AFUZZY CREDIBILITY BASED CHANCE CONSTRAINED
OPTIMIZATION MODEL FOR MULTIPLE OBJECTIVE
AGGREGATE PRODUCTION PLANNING PROBLEM
IN A SUPPLY CHAIN UNDER UNCERTAIN ENVIRONMENT

BY

MR. DOAN HOANG TUAN

A THESIS SUBMITTED IN PARTIAL FULFILLMENT OF THE
REQUIREMENTS FOR THE DEGREE OF

MASTER OF ENGINEERING

(LOGISTICS AND SUPPLY CHAIN SYSTEMS ENGINEERING)

SIRINDHORN INTERNATIONAL INSTITUTE OF TECHNOLOGY
THAMMASAT UNIVERSITY
ACADEMIC YEAR 2020
COPYRIGHT OF THAMMASAT UNIVERSITY

Ref. code: 25636122040626BKR



A FUZZY CREDIBILITY BASED CHANCE CONSTRAINED
OPTIMIZATION MODEL FOR MULTIPLE OBJECTIVE
AGGREGATE PRODUCTION PLANNING PROBLEM
IN A SUPPLY CHAIN UNDER UNCERTAIN ENVIRONMENT

BY

M.R DOAN HOANG TUAN

A THESIS SUBMITTED IN PARTIAL FULFILLMENT OF THE
REQUIREMENTS FOR THE DEGREE OF

MASTER OF ENGINEERING

(LOGISTICS AND SUPPLY CHAIN SYSTEMS ENGINEERING)

SIRINDHORN INTERNATIONAL INSTITUTE OF TECHNOLOGY
THAMMASAT UNIVERSITY
ACADEMIC YEAR 2020
COPYRIGHT OF THAMMASAT UNIVERSITY

Ref. code: 25636122040626BKR



THAMMASAT UNIVERSITY
SIRINDHORN INTERNATIONAL INSTITUTE OF TECHNOLOGY

THESIS
BY
MR. DOAN HOANG TUAN
ENTITLED
A FUZZY CREDIBILITY BASED CHANCE CONSTRAINED OPTIMIZATION
MODEL FOR MULTIPLE OBJECTIVE AGGREGATE PRODUCTION
PLANNING PROBLEM IN A SUPPLY CHAIN

UNDER UNCERTAIN ENVIRONMENT

was approved as partial fulfillment of the requirements for
the degree of Master of Engineering (Logistics and Supply Chain Systems Engineering)

on June 10, 2021

Chairperson / v ot k,
(Associate Professor Somrote Komolavanij, Ph.D.)
Member and Advisor N. ﬂ‘ .

' (Associate Professor Navee Chiadamrong, Ph.D.)
Member /D / IJ\W . W

(Associate Professor Pisal Yenradee, D.Eng.)
Director @W —./L_-—

(Professor Pruettha Nanakorn, D.Eng.)




Q@

Thesis Title A FUZZY CREDIBILITY BASED CHANCE
CONSTRAINED OPTIMIZATION MODEL
FOR MULTIPLE OBJECTIVE AGGREGATE
PRODUCTION PLANNING PROBLEM IN A
SUPPLY CHAIN UNDER UNCERTAIN
ENVIRONMENT

Author Mr. Doan Hoang Tuan

Degree Master of Engineering (Logistics and Supply
Chain Systems Engineering)
Faculty/University Sirindhorn International Institute of Technology/

Thammasat University

Thesis Advisor Associate Professor Navee Chiadamrong, Ph.D.
Academic Years 2020
ABSTRACT

This study focuses on developing a mathematical model for an Aggregate
Production Planning (APP) problem in a Supply Chain (SC) including multiple
suppliers, a production plant, and multiple customers under uncertain environments.
The uncertain conditions including uncertainties of customer demand, operation costs
(purchasing cost, production cost, transportation cost, and so on), production plant’s
allowable defective rate of raw material, and supplier’s service level. The proposed
model considers simultaneously four conflicting different objective functions, which
are (1) minimizing the total cost of Supply Chain (SC), (2) the minimizing of total
product shortages to enhance the customer’s satisfaction, (3) minimizing the variation
in changing workforce level and (4) maximizing total of purchasing cost. To solve the
proposed Fuzzy Multiple objective Mixed Integer Linear Programming (FMOMILP)
model, a hybrid approach has been developed by combining the Fuzzy Chance-

constrained Programming (FCCP) and the Fuzzy Multiple Objective Programming
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(FMOP). Firstly, the proposed fuzzy multiple objectives model is transformed into the
equivalent crisp multiple objectives model by using chance-constrained programming
based on the credibility measure of a fuzzy event. Secondly, the Fuzzy Multiple
Objective Linear Programming (FMOLP) integrating the concept of the weight-
consistent solution is applied to find the optimal efficient solutions. Then, a sensitivity
analysis is carried out to explore the impact of the uncertainty and generate a set of
optimal solutions (both the balance and unbalance compromise solution among four
conflicting objective functions and decision variables). The obtained outcomes can
assist to satisfy the decision-maker's aspiration, as well as provide more alternative
strategy selections based on their preferences. Finally, a case experiment is given to

demonstrate the validity and effectiveness of the proposed formulation model.
Keywords: Aggregate production planning, Supply chain, Credibility, Chance-

constrained modelling, Fuzzy Multiple Objective Optimization, Weight-

consistent solution.
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CHAPTER11
INTRODUCTION

Nowadays, the globalization of markets and international trade is rapid
development. Besides, the customer’s expectation is increasingly higher and higher in
many different aspects. Therefore, satisfying customer’s requirement in a competitive
and uncertain market like that pose a significant challenge for companies and
enterprises. To exist in this harsh environment, it requires the companies and enterprises
to plan and control efficiently the production and operational activities through Supply
Chain Management (SCM). A Supply Chain (SC) is defined as a set of activities that
are coordinated among suppliers, manufacturers, distribution centers, and customers so
that the final products are manufactured and distributed to customers with the right
quantities at the right time. Based on this definition, Supply Chain Management (SCM)
has become the core value of operations management in production planning for the
entire supply chain. Its impacts have an important role in the performance of an
organization for competitiveness based on sales price, commodity quality, customer
reliability, quick responsiveness, and flexibility in the market.

Without Aggregate Production Planning (APP), procurement, production,
transportation, and distribution activities will be implemented independently and
separately, causing conflicts in operations and with the given goals. Hence, APP is one
of the most crucial issues that should be addressed in supply chain management. APP
is acknowledged as an essential stage in production systems because of its links with
business strategies. It makes a significant contribution to the planning for enterprise
resources and organizational integration. APP is a process by which a company
identifies the planned levels of production, capacity, inventory, subcontracting,
stockouts, and even pricing in an intermediate time frame (3 to 12 or even 18 months).
Most organizations attempt to create an effective aggregate production plan that meets
customer requirements and has a minimum total cost (Chiadamrong & Sutthibutr,
2020).

In the presence of such a competitive environment, Decision-Makers (DMSs)

have to cope with two important problems that can affect the performance of the entire
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supply chain. The first problem is the conflicting objectives from the properties of
operations and the configuration of an SC when adjusting the targets of the different
partners in the SC. Each partner in the SC, it has its own goals or interests (e.g.
minimizing the total cost of the supply chain, maximizing the satisfaction of customers,
or maximizing the value of purchasing). The second problem is the uncertainty of data.
The uncertainty of data could arise from two sources: (1) Environmental uncertainty
due to the performance of suppliers and the behavior of customers in terms of supply
and demand, and (2) System uncertainty due to the unreliability of operations and
processes inside an organization (Cha-ume & Chiadamrong, 2012). Therefore, it is
necessary to address these two problems when designing and operating a supply chain.

From the abovementioned problems, the purposes of this thesis involving two
intentions, Firstly, propose a multiple objectives model for APP in a SC including
multiple suppliers, a production plant and multi-customers which integrate the plan of
procurement, production, and distribution considering imprecise parameters such as
operation costs, customer demands, acceptable failure ratio, and average service level.
Secondly, introduce a hybrid approach that helps decision-makers to deal with the

fuzziness of data and multiple objective decision-making.

1.1 Problem statement

Nowadays, two of the most difficult problems in planning that the decision-
makers always meet are to handle with the ambiguity of data and satisfy many goals at
the same time. In this thesis, to cope with two main abovementioned issues, a hybrid
approach which is a coordination of the defuzzification method (Credibility-based
Fuzzy Chance-constrained Programming — CFCCP) and Fuzzy Multiple Objective
Programming (FMOP) is proposed. CFCCP can support the Decision-Makers (DMs)
to handle the vagueness of data while FMOP is utilized to satisfy simultaneously many
goals. Fuzzy Chance-constrained Programming (FCCP) using the credibility measure
currently is known as a defuzzification method that can be used to substitute for the
traditional fuzzy programming. It is based on the measurement of possibility or the
necessity for a fuzzy event. The capability of CFCCP not only deals with non-
deterministic parameters that are denoted as fuzzy sets, but also provides a credibility
level that indicates the confidence level of the created (efficient) management
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strategies. With FMOP, many approaches have been researched and applied, but one of
the common approaches is fuzzy programming with several objective functions that
was proposed by Zimmermann (1978). This model is known as the symmetric model
because there is no priority for any fuzzy objective functions (All of the fuzzy objective
functions are considered to have the same importance). Therefore, the symmetric model
cannot be suitable for making decisions for multiple objectives in a practical
environment. Being aware of a deficiency in the above problem, Tiwari, Dharmahr, and
Rao (1978) proposed an improved approach, called the weighted additive method. By
assigning a specific weight to represent the importance of each fuzzy objective function,
this method can provide an efficient compromise solution that can satisfy the aspiration
level of each objective function according to the preferences of the DMs. Subsequently,
some extended approaches (e.g. the LH method, LZL method, SO method, and TH
method) were introduced by Lai and Huang (1994), Li, Zhang, and Li (2006), Selim
and Ozkarahan (2006), and Torabi and Hassini (2008), respectively. However, these
approaches still did not consider the weight-consistent solution (the homogeneity of
ranking objective function weights and their satisfaction levels). As a result, these
approaches do not satisfy the aspiration level of the DMs in some cases. Taking into
consideration of this matter, a weight-consistent constraint is further proposed to add to
FMOP. This ensures that the obtained solutions can be more consistent with DM
expectations.

1.2 Objective of the research

The research objectives of this thesis including:

1. To develop a multi-objective Mixed-Integer Linear Programming (MILP)
model for the Aggregate Production Planning (APP) problem in a Supply
Chain (SC).

2. To embed the fuzziness of data into the model.

3. To propose a hybrid resolution for solving the multiple objective Aggregate
Production Planning (APP) problem in a Supply Chain (SC) under uncertain

environment.
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1.3 Organization of the thesis

This thesis is divided into 7 Chapters that are arranged as follows: Chapter 1
includes introduction, problem statement, objectives and overview of the thesis.
Chapter 2 provides a literature review that contains a synopsis about characteristics,
contributions of the previous related studies, which help to identify the research gap
that this study attempts to fill. Next, Chapter 3 gives the description, assumption,
notation, and mathematical formulation of the APP problem in an SC. Chapter 4
presents the proposed methodology for solving the multiple-objective APP model in an
SC under uncertainty. Then, Chapter 5 gives an illustration of a case experiment.
Subsequently, Chapter 6 shows the obtained results of the proposed mathematical
model and discussions. Finally, Chapter 7 draws the conclusions, gives the limitation,

and recommends directions for further work.
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CHAPTER 2
LITERATURE REVIEWS

The literature review can be divided into two parts. The first part focus on the
relevant studies which define the structure of APP model. Several important issues (e.g
multiple product items, product characteristics, labor characteristics, and supply chain
concept) are embedded in the proposed APP model. The second part reviews previous
approaches that are related to the application of modeling optimization under

uncertainty.

2.1 Aggregate Production Planning (APP)

Aggregate production planning is the intermediate-time capacity plan that
identifies the cost minimization of production plan and human resources to fulfill
market needs in the most effective way. Its purpose is to identify a suitable quantity of
production and inventory level in a term of aggregation. The time period ranging of
aggregate production planning is from 2 to 12, or even 18 months (Techawiboonwong
& Yenradee, 2003). APP brings a connection between strategic and operations
management. In addition, APP operating strategies play a significant role in
organizational integration and enterprise resource planning. The target of making APP
in manufacturing enterprise is to acquire minimum cost and the maximum profit by
determining the quantity of produced product, the quantity of subcontracting product,
the levels of labor, and so forth., to fulfill the market demand (Iris & Cevikcan, 2014).

Based on the uncertainty level in the APP model, the APP model can be
categorized into two different groups. The input data is used in the APP models that
could change from deterministic value to fuzzy value, or stochastic value. There is
another significant criterion that can also impact the structure of the APP model is the
consideration of the number of objective functions in the model. By combining these
two above mentioned criteria, the APP model can be separated into six major structural

groups. These six main structural groups are shown more detail in Figure 1.1.
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Aggregate
Production Planning
hodels
Deterministic Uncertain
Mhlodels hlodels
Fuzzy Stochastic
Models Mhodels
Single Multiple Single Multiple Single Multiple
Objective Objectives || Objective Ohbjectives Objective Ohbjectives

Figure 2.1 Schemes for APP models.

2.1.1 Single objective function

With a single-objective function model, the most optimal solution is related to
the value of minimizing or maximizing of a single objective function. The integration
of all different objectives is then found. It is valuable as a model that gives DMs an
insight into the properties of the problem. However, it is often impossible to give
alternative solutions (compromise solutions), which is a trade-off among the different
conflicting objectives. Sillekens, Koberstein, and Suhl (2011) introduced a new
modeling approach in Mixed-Integer Linear Programming (MILP) for APP problems
in the automobile industry. Their single- objective function is the total cost
minimization including production cost, holding cost, fixed cost, and cost of changing
the production capacity. Zhang, Zhang, Xiao, and Kaku (2012) presented a MILP
model for APP problems in a production system with capacity extension and many
activity centers. In the model formulation, the objective function minimizes the total
costs of the APP plan that consists of production cost, holding cost, and investment cost
in the whole planning horizon. Wang and Yeh (2014) studied Particle Swarm
Optimization (PSO) for the APP problem. They presented an APP model for a

manufacturing company specializing in garden equipment. Their APP model is
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formulated as a Mixed Integer Linear Programming (MILP) model in which the main
objective function minimizes the total relevant cost. The total cost consists of
production cost (regular time and overtime production cost, inventory cost, backorder
cost, and subcontracting cost), and labor cost (hiring cost and firing cost). Erfanian and
Pirayesh (2016) studied the integration of APP with the maintenance activity using the
MILP model. They proposed a model, which is limited by workforce resources and
equipment. The formulated objective function of the model minimizes the total cost,

including production and maintenance costs.

2.1.2 Multiple objective function

For a multiple-objective function model, the objective functions in the model
can conflict with each other. Thus, its solution is an interaction among different
objective functions. The multiple-objective model can provide a set of different
efficient solutions (compromise solutions) that are widely known as non-dominated or
Pareto-optimal solutions. The consideration of many objective functions
(simultaneously) in the model can help to determine a larger scope of these different
options, to makes the model of a problem more realistic. Silva and Marins. (2014)
presented a multiple-objective model for APP in sugar and ethanol milling companies.
In their study, a Fuzzy Goal Programming (FGP) model is used to cope with the
multiple objective APP problem in vague conditions. The outcome of the proposed
model brings an efficient analysis of the problem, providing more dependable and more
accurate outcomes from the perspectives of technology and the economy. Entezaminia,
Heydari, and Rahmani (2016) developed a multiple-objective APP model in a Green
Supply Chain (GSC) considering a reverse logistic network. The main goal of their
study is to generate compromise solutions among costs and green criteria. The objective
functions simultaneously minimize the total Supply Chain (SC) cost and maximize the
total environmental commodity scores. The obtained outcome of their model is a set of
Pareto-optimal solutions that show the trade-off among the conflicting objective
functions. Mehdizadeh, Niaki, and Hemati (2018) presented a bi-objective optimization
model for APP considering labor skills and machine degradation. The first objective
function of the model maximizes the total profit, and the second objective function

improves customer satisfaction.
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2.1.3 Deterministic model

In APP, the input data in the APP model can be deterministic, fuzzy, or stochastic
values. Thus, the approaches or methodologies that are applied can be categorized
according to the different types of input data that are used in the model. In the
deterministic model for APP problems, parameters such as production cost, inventory
cost, labor cost, subcontracting cost, backorder cost, machine capacity, market demand,
sale price, etc. are assumed to be exactly known before planning and to be deterministic.
The first model of APP problem was proposed by Holt, Modigliani, and Simon (1955)
along with its linear decision rules. Since then, a lot of researchers have evolved many
models to tackle APP problems. Based on the complications of an APP problem, it is
often modeled by the MILP model. MILP is well-known for solving APP problems with
inputs of data that are deterministic or crisp values (Paiva & Morabito 2009; Chaturvedi
& Bandyopadhyay, 2015; Chakrabortty & Hasin, 2013).

2.1.4 Uncertain model

In contrast, fuzzy data are imprecise data. Their boundaries are not defined
explicitly. This is often encountered in the field of human judgment, where assessment
and decisions are crucial, such as reasoning, learning, decision-making, etc. (Bellman
& Zadeh, 1970). The fuzzy data can be described and analyzed based on the fuzzy set
theory. The fuzzy set theory can be applied with an APP models in unclear situations.
Some uncertain data in the APP model such as production time, production capacity,
customer demand, etc. are not suitable for the probability distribution. Therefore, an
APP model needs to be formulated based on the principle of fuzzy set theory and fuzzy
optimization approaches so that the APP models can handle and be optimized with
uncertainty (Zadeh, 1965; Zimmerman, 1976).

Stochastic data is a type of uncertain data that can be described by the theory of
randomness and probability. Stochastic model and its method are restricted to tackling
uncertainties with probability distributions (Tang, Fung, & Yung, 2003). Besides, its
method requires a great amount of collected historical data which is hard to obtain in
case of APP problem. In addition, Lai and Hwang (1992) argued that the application of
stochastic models can be lack of computational efficiency and the theory of probability
could not be able to provide the right meaning to solve some decision-making problems
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in practice. Therefore, stochastic model and its method will be not mentioned in the

next section of the literature review.

2.1.5 Important issues in the APP models

The complexity of APP problems is largely caused by the requirement of
coordinating interactive variables so that the company can meet the market demand
most efficiently (Kumar & Suresh, 2009). Some primary problems that are mostly used
in any APP model such as production capacity, inventory, backorder, warehouse space,
market demand, costs of production, subcontracting, labor level, hiring and firing cost,
and product price. In addition, there have been some supplementary problems (or new
assumptions) considered as “crucial problems” that are also integrated into the APP
model (e.g. multiple product items, product characteristics, labor characteristics, degree
of DM satisfaction for a solution, set up decisions, multiple production plants, time
value of money, machine utilization, financial concepts, supply chain concepts, and
multiple product markets). These supplementary problems were discussed and
explained in detail by Cheraghalikhani, Khoshalhan, and Mokhtari (2019). Based on
these crucial problems, APP problems can be developed and modeled more effectively,
which helps to enhance their capacities as well as their compatibility in a real-life

environment.

2.2 Mathematical approaches

In practice, the input data of APP problems are regularly imprecise due to some
information that is incomplete or cannot be accurately obtained. In these circumstances,
fuzzy logic can provide a form of reasoning that allows approximate human inference
skills to be used as knowledge-based systems. Zadeh (1965) first introduced the theory
of fuzzy logic, and a mathematical framework was provided to incorporate the
uncertainty related to human operations, such as reasoning and thinking. The theory of
fuzzy sets has been extensively adopted in many fields (e.g. management science,
operations research, artificial intelligence, and control theory). By applying the theory
of fuzzy sets, Fuzzy Mathematical Programming (FMP) has become a well-known
method for decision-making. Zimmermann (1976) first proposed the fuzzy set theory
in a typical Linear Programming (LP) model that has fuzzy objectives and fuzzy
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constraints. An equivalent single-goal linear programming model is obtained by
combining a linear membership function and the fuzzy decision-making method of
Bellman and Zadeh (1970) that is introduced in this study. Subsequently, some fuzzy
optimization methods for handling APP problems in ambiguous conditions have been
developed based on FMP. Moreover, Zadeh (1978) introduced the possibility theory,
which is related to the fuzzy set theory. The possibility distribution concept is defined
as a vague limitation, which can work as a flexible constraint on the values that may be
allocated to a variable. The research also shows the significance of the possibility theory
because most of the information about human decisions is understood to be possibilistic
instead of being probabilistic (as in nature). The uncertainties of these types of data
cannot be completely depicted by frequency-based probability distributions. Therefore,
it is necessary to use the fuzzy set theory and fuzzy optimization approaches in

formulating and optimizing the APP model.

2.2.1 Fuzzy programming

Fuzzy Linear Programming (FLP) is an approach that can be used to associate
fuzzy input data that should be modeled by subjective preference-based membership
functions. Tang, Wang, and Fung (2000) developed a fuzzy optimization method to
deal with multiple product APP problems. This was the first time an APP problem with
fuzzy demands and fuzzy capacities was formulated by utilizing the concept of fuzzy
equation in terms of a degree of accuracy. They also explained the satisfaction levels in
making production and inventory plans to meet the market demand. The fuzzy solution
of this approach can offer Decision-Makers (DMs) more options in constructing an
aggregate production plan, in order to guarantee the feasibility of the family
disaggregation plan, especially in an uncertain environment. Wang and Fang (2001)
studied an APP problem with some fuzzy parameters that consist of the product price,
subcontracted cost, production quantity, workforce level, market demand, and the fuzzy
satisfaction levels of objective functions. Their proposed approach provided a
systematic framework to interactively support DMs until satisfactory results were
achieved. An aggregation operator was deployed at the final step to acquire the
compromise solution of the proposed system. Iris and Cevikcan (2014) provided a

mathematical programming framework for aggregate production planning problem
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under imprecise data environment. After providing background information about
fuzzy linear programming and APP problem, the fuzzy linear programming model of
APP was solved on an illustrative example for different a-cut values. Chen and Huang
(2014) proposed a novel methodology for solving the APP problem in uncertain
conditions. After constructing the membership function by applying Zadeh’s extension
principle and fuzzy solutions, an equivalent mathematical parametric programming is
formed to identify the lower and upper bound of the total cost with the different levels
of a. The objective value is represented based on a membership function. Thus, the
achieved solutions can have more information with more accuracy, which provides
more opportunities to gain the optimal solution on the disaggregate plan. That is also

beneficial to DMs in practical applications.

2.2.2 Credibility-based Fuzzy Chance-constrained Programming (CFCP)
Credibility-based Fuzzy Chance-constrained Programming (CFCP) is known as
a fuzzy optimization approach based on the concept of credibility measure of fuzzy
numbers in the theory of fuzzy sets (as the average of possibility and necessity
measure). This method is used in order to ensure that the satisfaction of both fuzzy
objectives and fuzzy constraints can be solved at a minimum allowed of a confident
level (Liu & Liu, 2002). Currently, the CFCP has been applied to solve some uncertain
problems in a practical environment. Zhu and Zhang (2009) investigated a model for
an APP problem under uncertainty. By applying credibility-based fuzzy chance-
constrained programming, the fuzzy APP model is converted into an equivalent crisp
model and then solved with different confidence levels. Zhang, Zhu, and Hua (2010)
studied an APP model with uncertain information in the realistic condition of a
manufacturing company. To solve the proposed fuzzy APP model, a fuzzy chance-
constrained programming was formulated based on the theory of credibility.
Throughout the results of this model, it was found that the theory of credibility is
capable of decreasing the influence of uncertainty. Pishvaee, Torabi, and Razmi (2012)
studied a mathematical model to design the configuration of green logistics in an
ambiguous environment. They proposed a credibility-based fuzzy mathematical
optimization model that integrates the expected value of fuzzy numbers and chance-
constrained programming in which the expected value of fuzzy numbers are applied to
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handle fuzzy parameters in the objective function while the chance-constrained
programming is used to manipulate the confident levels for the satisfaction of fuzzy
constraints. Zhang, Huang, Lu, and He (2015) presented a comprehensive credibility-
based chance-constrained programming approach by applying the concept of credibility
theory into the fuzzy mathematical optimization model. The proposed approach not
only assists to cope with the imprecise parameters in both the right-hand side as well as
the left-hand-side of fuzzy constraints but also yields a level of credibility that
represents how much confidence the DMs are able to trust on the obtained solution.

2.2.3 Goal Programming (GP)

To simultaneously satisfy many conflicting objectives in an APP problem, Goal
Programming (GP) is an optimization method that is used to solve an APP problem
with multiple objectives by order of priority. The lower- priority goal is solved later
without decreasing the relative importance of a higher-priority goal. Leung, Wu, and
Lai (2003) proposed a GP approach for a multiple site APP model with multiple
objectives that maximizes the total profit, minimizes the variation of the workforce
level, and maximizes the utilization of import quotas. By changing the hierarchy of the
priority that corresponds to each objective, DMs can realize the flexibility and
robustness of the proposed model. Leung and Ng (2007) formulated a pre-emptive GP
model to optimize the APP problem for perishable products in ambiguous conditions.
The model of their study considered three objective functions which minimize the
operational cost, minimize the inventory cost, and minimize the labor cost. Leung and
Chan (2009) presented a multi-objective model for the APP problem with constraints
on resource utilization. Maximizing the profit, minimizing the repairing cost, and
maximizing the utilization of machine are the three main objective functions, with goal
values that are optimized hierarchically. To cope with multiple goals in the APP
problem, a goal programming model was applied. The flexibility and robustness of the
model were illustrated by different scenarios.

2.2.4 Fuzzy Goal Programming (FGP)

FGP is an extension of traditional GP, in which the satisfaction level of each
objective is taken as unity. FGP is concerned with the achievement of the highest degree
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of fuzzy goals based on the linear membership function. Jamalnia and Soukhakian
(2009) presented a Hybrid Fuzzy Multi-Objective Nonlinear Programming (H-
FMONLP) model with different goal priorities for a multiple-product multiple-period
APP problem under an uncertain environment. Liang and Cheng (2011) designed a
fuzzy multiple-objective LP model for the APP problem that simultaneously minimizes
the total costs, total carrying and back-ordering levels, and total changing rates of labor
levels. These parameters are related to the machine capacity, inventory holding levels,
labor levels, warehouse storage space, and budget availability. A two-phase FGP
approach for handling multiple-objective APP decision problems with multiple
products and multiple periods was developed. Madadi and Wong (2014) studied a
multiple-objective APP model in a fuzzy environment. Based on the fuzzy membership
function, FGP was used for solving the APP decision problem by minimizing the total
costs while maximizing the quality of products and customer service levels. Mosadegh,
Khakbazan, Salmasnia, and Mokhtari (2017) presented a multiple objective APP
problem. In their study, the FGP model is applied for solving the APP problem with
four objectives (goals): (1) lost sales and inventory, (2) idle time and overtime, (3) labor
level, and (4) exchange savings. Chauhan, Aggarwal, and Kumar (2017) studied fuzzy
multiple-objective MILP for the APP decision problem in an uncertain environment. In
their study, FGP was introduced to optimize APP problems for multiple products and
multiple periods.

2.2.5 Weight-consistent solution

Taking into the consideration of the achieved solutions of the Fuzzy Goal
Programming (FGP) approach, the weight-consistent solution implies that the
satisfaction level of each fuzzy goal must be compatible with the expected relative
important weight of its goal. In other words, the ranking of achieved satisfaction levels
for fuzzy goals must be the same as the ranking of the goal’s weight. For instance, it is
assumed that the goal’s weights (8,) are ranked as follows: 8; = 6, > 65 > 6,. Where
h represents the index of a goal. As a result, the weight-consistent solution will have
the ranking of achieved satisfaction level of goals u;, as follows: pu; >y, = us = py
(Amid, Ghodsypour, & O’Brien, 2011). Generally, if a goal is assigned with a high
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important weight, that means the expectation of the DMs will be able to obtain a high

satisfaction level for that goal, and otherwise.

2.3 Summary of literature review

Table 2.1 A summary of the literature on APP problem.
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Mix-integer linear programming, FMILP: Fuzzy mix-integer linear programming,
MOMILP: Multiple objective mix-integer linear programming, FMOMILP: Fuzzy
multiple objective mix-integer linear programming, FMONILP: Fuzzy multiple objective
mix-integer non-linear programming, LDR: Linear decision rules, ParP: Parametric
Programming, PSO: Particle Swarm Optimization, SS: Solver software (i.e. Lingo, Gam,
Cplex), H: Heuristic, GA: Genetic algorithm, FLP: Fuzzy linear programming , GP: goal
programming, FGP: Fuzzy goal programming, FCCP: Fuzzy chance constraint

programming.

Based on a literature review, some research gaps related to APP models were
identified, such as the integration of new concepts (important issues) into APP models,
the consideration of uncertain data, and optimization approaches under uncertainty.
Therefore, to fill the research gaps, this study focuses on developing a mathematical
model for an Aggregate Production Planning (APP) problem in an uncertain
environment. To make the APP problem more effective, informative, and more
compatible with a real-life environment, the APP problem is considered with multiple
objectives and integrated into a Supply Chain (SC) including a production plant, multiple
suppliers, and multiple customers. In addition, several important problems such as
multiple products, product characteristics, and labor characteristics are embedded in the
model. Then, a hybrid approach that integrates Fuzzy Chance-constrained Programming
(FCCP) and Fuzzy Multiple Objective Programming (FMOP) is proposed for solving the
proposed model. FCCP is utilized to deal with fuzzy parameters in the proposed model
while FMOP is applied to deal with multiple objective functions. For FMOLP, by
applying an aggregation function and integrating the concept of weight-consistent
solution. The proposed approach can achieve the optimal solutions under the balanced
and unbalanced compromise solutions among conflicting objective functions. It can also
achieve weight-consistent solutions that can satisfy the decision-maker's aspirations and
provide more alternative strategy selections based on their preferences. A summary of

the literature on APP problems is presented in Table 2.1.
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CHAPTER 3
DEVELOPMENT OF AGGREGATE PRODUCTION PLANNING
(APP) MODEL IN A SUPPLY CHAIN UNDER UNCERTAINTIES

This chapter focus on developing a Fuzzy Multi-Objective Mixed-Integer
Linear Programming (FOMILP) to express a comprehensive multi-site, multi-product
and multi-period Aggregate Production Planning (APP) problem in Supply Chain (SC)
under uncertain environment.

There are three main stages in the model development. The first stage
concentrates on the characterization of the problem. This is an important step to
understand a detail description of the problem. The second stage is to present a list of
notations of parameters and decision variables used in the model. In addition, some
assumptions are also outlined and justified at this stage. These assumptions express the
restrictions of the developed model to make sure that the model is controllable to be
solved. Finally, the third stage shows the formulating mathematical model procedure
representing the relations between parameters and decision variables. At this stage, the

objective functions and constraints are constructed.

3.1 Model Formulation
3.1.1 Problem Description

In this study, the proposed fuzzy multiple-objective, multi-product, multi-period
APP problem in a supply chain (SC) can be described as follows:

An Aggregate Production Planning (APP) problem is built for the type of raw
material R that is provided from supplier S to assemble and produce the type of product
N in the production plant, and finally transfer to customer J so that the customer demand
can be fulfilled in planning time period T. Each product is manufactured by determining
the rate of raw materials. The structure of the supply chain network is depicted in Figure
3.1. In fact, this problem aggregates three sub-problems of planning including the (1)
procurement plan for purchasing raw materials from suppliers, (2) production plan for
producing finished products, and (3) distribution plan for delivering each finished

product to each customer in each period. This study concentrates on developing a Fuzzy
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Multiple-Objective Mixed Integer Linear Programming (FMOMILP) model to
optimize the APP plan in a supply chain (SC) under an uncertain environment.
Therefore, customer demand, operating costs (e.g. regular time production cost,
overtime production cost, subcontracting cost, purchasing cost, salary, hiring cost,
firing cost, transportation cost, and penalty cost) and some other influential parameters
are considered as imprecise parameters over each planning period. The fuzzy numbers
are considered to represent uncertain parameters. Four conflicting objective functions
are formulated simultaneously in the mathematical model. The first objective is to
minimize the total Supply Chain (SC) cost. The second objective is to minimize the
total maximum product shortages. The third objective is to minimize the rate of changes
in human resources, and the fourth objective is to maximize the total value of

purchasing.

Suppliers (S) Production plant Customers (C)

\ A A J
Y Y Y
Procurement plan Production plan Distribution plan

Figure 3.1 Structure of supply chain network

3.1.2 Problem Assumption
The basic assumptions of the fuzzy multiple objectives mathematical
programming model are as follows.
e Only the demand for the final product is known but it is imprecise.
e The capacities of the machines and storage are limited by the maximum level at
the production plant.

e A set of qualified suppliers is given.
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e A production plant produces many types of products to meet customer demand
during the planning horizon.

e Before the beginning of the planning period, there is no demand for the finished
products.

e The initial labor level is known at the beginning of the planning period.

e The production capacities of suppliers and plant are estimated by taking into
consideration of various contingent situations (setups, machine break down,
etc.) and achievable capacity supplements (overtime or/and subcontracting
production).

e A shortage of products is allowed in the supply chain. However, it will be
charged as a penalty cost for compensation if a shortage occurs.

e The acceptable defect rate and service level of suppliers at the production plant
are imprecise. They are determined based on the manufacturer’s preferences.

e Lead-time is considered as zero.

e The pattern of a triangular fuzzy number is utilized to represent uncertain
parameters.

e The membership function of objective functions is expressed in a linear form

for all fuzzy sets.

3.1.3 Problem Notation
The notations that are used to formulate the mathematical model of the APP
problem in a supply chain are expressed as follows:
To formulate the mathematical model, the tilde symbol (7) refers to ambiguous
data that are used in this numerical case study.
e Set of Indices
Index of raw materials (r=1, ..., R)
Index of suppliers (s =1, ..., S)
Index of customers, (j =1, ..., J)
Index of products (n=1, ..., N)

Index of worker levels (k =1, ..., K)

4 X zZ « v D

Index of periods in planning horizon (t=1, ..., T)

Ref. code: 25636122040626BKR



29

e Fuzzy Parameters

Production cost

RTPC, Fuzzy regular-time production unit cost at the production plant in period t
($/min)

OTPC, Fuzzy overtime production unit cost at the production plant in period t
($/min)

STPC;, Fuzzy subcontracting production unit cost at the production plant in period
t ($/min)

Purchasing cost

RMSC,,, Fuzzy purchasing unit cost of supplier s for raw material r in period t ($/unit)

Labor cost

SCrt Fuzzy salary of a worker at level k in period t ($/person)

HCy, Fuzzy hiring cost of a worker at level k in period t ($/person)

FCy, Fuzzy firing cost of a worker at level k in period t ($/person)

Inventory cost

—

IRMC,, Fuzzy inventory unit cost of raw material r at the production plant in
period t ($/unit)

IPC,; Fuzzy inventory unit cost of product n at the production plant in period
t ($/unit)

Transportation cost

TRMC,, Fuzzy shipping unit cost of raw material from supplier s to the
production plant in period t ($/unit)

Fuzzy transportation unit cost of finished product from the production
plant to customer j in period t ($/unit)

Penalty cost

P?ant Fuzzy penalty unit cost of shortage of product n for customer j in period
t ($/unit)

Others

AFRS,, Fuzzy average failure rate of raw material r supplied from supplier s to

the production plant (%)
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AFRP, Fuzzy acceptable failure rate of the production plant for raw material r
(%)

ASLg Fuzzy average service level of supplier s (%)

ASLP Fuzzy acceptable service level of the production plant (%)

ﬁnjt Fuzzy demand of customer j for final product n in period t (units)

e Deterministic Parameters
MaxPS,; Maximum capacity allowed for subcontracting product n in period t
(units)
MaxMA,; Maximum machine capacity available for product n at the production
plant in period t (machine-hours)

MaxWSA,  Maximum warehouse space available at the production plant in period t

(m?)
MaxRS,, Maximum capacity of raw material r provided by supplier s (units)
MHU,,; Machine hourly usage for a unit of product n at the production plant in

period t (machine-hours/unit)

WSP,; Warehouse space for a unit of product n at the production plant in period
t (m?/unit)
WSRM,.; Warehouse space for a unit of raw material r at the production plant in

period t (m?/unit)

NoRM,.,, Number of raw material r needed to produce for a unit of product n (units)

NolL!, Number of initial workers at level k at the production plant (persons)

RTPA, Available regular time at the production plant in period t (hours)

OTPA, Available over-time at the production plant in period t (hours)

STPA, Available subcontracting time at the production plant in period t (hours)

PTP, Production time required for producing product n at the production plant
(min)

SCRM Storage capacity of raw material at the production plant (units)

Scp Storage capacity of final product at the production plant (units)

Prod,, Productivity of workers at level k (0 < Prod, < 1)

FWv Acceptable fraction of workforce variation in period t (%)

TSSQq Total score of supplier s by considering quality of raw material (%)
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e Decision variables

QRTP,; Quantity of product n produced in regular time at the production plant
in period t (units)

QOTP,; Quantity of product n produced in overtime at the production plant in
period t (units)

QSTP,,; Subcontracting quantity of product n produced at the production plant
in period t (units)

QRMS,,; Quantity of raw material r provided by supplier s to the production plant
in period t (units)

QPSCy ¢ Quantity of final product n from the production plant to customer j in

period t (units)

QWi Number of workers at level k at the production plant in period t (persons)

QWH,; Number of hired workers at level k at the production plant in period t
(persons)

QWFy; Number of fired workers at level k at the production plant in period t
(persons)

IP,; Inventory of final product n at the production plant at the end of period
t (units)

IRM,.; Inventory of raw material r at the production plant in period t (units)

QSPyj¢ Shortage of product n for customer j in period t (unit)

3.1.4 Mathematical Model
The FMOMINLP model for supply chain (SC) production planning is
formulated below:

3.1.4.1 Objective functions

The current global market of competition forces companies to consider multiple
objectives for effective aggregation of procurement, production and distribution
planning at the same time. By considering important decisions of the practical APP
problem in a supply chain, it is found that objective functions related to the

minimization of the overall cost, minimization of product shortages, minimization of
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changes in workforce levels, and maximization of the total value of purchasing are

considered as multiple conflicting objective functions.

1. Minimizing the total supply chain costs (Z,):

Minimizing the total overall cost is the most popular objective that is used in
supply chain planning models. The total overall costs of the model in this study
comprise the production costs, purchasing cost, labor costs, inventory costs,
transportation costs, and shortage costs. The mathematical formulations and
explanations of these components are presented as follows:

Total supply chain costs (TC) = Production costs (C1) + Purchasing cost (C2) +
Labor costs (C3) + Inventory costs (C4) + Transportation costs (C5) + Shortage cost (C6)

Production costs (C1) include the cost of regular time production, overtime
production, and subcontracting production. They are described as follows:
C1=3N_ 3T  PTP, x RTPC, X QRTPy,
+ Y n=1%i=1 PTP, X OTPC, X QOTPy,
+Yn-1 %11 PTR, X STPC, X QSTPy,

Purchasing cost (C2) of raw materials from suppliers can be defined as follows:

Cz = §=1 Z‘)lle 2’{':1 RMSCsrt X QRMSST't

Labor costs (C3) are the costs that the manufacturer pays for a worker including
salary, hiring cost, and firing cost, which are presented as follows:
C3 = Y1 X1=1 SChe X QWi
+ Y he1 Xteq HCip X QW Hy,
+ Y k21 Xteq FCye X QWFy

Inventory costs (C4) are the summation of the holding cost of raw materials and
final product at the production plant. This is expressed as:
C4 = Y7 X{-1 IRMCy¢ X IRMy,
+Xn=1Xt=11PCrt X 1Py
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Transportation costs (C5) from suppliers to the production plant and from the
production plant to customers for different kinds of raw materials and the final product
are defined as follows:

C5= §=1 LI i TWCstQRMSsrt

+ Y- Z§=1 Yio1 TPCj:QPSCyj¢

The shortage cost (C6) is the cost of shortages for not being able to fulfill the

customer demand which is defined as follows:

C6 = YN 1 X)) 21y PSCpjeQSPyye

Generally, the first objective function for minimizing the total supply chain costs can
be summarized as follows:
MinTC = ¥N_, 3T | PTP, x RTPC, X QRTPy;
+ 3N _ 3T, PTB, X OTPC, X QRTP,,
+ YN 3T PTB, X RTPC X QRTP,,
+Y3-1 271 Y=g RMSCgp X QRM Sy,
+ Xk =1 SCie X QWi
+ XK X1y HCie X QWHy,
+ YR Xl FCre X QWFy,
+ X8 X1, IRMC,, X IRM,.,
+ Y01 Xte1 [PCpe X 1Py,
+ Y51 281 Xio1 TRMCs,QRMS,,
+ 301 X X1 TPC, QPSCyy

+ XN Xy 2oy PSCjeQSPye

(3.1)

Equation (3.1) shows the first objective function that tries to minimize total cost
of supply chain (SC) including production costs, purchasing cost, labor wage, hiring

cost, firing cost, inventory cost, transportation cost, and shortage cost.

2. Minimizing the shortages of product to improve the customer satisfaction (Z,):
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Customer satisfaction makes a significant contribution in business APP
problems. It is the indicator that is used to recognize the dissatisfied customers, measure
the loyalty of customers, and enhance revenue. It also is an important point of
differentiation that can help companies to attract new customers in competitive business
environments. In this study, the customer’s satisfaction is assessed through product

shortages as follows:

Min CS = YN_; )y Ni-1 QSPyje (3.2)

This second objective function aims to improve the customer’s satisfaction by
minimizing the summation of shortage product n among customer j in all periods, as is

presented in Equation (3.2)

3. Minimizing the rate of changes in the workforce level (Z5):

In an actual situation of APP, through aggregating the forecast demand in
advance, companies are able to estimate the workforce requirements. However, it is
difficult to have a varying workforce plan because of worker skills, employment law,
and other factors related to the benefits of the workforce. Thus, the workforce levels
are required to be stable, to easily manage workforce, and can be presented as follows:
Min RCW = X %i_1(QWHy, + QW Fy,) (3:3)

Equation (3.3) shows the third objective function that considers the rate of
changes in workforce levels by minimizing the variation between the number of fired

and hired workers.

4. Maximizing the total value of purchasing (Z,):

The fourth objective function shown in Equation (4) maximizes the total value
of purchasing. The total value of purchasing can be described as purchasing criteria
(such as sale price, quality of provided raw material, and service level) that influence
the selection of the best supplier in procurement planning. It can be calculated by
multiplying the overall assessed score of supplier s with the purchased quantity of raw

materials from that supplier, and presented as follows:
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Max TVP = %3_1 TSSQs X XF_1 X{-1 QRMSy, (3.4)

Note that: TSSQ denotes the supplier’s overall score (weight). Based upon the

knowledge and experience of DMs, the supplier’s overall score (weight) can be
determined in an efficient way. For example, the Technique for Order Preference by
Similarities to Ideal Solution (TOPSIS) is an efficient approach that can help the DMs

to calculate the appropriate score (weight) of each supplier.

3.1.4.2 Constraints
e Constraint on finished product inventory.

IPye = IPye—1) + QRTPyy + QOTPy + QSTPy — ¥_ QPSCyje 5 Vit (3.5)

Equation (3.5) is related to the finished product inventory balance at the production
plant. The inventory quantity of finished products at the end of period t should be equal
to the inventory quantities in the previous period (t — 1) plus the number of products
manufactured at the production plant minus the sum of the quantity of the finished

products transferred to the customers.

e Constraint on raw materials inventory.
IRM,; = IRMr(t—l) o Z§=1 QRMSgyt

(3.6)
—¥N_(QRTP,; + QOTP, + QSTP,,) X NoRM,,; Vr,t

Equation (3.6) presents the balance of raw material inventory constraint at
production plants. This constraint shows that the inventory quantity of raw materials in
period t is equal to the inventory quantities in the prior period (t — 1) plus the sum of
the quantity of provided raw materials from all suppliers minus the quantity of needed

raw materials at the production plant.

e Constraint on assigning the initial workforce level.
QWkt = NOLok; v k, t<?2 (37)
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Equation (3.7) corresponds to one of the assumptions that assigns the initial

workforce level to the first period of planning (t < 2).

e Constraint on balancing for the workforce level.
QWi = QWi(-1) + QWH —QWFy; Vk, t>1 (3.8)

Equation (3.8) is the balancing constraint of the workforce level. This
constraint guarantees that the number of workers at level k in period t must equal the
change in workforce in the current period plus the number of workers in the previous
period (t —1).

e Constraint on limiting available production time owing to the limited
workforce.
YK _ QW X Prod; x (RTPA, + OTPA,)
> YN_ (QRTP,. + QOTP,,) X PTR,; V't (39)
Constraint (3.9) shows that the available production time is limited by the
available regular-time and overtime workers along with their productivity. This implies
that the available production time is determined by the number of workers in regular

production and overtime production.

e Constraint on limiting the available production time of the subcontractor.
N_ QSTP,, x PTP, < STPA; V't (3.10)

Equation (3.10) shows that the available subcontracting time is limited by the
allowed subcontracting time at each production plant.

e Constraint on limiting the maximum quantity of produced products from the
subcontractor.
QSTP,; < MaxPS,;; Vn,t (3.11)
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Equation (3.11) means that the quantity of produced products from a
subcontractor of production plant must not exceed the allowable maximum quantity of

products of the subcontractor.

e Constraint on the machine capacity.
MHU,; X (QRTP,; + QOTP,,) < MaxMA,; Vn,t (3.12)

Equation (3.12) presents the limitation of machine capacity, where the machine
hour usage for producing all the products at the production plant in each period should

not surpass the maximum available machine capacity.

e Constraint on the shortages of customer demand.

QSPnjt = QSPnj(t—l) + 5njt = QPSantF Vn,jt (3.13)
Equation (3.13) computes the shortage of products in supplying customer j in

each period t. This constraint is one of the fuzzy constraints used in the model because

it contains a fuzzy parameter, which is customer demand D,, ;.

e Constraint on limiting the warehouse space.
N_(WSP,, X IP,) + YR_,(WSRM,, X IRM,;) < MaxWSA,; Vt (3.14)

Equation (3.14) shows that the total inventory quantities of the finished products
and raw materials at the production plant is limited by the maximum warehouse space.

e Constraint on limiting the storage capacity for raw materials.
R_IRM,, <SCRM; V't (3.15)

e Constraint on limiting the storage capacity for the finished products.
N _IP,, <SCP; Vt (3.16)

Equations (3.15) and (3.16) show that the inventory quantities of finished
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products and raw materials are limited by the storage allowable capacities at each

production plant.

e Constraint on the proportion of workforces in each period.
k=1(QWHy + QWF) < FWV X XE_ QWieo1); Yt (3.17)

Equation (3.17) guarantees that the change in the workforce level in period t

cannot surpass the fraction of variation allowed in the previous period.

e Constraint on supplier capacity.
QRMS,,: < MaxRSg.:; Vs, r,t (3.18)

Equation (3.18) shows that the purchased quantity of raw material r is limited
by the capacity of supplier s.

e Constraint on balancing flow among the suppliers and production plants.
N_iNoRM,, X (QRTP,; + QOTP,; + QSTP,;) < Zﬁzl QRMSgpt; VT, t (3.19)

Equation (3.19) displays the flow balances of raw materials from the suppliers

to the production plant.

e Constraint on the quality of raw materials.

S_, AFRSs, X QRMS,,, < AFRP, X ¥5_, QRMS,,,; V¢ (3.20)

e Constraint on service level (on-time delivery).

R Y5_ASLg X QRMS,,. = ASLP X YR_ ¥5_  QRMS,.; V't (3.21)
The quality of raw materials and the service level (on-time delivery) are crucial

quantitative criteria that are used to evaluate the performance of each supplier. These

requirements are presented in Equations (3.20) and (3.21).
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e Constraints on non-negativity of decision variables.
QWye, QW Hy, QWE,, = 0 & interger; Vk,t
QRTP,;, QOTP,;, QSTP,; = 0; Vn,t
QRMSq = 0; Vs,r,t
) (3.22)
QPSCpj: = 0; Vn,j,t
IRMrt = 0, VT‘, t: IPnt = O, Vn,t

QSPyjy =0; Vn,j,t

Equation (3.22) shows that most of the decision variables are non-negative, and

some of them are non-negative and integer.
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CHAPTER 4
SOLUTION APPROACH

Transforming the fuzzy mathematical model into an analogous crisp model is a
widely used approach to deal with the uncertainty in the fuzzy mathematical model.
The transformation of the fuzzy model can be completed based on the measurement of
possibility, necessity, or the integration of the possibility and necessity (credibility)
(Liu, 2002). In this study, the theory of credibility measure is applied for transforming
the fuzzy model into a crisp model. To cope with the multiple-objective function
problem, a fuzzy multiple-objective programming approach with the weight-consistent
solution is introduced to solve the crisp multiple-objective model.

In this chapter, an appropriate hybrid solution approach for solving the Fuzzy
Multi-Objective Mixed-Integer Linear Programming (FMOMILP) model (as explained
in Chapter 3) is developed. To solve the FMOMILP model, a proposed approach with
two-phased solution is implemented. In the first phase of the solution, the FMOMILP
model is transformed into an analogous crisp model by using the credibility measure
(credibility theory). In the second phase, fuzzy multiple-objective programming,
integrating a weight-consistent constraint and an aggregation function, is used for finding
compromise efficient solutions. The consistency of solutions will be ensured by the
weight-consistent constraint, while the aggregation function can generate the balanced
and unbalanced compromise efficient solutions for the different conflicting objectives.

4.1 First phase: transforming the fuzzy MOMILP model into the equivalent crisp
model based on FCCP with credibility measure
4.1.1 Credibility-Based Fuzzy Chance-constrained Programming (CFCCP)
CFCCP is an efficient fuzzy mathematical programming approach based on the
credibility measure of fuzzy numbers (Azadeha, Kokabia, & Hallaj, 2017; Rastaghi,
Barzinpour, & Pishvaee, 2018). This method assists DMs in solving some chance
constraints at a minimum confidence level. It can also be applied for uncertain
parameters with different membership functions such as the triangular, trapezoidal, and

nonlinear membership functions, in symmetric and asymmetric forms (Liu & Liu,
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2002). For a good understanding of credibility-based fuzzy chance-constrained
programming, some basic knowledge of credibility theory and fuzzy chance-

constrained programming is introduced in the next sub-sections.

4.1.1.1 Credibility fundamentals

The theory of fuzzy sets was introduced by Zadeh in 1965. Since then, it has
been developed and applied in various practical situations. In the fuzzy world, there are
three main types of measures for dealing with ambiguous parametric information:
possibility, necessity, and credibility. In opposition to the possibility and necessity
measures that have no self-dual nature, the credibility measure is a self-dual measure
(Li & Liu, 2006). Therefore, if the credibility value of a fuzzy event attains 1, the fuzzy
event will surely occur. However, when the possibility value of a fuzzy event attains 1,
the fuzzy event may fail to occur. In other words, if the possibility value of a fuzzy
event achieves 1, that event may fail to occur, and if the necessity value of a fuzzy event
is 0, that fuzzy event may occur. If the credibility value of a fuzzy event attains 1, the
fuzzy event will occur and if the credibility value of a fuzzy event attains 0, the fuzzy
event will not occur (Huang, 2007).

Let & be a fuzzy variable with membership function p and let u and R be real

numbers. The possibility of a fuzzy event, characterized by R, is defined by:

Pos{¢§ < R} = jihu(w) (4.1)

The necessity degree of occurrence of this fuzzy event can be specified as follows:
Nec{§ <R}=1-Pos{¢ <R} =1-;Puu) (4.2)

The credibility measure (Cr) can be determined as an average of the possibility

and necessity measures as follows:

Cr{ <R} == (Pos{{ <R} =1+ Nec{¢ < R}) (4.3)

Let the fuzzy variable & be fully determined by the triplet (g, a, E) of crisp

numbers with (g <ac< E) (Figure 4.1), whose membership function is presented as

follows:
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R—a
= ifa<R<a

a—a =

u(R)=<R-1a _ (4.4)

— ifa<R<a

a—a

0 otherwise.
u(R)

a a aq a; a

Figure 4.1 A triangular fuzzy variable & = (g, a, E)

According to Equations (4.1) — (4.3), the possibility, necessity, and credibility of
& <Rand & = R are as follows:

0, R<a
R—a
Pos{ESR}={ =, a<R<a;
a—a ~
>
1, R >a (4.5)
0, R<a
R—a 2
Nec{g‘SR}={_ =, a<R<au;
a—a
1, R>a
0, R>a
a—R
Pos{¢ 2 R} = f . a<R<a;
a—a
1, R<a
0 R>a (4.6)
a—R
Nec{é = R} = T a a<R<a
1, - R<a

Credibility is the quality of being believable or worthy of trust. An event will
definitely occur when the credibility value is 1. The credibility of {¢ < R} and {¢ > R}
are presented by:
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(4.7)

To illustrate the three types of measurements in the fuzzy world, consider a

triangular fuzzy set & = (g, a, E), the possibility, necessity, and credibility of ¢ < R

are depicted in Figure 4.2,

A

(@) Fuzzy set

a

a

QI

A

(b) Possibility

A

a, a; a R

(d) Credibility

»
»

a a a a; a R

Figure 4.2 Measures of fuzzy events: (a) fuzzy set, (b) possibility, (c) necessity, and (d)

credibility.
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Figure 4.2 shows the triangular fuzzy variable £ = (a, a, @) as a specific case.
Let Pos{¢é < R} = 1 when R > a. Nevertheless, it is obvious that the event {¢ < R}
will not hold when R = a which implies that the desired event will not surely occur
even when the confidence level is set as high as “1”. Moreover, for two real number a,
and a, where a < a; < a, < a, clearly, there is no different information about the
fuzzy events when the possibility values of the event {¢ < a,} and {¢ < a,} are 1.
However, when applying credibility, Cr{¢ < a,} < Cr{¢ < a,}, which means fuzzy
event {¢ < a,} will have more chance to happen than fuzzy event {¢ < a,} does. Once
R > a then Cr{¢ < R} = 1, which implies that when the confidence level is 1, the
desired event would certainly occur. Based on the credibility measure, it is obvious that
no feature of fuzzy sets is missing. The higher the credibility value is, the more reliable
the result is.

Let ¢ = (a, a, @) and R = (b, b, b). According to the credibility definition
and the rule of fuzzy operations, the credibility of a fuzzy event characterized
by{§ < R} and {£ > R} are as follows:

(1, a< b
a—2a+2b—-b <bT>h
oA 2@ BB A AT
Cr{¢ <R} = b—a N
% a>ba<b
20—b+a—a)
\ 0, a=bh
| (4.8)
(1, a=b
b—2b+2a—a -
— =, a>b,a<b
CT{EZR}=<2(b_b+a_g)
ab <ba>b
2@-a+b-b) “T472
L0, a<hb

The credibility measure may display the satisfaction degree of an event when
parametric information is shown as fuzzy sets. Figure 4.2 demonstrates four credibility

situations between two fuzzy sets.

Ref. code: 25636122040626BKR



45

A ~
U] @ asbecriE<R=1
1
0 a a a b b b X
W] @ asbha>beosscri<RI<1
1
0 a a b a b b x
A — ~
H (3) a>ba<beo0<Cr{ <R}<0.5
ta(x)  pp(x)
1 3 ‘
0 a b a b @ b X
A W _
U (4) a=zbeCr{i{<R}=0
Ha(X)
P IR
0 ; ; >

a a a b b b X

Figure 4.3 Relative positions of two fuzzy sets are based on credibility measures.
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Based on Equations (4.7) and (4.8), it can be shown that for (0 < a < 0.5):

Cri <R}Zae©R=>(1-2a)a+ (2a)a (4.9)

Cri{2R}Za e R<(a)a+ (1-2a)a (4.10)
cri§ <R}z ae (1-2a)a+ a)a < (2a)b+ (1 —2a)b (4.11)
Cri¢=R}>za e Qa)a+ (1 —2a)a=> (1-2a)b+ (2a)b (4.12)

Similarly, it can be shown that for (0.5 < a < 1):
Cri <R}zZaoR=22-2a)a+ 2a—1)a (4.13)
Cri2R}Za© R<(2a—1a+ (2-2a)a (4.14)
Cri<R}za & 2-2a)a+ Ra—-1)a< Ra—1)b+ (2—2a)b (4.15)

Cri§>R}>a © Qa—1a+ 2 -2a)a> 2 -2a)b+ (2a —1)b (4.16)

4.1.1.2 Fuzzy chance-constrained programming model
The Chance-constrained Programming (CCP) model was first introduced by
Charnes and Cooper (1959). Then, it was modified and improved in a fuzzy
environment (Liu & Iwanmura, 1998, Li & Liu, 2006; Huang, 2007). CCP is used for
solving uncertain optimization problems with chance constraints that must be
maintained at a specified confidence level, to satisfy DMs.
The general fuzzy chance-constrained programming model can be formulated
as follows:
min f
s.t. Cr{¥i < fl=a
- (4.17)
Cr{¥i ayx =2b}>a

XjZO

Applying Equations (4.9) — (4.16), the credibility-based fuzzy chance-
constrained programming model is shown in Equation (4.17). They can be converted

to the following crisp equivalent equations with confidence levels as follows:
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s.t.
7:1[(1 —2a)c; + (Za)cj]xj <f if a <0.5
Tl2=2a)¢+ Qa - Dl < f if a=>0.5

7=1[(2a)aij +(1- 2a)ai,-]x,-
> (1 - 2a)b; + 2a)b; if a <0.5
Ta|@a - Da; + 2 - 2a)a;]x;
> (2—-2a)b; + Qa—1b; ifa =05
xi 20j=1,...n; 0<a<1

j =

4.1.2 Equivalent crisp multiple-objective programming model
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(4.18)

In relation to Equations (4.9) — (4.16), it can be used to transform the fuzzy

chance-constraints model into equivalent crisp constraints. As aforementioned, the

measurement of credibility is an average of the possibility measure and the necessity

measure (optimistic and pessimistic viewpoints). Thus, the proposed FMOMILP model,

applying the credibility-based chance-constrained modeling can be presented as follows:

Min Z,

MinZ, = ¥n_4 Z§=1 Xi=1QSPyje

MinZ; = YK_ YT_ (QWH, + QWF,,)
Max Zy = Y31 TSSQs X¥_y X111 QRM Sy

Subject to:

Cr{iTC<Z;} >«

Cr{QSPyjr = QSPpjct—1) + Dpje — QPSChje} = 6 Vm,j,t

Cr{¥5_1 AFRSs,s X QRMSg,y < AFRP, X ¥5_1 QRMSg, } = a; V1, t

(4.19)
(4.20)

(4.21)
(4.22)

(4.23)
(4.24)
(4.25)

Cr{¥R_  ¥5_ ASLy X QRMSg,; > ASLP X ¥.R_ | ¥5_  QRMSg } = a; V1,t  (4.26)

Other constraints are the same as the constraints in the FMOMILP model. If (a

> 0.5), this means that the chance constraints must be met at a level of confidence that

is greater than 0.5. Then, according to Equations (4.17) — (4.18), the fuzzy chance
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constraints (Equations (4.23) — (4.26)) can be converted into the following crisp

equivalents with the confidence level « as follows:
(423) & YN_ 3T PTP, X [(2 — 2a) X RTPC"

+(2a — 1) X RTPC?| x QRTP,,
+ YN _ X PTP, x [(2 — 2a) X OTPC™ +(2a — 1) x OTPCF| X QOTP,,
+ YN _ 2 PTP, x [(2 — 2a) X STPC] +(2a — 1) x STPCY] x QSTPy,
+ X5 YR 3T [(2 - 2a) X RMSC?, + (2a — 1) X RMSCPE.,| X QRMS;;.,
+YRYT_ (2 = 2a) X SCIF +(2a — 1) x SCE,| x QW
+YXYT_[(2 = 2a) X HCJF +(2a — 1) X HCE,| X QW Hy, (4.27)
+ YY1 [(2 = 2a) X FCt +(2a — 1) X FCP] X QW F,
+ YR YT 12 — 2a) X IRMC? +(2a — 1) x IRMCE,] X IRM,,
+ YN YT [(2 = 2a) X IPCI +(2a — 1) X IPCE,| X IP,,
+ X5 YR YT [(2 - 2a) X TRMCE + (2a — 1) x TRMCE,] x QRMS,.,
+ Zﬁzlgzlz{zl[(z —2a) X TPCY + 2 — 1) X TPC]?‘;] X QPSChpjq

+ 0 2o S [(2 — 2a) X PSCT, + (2a — 1) X PSCY,,| X QSPyy < Z4
(4.24) © QSPyjr = QSPyje-1y + [(2 — 2a) x DI}, w28)
+(2a — 1) X DY, | = QPSCpje; V1t
(4.25) © ¥3_1[(2 — 2a) x AFRST +(2a — 1) x AFRSE .| X QRMSg,, (429
< [(2a — 1) X AFRP? + (2 — 2a) X AFRP™"] X ¥5_ QRMSg,; V 1,t
(4.26) © YR ¥5_[(2a — 1) x ASLS +(2 — 2a) X ASLT] X QRMS; (430)

> (2 — 2a) X ASLP™ + (2a — 1) X ASLPP] X YR_, ¥'S_ QRMSq,; V' ¢t

4.2 Second phase: fuzzy multiple-objective linear programming
Fuzzy Multiple Objective Linear Programming (FMOLP) is one of the fuzzy
optimization approaches that could be formulated by using subjective preference-based
membership functions. It can solve multiple-objective models that contain fuzzy
numbers. This approach can be deployed in three steps as follows:
(i). Specify the Positive Ideal Solution (PIS), and the Negative Ideal Solution (NIS)

corresponding to each objective function.
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(if). Formulate the membership function for each of the objective functions based
on the PIS and the NIS.
(ii). Convert the multiple-objective model into a single-objective model by applying
Fuzzy Goal Programming (FGP).
In the FMOLP model, the memberships of each objective function are
constructed by classifying every objective function into the maximum objective and the
minimum objective. For the minimum objective, the value of the objective function

varies from the Z}’> value to the Z)'® value. In contrast, the value of the objective

function varies from the Z’* value to the Z}’S value for the maximum objective. A

graphical interpretation is presented in Figure 4.4:

(a) Minimization of the objective function (b) Maximization of the objective function
A A

_ e f 1

[«5] [«5)

ks 3

s 3 Zy(v) ss| &M

g N g N

8 ) % S

= ) 7 @)

“R}lo » 1| Tl o >
Zflils Z}]]YIS Z}IYIS ZII;IS
Possible crisp values Possible crisp values

Figure 4.4 Membership function representing the (a) minimum objective and (b)
maximum objective.

The results of the model are presented in tabular form, commonly referred to as
the “Payoff” table. The “Payoff” table includes the positive ideal solution (Z}'S) and
the negative ideal solution (ZY'S) of the objective functions. A typical payoff table is
shown in Table 4.1.

Table 4.1 Payoff table for achieving positive and negative ideal solutions.

Zy ; ; L p "
L2 U3 V3 Vs
A Z1(v1) Z1(v3) Z1(v3) Z1(vy)
Zy Z,(v1) Zy(v3) Zy(v3) Zy(vq)
Z3 Z3(v7) Z3(v3) Z3(v3) Z3(vg)
Zy Z4(v7) Z4(v3) Zy(v3) Z4(vy)
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in which vj, v3, v3, and v, are the Positive Ideal Solutions (PISs) for objective
functions Z,, Z,, Z5, and Z,, respectively. Based on the results in Table 4.1, the PIS and
NIS for each objective function of the model can be defined. Z2'S is the optimal result
of the h-th objective function when neglecting the remaining objective functions, while
ZN1S is selected by the following equation:
ZNS = max{Z,(vi); h # k} (4.31)

Note that: Equation (4.31) is only correct for the minimum of the objective
function. In contrast, if the objective function is maximum, Z2'S is selected based on
the following equation:

ZNS = min{Z,(v}); h # k} (4.32)

Based on the Z/'S and Z})'values defined in the "Payoff" table and the
membership functions in Figure 4, the linear membership function for having a

minimum objective is formulated as follows:

1 < ,PIS
_ ) @ -z , Z}FL’I(;]) W NIS
Hzpv) = ZNTS_PIS Zy - < z2p(v) < zy (4.33)
NIS
0 ,Zp (V) = zy

The linear membership function for having a maximum objective is formulated

as follows:
1 ,zp(v) = 28
_ ) 2@ -z)" NIS PIS
Hzp(v) = JPIS_NI5  1Zh < zp(v) < z, (4.34)
h h NIS
0 ,Zp(v) < zy

The Fuzzy Goal Programming (FGP) model can be formed after all the

membership functions have been formulated.

4.2.1 Zimmerman’s method
This approach was first developed by Zimmermann [3] for dealing with MOLP
problems. It attempts to maximize the lowest or minimum satisfaction level of objective

functions. This ensures that the satisfaction levels of objective functions are equal or
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higher than the level of the lowest objective functions. The mathematical model of
Zimmermann’s method is presented as follows:
Max A
s.t A <u,(v), h=1,..,H, (4.35)
veF(w), A€]0,1].

where A represents the minimum satisfaction level of objective functions, and

F(v) denotes the feasible region for the constraints of the equivalent crisp model.

4.2.2 Torabi and Hassini (TH) method
This approach is known as a hybrid method. An aggregate function is proposed
in this method that can yield balanced and unbalanced compromise solutions
(symmetric and asymmetric solutions). The TH model is formulated as follows:
Max A(v) =y X Ao+ (1 —y) X T} O X p(v)

s.t Ay < up(v), h=1,..,H,
D Pt (4.36)
ZII:LI Hh =1 eh =0
v € F(v), Ao andy € [0,1].

where Ay = miny{u,(v)} represents the minimum satisfaction level of
objectives, while u;, (v) indicates the satisfaction level of the %-th objective function.
The objective function of this approach is defined as an integration of the lowest bound
for obtaining the satisfaction level of objectives (4,). The weighting summation of
these obtained satisfaction levels (u,(v)) could be adjusted to bring balanced
compromise solutions. In addition, y and 6, are the coefficients of compensation and
the relative importance weight of the /-th objective, respectively. The weighted values
6;, are specified by the DMs based on their preferences so that )., 0, = 1,6; = 0.
Besides that, y can be used as an aligning parameter to control the minimum satisfaction
level of objectives and the compromise level among the objectives. As a result, this
approach could generate and provide balanced and unbalanced compromised solutions
by adjusting the value of y. In relation to this problem, a higher value of y implies that

the DMs pay more attention to getting the higher bound of the satisfaction level for
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objectives (1,) with more balanced compromise solutions (symmetric fuzzy decision-
making). In contrast, the lower value of y means that the DMs get more concerned
about the solutions with a high satisfaction level of some objectives in connection with
the relative importance of objectives. This can help for providing unbalanced

compromise solutions (asymmetric fuzzy decision-making).

4.2.3 Proposed consistency method
Taking into consideration of the weight consistency of solutions, the proposed
model uses a ranking constraint (weigh-consistence constraint) to ensure that the
achieved solution of the aspiration level of objectives and its assigned weights will be
homogeneous. The proposed model is as follows:
Max A(w) =y xAg+ (1 =y) X} On X

s.t Ay < up(v), h =1, % ¥,
On
Hp = 9 X ppyr  Vh (4.37)
h+1
Yho,=1

v € F(v),1, and y € [0, 1].

where up X 0p4q4 = 0, X upye1 1S @ weight-consistent constraint. It is
supplemented to ensure that the ratio of the satisfaction level of each objective function
matches their allocated importance weights. It is highly noted that the weight value of
objective (68,,) must be larger than the weight value of the objective (8,41). If 6, =
041 then u, > py1 Therefore, it is guaranteed that the weight-consistent solution can

be obtained.
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4.3 Solution Procedure
In summary, the proposed Fuzzy Multiple Objective Mixed Integer Linear
Programming (FMOMILP) can be solved by following these steps:

e Step 1: Identify suitable triangular fuzzy numbers for the imprecise parameters
and formulate the original fuzzy model for the APP problem in the supply chain.

e Step 2: Give the minimum acceptable confidence level for each fuzzy chance
constraints and assign the relative importance weight to each objective.

e Step 3: Convert the fuzzy MOMILP model into the corresponding crisp
MOMILP model by applying credibility-based fuzzy chance-constrained
programming references to Equation 4.18.

e Step 4: Optimize each objective in the crisp MOMILP model as a single-
objective problem.

e Step 5: Determine the Positive Ideal Solution (PIS) and Negative Ideal Solution
(NIS) for each objective function according to the description in Sub-section
4.1.

e Step 6: Construct the linear membership function of the objective functions.

e Step 7: Convert the crisp MOMILP model into a crisp single-objective MILP
model by applying Fuzzy Goal Programming (FGP) that is presented in Sub-
section 4.2.

e Step 8: Implement the sensitivity analysis by modifying some parameters (the

confidence level () and the coefficient compensation (y)).
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CHAPTER 5
EXPERIMENTAL CASE

An experimental case is given in this chapter to demonstrate the validity and
effectiveness of the model and algorithm are proposed in Chapters 3 and 4, respectively.

5.1 Description of input data

To illustrate and evaluate the usefulness of the proposed FMOMILP model and
the solution methodology, an industrial case from a manufacturing company is provided
in this chapter. The supply chain of the manufacturing company consists of four
suppliers, a production plant, and four customers. The company produces five types of
products by assembling ten types of raw materials. The planning horizon of the APP in
the supply chain is 12 months. The scope of the problem is shown in Table 5.1. The
consumption rate of the raw materials for producing these types of products is described
in Table 5.2. Production costs, labor costs, transportation costs, purchasing cost,
customer demand, and some types of data related to the quality of the provided raw
materials, and the service level, are all fuzzy data and follow the triangular possibility
distribution. The remained data are deterministic data. All data are presented in the
tables below.

Table 5.1 Scope of the problem.

R S J N K T
10 4 4 5 5 12
Table 5.2 Bill of Materials (BOM).
Raw materials (r)
Product () 1 T 5 [ 3 [ [ 5 | 16 | 7 [ 18 [ 9]0

nl 2 3 0 4 0 0 1 2 3 0
n2 2 3 1 2 2 2 0 0 0 0
n3 1 0 1 2 0 0 1 0 0 2
n4 0 0 0 0 2 3 2 3 2 3
n5 0 1 2 0 1 0 0 0 1 2

The qualifications of these selected suppliers have been evaluated throughout a

screening process based on some criteria such as the price, quality of raw materials, and
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service level (on-time delivery). In this regard, the provided raw materials from supplier
1 are assessed as having the highest selling price, the best quality, and the best service
level. As opposed to supplier 1, supplier 3 has the cheapest selling price, the lowest
quality, and the poorest service level. While the selling price of raw materials from
suppliers 2 and 3 are set to be the same price at the medium level, the service level of
supplier 2 is higher than the service level of supplier 1. However, the quality of supplier
2 is poorer than supplier 1. To sum up, the overall score of each supplier (representing
their performances) is determined by using the TOPSIS method. The information of
setting this supplier selection problem and the outcome of the overall weighted score
for each supplier are shown in Table 5.3.

Table 5.3 Relative performance of suppliers.

Supplier (s) _ CriFeria _ Weighted score of
Price Quality Service level the supplier
sl Expensive | Excellent Excellent 0.44
s2 Medium Low Good 0.20
s3 Cheap Low Low 0.14
s4 Medium Good Low 0.22

From Table 5.3, it can be seen that supplier 1 has the best performance (with
the highest weighted score) and supplier 3 has the poorest performance (with the lowest
weighted score). The performance weighted scores of suppliers 1, 2, 3, and 4 are 0.44,
0.20, 0.14, 0.22, respectively.

Tables 5.4 and 5.5 show the purchasing cost and maximum quantity of all raw
materials that are provided by suppliers. To reflect uncertain market condition in reality,
the purchasing cost of raw materials from each supplier are determined to be fuzzy.

Table 5.4 Purchasing cost for raw materials by suppliers ($/unit).

Supplier (s)
R() sl s2 s3 s4
rl (1,1.1,13) (1,1.1,1.3) (1.5,1.65,1.95) | (15,1.65,1.95)
r2 (2,2.2,2.6) (2,2.2,2.6) (1,1.1,13) (1.5, 1.65, 1.95)
r3 (1,1.1,1.3) (1,1.1,1.3) (1,1.1,1.3) (1,1.1,1.3)
r4 (3,3.3,3.9) (3,3.3,3.9) (2,2.2,2.6) (2,2.2,2.6)
r5 (2,2.2,2.6) (2,2.2,2.6) (1.5, 1.65,1.95) (2,2.2,2.6)
r6 (1,1.1,13) (1,1.1,1.3) (2,2.2,2.6) (1,1.1,13)
r7 (2,2.2,2.6) (2,2.2,2.6) (1.5, 1.65, 1.95) (1,1.1,1.3)
r8 (1,1.1,1.3) (1,1.1,1.3) (1,1.1,1.3) (1,1.1,1.3)
ri0 (2,2.2,2.6) (2,2.2,2.6) (1.5,1.65,1.95) | (1.5, 1.65,1.95)
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Table 5.5 Maximum quantity of raw materials provided by suppliers (units).

Raw Supplier (s)
material (r) sl s2 s3 s4

ri 3,500 3,000 3,500 3,000
r2 3,500 3,000 3,000 3,500
r3 3,500 3,000 4,500 3,500
r4 3,500 3,500 4,000 3,000
r5 3,500 3,000 4,000 3,000
r6 2,500 3,000 3,500 3,500
r7 4,000 3,500 3,500 3,500
r8 3,500 3,500 4,500 3,500
r10 3,000 3,500 3,500 3,500

The available time and production costs for the regular time, overtime, and

subcontracting production are presented in Table 5.6.

Table 5.6 Available time and production costs.

Period (t) Regular ti_me Overtim_e Subcontrac_ting
(hours/period) (hours/period) (hours/period)
tl 144 50 200
t2 160 50 220
t3 168 50 230
t4 176 60 240
t5 120 40 170
t6 192 60 270
t7 200 60 280
t8 200 60 280
t9 192 60 270
t10 176 60 240
t11 184 60 260
t12 160 50 220
Regular time cost ($/min) (0.5, 0.55, 0.65)
Overtime cost ($/min) (0.9, 0.95, 1.05)
Subcontracting cost ($/min) (1.25, 1.30, 1.40)

Table 5.7 presents the related workforce cost for each level including salary,

hiring, and firing costs. Besides that, the worker’s productivity at each level is also

presented. The inventory cost, warehouse storage-space limitation, initial units for the

finished products and raw materials are given in Tables 5.8 and 5.9. The transportation

cost from suppliers to the production plant, and from the production plant to the

customers are provided in Table 5.10.
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Labor Types of cost o
level (k) Salary Firing cost Hiring cost Productivity (%)
k1 (180, 190, 210) | (70, 80, 100) | (40, 50, 70) 65
k2 (200, 210, 230) | (80,90, 110) | (40, 50, 70) 70
k3 (220, 230, 250) | (90, 100, 120) | (40, 50, 70) 75
k4 (240, 250, 270) | (100, 110, 130) | (40, 50, 70) 85
k5 (260, 270, 290) | (110, 120, 140) | (40, 50, 70) 95

Table 5.8 Inventory cost, warehouse space limitation, initial units of finished products.

Product | Inventory costs | Initial finished product | Warehouse space for a unit
(n) ($/unit) inventory (units) of raw material (m2/unit)
nl (5, 6, 8) 2 3
n2 (7, 8, 10) 2 2
n3 (9, 10, 12) 20 3
n4 (11, 12, 14) 10 2
n5 (13, 14, 16) 10 6

Table 5.9 Inventory cost, warehouse space limitation, initial units of raw material.

Raw Inventory costs | Initial raw material Warehouse space for a
material (r) ($/unit) inventory (units) unit of product (m?/unit)
ri (4,57 20 il
r2 (4,5,7) 20 15
r3 (4,5,7) 20 1.5
r4 (4,5,7) 12 0.5
r5 (4,5,7) 15 1.5
ré (5, 6, 8) 20 0.5
r7 (5,6, 8) 20 1
r8 (5, 6, 8) 20 1
r9 (5,7,9) 15 15
r10 (5,7,9) 20 1.5

Table 5.10 Transportation cost ($/unit).

Suppliers (s) Production plant Customers (j) Production plant
sl (0.014, 0.016, 0.024) j1 (0.036, 0.040, 0.060)
s2 (0.029, 0.032, 0.048) j2 (0.058, 0.064, 0.096)
s3 (0.079, 0.088, 0.132) j3 (0.072, 0.080, 0.120)
s4 (0.101, 0.112, 0.168) ja (0.065, 0.072, 0.108)
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If the quantity of produced products is not enough to fulfill a customer’s

demand, the customer will be compensated by a determined penalty cost based on the

quantity of product shortages. The penalty unit cost of every type of product is shown

in Table 5.11.

Table 5.11 Penalty cost of product shortages ($/unit).

Customer (j)
Product (n) i 2 i3 i
nl (2,2.25,2.75) | (3,3.25,3.75) | (2,2.25,2.75) | (2,2.25,2.75)
n2 (2,2.25,2.75) | (4,4.25,4.75) | (2,2.25,2.75) | (2,2.25,2.75)
n3 (2,2.25,2.75) | (4,4.25,4.75) | (2,2.25,2.75) | (3,3.25,3.75)
n4 (3,3.25,3.75) | (4,4.25,4.75) | (2,2.25,2.75) | (2,2.25,2.75)
n5 (1,1.25,1.75) | (2,2.25,2.75) | (2,2.25,2.75) | (2,2.25,2.75)

The maximum allowable quantity of produced products by subcontracting and

the machine usage for producing each product at the production plant, and the

maximum operating machine time and production time for producing different types of

products are given in Table 5.12. The number of initially available workforce levels,

the storage capacity, and the allowed variation in changing workforce levels at the

production plant are summarized in Table 5.13.

Table 5.12 Subcontracting limitations and machine-hour usage.

Maximum Machine hour usage | Maximum Production
Product quantity of for products machine time time
(n) subcontracting (machine-hours/ (machine- (min/unit)
(unit-periods) unit period) hours)
nl 140 1 1,400 35
n2 150 2 1,500 48
n3 160 3 1,600 40
n4 130 2 1,300 45
n5 140 8 1,400 62

Table 5.13 Storage capacity and workforce information at the production plant.

Storage capacity at the
production plant (units)

Initial workforce (persons)

Worker level (k)

Variation of

workforce (%)

RM

Finished product

k1l k2 k3

k4 | k5

10,000

15,000

21 34 36

8 2

20
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The relevant data for the quality and service level of the suppliers (evaluated by

the manufacturer) are summarized in Tables 5.14 and 5.15.

Table 5.14 Average defect rate of raw materials from suppliers (%).

RM Suppliers (s)

(N sl S2 s3 s4

rl | (2,2.01,2.03) | (2.1,2.11,2.13) | (2.65,626.6,2.68) | (2.265, 2.265, 2.265)
r2 | (2,2.01,203) | (22 221,223)| (2.8,6281,2.83) | (2.465, 2.465, 2.265)
r3 | (2,2.01,203) |(2.1,211,2.13) | (2.18,2.19,2.21) (2.31, 2.31, 231)
r4 | (2,2.01,2.03) |(2.3,2.31,2.33) | (2.4,2.41,2.43) (2.22,2.22,2.22)
5 | (2,2.01,2.03) | (2.2,2.21,2.23) | (2.6, 2.61,2.63) (2.82,2.82, 2.82)
6 | (2.1,2.11,2.13) | (2.1,2.11,2.13) | (2.3,2.31,2.33) (2.71,2.71, 2.71)
r7 | (2.2,2.21,2.23) | (2.2,2.21,2.23) | (2.365, 2.366,2.38) | (2.91,2.91, 2.91)
r8 | (2.1,2.11,2.13) | (2.1,2.11,2.13) | (2.41, 2.42, 2.44) (2.91, 2.91, 2.91)
r9 | (2.2,2.21,2.23) | (2.2,2.21,2.23) | (2.26,2.27, 2.29) (2.66, 2.66, 2.66)
r10 | (2.1,2.11,2.13) | (2.1,2.11,2.13) | (2.51, 2.52, 2.54) (2.82,28.2, 2.82)

Table 5.15 Acceptable defective rate of production plant for raw materials, average

service level of suppliers and acceptable service level of production plant.

Acceptable defect rate

Average service

Acceptable service

R(’:\)/I of production plant Sup(sz;lers level of suppliers | level of production
for raw materials (%) (%) plant (%)

rl (4.48,5.6, 6.72) sl (75, 94, 100) (69, 86, 100)

r2 (4.64, 5.8, 6.96) s2 (72, 90, 100)

r3 (4.8,6,7.2) s3 (69, 86, 100)

r4 (4.48,5.6,6.72) s4 (70, 87, 100)

r5 (4.4,5.5, 6.6)

ré (4.72,5.9, 7.08)

r7 (5.04, 6.3, 7.56)

r8 (4.4,5.5, 6.6)

r9 (4.72,5.9, 7.08)

ri0 (4.88,6.1, 7.32)
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In Table 5.16, the forecasted demand of each customer in the optimistic case is
reported. The most likely and pessimistic cases of forecasted demand are estimated by
multiplying the optimistic case of forecasted demand by 1.2 and 1.3, respectively. For
instance, the forecasted demand of customer (j1) for product (nl) in period (t1), in
optimistic case, are 100 units. As a result, the estimated demand of the most likely and
pessimistic cases will be 120 and 130 units, respectively.

Table 5.16 Forecasted demand of customers in the optimistic case (units).

. Period (t)
G | ()
t1 | t2 | t3 | t4 | t5 t6 t7 | t8 | t9 | t10 | t11 | t12

nl | 100 | 250 | 350 | 300 | 100 | 200 | 250 | O |100 150 | 100 | 100
n2 | 200 | 250 | 300 | 350 | 200 | 200 | 200 | 350 | 400 | 450 | 500 | 350
j1 | n3 | 150 | 200 | 250 | 300 | 100 | 50 O 100|200 |250 | 300 |400
n4 | 250 | 100 | 300 | 250 | 200 | 100 | 200 | 300 | 400 | 400 | 400 | 300
n5 | 150 | 200 | 200 | 400 | 300 | 350 | 100 | 100 | 150 | 100 | 100 | 100
nl 190|350 | 540 | 590|120 | 320 | 380|200 |180|190| 130 |110
n2 | 280 | 330 | 320 | 570 [ 370 | 330 | 290|690 | 670|650 | 950 |430
j2 | n3 210|370 | 490 | 400|150 | 70 |100 | 160 |330|380 | 400 |620
n4 | 300 | 180 | 370 | 410 [ 310 | 130 | 270|460 | 770|780 | 520 | 590
nS | 290 | 400 | 220 | 690 | 420 | 380 | 170|190 | 190|120 | 170 | 140
nl1]| 9 190 | 30 | 80 | 40 | 300 |140]100]130| 50 | 60 | 20
n2 | 60 | 250 | 530 | 140 | 150 | 80 | 160|190 | 330|290 | 560 | 450
j3 [ n3] 90 | 70 | 140|400 | 10 | 60 | 80 | 100 | 160|260 | 200 |610
n4d 1190130230 | 40 |160| 20 |100 | 180|540 (510 | 300 | 20
n5| 80 [ 170 150|290 | 280 | 300 | 80 | 20 | 240 | 50 | 120 | 110
nl 170|580 | 750|880 (290 | 350 [560| O |230]310| 250 | 330
n2 | 460 | 620 | 470 | 710 | 680 | 540 | 570 | 920 | 830 | 660 | 1,260 | 810
j4 | n3 | 200|500 | 300 | 830|160 90 0 | 140|620 | 540 | 550 | 850
n4 | 710 | 240 | 530 | 810 | 620 | 180 | 260 | 520 | 980 | 460 | 810 | 710
n5 | 400 | 310 | 490 | 600 | 630 | 1,110 | 320 | 200 | 170 | 180 | 250 | 190
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CHAPTER 6
RESULTS AND DISCUSSIONS

The mathematical models, which have been developed and proposed in the
previous chapters, are coded by Optimization Programming Language (OPL), and
presented in Appendix D. All computations are solved by IBM ILOG CPLEX
Optimization Studio (version 12.6) software. The obtained results of the discussed
approaches in this study are shown in this chapter. The obtained results are compared,

analyzed, and discussed to figure out the pros and cons of the proposed methodology.

6.1 Obtained outcome from solving crisp multiple-objective mixed-integer linear
programming

As a primary stage of identifying the goal values for each objective to construct
its membership function, the credibilistic MOMILP model is transformed into the
equivalent crisp model with a given minimum confidence level (a = 0.9). The gathered
data from the case study in Chapter 5 are used to find the positive and negative ideal
solutions (following the description in Chapter 4) by IBM ILOG CPLEX Optimization
Studio (version 12.6) software. The crisp multiple-objective mixed-integer linear
programming model is then solved to attain the positive and negative ideal solutions.
As a result, a payoff table for determining the positive and negative ideal solutions of
each objective function is formed, as shown in Table 6.1.
Table 6.1 Payoff table for achieving positive and negative ideal solutions.

Objective functions (2 172 2 2
Z1(3) 4,842,557.76 | 6,334,476.88 | 6,483,751.24 | 9,605,972.20
Z> (units) 2,357 0 5,886 4,479
Z3 (persons) 85 0 0 0
Z4 (units) 271,887 270,139 243,074 357,345

According to the results in Table 6.1 and Equations (4.31) — (4.32), the obtained
positive and negative ideal solutions of each objective function are presented in Table
6.2.
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Table 6.2 Achieved positive and negative ideal solutions for each objective function.

L . PIS NIS
Obijective functions Type Value Type Value
Z:1($) Min 4,842 557.76 Max 9,605,972.20
Z> (units) Min 0 Max 5,886
Z3 (persons) Min 0 Max 85
Z4 (units) Max 357,345 Min 243,074

In relation to Equations (4.33) — (4.34) and Figure 4.4, the achieved positive and

negative ideal solutions of each objective function in Table 6.2 is applied. The

membership function of each objective function is depicted and formulated, as shown

as below:

A

Satisfaction level
Uz,

A

4,842,557.76

9,605,972.20 $'

a) Minimizing the total
supply chain costs.

Satisfaction level
Uz,

Z,

»

0

5,886 Units

b) Minimizing the shortages

of product.

Satisfaction level

Satisfaction level

0

85 Persans

¢) Minimizing the rate of
change of workforce.

Zy

»

243,074

357 345 Units

d) Maximizing the total
value of purchasing.

Figure 6.1 Membership functions of objective functions.

1,

9,605,972.20 — Z,

'lel =
0,

9,605,972.20 — 4,842,557.76

7, < 4,842,557.76
4,842,557.76 < Z, < 9,605,972.20
9,605,972.20 > Z,
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(1,

Z,<0
5886 —2Z, <“2=
Uy, ={ =2 0<Z,<5886
5886 -0 5056 > 7,
L0,
(é's ~-Z 2 =0
ﬂ23=<85 03 0<Z;<85
- >
Lo, 85 > Z,
(1 7, > 357,345
Z, — 234,074 4 s
Mo =357 31e 072 234074 < Zs < 357,345
0 Z, < 234,074

6.2 Fuzzy goal programming
6.2.1 Obtained outcome from applying Zimmerman’s method

For Zimmerman’s method, each objective function is considered to have the
same relative importance (there is no priority for any objective function). That is why
it is known as a symmetric model. The objective function of this method maximizes the
minimum value of the satisfaction level. As a result, the outcome of this method is the
balanced efficient compromise solutions. By applying Zimmerman’s method for
solving the proposed MOMILP model, the obtained results are presented in Table 6.3.

Table 6.3 Optimal solution of Zimmerman’s method.

Implications Symbol Value Unit
Overall satisfaction @) 77.36 %
Minimizing the total supply chain costs (Z4) 5,920,829.06 $
Minimizing the shortages of product (Z,) 530 units
Minimizing the rate of changes in the workforce (Z3) 19 persons
Maximizing the total value of purchasing (Z4) 331,053 units
Satisfaction of the first objective function (Uz,) 77.37 %
Satisfaction of the second objective function (Uz,) 91.01 %
Satisfaction of the third objective function (Mz5) 77.65 %
Satisfaction of the fourth objective function (Uz,) 77.36 %
Confidence level (o) 90 %

From Table 6.3, the overall goal satisfaction (as denoted by 1), which represents
the maximum degree of the minimum satisfaction of all the objective functions is
77.36%. Under this circumstance, the satisfaction degree of the first, second, third, and
fourth objective function is 77.37%, 91.01%, 77.65%, and 77.36%, respectively. The
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total cost of aggregate production planning for the entire supply chain is $ 5,920,829.06,
while the total number of products that could not be manufactured to fulfill customer
demand is 530 units. The total number for the changed workforce level is 19 persons,

and the maximum value of total purchasing is 331,053 units.

6.2.2 Obtained outcome from applying TH’s method

TH’s method allows decision-makers (DMs) to allocate the different weights to
the objective functions based upon their importance level (asymmetric model). In this
study, according to the DM preferences, the relative importance weight of the objective
functions are given as 8, = 0.35,8, = 0.3,65; = 0.2,6, = 0.15. Furthermore, the
distribution of weights for each objective function means that the DMs pay more
attention to the unbalanced compromise solutions (the higher satisfaction level of the
objective that is indicated by its higher weight importance will be more concern). That
is why the value of the coefficient of compensation is set to a low value (y = 0.2). The
optimal results of the proposed model after being solved by using TH’s method is
shown in Table 6.4.
Table 6.4 Optimal results from TH’s method with 8, = 0.35,8, = 0.3,65; = 0.2,6, =
0.15,and y = 0.2.

Implications Symbol Value Unit
Overall satisfaction (D 84.87 %
Minimizing the total supply chain costs (Zz,) |5,963,618.11 $
Minimizing the shortages of product (Zy) 0 units
Minimizing the rate of changes in the workforce (Z3) 0 persons
Maximizing the total value of purchasing (Z,) 326,843 units
Satisfaction of the first objective function (uz,) 77.47 %
Satisfaction of the second objective function (uz,) 100 %
Satisfaction of the third objective function (uz,) 100 %
Satisfaction of the fourth objective function (uz,) 73.31 %
Confidence level () 90 %

According to the obtained results from Table 6.4, as compared to the obtained
results of Zimmerman’s method, it was found that the overall satisfaction level (1) of
DMs for TH’s method is 84.87%. This is higher than the overall satisfaction level of
DMs for Zimmerman’s method (77.36%). The obtained satisfaction values of each

objective from TH’s method are better than the obtained satisfaction values of each
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objective from Zimmerman’s method except for the fourth objective. This implies that
there is a trade-off among these objectives (Once one of these objectives gets better, at
least one other objective must be worse). As can be seen that there is only the
satisfaction value of the first objective and the fourth objectives meet the DM
preferences (u,, > u,, agrees with 8, > 6,). While the second and third objectives are
supposed to be less important than the first objective 6, > 6, > 65 the obtained
satisfaction values of the second and the third objective are still better than the
satisfaction values of the first objective. Hence, the DM preferences cannot be satisfied
totally although most objectives can get better results. That is why it is necessary to
improve the model so that the model can be able to generate consistent solutions (the
satisfaction level of each objective must be compatible with the expected importance
weight of its objective) that can totally satisfy the DM expectations. In relation to the
above satisfaction value of each objective function, the actual total cost of aggregate
production planning for the entire supply chain (Z,) is $5,963,618.11, while there is no
shortage of product (Z,= 0 units). There is also no change in the workforce level (Z; =

0 persons), and the maximum value of total purchasing (Z,) is 326,843 units.

6.2.3 Obtained outcome from applying the proposed method

As mentioned earlier, by taking into consideration of the consistency of the
obtained solutions, a ranking constraint p; X 6,41 = 6, X up4+1 (consistent-weight
constraint) is added to TH’s model. The consistent-weight constraint can ensure that
the achieved solution of the satisfaction level of objectives and the assigned weights
(based on DM preferences) is homogeneous (i.e. uy = py = Uz = u, agrees with 6; >
6, = 05 > 6,). The optimal weight-consistent solutions of the proposed model are

shown in Table 6.5.
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Table 6.5 Optimal results from proposed method with 6, = 0.35,8, = 0.3,65 =
0.2,6, =0.15,and y = 0.2.

Implications Symbol Value Unit
Overall satisfaction D 69.21 %
Minimizing the total supply chain costs (Z,) | 4,940,544.27 $
Minimizing the shortages of product (Z,) 946 units
Minimizing the rate of changes in the workforce (Z3) 39 persons
Maximizing the total value of purchasing (Z,) 289,451 units
Satisfaction of the first objective function (Uz,) 97.94 %
Satisfaction of the second objective function (uz,) 83.93 %
Satisfaction of the third objective function (Uz,) 54.12 %
Satisfaction of the fourth objective function (uz,) 40.59 %
Confidence level () 90 %

Based on Table 6.5, the obtained overall satisfaction level is 69.21%, while the
satisfaction levels of four objectives Z,,Z,,Z;, and Z, are 97.94%, 83.93%, 54.12%,
and 40.59%, respectively. It is clear that the obtained satisfaction levels of objectives
are totally consistent with DM preferences for all the objective functions (u; = u, =
Us =, agrees with 6, =6, > 65 > 6,). However, it is found that the overall
satisfaction level of this method is lower than the overall satisfaction levels of
Zimmerman’s method and TH’s method that were previously presented. This is
explained by the trade-off among these four objectives (to get improvement from any
objective, at least one other objective must be worse). As a result, the value of the
overall satisfaction level of the proposed method can be low. Regarding the above-
mentioned percentages of satisfaction of each objective function, the actual total cost
of aggregate production planning for the entire supply chain (Z,) is $ 4,940,544.27. The
total shortage of product (Z,) is 946 units. The total number of the changed workforce
level (Z3) is 39 persons, and the maximum value of total purchasing (Z,) is 289,451
units.

Some main values of decision variables (aggregation plan) from solving the
proposed model with the confident level (« = 0.9), the important weight of objectives
(6, =0.35, 6, =0.3, 835 = 0.2, 6, = 0.15), and compensation coefficient (y = 0.2)
are shown as Tables in the Appendix A.

To verify the efficiency of the proposed model for the consistency of solutions,

a full of possible cases for different ordering pattern values of the importance weights
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of objectives are generated by factorial design. These possible cases are used for testing

the proposed model. There are four objectives considered in the proposed model.

Therefore, there are twenty-four possible cases that are generated from four factorial

(41). All the possible cases of the ordering pattern weights of objectives are presented

in Table 6.6.

Table 6.6 Varied ordering patterns of the importance weights of objectives.

Cases Order patterns 01 0, 03 0,
1 6,>6,>6;>6, 0.37 0.31 0.21 0.11
2 6,>6,>6,>0, 0.3 0.29 0.15 0.26
3 6,>6;>6,>6, 0.28 0.24 0.26 0.22
4 0,>60;>0,>6, 0.6 0.07 0.18 0.15
5 6,>6,>06,>0, 0.4 0.2 0.08 0.32
6 6,>6,>0;>6, 0.27 0.23 0.24 0.26
7 0,>0,>60;>80, 0.26 0.29 0.24 0.21
8 6,>6,>6,>0, 0.3 0.4 0.1 0.2
9 6,>6;>6,>86, 0.23 0.3 0.25 0.22
10 0,>0;>0,>0, 0.21 0.34 0.29 0.25
11 0,>0,>0, >0, 0.18 0.51 0.03 0.28
12 6,>0,>60;>6, 0.17 0.4 0.2 0.23
13 6;:>60,>6,>6, 0.27 0.22 0.32 0.19
14 0;>60,>0,>6, 0.34 0.1 0.4 0.16
15 6;>6,>6,>6, 0.22 0.27 0.3 0.21
16 6;:>6,>6,>60, 0.03 0.06 0.87 0.04
17 0;>0,>6,>6, 0.19 0.18 0.42 0.21
18 0;>0,>0,>0, 0.15 0.19 0.38 0.28
19 0,>6,>6,>0, 0.25 0.13 0.08 0.54
20 0,>60,>6;>0, 0.33 0.13 0.18 0.36
21 0,>60,>0, >0, 0.25 0.25 0.15 0.35
22 6,>6,>60;>6, 0.21 0.26 0.24 0.29
23 6,>6;>6,>0, 0.22 0.16 0.28 0.34
24 0,>60;>0,>0, 0.18 0.22 0.28 0.32

Applying the data set in Table 6.6 for solving the proposed multiple-objective

model, the optimal obtained results of TH’s model (integrating the consistent-weight

constraints) are shown in Table 6.7.
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Table 6.7 Optimal solutions of the proposed model with & = 0.9 and y = 0.2.

Case | Order patterns A U1(%) | 1, (%) | u3(%) | pa(%) ig?jtlis(:ﬁzt
1 | 6,>6,>6;>6, | 66.60 | 97.95 | 82.06 | 54.12 | 28.35 Yes
2 | 6,>0,>6,>6; | 68.35 | 94.89 | 91.71 | 35.29 | 62.55 Yes
3 | 6,>0,>6,>0, | 76.44 | 93.76 | 80.36 | 87.06 | 58.25 Yes
4 16,>60,>60,>6, | 56.18 | 96.84 | 10.98 | 28.24 | 23.53 Yes
5 1 6,>6,>6,>6; | 57.11 | 87.24 | 43.61 | 16.47 | 69.79 Yes
6 | 6;,>0,>6;>0, | 71.63 | 79.27 | 66.51 | 69.41 | 75.20 Yes
7 16,>0,>6;>6, | 82.09 | 89.65 | 100.00 | 81.18 | 67.00 Yes
8 16,>0,>6,>6; | 64.92 | 75.00 | 100.00 | 24.71 | 50.00 Yes
9 6,>60,>6,>6, | 81.66 | 75.76 | 100.00 | 82.35 | 72.47 Yes
10 | 6,>65;>60,>6; | 84.02 | 61.34 | 99.98 | 84.71 | 73.02 Yes
11 |1 6,>6,>60,>65 | 59.50 | 35.29 | 100.00 | 5.88 | 54.90 Yes
12 1 6,>6,>60;>6, | 6460 | 42.00 | 100.00 | 49.41 | 57.50 Yes
13 | 6;>6,>60,>6, | 76.82 | 84.37 | 68.74 | 100.00 | 59.37 Yes
14 | 6;>6,>60,>60, | 67.24 | 85.00 | 24.99 | 100.00 | 40.00 Yes
15 | 6;>6,>60,>6, | 8210 | 73.33 | 89.99 | 100.00 | 69.99 Yes
16 | 6,>6,>60,>6, | 70.85 | 3.44 6.88 | 100.00 | 4.59 Yes
17 | 6;>6,>60,>60, | 63.62 | 45.24 | 42.85 | 100.00 | 50.00 Yes
18 | 6;>6,>60,>6, | 67.14 | 39.47 | 50.00 | 100.00 | 73.68 Yes
19 | 6,>60,>6,>0, | 5537 | 44.03 | 22.87 | 11.76 | 95.10 Yes
20 | 6,>6,>60;>6, | 56.20 | 72.80 | 28.03 | 38.82 | 79.42 Yes
21 | 6,>6,>6,>0; | 6119 | 6250 | 62.50 | 36.47 | 87.56 Yes
22 | 6,>6,>6;>0, | 73.25 | 62.79 | 7790 | 71.76 | 86.91 Yes
23 | 6,>6;>6,>6, | 63.83 | 56.39 | 40.98 | 71.76 | 89.67 Yes
24 | 6,>65>6,>60, | 70.33 | 51.40 | 62.83 | 80.00 | 92.45 Yes

Throughout the obtained solutions as presented in Table 6.7, it can be seen that

all satisfaction values of the objectives match their allocated importance weights. The

proposed model is optimized so that the satisfaction levels of objectives uy, = up41

agree with their allocated important weights 8, > 6,,,,. This is also evidence that the

proposed model can ensure the weight-consistent solutions. The number of weight-

consistent solutions from the three approaches is summarized in Table 6.8. The

satisfaction level and the actual value of all objectives of these three approaches are

presented in the Appendix B.
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Table 6.8 Weight-consistent solutions of three approaches.

Approaches Weight-consistent solutions Percentages
Zimmerman’s model 1/24 4.1%
TH’s model 3/24 12.5%
Proposed model 24/24 100%

Based on the aggregated results as shown in Table 6.8, it is a highlight that only
the proposed model can guarantee 100% for the generated weight-consistent solutions

while the other two approaches hardly achieve the weight-consistent solutions.

6.3 Sensitivity analysis

In this section, a sensitivity analysis is conducted to investigate the impacts of the
confidence level (o) and the coefficient of compensation (y) on the optimal solution of
the proposed model. The values of a and y are varied while the other parameters are fixed.

Usually, in credibility-based fuzzy chance-constrained programming, the
confidence level is set by the decision-makers (DMs). The confidence levels (credibility
levels) have a significant impact on the attainment of solutions because they are used
to control the allowable satisfaction level of imprecise objective functions and
imprecise constraints. Thus, it is necessary to find how uncertainty affects the optimal
solutions through the different confidence levels. In this sensitivity analysis, the
confidence levels of o are varied with a step size of 0.1 (from 0.5 to 1), the value of the
compensatory coefficient is set to 0.2, and the importance weights of the objectives are
6, = 0.35,6, = 0.3,6; = 0.2,0, = 0.15. The result of sensitivity analysis with the
variation of the confidence level (a) is shown in Table 6.9 and illustrated graphically
in Figure 6.2.
Table 6.9 Obtained solutions with different values of o with 6; = 0.35,6, = 0.3,0; =
0.2,6, = 0.15,and y = 0.2.

avalue | A | m(%) | 1(%) | ms%) | m(%) | Zy(9) (uﬁizts) (pefs;ns) (fﬁns)
0.5 71.16 | 100.00 | 85.71 | 56.47 | 42.35 | 4,842,557.76 841 37 291,468
0.6 71.16 | 100.00 | 85.71 | 56.47 | 42.35 | 4,842,557.76 841 37 291,471
0.7 71.16 | 100.00 | 85.71 | 56.47 | 42.35 | 4,842,567.11 841 37 291,471
0.8 71.16 | 100.00 | 85.71 | 56.47 | 42.35 | 4,842,571.76 841 37 291,471
0.9 69.21 | 97.94 | 83.93 | 54.12 | 40.59 | 4,940,544.27 946 39 289,451
1 65.14 | 9148 | 78.41 | 51.76 | 38.82 | 5,248,346.32 | 1,271 41 287,438
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—&— Satisfaction of minmimizing the total costs (1)
Satisfaction of minmimizing the shortage of products (u2)
Satisfaction of minmimizing the rate of changes in the workforce level (u3)
Satisfaction of maximizing the total value of purchasing (u4)
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Figure 6.2 Satisfaction levels of each objective function according to the different
values of (a).

According to the obtained outcomes in Table 25, it highlights that an increment of
the confidence level will lead to a decrease in the satisfaction levels of all objectives. This
implies that the actual values of all objectives can get worse. The reasons for obtaining
worse solutions when the confidence level is higher can be explained as follows:

e When DMs allocate a higher confidence level (high credibility) for the fuzzy
parameters, the DMs focus on the upper point of the fuzzy parameter. In other
words, if the confidence level is set to 1, the used value of the fuzzy parameter
will be the largest value (pessimistic case). As a result, the value of the
objectives will be worse in the pessimistic case.

e In addition, there is a trade-off between the satisfaction of constraints (the risk
of violating constraints) and the optimal value of objectives. When the
satisfaction levels of constraints are high, the feasible solution set will be
smaller. As a result, the optimal objectives become worse. The confidence level

(here) is denoted as the satisfaction level of the constraints. Thus, when the
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confidence level is high (low violation of constraints), the value of the optimal

objective becomes worse.

Regarding the obtained results of different confidence levels, it can help DMs
to estimate the possible results from the optimistic situation to the pessimistic situation.
Knowing that, the DMs can take necessary actions and with better preparation for these
situations in the future.

To explore and realize the influence of the coefficient compensation (y) on the
optimal solutions, the value of coefficient compensation is varied from 0 to 1 with a
step size of 0.1, the confidence level (o) is set to 0.9, and the importance weights of the
objective function are 6; = 0.35,60, = 0.3,0; = 0.2,6, = 0.15. Moreover, in the
process of the sensitivity analysis, as the value of the compensation coefficient is set
larger than 0.5, this means that the DMs will pay more attention to the balanced
solutions (there is no priority for any objective — all objectives are treated equally).
Thus, the consistency of the solutions is not considered. In contrast, if the value of the
compensation coefficient is set smaller at 0.5, this implies that the DMs are interested
in the unbalanced solution (The priority of objectives is considered). Therefore, the
consistency of the solutions will be taken into account. The obtained satisfaction levels
and the actual values for all objective functions by doing sensitivity analysis with the
compensation coefficient are presented in Table 6.10. A spectrum of unbalanced and
balanced compromise solutions based on the preferences of DMs is illustrated
graphically in Figure 6.3.

Table 6.10 Results of sensitivity analysis by varying the compensation coefficient (y).

yvalue | A00) | 1) | 100 | w00 | ) | O | ko | corony | (unks)
0 76.34 | 97.29 | 83.37 | 55.29 | 41.47 | 4971,733.43 | 979 38 290,459
0.1 72.34 | 97.11 | 83.23 | 54.12 | 40.59 | 4,980,150.77 | 987 39 289,454
0.2 69.21 | 97.94 | 83.93 | 54.12 | 40.59 | 4,940,544.27 | 946 39 289,451
0.3 65.47 | 97.91 | 83.20 | 54.12 | 40.59 | 4,942,033.27 | 989 39 289,455
0.4 62.11 | 98.10 | 84.06 | 54.12 | 40.58 | 4,933,022.55 | 938 39 289,451
0.5 58.77 | 96.84 | 82.98 | 55.29 | 41.47 | 4,993,245.57 | 1,002 38 290,460
0.6 80.33 | 75.43 | 99.90 | 100.00 | 75.43 | 6,012,784.80 6 0 329,269
0.7 80.43 | 76.98 | 99.97 | 100.00 | 76.98 | 5,938,946.62 2 0 331,038
0.8 78.46 | 76.06 | 100.00 | 100.00 | 76.06 | 5,982,793.50 0 0 329,991
0.9 77.13 | 75.98 | 100.00 | 97.65 | 75.98 | 5,986,879.89 0 2 329,897
1 77.36 | 77.36 | 91.00 | 77.65 | 77.36 | 5,920,829.06 | 530 19 331,479
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= Satisfaction of minmimizing the shortage of products (u2)
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Figure 6.3 Satisfaction levels of each objective function according to the different

values of (y).

According to Table 6.10 and Figure 6.3, it is noted that when a higher value of
y is used, a smaller gap between the lowest and highest satisfaction levels of objective
functions can be obtained. Particularly, at the highest compensation coefficient value
of 1, the lowest and highest satisfaction levels of objectives are 77.36% and 91%,
respectively (the gap is 13.64%). It implies that the DMs pay more attention to
obtaining the higher bound of the satisfaction level for objective functions (4,) with
more balanced compromise solutions (symmetric fuzzy decision-making). In contrast,
as a lower value of y is used, the gap between the lowest and highest satisfaction levels
of objective functions becomes larger. Particularly, the lowest and highest satisfaction
levels of objectives are 41.47% and 97.29%, respectively, at the lowest compensation
coefficient value of 0 (the gap is 55.82%). It also means that the DMs get more
concerned about the solutions with a high satisfaction level of some objectives in
connection with the relative importance of objectives. It yields unbalanced compromise

solutions (asymmetric fuzzy decision-making).
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Based on the obtained outcomes and the above discussion, it could be concluded
that the proposed approach possesses some advantages as follows:

e As compared with traditional defuzzification methods (e.g. fuzzy ranking
method, average weight method), the fuzzy ranking method can separate the
fuzzy numbers into different corresponding scenarios. The weighted average
method just converts a fuzzy number into a crisp number by assigning weights
to the possible values of fuzzy numbers. Since these methods are conducted at
the beginning of FLP process (too early), therefore, the attributes of fuzzy data
totally disappear and no information about the likely violation of constraints
(feasibility concept) is provided. In contrast, based on the relation of the two
fuzzy sets under the credibility measure, FCCP used in this study can assist DMs
in controlling and analyzing the fuzziness level of fuzzy constraints (the risk of
constraint violation) by a sensitivity analysis or interactive decision-making
process.

e The approach brings computational efficiency because it still maintains the
linearity and does not increase the number of objective functions and
constraints. Therefore, it can be used for solving a large scope of fuzzy
programming models.

e Thisisarobust and reliable approach because the obtained solutions are always
consistent with the expectation of DMs for the matter of the homogeneity
between the satisfaction level of the objectives and their importance weights.

e The approach can generate efficient solutions and yield both unbalanced and
balanced compromise solutions according to the preferences of the DMs.

e By using different sets of controllable parameters such as the importance weight
of objectives(8},),confidence levels (o), and compensatory coefficient (y), it can
yield many efficient solutions. This feature is evidence to show the high

flexibility of the proposed approach.
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CHAPTER 7
CONCLUSION

7.1 Managerial Implications

Throughout this study, several managerial and business insights for operational
planners or managers could be drawn as follows:

In practical applications, the credibility level () can be used to reflect the
occurrence of a fuzzy event and can represent the uncertain parameters in the fuzzy
model. By setting credibility levels («), the uncertain parameters can be converted into
crisp analogous parameters, and all of the crisp parameters can create a deterministic
system scenario. With each credibility level («), there is a corresponding scenario and
a set of optimal results (operational decision variables). Being aware of many scenarios,
the planners or managers can make effective operational and strategic management
plans for any changes in the future.

In general, the higher the credibility level is, the more satisfied the DMs are
with the constraints. This leads to higher confidence in the planners or managers for the
obtained optimal results. In the credibility theory, decreasing the credibility level in the
fuzzy chance constraints will lead to an increase in the right-hand side parameters and
a decrease in the left-hand side parameters of the constraints. Hence, the feasible
solution region will be extended. As a result, better optimal solutions can be more easily
found. Usually, the right-hand side parameters of the constraints represent the available
resources of the company, but the resources are not free. They have costs. To enhance
the available resources, the company needs to spend more on investing in the
company’s resources. Consequently, there exists a trade-off between the credibility
level and the gained benefits. Based on the trade-off analysis, the planners or managers
can choose a suitable plan or policy by considering comprehensively between the
acceptable credibility levels and the gained benefits.

From the perspective of making decisions under the consideration of multiple
conflicting objectives at the same time (there exists a trade-off between objectives), this
study provided a fuzzy solution that can achieve both balanced, unbalanced, and

consistent compromise solutions among the conflicting objectives. Hence, it is very
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helpful for the planners or managers in selecting satisfactory solutions under a

company’s policies.

7.2 Conclusions

Uncertainty of data and conflicting objectives are two main features that should
be addressed in the aggregate supply chain planning problem. In this study, a multiple-
objective optimization model in an uncertain environment for aggregate production
planning in a supply chain was investigated. To make the APP problem more effective,
informative, and compatible with a real-life environment, the APP problem was
integrated into a Supply Chain (SC) including a production plant, multiple suppliers,
and multiple customers. Besides, several important problems such as multiple products,
product characteristics, and labor characteristics, are embedded in the proposed model.
Since the APP problem was considered in the SC, the aggregate plan has not only
production plan, but also includes procurement plan and distribution plan. The
proposed APP model considered simultaneously four conflicting objective functions,
which minimize the total cost of the SC, minimize the total shortage of products,
minimize the variation in the workforce, and maximize the total value of purchasing.
The proposed model is formulated as a Multiple-Objective Mixed-Integer Linear
Programming (MOMILP) model.

A comprehensive Credibility-based Fuzzy Chance-constrained Programming
(CFCCP) approach for dealing with the uncertainty of data was presented. It indicated
that CFCCP can handle the uncertain parameters that appear in any positions in the
fuzzy optimization model such as the objective function and constraints (one side and
both two-sides of the constraints). In addition, it also yields a confidence level for the
obtained optimal solutions.

In practical applications, the importance of objectives is not treated equally.
Therefore, it is necessary to assign importance weights to the different objectives.
Although the weights are assigned to indicate the importance of the objectives, they
still cannot ensure that the obtained solutions totally satisfy the decision-makers as their
expectations (the obtained solutions are not consistent with the preference of the
decision-makers (DMs)). In the proposed model, weight-consistent constraints were
integrated to guarantee that the obtained solutions are consistent with the DM
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expectations (the ranking of the objective satisfaction levels must be the same as the
ranking of the objective importance weights).

In summary, to cope with the proposed fuzzy MOMILP model in this study, a
hybrid approach with a two-phase solution was developed. In the first phase, to deal
with the fuzziness of parameters, Credibility-based Fuzzy Chance-constrained
Programming (CFCCP) was applied to transform the fuzzy multiple-objectives
optimization model into the corresponding crisp multiple objectives model. With
CFCCP, it not only deals with imprecise parameters represented as fuzzy sets, but also
controls the different confidence levels in the satisfaction of the imprecise objective
functions and imprecise constraints. In the second phase, Fuzzy Multiple Objective
Linear Programming (FMOLP) integrating the concept of the weight-consistent
solutions was applied to solve the crisp credibilistic multiple-objective model. Adding
the weight-consistent constraint into the model can ensure that the obtained results will
totally satisfy the expectations of decision-makers in terms of the consistency between
the objective satisfaction and the objective importance weight (i.e. 3 =y, = s = g
in accordance with 6, > 6, > 65 > 6,). Moreover, the objective function of FMOLP
IS an aggregation function. Thus, the proposed model can generate both balanced and
unbalanced compromise solutions.

From the obtained outcomes of the proposed model, it showed that the proposed
hybrid approach is very effective. For the matter of optimizing under uncertainty, this
method can solve and bring efficient solutions with pre-determined confidence levels
in an uncertain environment. For the matter of conflicting objectives, this method can
produce consistent-solutions, balanced solutions, and unbalanced compromise
solutions based on the preferences of the DMs. Besides that, it also offers high
flexibility for yielding different efficient solutions to support decision-makers in

selecting the final preferred satisfactory solution.

7.3 Limitations

The limitations of this study are as follows:

The triangular possibility distribution is assumed to represent the uncertain
parameters of the proposed fuzzy model. Based on incomplete available data, subjective
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knowledges or experiences of the DMs/experts, other appropriate distribution forms
can be generated and then applied for the proposed model.

Any parameter that may affect the results of planning can be considered as a
fuzzy number. In fact, there is no restrictions on the number of fuzzy parameters that
can appear in the proposed approach. However, except for the operational costs in the
objective function, there are other parameters in the constraints (e.g. machine capacity,

machine’s hours, warchouse capacity) that can be considered to be fuzzy numbers.

7.4 Further study

In future research, it is possible to embed some more important issues of APP
in the proposed model such as multiple production plants, varying lead time, labor
skills, time value of money, etc. Also, taking into account the modeling perspectives of
the supply chain, one more echelon (distribution centers) can be added to the supply
chain network. This is because the final products should be delivered from the
distribution centers instead of being transferred directly from the production plant.
From the perspective of solution methodology, once the complete data is available and
the problem becomes more complicated or is too large, various heuristic or evolutionary

approaches such as genetic algorithms should be considered in future research work.
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APPENDIX A
OBTAINED SOLUTIONS (AGGREGATION PLAN) FROM
SOLVING THE PROPOSED MATHEMATICAL MODEL

In this appendix, the obtained aggregation plan which includes procurement

plan, production plan, and distribution plan are presented.

Table A.1 Production plan.

Period
Product | M == 2 3 4 5 6 7 8 9o | 10 | 11 | 12
R | 1,699 | 1551 | 1,848 | 1,317 | 649 | 1,381 | 1,586 | 337 | 754 | 826 | 637 | 661
1 [o] o 0 0 0 0 0 0 0 0 0 0 0
s| o 0 0 0 0 0 0 0 0 0 0 0

R |1701 | 766 | 1,687 | 1,783 | 1,522 | 874 | 1,950 | 1,950 | 1,950 | 1,950 | 1,950 | 1,950

S 0 0 0 0 0 0 32 0 0 390 54 0

R | 1,075 | 1,605 | 1,666 | 1,666 | 1,666 | 1,666 | 1,320 | 602 885 531 756 602
5 ) 0 0 0 0 0 0 0 0 0 0 0 0
S 0 0 0 0 183 329 0 0 0 0 0 0

M: Method, R: Regular time, O: overtime, S: Subcontracted

Table A.2 Worker plan

Levels Period
1 2 3 4 5 6 7 8 9 10 11 12
Labor 1 21 21 21 21 21 21 21 21 21 21 21 21
2 34 27 27 27 27 27 27 27 27 27 27 27
3 36 36 19 14 14 14 14 14 14 14 14 14
4 8 1 1 0 0 0 0 0 0 0 0 0
5 2 0 0 0 0 0 0 0 0 0 0 0
Firing 1 0 0 0 0 0 0 0 0 0 0 0 0
2 0 7 0 0 0 0 0 0 0 0 0 0
3 0 0 17 5 0 0 0 0 0 0 0 0
4 0 7 0 1 0 0 0 0 0 0 0 0
5 0 2 0 0 0 0 0 0 0 0 0 0
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Table A.3 Inventory level of raw materials and final products

Period
1 2 [ 3 ]als] 6 7 8 9 [ 10 | 11 [ 12
1] 20 | 20 | 20 |20 | 20| 20 | 20 20 | 20 | 20 | 20 | 20
2| 20 [ 20 202020 20| 20 20 | 20 | 20 | 20 | 20
3| 20 | 20 | 202020 20 | 20 20 | 20 | 20 | 20 | 20
4| 12 |12 | 12 1212 12| 12 2 | 12| 12| 12 |12
o o [5 15 [15 [15 [15[15[ 15 [ 15 15 | 15 | 15 | 15 | 15
awmaterial o0 T 20 | 20 | 20 | 20 | 20 | 20 20 | 20 | 20 | 20 | 20
7 | 20 | 20 | 20 | 20 | 20 | 20 | 20 20 | 20 | 20 | 20 | 20
8 | 20 |20 202020 20| 20 20 | 20 | 20 | 20 | 20
9 | 15 | 15 | 15 |15 | 15| 15 | 15 15 | 15 | 15 | 15 | 15
10| 20 | 20| 20 [20]20] 20 [ 20 20 | 20 | 20 | 20 | 20
1 ] 1,052 | 987 | 865] 0 ] 0 ] 0 17 0 0] o] oo
2| o0 0] 0 o0 o] o 0 0 | 294 |615] 0 | 0
Product 3| o 0] 0 ]o]lo]| o 0 0 0 | 0 |527] 0
4] 0 0 | 0 | 1| 7 | 374 1376 | 1,603 | 379 | 182 | 0 | 0
5 | 0 |33 745 |75 1] 0 0 0 0] 0] 0o
Table A.4 Procurement plan
Period
Supplier | RM | 1 2 3 4 5 6 7 8 9 0 | 11 | 12
1 | 3500 | 3500 | 3,500 | 3,500 | 3,500 | 3,500 | 3.500 | 3.500 | 3.500 | 3.500 | 3,500 | 3.500
2 | 3,500 | 3,500 | 3,500 | 3,500 | 2,975 | 3,500 | 3,500 | 2,724 | 3,500 | 3,500 | 3,500 | 3,500
3 | 1,084 | 3,500 | 3,136 | 3,500 | 3,500 | 3,500 | 792 | 3,500 | 3,500 | 3,500 | 3,500 | 3,500
4 | 3500 | 3500 | 3500 | 3500 | 0 | 3,279 | 3279 | 602 | 3,500 | 3,500 | 3,500 | 3,500
. 5 | 3,085 | 3,085 | 3,500 | 3,500 | 3,500 | 2,455 | 3,500 | 3,500 | 3,500 | 3,500 | 3,500 | 3,500
6 | 2500 | 2,269 | 2,385 | 2,500 | 2,500 | 2,500 | 2,498 | 2,500 | 2,500 | 2,500 | 2,500 | 2,500
7 | 2005| 0 | 3585]3585]| 360 | 0 0 0 0 | 3350|3040 | 0
8 | 3,269 | 3,500 | 3,269 | 3,500 | 3,500 | 3,293 | 3,498 | 3,500 | 3,500 | 3,500 | 3,500 | 3,269
9 | 2,585 | 2585 | 3,000 | 2,585 | 2,779 | 2,585 | 3,000 | 2,475 | 2,585 | 2,585 | 2,585 | 3,000
10 | 3293 | 3,500 | 3,500 | 3,500 | 3,500 | 3,500 | 3.498 | 3,500 | 3,500 | 3,500 | 3,500 | 3,500
1 [ 3,000 | 3,000 | 3,000 | 3,000 | 1,598 | 2,293 | 2,764 | 2,838 | 3,000 | 3,000 | 3,000 | 3,000
2 | 219 | 1,391 | 2,946 | 1,884 | 0 | 206 | 398 | 0 | 1,922 | 1,229 | 2399 | 219
3 | 221 | 2767 0 |3000| 221 | 221 | 0 | 831 | 2,741 | 1,989 | 3,000 | 2,511
4 | 146 | 1,818 | 3500 | 3500 | O 0 0 0 | 1,458 | 1,658 | 3,012 | 1,758
) 5 | 0 0 | 1364 | 1910 | 474 | 0 | 665 | 2,076 | 3,000 | 3,000 | 3,000 | 474
6 | 1,646 | 3,000 | 3,000 | 3,000 | 2,078 | 2,834 | 2,633 | 3,000 | 3,000 | 3,000 | 3,000 | 3,000
7 | o 0 0 0 0 0 0 0 0 0 0 0
8 | 3500 | 1,900 | 3,500 | 983 | 2385 | 0 | 126 | 3,024 | 358 | 3,500 | 3,500 | 3,500
9 | o 0 | 584 | 0 0 0 | 43 | 0 0 0 0 0
10 | 3500 | 3,500 | 3,500 | 3,500 | 3,500 | 3.500 | 2.743 | 3.500 | 3.500 | 3.500 | 3,500 | 3.500
1] 1 0 0 0 0 0 0 0 |2256] 0 |332] 0
2 | 3,000 | 3,000 | 3,000 | 3,000 | 3,000 | 3,000 | 3,000 | 3,000 | 3,000 | 3,000 | 3,000 | 3,000
3 | 207 | 0 0 0 | 207 | 207 | 0 0 0 0 0 0
4 | 4,000 | 4,000 | 4,000 | 4,000 | 3,892 | 2,595 | 3,369 | 4,000 | 4,000 | 4,000 | 4,000 | 4,000
5 5 | 3748 | 3,474 | 4,000 | 4,000 | 4,000 | 4,000 | 3,999 | 4,000 | 4,000 | 4,000 | 4,000 | 4,000
6 | 0 0 0 | 527 | o 0 | 195 | 1,924 | 2,700 | 3,500 | 3,500 | 1,664
7 | 343 | 929 | 0 | 75 | 343 | 0 | 2263 | 1,327 | 3,026 | 343 | 343 | 3461
8 | 0 0 0 0 0 0 |199%| 0 0 |1672] 286 | 0
9 | 3489 | 1,705 | 3,500 | 3,098 | 575 | 1,801 | 3499 | 0 | 962 | 1,604 | 590 | 0
10 | 1,954 | 1,200 | 3,000 | 3,000 | 2.277 | 250 | 2,769 | 1,234 | 3,000 | 3,000 | 3,000 | 3,000

Ref. code: 25636122040626BKR



87

0 1,370 | 2,412 | 2,589 0 0 0 0 148 | 2,319 | 148 | 2,036
2,987 | 3,500 | 3,500 | 3,500 | 2,777 | 3,500 | 3,500 | 3,500 | 3,500 | 3,500 | 3,500 | 3,087
2,563 0 3,500 | 1,198 | 1,918 | 1,737 | 3,500 0 0 0 494 0
3,000 | 3,000 | 3,000 | 3,000 | 3,000 | 3,000 | 3,000 | 3,000 | 3,000 | 3,000 | 3,000 | 3,000
0 0 237 0 0 0 135 191 752 | 1,342
3,313 | 451 | 3,500 | 3500 | 3,313 0 3,500 | 3,500 | 3,500 | 3,500 | 3,500 | 3,500
3,500 | 3,500 | 3,029 | 3,500 | 3,500 | 3,448 | 3,499 | 3,500 | 3,174 | 3,500 | 3,500 | 3,500
1,732 0 1,988 | 3,500 0 2,091 | 3,500 0 3,500 0 0 403
3,500 | 3,500 | 3,500 | 3,500 | 3,500 | 3,500 | 3,500 | 3,038 | 3,500 | 3,500 | 3,500 | 3,485
1,177 | 3,235 0 0 0 0 712 | 1,456 | 2,000 | 1,854

OO (NO|O|A[W|IN |-
o
o

=
o
o
o

Table A.5 Distribution plan

Period
Customer | Product 1 2 3 4 5 6 7 8 9 10 11 12
1 118 | 295 | 413 | 354 | 118 | 236 | 295 0 118 | 177 | 118 118
2 236 | 295 | 354 | 413 | 236 | 236 | 236 | 413 | 472 | 531 | 590 | 413
1 3 177 | 236 | 295 | 354 | 118 | 59 0 118 | 236 | 295 | 354 | 472
4 295 | 118 | 354 | 295 | 236 | 118 | 236 | 354 472 | 472 | 472 354
5 177 | 236 | 236 | 472 | 354 | 290 | 241 | 118 177 | 118 | 118 83
1 224 | 413 | 637 | 696 | 142 | 378 | 448 | 236 212 | 224 | 153 130
2 330 | 389 | 378 | 673 | 437 | 389 | 342 | 814 | 791 | 767 | 1121 | 507
2 3 248 | 437 | 578 | 472 | 177 83 118 | 189 389 | 448 | 472 732
4 354 | 212 | 437 | 484 | 366 | 153 | 319 | 543 | 909 | 920 | 614 | 696
5 342 | 472 | 260 | 814 | 496 | 314 | 335 | 224 224 | 142 | 201 165
1 106 | 224 | 35 94 a7 354 | 165 | 118 153 59 71 24
2 71 | 295 | 625 | 165 | 177 94 189 | 224 389 | 342 | 661 531
3 3 106 | 83 | 165 | 472 12 71 94 118 189 | 307 | 236 720
4 224 | 153 | 271 47 189 24 118 | 212 637 | 602 | 248 123
5 94 | 201 | 177 | 342 | 330 | 354 94 24 283 59 142 130
1 201 | 684 | 885 | 1038 | 342 | 413 | 661 0 271 | 366 | 295 | 389
2 543 | 732 | 555 | 838 | 802 | 637 | 673 | 1086 | 979 | 779 | 1487 | 956
4 3 236 | 590 | 354 | 979 | 189 | 106 0 165 | 732 | 637 | 649 | 1003
4 838 | 283 | 625 | 956 | 732 | 212 | 307 | 614 | 1156 | 543 | 852 777
5 472 | 366 | 578 | 708 | 743 | 1038 | 650 | 236 | 201 | 212 | 295 | 224
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Table B.1 Optimal satisfaction level of each objective from the three approaches

_ The order of weight TC cs RCW TVP Wel_ght-
Scenario importance for each Model consistent
objective function (1) (1) (1) (1) solutions

Zimmerman | 0.7696 | 0.9101 | 0.7765 | 0.7699 No

1 01 >02>03>0604 TH 0.8990 | 1.0000 | 1.0000 | 0.6023 No
Proposed 0.9795 | 0.8206 | 0.5412 | 0.2835 Yes

Zimmerman | 0.7696 | 0.9101 | 0.7765 | 0.7699 No

2 01 >62>04>03 TH 0.7652 | 0.9997 | 1.0000 | 0.7658 No
Proposed 0.9489 | 0.9171 | 0.3529 | 0.6255 Yes

Zimmerman | 0.7696 | 0.9101 | 0.7765 | 0.7699 No

3 01 >63>02>064 TH 0.7513 | 1.0000 | 1.0000 | 0.7512 No
Proposed 0.9376 | 0.8036 | 0.8706 | 0.5825 Yes

Zimmerman | 0.7696 | 0.9101 | 0.7765 | 0.7699 No

4 01>03>04>02 TH 0.9314 | 1.0000 | 1.0000 | 0.5905 No
Proposed 0.9684 | 0.1098 | 0.2824 | 0.2353 Yes

Zimmerman | 0.7696 | 0.9101 | 0.7765 | 0.7699 No

5 01>04>02>03 TH 0.7822 | 0.9997 | 1.0000 | 0.7361 No
Proposed 0.8724 | 0.4361 | 0.1647 | 0.6979 Yes

Zimmerman | 0.7696 | 0.9101 | 0.7765 | 0.7699 No

6 01 >04>03>02 TH 0.7682 | 0.9988 | 1.0000 | 0.7681 No
Proposed 0.7927 | 0.6651 | 0.6941 | 0.7520 Yes

Zimmerman | 0.7696 | 0.9101 | 0.7765 | 0.7699 No

7 02>01>03>04 TH 0.7484 | 1.0000 | 1.0000 | 0.7483 No
Proposed 0.8965 | 1.0000 | 0.8118 | 0.6700 Yes

Zimmerman | 0.7696 | 0.9101 | 0.7765 | 0.7699 No

8 02>01>604>03 TH 0.7728 | 0.9997 | 1.0000 | 0.7404 No
Proposed 0.7500 | 1.0000 | 0.2471 | 0.5000 Yes

Zimmerman | 0.7696 | 0.9101 | 0.7765 | 0.7699 No

9 02 >03>01>064 TH 0.7612 | 1.0000 | 1.0000 | 0.7612 Yes
Proposed 0.7576 | 1.0000 | 0.8235 | 0.7247 Yes

Zimmerman | 0.7696 | 0.9101 | 0.7765 | 0.7699 Yes

10 02> 03 > 064> 01 TH 0.7563 | 0.9998 | 1.0000 | 0.7576 No
Proposed 0.6134 | 0.9998 | 0.8471 | 0.7302 Yes

Zimmerman | 0.7696 | 0.9101 | 0.7765 | 0.7699 No

11 02>04>01>03 TH 0.7599 | 0.9993 | 1.0000 | 0.7598 No
Proposed 0.3529 | 1.0000 | 0.0588 | 0.5490 Yes

Zimmerman | 0.7696 | 0.9101 | 0.7765 | 0.7699 No

12 02>04>03>01 TH 0.7604 | 1.0000 | 1.0000 | 0.7604 No
Proposed 0.4200 | 1.0000 | 0.4941 | 0.5750 Yes

Zimmerman | 0.7696 | 0.9101 | 0.7765 | 0.7699 No

13 03 >01>02>04 TH 0.7407 | 1.0000 | 1.0000 | 0.7407 No
Proposed 0.8437 | 0.6874 | 1.0000 | 0.5937 Yes

Zimmerman | 0.7696 | 0.9101 | 0.7765 | 0.7699 No

14 03 >01>04>02 TH 0.8064 | 0.9998 | 1.0000 | 0.7435 No
Proposed 0.8500 | 0.2499 | 1.0000 | 0.4000 Yes
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Zimmerman | 0.7696 | 0.9101 | 0.7765 | 0.7699 No

15 03>02>01>064 TH 0.7640 | 1.0000 | 1.0000 | 0.7640 Yes
Proposed 0.7333 | 0.8999 | 1.0000 | 0.6999 Yes

Zimmerman | 0.7696 | 0.9101 | 0.7765 | 0.7699 No

16 03> 602> 04> 01 TH 0.7127 | 1.0000 | 1.0000 | 0.7164 Yes
Proposed 0.0344 | 0.0688 | 1.0000 | 0.0459 Yes

Zimmerman | 0.7696 | 0.9101 | 0.7765 | 0.7699 No

17 03>04>01>02 TH 0.7587 | 0.9997 | 1.0000 | 0.7606 No
Proposed 0.4524 | 0.4285 | 1.0000 | 0.5000 Yes

Zimmerman | 0.7696 | 0.9101 | 0.7765 | 0.7699 No

18 03 >04>02> 01 TH 0.7507 | 1.0000 | 1.0000 | 0.7506 No
Proposed 0.3947 | 0.5000 | 1.0000 | 0.7368 Yes

Zimmerman | 0.7696 | 0.9101 | 0.7765 | 0.7699 No

19 04>01>02>03 TH 0.7606 | 1.0000 | 1.0000 | 0.7605 No
Proposed 0.4403 | 0.2287 | 0.1176 | 0.9510 Yes

Zimmerman | 0.7696 | 0.9101 | 0.7765 | 0.7699 No

20 04>01>03>02 TH 0.7683 | 1.0000 | 1.0000 | 0.7682 No
Proposed 0.7280 | 0.2803 | 0.3882 | 0.7942 Yes

Zimmerman | 0.7696 | 0.9101 | 0.7765 | 0.7699 No

21 04 >02>061>03 TH 0.7616 | 1.0000 | 1.0000 | 0.7615 No
Proposed 0.6250 | 0.6250 | 0.3647 | 0.8756 Yes

Zimmerman | 0.7696 | 0.9101 | 0.7765 | 0.7699 No

22 04 > 02> 03 > 01 TH 0.7632 | 1.0000 | 1.0000 | 0.7631 No
Proposed 0.6279 | 0.7790 | 0.7176 | 0.8691 Yes

Zimmerman | 0.7696 | 0.9101 | 0.7765 | 0.7699 No

23 04 > 03 > 01> 62 TH 0.7606 | 1.0000 | 1.0000 | 0.7606 No
Proposed 0.5639 | 0.4098 | 0.7176 | 0.8967 Yes

Zimmerman | 0.7696 | 0.9101 | 0.7765 | 0.7699 No

24 04 > 03 > 02 > 01 TH 0.7577 | 1.0000 | 1.0000 | 0.7576 No
Proposed 0.5140 | 0.6283 | 0.8000 | 0.9245 Yes
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vl 2| ) | ) | ) | @) | zi(9) (uﬁfts) (Wof;ers) Z4(TVP)
0.5 | 78.36 | 100.00 85.71 56.47 42.35 | 4,842,557.76 841 37 291,470.05
0.6 | 78.36 | 100.00 85.71 56.47 42.35 | 4,842,557.76 841 37 291,464.45

0 0.7 | 78.36 | 100.00 85.71 56.47 42.35 | 4,842,568.19 841 37 291,471.10
0.8 | 78.10 | 100.00 85.71 56.47 40.61 | 4,842,557.76 841 37 289,477.75
0.9 | 76.34 | 97.29 83.37 55.29 41.47 | 4,971,733.43 979 38 290,459.40
1 7160 | 91.28 78.24 51.76 38.82 | 5,257,894.80 1281 41 287,436.25
0.5 | 74.76 | 100.00 85.71 56.47 42.35 | 4,842,557.76 841 37 291,471.10
0.6 | 74.76 | 100.00 85.71 56.47 42.35 | 4,842,557.76 841 37 291,465.10

01 0.7 | 74.76 | 100.00 85.71 56.47 42.35 | 4,842,557.76 841 37 291,470.75

' 0.8 | 74.76 | 100.00 | 85.71 56.47 42.35 | 4,842,561.58 841 37 291,469.80
09| 7234 | 97.11 83.23 54.12 40.59 | 4,980,150.77 987 39 289,454.25
1 69.26 | 93.01 79.71 51.76 38.82 | 5,175,313.82 1194 41 287,437.80
0.5 | 71.16 | 100.00 85.71 56.47 42.35 | 4,842,557.76 841 37 291,467.65
0.6 | 71.16 | 100.00 85.71 56.47 42.35 | 4,842,557.76 841 37 291,470.95

0.2 0.7 | 71.16 | 100.00 85.71 56.47 42.35 | 4,842,567.11 841 37 291,471.05

' 0.8 | 71.16 | 100.00 85.71 56.47 42.35 | 4,842,571.76 841 37 291,471.00
0.9 | 69.21 | 97.94 83.93 54.12 40.59 | 4,940,544.27 946 39 289,451.15
1 65.14 | 91.48 78.41 51.76 38.82 | 5,248,346.32 1271 41 287,437.95
0.5 | 67.56 | 100.00 85.71 56.47 42.35 | 4,842,557.76 841 37 291,469.95
0.6 | 67.56 | 100.00 85.71 56.47 42.35 | 4,842,557.76 841 37 291,470.85

03 0.7 | 67.55 | 100.00 | 85.69 56.47 42.35 | 4,842,557.76 842 37 291,467.90

' 0.8 | 67.55 | 100.00 | 85.69 56.47 42.35 | 4,842,669.84 842 37 291,469.45
0.9 | 6547 | 97.91 83.20 54.12 40.59 | 4,942,033.27 989 39 289,454 .55
1 62.12 | 92.13 78.95 51.76 38.82 | 5,217,276.76 1239 41 287,436.50
0.5 | 63.96 | 100.00 | 85.71 56.47 42.35 | 4,842,557.76 841 37 291,470.50
0.6 | 63.95 | 100.00 | 85.69 56.47 42.35 | 4,842,557.76 842 37 291,469.90

0.4 0.7 | 63.96 | 100.00 85.71 56.47 42.35 | 4,842,557.76 841 37 291,471.10

' 0.8 | 63.96 | 100.00 85.71 56.47 42.35 | 4,842,557.76 841 37 291,471.10
0.9 | 62.11 | 98.10 84.06 54.12 40.58 | 4,933,022.55 938 39 289,450.60
1 58.58 | 91.54 78.44 51.76 38.82 | 5,245,758.76 1269 41 287,436.30
0.5 | 60.36 | 100.00 85.71 56.47 42.35 | 4,842,557.76 841 37 291,470.50
0.6 | 60.35 | 100.00 85.71 56.47 42.34 | 4,842,557.76 841 37 291,461.75

05 0.7 | 60.36 | 100.00 85.71 56.47 42.35 | 4,842,648.90 841 37 291,470.85

' 0.8 | 60.36 | 100.00 85.71 56.47 42.35 | 4,842,557.76 841 37 291,469.25
0.9 | 58.77 | 96.84 82.98 55.29 41.47 | 4,993,245.57 1002 38 290,460.05
1 55.57 | 92.48 79.26 51.76 38.82 | 5,200,875.81 1221 41 287,438.00
0.5 | 85.74 | 82.18 100.00 | 100.00 | 82.17 | 5,691,625.66 0 0 336,972.00
0.6 | 85.05 | 81.32 | 100.00 | 100.00 | 81.30 | 5,732,351.60 0 0 335,981.30

06 0.7 | 8354 | 79.43 | 100.00 | 100.00 | 79.43 | 5,822,386.95 0 0 333,836.75

' 0.8 | 8248 | 78.10 100.00 | 100.00 | 78.10 | 5,885,657.17 0 0 332,321.25
0.9 | 80.33 | 75.43 99.90 100.00 | 75.43 | 6,012,784.80 6 0 329,269.05
1 79.62 | 74.53 100.00 | 100.00 | 74.53 | 6,055,775.82 0 0 328,236.60
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0.5 | 85.34 | 82.76 | 99.97 | 100.00 | 82.75 | 5,663,890.42 2 0 337,633.40
0.6 | 83.31 | 80.37 | 100.00 | 100.00 | 80.36 | 5,777,462.18 0 0 334,904.05
07 0.7 | 81.63 | 78.39 | 100.00 | 100.00 | 78.39 | 5,871,781.86 0 0 332,651.50
" 1 0.8 |81.68 | 7845 | 100.00 | 100.00 | 78.45 | 5,869,227.82 0 0 332,715.05
0.9 | 80.43 | 76.98 | 99.97 | 100.00 | 76.98 | 5,938,946.62 2 0 331,037.75
1 | 7812 | 74.27 | 99.97 | 100.00 | 74.26 | 6,068,399.42 2 0 327,936.20
0.5 | 84.76 | 83.08 | 99.95 | 100.00 | 83.07 | 5,648,499.37 3 0 338,004.10
0.6 | 83.02 | 81.13 | 100.00 | 100.00 | 81.13 | 5,741,177.21 0 0 335,781.15
0.8 0.7 | 81.07 | 78.96 | 100.00 | 100.00 | 79.00 | 5,844,611.94 0 0 333,347.80
0.8 |80.36 | 78.18 | 100.00 | 100.00 | 78.17 | 5,881,754.34 0 0 332,404.95
0.9 | 7846 | 76.06 | 100.00 | 100.00 | 76.06 | 5,982,793.50 0 0 329,991.20
1 | 76.68 | 74.10 | 99.97 | 100.00 | 74.09 | 6,076,140.95 2 0 327,743.25
0.5 | 8262 | 8172 | 99.93 | 100.00 | 81.71 | 5,713,162.35 4 0 336,441.80
0.6 | 81.64 | 80.68 | 100.00 | 100.00 | 80.67 | 5,762,997.83 0 0 335,258.55
0.9 0.7 | 79.72 | 78.70 | 100.00 | 97.65 | 78.70 | 5,857,283.09 0 2 333,004.50
"~ 1087938 | 7836 | 99.95 | 97.65 | 78.35 | 5,873,540.08 3 2 332,600.45
09 | 77.13 | 7598 | 100.00 | 97.65 | 75.98 | 5,986,879.89 0 2 329,897.15
1 | 7504 | 73.98 | 99.97 | 88.24 | 73.97 | 6,082,055.55 2 10 327,602.80
0.5 | 83.06 | 83.06 | 97.11 | 83.53 | 83.07 | 5,649,288.92 | 170 14 338,003.30
0.6 | 81.18 | 81.66 | 96.31 | 81.18 | 81.64 | 5715933.80 | 217 16 336,364.10
1 0.7 | 80.00 | 80.34 | 9246 | 80.00 | 80.31 | 5,779,232.37 | 444 17 334,844.45
0.8 | 78.82 | 79.03 | 91.73 | 78.82 | 79.02 | 5,841,280.87 | 487 18 333,371.25
09 | 7736 | 7736 | 91.00 | 77.65 | 77.36 | 5920,829.06 | 530 19 331,479.25
1 | 7598 | 7598 | 90.27 | 76.47 | 76.00 | 5,986,784.48 | 573 20 329,919.60
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CREDIBILITY BASED CHANCE CONSTRAINED
PROGRAMMING MODEL

/*One-demensional*/

/*********************************************/

{string}
{string}
{string}
{string}
{string}
{int}

Rset
Sset
Jset
Nset
Kset
Tset

/*Two-demensional*/

/*********************************************/

tuple TwolIndex{
string Indexl;
string Index2;

bi

{TwoIndex} SRset
{TwoIndex} NJset
{TwoIndex} RNset

/*Fuzzy Parameters*/

APPENDIX D
IBM CPLEX CODING FOR FUZZY MULTIPLE OBJECTIVE

//Number
//Number
//Number
//Number
//Number
/ /Number

types of raw materials

of suppliers
of customers

types of product
of worker levels
of periods in planning horizon

4

92

FEEOu
B e
HRZonk

/*************************************~)<~)<~)<~)<~)<~)<~)<***********************/
RTPC o[t
RTPC m[t
RTPC plt

float
float
float

float
float
float

float
float
float

float
float
float

float
float
float

float
float
float

float
float

OTPC_ o[t
OTPC m[t
OTPC plt

STPC o[t
STPC m[t
STPC plt

in
in
in

in
in
in
in
in
in

Tset] =
Tset] =
Tset] =

Tset] =
Tset] =
Tset] =

Tset] =
Tset] =
Tset] =

RMSC o[<s,r> in SRset
RMSC m[<s,r> in SRset
RMSC p[<s,r> in SRset

SC_olk
SC m[k
SC_plk

HC olk
HC m[k
HC plk

FC o[k
FC m[k

in
in
in
in
in
in
in
in

Kset, t in
Kset, t in
Kset, t in

Kset, t in

Kset,

in

pa

Kset, t in

Kset, t in
Kset, t in

, t in Tset]
, t in Tset]
, t in Tset]

Tset] = ...;
Tset] = ...;
Tset] = ...;
Tset] = ...;
Tset] = ...;
Tset] = ...;
Tset] = ...;
Tset] = ...;
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float FC pl[k in Kset, t in Tset] =
float IRMC o[r in Rset, t in Tset] ..
float IRMC m[r in Rset, t in Tset] = ...;
float IRMC p[r in Rset, t in Tset]

float IPC o [n in Nset, t in Tset] = ...;
float IPC m [n in Nset, t in Tset] = ...;
float IPC p [n in Nset, t in Tset] = ...;

float TRMC o[s in Sset, t in Tset] = ...;
float TRMC m[s in Sset, t in Tset] = ...;
float TRMC p[s in Sset, t in Tset] = ...;

float TPC o [J in Jset, t in Tset] = ...;
float TPC m []j in Jset, t in Tset] . .
float TPC p [J in Jset, t in Tset] = ...;

float PSC o [<n,3J> in NJset, t in Tset] = ...;
float PSC m [<n,J> in NJset, t in Tset] = ...;
float PSC p [<n,3j> in NJset, t in Tset] = ...;

float AFRS o[<s,r> in SRset] = ...;

float AFRS m[<s,r> in SRset] = ...;

float AFRS p[<s,r> in SRset] = ...;

float AFRP o[r in Rset] = ...;

float AFRP m[r in Rset] = ...;

float AFRP p[r in Rset] = ...;

float ASL o [s in Sset] = ...;

float ASL m [s in Sset] = ...;

float ASL p [s in Sset] = ...;

float ASLP o = ...;

float ASLP m = ...;

float ASLP p = ...;

float D o [<n,J> in NJset, t in Tset] = ...;
float D m [<n,J> in NJset, t in Tset] = ...;
float D p [<n,J> in NJset, t in Tset] = ...;

/*Deterministic Parameters*/
/‘k‘k‘k‘k‘k‘k‘k‘k‘k‘k‘k‘k‘k‘k‘k‘k‘k‘k‘k‘k‘k‘k‘k‘k‘k‘k‘k‘k‘k‘k‘k‘k‘k‘k‘k‘k‘k‘k‘k‘k‘k‘k‘k‘k***********************/

float MaxPS[n in Nset, t in Tset] = ...;
float MaxMA[n in Nset, t in Tset] = ...;
float MaxWSA[t in Tset] = ...;

float MaxRS[<s,r> in SRset, t in Tset] = ...;
float MHU[n in Nset, t in Tset] = ...;

float WSP[n in Nset, t in Tset] = ...;

float WSRM[r in Rset, t in Tset] = ...;
float NoRM [<r,n> in RNset] = ...;

float NoL O[k in Kset] = ...;
float RTPA[t in Tset] = ...;
float OTPA[t in Tset] = ...;
float STPA[t in Tset] = ...;
float PTP[n in Nset] = ...;
float SCRM = ...;

float SCP = ...;
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float
float
float
int
int

float
float
float
float

float
float
float
float

float
float
float
float

float
float

Prod[k in Kset]

rwv o =

TSSQ[s in Sset]

IP 0 [n
IRM O[r

ZINIS =
Z2NIS =
Z3NIS =
Z4NIS =

Z1PIS =
Z2PIS =
Z3PIS =
Z4PIS =

Wl =
W2 =
W3 =
W4 =

Alpha =
Gamma =

.7

in
in

:.; //NIS
..; //NIS
.; //NIS

:.; //PIS
..; //PIS
.; //PIS

Nset]
Rset] =

of
of
of
of

.; //NIS

.; //PIS of
of
of

of

//Weighted
//Weighted
//Weighted
//Weighted

.7

.7

objecive
objecive
objecive
objecive

objecive
objecive
objecive
objecive

additive
additive
additive
additive

function
function
function
function

function
function
function
function

importance
importance
importance
importance

z1
Z2
Z2
zZ4

z1
Z2
Z3
Z4

for
for
for
for

.; //Acceptable feasible degree
.; //Coefficient compensation

/*Decision Variables*/
/*k*k*k*k*k*k*k*k*k*k*k*k*k*k*k*k*k*k*k*k*k*k*k*k*k*k*k*k*k*k*k*k*k***k*k*k*****k*k***********************/

dvar
dvar
dvar
dvar
dvar
dvar
dvar
dvar
dvar
dvar
dvar
dvar
dvar

int+
int+
int+
int+
int+
int+
int+
int+
int+
int+
int+
float+ U;
float+ 7z1;

[
[
[
[
oW [k
k
k
n
r

QRTP[n in Nset,
QOTP[n in Nset,
QSTP[n in Nset,
QRMS [<s, r> 1n SRset,
QPSC[<n,j> in NJset,

in
in
in
in
in

//

t i
t i
e Sl

Kset, t in
Kset, t
Kset, t
Nset, t
Rset, t

in
in
in
in

QSP[<n,j> in NJset,

TotalCostSC

/*Objective Functions*/

/*Credibility-Based Fuzzy Chance-Constrained*/
/‘k‘k‘k‘k‘k‘k‘k‘k‘k‘k‘k‘k‘k‘k‘k‘k‘k‘k‘k‘k‘k‘k‘k‘k‘k‘k‘k‘k‘k‘k‘k‘k‘k‘k‘k‘k‘k‘k‘k‘k‘k‘k‘k‘k***********************/

n Tset];
n Tset];
n Tset];
t in Ts
t in Ts
Tset];
Tset];
Tset];
] -
]

I

Tset
Tset
t in Tse

l

et];
et];

tl:;

dexpr float ProductionCost CFCCP=sum(n in Nset, t in
Tset)PTP[n]* ((((2-2*Alpha) *RTPC m[t])+ ((2*Alpha-
1) *RTPC _p[t])) *QRTP[n,t])+sum(n in Nset, t in Tset)PTP[n]* ((((2-
2*Alpha) *OTPC m[t])+ ((2*Alpha-1)*OTPC p[t]))*QOTP[n,t])+sum(n in

Nset, t in Tset)PTP[n]*((((2-2*Alpha)*STPC m[t])+ ((2*Alpha-

1) *STPC p[t]))*QSTP[n,t]);

z1
Z2
Z3
zZ4

94

dexpr float PurchasingCost CFCCP=sum(<s,r> in SRset, t in Tset) (((2-
2*Alpha) *RMSC m([<s,r>,t])+ ((2*Alpha-
1) *RMSC _p[<s,r>,t])) *QRMS [<s,r>,t];

dexpr float LaborWage CFCCP=sum(k in Kset, t in Tset)10* (((2-
2*Alpha)*SC m[k,t])+((2*Alpha-1)*SC plk,t]))*QW[k,t];
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dexpr float FiringCost CFCCP=sum(k in Kset, t in Tset)1l0* (((2-
2*Alpha) *FC_m[k,t])+ ((2*Alpha-1)*FC plk,t])) *QWF [k, t];
dexpr float HiringCost CFCCP=sum(k in Kset, t in Tset)1l0* (((2-
2*Alpha)*HC_m[k,t])+((Z*Alpha—l)*HC_p[k,t]))*QWH[k,t];

dexpr float HoldingCostRM CFCCP=sum(r in Rset, t in Tset) (((2-
2*Alpha) *IRMC m[r,t])+ ((2*Alpha-1)*IRMC p[r,t]))*IRM[r,t];

dexpr float InventoryFinalProduct CFCCP=sum(n in Nset, t in
Tset) (((2-2*Alpha) *IPC m[n,t])+((2*Alpha-1)*IPC p[n,t]))*IP[n,t];

dexpr float TransportationCostRM CFCCP=sum(<s,r> in SRset, t in Tset)
(((2-2*Alpha) *TRMC m[s,t])+((2*Alpha-1)*TRMC p[s,t]))*QRMS [<s,r>,t];

dexpr float TransportationCostFP CFCCP=sum(<n,j> in NJset, t in Tset)
(((2-2*Alpha) *TPC m[]j,t])+((2*Alpha-1)*TPC p[j,t]))*QPSC[<n,j>, t];

dexpr float ShortageCost CFCCP=sum(<n,j> in NJset, t in Tset) (((2-
2*Alpha) *PSC m[<n,j>,t])+ ((2*Alpha-1)*PSC p[<n,j>,t]))*QSP[<n,J>,t];

dexpr float TotalCostSC_CFCCP=ProductionCost CFCCP
+PurchasingCost
+LaborWage CFCCP
+FiringCost CFCCP
+HiringCost CFCCP
+HoldingCostRM CFCCP
+InventoryFinalProduct CFCCP
+TransportationCostRM CFCCP
+TransportationCostFP_CFCCP
+ShortageCost CFCCP;
/*******************************************************************/
/*Shortage of product*/
dexpr float ShortageProduct=sum(<n,j> in NJset, t in
Tset)QSP[<n,J>,t];
dexpr float Z2 = ShortageProduct;

/*Rate of changes in the workforce level*/

dexpr float RateChangeWorkforce=sum(k in Kset, t in
Tset) (QWH[k, t]1+QWF [k, t]) ;

dexpr float Z3 = RateChangeWorkforce;

/*Total value of purchasing*/

dexpr float TotalValuePurchasing=sum(s in Sset)TSSQ[s]*sum(r in Rset,
t in Tset)QRMS[<s,r>,t];

dexpr float 74 = TotalValuePurchasing;

//Membership function

dexpr float U z1 = (ZINIS-z1)/(ZINIS-Z1PIS);
dexpr float U 7z2 = (Z2NIS-22)/(Z2NIS-Z2PIS);
dexpr float U 73 = (Z3NIS-Z3)/(Z3NIS-Z3PIS);
dexpr float U 74 = (Z4-Z4NIS)/(Z4PIS-Z4NIS);

dexpr float satisfaction=Gamma*U+ ((1-
Gamma) * (W1*U Z1+W2*U_ Z2+W3*U_Z3+W4*U Z4));

//Objective function (satisfaction)
maximize satisfaction;
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/*Constraint*/
/*******************************************************************/

subject to {
Z1 >= TotalCostSC CFCCP;

/*Constraint (5): final product inventory*/
forall(n in Nset, t in
Tset:t==1)IP[n,t]==IP 0[n]+QRTP[n,t]+Q0TP[n, t]+QSTP[n,t]-sum(j in

Jset:<n,j> in NJset)QPSC[<n,J>,t];

forall(n in Nset, t in Tset: t>1)IP[n,t]==IP[n,t-
1]14+QRTP[n, t]+QOTP[n, t]+QSTP[n, t]-sum(J in Jset:<n,j> in
NJset)QPSC[<n,J>,t];

/*******************************************************************/

/*Constraint (6): raw materials inventory*/

forall(r in Rset, t in Tset:t==1)IRM[r,t]==IRM O[r]+sum(s in
Sset:<s,r> in SRset)QRMS[<s,r>,t]-sum(n in Nset:<r,n> in
RNset) (QRTP[n, t]+QOTP[n, t]+QSTP[n, t]) *NoRM[<r,n>];

forall(r in Rset, t in Tset:t>1)IRM[r,t]==IRM[r,t-1]+sum(s in
Sset:<s,r> in SRset)QRMS[<s,r>,t]-sum(n in Nset:<r,n> in
RNset) (QRTP[n, t]+Q0TP[n, t]+QSTP[n, t]) *NoRM[<r, n>];

/*Constraint (7): initial workforce*/
forall(k in Kset, t in Tset:t==1)QW[k,t]==NoL O0[k];
/*Constraint (8): the workforce level*/

forall(k in Kset, t in Tset: t>1)QW[k,t]==QW[k,t-1]+QWH[k,t]-
QWFE [k, t];

/*Constraint (9): available production time*/

forall(t in Tset)sum(k in

Kset)QW[k, t]*Prod[k]* (RTPA[t]+OTPA[t])>=(1/60) *sum(n in
Nset) (QRTP[n,t] + QOTP[n,t])*PTP[n];

/*Constraint (10): available time for the subcontractor */
forall(t in Tset) (1/60)*sum(n in Nset)QSTP[n,t]*PTP[n]<=STPA[t];

/*Constraint (11): maximum allowable of the subcontracting*/
forall(n in Nset, t in Tset)QSTP[n,t]<=MaxPS[n,t];

/*Constraint (12): the machine capacity*/
forall(n in Nset, t in
Tset)MHU[n,t]* (QRTP[n, t]+Q0TP[n, t])<=MaxMA[n,t];

/*Credibility based chance constrained*/
/‘k‘k*‘k*‘k*‘k**‘k‘k‘k***‘k**)c**‘k*‘k‘k‘k‘k‘k**‘k*‘k*‘)c**‘k‘k****‘k***********************/
/*Constraint (13): shortage in demand*/

forall(<n,j> in NJset, t in Tset:t==1)QSP[<n,j>,t]==round((2-
2*Alpha)*D m[<n,Jj>,t]+(2*Alpha-1)*D p[<n,J>,t])-QPSC[<n,J>,t];
forall(<n,j> in NJset, t in Tset: t>1)QSP([<n,j>,t]==0SP[<n,j>,t-
1]+round((2-2*Alpha)*D m[<n,J>,t]+(2*Alpha-1)*D p[<n,j>,t])-
QPSC[<n,J>,t];

forall (<n,j> in NJset, t in Tset)QSP[<n,j>,t]<=0.3*round((2-
2*Alpha)*D m[<n,J>,t]+(2*Alpha-1)*D p[<n,j>,t]);

/‘k‘k‘k‘k‘k‘k‘k‘k‘k‘k‘k*‘k‘k‘k‘k‘k‘k‘k*‘k‘k‘k‘k‘k‘k‘k*‘k‘k‘k‘k‘k‘k‘k‘)c‘k‘k‘k‘k‘k‘k‘k‘)c***********************/
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/*Constraint (14): warehouse space*/
forall(t in Tset)sum(n in Nset:n in Nset)WSP[n,t]*IP[n,t]+sum(r in
Rset)WSRM[r,t]*IRM[r, t]<=MaxWSA[t];

/*Constraint (15): raw materials inventory storage capacity*/
forall(t in Tset)sum(r in Rset)IRM[r,t]<=SCRM;

/*Constraint (16): final product inventory storage capacity*/
forall(t in Tset)sum(n in Nset)IP[n, t]<=SCP;

/*Constraint (17): the proportion of workforces*/
forall(t in Tset:t==1)sum(k in Kset) (QWH[k,t]+QWF [k, t])<=FWV*sum(k in
Kset)QWI[k, t];

forall(t in Tset:t >1)sum(k in Kset) (QWH[k,t]+QWF [k, t])<=FWV*sum(k in
Kset)QW[k,t-11;

/*Constraint (18): supplier capacity*/
forall(<s,r> in SRset, t in Tset)QRMS[<s,r>,t]<=MaxRS[<s,r>,t];

/*Constraint (19): raw materials flow*/

forall(r in Rset, t in Tset)sum(n in

Nset) NoRM[<r,n>]* (QRTP[n, t]+Q0TP[n, t]+Q0STP[n,t])<=sum(s in
Sset)QRMS [<s,r>,t];

/*Credibility based chance constrained
/*******************************************************************/

/*Constraint (20): the minimum acceptable levels of raw materials
quality provided by each supplier*/

forall(r in Rset, t in Tset)sum(s in Sset) (((2-

2*Alpha) *AFRS m[<s,r>])+ ((2*Alpha-

1) *AFRS p[<s,r>])) *QRMS [<s, r>, t]<=(((2*Alpha-1) *AFRP o[r])+((2-

2*Alpha) *AFRP m[r])) *sum(s in Sset)QRMS([<s,r>,t];

/*Constraint (21): the minimum acceptable levels of on time delivery
of each supplier*/

forall (t in Tset)sum(<s,r> in SRset) (((2*Alpha-1)*ASL o[s])+((2-
2*Alpha) *ASL m[s])) *QRMS [<s, r>, t]>=(((2-2*Alpha) *ASLP_m) + ( (2*Alpha-

1) *ASLP p)) *sum(<s,r> in SRset)QRMS[<s,r>,t];
/*******************************************************************/

/*Ranking constraint*/
//Case 1

U 21 >= (W1/W2)*U 22;
U 22 >= (W2/W3)*U 23;
U 23 >= (W3/W4)*U 24;
//Case 2

U 21 >= (W1/W2)*U 22;
U 22 >= (W2/W4)*U_74;
U 24 >= (W4/W3)*U 23;
//Case 3

U 21 >= (WL/W3)*U 23;
U 23 >= (W3/W2)*U_22;
U 22 >= (W2/W4)*U_74;
//Case 4

U 21 >= (WL/W3)*U 23;
U 73 >= (W3/W4)*U 74;
U 24 >= (W4/W2)*U _22;
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//Case 5

U 21 >= (W1/W4)*U z4;
U 74 >= (W4/W2)*U 22;
U 72 >= (W2/W3)*U 2z3;
//Case 6

U 21 >= (W1/W4)*U z4;
U 24 >= (W4/W3)*U Z3;
U 23 >= (W3/W2)*U_22;
//Case 7

U 722 >= (W2/W1)*U Z1;
U Z1 >= (W1/W3)*U z3;
U 23 >= (W3/W4)*U z4;
//Case 8

U 22 >= (W2/W1)*U 21;
U 21 >= (W1/W4)*U z4;
U 24 >= (W4/W3)*U_Z3;
//Case 9

U 72 >= (W2/W3)*U Z3;
U 23 >= (W3/W1)*U_21;
U Z1 >= (W1/W4)*U_z4;
//Case 10

U 722 >= (W2/W3)*U_Z3;
U 73 >= (W3/W4)*U_z4;
U 74 >= (W4/W1)*U_21;
//Case 11

U 722 >= (W2/W4)*U_zZ4;
U 24 >= (W4/W1)*U Z1;
U 21 >= (W1/W3)*U Z3;
//Case 12

U 22 >= (W2/W4)*U_z4;
U 24 >= (W4/W3)*U_Z3;
U 23 >= (W3/Wl)*U Z1;
//Case 13

U 23 >= (W3/W1)*U 21;
U 21 >= (W1/W2)*U Z2;
U 22 >= (W2/W4)*U_z4;
//Case 14

U 23 >= (W3/W1)*U 21;
U 21 >= (W1/W4)*U_74;
U 24 >= (WA/W2)*U_Z2;
//Case 15

U 73 >= (W3/W2)*U 72;
U 22 >= (W2/W1)*U 21;
U 21 >= (W1/W4)*U 74;
//Case 16

U 73 >= (W3/W2)*U 72;
U 22 >= (W2/W4)*U z4;
U 74 >= (W4/W1)*U 21;
//Case 17

U 73 >= (W3/W4)*U 74;
U 24 >= (WA/W1)*U Z1;
U 21 >= (W1/W2)*U 22;
//Case 18

U 23 >= (W3/W4)*U_74;
U 74 >= (WA/W2)*U 272;
U 72 >= (W2/W1)*U Z1;
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//Case 19

U 24 >= (W4/W1)*U Z1;
U 21 >= (W1/W2)*U 22;
U 72 >= (W2/W3)*U 2z3;
//Case 20

U 24 >= (W4/W1)*U Z1;
U Z1 >= (W1/W3)*U z3;
U 23 >= (W3/W2)*U_22;
//Case 21

U 24 >= (WA/W2)*U Z2;
U 722 >= (W2/W1)*U Zz1;
U Z1 >= (W1/W3)*U z3;
//Case 22

U 74 >= (W4/W2)*U 72;
U 22 >= (W2/W3)*U_Z3;
U 23 >= (W3/Wl)*U Z1;
//Case 23

U 74 >= (W4/W3)*U Z3;
U 23 >= (W3/W1)*U_21;
U 21 >= (W1/W2)*U_z2;
//Case 24

U 24 >= (W4/W3)*U_Z3;
U 23 >= (W3/W2)*U_22;
U 22 >= (W2/W1)*U_21;

/*Satisfaction*/

U <= U Z1;

U <= U 72;

U <= U 73;

U <= U 74;

0 <=U <= 1;

0 <=U 721 <= 1;
0 <=U 72 <= 1;
0 <=U 73 <= 1;
0 <=U 724 <= 1;
}
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