: 

𝐶𝑟{𝜉 ≤ 𝑅̃} =

{
 
 
 

 
 
 
1,                                  𝑎 ≤  𝑏           

𝑎 − 2𝑎 + 2𝑏 − 𝑏

2(𝑎 − 𝑎 + 𝑏 − 𝑏)
,   𝑎 ≤ 𝑏, 𝑎 > 𝑏

𝑏 − 𝑎

2(𝑏 − 𝑏 + 𝑎 − 𝑎)
,   𝑎 > 𝑏, 𝑎 < 𝑏

0,                                  𝑎 ≥ 𝑏           

 

𝐶𝑟{𝜉 ≥ 𝑅̃} =

{
 
 
 

 
 
 1,                                  𝑎 ≥ 𝑏            

𝑏 − 2𝑏 + 2𝑎 − 𝑎

2(𝑏 − 𝑏 + 𝑎 − 𝑎)
,    𝑎 > 𝑏, 𝑎 < 𝑏

𝑎 − 𝑏

2(𝑎 − 𝑎 + 𝑏 − 𝑏)
,    𝑎 ≤ 𝑏, 𝑎 > 𝑏

0,                                  𝑎 ≤  𝑏          

 

(4.8)  

 

 The credibility measure may display the satisfaction degree of an event when 

parametric information is shown as fuzzy sets. Figure 4.2 demonstrates four credibility 

situations between two fuzzy sets. 
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Figure 4.3 Relative positions of two fuzzy sets are based on credibility measures. 

 

𝑎 𝑎 𝑎 0 

1 

 

µ 

𝑏 𝑏 𝑏 

𝜇𝑎(𝑥) 𝜇𝑏(𝑥) 

(1)    𝑎 ≤ 𝑏 ⇔ 𝐶𝑟{𝜉 ≤ 𝑅̃} = 1 

x 

𝑎 𝑎 𝑎 0 

1 

 

µ 

𝑏 𝑏 𝑏 

𝜇𝑎(𝑥) 𝜇𝑏(𝑥) 

(2)   𝑎 ≤ 𝑏, 𝑎 > 𝑏 ⇔ 0.5 ≤ 𝐶𝑟{𝜉 ≤ 𝑅̃} ≤ 1 

x 

𝑎 𝑎 𝑎 
0 

1 

 

µ 

𝑏 𝑏 𝑏 

𝜇𝑎(𝑥) 𝜇𝑏(𝑥) 

(3)    𝑎 > 𝑏, 𝑎 < 𝑏 ⇔ 0 ≤ 𝐶𝑟{𝜉 ≤ 𝑅̃} ≤ 0.5 

x 

𝑎 𝑎 𝑎 
0 

1 

 

µ 

𝑏 𝑏 𝑏 

𝜇𝑎(𝑥) 𝜇𝑏(𝑥) 

(4)    𝑎 ≥ 𝑏 ⇔ 𝐶𝑟{𝜉 ≤ 𝑅̃} = 0 

x 
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Based on Equations (4.7) and (4.8), it can be shown that for (0 ≤ 𝛼 ≤ 0.5): 

𝐶𝑟{𝜉 ≤ 𝑅} ≥ 𝛼 ⇔ 𝑅 ≥ (1 − 2𝛼)𝑎 + (2𝛼)𝑎     (4.9)  

𝐶𝑟{𝜉 ≥ 𝑅} ≥ 𝛼 ⇔ 𝑅 ≤ (2𝛼)𝑎 + (1 − 2𝛼)𝑎  (4.10)  

𝐶𝑟{𝜉 ≤ 𝑅̃} ≥ 𝛼 ⇔ (1 − 2𝛼)𝑎 + (2𝛼)𝑎 ≤ (2𝛼)𝑏 + (1 − 2𝛼)𝑏  (4.11)  

𝐶𝑟{𝜉 ≥ 𝑅̃} ≥ 𝛼 ⇔ (2𝛼)𝑎 + (1 − 2𝛼)𝑎 ≥  (1 − 2𝛼)𝑏 + (2𝛼)𝑏  (4.12)  

 

Similarly, it can be shown that for (0.5 ≤ 𝛼 ≤ 1): 

𝐶𝑟{𝜉 ≤ 𝑅} ≥ 𝛼 ⇔ 𝑅 ≥ (2 − 2𝛼)𝑎 + (2𝛼 − 1)𝑎    (4.13)  

𝐶𝑟{𝜉 ≥ 𝑅} ≥ 𝛼 ⇔ 𝑅 ≤ (2𝛼 − 1)𝑎 + (2 − 2𝛼)𝑎  (4.14)  

𝐶𝑟{𝜉 ≤ 𝑅̃} ≥ 𝛼 ⇔ (2 − 2𝛼)𝑎 + (2𝛼 − 1)𝑎 ≤  (2𝛼 − 1)𝑏 + (2 − 2𝛼)𝑏  (4.15)  

𝐶𝑟{𝜉 ≥ 𝑅̃} ≥ 𝛼 ⇔ (2𝛼 − 1)𝑎 + (2 − 2𝛼)𝑎 ≥ (2 − 2𝛼)𝑏 + (2𝛼 − 1)𝑏  (4.16)  

 

4.1.1.2 Fuzzy chance-constrained programming model 

The Chance-constrained Programming (CCP) model was first introduced by 

Charnes and Cooper (1959). Then, it was modified and improved in a fuzzy 

environment (Liu & Iwanmura, 1998, Li & Liu, 2006; Huang, 2007). CCP is used for 

solving uncertain optimization problems with chance constraints that must be 

maintained at a specified confidence level, to satisfy DMs. 

The general fuzzy chance-constrained programming model can be formulated 

as follows: 

𝑚𝑖𝑛 𝑓 ̅ 

𝑠. 𝑡.     𝐶𝑟{∑ 𝑐̃𝑖𝑗𝑥𝑗
𝑛
𝑗=1 ≤ 𝑓}̅ ≥ 𝛼  

            𝐶𝑟{∑ 𝑎̃𝑖𝑗𝑥𝑗
𝑛
𝑗=1 ≥ 𝑏̃𝑖} ≥ 𝛼  

            𝑥𝑗 ≥ 0          

(4.17)  

 

Applying Equations (4.9) – (4.16), the credibility-based fuzzy chance-

constrained programming model is shown in Equation (4.17). They can be converted 

to the following crisp equivalent equations with confidence levels as follows: 
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𝑚𝑖𝑛 𝑓 ̅ 

𝑠. 𝑡.     

∑ [(1 − 2𝛼)𝑐𝑗 + (2𝛼)𝑐𝑗]𝑥𝑗
𝑛
𝑗=1 ≤ 𝑓 ̅                                  𝑖𝑓 𝛼 ≤ 0.5   

∑ [(2 − 2𝛼)𝑐𝑗 + (2𝛼 − 1)𝑐𝑗]𝑥𝑗
𝑛
𝑗=1 ≤ 𝑓 ̅                           𝑖𝑓 𝛼 ≥ 0.5   

∑ [(2𝛼)𝑎𝑖𝑗 + (1 − 2𝛼)𝑎𝑖𝑗]𝑥𝑗
𝑛
𝑗=1   

                                      ≥ (1 − 2𝛼)𝑏𝑖 + (2𝛼)𝑏𝑖                 𝑖𝑓 𝛼 ≤ 0.5  

∑ [(2𝛼 − 1)𝑎𝑖𝑗 + (2 − 2𝛼)𝑎𝑖𝑗]𝑥𝑗
𝑛
𝑗=1   

                                       ≥ (2 − 2𝛼)𝑏𝑖 + (2𝛼 − 1)𝑏𝑖        𝑖𝑓 𝛼 ≥ 0.5    

 𝑥𝑗  ≥ 0;  𝑗 = 1, . . . , 𝑛;  0 ≤ 𝛼 ≤ 1  

(4.18)  

 

4.1.2 Equivalent crisp multiple-objective programming model 

In relation to Equations (4.9) – (4.16), it can be used to transform the fuzzy 

chance-constraints model into equivalent crisp constraints. As aforementioned, the 

measurement of credibility is an average of the possibility measure and the necessity 

measure (optimistic and pessimistic viewpoints). Thus, the proposed FMOMILP model, 

applying the credibility-based chance-constrained modeling can be presented as follows: 

𝑀𝑖𝑛 𝑍1  (4.19)  

𝑀𝑖𝑛 𝑍2 = ∑ ∑ ∑ 𝑄𝑆𝑃𝑛𝑗𝑡
𝑇
𝑡=1  𝐽

𝑗=1
𝑁
𝑛=1   (4.20)  

𝑀𝑖𝑛 𝑍3 = ∑ ∑ (𝑄𝑊𝐻𝑘𝑡 + 𝑄𝑊𝐹𝑘𝑡)
𝑇
𝑡=1

𝐾
𝑘=1   (4.21)  

𝑀𝑎𝑥 𝑍4 = ∑ 𝑇𝑆𝑆𝑄𝑠
𝑆
𝑠=1 ∑ ∑ 𝑄𝑅𝑀𝑆𝑠𝑟𝑡

𝑇
𝑡=1

𝑅
𝑟=1   (4.22)  

  

𝑆𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜:   

𝐶𝑟{𝑇𝐶 ≤ 𝑍1} ≥ 𝛼  (4.23)  

𝐶𝑟{𝑄𝑆𝑃𝑛𝑗𝑡 = 𝑄𝑆𝑃𝑛𝑗(𝑡−1) + 𝐷̃𝑛𝑗𝑡 − 𝑄𝑃𝑆𝐶𝑛𝑗𝑡} ≥ α;  ∀ 𝑛, 𝑗, 𝑡  (4.24)  

𝐶𝑟{∑ 𝐴𝐹𝑅𝑆̃𝑠𝑟𝑡 × 𝑄𝑅𝑀𝑆𝑠𝑟𝑡
𝑆
𝑠=1 ≤ 𝐴𝐹𝑅𝑃̃𝑟 × ∑ 𝑄𝑅𝑀𝑆𝑠𝑟𝑡

𝑆
𝑠=1 } ≥ 𝛼; ∀ 𝑟, 𝑡   (4.25)  

𝐶𝑟{∑ ∑ 𝐴𝑆𝐿̃𝑠 × 𝑄𝑅𝑀𝑆𝑠𝑟𝑡 ≥
𝑆
𝑠=1

𝑅
𝑟=1   𝐴𝑆𝐿𝑃̃ × ∑ ∑ 𝑄𝑅𝑀𝑆𝑠𝑟𝑡

𝑆
𝑠=1

𝑅
𝑟=1 } ≥ 𝛼; ∀ 𝑟, 𝑡  (4.26)  

 

Other constraints are the same as the constraints in the FMOMILP model. If (α 

> 0.5), this means that the chance constraints must be met at a level of confidence that 

is greater than 0.5. Then, according to Equations (4.17) – (4.18), the fuzzy chance 
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constraints (Equations (4.23) – (4.26)) can be converted into the following crisp 

equivalents with the confidence level α as follows: 

(4.23) ⇔ ∑ ∑ 𝑃𝑇𝑃𝑛 × [(2 − 2𝛼) × 𝑅𝑇𝑃𝐶𝑡
𝑚𝑇

𝑖=1
𝑁
𝑛=1   

                                                        +(2𝛼 − 1) × 𝑅𝑇𝑃𝐶𝑡
𝑝] × 𝑄𝑅𝑇𝑃𝑛𝑡  

+∑ ∑ 𝑃𝑇𝑃𝑛 × [(2 − 2𝛼) × 𝑂𝑇𝑃𝐶𝑡
𝑚𝑇

𝑖=1
𝑁
𝑛=1 +(2𝛼 − 1) × 𝑂𝑇𝑃𝐶𝑡

𝑝] × 𝑄𝑂𝑇𝑃𝑛𝑡  

+∑ ∑ 𝑃𝑇𝑃𝑛 × [(2 − 2𝛼) × 𝑆𝑇𝑃𝐶𝑖𝑡
𝑚𝑇

𝑖=1
𝑁
𝑛=1 +(2𝛼 − 1) × 𝑆𝑇𝑃𝐶𝑖𝑡

𝑝] × 𝑄𝑆𝑇𝑃𝑛𝑡  

+∑ ∑ ∑ [(2 − 2𝛼) × 𝑅𝑀𝑆𝐶𝑠𝑟𝑡
𝑚𝑇

𝑖=1
𝑅
𝑟=1

𝑆
𝑠=1 + (2𝛼 − 1) × 𝑅𝑀𝑆𝐶𝑠𝑟𝑡

𝑝 ] × 𝑄𝑅𝑀𝑆𝑠𝑟𝑡  

+∑ ∑ [(2 − 2𝛼) × 𝑆𝐶𝑘𝑡
𝑚𝑇

𝑡=1
𝐾
𝑘 +(2𝛼 − 1) × 𝑆𝐶𝑘𝑡

𝑝 ] × 𝑄𝑊𝑘𝑡  

+∑ ∑ [(2 − 2𝛼) × 𝐻𝐶𝑘𝑡
𝑚𝑇

𝑡=1
𝐾
𝑘 +(2𝛼 − 1) × 𝐻𝐶𝑘𝑡

𝑝 ] × 𝑄𝑊𝐻𝑘𝑡  

+∑ ∑ [(2 − 2𝛼) × 𝐹𝐶𝑘𝑡
𝑚𝑇

𝑡=1
𝐾
𝑘 +(2𝛼 − 1) × 𝐹𝐶𝑘𝑡

𝑝 ] × 𝑄𝑊𝐹𝑘𝑡  

+∑ ∑ [(2 − 2𝛼) × 𝐼𝑅𝑀𝐶𝑟𝑡
𝑚𝑇

𝑡=1
𝑅
𝑟=1 +(2𝛼 − 1) × 𝐼𝑅𝑀𝐶𝑟𝑡

𝑝 ] × 𝐼𝑅𝑀𝑟𝑡  

+∑ ∑ [(2 − 2𝛼) × 𝐼𝑃𝐶𝑛𝑡
𝑚𝑇

𝑡=1
𝑁
𝑛=1 +(2𝛼 − 1) × 𝐼𝑃𝐶𝑛𝑡

𝑝 ] × 𝐼𝑃𝑛𝑡  

+∑ ∑ ∑ [(2 − 2𝛼) × 𝑇𝑅𝑀𝐶𝑠𝑡
𝑚𝑇

𝑡=1
𝑅
𝑟=1

𝑆
𝑠=1 + (2𝛼 − 1) × 𝑇𝑅𝑀𝐶𝑠𝑡

𝑝 ] × 𝑄𝑅𝑀𝑆𝑠𝑟𝑡  

+∑ ∑ ∑ [(2 − 2𝛼) × 𝑇𝑃𝐶𝑗𝑡
𝑚𝑇

𝑡=1
𝐽
𝑗=1

𝑁
𝑛=1 + (2𝛼 − 1) × 𝑇𝑃𝐶𝑗𝑡

𝑝] × 𝑄𝑃𝑆𝐶𝑛𝑗𝑡  

+∑ ∑ ∑ [(2 − 2𝛼) × 𝑃𝑆𝐶𝑛𝑗𝑡
𝑚𝑇

𝑡=1
𝐽
𝑗=1

𝑁
𝑛=1 + (2𝛼 − 1) × 𝑃𝑆𝐶𝑛𝑗𝑡

𝑝 ] × 𝑄𝑆𝑃𝑛𝑗𝑡 ≤ 𝑍1  

(4.27)  

(4.24) ⇔ 𝑄𝑆𝑃𝑛𝑗𝑡 = 𝑄𝑆𝑃𝑛𝑗(𝑡−1) + [(2 − 2𝛼) × 𝐷𝑛𝑗𝑡
𝑚   

                                                               +(2𝛼 − 1) × 𝐷𝑛𝑗𝑡
𝑝 ] − 𝑄𝑃𝑆𝐶𝑛𝑗𝑡;  ∀ 𝑛, 𝑡 

(4.28)  

(4.25) ⇔ ∑ [(2 − 2𝛼) × 𝐴𝐹𝑅𝑆𝑠𝑟𝑡
𝑚𝑆

𝑠=1 +(2𝛼 − 1) × 𝐴𝐹𝑅𝑆𝑠𝑟𝑡
𝑝
] × 𝑄𝑅𝑀𝑆𝑠𝑟𝑡  

    ≤ [(2𝛼 − 1) × 𝐴𝐹𝑅𝑃𝑟
𝑜 + (2 − 2𝛼) × 𝐴𝐹𝑅𝑃𝑟

𝑚] × ∑ 𝑄𝑅𝑀𝑆𝑠𝑟𝑡
𝑆
𝑠=1 ;  ∀ 𝑟, 𝑡  

(4.29)  

(4.26) ⇔ ∑ ∑ [(2𝛼 − 1) × 𝐴𝑆𝐿𝑠
𝑜𝑆

𝑠=1
𝑅
𝑟=1 +(2 − 2𝛼) × 𝐴𝑆𝐿𝑠

𝑚] × 𝑄𝑅𝑀𝑆𝑠𝑟𝑖𝑡   

≥ (2 − 2𝛼) × 𝐴𝑆𝐿𝑃𝑚 + (2𝛼 − 1) × 𝐴𝑆𝐿𝑃𝑝] × ∑ ∑ 𝑄𝑅𝑀𝑆𝑠𝑟𝑡
𝑆
𝑠=1

𝑅
𝑟=1 ;  ∀ 𝑡  

(4.30)  

 

4.2 Second phase: fuzzy multiple-objective linear programming 

Fuzzy Multiple Objective Linear Programming (FMOLP) is one of the fuzzy 

optimization approaches that could be formulated by using subjective preference-based 

membership functions. It can solve multiple-objective models that contain fuzzy 

numbers. This approach can be deployed in three steps as follows: 

(i). Specify the Positive Ideal Solution (PIS), and the Negative Ideal Solution (NIS) 

corresponding to each objective function. 
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(ii). Formulate the membership function for each of the objective functions based 

on the PIS and the NIS. 

(iii). Convert the multiple-objective model into a single-objective model by applying 

Fuzzy Goal Programming (FGP). 

In the FMOLP model, the memberships of each objective function are 

constructed by classifying every objective function into the maximum objective and the 

minimum objective. For the minimum objective, the value of the objective function 

varies from the 𝑍ℎ
𝑃𝐼𝑆 value to the 𝑍ℎ

𝑁𝐼𝑆 value. In contrast, the value of the objective 

function varies from the 𝑍ℎ
𝑁𝐼𝑆 value to the 𝑍ℎ

𝑃𝐼𝑆 value for the maximum objective. A 

graphical interpretation is presented in Figure 4.4: 

 

 

 

 

 

 

 

 

 

 

 

The results of the model are presented in tabular form, commonly referred to as 

the “Payoff” table. The “Payoff” table includes the positive ideal solution (𝑍ℎ
𝑃𝐼𝑆) and 

the negative ideal solution (𝑍ℎ
𝑁𝐼𝑆) of the objective functions. A typical payoff table is 

shown in Table 4.1. 

Table 4.1 Payoff table for achieving positive and negative ideal solutions. 

 𝒁𝒉 
𝒗𝒌 
∗  

𝒗𝟏
∗  𝒗𝟐

∗  𝒗𝟑
∗  𝒗𝟒

∗  

𝑍1 𝑍1(𝑣1
∗) 𝑍1(𝑣2

∗) 𝑍1(𝑣3
∗) 𝑍1(𝑣4

∗) 

𝑍2 𝑍2(𝑣1
∗) 𝑍2(𝑣2

∗) 𝑍2(𝑣3
∗) 𝑍2(𝑣4

∗) 

𝑍3 𝑍3(𝑣1
∗) 𝑍3(𝑣2

∗) 𝑍3(𝑣3
∗) 𝑍3(𝑣4

∗) 
𝑍4 𝑍4(𝑣1

∗) 𝑍4(𝑣2
∗) 𝑍4(𝑣3

∗) 𝑍4(𝑣4
∗) 

Figure 4.4 Membership function representing the (a) minimum objective and (b) 

maximum objective. 
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(b) Maximization of the objective function 
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in which 𝑣1
∗, 𝑣2

∗, 𝑣3
∗, and 𝑣4

∗ are the Positive Ideal Solutions (PISs) for objective 

functions 𝑍1, 𝑍2, 𝑍3, and 𝑍4, respectively. Based on the results in Table 4.1, the PIS and 

NIS for each objective function of the model can be defined. 𝑍ℎ
𝑃𝐼𝑆 is the optimal result 

of the h-th objective function when neglecting the remaining objective functions, while 

𝑍ℎ
𝑁𝐼𝑆  is selected by the following equation: 

𝑍ℎ
𝑁𝐼𝑆 = 𝑚𝑎𝑥{𝑍ℎ(𝑣𝑘

∗); ℎ ≠ 𝑘}    (4.31)  

 

Note that: Equation (4.31) is only correct for the minimum of the objective 

function. In contrast, if the objective function is maximum, 𝑍ℎ
𝑁𝐼𝑆 is selected based on 

the following equation: 

𝑍ℎ
𝑁𝐼𝑆 = 𝑚𝑖𝑛{𝑍ℎ(𝑣𝑘

∗); ℎ ≠ 𝑘}    (4.32)  

 

Based on the 𝑍ℎ
𝑃𝐼𝑆 and 𝑍ℎ

𝑁𝐼𝑆values defined in the "Payoff" table and the 

membership functions in Figure 4, the linear membership function for having a 

minimum objective is formulated as follows: 

𝜇𝑧ℎ(𝑣) = {

1                     
𝑧ℎ
𝑁𝐼𝑆−𝑧ℎ(𝑣)

𝑧ℎ
𝑁𝐼𝑆−𝑧ℎ

𝑃𝐼𝑆

0                     

 

, 𝑧ℎ(𝑣) ≤ 𝑧ℎ
𝑃𝐼𝑆             

 , 𝑧ℎ
𝑃𝐼𝑆 ≤ 𝑧ℎ(𝑣) ≤ 𝑧ℎ

𝑁𝐼𝑆

, 𝑧ℎ(𝑣) ≥ 𝑧ℎ
𝑁𝐼𝑆            

    (4.33)  

 

The linear membership function for having a maximum objective is formulated 

as follows: 

𝜇𝑧ℎ(𝑣) = {

1                     
𝑧ℎ(𝑣) – 𝑧ℎ

𝑁𝐼𝑆

𝑧ℎ
𝑃𝐼𝑆 – 𝑧ℎ

𝑁𝐼𝑆

0                     

  

, 𝑧ℎ(𝑣) ≥ 𝑧ℎ
𝑃𝐼𝑆              

, 𝑧ℎ
𝑁𝐼𝑆 ≤ 𝑧ℎ(𝑣) ≤ 𝑧ℎ

𝑃𝐼𝑆

, 𝑧ℎ(𝑣) ≤ 𝑧ℎ
𝑁𝐼𝑆             

    (4.34)  

 

The Fuzzy Goal Programming (FGP) model can be formed after all the 

membership functions have been formulated. 

 

4.2.1 Zimmerman’s method 

This approach was first developed by Zimmermann [3] for dealing with MOLP 

problems. It attempts to maximize the lowest or minimum satisfaction level of objective 

functions. This ensures that the satisfaction levels of objective functions are equal or 
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higher than the level of the lowest objective functions. The mathematical model of 

Zimmermann’s method is presented as follows: 

𝑀𝑎𝑥    𝜆   

𝑠. 𝑡       𝜆 ≤ 𝜇ℎ(𝑣),     ℎ = 1,… ,𝐻,  

             𝑣 ∈ 𝐹(𝑣),        𝜆 ∈ [0, 1].     

(4.35)  

 

where 𝜆 represents the minimum satisfaction level of objective functions, and 

𝐹(𝑣) denotes the feasible region for the constraints of the equivalent crisp model. 

 

4.2.2 Torabi and Hassini (TH) method 

This approach is known as a hybrid method. An aggregate function is proposed 

in this method that can yield balanced and unbalanced compromise solutions 

(symmetric and asymmetric solutions). The TH model is formulated as follows: 

𝑀𝑎𝑥    𝜆(𝑣) = 𝛾 × 𝜆0 + (1 − 𝛾) × ∑ 𝜃ℎ × 𝜇ℎ(𝑣)
𝐻
ℎ    

𝑠. 𝑡       𝜆0 ≤ 𝜇ℎ(𝑣),           ℎ = 1,… ,𝐻,   

             ∑ 𝜃ℎ
𝐻
ℎ = 1              𝜃ℎ ≥ 0  

             𝑣 ∈ 𝐹(𝑣),               𝜆0 𝑎𝑛𝑑 𝛾 ∈ [0, 1].     

(4.36)  

 

where 𝜆0 = 𝑚𝑖𝑛ℎ{𝜇ℎ(𝑣)} represents the minimum satisfaction level of 

objectives, while 𝜇ℎ(𝑣) indicates the satisfaction level of the h-th objective function. 

The objective function of this approach is defined as an integration of the lowest bound 

for obtaining the satisfaction level of objectives (𝜆0). The weighting summation of 

these obtained satisfaction levels (𝜇ℎ(𝑣)) could be adjusted to bring balanced 

compromise solutions. In addition, 𝛾 and 𝜃ℎ are the coefficients of compensation and 

the relative importance weight of the h-th objective, respectively. The weighted values 

𝜃ℎ are specified by the DMs based on their preferences so that ∑ 𝜃ℎℎ = 1, 𝜃ℎ ≥ 0. 

Besides that, 𝛾 can be used as an aligning parameter to control the minimum satisfaction 

level of objectives and the compromise level among the objectives. As a result, this 

approach could generate and provide balanced and unbalanced compromised solutions 

by adjusting the value of 𝛾. In relation to this problem, a higher value of 𝛾 implies that 

the DMs pay more attention to getting the higher bound of the satisfaction level for 
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objectives (𝜆0) with more balanced compromise solutions (symmetric fuzzy decision-

making). In contrast, the lower value of 𝛾 means that the DMs get more concerned 

about the solutions with a high satisfaction level of some objectives in connection with 

the relative importance of objectives. This can help for providing unbalanced 

compromise solutions (asymmetric fuzzy decision-making). 

 

4.2.3 Proposed consistency method 

Taking into consideration of the weight consistency of solutions, the proposed 

model uses a ranking constraint (weigh-consistence constraint) to ensure that the 

achieved solution of the aspiration level of objectives and its assigned weights will be 

homogeneous. The proposed model is as follows: 

𝑀𝑎𝑥    𝜆(𝑣) = 𝛾 × 𝜆0 + (1 − 𝛾)∑ 𝜃ℎ × 𝜇ℎ
𝐻
ℎ    

𝑠. 𝑡       𝜆0 ≤ 𝜇ℎ(𝑣),            ℎ = 1,… ,𝐻, 

             𝜇ℎ ≥
𝜃ℎ
𝜃ℎ+1

× 𝜇ℎ+1     ∀ℎ 

             ∑ 𝜃ℎ
𝐻
ℎ = 1  

             𝑣 ∈ 𝐹(𝑣), 𝜆0           𝑎𝑛𝑑 𝛾 ∈ [0, 1].    

(4.37)  

 

where 𝜇ℎ × 𝜃ℎ+1 ≥ 𝜃ℎ × 𝜇ℎ+1 is a weight-consistent constraint. It is 

supplemented to ensure that the ratio of the satisfaction level of each objective function 

matches their allocated importance weights. It is highly noted that the weight value of 

objective (𝜃ℎ) must be larger than the weight value of the objective (𝜃ℎ+1). If 𝜃ℎ ≥

 𝜃ℎ+1 then 𝜇ℎ ≥ 𝜇ℎ+1 Therefore, it is guaranteed that the weight-consistent solution can 

be obtained. 
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4.3 Solution Procedure 

In summary, the proposed Fuzzy Multiple Objective Mixed Integer Linear 

Programming (FMOMILP) can be solved by following these steps:  

• Step 1: Identify suitable triangular fuzzy numbers for the imprecise parameters 

and formulate the original fuzzy model for the APP problem in the supply chain. 

• Step 2: Give the minimum acceptable confidence level for each fuzzy chance 

constraints and assign the relative importance weight to each objective. 

• Step 3: Convert the fuzzy MOMILP model into the corresponding crisp 

MOMILP model by applying credibility-based fuzzy chance-constrained 

programming references to Equation 4.18. 

• Step 4: Optimize each objective in the crisp MOMILP model as a single-

objective problem. 

• Step 5: Determine the Positive Ideal Solution (PIS) and Negative Ideal Solution 

(NIS) for each objective function according to the description in Sub-section 

4.1.  

• Step 6: Construct the linear membership function of the objective functions. 

• Step 7: Convert the crisp MOMILP model into a crisp single-objective MILP 

model by applying Fuzzy Goal Programming (FGP) that is presented in Sub-

section 4.2. 

• Step 8: Implement the sensitivity analysis by modifying some parameters (the 

confidence level (α) and the coefficient compensation (𝛾)). 
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CHAPTER 5 

EXPERIMENTAL CASE 

 

An experimental case is given in this chapter to demonstrate the validity and 

effectiveness of the model and algorithm are proposed in Chapters 3 and 4, respectively.  

 

5.1 Description of input data  

 To illustrate and evaluate the usefulness of the proposed FMOMILP model and 

the solution methodology, an industrial case from a manufacturing company is provided 

in this chapter. The supply chain of the manufacturing company consists of four 

suppliers, a production plant, and four customers. The company produces five types of 

products by assembling ten types of raw materials. The planning horizon of the APP in 

the supply chain is 12 months. The scope of the problem is shown in Table 5.1. The 

consumption rate of the raw materials for producing these types of products is described 

in Table 5.2. Production costs, labor costs, transportation costs, purchasing cost, 

customer demand, and some types of data related to the quality of the provided raw 

materials, and the service level, are all fuzzy data and follow the triangular possibility 

distribution. The remained data are deterministic data. All data are presented in the 

tables below. 

Table 5.1 Scope of the problem. 

R S J N K T 

10 4 4 5 5 12 

 

Table 5.2 Bill of Materials (BOM). 

Product (n) 
Raw materials (r) 

r1 r2 r3 r4 r5 r6 r7 r8 r9 r10 

n1 2 3 0 4 0 0 1 2 3 0 

n2 2 3 1 2 2 2 0 0 0 0 

n3 1 0 1 2 0 0 1 0 0 2 

n4 0 0 0 0 2 3 2 3 2 3 

n5 0 1 2 0 1 0 0 0 1 2 

 

The qualifications of these selected suppliers have been evaluated throughout a 

screening process based on some criteria such as the price, quality of raw materials, and 
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service level (on-time delivery). In this regard, the provided raw materials from supplier 

1 are assessed as having the highest selling price, the best quality, and the best service 

level. As opposed to supplier 1, supplier 3 has the cheapest selling price, the lowest 

quality, and the poorest service level. While the selling price of raw materials from 

suppliers 2 and 3 are set to be the same price at the medium level, the service level of 

supplier 2 is higher than the service level of supplier 1. However, the quality of supplier 

2 is poorer than supplier 1. To sum up, the overall score of each supplier (representing 

their performances) is determined by using the TOPSIS method. The information of 

setting this supplier selection problem and the outcome of the overall weighted score 

for each supplier are shown in Table 5.3.  

Table 5.3 Relative performance of suppliers. 

Supplier (s) 
Criteria Weighted score of 

the supplier Price Quality Service level 

s1 Expensive Excellent Excellent 0.44 

s2 Medium Low Good 0.20 

s3 Cheap Low Low 0.14 

s4 Medium Good Low 0.22 

 

From Table 5.3, it can be seen that supplier 1 has the best performance (with 

the highest weighted score) and supplier 3 has the poorest performance (with the lowest 

weighted score). The performance weighted scores of suppliers 1, 2, 3, and 4 are 0.44, 

0.20, 0.14, 0.22, respectively. 

Tables 5.4 and 5.5 show the purchasing cost and maximum quantity of all raw 

materials that are provided by suppliers. To reflect uncertain market condition in reality, 

the purchasing cost of raw materials from each supplier are determined to be fuzzy. 

Table 5.4 Purchasing cost for raw materials by suppliers ($/unit). 

R (r) 
Supplier (s) 

s1 s2 s3 s4 

r1 (1, 1.1, 1.3) (1, 1.1, 1.3) (1.5, 1.65, 1.95) (1.5, 1.65, 1.95) 

r2 (2, 2.2, 2.6) (2, 2.2, 2.6) (1, 1.1, 1.3) (1.5, 1.65, 1.95) 

r3 (1, 1.1, 1.3) (1, 1.1, 1.3) (1, 1.1, 1.3) (1, 1.1, 1.3) 

r4 (3, 3.3, 3.9) (3, 3.3, 3.9) (2, 2.2, 2.6) (2, 2.2, 2.6) 

r5 (2, 2.2, 2.6) (2, 2.2, 2.6) (1.5, 1.65,1.95) (2, 2.2, 2.6) 

r6 (1, 1.1, 1.3) (1, 1.1, 1.3) (2, 2.2, 2.6) (1, 1.1, 1.3) 

r7 (2, 2.2, 2.6) (2, 2.2, 2.6) (1.5, 1.65, 1.95) (1, 1.1, 1.3) 

r8 (1, 1.1, 1.3) (1, 1.1, 1.3) (1, 1.1, 1.3) (1, 1.1, 1.3) 

r10 (2, 2.2, 2.6) (2, 2.2, 2.6) (1.5, 1.65, 1.95) (1.5, 1.65, 1.95) 
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Table 5.5 Maximum quantity of raw materials provided by suppliers (units). 

Raw 

material (r) 

Supplier (s) 

s1 s2 s3 s4 

r1 3,500 3,000 3,500 3,000 

r2 3,500 3,000 3,000 3,500 

r3 3,500 3,000 4,500 3,500 

r4 3,500 3,500 4,000 3,000 

r5 3,500 3,000 4,000 3,000 

r6 2,500 3,000 3,500 3,500 

r7 4,000 3,500 3,500 3,500 

r8 3,500 3,500 4,500 3,500 

r10 3,000 3,500 3,500 3,500 

 

The available time and production costs for the regular time, overtime, and 

subcontracting production are presented in Table 5.6. 

Table 5.6 Available time and production costs. 

Period (t) 
Regular time 

(hours/period) 

Overtime 

(hours/period) 

Subcontracting 

(hours/period) 

t1 144 50 200 

t2 160 50 220 

t3 168 50 230 

t4 176 60 240 

t5 120 40 170 

t6 192 60 270 

t7 200 60 280 

t8 200 60 280 

t9 192 60 270 

t10 176 60 240 

t11 184 60 260 

t12 160 50 220 

Regular time cost ($/min) (0.5, 0.55, 0.65) 

Overtime cost ($/min) (0.9, 0.95, 1.05) 

Subcontracting cost ($/min) (1.25, 1.30, 1.40) 

 

Table 5.7 presents the related workforce cost for each level including salary, 

hiring, and firing costs. Besides that, the worker’s productivity at each level is also 

presented. The inventory cost, warehouse storage-space limitation, initial units for the 

finished products and raw materials are given in Tables 5.8 and 5.9. The transportation 

cost from suppliers to the production plant, and from the production plant to the 

customers are provided in Table 5.10.  
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Table 5.7 Workforce costs at the production plant ($/person). 

Labor 

level (k) 

Types of cost 
Productivity (%) 

Salary Firing cost Hiring cost 

k1 (180, 190, 210) (70, 80, 100) (40, 50, 70) 65 

k2 (200, 210, 230) (80, 90, 110) (40, 50, 70) 70 

k3 (220, 230, 250) (90, 100, 120) (40, 50, 70) 75 

k4 (240, 250, 270) (100, 110, 130) (40, 50, 70) 85 

k5 (260, 270, 290) (110, 120, 140) (40, 50, 70) 95 

 

Table 5.8 Inventory cost, warehouse space limitation, initial units of finished products. 

Product 

(n) 

Inventory costs 

($/unit) 

Initial finished product 

inventory (units) 

Warehouse space for a unit 

of raw material (m2/unit) 

n1 (5, 6, 8) 2 3 

n2 (7, 8, 10) 2 2 

n3 (9, 10, 12) 20 3 

n4 (11, 12, 14) 10 2 

n5 (13, 14, 16) 10 6 

 

Table 5.9 Inventory cost, warehouse space limitation, initial units of raw material. 

Raw 

material (r) 

Inventory costs 

($/unit) 

Initial raw material 

inventory (units) 

Warehouse space for a 

unit of product (m2/unit) 

r1 (4, 5, 7) 20 1 

r2 (4, 5, 7) 20 1.5 

r3 (4, 5, 7) 20 1.5 

r4 (4, 5, 7) 12 0.5 

r5 (4, 5, 7) 15 1.5 

r6 (5, 6, 8) 20 0.5 

r7 (5, 6, 8) 20 1 

r8 (5, 6, 8) 20 1 

r9 (5, 7, 9) 15 1.5 

r10 (5, 7, 9) 20 1.5 

 

Table 5.10 Transportation cost ($/unit). 

Suppliers (s) Production plant Customers (j) Production plant 

s1 (0.014, 0.016, 0.024) j1 (0.036, 0.040, 0.060) 

s2 (0.029, 0.032, 0.048) j2 (0.058, 0.064, 0.096) 

s3 (0.079, 0.088, 0.132) j3 (0.072, 0.080, 0.120) 

s4 (0.101, 0.112, 0.168) j4 (0.065, 0.072, 0.108) 
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If the quantity of produced products is not enough to fulfill a customer’s 

demand, the customer will be compensated by a determined penalty cost based on the 

quantity of product shortages. The penalty unit cost of every type of product is shown 

in Table 5.11. 

Table 5.11 Penalty cost of product shortages ($/unit). 

Product (n) 
Customer (j) 

j1 j2 j3 j4 

n1 (2, 2.25, 2.75) (3, 3.25, 3.75) (2, 2.25, 2.75) (2, 2.25, 2.75) 

n2 (2, 2.25, 2.75) (4, 4.25, 4.75) (2, 2.25, 2.75) (2, 2.25, 2.75) 

n3 (2, 2.25, 2.75) (4, 4.25, 4.75) (2, 2.25, 2.75) (3, 3.25, 3.75) 

n4 (3, 3.25, 3.75) (4, 4.25, 4.75) (2, 2.25, 2.75) (2, 2.25, 2.75) 

n5 (1, 1.25, 1.75) (2, 2.25, 2.75) (2, 2.25, 2.75) (2, 2.25, 2.75) 

 

The maximum allowable quantity of produced products by subcontracting and 

the machine usage for producing each product at the production plant, and the 

maximum operating machine time and production time for producing different types of 

products are given in Table 5.12. The number of initially available workforce levels, 

the storage capacity, and the allowed variation in changing workforce levels at the 

production plant are summarized in Table 5.13. 

Table 5.12 Subcontracting limitations and machine-hour usage. 

Product 

(n) 

Maximum 

quantity of 

subcontracting 

(unit-periods) 

Machine hour usage 

for products 

(machine-hours/ 

unit period) 

Maximum 

machine time 

(machine-

hours) 

Production 

time 

(min/unit) 

n1 140 1 1,400 35 

n2 150 2 1,500 48 

n3 160 3 1,600 40 

n4 130 2 1,300 45 

n5 140 8 1,400 62 

 

Table 5.13 Storage capacity and workforce information at the production plant. 

Storage capacity at the 

production plant (units) 

Initial workforce (persons) Variation of 

workforce (%) Worker level (k) 

RM Finished product k1 k2 k3 k4 k5  

10,000 15,000 21 34 36 8 2 20 
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The relevant data for the quality and service level of the suppliers (evaluated by 

the manufacturer) are summarized in Tables 5.14 and 5.15. 

Table 5.14 Average defect rate of raw materials from suppliers (%). 

RM 

(r) 

Suppliers (s) 

s1 s2 s3 s4 

r1 (2, 2.01, 2.03) (2.1, 2.11, 2.13) (2.65, 26.6, 2.68) (2.265, 2.265, 2.265) 

r2 (2, 2.01, 2.03) (2.2, 2.21, 2.23) (2.8, 2.81, 2.83) (2.465, 2.465, 2.265) 

r3 (2, 2.01, 2.03) (2.1, 2.11, 2.13) (2.18, 2.19, 2.21) (2.31, 2.31, 231) 

r4 (2, 2.01, 2.03) (2.3, 2.31, 2.33) (2.4, 2.41, 2.43) (2.22, 2.22, 2.22) 

r5 (2, 2.01, 2.03) (2.2, 2.21, 2.23) (2.6, 2.61, 2.63) (2.82, 2.82, 2.82) 

r6 (2.1, 2.11, 2.13) (2.1, 2.11, 2.13) (2.3, 2.31, 2.33) (2.71, 2.71, 2.71) 

r7 (2.2, 2.21, 2.23) (2.2, 2.21, 2.23) (2.365, 2.366, 2.38) (2.91, 2.91, 2.91) 

r8 (2.1, 2.11, 2.13) (2.1, 2.11, 2.13) (2.41, 2.42, 2.44) (2.91, 2.91, 2.91) 

r9 (2.2, 2.21, 2.23) (2.2, 2.21, 2.23) (2.26, 2.27, 2.29) (2.66, 2.66, 2.66) 

r10 (2.1, 2.11, 2.13) (2.1, 2.11, 2.13) (2.51, 2.52, 2.54) (2.82, 28.2, 2.82) 

 

Table 5.15 Acceptable defective rate of production plant for raw materials, average 

service level of suppliers and acceptable service level of production plant. 

RM 

(r) 

Acceptable defect rate 

of production plant 

for raw materials (%) 

Suppliers 

(s) 

Average service 

level of suppliers 

(%) 

Acceptable service 

level of production 

plant (%) 

r1 (4.48, 5.6, 6.72) s1 (75, 94, 100) (69, 86, 100) 

r2 (4.64, 5.8, 6.96) s2 (72, 90, 100)  

r3 (4.8, 6, 7.2) s3 (69, 86, 100)  

r4 (4.48, 5.6, 6.72) s4 (70, 87, 100)  

r5 (4.4, 5.5, 6.6)    

r6 (4.72, 5.9, 7.08)    

r7 (5.04, 6.3, 7.56)    

r8 (4.4, 5.5, 6.6)    

r9 (4.72, 5.9, 7.08)    

r10 (4.88, 6.1, 7.32)    
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In Table 5.16, the forecasted demand of each customer in the optimistic case is 

reported. The most likely and pessimistic cases of forecasted demand are estimated by 

multiplying the optimistic case of forecasted demand by 1.2 and 1.3, respectively. For 

instance, the forecasted demand of customer (j1) for product (n1) in period (t1), in 

optimistic case, are 100 units. As a result, the estimated demand of the most likely and 

pessimistic cases will be 120 and 130 units, respectively. 

Table 5.16 Forecasted demand of customers in the optimistic case (units). 

(j) (n) 
Period (t) 

t1 t2 t3 t4 t5 t6 t7 t8 t9 t10 t11 t12 

j1 

n1 100 250 350 300 100 200 250 0 100 150 100 100 

n2 200 250 300 350 200 200 200 350 400 450 500 350 

n3 150 200 250 300 100 50 0 100 200 250 300 400 

n4 250 100 300 250 200 100 200 300 400 400 400 300 

n5 150 200 200 400 300 350 100 100 150 100 100 100 

j2 

n1 190 350 540 590 120 320 380 200 180 190 130 110 

n2 280 330 320 570 370 330 290 690 670 650 950 430 

n3 210 370 490 400 150 70 100 160 330 380 400 620 

n4 300 180 370 410 310 130 270 460 770 780 520 590 

n5 290 400 220 690 420 380 170 190 190 120 170 140 

j3 

n1 90 190 30 80 40 300 140 100 130 50 60 20 

n2 60 250 530 140 150 80 160 190 330 290 560 450 

n3 90 70 140 400 10 60 80 100 160 260 200 610 

n4 190 130 230 40 160 20 100 180 540 510 300 20 

n5 80 170 150 290 280 300 80 20 240 50 120 110 

j4 

n1 170 580 750 880 290 350 560 0 230 310 250 330 

n2 460 620 470 710 680 540 570 920 830 660 1,260 810 

n3 200 500 300 830 160 90 0 140 620 540 550 850 

n4 710 240 530 810 620 180 260 520 980 460 810 710 

n5 400 310 490 600 630 1,110 320 200 170 180 250 190 
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CHAPTER 6 

RESULTS AND DISCUSSIONS 

 

The mathematical models, which have been developed and proposed in the 

previous chapters, are coded by Optimization Programming Language (OPL), and 

presented in Appendix D. All computations are solved by IBM ILOG CPLEX 

Optimization Studio (version 12.6) software. The obtained results of the discussed 

approaches in this study are shown in this chapter. The obtained results are compared, 

analyzed, and discussed to figure out the pros and cons of the proposed methodology. 

 

6.1 Obtained outcome from solving crisp multiple-objective mixed-integer linear 

programming 

As a primary stage of identifying the goal values for each objective to construct 

its membership function, the credibilistic MOMILP model is transformed into the 

equivalent crisp model with a given minimum confidence level (α = 0.9).  The gathered 

data from the case study in Chapter 5 are used to find the positive and negative ideal 

solutions (following the description in Chapter 4) by IBM ILOG CPLEX Optimization 

Studio (version 12.6) software. The crisp multiple-objective mixed-integer linear 

programming model is then solved to attain the positive and negative ideal solutions. 

As a result, a payoff table for determining the positive and negative ideal solutions of 

each objective function is formed, as shown in Table 6.1.  

Table 6.1 Payoff table for achieving positive and negative ideal solutions. 

Objective functions 𝑣1
∗ 𝑣2

∗ 𝑣3
∗ 𝑣4

∗ 

Z1 ($) 4,842,557.76 6,334,476.88 6,483,751.24 9,605,972.20 

Z2 (units) 2,357 0 5,886 4,479 

Z3 (persons) 85 0 0 0 

Z4 (units) 271,887 270,139 243,074 357,345 
 

According to the results in Table 6.1 and Equations (4.31) – (4.32), the obtained 

positive and negative ideal solutions of each objective function are presented in Table 

6.2. 
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Table 6.2 Achieved positive and negative ideal solutions for each objective function. 

Objective functions 
PIS NIS 

Type Value Type Value 

Z1 ($) Min 4,842,557.76 Max 9,605,972.20 

Z2 (units) Min 0 Max 5,886 

Z3 (persons) Min 0 Max 85 

Z4 (units) Max 357,345 Min 243,074 

 

In relation to Equations (4.33) – (4.34) and Figure 4.4, the achieved positive and 

negative ideal solutions of each objective function in Table 6.2 is applied. The 

membership function of each objective function is depicted and formulated, as shown 

as below: 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

𝜇𝑧1 = {

1,                                                     
9,605,972.20 − 𝑍1

9,605,972.20 − 4,842,557.76
0,                                                    

   

 𝑍1 ≤ 4,842,557.76                                 
4,842,557.76 ≤ 𝑍1 ≤ 9,605,972.20
 9,605,972.20 ≥ 𝑍1                                 

 

Figure 6.1 Membership functions of objective functions. 
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𝜇𝑧2 = {

1,                 
5,886 − 𝑍2
5,886 − 0
0,                 

     

𝑍2 ≤ 0                 
0 ≤ 𝑍2 ≤ 5,886
5,886 ≥ 𝑍2        

 

𝜇𝑧3 = {

1,               
85 − 𝑍3
85 − 0

    

0,               

 

 𝑍3 ≤ 0        
      0 ≤ 𝑍3 ≤ 85  

85 ≥ 𝑍3    
 

𝜇𝑧4 = {

1,                               
𝑍4 − 234,074

357,345– 234,074
0,                              

   
𝑍4 ≥ 357,345                      
234,074 ≤ 𝑍4 ≤ 357,345
  𝑍4 ≤ 234,074                       

 

 

6.2 Fuzzy goal programming  

6.2.1 Obtained outcome from applying Zimmerman’s method 

For Zimmerman’s method, each objective function is considered to have the 

same relative importance (there is no priority for any objective function). That is why 

it is known as a symmetric model. The objective function of this method maximizes the 

minimum value of the satisfaction level. As a result, the outcome of this method is the 

balanced efficient compromise solutions. By applying Zimmerman’s method for 

solving the proposed MOMILP model, the obtained results are presented in Table 6.3.  

Table 6.3 Optimal solution of Zimmerman’s method. 

Implications Symbol Value Unit 

Overall satisfaction (𝜆) 77.36 % 

Minimizing the total supply chain costs (𝑍1) 5,920,829.06 $ 

Minimizing the shortages of product (𝑍2) 530 units 

Minimizing the rate of changes in the workforce (𝑍3) 19 persons 

Maximizing the total value of purchasing (𝑍4) 331,053 units 

Satisfaction of the first objective function (𝜇𝑧1) 77.37 % 

Satisfaction of the second objective function  (𝜇𝑧2) 91.01 % 

Satisfaction of the third objective function (𝜇𝑧3) 77.65 % 

Satisfaction of the fourth objective function (𝜇𝑧4) 77.36 % 

Confidence level (α) 90 % 

 

From Table 6.3, the overall goal satisfaction (as denoted by 𝜆), which represents 

the maximum degree of the minimum satisfaction of all the objective functions is 

77.36%. Under this circumstance, the satisfaction degree of the first, second, third, and 

fourth objective function is 77.37%, 91.01%, 77.65%, and 77.36%, respectively. The 
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total cost of aggregate production planning for the entire supply chain is $ 5,920,829.06, 

while the total number of products that could not be manufactured to fulfill customer 

demand is 530 units. The total number for the changed workforce level is 19 persons, 

and the maximum value of total purchasing is 331,053 units. 

 

6.2.2 Obtained outcome from applying TH’s method 

TH’s method allows decision-makers (DMs) to allocate the different weights to 

the objective functions based upon their importance level (asymmetric model). In this 

study, according to the DM preferences, the relative importance weight of the objective 

functions are given as 𝜃1 = 0.35, 𝜃2 = 0.3, 𝜃3 = 0.2, 𝜃4 = 0.15. Furthermore, the 

distribution of weights for each objective function means that the DMs pay more 

attention to the unbalanced compromise solutions (the higher satisfaction level of the 

objective that is indicated by its higher weight importance will be more concern). That 

is why the value of the coefficient of compensation is set to a low value (𝛾 = 0.2). The 

optimal results of the proposed model after being solved by using TH’s method is 

shown in Table 6.4. 

Table 6.4 Optimal results from TH’s method with 𝜃1 = 0.35, 𝜃2 = 0.3, 𝜃3 = 0.2, 𝜃4 =

0.15, and 𝛾 = 0.2. 

Implications Symbol Value Unit 

Overall satisfaction (𝜆) 84.87 % 

Minimizing the total supply chain costs (𝑍1) 5,963,618.11 $ 

Minimizing the shortages of product (𝑍2) 0  units 

Minimizing the rate of changes in the workforce (𝑍3) 0 persons 

Maximizing the total value of purchasing (𝑍4) 326,843 units 

Satisfaction of the first objective function (𝜇𝑧1) 77.47 % 

Satisfaction of the second objective function  (𝜇𝑧2) 100 % 

Satisfaction of the third objective function (𝜇𝑧3) 100 % 

Satisfaction of the fourth objective function (𝜇𝑧4) 73.31 % 

Confidence level (α) 90 % 

 

According to the obtained results from Table 6.4, as compared to the obtained 

results of Zimmerman’s method, it was found that the overall satisfaction level (𝜆) of 

DMs for TH’s method is 84.87%. This is higher than the overall satisfaction level of 

DMs for Zimmerman’s method (77.36%). The obtained satisfaction values of each 

objective from TH’s method are better than the obtained satisfaction values of each 
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objective from Zimmerman’s method except for the fourth objective. This implies that 

there is a trade-off among these objectives (Once one of these objectives gets better, at 

least one other objective must be worse). As can be seen that there is only the 

satisfaction value of the first objective and the fourth objectives meet the DM 

preferences (𝜇𝑧1 > 𝜇𝑧4 agrees with 𝜃1 > 𝜃4). While the second and third objectives are 

supposed to be less important than the first objective 𝜃1 > 𝜃2 > 𝜃3 the obtained 

satisfaction values of the second and the third objective are still better than the 

satisfaction values of the first objective. Hence, the DM preferences cannot be satisfied 

totally although most objectives can get better results. That is why it is necessary to 

improve the model so that the model can be able to generate consistent solutions (the 

satisfaction level of each objective must be compatible with the expected importance 

weight of its objective) that can totally satisfy the DM expectations. In relation to the 

above satisfaction value of each objective function, the actual total cost of aggregate 

production planning for the entire supply chain (𝑍1) is $ 5,963,618.11, while there is no 

shortage of product (𝑍2= 0 units). There is also no change in the workforce level (𝑍3 = 

0 persons), and the maximum value of total purchasing (𝑍4) is 326,843 units. 

 

6.2.3 Obtained outcome from applying the proposed method 

As mentioned earlier, by taking into consideration of the consistency of the 

obtained solutions, a ranking constraint 𝜇ℎ × 𝜃ℎ+1 ≥ 𝜃ℎ × 𝜇ℎ+1 (consistent-weight 

constraint) is added to TH’s model. The consistent-weight constraint can ensure that 

the achieved solution of the satisfaction level of objectives and the assigned weights 

(based on DM preferences) is homogeneous (i.e. 𝜇1 ≥ 𝜇2 ≥ 𝜇3 ≥ 𝜇4 agrees with 𝜃1 ≥

𝜃2 ≥ 𝜃3 ≥ 𝜃4). The optimal weight-consistent solutions of the proposed model are 

shown in Table 6.5. 
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Table 6.5 Optimal results from proposed method with 𝜃1 = 0.35, 𝜃2 = 0.3, 𝜃3 =

0.2, 𝜃4 = 0.15, and 𝛾 = 0.2. 

Implications Symbol Value Unit 

Overall satisfaction (𝜆) 69.21 % 

Minimizing the total supply chain costs (𝑍1) 4,940,544.27 $ 

Minimizing the shortages of product (𝑍2) 946 units 

Minimizing the rate of changes in the workforce (𝑍3) 39 persons 

Maximizing the total value of purchasing (𝑍4) 289,451 units 

Satisfaction of the first objective function (𝜇𝑧1) 97.94 % 

Satisfaction of the second objective function (𝜇𝑧2) 83.93 % 

Satisfaction of the third objective function (𝜇𝑧3) 54.12 % 

Satisfaction of the fourth objective function (𝜇𝑧4) 40.59 % 

Confidence level (α) 90 % 

 

Based on Table 6.5, the obtained overall satisfaction level is 69.21%, while the 

satisfaction levels of four objectives 𝑍1, 𝑍2, 𝑍3, and 𝑍4 are 97.94%, 83.93%, 54.12%, 

and 40.59%, respectively. It is clear that the obtained satisfaction levels of objectives 

are totally consistent with DM preferences for all the objective functions  (𝜇1 ≥ 𝜇2 ≥

𝜇3 ≥ 𝜇4 agrees with 𝜃1 ≥ 𝜃2 ≥ 𝜃3 ≥ 𝜃4). However, it is found that the overall 

satisfaction level of this method is lower than the overall satisfaction levels of 

Zimmerman’s method and TH’s method that were previously presented. This is 

explained by the trade-off among these four objectives (to get improvement from any 

objective, at least one other objective must be worse). As a result, the value of the 

overall satisfaction level of the proposed method can be low. Regarding the above-

mentioned percentages of satisfaction of each objective function, the actual total cost 

of aggregate production planning for the entire supply chain (𝑍1) is $ 4,940,544.27. The 

total shortage of product (𝑍2) is 946 units. The total number of the changed workforce 

level (𝑍3) is 39 persons, and the maximum value of total purchasing (𝑍4) is 289,451 

units.  

Some main values of decision variables (aggregation plan) from solving the 

proposed model with the confident level (α = 0.9), the important weight of objectives 

(𝜃1 = 0.35, 𝜃2 = 0.3,  𝜃3 = 0.2, 𝜃4 = 0.15), and compensation coefficient (𝛾 = 0.2) 

are shown as Tables in the Appendix A. 

To verify the efficiency of the proposed model for the consistency of solutions, 

a full of possible cases for different ordering pattern values of the importance weights 
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of objectives are generated by factorial design. These possible cases are used for testing 

the proposed model. There are four objectives considered in the proposed model. 

Therefore, there are twenty-four possible cases that are generated from four factorial 

(4!). All the possible cases of the ordering pattern weights of objectives are presented 

in Table 6.6. 

Table 6.6 Varied ordering patterns of the importance weights of objectives. 

Cases Order patterns 𝜃1 𝜃2 𝜃3 𝜃4 

1 𝜃1 > 𝜃2 > 𝜃3 > 𝜃4 0.37 0.31 0.21 0.11 

2 𝜃1 > 𝜃2 > 𝜃4 > 𝜃3 0.3 0.29 0.15 0.26 

3 𝜃1 > 𝜃3 > 𝜃2 > 𝜃4 0.28 0.24 0.26 0.22 

4 𝜃1 > 𝜃3 > 𝜃4 > 𝜃2 0.6 0.07 0.18 0.15 

5 𝜃1 > 𝜃4 > 𝜃2 > 𝜃3 0.4 0.2 0.08 0.32 

6 𝜃1 > 𝜃4 > 𝜃3 > 𝜃2 0.27 0.23 0.24 0.26 

7 𝜃2 > 𝜃1 > 𝜃3 > 𝜃4 0.26 0.29 0.24 0.21 

8 𝜃2 > 𝜃1 > 𝜃4 > 𝜃3 0.3 0.4 0.1 0.2 

9 𝜃2 > 𝜃3 > 𝜃1 > 𝜃4 0.23 0.3 0.25 0.22 

10 𝜃2 > 𝜃3 > 𝜃4 > 𝜃1 0.21 0.34 0.29 0.25 

11 𝜃2 > 𝜃4 > 𝜃1 > 𝜃3 0.18 0.51 0.03 0.28 

12 𝜃2 > 𝜃4 > 𝜃3 > 𝜃1 0.17 0.4 0.2 0.23 

13 𝜃3 > 𝜃1 > 𝜃2 > 𝜃4 0.27 0.22 0.32 0.19 

14 𝜃3 > 𝜃1 > 𝜃4 > 𝜃2 0.34 0.1 0.4 0.16 

15 𝜃3 > 𝜃2 > 𝜃1 > 𝜃4 0.22 0.27 0.3 0.21 

16 𝜃3 > 𝜃2 > 𝜃4 > 𝜃1 0.03 0.06 0.87 0.04 

17 𝜃3 > 𝜃4 > 𝜃1 > 𝜃2 0.19 0.18 0.42 0.21 

18 𝜃3 > 𝜃4 > 𝜃2 > 𝜃1 0.15 0.19 0.38 0.28 

19 𝜃4 > 𝜃1 > 𝜃2 > 𝜃3 0.25 0.13 0.08 0.54 

20 𝜃4 > 𝜃1 > 𝜃3 > 𝜃2 0.33 0.13 0.18 0.36 

21 𝜃4 > 𝜃2 > 𝜃1 > 𝜃3 0.25 0.25 0.15 0.35 

22 𝜃4 > 𝜃2 > 𝜃3 > 𝜃1 0.21 0.26 0.24 0.29 

23 𝜃4 > 𝜃3 > 𝜃1 > 𝜃2 0.22 0.16 0.28 0.34 

24 𝜃4 > 𝜃3 > 𝜃2 > 𝜃1 0.18 0.22 0.28 0.32 

 

Applying the data set in Table 6.6 for solving the proposed multiple-objective 

model, the optimal obtained results of TH’s model (integrating the consistent-weight 

constraints) are shown in Table 6.7. 
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Table 6.7 Optimal solutions of the proposed model with α = 0.9 and γ = 0.2. 

Case Order patterns λ 𝜇1(%) 𝜇2(%) 𝜇3(%) 𝜇4(%) 
Consistent 

solutions 

1 𝜃1 > 𝜃2 > 𝜃3 > 𝜃4 66.60 97.95 82.06 54.12 28.35 Yes 

2 𝜃1 > 𝜃2 > 𝜃4 > 𝜃3 68.35 94.89 91.71 35.29 62.55 Yes 

3 𝜃1 > 𝜃3 > 𝜃2 > 𝜃4 76.44 93.76 80.36 87.06 58.25 Yes 

4 𝜃1 > 𝜃3 > 𝜃4 > 𝜃2 56.18 96.84 10.98 28.24 23.53 Yes 

5 𝜃1 > 𝜃4 > 𝜃2 > 𝜃3 57.11 87.24 43.61 16.47 69.79 Yes 

6 𝜃1 > 𝜃4 > 𝜃3 > 𝜃2 71.63 79.27 66.51 69.41 75.20 Yes 

7 𝜃2 > 𝜃1 > 𝜃3 > 𝜃4 82.09 89.65 100.00 81.18 67.00 Yes 

8 𝜃2 > 𝜃1 > 𝜃4 > 𝜃3 64.92 75.00 100.00 24.71 50.00 Yes 

9 𝜃2 > 𝜃3 > 𝜃1 > 𝜃4 81.66 75.76 100.00 82.35 72.47 Yes 

10 𝜃2 > 𝜃3 > 𝜃4 > 𝜃1 84.02 61.34 99.98 84.71 73.02 Yes 

11 𝜃2 > 𝜃4 > 𝜃1 > 𝜃3 59.50 35.29 100.00 5.88 54.90 Yes 

12 𝜃2 > 𝜃4 > 𝜃3 > 𝜃1 64.60 42.00 100.00 49.41 57.50 Yes 

13 𝜃3 > 𝜃1 > 𝜃2 > 𝜃4 76.82 84.37 68.74 100.00 59.37 Yes 

14 𝜃3 > 𝜃1 > 𝜃4 > 𝜃2 67.24 85.00 24.99 100.00 40.00 Yes 

15 𝜃3 > 𝜃2 > 𝜃1 > 𝜃4 82.10 73.33 89.99 100.00 69.99 Yes 

16 𝜃3 > 𝜃2 > 𝜃4 > 𝜃1 70.85 3.44 6.88 100.00 4.59 Yes 

17 𝜃3 > 𝜃4 > 𝜃1 > 𝜃2 63.62 45.24 42.85 100.00 50.00 Yes 

18 𝜃3 > 𝜃4 > 𝜃2 > 𝜃1 67.14 39.47 50.00 100.00 73.68 Yes 

19 𝜃4 > 𝜃1 > 𝜃2 > 𝜃3 55.37 44.03 22.87 11.76 95.10 Yes 

20 𝜃4 > 𝜃1 > 𝜃3 > 𝜃2 56.20 72.80 28.03 38.82 79.42 Yes 

21 𝜃4 > 𝜃2 > 𝜃1 > 𝜃3 61.19 62.50 62.50 36.47 87.56 Yes 

22 𝜃4 > 𝜃2 > 𝜃3 > 𝜃1 73.25 62.79 77.90 71.76 86.91 Yes 

23 𝜃4 > 𝜃3 > 𝜃1 > 𝜃2 63.83 56.39 40.98 71.76 89.67 Yes 

24 𝜃4 > 𝜃3 > 𝜃2 > 𝜃1 70.33 51.40 62.83 80.00 92.45 Yes 

 

Throughout the obtained solutions as presented in Table 6.7, it can be seen that 

all satisfaction values of the objectives match their allocated importance weights. The 

proposed model is optimized so that the satisfaction levels of objectives 𝜇ℎ ≥ 𝜇ℎ+1 

agree with their allocated important weights 𝜃ℎ ≥ 𝜃ℎ+1. This is also evidence that the 

proposed model can ensure the weight-consistent solutions. The number of weight-

consistent solutions from the three approaches is summarized in Table 6.8. The 

satisfaction level and the actual value of all objectives of these three approaches are 

presented in the Appendix B. 
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Table 6.8 Weight-consistent solutions of three approaches. 

Approaches Weight-consistent solutions Percentages 

Zimmerman’s model 1/24 4.1% 

TH’s model 3/24 12.5% 

Proposed model 24/24 100% 

 

Based on the aggregated results as shown in Table 6.8, it is a highlight that only 

the proposed model can guarantee 100% for the generated weight-consistent solutions 

while the other two approaches hardly achieve the weight-consistent solutions. 

 

6.3 Sensitivity analysis 

In this section, a sensitivity analysis is conducted to investigate the impacts of the 

confidence level (α) and the coefficient of compensation (γ) on the optimal solution of 

the proposed model. The values of α and γ are varied while the other parameters are fixed. 

Usually, in credibility-based fuzzy chance-constrained programming, the 

confidence level is set by the decision-makers (DMs). The confidence levels (credibility 

levels) have a significant impact on the attainment of solutions because they are used 

to control the allowable satisfaction level of imprecise objective functions and 

imprecise constraints. Thus, it is necessary to find how uncertainty affects the optimal 

solutions through the different confidence levels. In this sensitivity analysis, the 

confidence levels of α are varied with a step size of 0.1 (from 0.5 to 1), the value of the 

compensatory coefficient is set to 0.2, and the importance weights of the objectives are 

𝜃1 = 0.35, 𝜃2 = 0.3, 𝜃3 = 0.2, 𝜃4 = 0.15. The result of sensitivity analysis with the 

variation of the confidence level (α) is shown in Table 6.9 and illustrated graphically 

in Figure 6.2. 

Table 6.9 Obtained solutions with different values of α with 𝜃1 = 0.35, 𝜃2 = 0.3, 𝜃3 =

0.2, 𝜃4 = 0.15, and 𝛾 = 0.2. 

α-value 𝜆 𝜇1(%) 𝜇2(%) 𝜇3(%) 𝜇4(%) 𝑍1($) 
𝑍2 

(units) 

𝑍3 

(persons) 

𝑍4 

(units) 

0.5 71.16 100.00 85.71 56.47 42.35 4,842,557.76 841 37 291,468 

0.6 71.16 100.00 85.71 56.47 42.35 4,842,557.76 841 37 291,471 

0.7 71.16 100.00 85.71 56.47 42.35 4,842,567.11 841 37 291,471 

0.8 71.16 100.00 85.71 56.47 42.35 4,842,571.76 841 37 291,471 

0.9 69.21 97.94 83.93 54.12 40.59 4,940,544.27 946 39 289,451 

1 65.14 91.48 78.41 51.76 38.82 5,248,346.32 1,271 41 287,438 
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Figure 6.2 Satisfaction levels of each objective function according to the different 

values of (α). 

 

According to the obtained outcomes in Table 25, it highlights that an increment of 

the confidence level will lead to a decrease in the satisfaction levels of all objectives. This 

implies that the actual values of all objectives can get worse. The reasons for obtaining 

worse solutions when the confidence level is higher can be explained as follows: 

• When DMs allocate a higher confidence level (high credibility) for the fuzzy 

parameters, the DMs focus on the upper point of the fuzzy parameter. In other 

words, if the confidence level is set to 1, the used value of the fuzzy parameter 

will be the largest value (pessimistic case). As a result, the value of the 

objectives will be worse in the pessimistic case.  

• In addition, there is a trade-off between the satisfaction of constraints (the risk 

of violating constraints) and the optimal value of objectives. When the 

satisfaction levels of constraints are high, the feasible solution set will be 

smaller. As a result, the optimal objectives become worse. The confidence level 

(here) is denoted as the satisfaction level of the constraints. Thus, when the 
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confidence level is high (low violation of constraints), the value of the optimal 

objective becomes worse. 

Regarding the obtained results of different confidence levels, it can help DMs 

to estimate the possible results from the optimistic situation to the pessimistic situation. 

Knowing that, the DMs can take necessary actions and with better preparation for these 

situations in the future. 

To explore and realize the influence of the coefficient compensation (γ) on the 

optimal solutions, the value of coefficient compensation is varied from 0 to 1 with a 

step size of 0.1, the confidence level (α) is set to 0.9, and the importance weights of the 

objective function are 𝜃1 = 0.35, 𝜃2 = 0.3, 𝜃3 = 0.2, 𝜃4 = 0.15. Moreover, in the 

process of the sensitivity analysis, as the value of the compensation coefficient is set 

larger than 0.5, this means that the DMs will pay more attention to the balanced 

solutions (there is no priority for any objective – all objectives are treated equally). 

Thus, the consistency of the solutions is not considered. In contrast, if the value of the 

compensation coefficient is set smaller at 0.5, this implies that the DMs are interested 

in the unbalanced solution (The priority of objectives is considered). Therefore, the 

consistency of the solutions will be taken into account. The obtained satisfaction levels 

and the actual values for all objective functions by doing sensitivity analysis with the 

compensation coefficient are presented in Table 6.10. A spectrum of unbalanced and 

balanced compromise solutions based on the preferences of DMs is illustrated 

graphically in Figure 6.3. 

Table 6.10 Results of sensitivity analysis by varying the compensation coefficient (γ). 

γ-value 𝜆(%) 𝜇1(%) 𝜇2(%) 𝜇3(%) 𝜇4(%) 𝑍1($) 
𝑍2 

(units) 

𝑍3 

(persons) 

𝑍4 

(units) 

0 76.34 97.29 83.37 55.29 41.47 4,971,733.43 979 38 290,459 

0.1 72.34 97.11 83.23 54.12 40.59 4,980,150.77 987 39 289,454 

0.2 69.21 97.94 83.93 54.12 40.59 4,940,544.27 946 39 289,451 

0.3 65.47 97.91 83.20 54.12 40.59 4,942,033.27 989 39 289,455 

0.4 62.11 98.10 84.06 54.12 40.58 4,933,022.55 938 39 289,451 

0.5 58.77 96.84 82.98 55.29 41.47 4,993,245.57 1,002 38 290,460 

0.6 80.33 75.43 99.90 100.00 75.43 6,012,784.80 6 0 329,269 

0.7 80.43 76.98 99.97 100.00 76.98 5,938,946.62 2 0 331,038 

0.8 78.46 76.06 100.00 100.00 76.06 5,982,793.50 0 0 329,991 

0.9 77.13 75.98 100.00 97.65 75.98 5,986,879.89 0 2 329,897 

1 77.36 77.36 91.00 77.65 77.36 5,920,829.06 530 19 331,479 
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Figure 6.3 Satisfaction levels of each objective function according to the different 

values of (γ). 

 

According to Table 6.10 and Figure 6.3, it is noted that when a higher value of 

𝛾 is used, a smaller gap between the lowest and highest satisfaction levels of objective 

functions can be obtained. Particularly, at the highest compensation coefficient value 

of 1, the lowest and highest satisfaction levels of objectives are 77.36% and 91%, 

respectively (the gap is 13.64%). It implies that the DMs pay more attention to 

obtaining the higher bound of the satisfaction level for objective functions (𝜆0) with 

more balanced compromise solutions (symmetric fuzzy decision-making). In contrast, 

as a lower value of 𝛾 is used, the gap between the lowest and highest satisfaction levels 

of objective functions becomes larger. Particularly, the lowest and highest satisfaction 

levels of objectives are 41.47% and 97.29%, respectively, at the lowest compensation 

coefficient value of 0 (the gap is 55.82%). It also means that the DMs get more 

concerned about the solutions with a high satisfaction level of some objectives in 

connection with the relative importance of objectives. It yields unbalanced compromise 

solutions (asymmetric fuzzy decision-making). 

 

0

10

20

30

40

50

60

70

80

90

100

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Satisfaction of minmimizing the total costs (μ1)

Satisfaction of minmimizing the shortage of products (μ2)

Satisfaction of minmimizing the rate of changes in the workforce level (μ3)

Satisfaction of maximizing the total value of purchasing (μ4)

Compesation coeffecient (γ)

S
at

is
fa

ct
io

n
 (

µ
)

Ref. code: 25636122040626BKR



73 
 
 

    

Based on the obtained outcomes and the above discussion, it could be concluded 

that the proposed approach possesses some advantages as follows: 

• As compared with traditional defuzzification methods (e.g. fuzzy ranking 

method, average weight method), the fuzzy ranking method can separate the 

fuzzy numbers into different corresponding scenarios. The weighted average 

method just converts a fuzzy number into a crisp number by assigning weights 

to the possible values of fuzzy numbers. Since these methods are conducted at 

the beginning of FLP process (too early), therefore, the attributes of fuzzy data 

totally disappear and no information about the likely violation of constraints 

(feasibility concept) is provided. In contrast, based on the relation of the two 

fuzzy sets under the credibility measure, FCCP used in this study can assist DMs 

in controlling and analyzing the fuzziness level of fuzzy constraints (the risk of 

constraint violation) by a sensitivity analysis or interactive decision-making 

process. 

• The approach brings computational efficiency because it still maintains the 

linearity and does not increase the number of objective functions and 

constraints. Therefore, it can be used for solving a large scope of fuzzy 

programming models.  

• This is a robust and reliable approach because the obtained solutions are always 

consistent with the expectation of DMs for the matter of the homogeneity 

between the satisfaction level of the objectives and their importance weights. 

• The approach can generate efficient solutions and yield both unbalanced and 

balanced compromise solutions according to the preferences of the DMs. 

• By using different sets of controllable parameters such as the importance weight 

of objectives(𝜃ℎ),confidence levels (α), and compensatory coefficient (γ), it can 

yield many efficient solutions. This feature is evidence to show the high 

flexibility of the proposed approach. 
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CHAPTER 7 

CONCLUSION 

 

7.1 Managerial Implications 

Throughout this study, several managerial and business insights for operational 

planners or managers could be drawn as follows: 

In practical applications, the credibility level (α) can be used to reflect the 

occurrence of a fuzzy event and can represent the uncertain parameters in the fuzzy 

model. By setting credibility levels (α), the uncertain parameters can be converted into 

crisp analogous parameters, and all of the crisp parameters can create a deterministic 

system scenario. With each credibility level (α), there is a corresponding scenario and 

a set of optimal results (operational decision variables). Being aware of many scenarios, 

the planners or managers can make effective operational and strategic management 

plans for any changes in the future. 

In general, the higher the credibility level is, the more satisfied the DMs are 

with the constraints. This leads to higher confidence in the planners or managers for the 

obtained optimal results. In the credibility theory, decreasing the credibility level in the 

fuzzy chance constraints will lead to an increase in the right-hand side parameters and 

a decrease in the left-hand side parameters of the constraints. Hence, the feasible 

solution region will be extended. As a result, better optimal solutions can be more easily 

found. Usually, the right-hand side parameters of the constraints represent the available 

resources of the company, but the resources are not free. They have costs. To enhance 

the available resources, the company needs to spend more on investing in the 

company’s resources. Consequently, there exists a trade-off between the credibility 

level and the gained benefits. Based on the trade-off analysis, the planners or managers 

can choose a suitable plan or policy by considering comprehensively between the 

acceptable credibility levels and the gained benefits. 

From the perspective of making decisions under the consideration of multiple 

conflicting objectives at the same time (there exists a trade-off between objectives), this 

study provided a fuzzy solution that can achieve both balanced, unbalanced, and 

consistent compromise solutions among the conflicting objectives. Hence, it is very 
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helpful for the planners or managers in selecting satisfactory solutions under a 

company’s policies. 

 

7.2 Conclusions 

Uncertainty of data and conflicting objectives are two main features that should 

be addressed in the aggregate supply chain planning problem. In this study, a multiple- 

objective optimization model in an uncertain environment for aggregate production 

planning in a supply chain was investigated. To make the APP problem more effective, 

informative, and compatible with a real-life environment, the APP problem was 

integrated into a Supply Chain (SC) including a production plant, multiple suppliers, 

and multiple customers. Besides, several important problems such as multiple products, 

product characteristics, and labor characteristics, are embedded in the proposed model. 

Since the APP problem was considered in the SC, the aggregate plan has not only 

production plan, but also includes procurement plan and distribution plan. The 

proposed APP model considered simultaneously four conflicting objective functions, 

which minimize the total cost of the SC, minimize the total shortage of products, 

minimize the variation in the workforce, and maximize the total value of purchasing. 

The proposed model is formulated as a Multiple-Objective Mixed-Integer Linear 

Programming (MOMILP) model. 

A comprehensive Credibility-based Fuzzy Chance-constrained Programming 

(CFCCP) approach for dealing with the uncertainty of data was presented. It indicated 

that CFCCP can handle the uncertain parameters that appear in any positions in the 

fuzzy optimization model such as the objective function and constraints (one side and 

both two-sides of the constraints). In addition, it also yields a confidence level for the 

obtained optimal solutions. 

In practical applications, the importance of objectives is not treated equally. 

Therefore, it is necessary to assign importance weights to the different objectives. 

Although the weights are assigned to indicate the importance of the objectives, they 

still cannot ensure that the obtained solutions totally satisfy the decision-makers as their 

expectations (the obtained solutions are not consistent with the preference of the 

decision-makers (DMs)). In the proposed model, weight-consistent constraints were 

integrated to guarantee that the obtained solutions are consistent with the DM 
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expectations (the ranking of the objective satisfaction levels must be the same as the 

ranking of the objective importance weights). 

In summary, to cope with the proposed fuzzy MOMILP model in this study, a 

hybrid approach with a two-phase solution was developed. In the first phase, to deal 

with the fuzziness of parameters, Credibility-based Fuzzy Chance-constrained 

Programming (CFCCP) was applied to transform the fuzzy multiple-objectives 

optimization model into the corresponding crisp multiple objectives model. With 

CFCCP, it not only deals with imprecise parameters represented as fuzzy sets, but also 

controls the different confidence levels in the satisfaction of the imprecise objective 

functions and imprecise constraints. In the second phase, Fuzzy Multiple Objective 

Linear Programming (FMOLP) integrating the concept of the weight-consistent 

solutions was applied to solve the crisp credibilistic multiple-objective model. Adding 

the weight-consistent constraint into the model can ensure that the obtained results will 

totally satisfy the expectations of decision-makers in terms of the consistency between 

the objective satisfaction and the objective importance weight (i.e. 𝜇1 ≥ 𝜇2 ≥ 𝜇3 ≥ 𝜇4 

in accordance with 𝜃1 ≥ 𝜃2 ≥ 𝜃3 ≥ 𝜃4). Moreover, the objective function of FMOLP 

is an aggregation function. Thus, the proposed model can generate both balanced and 

unbalanced compromise solutions. 

From the obtained outcomes of the proposed model, it showed that the proposed 

hybrid approach is very effective. For the matter of optimizing under uncertainty, this 

method can solve and bring efficient solutions with pre-determined confidence levels 

in an uncertain environment. For the matter of conflicting objectives, this method can 

produce consistent-solutions, balanced solutions, and unbalanced compromise 

solutions based on the preferences of the DMs. Besides that, it also offers high 

flexibility for yielding different efficient solutions to support decision-makers in 

selecting the final preferred satisfactory solution. 

 

7.3 Limitations 

The limitations of this study are as follows: 

The triangular possibility distribution is assumed to represent the uncertain 

parameters of the proposed fuzzy model. Based on incomplete available data, subjective 
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knowledges or experiences of the DMs/experts, other appropriate distribution forms 

can be generated and then applied for the proposed model. 

Any parameter that may affect the results of planning can be considered as a 

fuzzy number. In fact, there is no restrictions on the number of fuzzy parameters that 

can appear in the proposed approach. However, except for the operational costs in the 

objective function, there are other parameters in the constraints (e.g. machine capacity, 

machine’s hours, warehouse capacity) that can be considered to be fuzzy numbers. 

 

7.4 Further study 

In future research, it is possible to embed some more important issues of APP 

in the proposed model such as multiple production plants, varying lead time, labor 

skills, time value of money, etc. Also, taking into account the modeling perspectives of 

the supply chain, one more echelon (distribution centers) can be added to the supply 

chain network. This is because the final products should be delivered from the 

distribution centers instead of being transferred directly from the production plant. 

From the perspective of solution methodology, once the complete data is available and 

the problem becomes more complicated or is too large, various heuristic or evolutionary 

approaches such as genetic algorithms should be considered in future research work. 
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APPENDIX A 

OBTAINED SOLUTIONS (AGGREGATION PLAN) FROM 

SOLVING THE PROPOSED MATHEMATICAL MODEL 

 

In this appendix, the obtained aggregation plan which includes procurement 

plan, production plan, and distribution plan are presented. 

 

Table A.1 Production plan. 

Product M 
Period 

1 2 3 4 5 6 7 8 9 10 11 12 

1 

R 1,699 1,551 1,848 1,317 649 1,381 1,586 337 754 826 637 661 

O 0 0 0 0 0 0 0 0 0 0 0 0 

S 0 0 0 0 0 0 0 0 0 0 0 0 

 

2 

R 1,178 1,711 1,912 2,089 1,652 1,356 1,440 2,537 2,925 2,740 3,244 2,407 

O 0 0 0 0 0 0 0 0 0 0 0 0 

S 0 0 0 0 0 0 0 0 0 0 0 0 

 

3 

R 747 1,346 1,392 2,277 496 319 212 590 1,546 1,687 2,238 2,400 

O 0 0 0 0 0 0 0 0 0 0 0 0 

S 0 0 0 0 0 0 0 0 0 0 0 0 

 

4 

R 1,701 766 1,687 1,783 1,522 874 1,950 1,950 1,950 1,950 1,950 1,950 

O 0 0 0 0 7 0 0 0 0 0 0 0 

S 0 0 0 0 0 0 32 0 0 390 54 0 

 

5 

R 1,075 1,605 1,666 1,666 1,666 1,666 1,320 602 885 531 756 602 

O 0 0 0 0 0 0 0 0 0 0 0 0 

S 0 0 0 0 183 329 0 0 0 0 0 0 

M: Method, R: Regular time, O: overtime, S: Subcontracted 

 

Table A.2 Worker plan 

 
Levels 

Period 

 1 2 3 4 5 6 7 8 9 10 11 12 

Labor 1 21 21 21 21 21 21 21 21 21 21 21 21 

 2 34 27 27 27 27 27 27 27 27 27 27 27 

 3 36 36 19 14 14 14 14 14 14 14 14 14 

 4 8 1 1 0 0 0 0 0 0 0 0 0 

 5 2 0 0 0 0 0 0 0 0 0 0 0 

 

Firing 1 0 0 0 0 0 0 0 0 0 0 0 0 

 2 0 7 0 0 0 0 0 0 0 0 0 0 

 3 0 0 17 5 0 0 0 0 0 0 0 0 

 4 0 7 0 1 0 0 0 0 0 0 0 0 

 5 0 2 0 0 0 0 0 0 0 0 0 0 
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Table A.3 Inventory level of raw materials and final products 
  Period 

  1 2 3 4 5 6 7 8 9 10 11 12 

Raw material 

1 20 20 20 20 20 20 20 20 20 20 20 20 

2 20 20 20 20 20 20 20 20 20 20 20 20 

3 20 20 20 20 20 20 20 20 20 20 20 20 

4 12 12 12 12 12 12 12 12 12 12 12 12 

5 15 15 15 15 15 15 15 15 15 15 15 15 

6 20 20 20 20 20 20 20 20 20 20 20 20 

7 20 20 20 20 20 20 20 20 20 20 20 20 

8 20 20 20 20 20 20 20 20 20 20 20 20 

9 15 15 15 15 15 15 15 15 15 15 15 15 

10 20 20 20 20 20 20 20 20 20 20 20 20 

 

Product 

1 1,052 987 865 0 0 0 17 0 0 0 0 0 

2 0 0 0 0 0 0 0 0 294 615 0 0 

3 0 0 0 0 0 0 0 0 0 0 527 0 

4 0 0 0 1 7 374 1,376 1,603 379 182 0 0 

5 0 330 745 75 1 0 0 0 0 0 0 0 

 

Table A.4 Procurement plan 

  Period 

Supplier RM 1 2 3 4 5 6 7 8 9 10 11 12 

1 

1 3,500 3,500 3,500 3,500 3,500 3,500 3,500 3,500 3,500 3,500 3,500 3,500 

2 3,500 3,500 3,500 3,500 2,975 3,500 3,500 2,724 3,500 3,500 3,500 3,500 

3 1,084 3,500 3,136 3,500 3,500 3,500 792 3,500 3,500 3,500 3,500 3,500 

4 3,500 3,500 3,500 3,500 0 3,279 3,279 602 3,500 3,500 3,500 3,500 

5 3,085 3,085 3,500 3,500 3,500 2,455 3,500 3,500 3,500 3,500 3,500 3,500 

6 2,500 2,269 2,385 2,500 2,500 2,500 2,498 2,500 2,500 2,500 2,500 2,500 

7 2,005 0 3,585 3,585 360 0 0 0 0 3,350 3,040 0 

8 3,269 3,500 3,269 3,500 3,500 3,293 3,498 3,500 3,500 3,500 3,500 3,269 

9 2,585 2,585 3,000 2,585 2,779 2,585 3,000 2,475 2,585 2,585 2,585 3,000 

10 3,293 3,500 3,500 3,500 3,500 3,500 3,498 3,500 3,500 3,500 3,500 3,500 

 

2 

1 3,000 3,000 3,000 3,000 1,598 2,293 2,764 2,838 3,000 3,000 3,000 3,000 

2 219 1,391 2,946 1,884 0 206 398 0 1,922 1,229 2,399 219 

3 221 2,767 0 3,000 221 221 0 831 2,741 1,989 3,000 2,511 

4 146 1,818 3,500 3,500 0 0 0 0 1,458 1,658 3,012 1,758 

5 0 0 1,364 1,910 474 0 665 2,076 3,000 3,000 3,000 474 

6 1,646 3,000 3,000 3,000 2,078 2,834 2,633 3,000 3,000 3,000 3,000 3,000 

7 0 0 0 0 0 0 0 0 0 0 0 0 

8 3,500 1,900 3,500 983 2,385 0 126 3,024 358 3,500 3,500 3,500 

9 0 0 584 0 0 0 43 0 0 0 0 0 

10 3,500 3,500 3,500 3,500 3,500 3,500 2,743 3,500 3,500 3,500 3,500 3,500 

 

3 

1 1 0 0 0 0 0 0 0 2256 0 3352 0 

2 3,000 3,000 3,000 3,000 3,000 3,000 3,000 3,000 3,000 3,000 3,000 3,000 

3 207 0 0 0 207 207 0 0 0 0 0 0 

4 4,000 4,000 4,000 4,000 3,892 2,595 3,369 4,000 4,000 4,000 4,000 4,000 

5 3,748 3,474 4,000 4,000 4,000 4,000 3,999 4,000 4,000 4,000 4,000 4,000 

6 0 0 0 527 0 0 195 1,924 2,700 3,500 3,500 1,664 

7 343 929 0 75 343 0 2,263 1,327 3,026 343 343 3,461 

8 0 0 0 0 0 0 1,994 0 0 1,672 286 0 

9 3,489 1,705 3,500 3,098 575 1,801 3,499 0 962 1,604 590 0 

10 1,954 1,200 3,000 3,000 2,277 250 2,769 1,234 3,000 3,000 3,000 3,000 
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4 

1 0 1,370 2,412 2,589 0 0 0 0 148 2,319 148 2,036 

2 2,987 3,500 3,500 3,500 2,777 3,500 3,500 3,500 3,500 3,500 3,500 3,087 

3 2,563 0 3,500 1,198 1,918 1,737 3,500 0 0 0 494 0 

4 3,000 3,000 3,000 3,000 3,000 3,000 3,000 3,000 3,000 3,000 3,000 3,000 

5 0 0 0 0 237 0 0 0 135 191 752 1,342 

6 3,313 451 3,500 3,500 3,313 0 3,500 3,500 3,500 3,500 3,500 3,500 

7 3,500 3,500 3,029 3,500 3,500 3,448 3,499 3,500 3,174 3,500 3,500 3,500 

8 1,732 0 1,988 3,500 0 2,091 3,500 0 3,500 0 0 403 

9 3,500 3,500 3,500 3,500 3,500 3,500 3,500 3,038 3,500 3,500 3,500 3,485 

10 0 0 1,177 3,235 0 0 0 0 712 1,456 2,000 1,854 

 

Table A.5 Distribution plan 

  Period 

Customer Product 1 2 3 4 5 6 7 8 9 10 11 12 

1 

1 118 295 413 354 118 236 295 0 118 177 118 118 

2 236 295 354 413 236 236 236 413 472 531 590 413 

3 177 236 295 354 118 59 0 118 236 295 354 472 

4 295 118 354 295 236 118 236 354 472 472 472 354 

5 177 236 236 472 354 290 241 118 177 118 118 83 

 

2 

1 224 413 637 696 142 378 448 236 212 224 153 130 

2 330 389 378 673 437 389 342 814 791 767 1121 507 

3 248 437 578 472 177 83 118 189 389 448 472 732 

4 354 212 437 484 366 153 319 543 909 920 614 696 

5 342 472 260 814 496 314 335 224 224 142 201 165 

 

3 

1 106 224 35 94 47 354 165 118 153 59 71 24 

2 71 295 625 165 177 94 189 224 389 342 661 531 

3 106 83 165 472 12 71 94 118 189 307 236 720 

4 224 153 271 47 189 24 118 212 637 602 248 123 

5 94 201 177 342 330 354 94 24 283 59 142 130 

 

4 

1 201 684 885 1038 342 413 661 0 271 366 295 389 

2 543 732 555 838 802 637 673 1086 979 779 1487 956 

3 236 590 354 979 189 106 0 165 732 637 649 1003 

4 838 283 625 956 732 212 307 614 1156 543 852 777 

5 472 366 578 708 743 1038 650 236 201 212 295 224 

 

  

Ref. code: 25636122040626BKR



88 
 
 

    

APPENDIX B 

OPTIMAL SATISFACTION LEVEL OF EACH OBJECTIVE 

FROM THE THREE APPROACHES 

 

 

Table B.1 Optimal satisfaction level of each objective from the three approaches 

Scenario 

The order of weight 

importance for each 

objective function 

Model 
TC 

(𝜇1) 

CS 

(𝜇1) 

RCW 

(𝜇1) 

TVP 

(𝜇1) 

Weight-

consistent 

solutions 

1 θ1 > θ2 > θ3 > θ4 

Zimmerman 0.7696 0.9101 0.7765 0.7699 No 

TH 0.8990 1.0000 1.0000 0.6023 No 

Proposed 0.9795 0.8206 0.5412 0.2835 Yes 

2 θ1 > θ2 > θ4 > θ3 

Zimmerman 0.7696 0.9101 0.7765 0.7699 No 

TH 0.7652 0.9997 1.0000 0.7658 No 

Proposed 0.9489 0.9171 0.3529 0.6255 Yes 

3 θ1 > θ3 > θ2 > θ4 

Zimmerman 0.7696 0.9101 0.7765 0.7699 No 

TH 0.7513 1.0000 1.0000 0.7512 No 

Proposed 0.9376 0.8036 0.8706 0.5825 Yes 

4 θ1 > θ3 > θ4 > θ2 

Zimmerman 0.7696 0.9101 0.7765 0.7699 No 

TH 0.9314 1.0000 1.0000 0.5905 No 

Proposed 0.9684 0.1098 0.2824 0.2353 Yes 

5 θ1 > θ4 > θ2 > θ3 

Zimmerman 0.7696 0.9101 0.7765 0.7699 No 

TH 0.7822 0.9997 1.0000 0.7361 No 

Proposed 0.8724 0.4361 0.1647 0.6979 Yes 

6 θ1 > θ4 > θ3 > θ2 

Zimmerman 0.7696 0.9101 0.7765 0.7699 No 

TH 0.7682 0.9988 1.0000 0.7681 No 

Proposed 0.7927 0.6651 0.6941 0.7520 Yes 

7 θ2 > θ1 > θ3 > θ4 

Zimmerman 0.7696 0.9101 0.7765 0.7699 No 

TH 0.7484 1.0000 1.0000 0.7483 No 

Proposed 0.8965 1.0000 0.8118 0.6700 Yes 

8 θ2 > θ1 > θ4 > θ3 

Zimmerman 0.7696 0.9101 0.7765 0.7699 No 

TH 0.7728 0.9997 1.0000 0.7404 No 

Proposed 0.7500 1.0000 0.2471 0.5000 Yes 

9 θ2 > θ3 > θ1 > θ4 

Zimmerman 0.7696 0.9101 0.7765 0.7699 No 

TH 0.7612 1.0000 1.0000 0.7612 Yes 

Proposed 0.7576 1.0000 0.8235 0.7247 Yes 

10 θ2 > θ3 > θ4 > θ1 

Zimmerman 0.7696 0.9101 0.7765 0.7699 Yes 

TH 0.7563 0.9998 1.0000 0.7576 No 

Proposed 0.6134 0.9998 0.8471 0.7302 Yes 

11 θ2 > θ4 > θ1 > θ3 

Zimmerman 0.7696 0.9101 0.7765 0.7699 No 

TH 0.7599 0.9993 1.0000 0.7598 No 

Proposed 0.3529 1.0000 0.0588 0.5490 Yes 

12 θ2 > θ4 > θ3 > θ1 

Zimmerman 0.7696 0.9101 0.7765 0.7699 No 

TH 0.7604 1.0000 1.0000 0.7604 No 

Proposed 0.4200 1.0000 0.4941 0.5750 Yes 

13 θ3 > θ1 > θ2 > θ4 

Zimmerman 0.7696 0.9101 0.7765 0.7699 No 

TH 0.7407 1.0000 1.0000 0.7407 No 

Proposed 0.8437 0.6874 1.0000 0.5937 Yes 

14 θ3 > θ1 > θ4 > θ2 

Zimmerman 0.7696 0.9101 0.7765 0.7699 No 

TH 0.8064 0.9998 1.0000 0.7435 No 

Proposed 0.8500 0.2499 1.0000 0.4000 Yes 
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15 θ3 > θ2 > θ1 > θ4 

Zimmerman 0.7696 0.9101 0.7765 0.7699 No 

TH 0.7640 1.0000 1.0000 0.7640 Yes 

Proposed 0.7333 0.8999 1.0000 0.6999 Yes 

16 θ3 > θ2 > θ4 > θ1 

Zimmerman 0.7696 0.9101 0.7765 0.7699 No 

TH 0.7127 1.0000 1.0000 0.7164 Yes 

Proposed 0.0344 0.0688 1.0000 0.0459 Yes 

17 θ3 > θ4 > θ1 > θ2 

Zimmerman 0.7696 0.9101 0.7765 0.7699 No 

TH 0.7587 0.9997 1.0000 0.7606 No 

Proposed 0.4524 0.4285 1.0000 0.5000 Yes 

18 θ3 > θ4 > θ2 > θ1 

Zimmerman 0.7696 0.9101 0.7765 0.7699 No 

TH 0.7507 1.0000 1.0000 0.7506 No 

Proposed 0.3947 0.5000 1.0000 0.7368 Yes 

19 θ4 > θ1 > θ2 > θ3 

Zimmerman 0.7696 0.9101 0.7765 0.7699 No 

TH 0.7606 1.0000 1.0000 0.7605 No 

Proposed 0.4403 0.2287 0.1176 0.9510 Yes 

20 θ4 > θ1 > θ3 > θ2 

Zimmerman 0.7696 0.9101 0.7765 0.7699 No 

TH 0.7683 1.0000 1.0000 0.7682 No 

Proposed 0.7280 0.2803 0.3882 0.7942 Yes 

21 θ4 > θ2 > θ1 > θ3 

Zimmerman 0.7696 0.9101 0.7765 0.7699 No 

TH 0.7616 1.0000 1.0000 0.7615 No 

Proposed 0.6250 0.6250 0.3647 0.8756 Yes 

22 θ4 > θ2 > θ3 > θ1 

Zimmerman 0.7696 0.9101 0.7765 0.7699 No 

TH 0.7632 1.0000 1.0000 0.7631 No 

Proposed 0.6279 0.7790 0.7176 0.8691 Yes 

23 θ4 > θ3 > θ1 > θ2 

Zimmerman 0.7696 0.9101 0.7765 0.7699 No 

TH 0.7606 1.0000 1.0000 0.7606 No 

Proposed 0.5639 0.4098 0.7176 0.8967 Yes 

24 θ4 > θ3 > θ2 > θ1 

Zimmerman 0.7696 0.9101 0.7765 0.7699 No 

TH 0.7577 1.0000 1.0000 0.7576 No 

Proposed 0.5140 0.6283 0.8000 0.9245 Yes 
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APPENDIX C 

OBTAINED SOLUTIONS OF DIFFERENT VALUE OF α AND γ 

 

 

Table C.1 Obtained solutions of different value of α and γ 

γ α 𝜆 𝜇1(%) 𝜇2(%) 𝜇3(%) 𝜇4(%) 𝑍1($) 
𝑍2 

(units) 

𝑍3 

(workers) 
𝑍4(TVP) 

0 

0.5 78.36 100.00 85.71 56.47 42.35 4,842,557.76 841 37 291,470.05 

0.6 78.36 100.00 85.71 56.47 42.35 4,842,557.76 841 37 291,464.45 

0.7 78.36 100.00 85.71 56.47 42.35 4,842,568.19 841 37 291,471.10 

0.8 78.10 100.00 85.71 56.47 40.61 4,842,557.76 841 37 289,477.75 

0.9 76.34 97.29 83.37 55.29 41.47 4,971,733.43 979 38 290,459.40 

1 71.60 91.28 78.24 51.76 38.82 5,257,894.80 1281 41 287,436.25 

 

0.1 

0.5 74.76 100.00 85.71 56.47 42.35 4,842,557.76 841 37 291,471.10 

0.6 74.76 100.00 85.71 56.47 42.35 4,842,557.76 841 37 291,465.10 

0.7 74.76 100.00 85.71 56.47 42.35 4,842,557.76 841 37 291,470.75 

0.8 74.76 100.00 85.71 56.47 42.35 4,842,561.58 841 37 291,469.80 

0.9 72.34 97.11 83.23 54.12 40.59 4,980,150.77 987 39 289,454.25 

1 69.26 93.01 79.71 51.76 38.82 5,175,313.82 1194 41 287,437.80 

 

0.2 

0.5 71.16 100.00 85.71 56.47 42.35 4,842,557.76 841 37 291,467.65 

0.6 71.16 100.00 85.71 56.47 42.35 4,842,557.76 841 37 291,470.95 

0.7 71.16 100.00 85.71 56.47 42.35 4,842,567.11 841 37 291,471.05 

0.8 71.16 100.00 85.71 56.47 42.35 4,842,571.76 841 37 291,471.00 

0.9 69.21 97.94 83.93 54.12 40.59 4,940,544.27 946 39 289,451.15 

1 65.14 91.48 78.41 51.76 38.82 5,248,346.32 1271 41 287,437.95 

 

0.3 

0.5 67.56 100.00 85.71 56.47 42.35 4,842,557.76 841 37 291,469.95 

0.6 67.56 100.00 85.71 56.47 42.35 4,842,557.76 841 37 291,470.85 

0.7 67.55 100.00 85.69 56.47 42.35 4,842,557.76 842 37 291,467.90 

0.8 67.55 100.00 85.69 56.47 42.35 4,842,669.84 842 37 291,469.45 

0.9 65.47 97.91 83.20 54.12 40.59 4,942,033.27 989 39 289,454.55 

1 62.12 92.13 78.95 51.76 38.82 5,217,276.76 1239 41 287,436.50 

 

0.4 

0.5 63.96 100.00 85.71 56.47 42.35 4,842,557.76 841 37 291,470.50 

0.6 63.95 100.00 85.69 56.47 42.35 4,842,557.76 842 37 291,469.90 

0.7 63.96 100.00 85.71 56.47 42.35 4,842,557.76 841 37 291,471.10 

0.8 63.96 100.00 85.71 56.47 42.35 4,842,557.76 841 37 291,471.10 

0.9 62.11 98.10 84.06 54.12 40.58 4,933,022.55 938 39 289,450.60 

1 58.58 91.54 78.44 51.76 38.82 5,245,758.76 1269 41 287,436.30 

 

0.5 

0.5 60.36 100.00 85.71 56.47 42.35 4,842,557.76 841 37 291,470.50 

0.6 60.35 100.00 85.71 56.47 42.34 4,842,557.76 841 37 291,461.75 

0.7 60.36 100.00 85.71 56.47 42.35 4,842,648.90 841 37 291,470.85 

0.8 60.36 100.00 85.71 56.47 42.35 4,842,557.76 841 37 291,469.25 

0.9 58.77 96.84 82.98 55.29 41.47 4,993,245.57 1002 38 290,460.05 

1 55.57 92.48 79.26 51.76 38.82 5,200,875.81 1221 41 287,438.00 

 

0.6 

0.5 85.74 82.18 100.00 100.00 82.17 5,691,625.66 0 0 336,972.00 

0.6 85.05 81.32 100.00 100.00 81.30 5,732,351.60 0 0 335,981.30 

0.7 83.54 79.43 100.00 100.00 79.43 5,822,386.95 0 0 333,836.75 

0.8 82.48 78.10 100.00 100.00 78.10 5,885,657.17 0 0 332,321.25 

0.9 80.33 75.43 99.90 100.00 75.43 6,012,784.80 6 0 329,269.05 

1 79.62 74.53 100.00 100.00 74.53 6,055,775.82 0 0 328,236.60 
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0.7 

0.5 85.34 82.76 99.97 100.00 82.75 5,663,890.42 2 0 337,633.40 

0.6 83.31 80.37 100.00 100.00 80.36 5,777,462.18 0 0 334,904.05 

0.7 81.63 78.39 100.00 100.00 78.39 5,871,781.86 0 0 332,651.50 

0.8 81.68 78.45 100.00 100.00 78.45 5,869,227.82 0 0 332,715.05 

0.9 80.43 76.98 99.97 100.00 76.98 5,938,946.62 2 0 331,037.75 

1 78.12 74.27 99.97 100.00 74.26 6,068,399.42 2 0 327,936.20 

 

0.8 

0.5 84.76 83.08 99.95 100.00 83.07 5,648,499.37 3 0 338,004.10 

0.6 83.02 81.13 100.00 100.00 81.13 5,741,177.21 0 0 335,781.15 

0.7 81.07 78.96 100.00 100.00 79.00 5,844,611.94 0 0 333,347.80 

0.8 80.36 78.18 100.00 100.00 78.17 5,881,754.34 0 0 332,404.95 

0.9 78.46 76.06 100.00 100.00 76.06 5,982,793.50 0 0 329,991.20 

1 76.68 74.10 99.97 100.00 74.09 6,076,140.95 2 0 327,743.25 

 

0.9 

0.5 82.62 81.72 99.93 100.00 81.71 5,713,162.35 4 0 336,441.80 

0.6 81.64 80.68 100.00 100.00 80.67 5,762,997.83 0 0 335,258.55 

0.7 79.72 78.70 100.00 97.65 78.70 5,857,283.09 0 2 333,004.50 

0.8 79.38 78.36 99.95 97.65 78.35 5,873,540.08 3 2 332,600.45 

0.9 77.13 75.98 100.00 97.65 75.98 5,986,879.89 0 2 329,897.15 

1 75.04 73.98 99.97 88.24 73.97 6,082,055.55 2 10 327,602.80 

 

1 

0.5 83.06 83.06 97.11 83.53 83.07 5,649,288.92 170 14 338,003.30 

0.6 81.18 81.66 96.31 81.18 81.64 5,715,933.80 217 16 336,364.10 

0.7 80.00 80.34 92.46 80.00 80.31 5,779,232.37 444 17 334,844.45 

0.8 78.82 79.03 91.73 78.82 79.02 5,841,280.87 487 18 333,371.25 

0.9 77.36 77.36 91.00 77.65 77.36 5,920,829.06 530 19 331,479.25 

1 75.98 75.98 90.27 76.47 76.00 5,986,784.48 573 20 329,919.60 
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APPENDIX D 

IBM CPLEX CODING FOR FUZZY MULTIPLE OBJECTIVE 

CREDIBILITY BASED CHANCE CONSTRAINED 

PROGRAMMING MODEL 

 

 

/*One-demensional*/ 

/*********************************************/ 

{string} Rset = ...; //Number types of raw materials         (r=1…R) 

{string} Sset = ...; //Number of suppliers                   (s=1…S) 

{string} Jset = ...; //Number of customers,                  (j=1…J) 

{string} Nset = ...; //Number types of product               (n=1…N) 

{string} Kset = ...; //Number of worker levels               (k=1…K) 

{int}    Tset = ...; //Number of periods in planning horizon (t=1…T) 

 

/*Two-demensional*/ 

/*********************************************/ 

tuple TwoIndex{ 

string Index1; 

string Index2; 

}; 

{TwoIndex} SRset = ...; 

{TwoIndex} NJset = ...; 

{TwoIndex} RNset = ...; 

 

/*Fuzzy Parameters*/ 

/*******************************************************************/ 

float   RTPC_o[t in Tset] = ...; 

float   RTPC_m[t in Tset] = ...; 

float   RTPC_p[t in Tset] = ...; 

 

float   OTPC_o[t in Tset] = ...; 

float   OTPC_m[t in Tset] = ...; 

float   OTPC_p[t in Tset] = ...; 

 

float   STPC_o[t in Tset] = ...; 

float   STPC_m[t in Tset] = ...; 

float   STPC_p[t in Tset] = ...; 

 

float   RMSC_o[<s,r> in SRset, t in Tset] = ...; 

float   RMSC_m[<s,r> in SRset, t in Tset] = ...; 

float   RMSC_p[<s,r> in SRset, t in Tset] = ...; 

 

float   SC_o[k in Kset, t in Tset] = ...; 

float   SC_m[k in Kset, t in Tset] = ...; 

float   SC_p[k in Kset, t in Tset] = ...; 

 

float   HC_o[k in Kset, t in Tset] = ...; 

float   HC_m[k in Kset, t in Tset] = ...; 

float   HC_p[k in Kset, t in Tset] = ...; 

 

float   FC_o[k in Kset, t in Tset] = ...; 

float   FC_m[k in Kset, t in Tset] = ...; 
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float   FC_p[k in Kset, t in Tset] = ...; 

float   IRMC_o[r in Rset, t in Tset] = ...; 

float   IRMC_m[r in Rset, t in Tset] = ...; 

float   IRMC_p[r in Rset, t in Tset] = ...; 

 

float   IPC_o [n in Nset, t in Tset] = ...; 

float   IPC_m [n in Nset, t in Tset] = ...; 

float   IPC_p [n in Nset, t in Tset] = ...; 

 

float   TRMC_o[s in Sset, t in Tset] = ...; 

float   TRMC_m[s in Sset, t in Tset] = ...; 

float   TRMC_p[s in Sset, t in Tset] = ...; 

 

float   TPC_o [j in Jset, t in Tset] = ...; 

float   TPC_m [j in Jset, t in Tset] = ...; 

float   TPC_p [j in Jset, t in Tset] = ...; 

 

float   PSC_o [<n,j> in NJset, t in Tset] = ...; 

float   PSC_m [<n,j> in NJset, t in Tset] = ...; 

float   PSC_p [<n,j> in NJset, t in Tset] = ...; 

 

float   AFRS_o[<s,r> in SRset] = ...; 

float   AFRS_m[<s,r> in SRset] = ...; 

float   AFRS_p[<s,r> in SRset] = ...; 

 

float   AFRP_o[r in Rset] = ...; 

float   AFRP_m[r in Rset] = ...; 

float   AFRP_p[r in Rset] = ...; 

 

float   ASL_o [s in Sset] = ...; 

float   ASL_m [s in Sset] = ...; 

float   ASL_p [s in Sset] = ...; 

 

float   ASLP_o = ...; 

float   ASLP_m = ...; 

float   ASLP_p = ...; 

 

float   D_o [<n,j> in NJset, t in Tset] = ...; 

float   D_m [<n,j> in NJset, t in Tset] = ...; 

float   D_p [<n,j> in NJset, t in Tset] = ...; 

 

/*Deterministic Parameters*/ 

/*******************************************************************/ 

float   MaxPS[n in Nset, t in Tset] = ...; 

float   MaxMA[n in Nset, t in Tset] = ...; 

float   MaxWSA[t in Tset] = ...; 

float   MaxRS[<s,r> in SRset, t in Tset] = ...; 

float   MHU[n in Nset, t in Tset] = ...; 

float   WSP[n in Nset, t in Tset] = ...; 

float   WSRM[r in Rset, t in Tset] = ...; 

float   NoRM [<r,n> in RNset] = ...; 

float   NoL_0[k in Kset] = ...; 

float   RTPA[t in Tset] = ...; 

float   OTPA[t in Tset] = ...; 

float   STPA[t in Tset] = ...; 

float   PTP[n in Nset] = ...; 

float   SCRM = ...; 

float   SCP  = ...; 
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float   Prod[k in Kset] = ...; 

float   FWV  = ...; 

float   TSSQ[s in Sset] = ...; 

int     IP_0 [n in Nset] = ...; 

int     IRM_0[r in Rset] = ...; 

 

float   Z1NIS = ...; //NIS of objecive function Z1 

float   Z2NIS = ...; //NIS of objecive function Z2 

float   Z3NIS = ...; //NIS of objecive function Z2 

float   Z4NIS = ...; //NIS of objecive function Z4 

 

float   Z1PIS = ...; //PIS of objecive function Z1 

float   Z2PIS = ...; //PIS of objecive function Z2 

float   Z3PIS = ...; //PIS of objecive function Z3 

float   Z4PIS = ...; //PIS of objecive function Z4 

 

float   W1 = ...; //Weighted additive importance for Z1 

float   W2 = ...; //Weighted additive importance for Z2 

float   W3 = ...; //Weighted additive importance for Z3 

float   W4 = ...; //Weighted additive importance for Z4 

 

float   Alpha = ...; //Acceptable feasible degree  

float   Gamma = ...; //Coefficient compensation 

 

/*Decision Variables*/ 

/*******************************************************************/ 

dvar int+ QRTP[n in Nset, t in Tset]; 

dvar int+ QOTP[n in Nset, t in Tset];  

dvar int+ QSTP[n in Nset, t in Tset]; 

dvar int+ QRMS[<s,r> in SRset, t in Tset];  

dvar int+ QPSC[<n,j> in NJset, t in Tset];      

dvar int+ QW [k in Kset, t in Tset];           

dvar int+ QWH[k in Kset, t in Tset];          

dvar int+ QWF[k in Kset, t in Tset];          

dvar int+ IP [n in Nset, t in Tset];           

dvar int+ IRM[r in Rset, t in Tset];          

dvar int+ QSP[<n,j> in NJset, t in Tset];         

dvar float+ U; 

dvar float+ Z1; //TotalCostSC 

 

/*Objective Functions*/ 

/*Credibility-Based Fuzzy Chance-Constrained*/ 

/*******************************************************************/ 

dexpr float ProductionCost_CFCCP=sum(n in Nset, t in 

Tset)PTP[n]*((((2-2*Alpha)*RTPC_m[t])+((2*Alpha-

1)*RTPC_p[t]))*QRTP[n,t])+sum(n in Nset, t in Tset)PTP[n]*((((2-

2*Alpha)*OTPC_m[t])+((2*Alpha-1)*OTPC_p[t]))*QOTP[n,t])+sum(n in 

Nset, t in Tset)PTP[n]*((((2-2*Alpha)*STPC_m[t])+((2*Alpha-

1)*STPC_p[t]))*QSTP[n,t]); 

 

dexpr float PurchasingCost_CFCCP=sum(<s,r> in SRset, t in Tset)(((2-

2*Alpha)*RMSC_m[<s,r>,t])+((2*Alpha-

1)*RMSC_p[<s,r>,t]))*QRMS[<s,r>,t]; 

 

dexpr float LaborWage_CFCCP=sum(k in Kset, t in Tset)10*(((2-

2*Alpha)*SC_m[k,t])+((2*Alpha-1)*SC_p[k,t]))*QW[k,t]; 
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dexpr float FiringCost_CFCCP=sum(k in Kset, t in Tset)10*(((2-

2*Alpha)*FC_m[k,t])+((2*Alpha-1)*FC_p[k,t]))*QWF[k,t]; 

dexpr float HiringCost_CFCCP=sum(k in Kset, t in Tset)10*(((2-

2*Alpha)*HC_m[k,t])+((2*Alpha-1)*HC_p[k,t]))*QWH[k,t]; 

 

dexpr float HoldingCostRM_CFCCP=sum(r in Rset, t in Tset)(((2-

2*Alpha)*IRMC_m[r,t])+((2*Alpha-1)*IRMC_p[r,t]))*IRM[r,t]; 

 

dexpr float InventoryFinalProduct_CFCCP=sum(n in Nset, t in 

Tset)(((2-2*Alpha)*IPC_m[n,t])+((2*Alpha-1)*IPC_p[n,t]))*IP[n,t]; 

 

dexpr float TransportationCostRM_CFCCP=sum(<s,r> in SRset, t in Tset) 

(((2-2*Alpha)*TRMC_m[s,t])+((2*Alpha-1)*TRMC_p[s,t]))*QRMS[<s,r>,t]; 

 

dexpr float TransportationCostFP_CFCCP=sum(<n,j> in NJset, t in Tset) 

(((2-2*Alpha)*TPC_m[j,t])+((2*Alpha-1)*TPC_p[j,t]))*QPSC[<n,j>,t]; 

 

dexpr float ShortageCost_CFCCP=sum(<n,j> in NJset, t in Tset)(((2-

2*Alpha)*PSC_m[<n,j>,t])+((2*Alpha-1)*PSC_p[<n,j>,t]))*QSP[<n,j>,t]; 

 

dexpr float TotalCostSC_CFCCP=ProductionCost_CFCCP 

                             +PurchasingCost_ 

                             +LaborWage_CFCCP 

                             +FiringCost_CFCCP 

                             +HiringCost_CFCCP 

                             +HoldingCostRM_CFCCP 

                             +InventoryFinalProduct_CFCCP 

                             +TransportationCostRM_CFCCP 

                             +TransportationCostFP_CFCCP 

                             +ShortageCost_CFCCP; 

/*******************************************************************/ 

/*Shortage of product*/ 

dexpr float ShortageProduct=sum(<n,j> in NJset, t in 

Tset)QSP[<n,j>,t]; 

dexpr float Z2 = ShortageProduct; 

 

/*Rate of changes in the workforce level*/ 

dexpr float RateChangeWorkforce=sum(k in Kset, t in 

Tset)(QWH[k,t]+QWF[k,t]); 

dexpr float Z3 = RateChangeWorkforce; 

 

/*Total value of purchasing*/ 

dexpr float TotalValuePurchasing=sum(s in Sset)TSSQ[s]*sum(r in Rset, 

t in Tset)QRMS[<s,r>,t]; 

dexpr float Z4 = TotalValuePurchasing;   

 

//Membership function 

dexpr float U_Z1 = (Z1NIS-Z1)/(Z1NIS-Z1PIS); 

dexpr float U_Z2 = (Z2NIS-Z2)/(Z2NIS-Z2PIS); 

dexpr float U_Z3 = (Z3NIS-Z3)/(Z3NIS-Z3PIS); 

dexpr float U_Z4 = (Z4-Z4NIS)/(Z4PIS-Z4NIS); 

 

dexpr float satisfaction=Gamma*U+((1-

Gamma)*(W1*U_Z1+W2*U_Z2+W3*U_Z3+W4*U_Z4)); 

 

//Objective function (satisfaction) 

maximize satisfaction;  
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/*Constraint*/ 

/*******************************************************************/ 

subject to { 

Z1 >= TotalCostSC_CFCCP; 

 

/*Constraint (5): final product inventory*/  

forall(n in Nset, t in 

Tset:t==1)IP[n,t]==IP_0[n]+QRTP[n,t]+QOTP[n,t]+QSTP[n,t]-sum(j in 

Jset:<n,j> in NJset)QPSC[<n,j>,t]; 

 

forall(n in Nset, t in Tset: t>1)IP[n,t]==IP[n,t-

1]+QRTP[n,t]+QOTP[n,t]+QSTP[n,t]-sum(j in Jset:<n,j> in 

NJset)QPSC[<n,j>,t]; 

 

/*******************************************************************/ 

/*Constraint (6): raw materials inventory*/ 

forall(r in Rset, t in Tset:t==1)IRM[r,t]==IRM_0[r]+sum(s in 

Sset:<s,r> in SRset)QRMS[<s,r>,t]-sum(n in Nset:<r,n> in 

RNset)(QRTP[n,t]+QOTP[n,t]+QSTP[n,t])*NoRM[<r,n>]; 

 

forall(r in Rset, t in Tset:t>1)IRM[r,t]==IRM[r,t-1]+sum(s in 

Sset:<s,r> in SRset)QRMS[<s,r>,t]-sum(n in Nset:<r,n> in 

RNset)(QRTP[n,t]+QOTP[n,t]+QSTP[n,t])*NoRM[<r,n>]; 

 

/*Constraint (7): initial workforce*/ 

forall(k in Kset, t in Tset:t==1)QW[k,t]==NoL_0[k]; 

 

/*Constraint (8): the workforce level*/ 

forall(k in Kset, t in Tset: t>1)QW[k,t]==QW[k,t-1]+QWH[k,t]-

QWF[k,t]; 

 

/*Constraint (9): available production time*/ 

forall(t in Tset)sum(k in 

Kset)QW[k,t]*Prod[k]*(RTPA[t]+OTPA[t])>=(1/60)*sum(n in 

Nset)(QRTP[n,t] + QOTP[n,t])*PTP[n]; 

 

/*Constraint (10): available time for the subcontractor */ 

forall(t in Tset)(1/60)*sum(n in Nset)QSTP[n,t]*PTP[n]<=STPA[t]; 

 

/*Constraint (11): maximum allowable of the subcontracting*/ 

forall(n in Nset, t in Tset)QSTP[n,t]<=MaxPS[n,t]; 

 

/*Constraint (12): the machine capacity*/ 

forall(n in Nset, t in 

Tset)MHU[n,t]*(QRTP[n,t]+QOTP[n,t])<=MaxMA[n,t]; 

 

/*Credibility based chance constrained*/  

/*******************************************************************/ 

/*Constraint (13): shortage in demand*/ 

forall(<n,j> in NJset, t in Tset:t==1)QSP[<n,j>,t]==round((2-

2*Alpha)*D_m[<n,j>,t]+(2*Alpha-1)*D_p[<n,j>,t])-QPSC[<n,j>,t]; 

forall(<n,j> in NJset, t in Tset: t>1)QSP[<n,j>,t]==QSP[<n,j>,t-

1]+round((2-2*Alpha)*D_m[<n,j>,t]+(2*Alpha-1)*D_p[<n,j>,t])-

QPSC[<n,j>,t]; 

 

forall(<n,j> in NJset, t in Tset)QSP[<n,j>,t]<=0.3*round((2-

2*Alpha)*D_m[<n,j>,t]+(2*Alpha-1)*D_p[<n,j>,t]); 

/*******************************************************************/ 
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/*Constraint (14): warehouse space*/ 

forall(t in Tset)sum(n in Nset:n in Nset)WSP[n,t]*IP[n,t]+sum(r in 

Rset)WSRM[r,t]*IRM[r,t]<=MaxWSA[t]; 

 

/*Constraint (15): raw materials inventory storage capacity*/ 

forall(t in Tset)sum(r in Rset)IRM[r,t]<=SCRM; 

 

/*Constraint (16): final product inventory storage capacity*/ 

forall(t in Tset)sum(n in Nset)IP[n,t]<=SCP; 

 

/*Constraint (17): the proportion of workforces*/ 

forall(t in Tset:t==1)sum(k in Kset)(QWH[k,t]+QWF[k,t])<=FWV*sum(k in 

Kset)QW[k,t]; 

 

forall(t in Tset:t >1)sum(k in Kset)(QWH[k,t]+QWF[k,t])<=FWV*sum(k in 

Kset)QW[k,t-1]; 

 

/*Constraint (18): supplier capacity*/ 

forall(<s,r> in SRset, t in Tset)QRMS[<s,r>,t]<=MaxRS[<s,r>,t]; 

 

/*Constraint (19): raw materials flow*/ 

forall(r in Rset, t in Tset)sum(n in 

Nset)NoRM[<r,n>]*(QRTP[n,t]+QOTP[n,t]+QSTP[n,t])<=sum(s in 

Sset)QRMS[<s,r>,t]; 

 

/*Credibility based chance constrained  

/*******************************************************************/ 

/*Constraint (20): the minimum acceptable levels of raw materials 

quality provided by each supplier*/ 

forall(r in Rset, t in Tset)sum(s in Sset)(((2-

2*Alpha)*AFRS_m[<s,r>])+((2*Alpha-

1)*AFRS_p[<s,r>]))*QRMS[<s,r>,t]<=(((2*Alpha-1)*AFRP_o[r])+((2-

2*Alpha)*AFRP_m[r]))*sum(s in Sset)QRMS[<s,r>,t]; 

 

/*Constraint (21): the minimum acceptable levels of on time delivery 

of each supplier*/ 

forall(t in Tset)sum(<s,r> in SRset)(((2*Alpha-1)*ASL_o[s])+((2-

2*Alpha)*ASL_m[s]))*QRMS[<s,r>,t]>=(((2-2*Alpha)*ASLP_m)+((2*Alpha-

1)*ASLP_p))*sum(<s,r> in SRset)QRMS[<s,r>,t]; 

/*******************************************************************/ 

 

/*Ranking constraint*/ 

//Case 1 

U_Z1 >= (W1/W2)*U_Z2;  

U_Z2 >= (W2/W3)*U_Z3;  

U_Z3 >= (W3/W4)*U_Z4;  

//Case 2 

U_Z1 >= (W1/W2)*U_Z2;  

U_Z2 >= (W2/W4)*U_Z4;  

U_Z4 >= (W4/W3)*U_Z3;  

//Case 3 

U_Z1 >= (W1/W3)*U_Z3;  

U_Z3 >= (W3/W2)*U_Z2;  

U_Z2 >= (W2/W4)*U_Z4;  

//Case 4 

U_Z1 >= (W1/W3)*U_Z3;  

U_Z3 >= (W3/W4)*U_Z4;  

U_Z4 >= (W4/W2)*U_Z2;  
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//Case 5 

U_Z1 >= (W1/W4)*U_Z4;  

U_Z4 >= (W4/W2)*U_Z2;  

U_Z2 >= (W2/W3)*U_Z3;  

//Case 6 

U_Z1 >= (W1/W4)*U_Z4;  

U_Z4 >= (W4/W3)*U_Z3;  

U_Z3 >= (W3/W2)*U_Z2;  

//Case 7 

U_Z2 >= (W2/W1)*U_Z1;  

U_Z1 >= (W1/W3)*U_Z3;  

U_Z3 >= (W3/W4)*U_Z4;  

//Case 8 

U_Z2 >= (W2/W1)*U_Z1;  

U_Z1 >= (W1/W4)*U_Z4;  

U_Z4 >= (W4/W3)*U_Z3;  

//Case 9 

U_Z2 >= (W2/W3)*U_Z3;  

U_Z3 >= (W3/W1)*U_Z1;  

U_Z1 >= (W1/W4)*U_Z4;  

//Case 10 

U_Z2 >= (W2/W3)*U_Z3;  

U_Z3 >= (W3/W4)*U_Z4;  

U_Z4 >= (W4/W1)*U_Z1;  

//Case 11 

U_Z2 >= (W2/W4)*U_Z4;  

U_Z4 >= (W4/W1)*U_Z1;  

U_Z1 >= (W1/W3)*U_Z3;  

//Case 12 

U_Z2 >= (W2/W4)*U_Z4;  

U_Z4 >= (W4/W3)*U_Z3;  

U_Z3 >= (W3/W1)*U_Z1;  

//Case 13 

U_Z3 >= (W3/W1)*U_Z1;  

U_Z1 >= (W1/W2)*U_Z2;  

U_Z2 >= (W2/W4)*U_Z4;  

//Case 14 

U_Z3 >= (W3/W1)*U_Z1;  

U_Z1 >= (W1/W4)*U_Z4;  

U_Z4 >= (W4/W2)*U_Z2;  

//Case 15 

U_Z3 >= (W3/W2)*U_Z2;  

U_Z2 >= (W2/W1)*U_Z1;  

U_Z1 >= (W1/W4)*U_Z4;  

//Case 16 

U_Z3 >= (W3/W2)*U_Z2;  

U_Z2 >= (W2/W4)*U_Z4;  

U_Z4 >= (W4/W1)*U_Z1;  

//Case 17 

U_Z3 >= (W3/W4)*U_Z4;  

U_Z4 >= (W4/W1)*U_Z1;  

U_Z1 >= (W1/W2)*U_Z2;  

//Case 18 

U_Z3 >= (W3/W4)*U_Z4;  

U_Z4 >= (W4/W2)*U_Z2;  

U_Z2 >= (W2/W1)*U_Z1;  
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//Case 19 

U_Z4 >= (W4/W1)*U_Z1;  

U_Z1 >= (W1/W2)*U_Z2;  

U_Z2 >= (W2/W3)*U_Z3;  

//Case 20 

U_Z4 >= (W4/W1)*U_Z1;  

U_Z1 >= (W1/W3)*U_Z3;  

U_Z3 >= (W3/W2)*U_Z2;  

//Case 21 

U_Z4 >= (W4/W2)*U_Z2;  

U_Z2 >= (W2/W1)*U_Z1;  

U_Z1 >= (W1/W3)*U_Z3;  

//Case 22 

U_Z4 >= (W4/W2)*U_Z2;  

U_Z2 >= (W2/W3)*U_Z3;  

U_Z3 >= (W3/W1)*U_Z1;  

//Case 23 

U_Z4 >= (W4/W3)*U_Z3;  

U_Z3 >= (W3/W1)*U_Z1;  

U_Z1 >= (W1/W2)*U_Z2;  

//Case 24 

U_Z4 >= (W4/W3)*U_Z3;  

U_Z3 >= (W3/W2)*U_Z2;  

U_Z2 >= (W2/W1)*U_Z1; 

 

/*Satisfaction*/ 

U <= U_Z1; 

U <= U_Z2; 

U <= U_Z3; 

U <= U_Z4; 

 

0 <= U <= 1;    

0 <= U_Z1 <= 1; 

0 <= U_Z2 <= 1; 

0 <= U_Z3 <= 1; 

0 <= U_Z4 <= 1; 

}  
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