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ABSTRACT 
 

Background The ultrasound test for cancer screening is low-cost and non-

invasive. A major drawback is that multiplicative speckle noise can jeopardize the 

efficiency of the test. This research proposes a new algorithm to reduce noise and 

segment breast ultrasound.  

Methods The method is in two stages. Stage one is based on a combination of 

the multiscale approach, the Wiener filter, and a new combination of wavelet-transform 

denoising and the anisotropic Perona-Malik-type filter. In the second stage, pre-

processed image is transformed into multiscale images, and then, a boundary efficient 

superpixel decomposition of the multiscale images is created. Finally, the tumor region 

is generated by the boundary graph cut segmentation method. 

Results The algorithm has been tested on 50 synthetic images degraded by 

speckle noise with varying intensity and 250 breast ultrasound (BUS) images from two 

datasets. The results are compared with selected state-of-the-art filters. The proposed 

approach shows better performance in terms of standard evaluation measures. The 

results are compared with ground truth by the DICE coefficient, the Jaccard coefficient, 

and the Hausdorff distance. The proposed filter also achieves high accuracy in terms of 

these segmentation measures. 
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Conclusions The proposed two-stage algorithm achieves better accuracy, 

compared to selected state-of-the-art methods applied to BUS images. 

 

Keywords: Speckle noise reduction; Multiscale algorithm; Breast ultrasound 

images, Superpixel Decomposition; Graph Cut. 
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CHAPTER 1  

INTRODUCTION 

 

1.1 Background 

Medical imaging is a process to obtain the internal structure and interior of the 

human organs. Recently, medical imaging has developed very quickly due to image 

processing techniques. Image recognition, image enhancement, and image analysis 

have helped to improve medical diagnosis. For example, these techniques have helped 

in detecting early-stage cancers. In 2018, the World Health Organization estimated 

that cancer was the second leading cause of death globally. Cancer amounts to 9.6 

million deaths, equating to approximately one out of six deaths globally. In the same 

year, breast cancer death was estimated at 627,000. Breast cancer in developing 

countries contributes to the majority of these figures. To prevent and survive death 

from breast cancer, clinicians advocate early detection, diagnosis, and treatment (Qi et 

al., 2019).  

Ultrasound is an effective tool to detect cancers. The ultrasound device 

generates sound waves and records echoes to produce a pictorial representation of the 

internal organs. Ultrasound is to determine the gender of a baby in the womb, to 

diagnose the abnormalities in the breast, pelvic, kidney, transrectal, liver, gallbladder, 

carotid, etc. The advantages of ultrasound include noninvasive, radiation-free use. 

Huang et al. (2020) opine that the numerous advantages of ultrasound make it one of 

the preferred imaging techniques in clinical diagnosis. 

Undoubtedly, the most effective procedure of image segmentation in medical 

practice is the manual process. When performing manual segmentation the 

experienced radiologists rely on experience and medical knowledge. Unfortunately, 

manual segmentation is time-consuming and laborious. This gave rise to the 

Computer-aided diagnosis (CAD) system.  

A CAD is a computer system built to speedily assist clinicians to interpret 

medical images. CAD uses computer vision, medical image processing, and artificial 

intelligence techniques for diagnosis. However, CADs are not to replace doctors or 

clinicians but to assist and support them as a second interpreter (Huang et al., 2018). 
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The general procedure to find the Region of Interest (ROI) using CAD for BUS 

images is depicted in Fig.1. 

 

 

 

 

 

 

 

 

 

Fig.1. Block diagram of CAD for breast cancer 

 

Despite the advent of CADs, the segmentation task is still challenging. This is 

due to speckle noise, acoustic shadow effects, changes of the tumor shape and size, 

appearance, and texture. The major obstruction to effective segmentation of BUS 

image is the speckle noise (generating granular patterns). This type of noise originates 

from echoes in the ultrasonography making the ultrasound difficult for further 

processing (Wang et al., 2018). Examples of BUS images corrupted by the noise are 

shown in Fig. 2.  
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Fig. 2. Speckle noise in BUS images (A) – (C) speckle noise in the BUS images (D) 

speckle noise in a synthetic image 

 

To reduce speckle noise two important approaches have been used: the 

compound approach (Mateo et al., 2009) and the post-processing approach (Adam et 

al., 2006). The compound approach performs speckle reduction using several images 

of the same region and thereafter combining them into a single image. Meanwhile, the 

post-processing approach offers a variety of digital filters. 

Filters are systematic computer vision techniques designed to improve the 

appearance of images. They operate by removing unwanted changes from the image 

to give it a better output (De-Fontes et al., 2011). The examples are bilateral filter 

(Ghosh &Chaudhary, 2016), anisotropic filter (Dore, Moghaddam, & Cheriet, 2011), 

median filter (Arias-Castro & Donoho, 2009), wavelet-based filters (Vidya et al., 

2016), Lee, Kaun and Wiener filters (Anita et al., 2011). However, there are specific 

filters designed for different types of medical images. Some filters are not appropriate 
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for the ultrasound images (Tania and Rowaida, 2016). Therefore, it is important to 

design filters specifically for ultrasound images. 

 

1.2 Problem Statement 

Develop and verify preprocessing and segmentation algorithms for ultrasound 

images of breast abnormalities based on the superpixel approach.  

 

1.3 Purpose of the Study 

This research is expected to create an algorithm to pre-process and segment 

BUS images. We prove the advantages of the proposed method i.e. stability, 

robustness, efficient edge preservation, artifact removal, and accurate tumor 

delineation. 

 

1.4 Significance of the Study 

This model is useful in clinical medicine such as ultrasound surgery 

navigation and diagnosis. The findings of this study are helpful to  

Computer Vision Analyst The method improves accuracy and provides 

unbiased results which the analyst can easily understand and improve.  

Clinicians Results of this study are promising and may help clinicians to 

improve the decision-making process.  

Future Researcher The study helps future researchers to uncover the critical 

areas in medical image processing. 
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CHAPTER 2  

LITERATURE REVIEW 

2.1 Review of Speckle Reduction Filters 

Speckle reduction filters are becoming sophisticated and advanced. For 

example, image patch filters have gained prominence for noise removal. The research 

by Baseline et al., (2015) is an example of filtering by patches. The major advantage 

is effective noise removal and edge preservation. Hybrid algorithms remove the noise 

by combining several filters. Nageswari and Prabha (2013) use a hybrid filter that 

combines the MF, WF, and the Frost filter (Talha, Sulong, & Jaffar., 2016). A 

comprehensive review of speckle noise reduction algorithms is available in Gai, 

Zhang, and Yang (2018). They reduce the speckles by combining the Monogenic 

Wavelet Transform and the Bayesian framework. The wavelet coefficients are 

modeled by the Laplace distribution. The Bayesian framework is based on the mean 

square error and the expectation maximization. Avanaki et al., (2013) combine 

random pixel selection and the MF. Adabi et al., (2018) apply the Learnable De-

specking Framework to rank and use a combination of the filtering algorithms. The 

algorithm uses quality assessment methods (example of quality assessment methods: 

structural similarity Index, Peak signal-to-noise ratio, etc.) to measures the quality of 

images. The SVM classifier is used to select the best filter. Finally, the research by 

Eybposhet al., (2018) used the Cluster-based Speckle Reduction Framework. The 

algorithm consists of clustering and de-specking. The K-means clusters the pixels, the 

MF removes small clusters. Finally, a combination of the Lee filter and adaptive WF 

removes the speckles. 

Bajaj, Singh, and Ansari (2019) use the autoencoder method which emulates 

the learning process of noise by mimicking the noise patterns associated with the 

image. The architecture consists of 10 convolutional and 2 deconvolution layers. A 

single convolution precedes the input and output layers. The autoencoder removes the 

noise by learning from the past noise patterns. 

Hong, Hwang, and Kim, (2019) employ an ensemble strategy for exploiting 

multiple deep neural networks in image denoising.  First, the image denoising task is 

divided into subtasks based on the complexity of the image patches and conquers for 
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each subtask. The subtasks are combined based on the likelihood of each network. 

Next, the patches are concatenated for the input of the patch classifier, and the output 

is used to combine the denoised patches by a weighted sum. 

Fang and Zeng, (2020) combine the convolutional neural network (CNN) with 

a variation regularized model.  Prior knowledge is retrieved from the noisy image. 

Subsequently, the edge regularization and the total variation approach are combined. 

Finally, the authors use the split Bregman method to clean the image. In a nutshell, a 

CNN is used to extract the designed edge features from noisy images; while the total 

variation regularization method denoised the edges. 

 Lyu, Zhang, and Han, (2020) use the U-Net (Ronneberger, Fischer, & 

Brox, 2015) and a nonsubsampled contourlet transform (NSCT) to remove the noise. 

Unlike most deep learning networks, the algorithm does not have max pooling and 

upsampling. The NSCT and inverse NSCT are used instead of them. The model 

applies convolution, batch normalization, rectified linear unit (ReLu), NSCT, and the 

inverse NSCT. Gai and Bao, (2019) combine the joint loss function (MSE and 

perceptual loss (Wu et al., 2018)) with a deep convolutional neural network. The end-

to-end adaptive residual CNN is constructed. The features are extracted by the 

adaptive convolution and a leaky ReLu. The initial denoised image is obtained using 

the mean square error (MSE). Finally, a pre-trained SegNet and a perception loss 

function produce the denoised image. The method has one residual and convolution 

layer, 2 ReLu layers, and 3 leaky ReLu layers.  The number of layers has been 

obtained experimentally. Xie, Li, and Jia, (2018) used a CNN, residual learning, and 

batch normalization. Clean and noisy images are used as the input in the learning 

stage while the denoised stage and mapping strategy is adopted to reconstruct the 

image. The spectral difference, key selection, and above denoising are the key 

components of this method.  

Lee, et al., (2020) remove the noise at different scales by a modification of the 

U-Net method. First, a multiscale pyramid is created and passed to the U-Net. The 

residual method is applied to denoise the pyramid and produce a clean image. A 

performance improvement is achieved based on the coarse-to-fine segmentation. Wu 

et al., (2020) propose an end-to-end deep neural network. The model uses the multiple 

tunable noise level as input and outputs a clean image. The model is trained by 
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simultaneous bucket signals and ground truth pairs, and then the object is retrieved 

from experimental one-dimensional bucket signals. Tian, Xu, and Zuo, (2020) 

propose a batch-renormalization denoising network. The model combines two 

networks. Batch renormalization is the key component used to accelerate convergence 

of the networks. The model uses a dilated convolution to enlarge the reception field 

and to treat vanishing or exploding gradients. The network consists of 18 layers (two 

convolution layers, four dilation layers, and ten batch renormalization layers).  

Zhang, et al., (2019) proposed a variant of the stabilizing transform network. 

The model uses the stabilization transform (Azzari &Foi, 2016). It consists of three 

sub-networks with learnable and frozen patterns. The first and third sub-networks use 

the Anscombe transformation technique (Anscombe, 1948), while the second sub-

network approximates the Gaussian denoising patterns. The second sub-network 

consists of 7 layers, while the first and third have 3 layers each.  

Ahmed, (2018) combines the adaptive thresholding, the nonlinear diffusion 

technique, and the discrete shearlet transform. A multiscale decomposition generates 

eight bands. Adaptive thresholding is used to obtain discrete shearlet transform 

coefficients. Finally, the image is reconstructed by the inverse transform. 

 

2.2 Review of BUS Segmentation 

A large body of research exists for the segmentation of BUS images. In this 

study, we have classified these methods into four categories: graph-based methods 

(Pons et al., 2016), deformable models (DM) (Gao et al., 2012), semantic 

segmentation methods, and classical methods (Fig. 3). 
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Fig. 3. BUS image segmentation approaches 

 

2.2.1 Graph-based Methods  

Advantages of graph-based methods include simplicity, flexibility, and the 

possibility to include optimization constraints. The Markov random field, the graph 

cut, and the normalized graph cut are examples of graph-based methods. Lee et al. 

(2010) propose a segmentation method that uses three phases. The Nonlinear 

Coherent Diffusion filter is used to reduce noise. Next, a combination of the isotropic 

diffusion, anisotropic diffusion, and the mean curvature motion methods is applied. 

The second phase employs a segmentation graph. A calculation of the transverse and 

pixel edges is generated. Then, the image is mapped to the graph with a modified 

pair-wise region comparison predicate (Felzenszwalb & Huttenlocher, 2004). Next, 

the region whose intensities and locations are close to each other are merged with the 

minimum spanning trees algorithm (Felzenszwalb & Huttenlocher, 2004) 

Zhang et al., (2014) propose a graph-based method using particle swarm 

optimization. The BUS image is cropped and the objective function is formulated 

using pair-wise parameter combinations based on simulated annealing (Scott, Gelatt, 
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& Mario, 1983). The particle swarm optimization based on the proposed objective 

function segments the image. 

Daoud et al., (2019) use anisotropic diffusion for speckle reduction. Next, 

superpixels are generated on the edge map. A combination of the posterior likelihood 

and graph cut algorithms performs the initial segmentation. The posterior likelihood 

algorithm extracts gray level co-occurrence matrix features from superpixels, and the 

features are classified by the SVM. The graph cut algorithm segments the tumor. 

Next, the edge map is generated again and the procedure is repeated. Finally, the 

active contour outlines the tumor using the results of the graph cut as the initial 

contour. 

Huang et al., (2012) reduce speckle noise by the nonlinear anisotropic 

diffusion. Their graph method employing 8-connected pixels is combined with the 

pair-wise region comparison method. A minimum spanning tree is obtained with the 

Kruskal method (Kruskal, 1956). Huang et al., (2014) combine the graph method and 

the particle swarm optimization. Several iterations of the robust graph-based 

algorithm and particle swarm optimization are performed to improve the accuracy. 

Zhoul et al., (2014) reduce the speckle noise by the Gaussian filter. Subsequently, 

image enhancement is performed with the histogram equalization and the mean shift 

method. To outline the foreground and tumor boundaries, seeds are placed on the 

image. Finally, the graph cut method segments the image. Overall, graph-based 

segmentation methods are accurate and effective. Unfortunately, they are gradually 

becoming less popular in image processing tasks due to the emergence of deep 

learning methods. 

 

2.2.2 Other/Deformable models 

Deformable models (DM) use a curve or a surface moving towards the object 

boundary under the influence of an external force. 

The two types of DM are parametric and geometric DM.  The parametric DM 

represents curves and surfaces explicitly during the deformation. Adaptation of the 

model topology, however, such as splitting or merging presents difficulties. 

Geometric DM can handle topological changes automatically based on the theory of 
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curve evolution and the level set theory. Despite these differences, the basic ideas of 

both methods are very similar 

Examples of DM are snakes, active contour, gradient vector fields (Daoud et 

al., 2012), edge-based DM, and region-based DM. Xian et al., (2015), propose a 

method to preprocess and find the ROI of BUS images. A low-pass Gaussian filter is 

used to smooth the BUS images. Next, a linear normalization algorithm combined 

with the Z- shape function is used for image enhancement. To further enhance the 

images, a morphological reconstruction is adopted. Then initial reference point is used 

to search the seed, while a multipath search algorithm is used to obtain the seed inside 

the tumor. Subsequently, a cost function applies to the candidate ROI subject to 

frequency constraints. The optimized edge detector algorithm segments the image. 

Ramadan et al., (2020), use the salient guided method for segmenting BUS 

images. The contrast limited adaptive histogram equalization (CLAHE) enhances the 

images. The speckles are reduced by the optimized Bayesian non-local means filter. 

The object boundary is set with saliency detection and tumor seeds. Next, the lazy 

snapping algorithm (Li et al., 2004) generates the initial segmentation. Finally, active 

contour detects the tumor. Karunanayake et al., (2020) proposed a method that uses 

the Walking Particle (WP) method for edge-based segmentation. The WP 

incorporates a continuous diffusion model and the multi-agent system to perform 

edge-based segmentation on BUS images. The WP is inspired by the epidemiology 

theory. Keatmanee et al., (2019) fuse the ultrasound, Doppler, and Elastography 

images to improve the efficiency of the DM. Rodtook et al., (2018), use the 

combination of the exploding seeds and active contour/level set. Zhao et al., (2020) 

improve the Distance Regularized Level Set Evolution (DRLSE) algorithm for BUS 

image segmentation. The noise is reduced by analyzing the multiscale gradient field. 

A modified improved balloon force improves conventional DRLSE. Rodrigues et al., 

(2015) extract the features using the non-linear diffusion, bandpass filter, and scale-

invariant mean curvature. The initial segmentation is achieved by the SVM and 

discriminate analysis. The second stage uses AdaBoost and the active contours. Wang 

et al., (2014), use multiscale geodesic active contours. To avoid boundary leakage, a 

boundary shape similarity measure has been used by the pyramid decomposition. A 

geodesic active contour detects the tumor. 
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Guo et al., (2015), use the neutrosophic similarity (NS) scores and level set 

algorithms. A three membership subset (T, I, and F) is used to transform the BUS 

image to the NS domain. After the transformation process, a neutrosophic similarity 

score of the images in the NS domain is calculated. The level set algorithm segments 

boundaries.  

Panigrahi et al. (2019) use the Gaussian kernel and vector fields and a 

clustering algorithm that combines the multiscale images with the Gaussian kernel 

induced by the fuzzy C-means (FCM). 

Huang et al. (2014) combine object detection techniques and active contours. 

The speckle noise is removed by the total variation filter. Graph segmentation is used 

to divide the images into sub-regions. Object recognition applies to perform the initial 

segmentation. An active contour identifies the tumor. 

Lang et al. (2016) use a four-step multiscale level set segmentation algorithm. 

The ROI is manually delineated by a radiologist. A multiscale response map (based 

on texture measure) is created. Subsequently, the level set algorithm is used.  

Morphological opening and the convex hull algorithm perform post-processing. 

Lai et al. (2013) propose a combination of the level set and the morphological 

operator. The speckle noise is removed by the sigmoid and gradient filters. A 

morphological operator is used at the final stage. Moon et al. (2013) offer a similar 

technique.  Kriti et al. (2019) use the Chan Vese active DM to segment BUS images. 

Selvan and Devi, (2015) use the seed point technique. The Speckle Reduction 

Anisotropic Diffusion (SRAD) (Yongjian & Scott, 2002) removes the speckle noise. 

The seed points are selected and a gray-value threshold is obtained. The level set 

surfaces are run with selected seeds. 

Liu et al. (2018) use the fuzzy cellular automata framework. Rodtook and 

Makhanov (2013) propose a variant of the gradient vector flow algorithm. The 

diffusion term is a combination of the intensity of the edge map and the orientation 

field. The features are integrated into the generalized gradient vector flow equations 

(Xu & Prince, 1998).  

Overall, the level set and active contour are prominent segmentation 

algorithms for segmenting BUS images. They maintain one of the leading positions in 

BUS image segmentation. 
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2.2.3 Semantic segmentation method 

Segmentation problems are solved by grouping pixels characterized by the 

same structure and color. The learning methods are categorized as: supervised and 

unsupervised. The K-means and the FCM are examples of the unsupervised methods, 

while the SVM, the artificial neural network (ANN), Naïve Bayesian classifier, and 

CNN are examples of supervised methods. Vakanski, Xian, and Freer, (2020) used a 

combination of the attention gate and the UNet. The upsampled layer is used by the 

decoding blocks, while the attention gate is used in each block of the encoder. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 4. Diagram of Attention gate architecture 

 

Byraet al., (2020) propose the SK-UNet with the encoding and decoding 

block. The SK block uses the batch normalization, ReLU, FC layer, and global 

average pooling. The network consists of 12 convolutions. The SK block mimics the 

attention gate however its layers have been arranged differently. 
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Fig. 5. Block diagram of UNET architecture 

 

Osman and Yap (2020) use a combination of deep learning and Frost filters. 

The improved mean shift method segments the image and is combined with the binary 

thresholding. The deep learning phase includes the UNet architecture and the fully 

connected network (FCN-AlexNet). 

Singh et al. (2020) propose a context aware deep adversary learning. The 

spatial and multi-scale components are captured by the Atrous convolution (Chen et 

al., 2017). The relevant features are extracted by channel attention and channel 

weighting (Hu et al., 2018). The network consists of four convolution blocks with an 

upsample layer.  

Han et al. (2020) propose the dual-attentive Generative adversarial network 

algorithm. The method includes a segmentation network and evaluation network to 

estimate the segmentation quality of the input. An adversary learning is arranged 

between the two to maximize the segmentation accuracy.  

Kumar et al. (2018) use the CNN and an improved UNet algorithm to segment 

the ROI. This method is a new modification of the UNet relying on downsampling of 

the original image. A weighting pixel procedure by the majority voting produces the 

final output. Hiramatsu et al., (2017) propose an AlexNet. The MF is used for pre-

processing. Then hysteresis smoothing is performed and the anisotropic diffusion 

Input 

Image 

 

 

 

 

X 

 

 

 

 

Y 
 

Encoder 

 

Decoder Z 

Output 

Image 

Bottlenect 

Compression 

Ref. code: 25636122300012GEH



14 

 

 

filters the image. A region growing method is applied to the filtered image. Finally, 

the AlexNet having 5 convolutional layers and 3 max-pooling layers is applied.  

Jiang et al. (2012) propose a combination of the Adaboost classifier (24 Haar 

features), the k-means clustering algorithm, and the SVM. A random walk algorithm 

produces a tumor boundary. Further details can be found in the reviews (Xian et al., 

2018 and Meiburger et al., 2018).   

 

2.2.4 Traditional/classical methods 

Thresholding method, region growing, and watershed methods are popular 

classical methods in BUS image segmentation. A thresholding algorithm is frequently 

used to segment BUS images. It is one of the simplest methods in image processing 

and is based on a threshold value technique that transforms gray-scale images into 

binary images. Thresholding methods consider gray-level statistics and do not take 

spatial location information in images. A sample segmentation results with the 

thresholding method is depicted in Fig. 6.   

Maolood et al. (2018) propose the thresholding based on fuzzy entropy 

formulation combined with the level set approach. Gomez-Flores and Aruiz-Ortega 

(2016) segment breast tumors by iterative thresholding. The image is preprocessed 

using the average radial derivatives (Drukker et al. 2002) and then the CLAHE 

algorithm (Pizer et al. 1987). Interference based speckle filter and the negative of the 

filter are used for pre-processing. 

Yap, Edirisinghe, and Bez (2008) use a hybrid filter, multifractal processing, 

and thresholding segmentation to detect the ROI. First, histogram equalization (Kim, 

1997) is used to achieve homogeneity on the BUS image. The diffusion filter (Perona 

& Malik, 1990) and the linear filter (Gaussian blur) are used to reduce speckles, 

smooth edges, and eliminate over-segmentation. Next, multifractal processing 

(Mandelbrot, 1982) is used to analyze the image to finer scales. Finally, the image is 

thresholded.  

Overall, the thresholding method is effective in BUS image segmentation for 

simple images. The effective segmentation by the thresholding method includes (1) 

selecting an empirical value for the dataset, (2) selecting an efficient thresholding 
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parameter, (3) generating the threshold automatically using the statistical-decision 

theory. 

Recently, thresholding methods are now used as a step in segmentation and 

are rarely used as a standalone method. Many researchers have combined thresholding 

algorithms with other methods to produce better segmentation results. For example, 

Mustaqueen, Javed, and Fatima (2012) combine thresholding with watershed, 

Filipczuk, Kowal, and Obuchowicz (2011) combine thresholding with fuzzy 

clustering, Altarawneh et al. (2014) combine thresholding with active contour, while 

Dirami et al. (2013) combine thresholding with level set method. Jain and Singh 

(2020) employ the threshold rule and wavelet transform for speckle noise reduction. 

A soft and hard thresholding rule is proposed. The hard thresholding rule produces 

over-smoothed images and discontinuous thresholds “T” and “-T” using the Gibbs 

phenomenon (Gibbs, 1925). Meanwhile, the hard thresholding rule uses a constant 

bias that exists between the original and modified wavelet coefficient. Subsequently, a 

discrete wavelet is performed over a noisy image, then the noise variance and 

threshold values are calculated. Finally, the proposed threshold rule is applied with 

the inverse wavelet transform to reduce speckle. 

 

Fig. 6. BUS images with thresholding algorithm. (A) and (C) Original image, (B) and 

(D) Thresholding of (A) and (B) 
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The region growing method grows seeds to a bigger region by extracting 

regions from a set of pixels with established criteria. Kwak, Kim, and Kim (2005) 

proposed a region growing cost minimization method for segmenting BUS images 

with ambiguous boundaries intensity variation. The image is divided into initial seed 

regions. Then, seeds are expanded until it reaches the boundary of the region to 

maximize the homogeneity of the region and smoothness of the contour.  

Shan, Cheng, and Wang (2008) use a new automatic seed point selection and 

region growing method. First, SRAD is used for speckle reduction. Then, an iterative 

threshold selection method (Ridler & Calvard, 1978) separates the foreground from 

the background. Next, the boundary-connected regions (connected components) are 

deleted and regions are ranked. Finally, segmentation is determined by the region 

growing algorithm. Madabhushi and Metaxas (2002) used hybrid segmentation for 

tumor detection in BUS images. A second-order Butterworth filter (Tang, Zhuang & 

Wu, 2000) reduces the speckles. The histogram equalization enhances the boundary 

between lesions and surrounding regions. Finally, the combination of different 

segmentation methods (intensity and texture classification (Stan et al. 1995), seed 

point determination, region growing, boundary seed location, and deformable model 

(Chen & Metaxas, 1998)) detect the tumor.  

Massich et al. (2010) use a region growing algorithm for initial segmentation, 

while the Gaussian constraining segmentation (Horsch et al. 2001) performs the final 

segmentation. An empirical rule (Stavros, Rapp & Parker, 2004) determines the seed 

point. The region growing finds the ROI by grouping pixels in the surrounding seeds 

using the probabilistic approach. The study by Shan et al. (2012) ensures complete 

coverage of the ROI by N-pixel expansion in both vertical and horizontal directions. 

The procedure ensures that the seed points and all surrounding pixels are encapsulated 

for growing 

Selecting the seeds is one of the open problems in the region growing. Manual 

seed required a human operator. Automatic seed selection is often based on the gray 

level, texture, and other features that fail.  Among the proposed steps in automatic 

seed selection are noise reduction, iterative threshold selection (Ridler & Calvard, 

1978), generating boundary connected regions, region ranking.  
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Fig. 7. Flow Chart of region growing algorithm 

 

The watershed transform was introduced by (Digabel & Lantujoul, 1978) for 

image processing and now is being used as a powerful fundamental step in computer 

vision and pattern recognition (Cousty et al., 2009). There are several definitions of 

watershed, however, the most common definition was proposed by Beucher and 

Meyer (1993). They define watershed as a flooding procedure that places a water 

source in each regional minimum to cover the entire relief from building barriers 

when different sources converge. The purpose of watershed transform is to detect 
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lines on the topographic surface, and then flood regions preventing adjacent minimal. 

The watershed algorithm is used to determine continuous boundaries in an image. 

One of the first applications of the watershed to BUS images is Ikedo et al. 

(2007). They use the combinations of canny edge detector and watershed to segment 

BUS images. Edges are identified with the canny method, and then the morphological 

operator classified these edges as near-vertical or near-horizontal. Next, the edge 

positions are located with a mass candidate and interpreted as a cue for the 

segmentation method. Finally, the watershed method segment the mass candidate 

regions.    

Gomez et al. (2010) used the marker-controlled watershed algorithm to 

segment tumors in BUS images. First, the images were enhanced with CLAHE. Then, 

the anisotropic diffusion filter was used to remove speckle. The complement of the 

filtered image was convoluted with a Gaussian function. Subsequently, a marker 

morphological operation function was created. Finally, the watershed algorithm 

segmented the image. The interesting aspect of this approach was the iterative 

procedure. This procedure involved gray-level thresholding and a marker-controlled 

function. Once the marker-controlled function was stable, the gray-level function 

remained stable. 

Zhang et al. (2010) used the fuzzy watershed method to segment BUS images. 

A fully automatic algorithm that produces good results on blurry BUS images is 

presented. Huang and Chen (2004) used watershed and active contour models to 

segment tumors in BUS images. They use the watershed model to automatically 

identify initial contours and to maintain tumor shape and boundary. Active contour 

segments the images. Findings from their study show consistency with manual 

contour identification.  

Lo et al. (2014) combine a computer-aided detection system with the 

watershed algorithm to segment BUS images. The images were divided into five 

slices with a variation and an overlapping function. Then, the minimum intensity 

projection was applied to the image. Finally, top-down gradient descent and the 

watershed method segmented the tumors. Gu et al. (2016) extract edge information 

from the Sobel operator to obtain a gradient magnitude image. This information is 

used by the watershed transform. The watershed transforms process the edge 
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information and performs segmentation in the slices and the image is represented as a 

surface in 3D space. 

 

 

Fig. 8. BUS images with watershed segmentation. (A) Original image, (B) watershed 

segmentation 

The watershed algorithm uses a combination of mathematical morphology 

theory and simulated terrain surface to segment images. Traditional watershed-based 

methods are sensitive to noise and are prone to over-segmentation. However, with the 

development of the marker methods, watershed methods have produced tremendous 

results. Finally, experiments indicate that the watershed algorithm produces stable 

results when compared with thresholding and region growing methods (Zhang et al, 

2018). 

 

2.3 Superpixel Segmentation  

Superpixels group pixels using color and intensity (Yuan et al., 2018). 

Advantages of superpixels in image processing include reduced computational cost 

and effective noise removal. The examples are waterpixels (Machairas et al., 2015), 

density-based spatial clustering (Shen et al., 2016), and Simple Linear Iterative 
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Clustering (SLIC) (Achanta et al., 2012). Superpixels are popular in medical image 

processing. Yuan et al. (2018) propose a combination of the random walk, active 

contours, and superpixels for liver segmentation. Gao et al. (2017) use superpixels as 

nodes for generating gradient cues and spatial priors. The segmentation procedure 

uses the graph cut to extract the boundaries from the gradient cues and spatial priors.  

Tana et al. (2016), propose a learning phase based on pre-processing and 

multiscale representation. Subsequently, the SLIC creates superpixels. Features are 

extracted from the superpixels and are used for classification by the SVM.  

Yuan et al. (2018) combine the random walk, active contours, and superpixels 

for liver segmentation. Superpixels are used for preprocessing. This hybrid 

segmentation method produced accurate results, however, is prone to over-

segmentation. Huang et al. (2020) segment and classifies BUS images using the 

learning framework. First, the region of interest is cropped out from the original 

image. Then the image is preprocessed by the bilateral filter, the histogram 

equalization, and the mean shift filter. Next, SLIC creates superpixels. The features 

extracted from the superpixels are gray level histogram, Gray Level Co-occurrence 

Matrix (GLCM), and the local binary pattern (LBP). The K-means algorithm for 

clustering procedure and a backpropagation neural network (BPNN) are used for 

initial classification. Finally, the k-nearest neighbor algorithm, binary thresholding, 

and the edge segmentation method produce the tumor region. Although this method 

gives a good segmentation result, it fails when the tumors vary in size. The method 

proposed in this dissertation tackles the above-mentioned drawbacks. 
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CHAPTER 3  

METHODOLOGY 

 

3 Design Method and Procedures 

 

The proposed method includes a pre-processing stage, a segmentation stage 

depicted in Figs. 9, 10, and 11.  

 

3.1 Pre-processing Stage 

We propose a new pre-processing algorithm that removes speckles and 

artifacts in BUS images. The method is based on a multiscale decomposition, the 

Wiener filter, fast bilateral filter, and wavelet decomposition combined with the 

anisotropic filter.  

 

3.1.1 Multiscale 

To construct a Laplacian pyramid we use the low pass Gaussian filter 

G(t,𝑢, 𝑣)=
1

 2π𝑡
e−(𝑢−𝑣)2/2𝑡  The downsampling procedure is as follows. 

𝐼1  = 𝐼 ∗ 𝐺 ↓ 2,   

𝐼2  = 𝐼 − 𝐼1 ↑ 2,   

where ↓ 2  denotes downsampling by 2 and ↑ 2 denotes upsampling by 2. 

Hence I1 is the low frequency subband downsampled by 2 (approximation), and 𝐼2 is 

the high-frequency part.  
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Fig. 9: Proposed Segmentation Block Diagram 
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𝐼1 and 𝐼2 have been processed and synthesized, the output can be subjected to 

the Laplacian pyramid procedure again. Training of subbands and the required 

subsampling depends on the individual set of images. 

 

3.1.2 Weiner Filter 

The adaptive Weiner filter (WF) (Baselice et al., 2018), is designed 

specifically for speckle noise. The classic WF adapts by tuning its kernel to combine 

edge and detail preservation. Effective noise reduction is achieved with the local 

Gaussian Markov random field.  

 

3.1.3 Fast bilateral filter 

The conventional bilateral filter (BF) replaces the central pixels with the 

average of its neighbors to remove noise. Although the BF is effective, it often leads 

to over-fitting. Images filtered with BF produce blurry edges and artifacts. To 

improve the efficiency of the BF procedure, and shorten the running time we use a 

modification of the fast version of the BF (FBF)(Paris & Durand, 2006) based on a 

three-dimensional Gaussian kernel and image function. The FBF uses a fast Fourier 

transform and higher-dimensional frequency space to downsample the results of the 

convolution. A special edge-preserving version of the FBF is used to process the high-

frequency component (Jin et al., 2015).  
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 Fig.10. Block diagram of the first stage, I1,w- output of the transformation. This 

Weiner filter, I1,B -output of the BF, I1,B’- output of the edge preserving BF 

 

3.1.4 Wavelet decomposition anisotropic filter 

The threshold rule is a procedure that performs the wavelet denoising (Donoho 

& Johnstone, 1994). We use the wavelet decomposition of MATLAB Wavelet Image 

Denoising Library. The coefficients at the coarse level are being kept whereas the 

detailed coefficients are removed using the median absolute deviation rule taken as a 

crude estimate of the noise (see Fig. 11).  

 

3.1.4.1 Anisotropic diffusion 

The output of the wavelet denoising is fed to the AD filter, given by 

𝜕𝐼

𝜕𝑡
=  div 𝑔 ∇ 𝐼 .                                                                                                                    (1) 

The classic diffusion coefficients proposed by Perona and Malik are 

𝑔 ∇𝐼 =
1 

1 +  
∇𝐼

𝜆
 

2                                                                                                                 (2) 

and 

𝑔 ∇𝐼 = exp −  
𝛻𝐼

𝜆
 

2

 ,                                                                                                     (3) 

where 𝜆 is an adjustable parameter. Experiments show that due to staircase 

effect equations (2)-(3) are not suitable for BUS images. Therefore, a new diffusion 

coefficient is proposed given by, 

Ref. code: 25636122300012GEH



25 

 

 

𝐷 𝑄 = 1 −
1

1 + exp −𝑘(𝑄2  − 𝑄0
2 )

,                                                                             (4) 

where k is an adjustable parameter and Q0 is the speckle scale function. Q is 

the instantaneous coefficient of variation, given by  

𝑄 =

1

2
 

|∇𝐼|

𝐼
 

2

−
1

16
 

|∇2𝐼|

𝐼
 

2

 1 +
1

4
 

|∇2𝐼|

𝐼
  

2                                                                                                     (5) 

 

 

 

 Fig.11. Block diagram of the second stage, IA- approximation, I1,D -details,I1,D’- the 

finest bands, IAD- output. 

 

3.2 Segmentation Stage 

The preprocessed images (3.1) are fed to the segmentation module (see Figs 

12 and 13).  The components of the segmentation stage are explained below.  

 

3.2.1 Distance Transform/Pixel Seed Measure.  

The practical experiments reveal that the SLIC algorithm does not adhere well 

to large boundaries. To correct this problem, we use the geodesic distance transform 

to generate a map that adheres equally well to small and large boundaries. First, a 
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brief understanding of the conventional SLIC is required. It involves the color 

similarity in the labxy space as follows  

𝑃 𝑂, 𝐶0 =   𝑃𝑐2 𝑂, 𝐶0  + 𝛾2𝑃𝑠
2 𝑂, 𝐶0   ,                                                                 (6) 

where γ is the regulating factors, (𝑂, 𝐶0 ) is the superpixel centre,𝑃𝑐  𝑎𝑛𝑑 𝑃𝑠 are 

colour and spatial distances. The lab colour distance is given by: 

𝑃𝑐 𝑂, 𝐶0 =    𝑙0 − 𝑙𝐶0
 

2
+   𝑎0 − 𝑎𝐶0

 
2

+  𝑏0 − 𝑏𝐶0
 

2
 ,                                    (7) 

The spatial distance is 

𝑃s 𝑂, 𝐶0 =    𝑥0 − 𝑥𝐶0
 

2
+   𝑦0 − 𝑦𝐶0

 
2

,                                                                 (8)  

𝑃𝑐 0, 𝐶0  and 𝑃𝑠 0, 𝐶0  are the classic Euclidean distances in the color and 

spatial domains, respectively. Note that for the gray level image 𝑃𝑐 𝑂, 𝐶0 =   |𝑙0 −

𝑙𝐶0
|. 

To improve the SLIC, a new superpixel seed measure is proposed. To create 

the geodesic segmentation, we convert the grayscale image to a binary image.  The 

modification of equation (6) is: 

𝑃 𝑂, 𝐶0 =   𝑃𝑐
2 𝑂, 𝐶0 +   𝛾2𝑃𝑠

2 𝑂, 𝐶0 + (𝛼𝑃𝑏(𝑂, 𝐶0)𝐺𝑒𝑜𝐺𝐿(𝐶0))2,              (9) 

where 𝑃𝑏  is the boundary term, 𝛼 is the distance constant, and 𝐺𝑒𝑜 is the 

geodesic distance given by: 

𝐺𝑒𝑜𝐺𝐿 𝑥
→ = min

𝑦→∈Ω𝐺𝐿

𝑑𝐺𝐿 𝑥
→, 𝑦→  +   𝑂𝐿𝑓𝐿(𝑥→, 𝑦→),                                           (10) 

where 

𝑑𝐺𝐿 𝑥
→, 𝑦→ =  min

𝐿𝑥→,𝑦→
 𝑊𝐺𝐿(𝐿𝑥→,𝑦→ 𝑆 )

1

0

. 𝐿~
𝑥→,𝑦→ 𝑆 𝑑𝑆,                                     (11) 

and where 𝐿𝑥→,𝑦→  is a path parameterized by 𝑆 ∈  0, 1  connecting 𝑥→, to 𝑦→ , 

𝑊𝐺𝐿  is the geodesic weight, and 𝐿~
𝑥→,𝑦→ is the length of the path (Peng & Qu, 2019). 

The boundary term 𝑃𝑏  ensures that the centroid of the superpixel does not lie 

at the boundary of the object. If the gradient of the gray level around O is large, the 

boundary term is large, otherwise, it is small.  
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3.2.2 Superpixel algorithm.  

The SLIC algorithm is applied to the GD image and a final superpixel image is 

created (see Fig. 12).  
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Fig. 12. Proposed superpixel improvement (A) and (B) Multiscale images (C) and (D) 

Preprocessed images (E) and (F) Decomposition transform (G) and (H) proposed 

superpixel 

 

 

3.2.3 Boundary Efficient Graph Cut method 

The graph cut method has been adopted over the years for segmenting medical 

images. Standard methods based on superpixels for segmenting BUS images often 

result in over-segmentation. To avoid this problem, a symmetry measure combined 

with the graph cut method is proposed. The graph cut algorithm introduces n-links 

and t-links. The n-link connects the neighboring pixels while the t-links connect 

pixels with terminals S and T (Peng, Qu & Li, 2019). The conventional cost of the 

neighborhood edge (n-link) is given by the following equation: 

𝑃 𝑟, 𝑠 = e
−

(𝑄𝑟 − 𝑄𝑠)

2𝜎2

2 1

| 𝑟 − 𝑠 |
,   {𝑟, 𝑠} ∈ 𝑀 ,                                                            (12) 

where 𝑄𝑟  and 𝑄𝑠  are the intensity of pixels of r and s, M is a set of 

neighboring pixels, σ is the empirical value, and || || denotes the Euclidean norm. The 

use of the distance transform with the graph cut is efficient because both methods 

work in the same domain. The cost for the terminal edges (t-links) of the graph cut 

method is defined by: 

𝑃 𝑟, 𝑆 =  

𝑘, if 𝑟 ∈ 𝑂,
𝑂, if 𝑟 ∈ 𝐵,

−ln𝑃𝑟  
𝑄𝑟 

𝐵
 , otherwise.

                                                                           (13) 

𝑃 𝑟, 𝑇 =  

𝑘, if 𝑟 ∈ 𝑂,
𝑂, if 𝑟 ∈ 𝐵,

−In𝑃𝑟  
𝑄𝑟 

𝑂
 , otherwise.

   ,                                                                        14  

Note that O denotes the object and B the background. 

𝑘 = 1 +  max
𝑉

 𝑃 𝑟, 𝑠 
𝑠:{r,s}∈𝑀

  ,                                                                                (15) 

where 𝑃𝑟  
𝑄𝑟 

𝐵
  and 𝑃𝑟  

𝑄𝑟 

𝑂
  are the normalized histograms. (Zhang, Wang 

&Shi, 2009). The minimum cost cut for the background and the object is defined by: 

𝐸 = 𝛾𝑡  (𝑃 𝑟, 𝑆 +  𝑃 𝑟, 𝑇 ) +   𝑃(𝑟, 𝑠)

𝑟∈𝑃,{𝑟,𝑠}𝜖𝑀𝑟𝜖𝑃

 ,                                                 (16) 
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where the first term corresponds to the region and the second to the boundary 

of the superpixel, 𝛾𝑡  is the weighting factor 

Symmetry is an important criterion in medical diagnosis. Several research 

papers have shown the importance of this feature (Kiryati & Gofman, 1998, Sun, 

1995). Therefore, we introduce the mirror symmetry measure (Ng et al., 2005). The 

tumors are, especially on the low-resolution level and are characterized by a certain 

level of symmetry. Segmentations with a high level of asymmetry are rejected.  

Finally, the discrete stationary wavelet transform is used to fuse the 

segmentations obtained on different resolution levels (Mu et al., 2018). 
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Fig. 13. Flowchart of the proposed method 
 

 

 

 

 

 

START 

Create 

Multiscale 

BUS Image 

Apply 

Weiner filter 

Apply FBF 

Apply 

WDAF 

Despeckle BUS 

Apply Pixel 

Seed 

Create 

Superpixels 

Fuse Images 

Create Boundary 

Graph Cut 

Final 

Segmentation 

END 

YE

S 

NO 

NO 

YE

S 

NO 

YE

S 

NO 

YE

SS 

NO 

YE

S 

NO 

YE

S 

NO 

YE

S 

NO 

YE

S 

Ref. code: 25636122300012GEH



31 

 

 

CHAPTER 4  

PRE-PROCESSING 

 

4. Results  

The proposed pre-processing algorithm is tested on 50 synthetic images degraded by 

speckle noise with varying intensity. Further, the method is tested on 250 BUS images from the 

Thammasat University Hospital database (Rodtooket al., 2018) and Baheya Hospital for Early 

Detection & Treatment of Women's Cancer (Al-Dhabyani et al., 2020). Different images (50), 

taken randomly from each database, are used for training. 

 

4.1. Data acquisition and experimental setup 

Evaluation of the filters on a set of real images is not a trivial task since the reference 

images are not available. The performance evaluation can rely on synthetic images or a subjective 

evaluation by a pool of experts (Shrimali, Anand, &Kumar, 2010). Alternatively, BUS images can 

be additionally distorted (Ilesanmi, Idowu, & Makhanov, 2020). However, such reference images 

do not represent the desired result. Finally, there exist several non-reference methods. However, 

they require reliable statistics regarding the noise. In this pre-processing stage, we use a different 

approach, applied to non-reference BUS images. Namely, we apply conventional image 

segmentation methods, e.g., the morphological active contours without edges (Ning, Zhang, 

&Liao, 2019), the watershed method (Kim, Nam, & Jang, 2018), and the K-means with Otsu 

thresholding (Harb, Isa,&Salamah, 2015; Jaroša et al., 2017). The results are compared with the 

ground truth provided by the radiologists. The quality of segmentation is assessed by the DICE, 

Jaccard coefficients, and the Hausdorff distance which are among the most popular measures of 

segmentation in medical image processing. Denoising of the synthetic images is evaluated by the 

standard quality measures such as the mean-square error, the signal-to-noise ratio, the peak signal-

to-noise ratio, and the structural similarity index. The experiments are performed on an Intel(R) 

Dual-Core CPU (3.60 GHz, 16GB RAM), Windows 10. 

Consider the following quality measures. 

(a) The Mean-Square Error (MSE). The MSE measures the quality between the denoised 

image and the original image. Lower values of the MSE indicate better quality of the denoised 

image (Sudeep et al., 2015).  
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MSE =
1

𝑁
| 𝐼 − 𝐿 |2,                                                                                                          (17) 

where 𝐼 is the original image, 𝐿 is the denoised image, N is the number of data points, and 

|| || is the Euclidean norm. 

(b) The Signal-to-Noise ratio (SNR) measures the level of noise relative to the original 

image as follows. 

SNR = 10log10

| 𝐿 |

| I − L |
 ,                                                                                               (18) 

where L is the reference image and I is the denoised image. 

(c) The Structural Similarity Index Measure (SSIM) is given by 

SSIM 𝑢, 𝑣 =
 2μIμL + 𝑄1  2𝜎𝐼𝐿 + 𝑄2 

 𝜇𝐼2 + 𝜇𝐿2 + 𝑄1  𝜎𝐼2 + 𝜎𝐿2 + 𝑄2 
 ,                                               (19) 

where 𝜇𝐼 and 𝜇𝐿 are the average gray values, 𝜎𝐼 and 𝜎𝐿 are the variance of patches, 𝜎𝐼𝐿 is 

the covariance of I and L, and 𝑄1 and 𝑄2 denote two small positive constants (typically 0.01). 

(d) The Peak Signal-to-Noise Ratio (PSNR) measures the ratio between the maximum 

original signal and the MSE. 

 

PSNR = 10 ∗ log10  
 max 𝐼  2

𝑀𝑆𝐸
 .                                                                             (20) 

(e) The Jaccard Similarity Coefficient (JSC), used to evaluate the quality of segmentation, 

is given by 

𝐽𝑆𝐶 𝐵, 𝐵𝐺𝑇 =   
 𝐵 ∩ 𝐵𝐺𝑇 

 𝐵 ∪ 𝐵𝐺𝑇 
,                                                                                           (21) 

where 𝐵 and 𝐵𝐺𝑇  stand for the segmented object and the ground truth. 

(f) The Dice Similarity Coefficient (DSC) is a measure that is similar to the JSC, given by    

𝐷𝑆𝐶 𝐵, 𝐵𝐺𝑇 =   2 
 𝐵 ∩ 𝐵𝐺𝑇 

 𝐵 +  𝐵𝐺𝑇 
.                                                                                  (22) 

(h) The contour-based Hausdorff distance (HD) is given by  

dist𝐻 𝑋, 𝑌 =  max max𝑎∈𝑋 min𝑏∈𝑌 𝑎 − 𝑏 , max𝑏∈𝑌 min𝑎∈𝑋 𝑎 − 𝑏  ,            23  

where X is the ground truth contour and Y is the resulting contour. 
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4.2 Experiment 1: pre-processing of synthetic images 

Fifty synthetic images degraded by the speckle noise have been subjected to the prescribed 

filters. The SNR is in the range [2.07, 12.34]. The conventional filters, such as the MF, BF, WF, 

SRAD, etc. constitute the first set (Table 1, clear cells). The second set includes the speckle 

reduction filters (shaded cells Table 1)  

 

Table 1: Noise reduction algorithms 

Filter Reference Remark Availability 

MF 
(Zhu &Huang, 

2012) 
Nonlinear 

Downloadable 

code  

BF 
(Omasi 

&Manduchi, 2006) 

statistical, locally 

adaptive 

Downloadable 

code 

WF (Pratt,1972) 
statistical, locally 

adaptive 

Downloadable 

code 

 (SRAD) 
(Can-Fei, et al., 

2012) 
iterative 

Downloadable 

code 

Guided Filter (GF) 
(He, Sun, &Tang, 

2010) 
locally adaptive 

Downloadable 

code 

Fast BF (FBF) 
(Paris,& 

Durand,2006) 
iterative 

Downloadable 

code 

Anisotropic Diffusion 

Memory Speckle 

Statistics (ADMSS) 

(Ramos-Llordén et 

al., 2015) 
locally adaptive 

Downloadable 

code 

Fast Bilateral Filtering 

Fourier Kernel (FBFFK) 

(Ghosh& 

Chaudhary,2016) 
locally adaptive 

Downloadable 

code 

Discrete Topological 

Derivative (DTD) 

(Damodaranet al., 

2012) 
locally adaptive 

Downloadable 

code 

Combination Spatial 

Filtering (CSF) 

(Garg 

&Khandelwal, 

2018) 

hybrid 
Implemented by 

the authors 

Hybrid Speckle 

Reduction Filter(HSRF) 
(Singh et al., 2017) hybrid 

Implemented by 

the authors 

Multi-scale hybrid 

method (MSHM) 
Proposed hybrid 

Implemented by 

the authors 

 

Finally, the third set is the hybrid filters, CSF and HSRF (shaded red cells Table 1). Tables 

2-3 show the efficiency of the MSHM (proposed pre-processing method) relative to the reference 

methods.  
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Table 2: Efficiency of the proposed filter applied to synthetic images, MSE and SNR 

Filter/Quality Average MSE Average SNR 

Raw noisy image  148.82 153.39 169.48 180.21  12.34 6.62 2.94 2.07 

MF 132.40 141.73 160.44 174.38 15.96 9.86 5.36 4.89 

BF 117.03 137.42 152.83 168.30 18.42 12.34 8.28 7.42 

WF 129.43 140.82 160.03 172.36 16.96 10.78 6.49 5.82 

SRAD 127.02 140.66 158.34 170.43 20.42 14.04 10.62 9.44 

GF 131.44 141.02 160.22 171.08 16.02 10.40 6.22 5.43 

FBF 115.30 121.22 144.02 150.42 21.73 15.60 11.40 10.22 

ADMSS 98.89 120.66 132.94 149.07 23.71 17.65 13.07 12.02 

FBFFK 97.80 115.94 130.58 148.60 22.04 16.01 11.94 10.95 

DTD 83.80 110.10 122.23 138.82 26.43 20.20 16.88 15.43 

CSF 79.43 102.21 115.42 130.31 28.81 22.14 18.08 17.31 

HSRF 76.62 95.42 108.31 122.41 37.62 30.41 27.10 26.43 

MSHM 71.75 88.28 98.99 114.39 41.82 35.21 31.62 30.33 

 

Table 3: Efficiency of the proposed filter applied to synthetic images, SSIM and PSNR. 

Filter/Quality Average PSNR Average SSIM 

Raw noisy image  17.43 16.62 14.34 13.06  0.21 0.14 0.11 0.09 

MF 21.22 19.68 18.98 18.56 0.41 0.32 0.22 0.19 

BF 22.51 20.15 19.02 18.89 0.65 0.58 0.52 0.46 

WF 19.02 18.78 17.77 17.41 0.52 0.45 0.32 0.27 

SRAD 23.21 21.74 20.51 19.30 0.74 0.62 0.57 0.49 

GF 20.42 19.06 18.42 18.02 0.45 0.36 0.29 0.23 

FBF 25.61 23.12 21.17 20.01 0.79 0.68 0.62 0.53 

ADMSS 26.79 24.21 22.74 21.09 0.81 0.72 0.64 0.57 

FBFFK 24.22 22.10 20.77 19.75 0.78 0.65 0.60 0.51 

DTD 27.51 25.63 23.10 21.71 0.83 0.77 0.71 0.65 

CSF 27.98 26.02 23.79 22.10 0.82 0.73 0.69 0.63 

HSRF 28.78 26.51 24.10 23.87 0.86 0.79 0.74 0.68 

MSHM 30.81 27.98 25.62 25.02 0.89 0.82 0.77 0.72 

 

 

Note that the proposed approach outperforms the reference methods, in terms of the SNR 

and MSE. However, DTD, CSF, and the HSRF show close results in terms of PSNR and SSIM. 

Fig. 14 shows an example of the synthetic image. The shape of the object and the background of 

the image are similar to those present in the BUS images. 
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Fig. 14. Speckle-noise filtering for a sample image (A)Noisy image, (B)BF (the best from set 1), 

(C) DTD (the best from set 2), (D) HSRF (the best from set 3), (E) MF (the worst filter), (F) 

MSHM (the proposed filter). 

 

4.3 Experiment 2: breast ultrasound images, Thammasat University database 

The experiment tests the efficiency of the MSHM on BUS images produced by a Philips 

iU22 machine from the Thammasat University database, http://onlinemedicalimages.com. The 

images are preprocessed by the reference filters and segmented using selected conventional 

segmentation methods, i.e., the morphological active contours, the watershed algorithm, and the 

K-means with Otsu thresholding. 

The results evaluated by the segmentation metrics JSC, DSC, and HD are given in Tables 

4-6. The metrics have been averaged over 250 test images. The standard deviation is given. The 

testing approach avoids the problem of the reference image. It finds the most suitable filters 

designed specifically for segmentation of the BUS images. Figures 15 and 16 are examples of 

segmentation of the pre-processed images. To compare with the conventional filters, the best 

result from the three conventional segmentations was selected for each filter.  

 

 

 

Ref. code: 25636122300012GEH



36 

 

 

Table 4: Segmentation by morphological active contours, Thammasat University database 

Filter/Quality JSC DSC HD 

MF 0.53±0.19 0.70±0.21 3.77 ± 0.19 

BF 0.56±0.21 0.72±0.19 3.79 ± 0.19 

WF 0.56±0.36 0.72±0.16 3.73 ± 0.17 

SRAD 0.63±0.16 0.78±0.16 3.02 ± 0.16 

GF 0.55±0.19 0.71±0.18 3.99 ± 0.17 

FBF 0.68± 0.16 0.81± 0.16 2.90± 0.17 

ADMSS 0.68± 0.15 0.81± 0.14 2.99 ± 0.18 

FBFFK 0.63±0.17 0.78± 0.19 2.85 ± 0.16 

DTD 0.68± 0.16 0.81± 0.15 2.63 ± 0.16 

CSF 0.69± 0.34 0.82± 0.13 2.54 ± 0.15 

HSRF 0.75± 0.14 0.86± 0.12 2.23 ± 0.15 

MSHM 0.78± 0.12 0.88± 0.10 2.09 ± 0.11 

 

 

Table 5: Segmentation by the watershed method, Thammasat University database 

Filter/Quality JSC DSC HD 

MF 0.57± 0.19 0.73± 0.17 3.92 ± 0.26 

BF 0.58± 0.18 0.74± 0.18 3.98 ± 0.23 

WF 0.57± 0.18 0.73± 0.19 3.84 ± 0.23 

SRAD 0.61± 0.17 0.76± 0.16 2.89 ± 0.19 

GF 0.57± 0.19 0.73± 0.18 3.93 ± 0.25 

FBF 0.62± 0.19 0.77± 0.15 2.90 ± 0.19 

ADMSS 0.63± 0.14 0.78± 0.16 2.95 ± 0.19 

FBFFK 0.65± 0.15 0.79± 0.16 2.54 ± 0.17 

DTD 0.65± 0.17 0.79± 0.19 2.63 ± 0.16 

CSF 0.66± 0.16 0.80± 0.15 2.43 ± 0.16 

HSRF 0.72± 0.13 0.84± 0.15 2.15 ± 0.14 

MSHM 0.76± 0.10 0.87± 0.11 2.10 ± 0.12 

 

 

Table 6:Segmentation by K-means with Otsu thresholding, Thammasat University database 

Filter/Quality JSC DSC HD 

MF 0.65± 0.18 0.79± 0.19 3.80 ± 0.19 

BF 0.63± 0.18 0.78± 0.17 3.88 ± 0.20 

WF 0.65± 0.17 0.79± 0.19 3.85 ± 0.19 

SRAD 0.69± 0.17 0.82± 0.15 3.12 ± 0.16 

GF 0.63± 0.18 0.78± 0.20 3.78 ± 0.20 

FBF 0.70± 0.17 0.83± 0.16 3.10 ± 0.19 

ADMSS 0.72± 0.16 0.84± 0.15 3.08 ± 0.18 

FBFFK 0.70± 0.16 0.83± 0.14  3.04 ± 0.18 

DTD 0.75± 0.19 0.85± 0.17 2.93 ± 0.14 

CSF 0.73± 0.17 0.85± 0.16 2.89 ± 0.17 

HSRF 0.76± 0.14  0.87± 0.13 2.65 ± 0.14 
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MSHM 0.80± 0.13 0.89± 0.12 2.40 ± 0.13 

 

 

 

 
 

Fig. 15. Segmentation of the pre-processed images (A) Original image, (B) Ground truth, (C) 

BF(the best from set 1, DSC =0.78), (D) DTD (the best from set 2, DSC =0.80), (E) HSRF (the 

best from set 3, DSC =0.83),  

(F) GF (the worst filer, DSC =0.71), (G)MSHM (DSC =0.86) 
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Fig.16.Segmentation of the pre-processed images (A) Original image, (B) Ground truth, (C) 

BF(the best from set 1, DSC =0.82), (D) DTD (the best from set 2, DSC =0.82), (E) HSRF (the 

best from set 3, DSC =0.87), (F) GF(the worst filter, DSC =0.76), (G)MSHM (DSC =0.89) 

 

Note that the most popular region-based metrics in validating medical segmentations are 

the Dice coefficient and the Jaccard index (Taha, & Hanbury, 2015). Several authors suggest that 

US image segmentation is acceptable if DICE≥0.8 (Hosch, et al., 2002). Tables 4-6, show that 

only CSF, HSRF, and the proposed method produce acceptable segmentation results, whereas 

other methods show a substandard performance.  

 

4.4 Experiment 3: Database of Baheya Hospital for Early Detection & Treatment of 

Women's Cancer 

The BUS images are obtained from LOGIQ E9 and LOGIQ E9 Agile machines of the Baheya 

Hospital for Early Detection & Treatment of Women's Cancer (several hospitals). The ground 

truth contours have been drawn by experienced radiologists. The efficiency of the proposed 

method is demonstrated by Tables 7-9 and illustrated in Figs. 15 and 16.  
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Table 7:  Segmentation by the morphological active contours, Baheya Hospital database 

 

Filter/Quality JSC DSC Hausdorff   

distance 

MF 0.56± 0.24 0.72± 0.19 3.20 ± 0.18 

BF 0.57± 0.21 0.73± 0.18 3.32 ± 0.18 

WF 0.56± 0.20 0.72± 0.18 3.35 ± 0.18 

SRAD 0.61± 0.21 0.76± 0.16 2.92 ± 0.16 

GF 0.55± 0.23 0.71± 0.20 3.28 ± 0.19 

FBF 0.62± 0.22 0.77± 0.17 2.90 ± 0.16 

ADMSS 0.63± 0.18 0.78± 0.16 2.88 ± 0.15 

FBFFK 0.63± 0.21 0.78± 0.15 2.84 ± 0.16 

DTD 0.63± 0.23 0.78± 0.16 2.70 ± 0.15 

CSF 0.66± 0.22 0.80± 0.15 2.30 ± 0.14 

HSRF 0.68± 0.21 0.81± 0.14 2.15 ± 0.13 

MSHM 0.73± 0.17 0.85± 0.12 2.09 ± 0.11 

 

 

Table 8: Segmentation by the watershed method, Baheya Hospital database 

Filter JSC DSC Hausdorff    

distance 

MF 0.60± 0.19 0.75± 0.18 2.97 ± 0.19 

BF 0.60± 0.19 0.75± 0.18 2.92 ± 0.19 

WF 0.59± 0.20 0.74± 0.19 2.95 ± 0.18 

SRAD 0.65± 0.16 0.79± 0.15 2.62 ± 0.15 

GF 0.59± 0.19 0.74± 0.19 2.98 ± 0.19 

FBF 0.65± 0.16 0.79± 0.17 2.63 ± 0.16 

ADMSS 0.63± 0.17 0.78± 0.16 2.68 ± 0.17 

FBFFK 0.65± 0.15 0.79± 0.16 2.59 ± 0.16 

DTD 0.69± 0.13 0.82± 0.13 2.49 ± 0.14 

CSF 0.68± 0.15 0.81± 0.13 2.43 ± 0.13 

HSRF 0.72± 0.14 0.84± 0.12 2.29 ± 0.14 

MSHM 0.78± 0.10 0.88± 0.09 2.12 ± 0.11 

 

 

 

 

 

 

Table 9:  Segmentation by the K-means with Otsu thresholding, Baheya Hospital database 

Filter  JSC DSC Hausdorff   

distance 

MF 0.55± 0.19 0.71± 0.20 2.86 ± 0.19 

BF 0.55± 0.19 0.71± 0.18 2.86 ± 0.19 
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WF 0.56± 0.17 0.72± 0.19 2.88 ± 0.18 

SRAD 0.62± 0.16 0.77± 0.18 2.60 ± 0.17 

GF 0.52± 0.19 0.72± 0.19 2.83 ± 0.19 

FBF 0.62± 0.16 0.77± 0.17 2.60 ± 0.17 

ADMSS 0.62± 0.17 0.77± 0.17 2.60 ± 0.17 

FBFFK 0.63± 0.16 0.78± 0.17 2.57 ± 0.17 

DTD 0.63± 0.15 0.78± 0.16 2.57 ± 0.17 

CSF  0.66± 0.15 0.80± 0.15 2.42 ± 0.15 

HSRF 0.68± 0.15 0.81± 0.15 2.40 ± 0.14 

MSHM 0.69± 0.12 0.87± 0.10 2.03 ± 0.11 

 

In Tables 7-9, CSF, HSRF, and the proposed method produce acceptable segmentation 

results; whereas other methods show substandard performance (see Fig. 17).  

 

 

 

Fig.17.Segmentation of the pre-processed images(A) Original image, (B) Ground truth, (C) 

BF(the best from set 1, DSC =0.82), (D) DTD (the best from set 2, DSC =0.85), (E) HSRF (the 

best from set 3, DSC =0.90), (F) GF(the worst filter, DSC =0.78), (G)MSHM (DSC =0.92) 
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Fig.18. Segmentation of the pre-processed images (A) Original image, (B) Ground truth, (C) 

BF(the best from set 1, DSC =0.72), (D) DTD (the best from set 2, DSC =0.72), (E) HSRF (the 

best from set 3, DSC =0.74), (F) GF(the worst filter, DSC =0.70), (G)MSHM (DSC =0.86)  

 

 

4.5 Discussion: Pre-processing 

The pre-processing algorithm has been tested by 250 BUS images from the Thammasat 

University Hospital database and the Baheya Hospital for Early Detection & Treatment of 

Women's Cancer database. Additionally, 50 synthetic images corrupted by the speckle noise have 

been used to test the algorithm. For the synthetic images, the method improves the SNR by 

28.7%, PSNR by 11.9%, MSE by 69.6%, and SSIM by 66.25%. The best result of the reference 

methods is the reduction of the SNR by 25.82%, PSNR by 9.11%, MSE by 58.88%, and SSIM by 

51%. Therefore, the improvement concerning the best conventional method is as follows: MSE is 

30.31%, SNR is 8.75%, PSNR is 7.12% and SSIM is 51.3%. The improvement relative to the 
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worst conventional result is as follows: MSE is 10.74%, SNR is 3.03%, PSNR is 2.88% and SSIM 

is 15.3%. 

As far as the BUS images are concerned, the improvement achieved by MSHM with 

regard to the best result of the conventional methods is DSC 8.5%, JSC 11%, and HD 6.7%. The 

improvement concerning the worst result is DSC 14%, JSC 19%, and HD 13.3%. The DSC and 

JSC obtained by the proposed algorithm reach the quality standards of medical practice (See Figs 

19 and 20). Finally, this testing has been performed only on the unseen images, i.e., the thresholds 

and other parameters of the procedures have been obtained using different image datasets. This is 

related to the synthetic and BUS images.  

Figs. 22 and 23 summarize the results of the experiments. Overall, the WF and the GF 

(guided filter) produce the worst results, while the proposed method has the best results for both 

experiments.  

 

 

Fig. 19. The efficiency of the methods, Thammasat University database 
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Fig. 20. The efficiency of the methods, Baheya Hospital database. 
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CHAPTER 5 

NUMERICAL RESULTS 

 

5. Results  

The segmentations are implemented on Matlab R2018a with an Intel(R) 3.60 GHz CPU, 

16GB of RAM, and a Windows 10 Operating System. The average computational time is 0.52s. 

Four types of BUS images have been considered. Case 1 benign tumors, Case 2 malignant tumors, 

Case 3 cysts, and Case 4 fibroadenomas. 

BUS images have unique and specific features that present difficulty for segmenting. For 

example, the malignant tumor has an irregular shape making it difficult to segment. The 

fibroadenoma is characterized by low contrast. Although cysts have a regular shape they are often 

attached to irregular shadows (fig. 21).  

 

 Fig. 21. BUS image Tumour types. (A) Malignant, (B) Benign, (C) 

Fibroadenoma, (D) Cyst
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5.1 Performance evaluation measures 

The proposed approach is evaluated on BUS images with the ground truth. 

The following evaluation measures have been used. 

A. Accuracy is the ratio of the true predictions versus the total number of 

examined cases (Taha, & Hanbury, 2015). 

𝐴𝐶𝐶𝑈𝑅𝐴𝐶𝑌 =   
𝑇𝑃 + 𝑇𝑁

𝑃 + 𝑁
  ,                                                                                         (24) 

where TP, TN, P, and N stand for the numbers of true positive, true negative, 

total positive, and total negative samples, respectively. 

B. Sensitivity is the ratio of the number of true positives versus the sum of the 

numbers of true positives and false negatives: 

𝑆𝐸𝑁𝑆𝐼𝑇𝐼𝑉𝐼𝑇𝑌 =   
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
  .                                                                                 (25) 

C. Specificity is the ratio of the number of true negatives versus the sum of 

the numbers of true negatives and false positives among the examined cases (Zhou et 

al., 2016): 

𝑆𝑃𝐸𝐶𝐼𝐹𝐼𝐶𝐼𝑇𝑌 =   
𝑇𝑁

𝑇𝑁 + 𝐹𝑃
.                                                                                  (26) 

D. Precision is the ratio of the number of true positives versus the total 

number of positive cases among the examined cases (Zhou et al., 2016): 

𝑃𝑅𝐸𝐶𝐼𝑆𝐼𝑂𝑁 =   
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
.                                                                                   (27) 

 

5.2: Results of segmentation of BUS images. 

The proposed segmentation method is benchmarked against five methods 

(CBGC (cell-based graph cut) (Chiang et .al, 2010), ACWE (active contour without 

edges) (Chan &Vese, 2001), CL (computerized lesion segmentation) (Gomez et al, 

2010), ROTM (robust OTU thresholding method) (Sha et al., 2016), and CM (cellular 

automata method) (Liu et al., 2011)). In addition, four methods from the above 

benchmarked methods are multiscaled (Multiscale CBGC, Multiscale CL, Multiscale 

ROTM, and Multiscale CM) and used as the competing methods (see Tables 10 - 14, 

figs 22 -25).  In addition, the proposed preprocessing procedure is used by all 
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methods. The results section is divided into experiments on BUS images not degraded 

by Gaussian noise (section 5.2), and BUS images degraded by Gaussian noise (section 

5.3).  

 

Table 10 

Overall result for quantitative evaluations and shape similarity for the proposed and 

reference methods (Mean ± Standard Deviation) 

 

 

 

 

 

 

 

 

 

 

 

Algorithm Hausdorff 

Distance 

JSC DSC 

CBGC (Chiang et., 2010) 2.512 ± 1.89 0.87 ± 0.72 0.85 ± 0.69 

ACWE (Chan &Vese, 2001) 2.419 ± 1.56 0.92 ± 0.80 0.89 ± 0.79 

CL (Gomez et al, 2010) 4.313 ± 3.72 0.52 ± 0.41 0.51 ± 0.40 

ROTM (Sha et al., 2016) 3.832 ± 2.63 0.70 ± 0.66 0.73 ± 0.61 

CM (Liu et al., 2011) 2.919 ± 2.07 0.80 ± 0.73 0.79 ± 0.61 

Multiscale CBGC 2.342 ± 1.42 0.94 ± 0.82 0.92 ± 0.82 

Multiscale CL 3.511 ± 2.32 0.75 ± 0.69 0.79 ± 0.66 

Multiscale ROTM 4.009 ± 3.14 0.65 ± 0.54 0.69 ± 0.54 

Multiscale CM 2.452 ± 1.59 0.93 ± 0.84 0.90 ± 0.80 

Proposed method 2.042 ± 1.09 0.96 ± 0.85 0.98 ± 0.88 
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Table 11 
 

Qualitative evaluations for benign BUSs (Mean ± Standard Deviation) 

 

 

 

 

Table 12 
Qualitative evaluations for malignant BUSs (Mean ± Standard Deviation) 

 

Algorithm Accuracy (%) Specificity (%) Precision (%) Sensitivity(%) 

CBGC (Chiang et., 2010) 89.415 ± 10.12 81.235 ± 8.09 87.210 ± 10.46 93.405 ± 6.39 

ACWE (Chan &Vese, 

2001) 

91.219 ± 9.10 85.216 ± 9.30 89.785 ± 9.61 94.213 ± 6.01 

CL (Gomez et al, 2010) 78.717 ± 15.12 70.569 ± 9.09 80.520 ± 12.60 87.804 ± 10.73 

ROTM (Sha et al., 2016) 82.432 ± 12.63 77.442 ± 9.46 84.590 ± 11.72 89.002 ± 9.01 

CM (Liu et al., 2011) 87.761 ± 11.07 80.067 ± 8.03 86.544 ± 10.91 89.334 ± 8.45 

Multiscale CBGC 93.882 ± 7.62 86.512 ± 9.672 92.102 ± 9.66 95.721 ± 5.57 

Multiscale CL 91.411 ± 8.72 87.644 ± 9.756 89.872 ± 9.92 93.600 ± 6.74 

Multiscale ROTM 90.659 ± 9.14 85.734 ± 9.408 88.431 ± 10.01 91.407 ± 7.79 

Multiscale CM 93.415 ± 7.89 86.435 ± 8.012 92.004 ± 9.88 95.321 ± 5.97 

Proposed method 97.318 ± 5.27 90.442 ± 7.112 95.407 ± 4.08 97.312 ± 4.34 

Algorithm Accuracy (%) Specificity (%) Precision (%) Sensitivity (%) 

CBGC (Chiang et., 2010) 86.119 ± 13.87 75.292 ± 10.41 84.367 ± 13.47 89.206 ± 10.11 

ACWE (Chan &Vese, 

2001) 

88.435 ± 12.70 79.241 ± 10.99 86.502 ± 12.98 90.313 ± 9.27 

CL (Gomez et al, 2010) 73.231 ± 19.90 70.244 ± 12.09 71.205 ± 16.09 74.219 ± 16.23 

ROTM (Sha et al., 2016) 84.451 ± 15.23 76.345 ± 12.46 81.010 ± 14.96 85.414 ± 13.22 
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Table 13 
Qualitative evaluations for Cyst BUSs (Mean ± Standard Deviation) 

 

 

CM (Liu et al., 2011) 85.092 ± 14.03 75.005 ± 12.08 82.932 ± 14.37 87.069 ± 12.91 

Multiscale CBGC 90.448 ± 11.22 84.006 ± 13.02 88.419 ± 11.25 92.316 ± 8.07 

Multiscale CL 89.340 ± 12.20 75.003 ± 11.03 87.784 ± 12.10 91.268 ± 8.94 

Multiscale ROTM 87.090 ± 13.76 72.207 ± 10.03 85.311 ± 12.20 89.222 ± 10.18 

Multiscale CM 90.234 ± 11.78 84.450 ± 10.12 88.129 ± 11.82 92.798 ± 8.40 

Proposed method 94.217 ± 9.38 87.060 ± 9.06 93.223 ± 9.29 96.653 ± 5.17 

Algorithm Accuracy (%) Specificity (%) Precision (%) Sensitivity (%) 

CBGC (Chiang et., 

2010) 

88.631 ± 11.48 78.413 ± 9.05 86.102 ± 13.20 90.702 ± 7.49 

ACWE (Chan &Vese, 

2001) 

90.005 ± 10.30 82.002 ± 9.43 88.212 ± 11.24 92.490 ± 6.54 

CL (Gomez et al, 2010) 82.392 ± 15.99 72.390 ± 11.23 80.702 ± 17.21 84.670 ± 10.37 

ROTM (Sha et al., 

2016) 

84.06 ± 13.48 71.742 ± 10.77 82.321 ± 14.42 86.098 ± 9.58 

CM (Liu et al., 2011) 86.319 ± 12.30 75.632 ± 10.44 84.213 ± 13.23 88.789 ± 8.65 

Multiscale CBGC 92.703 ± 9.44 82.001 ± 9.74 92.102 ± 9.66 94.341 ± 5.32 

Multiscale CL 90.234 ± 10.07 80.40 ± 9.66 88.765 ± 10.69 92.255 ± 6.25 

Multiscale ROTM 88.880 ± 11.09 78.551 ± 9.98 86.578 ± 13.12 90.609 ± 7.46 

Multiscale CM 92.992 ± 9.89 82.620 ± 9.77 90.235 ± 9.95 94.526 ± 5.89 

Proposed method 96.457 ± 6.90 86.402± 9.82 94.509 ± 7.21 98.844 ± 3.34 
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Table 14 

Qualitative evaluations for fibroadenoma BUSs (Mean ± Standard Deviation) 

 

 

Fig. 22.The proposed and the reference multi-scale methods. (A) Original image, (B) 

Ground truth, (C) CBGC, (D) ACWE, (E) CL, (F) ROTM, (G) CM, and (H) Proposed 

method. 

 

Algorithm Accuracy (%) Specificity (%) Precision (%) Sensitivity (%) 

CBGC (Chiang et., 2010) 92.205 ± 12.51 82.623 ± 10.49 90.541 ± 12.65 94.329 ± 9.47 

ACWE (Chan &Vese, 

2001) 

93.451 ± 11.65 83.719 ± 10.03 91.504 ± 11.82 95.713 ± 8.82 

CL (Gomez et al, 2010) 86.373 ± 17.23 76.443 ± 13.19 84.500 ± 16.76 88.580 ± 14.31 

ROTM (Sha et al., 2016) 88.214 ± 14.77 76.792 ± 13.66 86.506 ± 14.74 90.321 ± 12.61 

CM (Liu et al., 2011) 90.251 ± 13.74 79.070 ± 13.33 89.607 ± 13.31 92.632 ± 10.45 

Multiscale CBGC 94.284 ± 11.42 84.449 ± 11.62 92.223 ± 10.60 96.221 ± 7.22 

Multiscale CL 90.113 ± 13.72 80.780 ± 12.79 88.342 ± 13.92 92.430 ± 10.04 

Multiscale ROTM 89.626 ± 15.01 79.200 ± 13.43 87.242 ± 14.14 91.326 ± 10.79 

Multiscale CM 94.038 ± 11.98 84.004 ± 11.08 92.400 ± 10.98 96.021 ± 7.97 

Proposed method 96.753 ± 4.74 86.213 ± 12.39 94.450 ± 3.78 98.216 ± 4.01 
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Fig. 23. The proposed and the reference multi-scale methods. (A) Original image, (B) 

Ground truth, (C) Multi-CBGC, (D) Multi-CL, (E) Multi-ROTM, (F) Multi-CM, 

and(G) Proposed method. 

 

 

Fig. 24. Failed segmentation. (A) Original image, (B) Ground truth, (C) CBGC, (D) 

ACWE, (E) CL, (F) ROTM, (G) CM, and (H) Proposed method. 
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Fig. 25. Failed segmentation. (A) Original image, (B) Ground truth, (C) Multi-CBGC, 

(D) Multi-CL, (E) Multi-ROTM, (F) Multi-CM, and(G) Proposed method. 

 

 

The above indicates that the proposed method is effective for the segmentation 

of breast ultrasounds. Visual comparison between the proposed method and the state-

of-the-art methods is presented in figs 22 and 23. In all cases, the proposed approach 

outperforms the competitors. The qualitative results of cases 1, 2, 3, and 4 are given in 

tables 10 to 14, respectively. Experiments indicate that CL produces the worst 

performance for benign, malignant, fibroadenoma, and cyst BUS images. CBGC, 

ACWE, ROTM, and CM produce relatively good results however, their performance 

is not satisfactory. ACWE produces the best result if the multiscale is not applied (see 

fig. 26).  

Multiscale methods produce better results than methods without multiscale. 

For example, the segmentation of benign images, CBGC, ACWE, CL, ROTM, CM, 

multiscale CBGC, multiscale CL, multiscale ROTM, and multiscale CM produced 

accuracies of 89%, 91%, 78%, 82%, 87%,93%,91%,90%, and 93%, respectively, 

whereas the proposed method produced an accuracy of 97%. For the malignant, 

fibroadenoma, and cyst BUS images the proposed method also outperformed the 

competing methods. The multiscale CBGC and CM produce the best results when 

compared with other methods (apart from the proposed method).  

However, the proposed method produces the best accuracy (see figs 26, 27). 

Although the test methods performed well, they fail on images with a large number of 
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shadows and a high level of speckle noise. The relevant examples are depicted in 

Figs. 24 and 25. 

 

 

Fig. 26.The proposed method vs. the reference methods without multiscale 
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Fig. 27.The proposed method vs. the reference methods with multiscale 

 

5.3 BUS images degraded by Gaussian noise 

In every experiment, it is important to test for robustness; therefore, the 

robustness of the proposed method under various Gaussian noise levels is tested. 

Gaussian noise is a statistical noise with a probability density function equal to 

normal noise. The robustness of the proposed method is tested with the Gaussian 

noise levels of 0.005, 0.007, 0.009, and 0.01 (see Fig. 28, Tables 15).  
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Fig.28. BUS images subjected to different noise levels. 

 

Table 15 

Overall results for the quantitative evaluations and shape similarity for the different 

levels of Gaussian noise. 

Gaussian 

Noise Level 

Algorithm Hausdorff 

Distance 

JSC DSC 

0.005 Multiscale CBGC 3.602 ± 2.77 0.82 ± 0.74 0.81 ± 0.70 

 Multiscale CL 3.010 ± 2.52 0.85 ± 0.79 0.84 ± 0.77 

 Multiscale ROTM 4.790 ± 3.56 0.60 ± 0.52 0.63 ± 0.50 

 Multiscale CM 3.471 ± 2.85 0.85 ± 0.79 0.84 ± 0.72 

 Proposed method 2.642 ± 1.57 0.92 ± 0.80 0.93 ± 0.81 

0.007 Multiscale CBGC 3.911 ± 2.88 0.79 ± 0.64 0.79 ± 0.64 

 Multiscale CL 3.421 ± 2.78 0.82 ± 0.70 0.80 ± 0.70 

 Multiscale ROTM 4.999 ± 3.79 0.52 ± 0.50 0.53 ± 0.49 

 Multiscale CM 3.73 ± 2.99 0.80 ± 0.74 0.79 ± 0.67 

 Proposed method 2.702 ± 1.70 0.90 ± 0.81 0.91 ± 0.82 
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0.009 Multiscale CBGC 3.822 ± 2.81 0.80 ± 0.69 0.80 ± 0.70 

 Multiscale CL 3.201 ± 2.62 0.83 ± 0.73 0.83 ± 0.73 

 Multiscale ROTM 4.884 ± 3.62 0.57 ± 0.51 0.57 ± 0.51 

 Multiscale CM 3.581 ± 2.89 0.82 ± 0.76 0.82 ± 0.76 

 Proposed method 2.976 ± 1.87 0.90 ± 0.79 0.90 ± 0.79 

0.01 Multiscale CBGC 3.902 ± 2.97 0.84 ± 0.73 0.84 ± 0.73 

 Multiscale CL 3.111 ± 2.60 0.86 ± 0.79 0.85 ± 0.78 

 Multiscale ROTM 4.777 ± 3.52 0.70 ± 0.62 0.73 ± 0.64 

 Multiscale CM 3.500 ± 2.75 0.84 ± 0.79 0.84 ± 0.79 

 Proposed method 2.603 ± 1.63 0.93 ± 0.81 0.93 ± 0.81 
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Fig. 29.The proposed method vs. the reference methods for different levels of 

Gaussian noise. 
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Fig. 30. Standard deviation by the proposed method vs. the reference methods for 

different levels of Gaussian noise. 

 

Despite the addition of Gaussian noise, the proposed method still outperforms 

other methods. Although quantitative results are lower for images degraded with 

Gaussian noise, they are satisfactory and indicate that multiscale methods can 

withstand noise of different levels. Figs. 29 and 30 depict overall statistical analysis of 

levels of images degraded by noise.   
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CHAPTER 6 

CONCLUSION AND FUTURE RESEARCH 

 

 

6.1 Conclusion  

The proposed novel combination of the speckle reduction filters outperforms 

11 conventional and state-of-the-art methods, as applied to synthetic and BUS images. 

The performance of the method is measured using a combination of segmentation 

algorithms and segmentation criteria. The attained advantages in segmentation and 

experiments on synthetic images show that the MSHM outperforms these algorithms 

on BUS images, in terms of the standard reference-image based measures.   

To segment the images, a novel multiscale superpixel method for the 

segmentation of BUS images based on the boundary efficient graph cut method is 

presented. A real dataset of breast ultrasounds obtained from Thammasat University 

Hospital is used for the evaluation. Specifically, a multiscale image from the original 

BUS image is created. Subsequently, the distance transforms superpixel 

decomposition of the multiscale images are generated before performing final 

segmentation. A novel segmentation that combines shape symmetry analysis with the 

graph cut method is adapted. The validation experiments proved that the proposed 

method outperformed the state-of-the-art segmentation methods with an average 

segmentation accuracy of 94%. In addition, the method is simple to understand and 

easy to replicate. Finally, several procedures to improve the medical applicability by 

balancing the accuracy and computational costs are performed. An enhanced 

superpixel method that does not involve additional memory consumption is 

introduced. The proposed method does not exclude the screening procedure during 

clinical examinations. However, it complements the clinical examinations and serves 

as the second opinion. 

 

6.2 Limitation 

It should be noted that the proposed method has several advantages over other 

methods, including (1) effective noise removal of both speckle and Gaussian noise, 

(2) effective segmentation of breast ultrasounds despite their inherent low quality, and 
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(3) the easy use for diagnosis by clinicians. However, the proposed method is limited 

by specific training. The methods are tested with data acquired from Philips iU22 

ultrasound and LOGIQ E9 ultrasound machines.  Although several high-quality 

studies have been conducted with our database, majority of the existing database does 

not include the ground truth.  

 

6.3 Future Research 

Analysis of the method using a variety of databases is a subject of future 

research. In future research, we recommend that this approach be used in the study of 

other kinds of ultrasound images (kidneys or thyroids) to validate the performance 

and accuracy of the proposed model. In addition, our method may be incorporated 

with deep learning networks to produce a robust algorithm. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Ref. code: 25636122300012GEH



60 

 

 

APPENDIX 
Main function 

1. Define the specific dataset  

2. Open BUS image dataset. 

3. Initialize the images in the dataset 

4. while it is not the end of file: 

5. read the next line from file  

6. if :it failed to read the next line, stop the loop. 

7. else: call the subfunction 1 that perform pre-processing 

8. using subfunction 1 determine the pre-process images, 

9. if: subfunction 1 completes, start subfunction 2 

10. else: stop the loop 

11. using subfunction 2 determine the segmented images, 

12. save segmented image in designated location 

13. End. 

 

SubFunction 1 

Input: Grayscale BUS Image I 

1: 𝐼𝑚 ← Multiscale (𝐼) 

2: Create multiscale of image (𝐼) 

3: 𝐼𝑊𝑓 ← WF (𝐼𝑚  ) 

4: Perform initial filtering with the weiner filter on images (𝐼𝑚 ) 

5: 𝐼𝐹𝑏𝑓 ← FBF (𝐼𝑊𝑓  ) 

6: Perform speckle reduction with the fast bilateral filter on images (𝐼𝑊𝑓 ) 

7: 𝐼𝑊𝑑𝑎𝑓 ← WDAF (𝐼𝐹𝑏𝑓  ) 

8: Remove artifact with wavelet decomposition anisotropic filter on images (𝐼𝐹𝑏𝑓 ) 

Output: preprocessed BUS image (𝐼𝑝𝑟𝑒 ) 

 

SubFunction 2 
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Input: Preprocessed Images 𝐼𝑝𝑟𝑒  

Distance transform/pixel seed measure 

Step 1: Clustering and superpixel method 

 Cluster assignment pixel with nearest cluster centre 

 Create and perform cluster inspection for all scales  

 Update cluster centre 

 Create the object alignment boundary  

 Create homogeneous and compactness appearance  

Boundary efficient graph cut/final fusion 

Step 2: Segment image 

 Create a shape symmetry on image of step 4 

 Perform graph cut segmentation  

Model evaluation 

Step 3: Model evaluation 

 Evaluate the performance on the ultrasound in the dataset 

 Add various type of noise 

 Assess the performance of the proposed technique utilizing ground truth  

Output: Final segmentation (𝐼𝑚𝑎𝑠 ) 

 

 

 

Link to code: 

https://www.dropbox.com/s/qto1kdq6hiy9pko/dissertation_code.txt?dl=0 
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