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ABSTRACT 

Targeted Magnetic Drug Delivery (TMDD) is a promising approach that is 

relevant to multimodal cancer therapy. Therefore, it is important to develop 

mathematical models of TMDD to serve as a second opinion for medical practitioners. 

A majority of TMDD models represent a mixture of blood and nanoparticles as a one-

phase solution. Therefore, the magnetic nanoparticles (MN) and the blood follow the 

same streamlines. The existing two-phase models are usually one-way coupled, i.e., the 

blood flow has a strong impact on the MN flow. However, the inverse impact of the 

MN on the dynamics of the blood is not included in the models. To eliminate these 

drawbacks, the MN in a blood vessel is simulated by a two-phase (solid-liquid) flow 

in a 2D rectangular channel. The problem is governed by two-way coupled 

momentum and temperature equations for the blood flow and the MN. The numerical 

procedure invokes the stream function–vorticity formulation and an efficient 

numerical method on a finite-difference grid. The general formulation for the effect of 

the magnetic field is that of Biomagnetic fluid Dynamics (BFD) which incorporates 

both principles of MagnetoHydroDynamics (MHD) and FerroHydroDynamics (FHD). 

The model, validated by experimental results, has been applied to analyze the formation 

of and the zones of TMDD, where the velocity of the blood flow is low and the velocity 
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of the MN flow is high towards the magnet. Additionally, we analyze the formation of 

vortices relative to the magnetic force (MFs), the drag force (DF). The model is capable 

of simulating the (reverse) impact of the MN on the blood flow and evaluates the 

corresponding changes in the vorticity. The result shows that the MHD 

effect causes disturbance in blood flow. It reduces blood flow and minimizes the large 

vortices created by FHD. Moreover, the concentration of medical drugs is another 

essential result. These medications have the potential to harm healthy cells. Therefore, 

the effects of medical drugs have been evaluated against MN size. It analyzes the impact 

of the size and concentration of the MN on the temperature of the blood. The preceding 

models cannot simulate these important scenarios.     

Keywords: TMDD, Two-Phase Model (TPM), Computational Fluids Dynamics 

(CFD), Variable Magnetic Field (MF), Numerical Simulation 
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CHAPTER 1  

INTRODUCTION 

1.1 Introduction  

This chapter presents the research background, problem statement, research 

objectives, scope of study, and importance of the research. The research background 

describes a summary of the research and discusses the simulation of TMDD. The problem 

statement describes the gap of the research and the proposed problems. Research objectives 

motivate the problems solved along with the scope and importance of the research. 

1.2 Research Background  

Cancer is the leading cause of death worldwide and the disease of multiple 

etiologies. In stage 4 cancer, cells detach from the main cancerous tumor and go to another 

part of the body via the bloodstream or lymphatic system, also known as metastasis. They 

develop new tumors in other parts of the body, which are known as metastatic tumors. The 

new tumors contained the same type of cancer as the primary tumor has. Cancerous cells 

have the ability to spread to almost all parts of the body. For example,  

1. Breast cancer most likely spread to the bones, lungs, liver, brain, and chest wall. 

2. Lung cancer most commonly spread to the liver, bones, brain, and adrenal glands.  

3. Prostate cancer has a tendency to move to the bones.  

4. Rectal and Colon cancers have a tendency to spread to the lungs and liver.  

5. It can spread to the space around the belly, which is called peritoneal carcinomatosis 

(Ceelen & Levine, 2015).  

6. Cancer can also spread to muscle, skin, or other body organs but less frequently.  
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7. Cancel cells can also move to the lining around the lungs, which is called pleural cavity.  

Despite advances in cancer treatment over the previous four decades, cancer 

detection and treatment continue to be a global healthcare concern (Mukherjee et al., 2020; 

Sur & Taipale, 2016). According to figures released by the American Cancer Society 

(ACS) in 2015, the number of cancer cases will rise to 21.8 million new cases by the end 

of 2030 (Siegel & Jemal, 2015). 

The treatment does not cure cancer. It can, however, slow the tumor progression. 

The main problem of these conventional administered do not reach the actual site of the 

tumor (Soltani & Chen, 2012). The conventional treatment procedures such as 

chemotherapy, radiation, photodynamic therapy, hormonal therapy, and surgery, alone or 

a combination of treatments leave undesirable side effects on the patient. This has led to 

the urgent need for researchers to model and develop alternative methods for cancer 

treatment. Therefore, the TMDD has gained noteworthy interest among researchers due to 

its increased potential for the treatment of cancer and reduction of the side effects 

(Hamdipoor et al., 2018; Mukherjee et al., 2020). 

1.2.1 Computational Models for TMDD 

Recent studies show that computational models and numerical simulations 

contribute significantly to the development of the TMDD (Saadat et al., 2020). Researchers 

are learning about the structural properties of metastatic tumors in order to improve 

medicine intake in the desired areas. Personalized computational models for specific forms 

of cancer and/or for an individual patient have received considerable attention (Shamsi et 

al., 2018; Kenjereš & Tjin, 2018; Kenjereš, 2008).  The behavior of the drug-loaded MN 

inside the blood vessels is the primary goal of mathematical modeling of TMDD. MN 

carriers with suitable dimensions can provide applicable solutions for the drug delivery.  

However, the thermophysical parameters of the blood change by adding the MN 

alone or in a mix with the drugs. Consequently, the environment may change drastically as 

the result. Our research results show that the MN-blood flow behaves differently from 
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normal blood flow. In particular, when the external magnet is applied, the vorticity of the 

flow increases. Our conjecture, supported by medical (experimental) research, is that the 

increased vorticity may harm the patient in the case of a long-term treatment. Thus, it is 

necessary control the blood flow. Large nanoparticles create a large TMDD zone where 

the MN flow moves fast to the target area. However, the large MN may damage the blood 

vessels and cause the blood leakage.  

Magnetic hyperthermia, which involves heating MN with an alternating magnetic 

field, is another emerging cancer treatment approach. Drug compounds are released into 

the surrounding microenvironment of tumors when MN is heated at the nanoscale. At 

present, most of the models do not take into account the heating effects of MN. However, 

several studies have shown the significance of these effects (Clement et al., 2015). Our 

proposed model shows that under certain conditions, the large MN can cause a temperature 

increase of up to 2oC (from 37 to 39oC) over a relatively large region inside the vessel. 

Clearly, such an increase combined with the increased vorticity may lead to a negative 

impact on the patient (Bose & Banerjee, 2015).  

The most important part of the design and mathematical modeling for improved 

therapeutic drug delivery methods is to get fundamental insights into an underlying 

principle of MN-blood flow when a strong non-uniform MF exists (Boutopoulos et al., 

2020; Bose & Banerjee, 2015). Recent studies (Kenjeres et al., 2018; Russo et al., 2018; 

Mohammadian & Pourmehran, 2019; Nikookar et al., 2019; Manshadi et al., 2019; Saadat 

et al. 2020) show a variety of algorithms that are model and designed to solve the drug 

delivery problems specifically for lungs cancer.  

1.2.2 Magnetic Force Density on Matter 

Macroscopic matter interacts with an external MF through the motion of free 

charges (electric currents) and the alignment of microscopic magnetic dipole moments 

(magnetization).  

The total force called Lorentz force, acting on the charged particles is defined as: 

Ref. code: 25645922300198GCX



4 

 

 

 

( ) ,q= + F E V B  (1.1) 

where q  the particles charge, and B  is the magnetic flux density vector.  

Summing up all the charge particles contained in unit volume (V ) gives rise to the total 

force ( F ) acting on the volume:  

( )
V

dV = F E + V B  (1.2) 

where 
  is the charge density,  =J V  is the current density vector. 

( )d dV= F E+ J B  (1.3) 

( )
d

dV
= = 

F
f E + J B

 

(1.4) 

Acoording to Poisson and Maxwell-Ampère equations: 

( )0 ,  = E  (1.5) 

0

0

1
,

t





= 



E
J B -

 

(1.6) 

where 0 0,   are the vaccum permeability of electric and magnetic foeld.  


 and J eliminates to: 

( )0 0

0

1
- ,

t
 



 
=   +   

 

E
f E E B B  (1.7) 

( ) ( )0 0

0

1
- ,

t
 




=   +   



E
f E E B B B

 

(1.8) 
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The small current-induced due to the motion of charges produced a small magnetic 

field around itself. Thus, the magnetic Reynolds number is assumed small, and the electric 

field effect due to charge polarization can be ignored. Therefore, equation (1.8) is reduced 

as:  

( ) ( ) 21
2-  =  B B B B B

 

(1.9) 

Subsitituting equation (1.9) into (1.8):  

( ) 21
2

0

1


 =   f B B - B

 

(1.10) 

where 0=B H.   

Moreover, since the equilibrium magnetization is collinear with the local MF, 

( )satM
H=M H.  M  is the material magnetization vector. Above certain strength of MF, the 

material magnetization saturates to a constant value satM . From equation (1.10), the Kelvin 

force takes the form (Tzirtzilakis, 2005):  

( ) ( )( )1
20 0 ( ) ,    −  H H = H H H H

 

(1.11) 

or,  

( ) ( ) ( )( )1
20 0 ( ) ,satM

H    −  M H = H H H H

 

(1.12a) 

Further simplification results:  

( ) ( ) ( ) ( )2

0 0 0 ,sat satM M
H H    −  M H = H H H

 

(1.12b) 

where =J H , 
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( ) ( ) ( )2

0 0 0 ,sat satM M
H H    − M H = H H J

 

(1.12c) 

( ) ( )( )0 0 ,satM
HsatM H   − M H = B J

 

(1.12d) 

( ) ( )( )0 0 ,satM
HsatM H +   M H = J B

 
(1.12e) 

The first term in equation (1.12d) is FHD and the second is MHD, where ( ) 0 =B J .  

( )0 0 0 ,sat

H H
M H M

x y
  

  
  + 

  
M H = =

 

  

(1.13) 

If  ,eff=M H  equation (12a) takes the form:  

( ) 21
20 0 ,eff   M H = H

      

 

(1.14) 

1.2.3 Magnetic Analysis of Blood  

The most basic form of human blood contained three types of cells: red blood cells 

(RBC) or erythrocytes, white blood cells (WBC) or leukocytes, and blood platelets, all of 

which are suspended in a solution of three major protein components called blood plasma, 

which included fibrinogen, albumin, and globulin. Hemoglobin (Hb), an iron porphyrin 

protein, accounts for over 33% of RBC composition. In our bodies, Hb is primarily bound 

to Oxygen (O). This protein is responsible for oxygen transport from the lungs to blood 

vessels and carbon dioxide (CO2) transport from blood vessels to the lungs. In an 

oxygenated state, Hb exhibited the diamagnetic behavior, while it shows paramagnetic 

nature in deoxygenated state (Pauling & Coryell, 1936; Higashi et al., 1993). The 

orientation direction of normal erythrocytes in the presence of high MF is independent of 

the state of Hb in both oxygenated and deoxygenated situations. As they orient (their disk 

plane axis) parallel to the direction of an applied MF. However, the time it takes for 
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oxygenated and deoxygenated RBC to orient in the direction of high MF differs, with 

oxygenated RBC taking a significantly longer time than deoxygenated RBC. Blood flows 

demonstrate magnetization in the presence of an applied MF, according to the findings. 

The various properties of blood in mentioned in Table 1.1.  

Table 1.1  Various properties of blood. 

 

Properties RBC WBC Platelets Plasma 

Diameters (μm ) 6-7.8
 

12-17
 

3.6 - 

Magnetic 

Susceptibility (in 

Oxygenated) 

Diamagnetic 

Nature 

1( 0)   

Diamagnetic 

Behaviour 

in Plasma 

1( 0)   

Neutral 

Diamagnetic 

Behaviour 

1( 0)   

Magnetic 

Susceptibility (in 

Deoxygenated) 

Paramagnetic 

Nature 

1( 0)   

- Neutral - 

The magnetic susceptibility ( 1 ) of RBC depends on the state of RBC as 

oxygenated and deoxygenated because the magnetic properties of RBC most certainly 

depend on the state in which Hb is present. If the state of RBC is oxygenated, it is expected 

to show diamagnetic nature. Otherwise, it is expected to show paramagnetic behavior in 

deoxygenated state (Haik et al., 1996; Haik et al., 1999).  

Tzirtzilakis (2005) mention the value of 1
 
for oxygenated blood 7

1 6.6 10 −= −  , 

while for deoxygenated blood 6

1 3.5 10 −=  . The magnetic sensitivity of WBC is 

unknown. However, some researchers claim that WBC is diamagnetic in plasma, its value 

is 6

1 9.9 10 −= −  , while for plasma
 

6

1 7.7 10 −= −   (Han & Frazier, 2006; Takayasu et 

al., 1982). Moreover, WBC is made up of two different elements, which are grouped in 

Ref. code: 25645922300198GCX



8 

 

 

 

various cells: granulocytes (neutrophil, eosinophil, and basophil), and agranulocytes 

(lymphocyte and monocyte). The sizes of these elements vary from 6μm  to 15μm , and 

the overall size of WBC is approximately 17μm . Recent research suggests that the blood 

platelets promote tumor growth and are crucial in cancer spreading. As a result, it (MN 

coated with platelet membranes) has demonstrated a great capability in eradicating cancer 

metastases (Geranpayehvaghei et al., 2021; Abrougui et al., 2020). The typical velocity of 

the blood flow in various blood vessels is given in Table 1.2.   

Table 1.2  The realistic velocities of blood flow and its nature in various blood vessels. 

 

Blood Vessels 
Vessel Diameters 

(cm) 

Maximum 

Centerline Blood 

Velocities (cm/s) 

Nature of Blood 

Fluids 

Aorta 2.5 40 
Newtonian 

Arteries 0.4 10 

Arterioles 0.003 5 

 

Non-Newtonian 
Capillaries 0.0007 0.03 

Venules 0.002 1 

Veins 0.5 5 
Newtonian 

Vena Cava 3 15 

1.2.4 Blood Magnetization 

The Ferro Hydro Dynamics (FHD) model predicts that fluids exposed to MF 

magnetize. Magnetization is a material feature of fluids that determines how magnetized 

or affected the fluid is in the presence of the MF. The magnetization plays a vital role in 

the development of the blood vortices during the TMDD (Tzirtzilakis & Loukopoulos, 

2005). The magnetization depends on the fluid temperature, density, and strength of MF at 
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the equilibrium condition. The linear magnetization in the isothermal conditions is given 

by: 

1 ,M H=

 

(1.15) 

where 1  is the magnetic susceptibility of the blood and H  is the strength of magnetic 

field. 

The dependence on the temperature is often approximated by (Matsuki et al., 1977): 

( ),cM KH T T= −

 

(1.16) 

K  is an experimental constant known as pyromagnetic coefficient, and 
cT  is the Curie 

temperature.  

The Langevin function describes magnetization of RBC as follows:  

0

0

coth ,B

B

mH k T
M mN

k T mH





  
= −  

  
 

(1.17) 

where ,m  ,N  ,Bk  are the particle magnetization, the number of particles per unit volume, 

and  the Boltzmann’s constant.  

1.2.5 Magnetic Field Analysis of Blood 

In Bio Fluid Dynamics (BFD) and FHD problems, the MF configuration is the 

critical factor affecting the vorticity of the blood flow. The BFD problems combine FHD 

and MHD. The FHD model implies that the fluids subjected to an external MF exhibit 

magnetization whereas, the MHD model is of an electrically conducting fluid under the 

impact of the Lorentz force. The FHD is essential for the formation of vortices, while the 

Lorentz force reduces the blood flow and may suppress the vortex formation (Kenjeres & 

Tjin, 2018; Kenjeres, 2008; Loukopoulos & Tzirtzilakis, 2004; Tzirtzilakis & Loukopoulos, 

Ref. code: 25645922300198GCX



10 

 

 

 

2005). For the BFD flow under sharp gradients of the MF, the dominant force is 

magnetization. Hence, the FDH model applies to this scenario. In particular, this 

assumption is valid for the blood flow in vessels (10-20 cm) and the MF exceeding 0.5 T 

(Haik et al., 1999). These assumptions have been discussed in detail by (Tzirtzilakis, 2015).  

In the literature, many methods have been applied to simulate the MF.  However, 

the most popular is a simple procedure for the generation of the MF around a set of straight 

wires based on the Biot–Savart/Ampere’s law. The MF is given by (Kenjeres & Tjin, 

2018): 

0
0 2 2

1

( )
,

2 ( ) ( )

N

x

i

y b
B B

R x a y b

 


 =

−
= → = −

− + −
  

(1.18) 0 2 2
1

( )
,

( ) ( )

N

y

i

x a
B

x a y b


=

−
=

− + −
  

2 2 0

2 2

1
( , ) ,

2 ( ) ( )
x y iB x y B B N

x a y b

 


= + =

− + −
 

where   is the magnetic field strength at the source, 
iN  the number of wires, R  the 

distance between the wires, and
0B H=  is the magnetic field.  

The above MF is suitable with the magnetic wire and permanent magnet scenario. 

Commercial devices, on the other hand, can generate MF with a different geometrical 

configuration. 

1.3 Problem Statement 

The MN increases the magnetic susceptibility of blood making the impact of the 

magnetic forces considerable even when the MF is considered relatively weak.     

By considering several parameters such as sizes of drug-loaded MN, temperature, 

and concentration of drugs, the additional drag forces significantly change the complex 
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pattern of blood flow under a strong non-uniform MF. The existing two-phase models are 

usually one-way coupled, i.e., the blood flow has an impact on the MN flow. However, the 

inverse impact of the MN on the dynamics of the blood is not included.  

The specific tumor microenvironment depending on the type of cancer and the 

patient makes it difficult to evaluate. Therefore, combining an external-based approach 

(various characteristics of a magnet, and therapeutic drugs loaded into the MN) with an 

internal-based technique (particular tumor site) can improve the drug efficiency. 

1.4 Research Objectives 

The goal of this research is to design and develop a computational model for 

determining the feasibility of delivering therapeutic drugs to the prescribed areas. Thus, for 

a better understanding of the potential of the TMDD, we simulate the impact of the MN 

(therapeutic drugs loaded particles and magnetic nanoparticles) on the blood flow. We 

present a new model based on a new two-phase two-way coupled approach. The main 

objectives of this research are:  

• Study the behavior of the MN (therapeutic drugs loaded particles and magnetic 

nanoparticles) inside the blood vessels under a strong non-uniform MF.  

• Investigate the impact of forces that develop as a result of an external MF. These forces 

are magnetization, which is caused by the MF orientation of erythrocytes, and Lorentz 

force, caused by the electric current generated by moving ions in the blood plasma. The 

MF generates complicated blood flow patterns. The Lorentz force lowers blood flow 

and suppresses the vortex development, while the magnetization produces vortices. The 

goal of the study is to simulate these combined effects.  

• Investigate the temperature effects of the MF.  
• Simulate the efficiency of the TMDD.  
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1.5 Scope of the Study 

In this work, the magnet is represented as a pointwise wire. The vessel walls are 

represented by a rigid (non-elastic) and non-porous two-dimensional rectangular channel. 

The large blood vessels such as the aorta, arteries, veins, vena cava are considered, and the 

blood in these vessels is treated as an incompressible Newtonian fluid. MN is assumed to 

have a negligible aggregation. Furthermore, the impact of dynamic viscosity is neglected, 

and the spherical shape of the MN (an important factor) is considered. Due to the small 

sizes of the particles, particle collisions with walls and particle-particle collisions are not 

considered in this work. 

1.6 Importance of the Study 

TMDD is a powerful alternative to conventional drug delivery (Haverkort et al., 

2009). Despite the fact that this concept was first proposed in 1960, it was only thoroughly 

examined in the late 1980s. It has not yet reached clinical use. As discussed earlier in this 

chapter, that 99% of the drugs administered do not reach the site of the tumor, and only 1% 

of drugs, or no drug receives by the tumor. Therefore, the tumor regrows (Soltani & Chen, 

2012). The conventional procedure leaves undesirable side effects on the patient. This has 

led to the urgent need for researchers to model and develop alternative methods for cancer 

treatment. Therefore, the TMDD has gained remarkable interest among researchers due to 

its potential for the treatment of cancer.  

According to data published by Deerasamee et al. (2001), liver, lung, colon/rectum 

cancers are the most common cancers among men in Thailand, whereas cervix and breast 

cancers are common in women. According to Agency for Research on Cancer (ARC), lung 

cancer is leading cancer in both men and women. In 2001, the rate of Cervix cancer was 

higher than breast cancer in women. Lately, it comes to the second-highest position in 2019 

(Virani et al., 2017; Saenrueang et al., 2019).  

Thus, as previously stated in this chapter, the global number of cancer cases will 

increase to 21.8 million new cases by the end of 2030 (Siegel & Jemal, 2015). 
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• The findings of this study indicate some side-effects that could arise during the 

treatment 

• The model simulates an important impact of the magnet position, the size of drug-

loaded MN and the required input of the MN  

• The findings also revealed that the combined procedures (external and internal) 

effectively increased the medication concentration in tumorous locations. 
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CHAPTER 2  

LITERATURE REVIEW 

2.1 Introduction 

In this chapter, a comprehensive review of the computational models to assess the 

viability and predictability of the TMDD and entropy generation in MDJN is presented. 

Section 2.2 presents the overview of the TMDD. Section 2.3 presents the literature relevant 

to TMDD. The importance of MF intensity and various magnet parameters is discussed in 

Section 2.4. Furthermore, Section 2.5 discusses the signifinace of mathematical models 

and numerical simulations. In Section 2.6, the tumor microenvironment to 

improve therapeutically drugs transport is analyzed. Finally, a detailed discussion on 

closed-form solutions for the entropy generation in a mixed convection Poiseulle flow of 

Molybdenum Disulfide Jeffrey nanofluids (MDJN) is presented in Section 2.7. 

2.2 Overview 

The most effective anti-cancer medications are doxorubicin (DOX) drugs. The 

usage of these medications results in the death of healthy cells as well. In TMDD, the drug 

is placed on the MN, injected near the tumor, and absorbed by the tumor through a high 

gradient MF created by an external or even implanted magnet. The endothelial cells of 

tumor vasculature are leaky in certain areas, and MNs smaller than these cells can 

extravasate out of these leaky arteries without harming normal cells.  

During conventional delivery, a drug travels through the entire circulatory system 

of the patient. However, when a high concentration of the drug is required to treat a 

particular area of the patient’s body, e.g. chemotherapy, the procedure may have 

undesirable side effects. The most sensitive areas are the bone marrow, hair, skin, 

gastrointestinal organs, and the immune system. Nevertheless, recent studies show that 

TMDD is a powerful alternative to conventional drug delivery (Haverkort et al., 2009). It 
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solves the main problem of chemotherapy, which is the inability to deliver the required 

drugs to the affected areas, reducing the toxic effects. A recent survey Mamun et al. (2020) 

observes that in TMDD, drug concentrations at the tumor are significantly higher, 

compared to drugs delivered by systemic delivery methods. Among the blood vessels, 

TMDD through arteries is particularly useful for cancer therapies. The hepatic artery is 

used for the treatment of liver tumors (Jeon et al., 2016), the femoral artery is used for 

treating hind limb tumors (Alexiou et al., 2011), and the carotid artery is used for brain 

tumor treatment (Chertok et al., 2010).  

Although the approach reduces the side effects of anti-cancer treatment, it is a 

challenging and difficult process (Lee et al., 2017; Luong et al., 2017; Wei et al., 2017, 

Fernandez et al., 2018; Rosiere et al., 2018; Sun et al., 2018a; Sun et al., 2018b). A weak 

MF may not achieve the required targeting, whereas a strong MF may cause leakage from 

the vessels through the internal organs and generate undesirable vorticity which slows 

down the blood flow to dangerous levels (Widder et al., 1981; Goodwin et al., 2001). The 

particle size and the intensity of the MF are two important delivery parameters. A strong 

MF and large particle size may clog the blood vessels while a weak MF may not be able to 

deliver the drug. 

2.3 Literature Review of TMDD 

Freeman, Arrott, and Watson first introduced TMDD in 1960. They propose that 

drug-loaded MN might inject into the blood vessels and attracted by an external magnetic 

field could be an alternative solution for controlled delivery of therapeutic drugs. 

Although this method was introduced in 1960 and explored gradually by the late 1980. It 

has not yet reached a clinical use.   

Widder et al. (1981) conducted an experimental study of Yoshida sarcoma tumors 

in rats. Albumin microspheres (placebo microspheres and microspheres with 0.5 mg/kg 

doxorubicin) coated by magnetite Fe3O4 (100-200nm) and doxorubicin (0.5-5 mg/kg) were 

injected. The external magnet (0.55 T) was held around the tumor for 30 min. The tumors 
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decreased on average by 83% and no deaths occurred for treated tumors. For placebo-

treated animals, there were 80% deaths. The death rate for the third group treated by the 

same MN without the external magnet was 100%.  

Lübbe et al. (1996a) and Lübbe et al. (1996b) conducted the first phase clinical trial 

of TMDD to deliver the anti-cancer drug 4'-epidoxorubicin to advanced solid tumors for 

14 patients. The MN was 50-150 nm in diameter and coated with anhydroglucose polymer 

on the surface where the drug was reversibly adsorbed. External magnets arranged on the 

skin close to the tumor provided an MF of 0.5-0.8 T. The results of the treatment were 

considered positive for 50% of the patients. To improve the results, a stronger MF and 

larger MN (up to 1 µm in diameter) were suggested. The discussion of these trials is in 

(Lübbe et al., 2001; Lübbe et al., 1999). Thereafter, Alexiou et al. (2000) and Alexiou et 

al. (2001) performed another extensive study on squamous cell carcinoma tumors in 

rabbits. They used MN (50-100 nm) bound with anticancer agents. The MF was increased 

to 1.0-1.7 T. Accumulation of the chemotherapeutic agents with a permanent remission of 

the tumors was detected by visual inspection with MRI combined with histology. 

Goodwin et al. (1999) show experimentally a high concentration of iron/carbon particles 

of 0.5-5 µm diameters in the targeted areas in animal experiments. However, in many 

cases, large particles block the vessels causing a hemorrhage. Jain et al. (2003) 

recommended an MN of about 400-600 nm. 

Nacev et al. (2011a), Lübbe & Bergemann (2005), Alexiou et al. (2000), and 

Alexiou et al. (2001) study TMDD using an advection-diffusion model verified by 

experimental data. They predict that targeting MN with a 2T MF is possible up to a depth 

of 20 cm in large blood vessels and up to 30cm in small vessels. The human clinical trials 

by Lübbe et al. (1996a), Lübbe et al. (2001), and Goodwin et al. (2001) detect the 

accumulation of MN by visual inspection with MRI (magnetic resonance imaging), 

combined with histology in vivo. Unfortunately, the quantitative evaluation of the 

concentration of MN was not performed since the MRI does not have the required 

resolution. The histology has been performed, but the velocity of the blood flow was not 

measured. Testing the required MF per nanoparticle relative to the Stokes force was 

Ref. code: 25645922300198GCX



17 

 

 

 

performed in-vitro and in-vivo experimentally by Widder et al. (1981), Ganguly et al. 

(2005), Xu et al. (2005), and Alexiou et al. (2000). In-vitro studies (Ganguly et al., 2005; 

Xu et al., 2005) confirm that the MN are captured even when the centerline DF exceeds 

the MF. In-vivo studies (Widder et al., 1981; Alexiou et al., 2000) confirm that when the 

DF exceeds the MF, TMDD is still possible. Nacev et al. (2011a) argue that a simple 

comparison of the DF and MF is not sufficient to derive a definite conclusion about the 

possibility of TMDD. Their example is an MF of 0.5 T acting on the MN (250 nm) and a 

DF which is 7 times higher than the MF. Similar non-trivial experimental results by 

Alexiou et al. (2000) and Alexiou et al. (2001) imply that the simulation of TMDD requires 

accurate models to consider the nanoscale effects, DF, the volume fraction, the size of the 

MN, and the temperature. Moreover, the conventional diffusion-convection approach 

(Nacev et al., 2011a; Grief & Richardson, 2005) seems to be oversimplistic.   

An early work of Sud & Sekhon (1989) uses an analytical model for numerical 

analysis of the interaction between the MF and the blood flow in the multi-branching 

arterial system. Their results demonstrate that the rate of blood flow through the system 

was reduced by the MF. Kinouchi et al. (1996) include the Lorentz force into the Navier–

Stokes equations. Their finite-element solution shows a reduction of the blood flow by 5– 

10% under a strong MF. 

2.4 Magnet and Magnetic Fields 

To date, TMDD has been limited to either using external permanent magnets to 

target shallow tumors (Wilson et al., 2004; Liu et al., 2010; Raut et al., 2010; Pouponneau 

et al., 2011; Krukemeyer et al., 2012) or to implanting magnetic materials (wires, seeds, 

stents) to reach a deep tumor (Fernandez-Pacheco et al., 2007; Forbes et al., 2008, Cregg 

et al., 2012). Magnetic implants are promising for treating bone cancer. They can also be 

embedded in fatty tissue to treat obesity (Saatchi et al., 2017) and in the inner ear to treat 

deafness (Le et al., 2017). However, they are not suitables for every patient and every 

clinical condition. Potentially harmful procedures are often required for placing such 
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magnets (Donson, 2006). Therefore, the applications of these procedures remain limited 

(Hayden & Hafeli, 2006; Shapiro, 2009; Cao & Han, 2011).  

Lübbe et al. (1996a), Nacev et al. (2011a, 2011b) and Nacev et al. (2015) use strong 

permanent magnets (20×40 cm) to reach deep tumors. A magnet is placed outside the 

patient's body up to 15 cm from the tumor, to create an appropriate MF. Several authors 

propose that a permanent magnet shaped as a solid cylinder or rectangle can produce the 

required MFs. Superparamagnetic particles constitute another solution (Kayal et al., 2011; 

Nacev et al., 2015; Rukshin et al., 2017; Sharifi et al., 2019).  

To determine particle deposition efficiency, several CFD models have been 

developed. Several parameters have been analyzed to improve the deposition efficiency, 

including the MN size, magnet shapes such as wedge-shaped permanent magnets, 

rectangular coil magnets, magnet location, magnetic field strength, tube diameter, flow 

rate, and so on. (Xie et al., 2010; Pourmehran et al., 2016; Kenjeres et al., 2018; Russo et 

al., 2018; Mohammadian & Pourmehran, 2019; Nikookar et al., 2019; Saadat et al., 2020; 

Wang et al., 2020). It has been shown that increasing the size of the magnet (H=4 cm, D=2 

cm) increases the deposition efficiency by 75.8% (Manshadi et al., 2019). Furthermore, 

doubling the magnetic field intensity from 0.25 to 1.25 T improved the efficiency of the 

delivery by 29%.   

2.5 Numerical Simulation of TMDD  

An early BFD model was introduced by Haik et al. (1996) and Haik et al. (1999). 

The model, including Ferro Hydro Dynamics (FHD) and Magnetic Hydro Dynamics 

(MHD), has been solved numerically and verified by experiments. The fluid exhibits 

magnetization and vortices generated by the external MF. However, the blood flow has 

been significantly slowed down. Loukopoulos & Tzirtzilakis (2004) present a viscous, 

steady-state two-dimensional, incompressible, laminar model (BFM) of a flow between 

two parallel plates. The FHD and magnetization are functions of the temperature. The 

energy equation includes the magnetocaloric effect. In particular, the model simulates a 
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vortex formed near the lower wall close to the operating magnetic device. Grief & 

Richardson (2005) propose a convection-diffusion model, which includes interactions and 

collisions between the red blood cells. The model includes Brownian diffusion, shear 

diffusion, and convection. Bali and Awasthi (2007) present graphically the velocity 

resistance to the blood flow for different MFs. Tzirtzilakis & Loukopoulos (2005) analyze 

a one-phase FHD/MHD steady-state finite-difference numerical model with an external 

MF. The model generates two vortices rotating in opposite directions. The vortices appear 

even for relatively small magnetic numbers such as M 100nF  . The assumed MF is 8 T. 

The authors observe that in TMDD, a similar flow is generated by 1 T. Following this 

estimate, the forthcoming numerical experiments consider an MF in the range of 0.5-1 T.  

Tzirtzilakis (2005) reports a 3D model consistent with the FHD and MHD, i.e., 

including magnetization and electrical conductivity of the blood. The application is a 

laminar, incompressible, three-dimensional, viscous flow of a Newtonian BMF. Blood is 

in a rectangular duct under a spatially varying MF. Note that a sharp MF generated by a 

magnetic wire allows neglecting the Lorentz force. For the BMF flow under sharp gradients 

of the MF in large blood vessels, the dominant force is magnetization. Hence, the FDH 

model applies to this scenario. In particular, this assumption is valid for the blood flow in 

vessels (10-20 cm) and the MF exceeding 0.5 T (Haik et al. 1999). These assumptions have 

been detailed by Tzirtzilakis (2015). Kenjereš (2008) and Kenjereš & Righolt (2012) 

present a numerical simulation of TMDD in a complex vascular system of a brain by a non-

Newtonian model. The MN flow is simulated by the Lagrangian tracking of the spherical 

double-layer MN under the imposed MF across the arterial walls. The particles are 

characterized by the diameter of the outer and inner magnetic cores. The MN equation is 

coupled with the momentum equation of the blood flow, whereas the momentum equation 

for the blood flow is independent. Kenjereš (2014) develops another version of the model 

to simulate the local deposition of a low-density lipoprotein. The model shows promising 

results, i.e.,in some cases the TMDD is ten-fold relative to the conventional delivery. 

Numerical simulation of TMDD in aerosols in the human upper and central respiratory 

systems under a non-uniform MF is presented by Kenjereš & Tjin (2017) and Rukshin et 
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al. (2017). The MN are tracked in the Lagrangian frame. The model estimates the 

distribution of the MN under a strong MF. Yue et al. (2011) develop a 3D model of a 

superparamagnetic cluster suspended in a Poiseuille flow. Their model includes the Stokes 

drag force, MF, and gravity. The numerical model of Habibi & Ghasemi (2011) shows a 

circulation in the region covered by the MF. Under certain conditions, the absorption of 

the 200-nm MN decreases significantly compared to 2000-nm particles since the MF is too 

weak to overcome the DF. However, this is not always the case since the TMDD also 

depends on the concentration of the MN and the strength of the magnet.  

One-way coupled MN delivery model has been used for the stenosis aortic and 

vessel bifurcations by Larimi et al. (2014). Lagrangian particle tracking is performed. The 

numerical results show that the MF increases the volume fraction of the particles in the 

target region.  However, for high Reynolds numbers the efficiency of the TMDD is low. 

Kandelousi & Ellahi (2015) apply the lattice-Boltzmann method. The results show that the 

MF affects the floew considerably.  A backflow occurs near the MF region. However, a 

recent survey (Said et al., 2021) suggests that the single-phase method suffers from a lack 

of precise simulations of thermophysical features related to nanofluids.  

Bose & Banerjee (2015) propose a two-phase one-way 2D model. The trajectories 

of the particles are obtained in the Lagrangian frame. The force balance equates the 

particles to the DF, magnetic force, the buoyancy force, the Brownian force, and the 

thermophoretic force. The external MF createsa strong recirculation zone near the location 

of the insert.  

Tzirtzilakis (2015) presents a BFD/FHD model in an aneurysm.  The blood is an 

electrically non-conducting, homogeneous, non-isothermal Newtonian magnetic fluid. The 

paper presents an analysis of the effects of the MF on the blood that may or may not include 

MN.   

The solution includes the stream function-vorticity formulation. The curvilinear 

grid is obtained by a variant of the grid stretching adapted to the MF by the algebraic grid 

generation (Gordon & Thiel, 1982). Alshare & Tashtoush (2016) simulate 
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magnetohemodynamics in stenosed arteries. Doubling the MF from 4 to 8 T increases the 

pressure drop by nearly 15%, but has a negligible impact on the wall shear stress. TMDD 

of pharmaceutical aerosols in the human upper and central respiratory is analyzed in 

(Kenjereš & Tjin, 2017). The airflow dynamics equations are based on the Eulerian 

approach, whereas the dynamics of the MN-phase are represented in the Lagrangian frame. 

The deposition of the drug can be significantly enhanced by the MF. The most effective 

enhancement has been observed for 5 × 10−4 ≤ St ≤ 10−1 with particles of diameter 0.3 and 

5 µm. 

An interesting single-phase model of the nanofluid flow is designed to simulate the 

irrigation of a root canal in the human tooth as proposed by Ghalandari et al. (2019). An 

analytical single-phase model of the blood flow mixed with copper nanoparticles with a 

magnetic field is proposed in (Umadevi, 2021).  

A recent two-phase model of TMDD for solid-liquid coupled BFD has been 

reported by Boutopoulos et al. (2020). The focus of their paper is an injection of MN in 

different locations of the artery. The model is based on the Navier-Stokes equations for the 

blood flow and the advection-diffusion equation for the MN. The experiments include 

different injecting scenarios. The model is one-way coupled, i.e., the blood flow affects the 

MN via the corresponding convection-diffusion terms. However, the MN does not have an 

impact on the blood flow. Therefore, the model is not capable of analyzing the possible 

impact of the size of the MN on the characteristics of the blood flow. Their model does not 

include the energy equation. Therefore, the analysis of the impact of the concentration and 

the size of the MN on the temperature of the blood flow is excluded.     

This dissertation introduces a numerical, solid-liquid two-phase Euler-Euler BFD 

model. The governing equations include continuity, momentum, and temperature equations 

for blood and MN for a two-phase (solid-liquid) flow in a 2D rectangular channel. The 

problem is governed by coupled momentum and temperature equations of the blood flow 

and the MN. The numerical procedure invokes the stream function–vorticity formulation 

and an efficient numerical method on a finite-difference grid.  
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The model has been analyzed with reference to single-phase models (Tzirtzilakis, 

2008; Bianco et al., 2009) and a two-phase model (Boutopoulos et al., 2020). Note that the 

two-phase model is based on balancing the hydrodynamic and magnetic forces, i.e.,

,p magv v v= +  where v is the velocity of the fluid and 
magv  is evaluated using the Stokes’ 

drag law. In other words, the corresponding continuity, momentum, and energy equations 

of the solid phase are not included. In contrast, the proposed model includes the MN having 

a two-way momentum exchange. This includes the reverse impact of the MN on the blood 

flow. In particular, it is possible to analyze the impact of the size and the concentration of the 

MN on the blood flow. This simulates the vortices of the MN and the blood flow, 

independently. It has been shown that under certain conditions, the geometric structure of 

the MN flow is drastically different from that of the blood flow. Simulation of these effects 

is possible only with the proposed two-way coupled, two-phase model and its possible 

extensions. The formation, velocity, and size of the vortices have been evaluated and 

discussed.  

The obtained result shows that the additional Lorentz force (MHD) reduces blood 

flow and suppresses the large vortices created by FHD flows. The MN flow, on the other 

hand, is not significantly affected, despite a minor disturbance. Another important result is 

therapeutic drug concentration. It has been observed that as we increase the drug 

concentration from 30% to 50%, the size of the vortices increases. The difference is 

insignificant when d=250 nm. However, the TMDD zone grew dramatically when the size 

of MN (20,000) was increased while keeping the drug concentration as 50%. 

It has been demonstrated that the size of the MN has an impact on the temperature 

of the blood. Under certain conditions, the MF acting on MN increases the blood 

temperature up to 2.1°C i.e. from 37 to 39.1°C. This cannot be simulated using the 

preceding one-way coupled single or double-phase models. Finally, a variety of engineering 

methodologies can be adapted to the simulation of TMDD. Recent surveys (Alsabery et al., 

2020; Baghban et al., 2019; Granados-Ortiz et al., 2021; Afshari et al., in print) show a 

variety of algorithms that are designed to solve specific engineering problems. However, 
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the different temporal and spatial scales of the medical and engineering applications must 

be taken into account.   

2.6 Tumor Microenvironments 

One of the major issues of the MTDD is a necessary concentration of MN in case 

of a tumor located far from the magnetic source (deep tumor). The complex geometry of 

the tumor is an additional difficulty encountered by the MTDD treatment. As opposed to a 

healthy tissue, which is a fine network of capillaries, the region around the tumor is often 

characterized by irregular and poor blood supply that lessens the MTDD (Fukumura & 

Jain, 2007; Burke et al., 2000; Tozer et al., 2005).  

The varieties of parameters having an impact on the MTDD are not fully understood 

(Burke et al., 2000; Gray et al., 1953). A particular drawback of the MN is the large size 

of the molecules, which are unable to diffuse through the tissue (Fournier, 2017; Saltzman, 

2001). 

The metastasis mentioned in Chapter 1 is a type of cancer in which the metastatic 

tumor has the same type of cancer as the primary tumor and requires the same treatment. 

Nevertheless, it is difficult to specify the type of treatment required for metastatic 

tumors. All types of cancer cells can spread. It depends on a number of circumstances, 

including the type of cancer and how rapidly it grows. A metastatic tumor is made of a 

diverse set of extracellular, leaky vasculature, pathological, nonfunctional lymphatics, and 

structural features, which make them a challenging place for therapeutic drugs penetration. 

 Nacev et al. 2011b & 2013 analyze the range of MN diffusivity and the tissue 

resistance within the metastatic tumors using the Fiber-Matrix model and the Renkin Pore 

model. They found that metastatic breast cancers had a lower number of blood vessels, 

accumulated in irregular clusters that damaged the liver, and had a large distance between 

the nearest blood vessels. The TMDD through the dense extracellular networks is less 
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efficient than through the normal vessels (Fournier, 2017). Thus, the tissue morphology 

affects both the diffusion and convection.  

Despite advances in the treatment of metastasis, many types of cancers remain a 

significant challenge, e.g., peritoneal carcinomatosis (Ceelen & Levine, 2015). Treatment 

by an intraperitoneal chemotherapy chemoperfusion is simulated by the convection- 

diffusion model in (Dewhirst & Secomb, 2017).  

However, the complexities of the tumor and the nonfunctional lymphatics account 

for the additional difficulties for the convective-diffusive models (Chauhan et al., 2011; 

Au et al., 2016). The tumor growth compresses the lymphatic vessels at the center of the 

tumor that makes them unable to function properly (Padera et al., 2004; Jain et al., 2014). 

Due to interstitial fluids pressure the velocity of the fluid is close to zero at the center of 

the tumor (Dewhirst & Secomb, 2017; Soleimani et al., 2018; Chauhan et al., 2011; Liu et 

al., 2011). Soltani & Chen, 2012 conclude that 99% of the drugs administered do not reach 

the site of the tumor. 

We assume that the volumetric flow rates of blood plasma and interstitial fluids out 

of the lymphatic vessels per unit volume of the tumor media are zero due to the complexity 

of tumor media and nonfunctional lymphatics. Moreover, the specific tumor 

microenvironment is difficult to quantify depending on the type of cancer and varies on the 

patient-to-patient conditions. Therefore, the external-based techniques would be more 

beneficial in regulating therapeutic effectiveness. 

Dynamic Magnetic Shift (DMS) method has been developed to improve the 

therapeutic drug penetration in metastatic cancer (Nacev et al., 2011b, 2013). By adjusting 

the direction of the MF, they improve the convective mobility of MN. It has been concluded 

that the DMS might be useful in facilitating the therapeutic MN to reach poorly 

vascularized areas of metastatic tumors that are difficult to reach by diffusion alone. 

Shamsi et al. (2018) show that the successful  TMDD to large tumors (5–10 mm) depends  

on  the MF and the magnet-tumor distance, whereas these two parameters are less important 
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for delivery to small tumors (1-4 mm). The MN 200-300 nm work the best for the large 

tumors whereas for the small tumors the preferred size is 100-500 nm. 

Yang & Vafai (2006) develop a model designed for a low-density lipoprotein 

(LDL) transport in the arterial wall coupled with the mass transport in the arterial lumen. 

This study analyzes the transmural transport in the onset and progression of atherosclerosis, 

as well as factors responsible for an increased arterial wall uptake of the LDL in 

hypertensive patients. Kenjeres (2014) proposes a model of the blood flow within a 

diseased (advanced atherosclerosis stage) carotid artery.  

2.7 Entropy Generation in MDJN 

Viscoelastic Jeffery fluids (JFs) belong to a rare type of the non-Newtonian fluids, 

which exhibit viscosity and elasticity at the same time. The JF becomes Newtonian when 

the relaxation and retardation times are negligible (Jena et al., 2016).  

A Jeffery Nanofluids (JN) is characterized by a high heat transfer rate, and is 

becoming increasingly important in polymer, solution and metal industries. Furthermore, 

the nanofluids can be classified as Newtonian or non-Newtonian depending on the volume 

fraction, and characteristics of the nanoparticles: material, shape, size, etc. (Das et al., 

2008). 

Molybdenum Disulfide (MoS2) is a semiconductor inorganic compound having 

alternate layers of molybdenum and sulfur atoms. The compound, which is unreactive and 

unaffected by oxygen, is widely used as industrial lubricant. Important experimental 

research on the homogenous stable Newtonian MoS2 nanofluid is performed by Zhang et 

al. (2012). Physical properties of MoS2 are experimentally analyzed by (Gu et al., 2013; 

Kato et al., 2003; Zhang et al., 2012; Mao et al., 2014; Shen, 2008; Su et al., 2015; Zhang 

et al., 2016; McBride et al., 1976; Liu et al., 2014; Ding et al., 2015; Benavente et al., 

2004). Mathematical models of Newtonian nanofluid (NN) are researched by Aaiza et al. 

(2015a), and Aaiza et al. (2015b).  
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Entropy generation is an important characteristic of a nanofluid. The entropy 

generation in micro channel steady-laminar forced-convection fluid flow is studied by 

Haddad et al. (2004). Mahmud & Fraser (2005) analyze the entropy generation in a porous 

channel with viscous dissipation. The entropy generation in a magnetohydrodynamic flow 

due to a rotating porous disk in a nanofluid is simulated by Rashidi et al. (2013). A 

comprehensive review of the entropy generation in a nanofluid is Mahian et al. (2013). 

Dalir (2014), provide a numerical solution for the entropy generation problem in a JF over 

a stretching sheet. Ellahi et al. (2016) present a model of an HFE-7100 nanofluid with 

varying shapes of the nanoparticles. 

However, to the best of our knowledge, closed form solutions for entropy 

generation in a mixed convection Poiseulle flow of MDJN have not been reported. 

Therefore, we present an analytical approach to study a water-based MDJN. The effects of 

radiation on mixed convection are analyzed. Approximate solutions for the velocity and 

temperature are obtained. Graphs of the entropy, velocity and temperature display the 

relative impact of the input parameters. A JN has been compared with a second grade 

nanofluid (SGN) and a NN. 
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CHAPTER 3  

A TWO-PHASE, TWO-WAY COUPLED MODEL OF TARGETED 

MAGNETIC DRUG DELIVERY FOR SMALL REYNOLDS 

NUMBERS 

3.1 Introduction 

In this chapter, the behavior of magnetic nanoparticles in a blood vessel is 

simulated by a two-phase (solid-liquid) flow in a 2D rectangular channel. The problem is 

governed by coupled momentum and temperature equations for the blood flow and for 

the MN. The numerical procedure invokes the stream function–vorticity formulation and 

an efficient numerical method on a finite-difference grid. The model, validated by 

experimental results, has been applied to analyze the formation of vortices relative to the 

magnetic force and the drag force, and the zones of TMDD where the velocity of the blood 

flow is low and the velocity of the MN flow is high toward the magnet. The model is 

capable of simulating the (reverse) impact of the MN on the blood flow, to evaluate the 

corresponding changes in the vorticity. The number, the size and the strength of the 

resulting vortices can be evaluated subject to the strength of the MF and the position of the 

magnet. 

3.2 Mathematical Formulation 

In this section a mathematical formulation for the drug-loaded MN transport in the 

blood vessel is given. 
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3.2.1 Governing Equations 

Consider a viscous, unsteady, two-phase (two-way coupled) flow consisting of the 

MN and the blood in a 2D rectangular channel with length L  and height h (Figure 3.1). 

The flow is assumed to be fully developed at the entrance of the channel. The upper and 

lower walls have a constant temperature. The magnetic source is a magnetic wire placed 

perpendicular to the (x,y)-plane at the point (a,b) near the lower wall. The governing 

equations of the two-phase flow are given with regard to the velocity ( , )u v=V  and the 

temperature T of the blood and the particles. The subscript p indicates the parameters of 

the MN flow.      

0, =V  (3.1) 

2

0 ,
u

p M H
t

  
 

+  = − +  + +  
 

V V V F  (3.2) 

2

0 ,p

T M
c T T H k T Q

t T
 

  
+  +  =  + 

  
V V  (3.3) 

where the drag F  is given by:   

( ),v p D pC F= −F V V  (3.4) 

and  

( ).p v p p v pQ C c h T T= −  (3.5) 

The solid phase, i.e., the MN in blood is simulated by the momentum and energy 

equations, assuming that the impact of the dynamic viscosity is negligible. The MN are 

assumed to be spheres with a uniform size and density. The fluid and the solid phases are 

electrically non-conductive. Therefore, the MF term is included in the momentum 
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equations (Nacev et al., 2011; Kenjereš & Tjin, 2017). The temperature of the fluid and the 

MN are affected by the MF and vice versa. Hence, the solid phase equations are given by:  

0,p =V  (3.6) 

0(1 ) ,
p

p v p p v vC C C M H
t

 
 

+  = − − +  
 

V
V V F  (3.7) 

0 (1 ) ,
p

p p v p p v p p v p

p

T M
c C T C T H C Q

t T
 

  
+  +  = − −    

V V  (3.8) 

where p  is the pressure,   the density,   the dynamic viscosity, c  the heat capacity, k  

the thermal conductivity, 
vC   is the concentration of MN in the blood, and 

7 -1

0 4 10  Hm  −=   is the magnetic permeability of vacuum (Rosen, 2004).  

 

Figure 3.1  Flow domain and boundary conditions. 
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The additional term 
0M H  in the momentum equation is the MF per unit volume, 

whereas 
0

M
T H

T






V  is the thermal power per unit volume due to the magnetocaloric 

effect.  

3.2.2 Magnetic Field 

  Following Tzirtzilakis (2008) and Tzirtzilakis (2015) we consider a magnetic 

source (a current-carrying wire conductor) positioned perpendicular to the (x, y) plane. H  

denotes the intensity of the MF given by:  

2 2

x yH H H= +  (3.9) 

M  is magnetization, approximated by (Matsuki et al, 1977). 

( ),cM KH T T= −  (3.10) 

K  is an experimental constant, and
cT  is the Curie temperature.  

Following Tzirtzilakis (2008) and Tzirtzilakis (2015), we consider a magnetic 

source (a current-carrying wire conductor) positioned perpendicular to the (x,y) plane. The 

wire is at position ( , )a b   below the lower wall (Figure 3.1). The strength of the MF is 

defined by the magnetic induction given by 
0 0( , ) ( , )x yB x y H H H =    (Tzirtzilakis, 

2005), where:  

2 2 2 2

( ) ( )
, ,

2 ( ) ( ) 2 ( ) ( )
x y

y b x a
H H

x a y b x a y b

 

 

− −
= = −

− + − − + −
 (3.11) 

and where   is the intensity of the MF at the source and ( , )a b  is the position of the source.  
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3.2.3 Drag coefficient 

 Following (Bianco et al., 2009), the Stokes’ resistance law for small Rep
 and sub 

micrometer particles is given by:  

2

1 18
,D

P p c

F f
d C



 
 =  (3.12) 

where d  is the diameter of the particle, f  
is the drag coefficient, and p  is the particle 

response time. The Cunningham correction coefficient is given by:  

11
2

1 1.257 0.4 .a

d

a
cC e

d

  
= + + 

 
 

 (3.13) 

where ,a  is the particle mean free path of the particles.  

Further,    

p 0Re ,
d

u



=  (3.14) 

where 0u  (tilde) denotes the average, and index 0 refers to the inlet boundary.  

The drag coefficient is defined by:  

0.354

1 if Re 1

Re if 1 Re 400

p

p p

f


= 
 

 (3.15) 

3.2.4 Heat Transfer coefficient 

The energy equation for spherical MN is given by 
6

,h
v

h
h

d
=  where 

hh  
is the heat 

transfer coefficient at the blood/MN interface (Ranz & Marshall 1952). 
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The Nusselt number Nu p  is given by (Ranz & Marshall 1952).    

1/2 1/3Nu 2.0 0.6Re Pr .h
p p

h d

k
 = +  (3.16) 

Hence,   1/2 1/3(2.0 0.6Re Pr ).h p

k
h

d
= +

 

3.3 Boundary and Initial Conditions 

The boundary conditions are given by  

Inflow        
0

00, 0 : ( ), 0; 37 .p p px y h u u u y v v T T C=   = = = = = =  (3.17) 

Outflow                  , 0 : 0, , , , , , .p p p

R
x L y h R u v T u v T

x


=   = =

  
(3.18) 

Upper Boundary   , 0 : 0; 0; 0.
pw

p p

TT
y h x L u u v v

y y


=   = = = = = =

 
      

 
(3.19) 

Lower Boundary   0, 0 : 0; 0, 0
pw

p p

TT
y x L u u v v

y y


=   = = = = = =

 
      

 
(3.20) 

Initial Conditions       

                     
00 , 0 : 0; 0; 37 .p p px L y h u v u v T T C    = = = = = =

 

(3.21) 

3.4 Dimensionless Equations 

The following dimensionless variables are introduced. 
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( ) ( )

1
12 2 2

1

0 0

1 0 0

, , , , , , , ,

, , , .

p

p

r r r r

p

p p P

r

utu v x y t p
u v t t p u

u u h h h d u u

v H k k
v H T T T T T T

u q h q h


 

  



= = = = = = = =

= = = − = −

 (3.22) 

0T
 
is the temperature of MN at the channel inlet, 0q  is the heat flux, and the other notations 

are self-explanatory. 

Introduce the vorticity function ( , )J    and the stream function  ( , )    as follows. 

( , ) , ( , ) ,

, , , .

p p

p

p p

p p

v uv u
J J

u u v v

   
   

  

   

  
= − = −

   

  
= = = − = −

   

 (3.23) 

The pressure is eliminated from Equation (3.2). Substituting Equation (3.23) into Equations 

(3.1)-(3.3) and (3.6)-(3.8) yields:    

2 2

2 2
,J

 

 

 
+ = −

 
 (3.24) 

2 2

2 2
,

p p

pJ
 

 

 
+ = −

   

(3.25) 

( )
2 2

2

1 2 22 2

nF

Re Re

M Re ,

v p p

J J J J J
C D U J U J

t

H T H T
H

 


     

   

       
= + − − + − + 

       

    
− 

    

 
(3.26) 
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( ) ( )2

1 2 2

nF

Re 1 Re

Re M ,
p

p p p p p

p o v p o p

p p

p o

J J J
d C d U J U J

t

T TH H
d H

 


   

   

     
= − − − − − + 

     

   
− 

    

 
(3.27) 

( )

2 2

2 2

2

2 2 2 nF

2 2
2 2 2

2 2

Pr PrRe

RePr M PrReEc

PrRe 4 ,

p p

v P P r p r p

T T T T T

t

T TH H
C D u T u T HT

 

     

 
   

  

   

       
= + − − + 

       

   
− + − + 

    

       
− +    

        

 
(3.28) 

( ) ( )2

nF

2

1 2

Re 1 Re

Re M Ec
.

p

p p p p p

p o v p o p

p o p p

p

T T T
d C d T T
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d H H
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 


   

 

    

     
= − − − − − + 

     

   
− 

    

 
(3.29) 

3.5 Grid Generation  

The accuracy of the numerical algorithm in the regions with a strong MF requires 

an adaptive numerical grid. A curvilinear grid  can be considered as a discrete version of 

mapping ( , ), ( , )x y x y   = =  from the physical region in the coordinates ( , )    to a 

computational region in the new coordinates ( , )x y , 0 , 1.x y    We consider the 

particular case of a rectangular grid with stretching, i.e., ( )x  , ( )y  defined by: 
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 (3.30) 

 

Where 

0 max

0 max

2 1 2 2
1 2

2 1 2 2

1 ( 1)( / )1
ln ,

2 1 ( 1)( / )

1 2 (1 2 )
,

1 2 (1 2 )

e x x

e x x








    
 

    

−

+ −
=

+ −

   + − + + +
= =   

− + − +   

 (3.31) 

In the above expressions, max
Lx

h
=   is the dimensionless length of the channel, 

0x  is the point where the grid clustering occurs, and   is a parameter controlling the rate 

of clustering toward the    direction. It varies from zero (no stretching) to 1, to produce a 

dense grid near 0x = . Further, 1  and 2  are parameters to control stretching in the   

direction. If 1 0 = , the mesh is refined near 1 = , whereas, if 1 0.5 = , the mesh is also 

refined  near  0 =  (Tzirtzilakis, 2008). Thus, the grid is clustered in the areas of large 

gradients of the MF. Figure 3.2 illustrates the techniques. 

Ref. code: 25645922300198GCX



36 

 

 

 

 

Figure 3.2  Adaptive finite-difference grid. 

Solving Equations (3.30) with regard to ( ), ( )x y   yields:  

1 1 1
1

0 1

(1 ) ln1
( ) sinh 1 sinh( ) , ( ) .

ln
x x y y

x

 
    

 

−
   −

 = + −  = +   
  

 (3.32) 

The partial derivatives in (23)-(29) are replaced as follows.  

, ,x y

dx dy
w w

x d x y d y   

     
= = = =

     
 (3.33) 
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(3.34) 

 

Some calculus yields  

2 2
2 2

2 2
,x yw w w w J

x y x y
 

      
+ + + = −

   
 

(3.35) 
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(3.36) 
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(3.37a) 
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(3.38a) 
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(3.40a) 

 

The additional non-dimensional parameters are as follows. 
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(3.41) 

where nFM  and 
PnFM are the magnetic numbers (the FHD effect) of the blood and MN, 

respectively. 1,
2   control the energy transfer from the blood flow to the MN and vice 

versa.
 2U  is the ratio of the maximum velocity of the flow to the maximum velocity of the 

MN at the entrance. , ,p o Pd D  are the ratios of the heat capacity, size, and density of the 

MN to the heat capacity, channel height, and density  of the blood, respectively. Re, Ec, St 

are the Reynolds number, the Peclet number, the Eckert number, and the Stokes number, 

respectively.  

3.6 Numerical Method 

The equations for the stream functions of the blood and the MN flow (3.35)-(3.36) 

are approximated by the standard finite-difference equations and solved by the block 

Gauss-Seidel method (Cervera et al., 1996). This is followed by the successive over-

relaxation (SOR) as follows. 
1 1 (1 )k k k

new GS    + += + − , where 1k

GS +  is the numerical 

solution obtained by the block Gauss-Seidel method, k  is the solution at the previous 

iteration step k , and   is the relaxation parameter. Note that Equations (3.35)-(3.36) 

depend implicitly on time due to J , 
pJ  at the right-hand sides. Hence, the equations must 

be solved at every time step. The functions J , 
pJ   are taken from the n-th time step. The 

numerical solution of Equations (3.37b)-(3.40b) is based on a similar procedure including 

the block Gauss-Seidel and the SOR. Writing (3.37a)-(3.40a) in the standard form yields: 

2 2

1 1 1 1 1 12 2
,

J J J J J
A B C D E J F

t x y x y

    
= + + + + +

    
 (3.37b) 
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  
 (3.38b) 

2 2

3 3 3 3 3 32 2
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T T T T T
A B C D E J F

t x y x y

    
= + + + + +

    
 (3.39b) 

4 4 4 4 ,
p p pT T T

C D E J F
t x y

  
= + + +

  
 (3.40b) 

where coefficients , , ,i i i iA B C D  and the right-hand-side 
iF  in each equation depend on the 

other unknowns and their partial derivatives. We apply the standard second-order finite-

difference approximation to the second derivatives and the upwind first-order 

approximation to the first derivatives. For instance, (3.37b) is approximated as follows: 

1 1 1 1 1 1

, , 1, , 1, , 1 , , 1

1, , 1, ,2 2

1 1 1 1

1, , , 1, , 1 ,

1, , 1, , 1, ,

1 1

, , 1

1, ,

2 2n n n n n n n n

i j i j i j i j i j i j i j i jn n

i j i j

n n n n n n

i j i j i j i j i j i jn n n

i j i j i j

n n

i j i jn

i j

J J J J J J J J
A B

x y

J J J J J J
C C D

x x y

J J
D

y



+ + + + + +

+ − + −

+ + + +

+ − +

+ +

−

− − + − +
= +

 

− − −
  + + + +

  

−




1 1 1

1, , , , , ,( , , , ),n n n n n

i j i j i j p i j pE J F T T  + + ++ +

 

(3.37c) 

where , , ( , , )n

i j i j i jJ J x y n= ,   is the time step, 
1

x
N

 = , 
1

y
M

 =  are the spatial steps,

ix i x=  , 
jy j y=  , 1, 1i N= − , 1, 1j M= − , N is the number of points in the x  

direction, M is the number of points in the y  direction, 
| |

2

C C
C

+
 =  , 

| |

2

C C
C

−
 = , 

| |

2

D D
D

+
 = , 

| |

2

D D
D

−
 = .  

For 0,i N= and 0,j M=  (3.37c) is replaced by the boundary conditions. The resulting 

tri-diagonal matrix is inverted by the Thomas algorithm. The first-order upwind differences 
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in (3.37b) result in the first-order approximation, however, the corresponding matrix is 

diagonally dominant. Consequently, the Thomas algorithm is stable (Bortoli et al., 2015).  

The system (3.37b)-(3.40b) is solved by the following iterative algorithm.   

1. Calculate 
1, 1n l + +

 and 
1, 1n l

p + +
  by solving (3.35)-(3.36), where 1,n lJ +   and J  are taken 

from the previous iteration l.   

2. Substitute 
1, 1 1, 1,n l n l

p + + + +
 into (3.35b)-(3.40b). Find  1, 1n lJ + +  and 1, 1n l

pJ + + ,  where  1,n lT +

1,n l

pT + are taken from the previous iteration l.   

3. Substitute 
1, 1 1, 1,n l n l

p + + + +

 1, 1n lJ + +  
1, 1n l

pJ + +

. Find  
1, 1 1, 1,n l n l

pT T+ + + +

.  

4. The convergence is established when:  

1

, ,
max ε,l l

i j U
U U+ = −   

where , , , , ,p p pU J J T T = , and ε  is the required accuracy.  

5. If ε   return to step 1. 

Numerical experiments to reach the grid independent solution are shown in Table 3.1. The 

sample tests are    

Case 1: 250,d =
1

3.8ru = , 
5St 3.56 10 ,−  Re 250

4Re 9.8 10 ,p

−  1f = . 

Case 2 : 800,d =  
1

3.8ru = , 
4St 1.14 10−=  , Re 250,

3Re 3.1 10 ,p

−  1f = . 

Case 3 : 20000,d =  
1

3.8ru = , 
2St 2.8 10−=  , Re 250 Re 1.0p  1.1f = .  

Table 3.1 shows the difference 2 2
, ,

maxN M N M N M
i j U

U U   = − for solutions 

obtained on nested grids. For cases 1-3 the grid 801×81 provides a grid-independent 

solution. The grid independence test has been performed for every experiment presented 

in Section 3.6.    
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 Table 3.1  Grid-independence test. 

 

No. of grid points in 

the x and y direction 

Case 1 

N M  

Case 2 

N M  

Case 3 

N M  

201 ×21 42.1 10−  34.1 10−  34.9 10−  

401×41 43.1 10−  34.8 10−  35.1 10−  

801×81 52.6 10−  53.5 10−  51.1 10−  

1601 ×161 71.1 10−  
62.4 10−  61.8 10−  

3.7 Results and Discussion 

Testing hydrodynamic models of the TMDD is hampered by a lack of available 

data. Up to now, the measurements of the MN flow inside the vessels during the TMDD 

are not available. However, several experimental studies performed to measure the 

temperature of the nanofluid have been published. Therefore, the model is validated by 1) 

comparing with the preceding models, 2) comparing with the published results of the 

measurements of the temperature of the ferro/nanofluids.    

The numerical experiments with the blood flow follow Nacev et al. (2011). A 

magnet is located at a certain distance below the vessel. Fe3O4 MN are used for TMDD. 

3.7.1 Validation of the model 

We compare the proposed two-phase two-way model (TPM) with a single-phase 

model (SPM1) of Tzirtzilakis (2008), and the double-phase, one-way coupled model of 

Boutopoulos et al. (2020) (OW). 

Consider Case 1: Re 250,=
4

2 4, St 3.56 10 , −   0.001vC = , and d=250. Since 

vC
 
is small, the single-phase and the double-phase models show similar results. Figure 3.3 
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displays the streamlines and the contour lines of the magnitude of the velocity 
2 2| |u v+

for the steady-state solution obtained by the TPM. Figure 3.4 shows the profile of | |v for 

5x =   (position of the magnet). The numerical experiments show that the difference 

between the solutions for the TPM and the reference models does not exceed 10-4.  

 

Figure 3.3  Blood flow, Case 1. The reference models generate similar solutions for 

0.001vC = . 

 

Figure 3.4  Case 1: Magnitude of the velocity for SPM1, OW, and TPM. 
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The above tests are considered as a partial validation of the model. However, for 

large 0.03vC =  the proposed model shows different results. As an example, consider Case 

2: 2 2, 
2St 2.8 10 ,−= 

 Re 250,=  and 0.03vC =  . Figure 3.5 (a, b, and c) show the 

steady-state solutions for d =20000 for SPM1, OW, and TPM. Figure 3.6 shows the profile 

of | |v for 5x = . Clearly, in the case of a high concentration of MN, the results obtained by 

the proposed model are different since the MN have a reverse impact on the dynamics of 

the blood flow. For instance, the maximum difference between the solution by SPM1 and 

the proposed model for 5x =  is about 0.9 cm/s.    

 

a) SM1, Tzirtzilakis, (2008) 

 

b) OW, Boutopoulos et al. (2020) (OW) 

 

c) TPM 

Figure 3.5  Blood flow, Case 2. The reference models vs. TPM. 
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Figure 3.6  Case 2:  Magnitude of the velocity for SPM1, OW, and TPM. 

Wen & Ding (2004) experimentally evaluated the average Nusselt number using a 

straight copper tube with 970 mm length, 4.5 ± 0.02 mm inner diameters, and 6.4 ± 0.05 

mm outer diameter in the laminar regime. The setup consists of four units: the flow loop, 

the measuring and control unit, the heating unit, and the cooling part. The flow loop further 

included four sections: the pump with a built-in flow meter, the test section, the reservoir, 

and the collection tank. The test section consists of a straight copper tube heated by a silicon 

rubber flexible heater linked to a DC power supply. The nanofluid flows through the copper 

tube. Thermocouples are used to measure the temperature at the inlet flow and the outlet 

flow. The Nusselt number is defined by:  

( )
Nu ,Ch y h

k
=

 

(3.42) 

where Ch  is the diameter of the tube, and h  is the local heat transfer parameter given by:   
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,
w m

q
h

T T
=

−
 

(3.43) 

where ( )mT y  is the mean temperature for a
 
two-phase fluid, ( )wT y  is the temperature of 

the wall, and q  is convective heat transfer. The boundary and initial conditions of the 

experimental setup are replicated. The flow of water (mixed with Al2O3) is characterized 

by 0.04vC = , 1000q = , and 250d = . The results obtained by the SM1, OW, and a single 

phase model of Bianco et al. (2009) (SM2) and the proposed TPM are compared. Table 3.2 

shows the average Nusselt number obtained by numerical simulations vs. the experimental 

data. Note that the original Boutopoulos et al. (2020) model does not include the 

temperature equation. Hence, the temperature is simulated by the one-phase version of 

Equation (3.3), where 
3996 kg/m , =   

 4180 J/kgKc = .  

Table 3.2 Average Nusselt number of the proposed model, SPM1, SPM2 vs. Experiments. 

 

Re Proposed 

TPM 

 

SM1 

Tzirtzilakis, 

(2008) 

OW 

Boutopoulos et 

al. (2020) 

SM2 

Bianco et al. 

(2009) 

Experiments 

Wen & Ding, 

(2004) 

250 5.75 4.89 4.99 6.88 5.80 

270 7.8707 7.01 7.45 7.75 8 

300 8.0682 7.66 7.88 7.85 8.13 

The average least square error for SM1 is 4.8%, for OW is 3.3%, and for SM2 is 

3.4%. The TPM  shows the least square error of about 5%. Therefore, the accuracy of the 

proposed TPM is comparable with the preceeding models when the MF is not applied.  

Our second test is performed on the experimental results obtained by Abadeh et al., 

(2020) for the flow of nanofluids (Fe3O4) with [0.005,0.01]vC  , 250d =
  
through a 

circular tube a straight tube under constant and alternative magnetic fields. The 

experimental setup consists of electrical, mechanical, and controlling devices similar to 
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Wen & Ding (2004), including the source of the MF. A straight circular copper tube (2700 

mm) with 7.7 mm outer and 0.7 mm inner diameters has a thermal conductivity of 385 

W/mK. Six wires have been installed to produce an MF of about 0.13 T. The average Nu 

obtained by the reference models and the proposed TPM is displayed in Table 3.3 for 

different Reynolds numbers. 

Table 3.3  Average Nusselt number. Numerical models vs. Experimental data. 

 

Re Proposed 

TPM 

SM1 

Tzirtzilakis, 

(2008) 

OW 

Boutopoulos et 

al. (2020) 

Experiments 

Abadeh et al. 

(2020) 

250 5.95 5.50 5.78 6.31 

270 6.8707 6.05 6.30 6.99 

300 8.0821 7.55 7.66 7.90 

  

The average least square error for SM1 is 12%, for OW is 8.3%, and for TMP is 

5.7%. Clearly, the proposed model shows a better accuracy when applied to the MN-water 

flow under the impact of the MF.   

3.7.2 Numerical Experiments and Discussion 

 Following Nacev et al. (2011) a magnet is located at 5, 10, and 15 cm below the 

wall. The MF, characterized by 0.5B T=   and 1.0B T=  , is applied to the Fe3O4 MN. 

These MN are characterized by magnetization 100 kA/mM     and a diameter of 250, 800, 

and 20,000 nm. Note that the diameter of human blood vessel ranges from 7μm  in the 

capillaries to 3 cm in the vena cava. The numerical simulations are performed for 

2.0cmh = and 30 cm.L =  This is a typical diameter and a length of the large blood vessel 

considered by the reference BFD. The MN and the blood enter the vessel at the left 
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boundary. The left boundary condition for u  is a parabola such that 1max( ) ru u=  at the 

centerline and 0u = at the walls. The density of the MN and the blood are 
31050 kg/m =   

and 
35200 kg/mp =   , respectively. The dynamic viscosity of the blood is 

33.2 10  kg/(ms) −=   . The Reynolds number 
4Re 9.8 10p

−    
 and 3Re 3.1 10 ,p

−     for 

d=250 and 800, respectively. The drag factor f=1. When 20000,d =  Rep  1.0 and f=1.1. 

Consider the thermal conductivity 
32.2 10 J/(msK)k −=    , the heat capacity of the MN 

and the blood are 14.65 J/kgKc =  and 670 J/kgKpc =  , respectively. Hence the Prandtl 

number is Pr 21
c

k


=  .  

The parameters to control the transfer of momentum and energy between the MN and the 

blood are given by (Gireesha et al., 2017).   

1 22

618
, .h

D v

r p c r r r

hh h h h
F h

u d C u u d u


 


= = = =

 

(3.44) 

Therefore, 
1

1

ru
   ,

2

1

ru
  . 

The magnetic numbers characterize the blood and the MN flow under the impact of the MF 

(Tzirtzilakis, 2004) 

2 2 2 2 2

nF nF2 2 2 2 2 2

p

M ,M .
Re Re Re Rep

p p

MBh MBh MBd MBd 

  
=  = 

 

(3.45) 

Finally, 

2

St
18

p r
d C u

h




= . Hence, 2St rd u . Substituting 

Re
ru

h




=  yields 

2St Red . 

3.7.2.1 Impact of the Reynolds Number  

The following examples analyze the flow patterns generated by the MF and the DF. 
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The vorticity of the blood flow is an important factor that affects the patient during and 

after the TMDD. It has long been established that the vorticity of the blood flow is the 

cause of the cardiac dysfunction. Moreover, the blood vortices indicate physiological 

changes in the surrounding system, and can provide early indications of the long-term 

cardiac outcome (Pedrizzetti et al., 2014). The effects of MF on microcirculation and 

microvasculature are not clear or widely explored. However, many studies indicate that 

MFs could trigger either vasodilation or vasoconstriction (McKay et al., 2007, Contijoch 

et al., 2020). In the context of this work, we also refer to hemolysis. That is the mechanical 

damage of the red blood cells due to an excessively high stress induced by high gradients 

in the blood flow (Bletsos et al., 2021). Many studies have been performed to 

experimentally detect vascular inconsistencies. The medical research shows that the 

preferred vascular blood flow mode is laminar (Pedrizzetti et al., 2014). However, during 

the TMDD, the blood flow is affected by the MF and the exchange of the momentum and 

the energy between the MN and the flow. Given that cancer chemotherapy requires from 3 

to 6 months, there is a serious concern regarding the long-term effects of the TMDD on the 

vascular system. Hence, the numerical analysis of the coupled blood-MN flow may become 

indispensable, to study the patterns of the coupled blood-MN flow.     

Consider three cases of the two-phase blood-MN flow characterized by 0.001vC   

and 10000M  , 200 μma =  , and the Cunningham correction coefficient 4cC   

(Kenjereš & Tjin, 2017).   

The magnet is located at (a,b)=(10, 10) and 0.5B =  . Figure 3.7 shows the 

streamlines of the blood and MN flow along with the contour lines. The vorticity function 

for the steady-state flow with varying entrance velocity is in the midline of the left 

boundary.     

Case 1: 23.8 10ru −=   . In this case, Re 25,  
4Re 9.8 10 ,p

− 
4St 3.56 10 ,−   

nFM 3281.  This setup complies with the data published by Nacev et al. (2011). The 

circulation starts at 13 minCt    
  
and reaches the steady state at 1.5 hSt     . The MF 

Ref. code: 25645922300198GCX



49 

 

 

 

generates a lower-wall vortex. The blood near the upper wall responds, creating backflow. 

The velocity in the lower part of the vortex is minimal which makes TMDD possible 

(Figure 3.7 (a and b)). The velocity at the upper part of the vortex reaches 30 cm/s  due to 

the impact of the MF.  

Case 2: 27.6 10ru −  corresponds to Re 50 , 
3Re 4.1 10 ,p

− 
 

4St 7.12 10−  , and 

nFM 820. In this case, the size of the regions where the velocity is low or close to zero 

(the TMDD regions) decreases (Figure 3.7b). 

Case 3: Finally for 215 10 ,ru −  Re 100 , 
2Re 1.0 10 ,p

− 
 

3St 1.42 10−    and 

nFM 205 . There is a further decrease in the size of the TMDD regions (Figure 3.7c).  

The graphs in Figure 3.7 show that the DF works against the MF, decreasing the 

efficiency of TMDD. Clearly, to improve the dynamics of the blood flow, the magnet has 

to be placed closer to the TMDD zone. Alternatively, the intensity of the MF must be 

increased.  Further, the contour plots of the vorticity function in Figure 3.7 (a1, b1, and 

c1) show that the vorticity increases as the Re increases. However, the vorticity plot for the 

smallest Re 25  has the most complex geometry (Figure 3.7 (a1, b1, and c1)). 

 

a1) 
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a2) 

 

b1) 

 

b2) 

 

c1 
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c2) 

Figure 3.7  Blood flow, 0.5, 250,B d= =
 

0.001.vC =  a) Re=25, b) Re=50, c) Re=100; 

1) contour lines of the vorticity function, 2) streamline plot. 

The streamlines of the flow and the countour lines of the vorticity function for the 

steady-state flow are shown in Figure 3.8.   

Case 1: The MN flow creates four vortices with the antiparallel velocity vectors near the 

position od the magnet ( 5x = ). The TMDD zones, characterized by the low magnitude of 

the MN flow, are near 5x =  and 6.5x = . The maximum MN velocity is about 28 cm/s .  

Case 2:  The topological structure of the MN flow is approximately the same as in Case 1 

(Figure 3.8b). However, the TMDD zone becomes smaller.  

Case 3: Figure 3.8c shows the generation of the new vortices. A double-vortex is observed 

on the left side of the vessel in Figure 3.8c2. The area of the TMDD zones is small. 

However, the area of the regions with the large horizonal velocity is also getting smaller. 

Observe that the magnetic numbers for the blood flow and MN decrease as the Stokes 

number increases with an increase of Re as follows. Case 1: nF nFM 3281,M 6677,
p

= 

4St 3.56 10−  ; Case 2: nF nFM 820,M 677
p

  , 
4St 7.12 10−  ; Case 3:

nF nFM 205,M 67
p

  , 
3St 1.42 10−  . 

 

a1) 
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a2) 

 

b1) 

 

b2) 

 

c1) 

 

c2) 

Figure 3.8  MN flow: 0.5, 250,B d= = 0.001.vC =  a) Re=25, b) Re=50, c) Re=100; 1) 

contour lines of the vorticity function, 2) streamline plots. 
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Although the Stokes number for the numerical experiments is relatively small, e. 

g., the maximum 3St 1.42 10−  , the solid phase MN does not follow the streamlines of 

the blood flow due to the impact of the MF. 

3.7.2.2 Impact of the Magnetic Field 

In order to evaluate the impact of MF, consider 
4Re 9.8 10p

−  and Re 250= . The 

vertical position of the magnet is 15 cm, 10 cm, and 5 cm below the wall. The topology of 

the blood and MN flows is visualized in Figures 3.9-3.12. We consider that the TMDD is 

efficient if the blood velocity is low whereas the MN velocity towards the magnet is high.  

When 0.5B = , the magnet located at 15 cm does not have a significant impact on 

the MN. As a result, the flow becomes laminar with the exeption of the region affected by 

the MF (see Figure 3.9a). Moving the magnet closer to the vessel expands the region of 

blood circulation. The TMDD zone where the velocity is close to zero increases. The 

topological pattern of the flow remains approximately the same for b=10 (Figure 3.9b). 

Moving the wire closer (b=5) creates 3 vortices with a maximum velocity of about 15 cm/s.  

The TMDD zone expands significantly. Figure 3.10 displays the streamlines of the 

MN flow for 0.5B =  . Clearly, the MF attracts the MN to the region of the TMDD. 

However, the topology of the flow is complex. It does not follow the streamlines of the 

blood flow when the impact of the MF is strong (Figure 3.10).   

When 1.0B = , the source, located at 10 and 15 cm below the vessel (Figures 3.11 

(a and b)), generates blood flow topologically similar to that shown in Figures 3.9 (a and 

b). However, the TMDD region becomes considerably larger. When 1.0B =  b=5 (Figure 

11c), the impact of the MF is the most significant. However, the topology of the flow is 

complex and is characterized by an increased vorticity.  

Figure 3.12 for B=1.0 shows how the MF works against the DF. The topology of 

the MN flow in Figure 3.12  is characterized by 4 large vortices. The magnetic numbers 
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increase from nFM 3281=
 
to nFM 6677

p
  when 0.5B = , to nF nFM 6562,M 13354

p
   

when 1.0B = . Figure 3.12c shows that an MF with a high intensity positioned close to the 

blood vessel has a strong impact on the vorticity of the blood flow. The evaluation of its 

impact on the patient and the negative effects of the vorticity versus the positive results of 

the TMDD is an open problem. This requires further experimental research outside the 

scope of this paper. However, the proposed model can be used as a second opinion to 

evaluate possible side effects. 

 

a) 

 

b) 

 

c) 

Figure 3.9  Streamlines of the blood flow: 0.5B =  a) b=15, b) b=10, c) b=5. 
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a) 

 

b) 

 

c) 

Figure 3:10 Streamlines of the MN flow: 0.5B = , a) b=15, b) b=10, c) b=5. 

 

a) 
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b) 

 

c) 

Figure 3.11  Streamlines of the blood flow: 1.0B = , a) b=15, b) b=10, c) b=5. 

 

a) 

 

b) 
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c) 

Figure 3.12  Streamlines of the MN flow: 1.0B = , a) b=15, b) b=10, c) b=5. 

3.7.2.3 Impact of the Size of the MN on the Blood Flow  

Consider (a,b)=(10, 10), 0.04vC = , 0.5B = , and  Re 250 . Consider 3 cases.  

Case 1: 250,d =
1

3.8ru = , 
5St 3.56 10 ,−  4Re 9.8 10 ,p

−  1f = . 

Case 2 : 800,d =  
1

3.8ru = , 
4St 1.14 10−=  , 3Re 3.1 10 ,p

−  1f = . 

Case 3 : 20,000,d =  
1

3.8ru = , 
2St 2.8 10−=  , Re 1.0p  , 1.1f = .  

The magnetic numbers 
nFM 3281= , 

nFM 6677
p

 . The streamlines of the blood flow 

for Cases 1, 2, and 3 are shown in Figure 3.13. Clearly, the size of the MN has a significant 

impact on the blood flow. The circulation is characterized by vortices nearby the magnet 

and the backflows. The TMDD zone does not change significantly. However, the region 

having the maximum velocity of about 13 cm/s (yellow highlight) grows as the size of the 

MN increases. The region has increased by approximately 35%.  

Figure 3.14b (d=800) shows three well-defined vortices, whereas Figure 3.14c 

(d=20000) shows two vortices moving in the opposite (clockwise and anticlockwise) 

directions. The MN flow is toward the TMDD regions with a maximum velocity of about 

12 cm/s near the position of the magnet. The blood/MN flow in Figures 3.13c and 3.14c 

may be suitable for TMDD for the particular Reynolds numbers. 
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a) 

 

b) 

 

c) 

Figure 3.13  Streamlines of the blood for different sizes of the MN:  a) 250d = , b) 

800d = , c) 20000d = , 1.0.St   

 

a) 

 

b) 
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c) 

Figure 3.14  Streamlines of the MN for different sizes of MN: 

a) d=250, b) d=800, c) d=2000. 

3.7.2.4 Impact of the Size of the MN on the Temperature   

Consider Re=25, 0.5,B = and 0.04vC = . The initial temperature is ( , ,0) 37T x y =

. The boundary conditions are ( , , ) 37
left boundary

T x y t C= , 0
other boundaries

T

n


=


 . 

Further, Re 0.01,p  Re 250,= 1 3.8,r ru u= = Pr 25,=  
5Ec 4.2 10 ,−=  nFM 3281,=  and 

nFM 6677
p

 . 

The thermal conductivity of blood increases with an increase in the size of the MN. 

Recall that the exchange of the energy between the blood and the MN is proportional to 

parameter 2  (see Equations (3.38a)-(3.39a)). This parameter is evaluated by (Gireesha et 

al., 2017)  as follows: 

( )1/2 1/3

2 p2

6
2.0 0.6Re Pr

r

k h

d u
 = +  (3.46) 

Hence, the exchange is proportional to 21/ d . The impact of the size of the MN on 

the temperature profile is illustrated in Figures 3.15 and 3.16.  The temperature increases 

in the vicinity of the strong MF due to the magnetocaloric effect and the energy exchange 

defined by Equation (3.44). The maximum increase in temperature inside the lower vortex 

is 2.1 C , from  37 to 39.1 C . The case of 2 0 =  in Figure 3.15a (magnetocaloric effect) 
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complies with the results of Tzirtzilakis (2008). For d=250, the temperature starts 

increasing in the MF region at 13mint   and reaches approximately 39.1 C  at the steady 

state, 1.5ht  . When d=800, the temperature reaches a maximum of about 39 .1 at 1.5t   

whereas d=20000 requires only 0.5h  . The maximum temperature of the MN reaches 

approximately 38.8 C with negligible differences in the second digit after the decimal 

point for different d (Figure 3.16). Such a temperature increase may have a negative impact 

on long-term treatments such as chemotherapy. As an example, we refer to the effects of 

the MRI with the MF and 4 T (Schenck et al. 1992; Yamamoto et al. 2004). The patients 

report sensations of nausea, vertigo, metallic taste, or sleepiness after treatments.  

 

a) 

 

b) 

 

c) 
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d) 

Figure 3.15  Temperature of the blood flow: a) 2 0 = , b) d=250, c) d=800, d) d=20000. 

 

a) 

 

b 

 

c) 

Figure 3.16  Temperature of the MN flow: a) d=250, b) d=800, c) d=20000. 
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Table 3.4  Parameters encountered in TMDD. 

 

Parameters 

 
Symbol 

Non-Dimensional 

Parameter Range 

Dimensional 

Parameter Ranges 

 

Maximum Entrance 

Blood Velocities 
ru  - 3-15

 

Maximum Entrance MN 

Velocities 
1ru  - 3-15 

Vessel Height h  1 0.2 2.0h   

Vessel Length L 15 3 40L   

Magnetic Field Strength B  - 0.5 5B   

Magnetization M  - 448M =  

Distance in x-direction 

from Magnet 
a  1.5-5 3-10 

Distance in y-direction 

from Magnet 
b  0.01 0.1b−   −  3 15b   

Average Free Path of 

MN 
a  - 200  

Density of Blood   - 1050 

Density of MN p  - 5200 

Normal Body 

Temperature 
T  - 37 

Dynamic Viscosity of 

Blood 
  - 33.2 10−
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Thermal Conductivity of 

Blood 
k  - 32.2 10−  

Heat Capacity of Blood c  - 14.65 

Heat Capacity of MN pc  - 670 
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CHAPTER 4  

A THREE-LAYER MODEL OF MAGNETIC TARGETED DRUG 

DELIVERY 

4.1 Introduction 

In this chapter, a three-layer mathematical model for the mass transport of drug-

loaded magnetic nanoparticles (MN) from blood vessel (artery) to endothelial membrane 

and tissue for magnetic targeted drug delivery (MTDD) is proposed. The mass transport 

equations are coupled with the momentum equation of the blood flow and the drug-loaded 

MN. The blood and tumor vessesls are notoriously leaky. The numerical procedure 

employs the stream function–vorticity formulation and an efficient pseudo transient 

numerical method on a finite-difference grid. The model validated by existing experimental 

results has been applied to analyze the impact of magnetic force (MF), and the position of 

the magnet for accumulation of the MN in the required regions (tumor). The concentration 

of MN is contolled by the variable magnetic field, which has been shown much promise 

for an efficient MTDD. 

4.2 Mathematical Formulation 

A three layers mathematical formulation is developed for the description of drug-

loaded MN transport in the blood vessel (artery), coupled with the mass transport in the 

three layers blood vessel, endothelial membrane and tissue (Figure 1).  

4.2.1 Governing Equations 

For this purpose, we consider viscous, unsteady, two phase flow consisting of the 

drug-loaded MN and the blood in a three layer rectangular channel with length L  and 

height h  (Figure 1). The flow is assumed to be fully developed at the entrance of the artery 
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wall, and only the drug-loaded MN moves out of the blood vessel to endothelium 

membrane and tissue (Nacev et al., 2011b). The volumetric blood flow rates out of the 

artery-tissue are assumed zero. The governing equation of the two-phase flow is given with 

regard to the velocity ( , )u v=V  of the blood and the particles (Tzirtzilakis, 2005). The 

subscript p indicates the parameters of the MN flow. 

0, =V  (4.1) 

2

0 ( ) ,
u

p
t

  
 

+  = − +  + +  
 

V V V F M H  (4.2) 

The drag force used to solve this problem is the same as defined in previous Chapter 3 in 

equation (3.4), while the only
mp p =  , and  

mp  is therapeutic drug-loaded MN.  

The solid phases, i.e., the MN in blood are simulated by the momentum equation, 

assuming that the impact of the dynamic viscosity is negligible. Hence, the solid phase 

equations are given by: 

0,p =V  (4.3) 

0(1 ) V ( ) ,
p

mp v p p v v vpC C C
t

 
 

+  = − − +  
 

V
V V F M H

 
(4.4) 

where Vvp is the volume of MN.  
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Figure 4.1  Blood vessel, endothelial membrane and tissue. 

4.2.2 Magnetic Field 

Following Tzirtzilakis (2005), and Bose & Banerjee (2015), the magnetic magnetic 

source placed perpendicular to the (x, y) plane and H  is derived from same equations (3.9) 

and (3.11) as in previous Chapter 3.  

Nevertheless, magnetization is the calculation of how much the MF affects the 

blood and MN. For isothermal case, magnetization is described by the simplest equations 

(Tzirtzilakis, 2005; Bose & Banerjee, 2015). 

1 ,M H=  (4.5) 

( )1
32 2, / 1 ( ) ,eff effM H   = = +    

(4.6) 

where 2  are the magnetic susceptibility of the MN.  

4.2.3 Therapuric Drugs Concentration 

 For MTDD, the nanoparticles containing magnetic core is given by 
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( ) ( )
3 3

( ) 1 ,mp p core m shell md d  = + −  (4.7a) 

where 
md   is the ratio of magnetic-core ( d ) and total diameters (

mpd ) of MN, defined as 

m
mp

dd
d

= . For 1mpd = , we have fully MN, whereas, for 0mpd = , we have magnetically 

neutral nanoparticles. The shell is a mixture of medical therapeutic drugs and carriers. The 

shell density (Kenjeres & Tjin, 2018) is given by: 

1

1 11
,shell

drug carrier

f f


 

−

 −
= +  

 

 (4.7b) 

where 1f  is the fractional loading of the magnetic therapeutic drug within the shell layer. 

In the present work, the magnetic core is made from the ferromagnetic nanoparticles 

(Fe3O4), with the density of 3

( ) 5200kg/mp core p = = , magnetic susceptibility 
2 20, =  

and saturation magnetization 448kA / msatM = . The shell carrier is biodegradable, which 

can be poly(lactide-co-glycolide) (PLGA) or  poly(ethylene) glycol (PEG). The densitities 

of PLGA and PEG are 31300kg/mcarrier =
 
and 31126kg/mcarrier = . The fractional 

loading of the medical therapeutic drug is taken to be 0
01 30f = , which corresponds to an 

antitucular drugs, with a typical density of 
31610kg/mdrug = . 

4.2.4 Drag coefficient 

The associated drag coefficient is different from Chapter 3 due to the drug-loaded 

MN contributed in a different way in Stokes’ resistance law: 

2

1 18
,D

P mp mp c

F f
d C



 
 =  (4.8) 

The Cunningham correction coefficient is alo changed to:  

Ref. code: 25645922300198GCX



68 

 

 

 

11

2
1 1.257 0.4 .

mp

a

d

a
c

mp

C e
d

  
 = + +
 
 

 (4.9) 

Similarly,    

p 0Re ,
mpd

u



=  (4.10) 

Hence, other terms in equations (4.8) and (4.10) are defined the same as in previous Chapter 

3.  

4.2.5 Mass Transport Through Blood Vessel 

 Following buongiorno (2006) and Nacev et al. (2011), ( , , )MC x y t  denotes the 

concentration of drug-loaded MN inside the blood vessel. 

( ) ( ) ,M
M p M Tot M

C
C C D C

t


+  + =  


V V  (4.11a) 

where ( , ),p p pu v= −V  and ,TotD  is the total diffusion coefficient in blood (DCB), which is 

the sum of Brownian diffusion (BD) and scattering diffusion (SD)  Tot B SD D D= + .  

The negative sign with ( )pv−
 
shows the downward pull of magnetic force on drug-

loaded MN. The BD is written as:  

,
3

B
B

mp

k T
D

d




=  (4.11b) 

where , ,Bk T  are the Boltzmann constant and the normal body temperature. For 250 nm 

sizes of drug-loaded MN at body temperature (37 ),C  the diffusion coefficient is 

11 27 10 m /s,BD −   and the SD causes due to the collision of drug-loaded MN with the 
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RBC is approximately  11 10 210 10 m /sSD − − −
 
(Nacev et al., 2011). Here, vC  strongly 

depends on MC  for drug-loaded MN concentration such that Vv M pC C= . Therefore, 

Equation (4.11) is strongly coupled with Equations (4.2) and (4.4).  

4.2.6 Mass Transport Through Endothelium Membrane 

 In endothelium membrane, only the mass transport of drug-loaded MN within the 

membrane is derived by the reduced concentration equation:  

( ) ( ) ,MM
MM p MM Tot MM

C
C C D D C

t


+  + =  


V V  (4.12a) 

where (0, ), (0, ),p pv v= − = −V V
 
and D  is the Renkin reduced diffusion coefficient 

(RRDC) for endothelium membrane diffusivity (EMD). Moreover, D  is the ratio of 

diffusion coefficient in the membrane (DCM) to the total DCB, which is defined as:   

,M M

B S Tot

D D
D

D D D
= =

+
 (4.12b) 

where MD  is the DCM, and the value of D  varies between 0 and 1. As the value decreases 

toward zero, the drug-loaded MN stays inside the blood vessel, while the drug-loaded MN 

begins to leave the blood vessel and enters the membrane when the value decreases toward 

unity.   

The value of MD  depends on the pores inside the endothelium membrane. If the 

diameters of pores are known, the DCM can be calculated by the following correlation:  

( )( )2 3 51 1 2.1044 2.089 0.948 ,M BD D    = − − + −  (4.12c) 
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where / ,mp pored d =  and pored the average diameter of the endothelial pores. For normal 

pores diameters, 1 0 0.MD D       The diameters of drug-loaded MN should be 

smaller than pores diameter.  The normal and leaky cell pore sizes are 60 nm and 600 nm.  

4.2.7 Mass Transport Through Tissue 

 Unlike the healthy tissue which is a fine network of capillaries. The region around 

the tumor is often characterized by irregular and poor blood supply that reduces the 

concentration of drugs. The dynamics of tumor is supposed to be modeled by the source 

term in reaction–diffusion equation.  

( ) ( ) ,MT
F MT F p MT Tot MT s

C
r C r C D D C

t
 


+  + =   +


V V  (4.13a) 

where (0, ), (0, ),p pv v= − = −V V
 
and D is the RRDC for tissue diffusivity (TD) 

compared to blood. Fr  is the retardation factor accounting for the resistance of convective 

transport of drug-loaded MN due to the reflection by porous tissue. In tissue, the retardation 

effect is negligible; therefore, 1Fr   (Baxter & Jain, 1990, 1991). s  is the source term.  

Further, the RRDC for TD is the ratio of diffusion coefficient in the tissue (DCT) 

to the total DCB.  

,T

Tot

D
D

D
 =  (4.13b) 

where TD  is the DCT, which is calculated by the Fiber Matrix Model (Fournier, 2012). 

1/2 1/2 1/2exp 1 exp 1 ,
mp mp

T B F B

f f

d d
D D C D

d d
 

      
= − + = − +         

         

 (4.13c) 
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where fd
 
is the diameter of long fiber cylinder,   is specific volume of the fiber, FC  is 

the fiber concentration, and   is the volume fraction of tissue fibers. The TD is highly 

dependent upon the sizes of MN and extracellular spacing (Nacev et al., 2011).  

The source term in equation (13a) is the addition of the tissue vascular, lymphatic, 

and cellular contributions (Jain & Stylianopoulos, 2010; Sefidgar et al., 2014; Carlier et 

al., 2017). 

( ) (1 ) ,
V

i
s p MT B f P L MT L MT

PS
C C C C C    

 
= − + − − − 

 
 (4.13d) 

where the terms in the bracket accounts for the tissue vascular contribution and the last two 

terms are the lymphatic and cellular contributions. L  the drugs elimination constant (1/ s)

, 
V

S
 is the vasculature surface area per unit volume (1/ m) , iP  vascular permeability 

(m/s)  which is calculated by M
i

B

D
P

hD
= .  

f  is the osmotic reflection coefficient for drug-loaded MN. pC  is assumed zero 

due to the small concentration of drug in plasma (Steuperaert et al., 2017). ,B L   are the 

volumetric flow rates of blood plasma and interstitial fluids out of the lymphatic vessels 

per unit volume of the tumor media. Due to the absence of functional lymphatic inside 

tumor,  L  are set to zero. After substituting all the parameters in equation (13c), the source 

term is reduced as: 

,
V

i
s L MT p MT

PS
C C  

 
= − + = − 

 
 (4.13e) 
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Table 4.1  Model parameter values. 

 

Parameter Symbol Condition Value 

Brownian Diffusion BD  - 14 121 10 1 10− − − 
 

Scattering Diffusion SD  - 11 103.5 10 6 10− − −   

Diffusion 

Coefficient (in 

Membrane) 

MD  

Normal Cell 

if  mp pored d= or

mp pored d  

0 

Leaky or Tumor cell 

if mp pored d  

121.5 10−−   

Diffusion 

Coefficient (in 

Tissue) 

TD  

Normal Cell 

if  mp pored d= or

mp pored d  

0 

Leaky or Tumor cell 

if mp pored d  

141.2 10−−   

Total Diffusion 

Coefficient 

(in Blood) 

TotD =
 

B SD D+  
- 14 101 10 6 10− − − 

 

Boltzmann 

Constant 
Bk  - 231.380649  10 ?−

 

Diameter of  

Endothelial Pores 
pored  

Normal Cell 60 

Leaky or Tumor cell 300 

Diameter of drug-

loaded MN 

 

 

mpd  

1. ( )mpd h  

2. ( )mp leaky pored d  

 

10 7000mpd   

 

Normal Cell 20 
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Diameter of Long 

Fiber Cylinder 
fd  Leaky or Tumor Cell 100 

Volume Fraction of 

Tissue Fibers 
  

Normal Cell - 

Leaky or Tumor Cell 0.66 

Drugs Elimination 

Constant 
L  - 47.32 10−  

Vasculature Surface 

Area per unit 

Volume 
V

S

 - 42 10  

Magnetic-core of 

MN 

md  
-  

Density of 

Magnetic-core of 

MN 

( )p core  
- 5200 

Density of Anti-

Tubercular Drug 

drug  
- 1610 

Density of Shell 

Carrier  PLGA  

carrier  
- 1300 

Density of Shell 

Carrier  PEG 

carrier
 

- 1126  

Fractional Loading 

of the Magnetic 

Therapeutic Drug 

1f  
- 30% 

4.3 Boundary and Initial Conditions 

At all the external boundaries of the vessel-tissue, the normal diffusive flux is set 

to zero, and MN enters the channel with constant vessel inlet concentration. The boundary 

conditions (BCs) are as follow: 
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Inflow                
0

0

0, 0 : ( ), 0;

( ), .( ) 0, , .

p p

M i i MM MT

x y h u u u y v v

C C y D C C C C

=   = = = =

=  = =n
 (4.14) 

Outflow                   
, 0 : 0, .( ) 0,

, , , , , .

i

i M MM MT

R
x L y h D C

x

R u v T C C C C


=   =  =



= =

n

 
(4.15) 

Upper Wall                 0, 0 : 0; 0.
p

p

v
y x L u u v

y


=   = = = =

  
(4.16) 

Lower Wall                0, 0 : 0; 0.
p

p

v
y x L u u v

x


=   = = = =

  

(4.17) 

Initial Conditions   

0

0 , 0 : 0; 0;

; 0 0.

p p

M MM MT

x L y h u v u v

C C C C at t

    = = = =

= = = =
 (4.18) 

0 ( )u y  is the velocity at the inflow boundary, and is the total flux of MN and 
0C is the initial 

constant concentration.  

The concentration at the interior boundaries between artery lumen, and endothelial 

membrane, and the endothelial membrane and tissue, satisfy the condition: the mass 

transport of MN that leaves one domain enters another (no MN concentration is lost or 

created). Therefore, the BCs are 

Upper Wall        ( ) 0, ( ) , , .Tot M p i i i MM MTD C C C C C  =  = =n n V J
                      

  (4.19) 

Lower Wall          ( ) 0, ( ) , , .MT p i i i M MMD C C C C C  =  = =n n V J                       

 
(4.20) 

The total flux of MN out of the artery lumen to endothelium membrane and tissue 

is equal to the convective flux created by the MF and MN leave only when the MF pulls 

them to the region of infection. The flow domain and boundary conditions are shown in 

Figure 2.  
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Figure 4.2  Flow domian and boundary conditions. 

4.4 Special Case: MHD  

For the special case: unifrom magnetic field throughout the channel is considered. 

Two types of magnetic forces will act on the MN-blood as it flows under the influence of 

an external MF. The first is the magnetization force, which occurs when erythrocytes are 

oriented with MF, and the second is the Lorentz force (see Aaiza et al., 2016). The Lorentz 

force ( J B ) arises due to the electric current generated by moving ions in blood plasma, 

where ( ),= J V B  and 0.7S/ m =  is electrical conductivity of the blood. 
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Consequently, the Lorentz force will only occur if the velocities of the moving ions are 

perpendicular to the plane of an external MF. Hence, the systems of the governing 

equations are: (Tzirtzilakis, 2005)  

0, =V  (4.21) 

2 2

0 ,
u

p M H B
t

   
 

+  = − +  + +  − 
 

V V V F V

 
(4.22) 

 The electric conductivity of magnetic nanoparticles is determined by the 

temperature of the surrounding environment (Fe3O4). It has a conducting nature at room 

temperature, but an insulator at temperatures below 120K (-153.15OC). T=310K is a 

normal body temperature. It is, however, prepared for TMDD. Although, drugs bind to the 

surface of MN, its electric conductivity may change. In this case, we also considered 

electrically conductive Fe3O4 MN ( 12000S/ m)p =  (see Aaiza et al. 2016). Thus, the 

solid phase equations are given by:  

0,p =V  (4.23) 

2

0(1 ) ,
p

p v p p v v v p pC C C M H C B
t

  
 

+  = − − +  − 
 

V
V V F V

 
(4.24) 

4.5 Dimensionless Equations 

In this problem, the same dimensionless variables equation (3.22) as in previous 

Chapter together with equation (3.24) are used to transform the contiuity, momentum and 

concentration equations (4.1)-(4.4) and (4.11)-(4.24) into: 
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0 0 0

, , .M MM MT
M MM MT

C C C
C C C

C C C
= = =  (4.25) 

almost all notations are self-explanatory, rH is the strength of the MF at ( , )a b .  Mapping 

in equations (3.30) and (3.34) are derived the same as in Chapter 3, some calculus yields 

(3.30)-(3.34)  

0,x y

u u
w w

x y

 
+ =

 
 (4.26a) 

0,x y

v v
w w

x y

 
+ =

 
 (4.26b) 

0,
p p

x y

u u
w w

x y

 
+ =

   
(4.27a) 

0,
p p

x y

v v
w w

x y

 
+ =

   
(4.27b) 

( )

2 2
2 2

2 2

2 2

1 2 2 nF nM

Re

Re M Re M ,

x y x y

v p p x

u u u u u u u
w w w w w w u v

t x y x y x y

H
C D U u U u Hw H u

x

 



       
= + + + − + + 

       

 
− + − 

 

 
(4.28a) 

( )

2 2
2 2

2 2

2 2

1 2 2 nF nM

Re

Re M Re M ,

x y x y

v p p y

v v v v v v v
w w w w w w u v

t x y x y x y

H
C D U v U v Hw H v

y

 



       
= + + + − + + 

       

 
− + − 

 

 
(4.28b) 
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( ) ( )2

1 2 2

2

nF nM

Re 1 Re

1
V Re M Re M ,

2 p p

p p p

p o x y p p v p o p

vp p o x p o p

u u u
d w w u v C d U u U u

t x y

H
d Hw d H u

x


   

= − + − − − + 
   

 
− 

   

(4.29a) 

( ) ( )2

1 2 2

2

nF nM

Re 1 Re

1
V Re M Re M ,

2 p p

p p p

p o x y p p v p o p

vp p o y p o p

v v v
d w w u v C d U v U v

t x y

H
d Hw d H v

y


   

= − + − − − − 
   

 
− 

   

(4.29b) 

( ) ( )

2 2
2 22

2 2

2 2 ,

M M M M M
x y

M M
x p y p

C U C C C C
w w w w

t Pe x y x y

C C
w U u u w U v v

x y

 

     
= + + + − 

     

 
+ + +

 
 

(4.30a) 

( )

2 2
2 22

2 2

2 ,

MM MM MM MM MM
x y

MM
p y

C U C C C C
D w w w w

t Pe x y x y

C
U v v w

y

 

     
= + + + + 

     


+



 

(4.30b) 

( )

2 2
2 22

2 2

2 0S

MT MT MT MT MT
x y

MT
p y MT

C U C C C C
D w w w w

t Pe x y x y

C
U v v w C

y

  

     
= + + + + 

     


+ −



 

(4.30c) 

The additional the non-dimensional parameters are as follows: 
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2 2 22 2 2 2 2
0 00 1 0 0 2 0 0 0

nF nF nM nM2 2

1

2

O

M ,M , M ,M ,

Pe , , ,S .

p p

p

r mp r

mp mp pr
o p

Total Totat

H dH H H h

u u

d hhu
d D

D h D

      

   

 



= = = =

= = = =

 

where nFM  and 
PnFM , and nMM  and 

PnMM are the magnetic number (FHD and MHD) of 

the blood and drug-loaded MN,
 
respectively. w ,o Pd D  are the ratios of the size, and density 

of the drug-loaded MN to the channel height, and density  of the blood, respectively. Pe is 

the Peclet number, and OS source constant respectively.  

4.6 Numerical Method 

The continuity Equations (4.26)–(4.27) of the flow are transformed to stream 

functions similar to the previous Chapter 3 by substituting Equation (3.23) into Equations 

(4.26)–(4.30). Following the procedures in the previous Chapter 3, the equations for the 

stream functions of the blood and the MN flow (4.26)-(4.30) are approximated by the 

standard finite-difference equations and solved by the block Gauss-Seidel method (M. 

Cervera et al., 1996). This is followed by the successive over-relaxation (SOR) as follows. 

1 1 (1 )k k k

new GS    + += + − , where 1k

GS +  is the numerical solution obtained by the block 

Gauss-Seidel method, k  is the solution at the previous iteration step k , and   is the 

relaxation parameter. Note that Equations (34)-(35) depend implicitly on time due tou ,
pu  

at the right-hand sides. Hence, the equations must be solved at every time step. The 

functions u ,
pu   are taken from the n-th time step. The numerical solution of Equations 

(4.28b)-(4.30b) is based on a similar procedure including the block Gauss-Seidel and the 

SOR. Writing (4.28a)-(4.30a) in the standard form yields:     

2 2

1 1 1 1 1 12 2
,

u u u u u
A B C D E u F

t x y x y

    
= + + + + +

    
 (4.28c) 
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2 2

2 2 2 2 2 22 2
,

v v v v v
A B C D E v F

t x y x y

    
= + + + + +

      
(4.28d) 

3 3 3 3 ,
p p pu u u

C D E u F
t x y

  
= + + +

  
 (4.29c) 

4 4 4 4 ,
p p pv v v

C D E v F
t x y

  
= + + +

    
(4.29d) 

2 2

5 5 5 5 5 52 2
,M M M M M

M

C C C C C
A B C D E C F

t x y x y

    
= + + + + +

    
 (4.30a) 

2 2

6 6 6 6 6 62 2
,MM MM MM MM MM

MM

C C C C C
A B C D E C F

t x y x y

    
= + + + + +

    
 (4.31b) 

2 2

7 7 7 7 7 72 2
,MT MT MT MT MT

MT

C C C C C
A B C D E C F

t x y x y

    
= + + + + +

      
(4.31c) 

where coefficients , , ,i i i iA B C D  and the right-hand-side 
iF  in each equation depend on the 

other unknowns and their partial derivatives. As in the previous Chapter 3, we apply the 

standard second-order finite-difference approximation to the second derivatives and the 

upwind first-order approximation to the first derivatives. For instance, (4.28b) is 

approximated as follows  

1 1 1 1 1 1

, , 1, , 1, , 1 , , 1

1, , 1, ,2 2

1 1 1 1

1, , , 1, , 1 ,

1, , 1, , 1, ,

1 1

, , 1

1, ,

2 2n n n n n n n n

i j i j i j i j i j i j i j i jn n

i j i j

n n n n n n

i j i j i j i j i j i jn n n

i j i j i j

n n

i j i jn

i j

u u u u u u u u
A B

x y

u u u u u u
C C D

x x y

u u
D

y



+ + + + + +

+ − + −

+ + + +

+ − +

+ +

−

− − + − +
= +

 

− − −
  + + + +

  

−




1 1 1

1, , , ,( , , ),n n n n

i j i j i j pE u F H  + + ++ +

 

(4.28e) 
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where , , ( , , )n

i j i j i ju u x y n= . Similar as previous Chapter 3,   is the time step, 
1

x
N

 = , 

1
y

M
 =  are the spatial steps, ix i x=  , 

jy j y=  , 1, 1i N= − , 1, 1j M= − , N  is the 

number of points in the x  direction, M  is the number of points in the y  direction, 

| |

2

C C
C

+
 =  , 

| |

2

C C
C

−
 = , 

| |

2

D D
D

+
 = , 

| |

2

D D
D

−
 = .  

The iterative algorithm is used to solve the system of Equations (4.28b)-(4.30b) using the 

steps outlined in the previous Chapter 3. The convergence is established when: 

1

, ,
max ε,l l

i j U
U U+ = −   

4.7 Results and Discussion 

The magnetic numbers for blood and drug-loaded MN are given by:  

2 2 2 2 2 22 2 2 2
0 2 0 20 1 0 1

nF nF2 2 2 2 2 2 2 2

0 p 0 p

M ,M ,
Re Re Re Re

mp mp

p

mp mp

d H d Bh H h B        

       
=  =   (4.32) 

2 2 2 2 22 2 2 2 2
0 00 0 0

nM nMM ,M ,
mp p mp p

p

d H d Bh H h B    

   
=  = 

 

(4.33) 

In this work, we consider the Newtonian nature of blood. Thus, our data fit on aorta, 

arteries, veins and vena cava. The actual velocities and its nature in different blood vessels 

are mentioned in Table 1.1.  

4.7.1 Impact of the Magnetic Field Intensity (FHD and MHD):  

In order to evaluate the impact of MF, consider (a,b)=(10, 10), 
1

3.8,ru =

0.004,vC =  
2Re 3.6 10 ,p

− 
 
Re 25,=  and 

4St 2.47 10 .−   Consider 5 cases.  
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Case 1:  For FHD, 8,B =
 nFM 52500,=

 nFM 265287,
p

  nMM 0,=
 nMM 0.

p


 

Case 2:  For MHD, 2,B =  nFM 0,=
 nFM 0,

p
  3

nMM 4.0 10 ,−= 
 

9

nMM 1.42 10 .
p

−   

Case 3: For FHD and MHD, 2,B =  nFM 13125,=  nFM 165804,
p


 

3

nMM 4.0 10 ,−= 

9

nMM 1.42 10 .
p

− 
 

Case 4: For FHD and MHD, 5,B =  nFM 32812,=
 nFM 221000,

p


 
2

nMM 2.5 10 ,−=   

9

nMM 8.9 10 .
p

−   

Case 5: For FHD and MHD, 8,B =  nFM 52500,=
 nFM 265287,

p
  2

nMM 6.4 10 ,−= 

8

nMM 2.2 10 .
p

− 
 

The magnet wire is 10 cm below the wall in a vertical position. Figure 4.3-4.4 

depicts the pattern of the blood and drug-loaded MN flows. For same magnetic field 

strength, we compare case 1 for FHD flows (Figure 4.3a) with case 5 for combined effects 

of FHD and MHD flows (Figure 4.3e) and found that the additional Lorentz force (MHD) 

reduces blood flow and suppresses the large vortices created by FHD flows. As a result, 

the total number of vortices produced by the combined effects of FHD and MHD flows is 

the same (see cases 3 to 5 in Figures 4.3c-e). 

Conversely, when the magnetic field strength increases, the number of vortices 

increases (case 1 in Figure 4.3a). 

Furthermore, we investigated case 2 for MHD flow. Clearly, there is a disturbance 

near the magnetic source (Figure 4.3b). Nevertheless, when the magnetic field gradient is 

strong and non-uniform, FHD effects are important, whereas MHD effects are dominant 

when the magnetic field gradient is uniform. Magnetization has no impact on blood when 

it is exposed to a uniform magnetic field and
nFM 0,= nFM 0

p
 . Nevertheless, the MN 

increases the magnetic susceptibility of blood by several orders, making magnetic forces 

(FHD) more powerful (see Figures 3.3-3.6). 
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Figure 4.4 shows how the MF works against the DF. MN flow is affected in the 

same way that blood flow is affected by FHD and MHD (Figures 4.4a-e). However, it is 

characterized by two large vortices. We also examined case 2 for MHD flow and noticed 

that the flow is not significantly affected, although there is a minor disturbance. Due to the 

small particle sizes, the magnetic number nM(M )
p

for MN flow is relatively low. MN, on 

the other hand, has a higher electrical conductivity than blood (Figure 4.4b).  

The abovementioned results presented in Figs. 6 and 7 coincide with results 

concerning the effect of MHD and FHD forces presented in the studies (Tzirtzilakis, 2005; 

Xenos & Tzirtzilakis, 2013; Raptis, 2014).  

 

a) 

 

b) 

 

c) 
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d) 

 

e) 

Figure 4.3  Streamlines of the blood flow: a) FHD, b) MHD, c) B=2, d) B=5, e) B=8. 

a)

b)

c)
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d)

e) 

Figure 4.4  Streamlines of the MN flow: a) FHD, b) MHD, c) B=2, d) B=5, e) B=8. 

4.7.2 Impact of MN (therapeutic drug-loaded and MN) on Blood Flow:  

Consider (a,b)=(10, 10), 
1

3.8,ru = 0.004vC = , 5,B = 1,f =   and  Re 250  . 

Consider 5 cases.  

Case 1: 250,mpd =
 1 0,f =

 
5200,p =

 
4St 3.5 10 ,−   

4Re 8.2 10 ,p

− 
 nFM 98153,

p


 

9

nMM 6.2 10 .
p

−   

Case 2: 300,mpd =
 1 30%,f =

 
3015.6,p 

 
4St 2.47 10 ,−   

4Re 9.8 10 ,p

− 
 

nFM 165804,
p


 

9

nMM 8.9 10 .
p

−   

Case 3: 400,mpd =
 1 40%,f =

 
1343.8,p  , 

4St 1.47 10 ,−   
3Re 1.3 10 ,p

− 
 

nFM 372079,
p


 

8

nMM 1.5 10 .
p

− 
 

Case 4: 500,mpd =
 1 50%,f =

 
829.8,p   

4St 1.13 10 ,−   
3Re 1.64 10 ,p

− 
 

nFM 602700,
p


 

8

nMM 2.4 10 .
p

−          
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Case 5 : 20,000,mpd =
 1 50%,f =

 
1594,p   

2St 1.23 10 ,−   
2Re 6.5 10 ,p

− 
 

nFM 602700,
p


 

5

nMM 3.9 10 .
p

− 
 

The magnetic numbers 
nFM 32812,

2

nMM 2.5 10 .−=   The streamlines of the 

blood flow for Cases 1, 2, 3, 4 and 5 are shown in Figure 4.5. Clearly, the drug-loaded MN 

concentration has a major impact on blood flow. The circulation is characterized by a 

strong vortex and backflow. As we increase the drug concentration from 30% to 50%, the 

size of the vortices increases. For d=250 nm, the change is insignificant (Case 2 to 4 in 

Figure 4.5b-d). However, when we increased the size of MN (20,000) while keeping the 

drug concentration at 50%, the TMDD zone grew significantly (Case 5 in Figure 4.5e). 

On the other hand, the velocities of blood and drug-loaded MN flow vary 

throughout the TMDD zone. This is because the density of MN varies substantially, this 

affects the St,  Re ,p
 and magnetic numbers. Two well-defined vortices are depicted in 

Figure 4.6a-e for cases 1 to 5.  

It is worth noting that drug concentrations are essential in cancer treatment because 

these medications also harm healthy cells. Widder et al. (1981) reported that high dosages 

of doxorubicin (0.5-5 mg/kg) have a negative effect on the animal and with an average 

weight loss of 12 g in animals given large doses of doxorubicin, indicating that the 

medicine causes systemic toxicity. The weights of animals given low dosages of 

doxorubicin medicines, on the other hand, increased by 23.3 g and 17.8 g. 

 

a) 
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b) 

 

c) 

 

d) 

 

e) 

Figure 4.5  Streamlines of the blood for different sizes of the MN:                                                                    

a) 5200,p =  b) 3015.6,p 
 
c) 1343.8,p 

 
d) 829.8, 1594,p p   1.0St  . 

 

a) 
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b) 

 

c) 

 

d) 

 

e) 

Figure 4.6  Streamlines of the MN for different sizes of MN: 

a) 5200,p =  b) 3015.6,p 
 
c) 1343.8,p 

 
d) 829.8,p  1594.p   

Ref. code: 25645922300198GCX



89 

 

 

 

4.7.3 The Concentration of MN (therapeutic drug-loaded) in Normal and Tumor 

Cells:  

In a straight idealized blood artery with endothelial membrane surrounded by 

tissue, MN is subjected to diffusion, blood convection, MFs and a source, we consider four 

conditions where (a,b)=(10, 10), 
1

3.8,ru =
 

300,mpd = 1 30%,f = 3015.6,p  0.04vC =
 
, 

4St 2.47 10 ,−  5,B =  1,f =  and Re 250 .  

Case 1: The concentration of drug-loaded MN in normal blood arteries is considered in this 

situation. As a result, the diameters of the pores in the endothelium membrane are smaller 

than those of MN. Hence, 0M TD D   and the MN remains inside the blood vessels (see 

Figure 4.7). The magnetic field intensity and magnetic numbers are 2,B = nFM 13125,=  

nFM 165804.
p


 

Case 2: The concentration of drug-loaded MN inside leaky blood arteries is examined when 

the MF is zero. Clearly, the MN is leaving the vessel through endothelial pores when DM  

and DT  are greater than zero. However, the concentration remains inside the endothelium 

membrane, preventing it from reaching tumorous tissue via diffusion alone.  
 

Nevertheless, the external MFs are required to drag the particles towards the 

tumorous tissue in order to enhance the concentration of MN. For this purpose, we 

discussed two more cases: Case 3: MN begins to flow towards the magnet when the 

external MF is applied. For this case, B=2, MnF=13125, MnFp=165804.  

Case 4: Further increasing the MF increases the concentration of MN towards tumorous 

tissue. The magnetic field and magnetic numbers are B=5, MnF=32812, MnFp=221000.  
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Figure 4.7  Concentration of drug-loaded MN in normal blood vessel, endothelial cell 

and tissue: 2,B = 10cm,b = nFM 13125,=  nFM 165804.
p

  

Figure 4.8  Concentration of drug-loaded MN in leaky blood vessel, endothelial cell and 

tissue (tumorous cells): 0.B =  
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Figure 4.9  Concentration of drug-loaded MN in leaky blood vessel, endothelial cell and 

tissue (tumorous cells): 2,B = 10cm,b = nFM 13125,=  nFM 165804.
p


 

 

Figure 4.10  Concentration of drug-loaded MN in leaky blood vessel, endothelial cell 

and tissue (tumorous cells): 5,B = 10cm,b =
nFM 32812,=  

nFM 221000.
p

  
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CHAPTER 5  

ENTROPY GENERATION IN A MIXED CONVECTION 

POISEULLE FLOW OF MOLYBDENUM DISULPHIDE 

JEFFREY NANOFLUID 

5.1 Introduction 

In this chapter, entropy analysis in a mixed convection Poiseulle flow of a 

Molybdenum Disulphide Jeffrey Nanofluid (MDJN) is presented. The problem is 

formulated in terms of a boundary value problem for a system of partial differential 

equations. An analytical solution for the velocity and the temperature is obtained using the 

perturbation technique. Entropy generation has been derived as a function of the velocity 

and temperature gradients. The solutions are displayed graphically and the relevant 

importance of the input parameters is discussed. A Jeffrey nanofluid (JN) has been 

compared with a Second Grade Nanofluid (SGN) and Newtonian Nanofluid (NN).  

5.2 Mathematical Formulation 

The mathematical formulation for the non-Newtonian single phase JN model is 

considered (the velocity of the nanoparticles and the base fluid is the same) which consists 

of the following components.  

5.2.1 Governing Equations 

 Consider entropy generation in a mixed convection Poiseulle flow of a MoS2-water 

JN. The flow is due to the buoyancy force and the external pressure gradient (oscillatory 

type). Properties of the specific nanofluid are taken from experimental works (see the 

Introduction). The temperature is assumed constant at the boundary walls. The x − axis is 

considered parallel to the flow, and the y −axis is normal to the flow. Further, it is assumed 
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that the thermophysical properties of the nanofluid are constant, except the density 

variation (Boussinesq approximation, Tiwari & Das, 2007). The governing equations of an 

unsteady, one-dimensional, unidirectional non-Newtonian MDJN flow are given by 

( ) ( )2

2 0

1

1 ,
(1 )

nf

nf nf

u
p g T T

t t


  



  
= − + +  + − 

 +  
V  (5.1) 

( ) ( )2 2

0 04 ,nfnf

T
c k T T T

t
 


=  + −


 (5.2) 

where ( ),u y t  is the velocity of the nanofluid, ( ),T y t  the temperature , nf  the density,  

nf  the dynamic viscosity, 1  the relaxation to retardation time parameter, 2  the 

retardation parameter, ( )
nf

  the thermal expansion coefficient, g  the acceleration of 

gravity, ( )
nf

c  the heat capacitance, nfk , the thermal conductivity, and 0  the mean 

radiation absorption coefficient. 

5.3 Thermo physical Properties of Nanofluids 

Further, we assume spherical nanoparticles characterized by (Das & Jana, 2015; 

Aaiza et al., 2015a; Aaiza et al., 2015b): 

( )1 ,nf p   = − + ( ) ( ) ( )1 ,
nf p

    = − +

( ) ( )1 ,p pnf
c c c   = − +  

   (5.3) 

( )
2.5

,
1

nf





=

−

( ) ( )
( ) ( )

2 2
,

2

p p

nf

p p

k k k k
k k

k k k k





+ − −
=

+ + −
 

where   specifies the volume fraction of the nanoparticles.  

The properties of the base fluid and the nanoparticles are presented in Table 5.1 (Das & 
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Jana, 2015; McBride et al., 1976; Liu et al., 2014; Ding et al., 2015; Benavente et al., 2004). 

Table 5.1  Thermophysical properties of water and nanoparticles. 

5.4 Dimensionless Equations 

Some of the dimensionless parameters are same as Chapter 3, while, the others 

dimensionless variables are as follows: 

, ,
x y

x y
h h

 = =
0

0

, , .r

r w

T Ttu h
t p T

h u T T

   −
= = =

−  
(5.4) 

Substituting into Equations (5.1) and (5.2) and omitting the superscript * (non-

dimensionalization) yields 

2 3

2 2
1 32 2

1 1

Re Gr ,
1 1

u p u u
T

t x y t y

 
  

 

   
= − + + +

  +  +  
 (5.5) 

2 2

4

2

Pe
,

n n

T T N
T

t y



 

 
= +

 
 (5.6) 

where 

 

Model   c  k  
5

1 10 −  

H2O 997.1 4179 0.613 21 

MoS2 5.06×103 397.21 85-110 2.8424 
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1 (1 ) ,
p

  


= − +
2 2.5

1
,

(1 )



=

−

2 ,ru

h


 = 3

1

( )
(1 ) ,

( )

p
  


= − +

2

1 0( ) ( )
Gr ,w

r

gh T T

u





−
=

( )
Pe ,

p rc u h

k


= 4

( )
(1 ) ,

( )

pc

c


  



 
= − + 

 

( 2 ) 2 ( )
,

( 2 ) ( )

nf p p

n

p p

k k k k k

k k k k k






+ − −
= =

+ + −

2 2
2 04

.
h

N
k


=  

 

,   Gr, Pe  and N  denote the Jeffery parameter, thermal Grashof number, Peclet 

number, and the radiation parameter respectively.  

After some algebraic manipulations, Equations (5.5) and (5.6) become:  

2 3

0 1 2 12 2
,

u p u u
a a T

t x y t y
 

   
= − + + +

    
 (5.7) 

2
2 2

0 12
,

T T
b b T

t y

 
= +

 
 (5.8) 

where   

2
0 1 1

1

Re
1

a , ,


 


= =
+

2 1 ,  = 1 3Gra ,=
2 4

0

Pe
,

n

b



=

2
2

1 ,
n

N
b


=  

5.5 Boundary Conditions 

The boundary conditions at 0y =  and y h=  are:  

(0, ) 0, ( , ) 0,u t u h t= =  (5.9) 
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0(0, ) , ( , ) .wT t T T h t T= =  (5.10) 

where 0 ,T  wT  is temperature at the lower and  upper wall of the channel.   

Non-dimensionalization of the boundary conditions yields:  

(0, ) 0, (1, ) 0, 0,u t u t t= =   (5.11) 

(0, ) 0, (1, ) 1, 0,T t T t t= =   (5.12) 

5.6 Mathematical Solution 

In order to solve the boundary value problem (5.7)-(5.8), (5.11)-(5.12) by 

perturbation techniques, the unknowns are represented by (Ali et al., 2012):    

 (5.13) 

 (5.14) 

where , , are the perturb velocities, ,  are the perturb 

temperatures, and , , are the perturb parameter and the frequency of oscillation, 

respectively. 

The external pressure is represented using the same approach: 

0 1exp( )
p

i t
x

   


− = +


,  

where  0 ,
1  are  the perturb pressure gradients.  

Substituting Equations (5.13) and (5.14) into Equations (5.7) and (5.8) yields the following 

system of ordinary differential equations: 

( ) ( ) ( ) ( )0 1, exp ,u y t u y i t u y = +

( ) ( ) ( ) ( )0 1, exp .T y t T y i t T y = +

( )0u y ( )1u y ( )0T y ( )1 ,T y

 
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 (5.15) 

 (5.16) 

 (5.17) 

 (5.18) 

where  

 

The corresponding boundary conditions are:  

( )0 0 0u = , ( )0 1 0,u =  (5.19) 

( )1 0 0u = , ( )1 1 0,u =  (5.20) 

( )0 0 0T = , ( )0 1 1,T =  (5.21) 

( )1 0 0T = , ( )1 1 0.T =  (5.22) 

Solving Equations (5.17) and (5.18) with the boundary conditions (5.21) and (5.22) yields: 

 (5.23) 

Taking into account Equation (13) reveals that: 

2
20 0
1 02

2

,
d u

m T
dy




= − −

2
21
2 1 1 32

,
d u

m u m
dy

− = −

2
20
1 02

0,
d T

b T
dy

+ =

2
21
0 12

,
d T

m T
dy

+

1
1

1

,
a

m


= 0
2

1 2

,
a i

m
i



 
=

+
3

1 2

1
,m

i 
=

+

2 2

0 1 0 .m b i b= −

1
0

1

sin( )
,

sin( )

b y
T

b
=

1 0.T =
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 (5.24) 

Equations (5.15) and (5.16) with the boundary conditions (5.19) and (5.20) yield that:   

 (5.25) 

 (5.26) 

where 

 

Finally, 

( ) ( )

2 2 2

0 1 1 0 1

2 2

2 1 1 2 1

2 3 1 3 1
2 22 2

2 2 2

sin( )
( , )

2 sin( ) 2

sinh( )
exp( ) cosh( ) 1 1 cosh( ) .

sinh( )

y m b y m
u y t y y

b b b

m y m m
i t m m y

m m m

 

 

 
 

= − + + − +

  
− + −  

  

 (5.27) 

5.7 Entropy generation 

The local volumetric rate of entropy generation for nanofluids is defined by (Bejan, 

1982; Butt & Ali, 2013) by:   

( ) ( )

2 2 2
2

2 2

0 0 1 0 1

entropy generation due entropy generation due

to fluid friction to fluid friction or viscous dissipation

.
1 1

nf nf nf

G

k T u u u
S

T y T y T t y

  

 

        
= + +       

 +  +        
 

(5.28) 

1

1

sin( )
( ) .

sin( )

b y
T y,t

b
=

2 2

0 1 1
0 1 22

2 1 1

sin( )
,

2 sin( )

y m b y
u c y c

b b




= − + + +

3 1
1 3 2 4 2 2

2

sinh( ) cosh( ) ,
m

u c m y c m y
m


= + +

2

0 1
1 2

2 1

,
2

m
c

b




= − 2 0,c = ( )3 1

3 22

2 2

1
cosh( ) 1 ,

sinh( )

m
c m

m m

 
= − 

 

3 1
4 2

2

.
m

c
m


= −
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In a dimensionless form, Equation (5.28) becomes:  

2 2 2

1 2

2

0

Br Br
,G

n

S T u u u
Ns

S y y t y

 


        
= = + +       

           
 (5.29) 

where  

( )
2

0

0 2 2

0

,
wk T T

S
T h

−
=

( )

2

0

Br ,r

w

u

k T T


=

−

1 0

0

.
w

T

T T

− =
−

  

 Note that Ns  is the ratio of the local volumetric generation rate to a characteristic entropy 

generation rate.  0S  denotes the rate of characteristic entropy generation and Br  is the 

Brickman number.  

  Introduce the irreversibility distribution parameter defined by   

Be=
Entropy generation dueto heat transfer

Total entropy generation
 

Note that 0<Be<1. When Be>0.5 , the entropy due to heat transfer dominates the entropy 

due to the fluid friction and the  magnetic field. Be<0.5  indicates otherwise. 

5.8 Nusselt Number and Skin-friction 

The dimensionless Nusselt number and skin-friction are evaluated from Equations 

(5.24) and (5.27) as follows: 

1

10
sin

y

bdT
Nu

dy b
=

= = −    (5.30) 

( )
2 2

0 3 3 11 1
22 2

1 1 2 1 2 2 20

1
cosh( ) 1 .

sin( ) 2 sinh( )
y

m mm mdu
f m

dy b b b m m m

  


=

= = + − − + +

 

(5.31) 
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5.9 Numerical Results and Discussion 

In this section we study the behavior of the model with a varying Jeffery parameter, 

relaxation to retardation parameter, radiation parameter, Grashof number, and volume 

fraction of nanoparticles.  

  Recall that the thermophysical properties of the nanofluids are given in Figures 

5.1. The spherical shape of 2MoS nanoparticles is used. The base fluid is water.  

  Unless stated otherwise, the model is analyzed with the following input parameters: 

Gr 0.1,=  0.4,N =  Re 1,=  1 1, =  2, =  0 1, =  
1 1, = 0.1, = Figure 5.1-5.6, 5.6-5.12 

and 5.15-5.16 display the velocity, entropy generation, and the temperature profiles 

respectively.   

5.9.1 Impact of the Different Parameters on the Velocity of Nanofluids 

Figures 5.1 and 5.2 show the effects the ratio of relaxation to retardation time on 

the velocity profile. Clearly, the velocity of the NN 1( 0) = =  exceeds that of the non-

Newtonian JN 1( 1, 2) = = , and the non-Newtonian SGN 1( 0) = . The SGN has the 

lowest velocity followed by the non-Newtonian JN. The velocity of the nanofluid increases 

with an increase of 1.  An increase in the ratio of relaxation to retardation time parameter 

increases the viscoelasticity. In turn, the greater the elasticity of the nanofluid, the greater 

is the velocity. Further, the non-Newtonian JN becomes a NN when the relaxation time is 

equal to the retardation time, 1 0 = =  (Jena et al., 2016). When 1 0, 1 = =  the non-

Newtonian JN becomes a non-Newtonian SGN. The results show that the NN are less 

viscous, compared to the non-Newtonian JN and the SGN, which complies with the general 

law of viscosity. The velocity is minimal at the walls and maximal at the midpoint of the 

channel.   

The impact of the retardation time parameter on the velocity profile is shown in 

Figure 5.3. The velocity of the non-Newtonian JN decreases with an increase of the 
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retardation time parameter or the Jeffery parameter. Physically, this means that the 

nanofluid is getting thicker with increase of  . Consequently, non-viscous fluids move 

faster than viscous fluids.  

The impact of    is illustrated in Figure 5.4. An increase of   decreases the 

velocity due to the increase of the viscosity.  

The impacts of Gr  and N  are shown in Figures 5.5 and 5.6. Radiation increases 

the velocity by increasing the heat rate, which in turn increases the buoyancy force and 

reduces the viscosity. 

 

Figure 5.1  MDJN, SGN, NN vs. 1.   
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Figure 5.2  Comparison of MDJN, SGN, and NN. 

 

Figure 5.3  Impact of   on the velocity of MDJN. 
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Figure 5.4  Velocity of the MDJN vs. . 

 

Figure 5.5  Velocity of the MDJN vs. Gr . 
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Figure 5.6  Velocity of the MDJN vs. N . 

5.9.2 Impact of the Different Parameters on Entropy Generation 

Figures 5.7 and 5.8 show the effect of 1  and   on entropy generation. The graphs 

of the entropy for the non-Newtonian JN and SGN intersect. Therefore, entropy generation 

for nonp-Newtonian JN can exceed or not exceed that of the SGN. 

Figures 5.9, 5.10, and 5.11 show the entropy generation vs. 
1,Br −  ,Br and  , 

respectively.  Note that Figure 5.8 shows that the entropy generation decreases when the 

temperature increases. The heat flux increases the internal energy of the fluid.  Recall that 

the Brickman number is defined as the ratio of the heat produced by the viscous dissipation 

to the heat transfer by conduction. Clearly, an increase of Brickman number means that a 

larger amount of heat has been produced through viscous dissipation, and a smaller amount 

of heat has been conducted through the molecules of the fluids. Therefore, increasing the 

Brickman number increases entropy generation. This increases the randomness of the 
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system. On the other hand, decreasing the temperature decreases entropy generation.    

Figure 5.12, 5.13 and 5.14 display the impact of ,  Gr,  and N . Clearly, entropy 

generation decreases with an increase of the Grashof number, and increases with an 

increase of the volume fraction and the radiation parameter. The molecules of the liquid 

are arranged regularly when the volume fraction of nanoparticles is small. The irregularity 

increases with an increase of the amount of nanoparticles per unit volume.  

 

Figure 5.7  Entropy generation of MDJN vs. the SGN vs. 1 .  
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Figure 5.8  Impact of   on the entropy generation of MDJN. 

 

Figure 5.9  Impact of 
1Br −  on the entropy generation. 
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Figure 5.10  Impact of Br  on the entropy generation. 

 

Figure 5.11  Impact of   on the entropy generation. 
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Figure 5.12  Impact of   on the entropy generation. 

 

Figure 5.13  Impact of  Gr  on the entropy generation. 
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Figure 5.14  Impact of  N  on the entropy generation. 

5.9.3 Impact of the Different Parameters on Temperature of Nanofluids 

The impact of N on the temperature is shown in Figure 5.15. Clearly, heating the 

nanofluid increases the emission of radiation. As a result, the temperature increases.  

Figure 5.16 shows the impact of the volume fraction of nanoparticles on the temperature 

profile. Aaiza et al. (2015b) show that the temperature of NN decreases with an increase 

of volume fraction of nanoparticles. However, the effect of the volume fraction of 

nanoparticles on the temperature of a non-Newtonian MDJN, is different. Actually, in this 

case, the temperature decreases with increasing volume fraction of nanoparticles.  
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Figure 5.15  Impact of N  on the temperature of the MDJN. 

 

Figure 5.16  Impact of    on the temperature of the MDJN. 
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CHAPTER 6  

CONCLUSION 

6.1 Introduction 

This chapter summarizes the results and presents the limitation of the present work. 

Some ideas of the future research are discussed. 

6.2 Conclusions 

The Dissertation contributes to a better understanding of the TMDD and the 

relevant mathematical models. The proposed model makes it possible to simulate the 

behavior of the MN-blood flow inside the vessels and tissues. The impact of the MF and 

the position of the magnet are analyzed.  

The most important feature of the model is the possibility to evaluate the inverse 

impact of the MN on the blood flow. The numerical experiments show the possibility to 

evaluate the impact of the Reynolds number on the topology of the blood flow and the MN 

flow. For Re>100 and the MF characterized by [0.5,1] TB , the DF works against the 

MF. The TMDD region (low blood velocity) becomes small and the magnitude of the MN 

flow in this region decreases. The model is capable of simulating the impact of the MF and 

the position of the magnet. Positioning the magnet close to the desired TMDD region and 

applying a strong MF  1TB =  generates large TMDD regions. However, the topological 

structure of the blood flow is characterized by increased vorticity. In particular, the closest 

position of the magnet ( 5 cmb =  ) generates a complicated flow with several vortices 

extending across the entire vessel.  

Our conjecture, supported by medical (experimental) research, is that the increased 

vorticity may harm the patient in the case of long-term treatment. The model shows that 

Ref. code: 25645922300198GCX



112 

 

 

 

the size of the MN has an impact on the dynamics of the flow. Large nanoparticles create 

a large TMDD zone where the MN moves faster to the target. However, it is well known 

that the large MN may damage the blood vessels and cause blood leakage. This is not 

included in the model. Finally, the two-way coupled energy equations analyze the impact 

of the size of the MN on the temperature of the blood flow. The model shows that under 

certain conditions, the large MN include a temperature increase of about 2oC (from 37 to 

39oC) over a relatively large region inside the vessel. Clearly, such an increase combined 

with the increased vorticity may lead to a negative impact on the patient. 

In this Chapter 4, a three-layer mathematical model is discussed. The mass transport 

of magnetic nanoparticles (MN) from a blood vessel (artery) to the endothelial membrane 

and tissue via leaky tumor arteries has been investigated. The blood and tumor vessels are 

notoriously leaky. The general formulation for the effect of the magnetic field is that of 

BFD which incorporates both principles of MHD and FHD. To analyze the effect of 

Lorentz force, a special case has been discussed. The obtained result shows that the 

additional Lorentz force (MHD) reduces blood flow and suppresses the large vortices 

created by FHD flows. The MN flow, on the other hand, is not significantly affected. 

Despite the small disturbance in MN flow caused by Lorentz force, the model shows that 

MHD effects are significant when the applied magnetic field is uniform and smooth. 

 Another important result is the concentration of medicinal drugs. These drugs can 

also harm healthy cells. Therefore, medical drug effects must be weighed against MN size. 

Our findings suggest that as we increase the drug concentration from 30% to 50%, the size 

of the vortices increases. The difference is insignificant when d=250 nm. However, the 

TMDD zone grew significantly when the size of MN (20,000) was increased while keeping 

the drug concentration as 50%.  

 Furthermore, we investigate the concentration of drug-loaded MN in normal and 

leaky blood arteries, both with and without an external magnetic field. The result shows 

that MN starts leaving the vessel through endothelial pores when DM  and DT  are greater 

than zero and blood cells are leaky. However, the concentration remains inside the 
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endothelium membrane, preventing it from reaching tumorous tissue via diffusion alone. 

Nevertheless, the external MFs dragged the particles towards the tumorous tissue and 

enhanced the concentration of MN.  

The entropy analysis in a mixed convection Poiseulle flow of an MDJN has been 

analyzed in Chapter 5. The numerical results show that increasing the volume fraction of 

the MN decreases the velocity of ferrofluids. Besides the velocity of the nanofluid increases 

when the relaxation to retardation time parameter increases and vice versa. Increasing 

decreases the velocity since fluid gets more viscous. The velocity of the fluid increases 

with increasing the thermal Grashof number and radiation parameter. When the radiation 

parameter increases the temperature of the fluid increases as well. 

6.3 Limitations of the Present Work  

The model has a number of limitations. The magnet is represented as a pointwise 

wire. However, the shape of the magnet can vary. The corresponding MF depends on the 

shape and the orientation of the magnet. This effect has not been fully considered. The 

dependence of the heat transfer on the MF has not been considered either. The model does 

not include a number of important effects such as the Brownian motion of the 

nanoparticles, the acoustic radiation force, the lift force (Saffman & Magnus effects), and 

the thermophoretic force. Finally, the shape of the MN (an important factor) has not been 

included in the proposed two-phase equations. Therefore, future research includes further 

validation of the model using new experimental results and modifying the model to include 

the above-mentioned effects.  

6.4 Suggestions for Future Research 

Since validation of the proposed model depends upon the experimental studies. At 

this point, the measurements of the velocity of the MN-blood flow during TMDD are not 

available in the literature. The model has been validated using the measurements of the 

Nusselt number. Therefore, it is important, to validate the model once such measurements 
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are published. Alternatively, there might be a way to validate the model using the MRI 

images during the TMDD.        

6.4.1 Damage to Vessels and Tissues 

These magnetic nanoparticles are forcefully dragged to the biological environment 

(membranes and tissues). These forces depend on the shape and size of the MN. Modeling 

this damage is a subject of future research.  

6.4.2 Aggregation of MN  

A recent study (Karvelas et al., 2021) shows the importance of aggregation of the 

magnetic carriers. We propose future research along the lines of including these effects in 

the proposed model.   

6.4.3 Implanted Magnet  

When an external MF is applied, the magnet is not in direct contact with the 

cancerous region. However, several research works introduce a magnetic implant or stent. 

The magnets are implanted near the cancerous region. The TMDD region is in direct 

contact with the magnet. Although, a magnet implant is not suitable for every patient and 

every clinical condition. Potentially harmful procedures are often required for placing such 

magnets (Donson, 2006; Hayden & Hafeli, 2006; Shapiro, 2009; Cao & Han, 

2011). However, the technology is promising and can be simulated using the proposed 

model. 
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6.4.4 Longer Circulation Nanoparticles 

Most magnetic nanoparticles, when injected into the blood, are removed 

within minutes or hours by the cells of the mononuclear phagocyte system (MPS). When 

the MN is modified by adding Poly(Ethylene) Glycol (PEG) to its surface, this increases 

drastically enhances the half-life of the MN inside the bloodstream. The purpose of the 

“stealth” MN is to maximize the half-life (Albanese et al., 2012). Simulation of this effect 

using the proposed model is another direction of future research.  
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