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 ABSTRACT 

 

Tourism is the main factor to drive the GDP of Thailand since 1995. The 

revenue from the tourism sector is more than 15 percent of GDP every year since 2015. 

The components to support the sustainable development of Tourism are infrastructure, 

hotel industry, favorable government policy, and trade fairs. This thesis focuses only 

on infrastructure as the airport sector by measuring the full performances of the 6 main 

public airports in Thailand. These airports include Suvarnabhumi Airport (BKK) in 

Samut Prakan, Don Mueang International Airport (DMK) in Bangkok, Phuket 

International Airport (HKT) in Phuket, Chiang Mai International Airport (CNX) in 

Chiang Mai, Hat-Yai International Airport (HDY) in Songkhla, and Mae Fah Luang-

Chiang Rai International Airport (CEI) in Chiang Rai. These airports have handled 

more than 80 percent of all passengers in Thailand’s airports every year since 2008. All 

airports are operated by the Airports of Thailand Public Company Limited, one of the 

biggest Thai Companies. 

The thesis contains 2 major analysis parts. The first part analyses the full 

performance measurement of the airports between 2007 to 2020 by employing the data 

envelopment analysis (DEA), Malmquist total factor productivity index (MPI), and 

Simar and Wilson Bootstrapping regression. The DEA model is employed to measure 

the technical efficiency scores of the airports. The MPI model measures productivity 
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growths of the airports by decomposing into the technical efficiency change (TEC) and 

technical change (TC). The Simar-Wilson model employs to test which micro and 

macro factors will affect the airports’ efficiency scores. The findings of this part report 

the airport hubs can perform better than non-airport hubs. Both percent of international 

passenger and low-cost carriers (LCCs) movements increased the airports’ efficiency 

scores. The macro shocks of the global financial crisis between 2008 to 2009 and the 

COVID-19 pandemic in 2020 declined the performances of the airports. The airports 

had the trends of technical efficiency and total factor productivity progress since 2007, 

but these values had dropped more than 40 percent in 2020. 

The second part forecasts the recovery period of the airports after the 

COVID-19 occurred in 2020 for the next 10 years by predicting the efficiency scores 

and productivity changes of the airports between 2021 to 2030. The findings of this part 

report that every airport except BKK and HDY will spend at least 6 years to perform 

the same as in 2019. In the post-Covid-19 period, taking the advantage of new 

technologies will be the main factor to drive productivity growth. In contrast, the 

airports tend to regress in the working system in labor. 

Lastly, the findings in thesis can suggest various policies to the airports for 

transforming the traditional airports into smart airports within a few years after the 

pandemic. The policies include setting the new working systems such as Agile, Lean, 

and Talent density and adopting new technologies such as the internet of things (IOT), 

big data, and artificial intelligence (AI) to improve TEC and TC, respectively. These 

suggestions will help the airports in reducing the time for transformation. 

 

Keywords: Air Transportation, Performance Measurement, Linear Programming, Data 

Envelopment Analysis (DEA), Malmquist Total Factor Productivity Index (MPI), 

Simar and Wilson Bootstrapping Regression, Air Transportation, Aviation Industry. 
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CHAPTER 1 

INTRODUCTION 

 

1.1 Statement of Problem 

 

 International Civil Aviation Organization (ICAO) World Civil Aviation 

Report in 2016 forecasted that the world air traffic passenger movements between 2015 

to 2035 will be compound annual growth rate (CAGR) at 4.3% per year and 4.1% 

between 2015 to 2045. While in South-East Asia between 2015 to 2035, air traffic 

domestic movements will grow at 5.3% per year and 5.4% per year for air traffic 

international movements (CAAT, 2019). This supports that the aviation sector is kept 

going up with the expansion of the tourism sector. In Thailand, the gross domestic 

product (GDP) from the tourism sector was 17.95%, 17.79%, and 17.64% in 2017, 

2018, and 2019, respectively (Statista, n.d.). CAAT reported in 2018 (CAAT, 2018) 

that the statistics of air passenger traffic movements in Thailand had grown up from 58 

million passengers in 2009 to 162 million passengers in 2018. The compound annual 

growth rate in 10 years was 10.8%. It was 10% growth per year for international 

movements and 11.6% growth per year for domestic passenger movements. This 

evidence shows that the aviation industry is very important for the growth of the tourism 

sector in Thailand. 

 However, the rapid growth of the aviation sector is a big factor that allows 

this sector to emit the highest Greenhouse gas more than every sector. The report of the 

American Meteorological Society in 2018 showed that in 2018, Greenhouse gas, 

Carbon dioxide (𝐶𝑂2), Methane, and Nitrous oxide were the most emitted in our 

history. This made the weather of the world was hotter by 43% from 1990. The aviation 

sector emitted the highest Greenhouse gas between 1990 to 2018. Within this period, 

the Greenhouse gas was emitted from this sector more than 114 percent. Between 2013 

to 2018, the aviation sector emitted 𝐶𝑂2 more than 26 percent. In 2050, this sector could 

be the only sector that emitted the 𝐶𝑂2 as 25% of all sectors in the world (Voice News, 

2019). In 2019, the UN launched the program called “Carbon Offsetting and Reduction 
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Scheme for International Aviation (CORSIA)” to manage the 𝐶𝑂2 emissions problem 

from the aviation sector. This program began in 2020 (Carbon Brief, 2019) in the same 

as the COVID-19 pandemic period. We have been waiting for a long time to see that 

this program will help to mitigate the emission problem or not.  

 In 2020, the world had faced the beginning period of the COVID-19 

pandemic. It made all sectors encountered severe problems. For the aviation industry, 

ICAO reported an overall reduction of 2,690 million passengers around the world 

comparing with 2019. They were declined by more than 60%. The overall airports lost 

their passengers approximately 64.2% and airlines for 66.3%. The global economy 

faced a decline in GDP of 4.3% (ICAO, 2021). That was worse than the period of the 

global financial crisis in 2008-2009. For Thailand, the GDP had declined by 6.6 percent 

(IMF, 2021). After the COVID-19 pandemic, many analysts believe that the world will 

face a new way of living called the “New Normal” (Allianz, 2020; The Japan Times, 

2020). The COVID-19 pandemic accelerates the growth of adopting new technologies 

to firms and people. For example, the working from home policy was used during the 

lockdown period. Many people use the online platform for working, shopping, learning, 

and relaxing. As these results, the stock prices of technology companies grow rapidly 

in this period (Hoon Smart, 2020).  

 The post-COVID-19 pandemic will be the world that companies hire fewer 

workers. Some low-skilled jobs will be replaced by machines and technologies. Many 

companies had adapted their organizations because they faced technology disruptions 

before the COVID-19 pandemic in 2020. Most of them laid off their unskilled 

employees and adopted new technologies instead. They hired high-skilled workers who 

can be best with technologies to make the good performances of the firms. The example 

was many Startup companies. They hired a few high-potential workers and used a lot 

of new technologies to improve their productivity and the flow of operational 

efficiencies. This made most of them grew rapidly in the short term. The streaming 

company as Netflix shows their policy to hire only a group of very high-skilled 

employees called “Talent Density” (Hasting and Meyer, 2020; McCord, 2018). Many 
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rapid growth companies in this century use new management systems called “Lean” 

and “Agile” (The Standard, 2020). 

 The new environments will challenge the old fashion working system. 

Some companies who can adapt their organizations to new technologies efficiently can 

survive and otherwise cannot. The aviation industry is facing the same problem as other 

sectors. Some airports transformed their old airports into new airports by adopting new 

technologies to improve their performances. The new airport of this era is called “Smart 

Airport”. This kind of airport will adopt new technologies such as biometric facial 

recognition, artificial intelligence (AI), the internet of things (IOT), and 5G to reduce 

the time when passengers take at check-in counters. The face recognition technology 

will replace the old versions to confirm identity as a passport or citizen card. The future 

trend of aviation movements will use a lot of big data to improve their operations and 

make productivity improvements. These will help Smart Airports handle more 

passengers, aircraft movements, and tourists efficiently within the limiting area of the 

airports (Post Today, 2019; Smart SME, 2018; MGR Online, 2020). 

 Thailand is a tourism hub for international tourists. The total number of 

tourists in Thailand is more than 190 million in 2019 (Thailand’s Ministry of Tourism 

and Sports, 2020). Don Mueang International Airport (DMK) was the biggest hub of 

low-cost carriers (LCCs) passengers all around the world in 2015 and 2018. The 

aviation commercial industry is very important for the expansion of the tourism sector 

in Thailand. Currently, Thailand has 4 big airport hubs such as DMK, Suvarnabhumi 

Airport (BKK), Chiang Mai International Airport (CNX), and Phuket International 

Airport (HKT). BKK is the one of biggest airports in Asia. 

 The best performances of airports can help Thailand’s tourism sector to 

expand and accommodate the higher number of tourists who come into Thailand 

through the air transportation channel. The research in developed countries had studied 

the performance measurement of the airports in the Asia-Pacific region, Europe, North 

America, and South America. The results of productivity and efficiency measurement 

of the airports could help the stakeholders in the tourism and aviation sectors to design 

the policies to stimulate the growth of their businesses. 
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 This thesis is the first research project that measures the full performances 

of the 6 main public airports in Thailand. This thesis employs the data envelopment 

analysis (DEA) model to measure the operational efficiencies of the 6 main public 

airports in Thailand for 14 years and considers the external factors that affect the level 

of efficiencies such as political conflict, financial crisis, and the pandemic of the 

COVID-19. This study also employs Malmquist’s total factor productivity index (MPI) 

model to estimate the technology adoption rates of the individual airports. The MPI 

model can help to test the level of productivity changes for each airport in the study 

periods. Lastly, the thesis uses a basic time-series method to forecast the trends of 

efficiency and productivity in terms of technology adoptions and technical efficiency 

changes of the individual airports in the next 10 years after the pandemic passed. 

 

1.2 Motivation of the Study 

 

 A few research papers had studied about performance measurement of 

Thailand’s airports. Pandey (2016) studied the service quality of BKK and DMK. 

Kratudnak and Tippayawong (2018) studied the service quality of CNX and DMK. In 

addition, Sopadang and Suwanwong (2016) employed the DEA model to test whether 

CNX with the other 19 ASEAN airports existed efficiently in very short periods. 

Sopadang and Suwanwong (2016) studied the airport connectivity of DMK and tested 

whether DMK had enough capability to be the biggest LCCs airport in the world. 

However, nobody studied the productivity growth of airports in Thailand. There existed 

only one research measuring the efficiency levels of 6 airports in Thailand for a period 

(Rapee and Peng, 2014). However, no research paper seriously studied the full 

performance measurement of the 6 Thailand’s main public airports with the long period 

of data and considered the external factors that affected the operational efficiencies of 

the airports. This thesis will be the first research project in Thailand that considers the 

impact of the COVID-19 pandemic in 2020 with the newest data on the performance in 

both terms of efficiency and productivity changing of the aviation industry. Lastly, this 

thesis is the first work that considers the future performances of the 6 main public 
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airports of Thailand by applying the time-series method to forecast the number of 

passenger and aircraft movements of the individual airports for the next 10 years after 

the COVID-19 pandemic in 2020. Moreover, this is the first study that employs 

forecasting data to estimate the future performances of airports in Thailand. 

 To fill research gaps in the literature, this thesis measures the efficiency and 

productivity of the 6 main public airports of Thailand that cover the longest period of 

data. This study covers the data between the year BKK opened in 2007 until the recent 

year in 2020. They represent the full panel 14 years data of all the 6 main public airports 

in Thailand operated by the Airport of Thailand Public Company Limited (AOT). 

 This thesis employs the DEA model proposed by Charnes et al. (1978) to 

measure the technical efficiency levels of the airports and the MPI model proposed by 

Fare et al. (1994) to measure the productivity growth of the airports in the study periods. 

This study also employs the Simar and Wilson Bootstrapping Regression model (Simar 

and Wilson, 2007) to test whether external factors affect the airports’ efficiency scores. 

Lastly, this study uses a time-series method to forecast the recovery trends of the 

passenger and aircraft movements for the 6 main public airports of Thailand after the 

unexpected shock from the COVID-19 pandemic in 2020.    

 

1.3 Objectives 

 

This study comprises 5 major objectives as follows: 

1) Identifying whether the 6 main public airports of Thailand had good 

performances in terms of technical efficiency between 2007 to 2020 by 

employing the data envelopment analysis (DEA) model and showing 

which external factors in Thailand context contributed to the efficiency 

levels of the airports. 

2) Identifying whether the 6 airports had the productivity progress or 

regress between 2007 to 2020 by employing Malmquist’s total factor 

productivity index (MPI) model. 
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3) Discussing the impact of the COVID-19 pandemic of the year 2020 on 

the performances of the 6 main public airports in Thailand. 

4) Forecasting the future performances of the airports in the post-COVID-

19 period between 2021 to 2030 by employing the autoregressive (AR) 

model.  

5) Suggesting future policies to transform the traditional airports into 

Smart Airports. 

 

1.4 Contribution of the Study 

 

 This thesis divides the analysis part into 2 subparts: 1) Measuring the 

technical efficiency scores and productivity growth of the 6 main public airports in 

Thailand between 2007 to 2020 and discussing the impact of the COVID-19 pandemic 

in 2020. 2) Forecasting the recovery trends in terms of the operational efficiencies and 

productivity growth of the airports in the post-COVID-19 period between 2021 to 2030. 

 This study measures the past performances of the 6 main public airports 

and forecasts the future performances. The results of this thesis will help the authorities 

and stakeholders in the field of air transportation and the tourism sector to design the 

appropriate policies to promote sustainable development in this industry. They can 

employ the models in this thesis with their future and forecasting data to estimate their 

performances and capabilities to be the guidelines for improving their operating 

systems to get more productivity.  

 This thesis can be useful to policymakers and authorities to set the strategies 

for developing the environmental and new working systems of airports to accommodate 

the higher number of tourists in the future. These can guide the stakeholders in the air 

transportation field for adopting new working systems and new technologies to 

transform the old version airports into smart airports. 
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1.5 Organization of the Study 

 

 This thesis composes of 9 chapters. The next chapter discusses the 

overview of the 6 main public airports in Thailand. Chapter 3 discusses all theories that 

are applied to the methodologies in this study. Chapter 4 provides literature reviews of 

the previous studies. Chapter 5 discusses the methodologies employing in this thesis. 

Chapter 6 explains all secondary data and forecasting data by the AR model and the 

Excel Linear Forecast function. Chapter 7 reports all results. Discussion, limitations, 

and suggestions are presented in chapter 8. Lastly, chapter 9 is the conclusion. 
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CHAPTER 2 

AN OVERVIEW OF THE 6 MAIN PUBLIC AIRPORTS IN 

THAILAND 

 

 Thailand has 39 public airports in the entire country. The 6 main public 

airports are operating by Airports of Thailand Public Company Limited (AOT). The 2 

international airports are in Bangkok and the other 4 international airports have located 

at regional sites such as Chiang Mai, Phuket, Songkhla, and Chiang Rai. AOT is one of 

the biggest companies in Thailand and the biggest airport organization in the world.  

 The 29 regional airports are operating by Thailand’s Department of 

Airports (DOA). Only one airport belongs to Royal Thai Navy called “U-Tapao Pattaya 

International Airport (UTP)”. The last 3 airports are under the Bangkok Airways Public 

Company Limited. They are Sukhothai Airport (THS), Samui Airport (USM), and Trat 

Airport (TDX). Table 2.1 shows the list of all 39 public airports in Thailand. 

 

Table 2.1 

List of public airports in Thailand 

Airport name Province served IATA airport code Operator 

Buriram Airport Buriram BFV DOA 

Suvarnabhumi 

Airport 
Samut Prakan BKK AOT 

Mae Fah Luang-

Chiang Rai 

International 

Airport 

Chiang Rai CEI AOT 

Chumphon Airport Chumphon CJM DOA 

Chiang Mai 

International 

Airport 

Chiang Mai CNX AOT 
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Table 2.1 

List of public airports in Thailand (Cont.) 

Airport name Province served IATA airport code Operator 

Don Mueang 

International 

Airport 

Bangkok DMK AOT 

Hat-Yai 

International 

Airport 

Songkhla HDY AOT 

Mae Hong Son 

Airport 
Mae Hong Son HGN DOA 

Hua Hin Airport 
Prachuap Khiri 

Khan 
HHQ DOA 

Phuket 

International 

Airport 

Phuket HKT AOT 

Krabi International 

Airport 
Krabi KBV DOA 

Khon Kaen 

Airport 
Khon Kaen KKC DOA 

Nakhon Phanom 

Airport 
Nakhon Phanom KOP DOA 

Loei Airport Loei LOE DOA 

Lampang Airport Lampang LPT DOA 

Mae Sot Airport Tak MAQ DOA 

Betong Airport Yala N.A. DOA 

Nakhon 

Ratchasima 

Airport 

Nakhon 

Ratchasima 
NAK DOA 

Narathiwat Airport Narathiwat NAW DOA 
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Table 2.1 

List of public airports in Thailand (Cont.) 

Airport name Province served IATA airport code Operator 

Nan Nakhon 

Airport 
Nan NNT DOA 

Nakhon Si 

Thammarat 

Airport 

Nakhon Si 

Thammarat 
NST DOA 

Pattani Airport Pattani PAN DOA 

Phisanulok Airport Phitsanulok PHS DOA 

Phetchabun 

Airport 
Phetchabun PHY DOA 

Phrae Airport Phrae PRH DOA 

Surin Airport Surin PXR DOA 

Pai Airport Mae Hong Son PYY DOA 

Roi Et Airport Roi Et ROI DOA 

Sakon Nakhon 

Airport 
Sakon Nakhon SNO DOA 

Trat Airport Trat TDX Bangkok Airways 

Sukhothai Airport Sukhothai THS Bangkok Airways 

Tak Airport Tak TKT DOA 

Trang Airport Trang TST DOA 

Ubon Ratchathani 

Airport 
Ubon Ratchathani UBP DOA 

Ranong Airport Ranong UNN DOA 

Surat Thani 

International 

Airport 

Surat Thani URT DOA 
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Table 2.1 

List of public airports in Thailand (Cont.) 

Airport name Province served IATA airport code Operator 

Samui 

International 

Airport 

Songkhla USM Bangkok Airways 

Udon Thani 

International 

Airport 

Udon Thani UTH DOA 

U-Tapao 

International 

Airport 

Rayong UTP Royal Thai Navy 

 

Note. From AOT’s Corporate Presentation (2020) and List of airports in Thailand (n.d.).  

 

 This thesis focuses on the 6 main public airports in Thailand operating by 

AOT. These 6 airports handled the number of passenger movements more than 86% of 

all airports in Thailand in 2019. The total number of passengers of all airports was 165 

million passengers in 2019, but only 6 airports of AOT handled 143.02 million 

passengers (AOT’s Corporate Presentation, 2019; CAAT, 2019). Table 2.2 shows the 

comparing the total number of aircraft movements between the 6 main public airports 

and all public airports in Thailand. Figure 2.1 uses the information in Table 2.2 to plot 

the graphs. Table 2.3 shows the comparing the total number of passenger movements 

between the 6 main public airports and all public airports in Thailand. Figure 2.2 also 

uses the information in Table 2.3 to plot the graphs. Both Table 2.2 and Table 2.3 show 

that the 6 main public airports handled the total number of passenger and aircraft 

movements more than 80 percent of all airports every year since 2008. 

 This chapter discusses the background of AOT, the future development 

plan of the 6 airports, and the severe problem of the COVID-19 pandemic on these 

airports. This thesis measures the full performances of the 6 main public airports in 

Thailand in both terms of technical efficiency and productivity growth for 14 years and 
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forecasts the future performances of these airports for the next 10 years. This 

information will be useful for the policymakers to set their strategies and stimulate the 

sustainable development growth of the tourism sector in Thailand after the crisis in 

2020. 

 

Table 2.2 

Comparing the total passenger movements that the 6 main public airports of AOT 

handled with all public airports in Thailand between 2008 to 2020 

Year 

Number of passengers of 

AOT 

(million) 

Number of passengers of 

Thailand 

(million) 

Ratio 

2008 54.41 57 95.46% 

2009 53.94 58 93.00% 

2010 58.24 63 92.44% 

2011 66.37 74 89.69% 

2012 76.13 83 91.72% 

2013 88.29 97 91.02% 

2014 90.53 104 87.05% 

2015 109.82 127 86.47% 

2016 121.71 141 86.32% 

2017 133.12 152 87.58% 

2018 140.47 162 86.71% 

2019 143.02 165 86.68% 

2020 46.64 58 80.41% 

 

Note. From CAAT’s air transportation statistics between 2017 to 2020 and AOT’s air 

traffic reports between 2015 to 2020. 
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Table 2.3 

Comparing the total aircraft movements that the 6 main public airports of AOT handled 

with all public airports in Thailand between 2008 to 2020 

Year 

Total aircraft movements 

of AOT  

(thousand) 

Total aircraft movements 

of Thailand  

(thousand) 

Ratio 

2008 371.56 415 89.53% 

2009 362.48 422 85.89% 

2010 395.10 461 85.71% 

2011 449.48 540 83.24% 

2012 499.49 593 84.23% 

2013 582.41 698 83.44% 

2014 624.17 768 81.27% 

2015 727.75 894 81.40% 

2016 790.35 978 80.81% 

2017 833.08 1038 80.26% 

2018 887.60 1098 80.84% 

2019 893.52 1068 83.66% 

2020 395.11 500 79.02% 

 

Note. From CAAT’s air transportation statistics between 2017 to 2020 and AOT’s air 

traffic reports between 2015 to 2020. 
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Figure 2.1 

Comparing the total passenger movements that the 6 main public airports of AOT 

handled with all public airports in Thailand between 2008 to 2020 

 

 

 

 

 

 

 

 

 

 

Note. From CAAT’s air transportation statistics between 2017 to 2020 and AOT’s air 

traffic reports between 2015 to 2020. 

 

Figure 2.2 

Comparing the total aircraft movements that the 6 main public airports of AOT handled 

with all public airports in Thailand between 2008 to 2020 

 

 

 

 

 

 

 

 

 

 

Note. From CAAT’s air transportation statistics between 2017 to 2020 and AOT’s air 

traffic reports between 2015 to 2020. 

Ref. code: 25646204040080WKG



15 

 
 

 

2.1 Background of AOT 

 

 Airports of Thailand Public Company Limited (AOT) is a public limited 

company and a leader of Thailand’s airport business operator. Thailand Ministry of 

Finance holds stocks of AOT for 70% or 10 billion stocks. “Thailand Top Companies 

listed by Market Cap on 1 January 2020” reports that AOT was the second-highest 

company of Thailand after PTT Public Company Limited and has a value of around 

37.711 billion USD. AOT ranked 433th biggest company in January 2020 

(Value.Today, 2021). In 2018, AOT was the highest value of all airport companies 

(Kaohoon, 2018; Chiang Mai News, 2018; Money Buffalo, 2020). Table 2.4 shows the 

first 10 major shareholders of AOT on 13 December 2019. 

 

Table 2.4 

The first 10 major shareholders of AOT as of 13 December 2019 

 

 

 

 

 

 

 

 

Note. From AOT’s Annual Report 2020, p.38. 
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 “The main business lines of AOT are managing, operating, and developing 

airports. Currently, AOT has 6 international airports under responsibility i.e., 

Suvarnabhumi Airport (BKK), Don Mueang International Airport (DMK), Phuket 

International Airport (HKT), Chiang Mai International Airport (CNX), Hat Yai 

International Airport (HDY), and Mae Fah Luang-Chiang Rai International Airport 

(CEI). 

 All airports of AOT handle both domestic and international freights. AOT’s 

main revenue is derived from 2 main channels. Aeronautical revenue includes landing 

charge, parking charge, passenger service charge, and aircraft service charge. Non-

Aeronautical revenue includes concession revenue, office and real property rents, and 

service revenues. (AOT’s Business Characters, n.d.)” 

 Before BKK opened in 2006, “DMK was the main international airport of 

Thailand between 1924 to 2006 and transitioned in 2007 to become the low-cost 

airlines' hub for Bangkok (Suvarnabhumi Airport, n.d.)”. DMK was known as 

“Bangkok International Airport”. This airport is considered as “one of the world’s 

oldest international airports and Asia’s oldest operating airports. It was officially 

opened as a Royal Thai Air Force base on 27 March 1914. Commercial freights began 

in 1924, making it one of the world’s oldest commercial airports. In September 2006, 

DMK was closed and replaced by the BKK, before reopening on 24 March 2007 after 

renovations. Since the opening of BKK, DMK has become a regional commuter freight 

hub and the low-cost carriers (LCCs) hub (Don Mueang International Airport, n.d.)”. 

In 2015 and 2017, DMK became the world’s largest low-cost carriers airport (CAPA 

CENTRE FOR AVIATION, 2015; MGR ONLINE, 2015; CAPA CENTRE FOR 

AVIATION, 2018). 

 BKK covers an area of 8,000 acres, making it “one of the biggest 

international airports in Southeast Asia and a regional hub for aviation. The airport is 

also a major cargo air freight hub (20th busiest in 2019), which has a designated Airport 

Free Zone, as well as road links to the East Economic Corridor (EEC) on Motor way 7. 

In 2019, ACI reported BKK was the 19th busiest airport in the world. BKK was 21th 
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busiest airport between 2017 to 2018 and 20th in 2016. (Suvarnabhumi Airport, n.d.; 

List of busiest airports by passenger traffic, n.d.)” 

 The average ranking of Thailand’s busiest airports of AOT between 2009 

to 2019 is following as BKK, DMK, HKT, CNX, HDY, and CEI. BKK, DMK, HKT, 

CNX, and HDY were 1st, 2nd, 3rd, 4th, and 5th busiest of all airports in Thailand, 

respectively. CEI was the 9th busiest airport in Thailand after Krabi International 

Airport (KBV), Samui International Airport (USM), and Udon Thani International 

Airport (UTH), respectively (List of the busiest airports in Thailand, n.d.). USM is 

operated by Bangkok Airways Public Company Limited, while KBV and UTH are 

operated by Thailand’s Department of Airports. 

 

2.2 Airports of AOT long term development projects 

 

 In the part of factors affecting future operation in AOT’s Annual Report 

2020, it has been reported about the phase 2 development plan of BKK. There have 

been “95% progress in the construction of Midfield Satellite building 1 (SAT-1). 

Currently, it is in the stage of the architecture, interior design, and landscaping and 

installation of the building’s systems. Apart from this, the installation of the Automated 

People Mover (APM) is approximately 71% in progress and the baggage handling 

system is 76% in progress. The construction of airline offices and the eastern car parks 

are expected to be completed in 2020. The installation of building’s systems for the car 

park is expected to be completed around 2021 (AOT’s Annual Report, 2020, p.144-

145).”  

 “AOT plans to increase revenue during the 2021 aviation crisis by raising 

income from non-aeronautical revenue such as a pre-export product quality certification 

center or Certify Hub, as well as Suvarnabhumi Airport City, AOT’s subsidiaries and 

application of AOT’s airports. This will allow AOT to provide a complete range of 

airport services. It will make Thailand being center for trade, investment, enhance 

competitiveness, and tourism growth.  It will also be enabling the country’s economy 
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to recover once the spread of COVID-19 is under control and make Thailand becoming 

the region’s leading aviation and air cargo hub (AOT’s Annual Report, 2020, p.145).” 

 For the long term development projects of the 6 airports, “the airport 

development master plans of the 6 airports under AOT’s responsibility have been 

developed in consideration of the necessity for airport capacity expansion to 

accommodate a continuous increase in air traffic volume and maintain the country’s 

opportunities for economic growth, trade, investment, tourism, and services as well as 

connectivity of transport network systems in different modes (land, rail, and sea). In the 

context of national development, changes vary according to the environment and 

diverse modes and purposes of travel/transport. As such, the development of Airport 

Development Master Plans must be considered based on the national transport systems 

development in various types that connect transport networks to AOT’s transports 

(AOT’s Annual Report, 2020, p.158).” 

 For Suvarnabhumi Airport (BKK) Development Master Plan, BKK is 

currently developing as project phase 2 that can increase the capacity of this airport to 

handle 60 million passengers per year. This project consists of the construction of the 

Midfield Satellite 1 (SAT-1), installation of the Automated People Mover (APM) to 

connect the main Passenger Terminal, the baggage handling system, and the 

construction of the Airline Office Building and the east car park. All of these are 

expected to complete within 2021. For the development project in phase 3, BKK will 

increase capacity to handle 90 million passengers per year. This project includes the 

construction of the north expansion and will open the 3rd runway in 2023. In phase 4, 

BKK has a plan to increase capacity to handle 105 million passengers per year by 

constructing the Midfield Satellite 2 (SAT-2). This project is expected to complete in 

2026. The last phase will increase passenger handling capacity from 105 million 

passengers to 150 million passengers per year. This project will construct the South 

Passenger Terminal and the 4th runway. This project is expected to complete within 

2030. 

 For Don Mueang International Airport (DMK) Development Master Plan, 

the third phase is expected to be completed in 2026. This project will increase the 
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capacity of DMK to handle 40 million passengers per year. This project includes the 

removal of the existing domestic passenger terminal, construction of the Passenger 

Terminal 3 to handle more than 18 million international passengers per year with the 

south public utility systems, and improving the Passenger Terminal 1. 

 Chiang Mai International Airport (CNX) Development Plan is currently in 

phase 1 between 2020 to 2024. This plan includes the construction of the International 

Passenger Terminal, improvement of the existing passenger terminal, extension of 

parking bays, new parallel of taxiway, and the airport support system for increasing 

passenger handling capacity to 16.5 million passengers per year. Phase 2 will continue 

after phase 1 is completed. The second phase includes the extension of the passenger 

terminal and apron to handle 20 million passengers per year.  

 Hat Yai International Airport (HDY) Development Plan is currently in 

phase 1 between 2021 to 2025. This plan includes increasing the capacity of the airport 

to accommodate 10.5 million passengers per year. The project consists of the 

construction and extension of the passenger terminal, improving the landside road 

system, improving and extension of the public utility systems, extending the parking 

bays, and constructing partial parallel taxiways. 

 Phuket International Airport (HKT) Development Master Plan is currently 

in phase 2. It consists of the extension of the south apron and the International Passenger 

Terminal. After completing this project, HKT can handle 18 million passengers per 

year. This project is expected to complete in 2024. 

 Mae Fah Luang-Chiang Rai International Airport (CEI) Development 

Master Plan in phase 1 is between 2024 to 2028. This project includes the extension of 

the passenger terminal and the construction and extension of the taxiways to increase 

passenger handling capacity to 4.8 million per year. The second phase is expected to 

complete within 2033. Phase 2 Development Plan of CEI will be the extension of the 

passenger terminal and parking bays that can accommodate 5.2 million passengers per 

year. 
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2.3 Problem in 2020 

 

 AOT’s Annual Report 2020 reported that the impact of the COVID-19 

pandemic in 2020 made the revenue of AOT decreased by 50.34% from 2019 to 2020. 

The profit in 2019 equals 25.026 billion baht declined to 4.320 billion baht in 2020. 

The profit from 2019 to 2020 had decreased by 82.74%. This report shows that the 

impact of the COVID-19 pandemic in 2020 made businesses are related to airlines, 

airports, and tourism faced with the severe problem. 

 AOT has policies to help concessionaires and airlines affected by the 

COVID-19 as approved by the Board of Director’s meeting in February 2020, April 

2020, and July 2020, respectively. At the end of September 2020, the “Board approved 

the extension of measures to help concessionaries and airlines about rental fees, 

building service charges, and fixed monthly compensation charges including the fee 

under the law on air navigation until 31st March 2022 instead of 31st December 2020 as 

previously specified. This is to lessen the burden of concessionaires and airlines during 

the crisis period (AOT’s Annual Report, 2020, p.137-138)”. Table 2.5 shows operating 

results for the year ended 2020. Table 2.6 shows Aeronautical revenues between 2019 

to 2020. Table 2.7 shows Non-Aeronautical revenues between 2019 to 2020. Table 2.8 

shows other incomes of AOT between 2019 to 2020. Table 2.9 shows total expenses 

between 2019 to 2020. 
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Table 2.5 

Operating results for the year ended 2020 

 

 

 

 

 

 

 

 

 

Note. From AOT’s Annual Report 2020, p.138. 

 

Table 2.6 

Aeronautical Revenues between 2019 to 2020 

 

 

 

 

Note. From AOT’s Annual Report 2020, p.139. 
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Table 2.7 

Non-Aeronautical Revenues between 2019 to 2020 

 

 

 

 

 

Note. From AOT’s Annual Report 2020, p.140. 

 

Table 2.8 

Other incomes between 2019 to 2020 

 

 

 

 

Note. From AOT’s Annual Report 2020, p.140. 
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Table 2.9 

Total expenses between 2019 to 2020 

 

 

 

 

 

 

 

 

Note. From AOT’s Annual Report 2020, p.141. 

 

 This shows that the unexpected shock from the COVID-19 pandemic in 

2020 impacts to decline a lot in revenue, profit, number of passengers, and number of 

aircraft movements of every airport of AOT. In AOT’s Annual Report 2020, the cost 

of employees had decreased by 23.09% because in 2020, AOT did not set up accrued 

bonuses for employees. It is the first year in ten years that AOT does not pay the bonus 

to the employees. Table 2.10 shows total aircraft traffic statistics in the fiscal year 2019-

2020 of all airports of AOT. Table 2.11 shows low-cost carriers (LCCs) traffic statistics 

in the fiscal year 2019-2020 of all airports of AOT. Table 2.12 shows the total number 

of passenger movement statistics in the fiscal year 2019-2020 of all airports of AOT. 

Table 2.13 shows only low-cost carriers (LCCs) passenger movement statistics in the 

fiscal year 2019-2020 of all airports of AOT. 
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Table 2.10 

Total aircraft movements of all 6 airports of AOT in the fiscal year 2019-2020 

 

 

 

 

 

 

 

Note. From AOT’s Corporate Presentation 2020, p.5. 

 

Table 2.11 

Total low-cost-carriers (LCCs) movements of all 6 airports of AOT in the fiscal year 

2019-2020 

 

 

 

 

 

 

 

 

Note. From AOT’s Corporate Presentation 2020, p.5. 
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Table 2.12 

Total number of passenger movements of all 6 airports of AOT in the fiscal year 2019-

2020 

 

 

 

 

 

 

 

 

Note. From AOT’s Corporate Presentation 2020, p.6. 

 

Table 2.13 

Total LCCs passenger movements of all 6 airports of AOT in the fiscal year 2019-2020 

 

 

 

 

 

 

 

 

Note. From AOT’s Corporate Presentation 2020, p.6. 
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CHAPTER 3 

THEORETICAL FRAMEWORK 

 

 This chapter discusses the theories used for this study. The first part of this 

chapter begins with the concept of production theory that is represented as sets. The 

second part emphasizes the theory of distance function that can be applied to both 

efficiency and productivity measurement. The next section focuses on the theory of 

efficiency in terms of input and output orientations. The fourth part shows the concept 

of efficiency in both constant return to scale (CRTS) and decreasing return to scale 

(DRTS). Next, the fifth part emphasizes measuring the technical efficiency by applying 

the linear programming model called the “data envelopment analysis (DEA)” model. 

This part discusses both input- and output-oriented DEA models. The next section 

discusses the basic idea of total factor productivity (TFP) measurement. TFP change 

can be decomposed into technical change, technological change, and scale efficiency 

change. Finally, the last section presents Malmquist’s total factor productivity index 

(MPI) model. This thesis employs the MPI model to measure and decompose the 

productivity growth in the study periods. 

 

3.1 Theory of Production Economics Using Sets 

 

 This section aims to describe the relationship between inputs and outputs 

that are given by the technology in the production process. Consider a production 

process consisting of 𝑀 outputs and 𝐾 inputs, the output quantities are represented by 

a nonnegative vector of outputs denoted as 𝑦 = (𝑦1, … , 𝑦𝑀) ∈ 𝑅+
𝑀, the output prices are 

represented by a strictly positive vector of output prices denoted as 𝑝 = (𝑝1, … , 𝑝𝑀) ∈

𝑅++
𝑀 , the input quantities are represented by a nonnegative vector of inputs denoted as 

𝑥 = (𝑥1, … , 𝑥𝑘) ∈ 𝑅+
𝐾, and the input prices are represented by a strictly positive vector 

of input prices denoted as 𝑤 = (𝑤1, … , 𝑤𝑘) ∈ 𝑅++
𝐾 . 
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 Consider a production process that uses multiple inputs with technologies 

to produce multiple outputs. Production technology (Eq. 3.1) is the set of any feasible 

input and output vectors in the production process denoted as  

 

 𝑇 = {(𝑦, 𝑥): 𝑥 𝑐𝑎𝑛 𝑝𝑟𝑜𝑑𝑢𝑐𝑒 𝑦} (3.1) 

 

 The concept of production technology is useful to represent a “production 

frontier”. The production frontier or 𝑓(𝑥) (Eq. 3.2) is the maximum output that can be 

produced by given the input vector. It can be defined by technology set (𝑇), output sets 

(𝑃(𝑥)) or input sets (𝐿(𝑦)). Figure 3.1 shows the production frontier curve defined by 

using the concept of production technology. 

 

 

 𝑓(𝑥) = max{𝑦: (𝑦, 𝑥) ∈ 𝑇} (3.2) 

                = max{𝑦: 𝑦 ∈ 𝑃(𝑥)} = max {𝑦: 𝑥 ∈ 𝐿(𝑦)} 

 

Figure 3.1 

Production frontier curve 

 

 

 

 

 

 

 

 

 

 

 

Note. From Fare et al. (1996), p.10. 

 

 𝐿(𝑦) is the input sets on the interval [𝑥, ∞]. It is the sets of input vectors 

(𝑥) used to produce each output vector (𝑦) and it is denoted as 
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 𝐿(𝑦) = {𝑥: (𝑦, 𝑥) ∈ 𝑇} (3.3) 

   

 𝑃(𝑥) is the output sets on the interval [0, 𝑦]. It is the sets of output vectors 

(𝑦) produced by each input vector (𝑥) and it is denoted as 

 

 𝑃(𝑥) = {𝑦: (𝑦, 𝑥) ∈ 𝑇} (3.4) 

 

3.2 Production technology with multiple outputs 

 

 The distance function is defined to represent a production technology when 

multiple inputs are used to produce multiple outputs. Noted that the basic production 

frontier cannot use to describe this production technology. Shephard (1953, 1970) 

proposed a distance function to describe the structure of production technology with 

multiple inputs and multiple outputs. 

 The distance functions have 2 types such as input distance function (𝐷𝐼) 

and output distance function (𝐷𝑜). 

 For the input distance function (𝐷𝐼), it is defined as the maximum amount 

by which a producer’s input vector can be radially contracted and remaining feasible 

for the output vector produces. 𝐷𝐼  adopts an input-conserving approach to the 

measurement of the distance from a producer to the boundary of production 

possibilities. It can be defined as 

 

 𝐷𝐼(𝑦, 𝑥) = max {𝜆∗:
𝑥

𝜆∗
𝜖 𝐿(𝑦)} (3.5) 

 

 Where 𝐿(𝑦)  is the input sets, it represents the “isoquant” curve which 

shows all combinations of all 𝑥 used to produce a constant quantity of output 𝑦. The 

region of input sets is bounded below by the curve. 𝜆∗ is the maximum quantities of 

input reduced that can be feasible to produce output (𝑦). 
𝑥

𝜆∗ is the minimum of input 

quantities used to produce constant of output sets (𝑃(𝑥)). 
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 Consider 𝐾 =  2 inputs. Figure 3.2 shows that the input vector 𝑥 is feasible 

for output 𝑦 , but 𝑦  can be produced with the radially contracted input vector (
𝑥

𝜆∗ ). 

Hence, 𝐷𝐼(𝑦, 𝑥) = 𝜆∗ =
𝑂𝐴

𝑂𝐵
≥ 1. 

 

Figure 3.2 

Input distance function (𝐷𝐼) 

 

 

 

 

 

 

 

 

 

Note. From Fare et al. (1996), p.20. 

 

 The properties of the input distance function are summarized as follows: 

1) 𝐷𝐼(0, 𝑥) =  ∞ 𝑎𝑛𝑑 𝐷𝐼(𝑦, 0) = 0 

2) 𝐷𝐼(𝑦, 𝜆𝑥) = 𝜆𝐷𝐼(𝑦, 𝑥) 𝑓𝑜𝑟 𝜆 > 0 

3) 𝐷𝐼(𝑦, 𝜆𝑥) ≥ 𝜆𝐷𝐼(𝑦, 𝑥) 𝑓𝑜𝑟 𝜆 ≥ 1 

4) 𝐷𝐼(𝜆𝑦, 𝑥) ≤ 𝐷𝐼(𝑦, 𝑥) 𝑓𝑜𝑟 𝜆 ≥ 1 

5) 𝐷𝐼(𝑦, 𝑥) 𝑖𝑠 𝑐𝑜𝑛𝑐𝑎𝑣𝑒 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛 𝑖𝑛 𝑥. 

 

 For the output distance function (𝐷𝑜), it is defined as the minimum amount 

by which an output vector can be radially deflated and remaining producible with a 

given input vector. 𝐷𝑜 takes an output-expanding approach to the measurement of the 

distance from a producer to the boundary of production possibilities. It can be defined 

as 

 

𝑥1 

𝑥2 

𝐴 

𝐵 

𝑥 
𝑥

𝜆∗ൗ  

𝑂 
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𝑦2 

𝑦1 

𝐴 

𝐵 
𝑦 

𝑦
µ∗ൗ  

𝑂 

 𝐷𝑜(𝑥, 𝑦) = min {𝜇∗:
𝑦

𝜇∗
𝜖 𝑃(𝑥)} (3.6) 

 

 Where 𝑃(𝑥) is the output sets, it represents the “production possibilities 

curve” which shows the various output combinations that can be produced by using a 

given input level (𝑥). The region of output sets is bounded above by the curve. 𝜇∗ is the 

minimum quantities of output expanded while using the fixed amounts of input (𝑥). 
𝑦

𝜇∗ 

is the maximum of output quantities produced by using the constant of input sets (𝐿(𝑦)). 

 Consider 𝑀 =  2  outputs. Figure 3.3 shows that the output vector 𝑦  is 

producible with the input 𝑥, but the radially expanded output vector (
𝑦

𝜇∗) can be also 

produced by using the input 𝑥. Hence, 𝐷𝑜(𝑥, 𝑦) =  𝜇∗ =
𝑂𝐴

𝑂𝐵
≤ 1. 

 

Figure 3.3 

Output distance function (𝐷𝑜) 

 

 

 

 

 

 

 

 

 

Note. From Fare et al. (1996), p.12. 
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 The properties of the output distance function are summarized as follows: 

1) 𝐷𝑜(𝑥, 0) =  0 𝑎𝑛𝑑 𝐷𝑜(0, 𝑦) = ∞ 

2) 𝐷𝑜(𝑥, 𝜆𝑦) = 𝜆𝐷𝑜(𝑥, 𝑦) 𝑓𝑜𝑟 𝜆 > 0 

3) 𝐷𝑜(𝜆𝑥, 𝑦) ≤ 𝐷𝑜(𝑥, 𝑦) 𝑓𝑜𝑟 𝜆 ≥ 1 

4) 𝐷𝑜(𝑥, 𝜆𝑦) ≤ 𝐷𝑜(𝑥, 𝑦) 𝑓𝑜𝑟 0 ≤ 𝜆 ≤ 1 

5) 𝐷𝑜(𝑥, 𝑦) 𝑖𝑠 𝑐𝑜𝑛𝑣𝑒𝑥 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛 𝑖𝑛 𝑦. 

 

3.3 A Measurement of Efficiency 

 

 Debreu (1951) and Farrell (1957) defined the technical efficiency 

measurement into input and output orientations. There can be used to measure the 

performance of a firm. Technical efficiency can be measured using both production 

frontier and distance function. 

 

1) Input-oriented technical efficiency ( 𝑇𝐸𝑖 ) reflects the ability of a firm to 

minimize inputs while still producing the same amount of outputs. Input-

oriented technical efficiency equals an inverse of the input distance function 

(𝐷𝐼). It is defined as 

 

𝑇𝐸𝑖(𝑦, 𝑥) = min{𝜃: 𝑦 ≤ 𝑓(𝜃𝑥)} ≤ 1  

                                                      =  [𝐷𝐼(𝑦, 𝑥)]−1  

                                                      = min {𝜃: 𝐷𝐼(𝑦, 𝜃𝑥) ≥ 1} (3.7) 

                          

 Where 𝐷𝐼(𝑦, 𝑥) is input distance function, and 𝜃  is the minimum of all 

input quantities proportionally reduced to produce the same output quantities. In other 

words, 𝜃 =  
1

𝜆∗  . Figure 3.4 shows the underlying idea of input-oriented technical 

efficiency. 
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Figure 3.4 

The idea of input-oriented technical efficiency 

 

 

 

 

 

 

 

 

 

Note. From Fare et al. (1996), p.20. 

 

2) Output-oriented technical efficiency (𝑇𝐸𝑜 ) reflects the ability of a firm to 

maximize outputs while still using a fixed amount of the inputs. Output-oriented 

technical efficiency equals output distance function (𝐷𝑜). It is defined as 

 

𝑇𝐸𝑜(𝑥, 𝑦) = [max{𝜙: 𝜙𝑦 ≤ 𝑓(𝑥)}]−1 ≤ 1  

                                                  =  𝐷𝑜(𝑥, 𝑦)  

                                                 = max {𝜙: 𝐷𝑜(𝑥, 𝜙𝑦) ≤ 1} (3.8) 

 

 Where 𝐷𝑜(𝑥, 𝑦) is output distance function, and 𝜙 is the maximum of all 

output quantities proportionally increased by using the same amount of input quantities. 

In other words, 𝜙 =  
1

𝜇∗
 . Figure 3.5 shows the underlying idea of output-oriented 

technical efficiency. 

 

 

 

 

 

 

𝑥1 

𝑥2 

𝐴 

𝐵 

𝑥 

𝜃𝑥 

𝑂 
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𝑦2 

𝑦1 

𝐴 

𝐵 
𝑦 

𝜙𝑦 

𝑂 

Figure 3.5 

The idea of output-oriented technical efficiency 

 

 

 

 

 

 

 

 

Note. From Fare et al. (1996), p.12. 

 

3.4 Efficiency and Return to Scale. 

 

 The relationship between input- and output-oriented technical efficiency is 

shown in the 2 figures below. Figure 3.6 shows production technology with the constant 

return to scale (CRTS) assumption. Figure 3.7 shows production technology with the 

decreasing return to scale (DRTS) assumption (Färe and Lovell, 1978). 

 

Figure 3.6 

Input- and Output-Orientated Technical Efficiency Measures and Return to Scale 

(CRTS) 

 

 

 

 

 

 

 

 

Note. From Coelli et al. (2005), p.55. 
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 The input- and output-oriented technical efficiency under constant return 

to scale (CRTS) can be measured by 
𝐴𝐵

𝐴𝑃
=

𝐶𝑃

𝐶𝐷
. Therefore, 𝑇𝐸𝑖 = 𝑇𝐸𝑜. 

 

Figure 3.7 

Input- and Output-Orientated Technical Efficiency Measures and Return to Scale 

(DRTS) 

 

 

 

 

 

 

 

 

 

Note. From Coelli et al. (2005), p.55. 

 

 The input- and output-oriented technical efficiency under decreasing return 

to scale (DRTS) can be measured by 
𝐴𝐵

𝐴𝑃
≠

𝐶𝑃

𝐶𝐷
. Therefore, 𝑇𝐸𝑖 ≠ 𝑇𝐸𝑜 . 

 

3.5 Technical Efficiency Measurement by using Data Envelopment Analysis 

(DEA) model. 

 

 The efficiency measurement can be estimated by 2 methods such as the 

“parametric method” and the “non-parametric method”. The parametric method uses 

the concept of maximum likelihood estimation or “MLE”. It can test the hypotheses 

and exclude any noise from the efficiency scores. On the contrary, the non-parametric 

method uses the concept of linear programming analysis. It cannot test hypotheses and 

it includes any noise as part of the efficiency scores.  
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 “Stochastic Frontier Analysis (SFA)” model is the most famous parametric 

method used to estimate the efficiency levels of firms. This model fits the production 

technology with only one output and multiple inputs. While the non-parametric method 

is useful to estimate the efficiency levels using multiple inputs and multiple outputs that 

is known as the “Data Envelopment Analysis (DEA)” model.  

 This study uses multiple outputs and multiple inputs to estimate the 

efficiency levels and productivity changes of the 6 main public airports in Thailand. 

Therefore, the study employs the DEA model to estimate the results. 

 

 3.5.1 Data Envelopment Analysis (DEA) Model 

 DEA is a linear programming method constructing a non-parametric 

frontier over the data such that no observed data lie outside the frontier set. For the input 

orientation, the frontier is constructed using the input set, while the frontier is 

constructed using the output set for the output orientation. 

 Under DEA, the firm is referred to as 𝑑𝑒𝑐𝑖𝑠𝑖𝑜𝑛 𝑚𝑎𝑘𝑖𝑛𝑔𝑠 𝑢𝑛𝑖𝑡 (𝐷𝑀𝑈). 

DEA is developed to measure relative efficiencies for 𝑁 homogenous and independent 

𝐷𝑀𝑈𝑠. DEA can be computed by 2 types of orientations such as “the input-oriented 

DEA model” and “the output-oriented DEA model”.  

  3.5.1.1 Input-Oriented DEA Model 

 Charnes et al. (1978) proposed a DEA model for measuring technical 

efficiency (𝑇𝐸) by using input orientation under the assumption of constant return to 

scale (CRTS). This model is called the “CCR DEA model”. CCR stands for “Charnes, 

Cooper, and Rhodes”. 

 DEA model considers 𝑁  𝐷𝑀𝑈𝑠  where each 𝐷𝑀𝑈  uses 𝐾  inputs to 

produce 𝑀 outputs. Given 𝑖 and 𝑗 are the indexes of 𝐷𝑀𝑈 where 𝑖, 𝑗 =  1, … , 𝑁. Inputs 

and outputs can be written in the set forms as 

 

𝒙𝑖 = (𝑥1𝑖, … , 𝑥𝐾𝑖) ∈  𝑅+
𝐾 is input vector of 𝑖𝑡ℎ 𝐷𝑀𝑈𝑠 (3.9) 

𝒚𝑗 = (𝑦1𝑗, … , 𝑦𝑀𝑗) ∈  𝑅+
𝑀 is output vector of 𝑗𝑡ℎ 𝐷𝑀𝑈𝑠 (3.10) 
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 Figure 3.8 shows the input-oriented DEA frontier constructed by 5 𝐷𝑀𝑈𝑠. 

The frontier consists of a linear convex combination of 𝐴′𝐴, 𝐴𝐷, 𝑎𝑛𝑑 𝐷𝐷′. It applies 

the theory of the input sets (𝐿(𝑦)). While point A and point D are operating at the 

isoquant curve, point B, C, and E do not operate on the curve but bounded inside the 

input sets (𝐿(𝑦)). This means that points A and D are fully efficient because they use 

minimum inputs to produce the highest amounts of outputs. However, points B, C, and 

E are operating inefficiently and must be improved their technical efficiencies to 

operate at the isoquant curve. In other words, they can reduce the amounts of inputs 

while producing the same amounts of outputs. 

 

Figure 3.8 

Input orientation DEA model constructed by 5 𝐷𝑀𝑈𝑠 

 

 

 

 

 

  

 

 

 

Note. From Rungsuriyawiboon (2015), p.358. 

 

 Banker et al. (1984) extended the CCR DEA model with the concept of 

variable return to scale (VRTS). This model is called the “BCC DEA model”. BCC 

stands for “Banker, Charnes, and Cooper”. 

 The concept of the input-oriented model focuses on whether the firms use 

inputs efficiently to produce the fixed amounts of outputs. The model constructs the 

frontier curve by using input sets (𝐿(𝑦)). This model applies linear programming to 

calculate the level of efficiencies of all 𝐷𝑀𝑈𝑠 and reports how much inefficient they 

have. The CCR DEA model applies the concept of CRTS. It calculates the efficiency 
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levels at optimum scale or perfectly competitive assumption. While the BCC DEA 

model uses the concept of variable return to scale (VRTS), it assumes all 𝐷𝑀𝑈𝑠 do not 

operate at the optimal point. Under the VRTS, all 𝐷𝑀𝑈𝑠 are operating under imperfect 

competition. 

 Hence, the linear programming model of the input-oriented BCC DEA 

model can be defined as 

 

Min 𝜃𝑗 = 𝜃∗  

Subject to ∑ 𝜆𝑖𝑗

𝑁

𝑖=1

𝑥𝑘𝑖 ≤ 𝜃𝑗𝑥𝑘𝑗 , 𝑘 =  1, … , 𝐾 

 𝑦𝑚𝑗 ≤ ∑ 𝜆𝑖𝑗

𝑁

𝑖=1

𝑦𝑚𝑗 , 𝑚 =  1, … , 𝑀 

 𝜆𝑖𝑗 ≥ 0, 𝑖 =  1, … , 𝑁 

 ∑ 𝜆𝑖𝑗

𝑁

𝑖=1

= 1, 𝑗 =  1, … , 𝑁 

  (3.11) 

 

Where 𝜃𝑗 or 𝜃∗ is input-oriented technical efficiency (TE) of the 𝑗𝑡ℎ 𝐷𝑀𝑈. 

 𝑥𝑘𝑗 is input set of the 𝑗𝑡ℎ 𝐷𝑀𝑈𝑠. 

 𝑦𝑚𝑗 is output set of 𝑗𝑡ℎ 𝐷𝑀𝑈𝑠. 

      𝜆𝑖𝑗  is the intensity variable representing weights of all 𝐷𝑀𝑈𝑠 

       (𝑖 =  1, … , 𝑁) used to construct frontier for the 𝑗𝑡ℎ 𝐷𝑀𝑈𝑠. 

      ∑ 𝜆𝑖𝑗
𝑁
𝑖=1 𝑥𝑘𝑖 is the boundary of input set calculated from 𝜆𝑖 and 𝑥𝑘. 

      ∑ 𝜆𝑖𝑗
𝑁
𝑖=1 𝑦𝑚𝑗 is the boundary of output set calculated from 𝜆𝑖 and 𝑦𝑚. 

      ∑ 𝜆𝑖𝑗
𝑁
𝑖=1 = 1 is the convexity constraint. 

 Noted that when assuming ∑ 𝜆𝑖𝑗
𝑁
𝑖=1 = 1, it refers to the BCC DEA model. 

Otherwise, it is the CCR DEA model. 
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  3.5.1.2 Output-Oriented DEA Model 

 The concept of the output-oriented DEA model is very similar to the input-

oriented DEA model. Figure 3.9 shows the output-oriented DEA frontier constructed 

by 5 𝐷𝑀𝑈𝑠 . The frontier consists of a linear convex combination of 

𝐴′𝐴, 𝐴𝐷, 𝐷𝐸, 𝑎𝑛𝑑 𝐸𝐸′. It applies the theory of the output sets (𝑃(𝑥)). While point A, 

D, and E are operating at the production possibilities curve, point B and C do not operate 

on the curve but bounded inside the output sets (𝑃(𝑥)). This means that point A, point 

D, and point E are fully efficient because they produce the highest amounts of outputs 

by using the limited amounts of the inputs. However, points B and C are operating 

inefficiently and must be improved their technical efficiencies to operate at the 

production possibilities curve. In other words, they can produce more outputs by using 

the same amounts of inputs. 

 

Figure 3.9 

Output orientation DEA model constructed by 5 𝐷𝑀𝑈𝑠 

 

 

 

 

 

 

  

 

 

Note. From Rungsuriyawiboon (2015), p.360. 

 

 The output-oriented DEA model focuses on whether firms produce the 

highest amounts of outputs while still using the same amounts of inputs. The model 

constructs the frontier curve by using the output sets (𝑃(𝑥)). This model applies linear 

programming to calculate the level of efficiencies of all 𝐷𝑀𝑈𝑠 and reports how much 

inefficient they have. The CCR DEA model applies the concept of CRTS. It calculates 

Ref. code: 25646204040080WKG



39 

 
 

 

the efficiency levels at optimum scale or perfectly competitive assumption. On the other 

hand, the BCC DEA model uses the concept of VRTS that assumes all 𝐷𝑀𝑈𝑠 operate 

as imperfect competition.   

 Hence, the linear programming of the output-oriented BCC DEA model 

can be defined as 

 

Max ϕ𝑗 = ϕ∗  

Subject to ∑ 𝜆𝑖𝑗

𝑁

𝑖=1

𝑥𝑘𝑖 ≤ 𝑥𝑘𝑗 , 𝑘 =  1, … , 𝐾 

 ϕ𝑗𝑦𝑚𝑗 ≤ ∑ 𝜆𝑖𝑗

𝑁

𝑖=1

𝑦𝑚𝑗 , 𝑚 =  1, … , 𝑀 

 𝜆𝑖𝑗 ≥ 0, 𝑖 =  1, … , 𝑁 

 ∑ 𝜆𝑖𝑗

𝑁

𝑖=1

= 1, 𝑗 =  1, … , 𝑁 

  (3.12) 

 

Where ϕ𝑗  𝑜𝑟 ϕ∗ is the inverse of output-oriented TE of the 𝑗𝑡ℎ 𝐷𝑀𝑈𝑠. 

         ∑ 𝜆𝑖𝑗
𝑁
𝑖=1 = 1 is the convexity constraint. 

 

 Noted that when assuming ∑ 𝜆𝑖𝑗
𝑁
𝑖=1 = 1, it refers to the BCC DEA model. 

Otherwise, it is the CCR DEA model. 

 

3.6 Productivity Changing Measurement 

 

 To estimate the full performances of the firms in any period, a measure of 

productivity is presented in this section. Productivity considers limited inputs to 

produce the highest amounts of output and it can be defined as 

 

 𝑃𝑟𝑜𝑑𝑢𝑐𝑡𝑖𝑣𝑖𝑡𝑦 =  
𝑜𝑢𝑡𝑝𝑢𝑡𝑠

𝑖𝑛𝑝𝑢𝑡𝑠
 (3.13) 
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 When the production process uses multiple inputs to produce multiple 

outputs, measuring the productivity level is quite complex. The concept of index 

numbers can be applied to measure productivity by constructing the productivity index. 

Hence, productivity index measurement can be defined as 

 

 𝑃𝑟𝑜𝑑𝑢𝑐𝑡𝑖𝑣𝑖𝑡𝑦 𝑖𝑛𝑑𝑒𝑥 =  
𝑜𝑢𝑡𝑝𝑢𝑡 𝑞𝑢𝑛𝑡𝑖𝑡𝑦 𝑖𝑛𝑑𝑒𝑥

𝑖𝑛𝑝𝑢𝑡 𝑞𝑢𝑎𝑛𝑡𝑖𝑡𝑦 𝑖𝑛𝑑𝑒𝑥
 (3.14) 

 

 When production technology is measured over the period, “productivity 

growth” can represent the productivity change of the firm between the first period and 

second period. Productivity growth between period 1 (first period) and period 2 (second 

period) can be defined as 

 

 𝑃𝑟𝑜𝑑𝑢𝑐𝑡𝑖𝑣𝑖𝑡𝑦 𝑔𝑟𝑜𝑤𝑡ℎ12 =  
𝑃𝑟𝑜𝑑𝑢𝑐𝑡𝑖𝑣𝑖𝑡𝑦 𝑖𝑛 𝑝𝑒𝑟𝑖𝑜𝑑 2

𝑃𝑟𝑜𝑑𝑢𝑐𝑡𝑖𝑣𝑖𝑡𝑦 𝑖𝑛 𝑝𝑒𝑟𝑖𝑜𝑑 1
 (3.15) 

 

 If the value of productivity growth is greater than 1, the firm has 

“productivity progress” from period 1 to period 2. If the value of productivity growth 

is smaller than 1, the firm has “productivity regress” from period 1 to period 2. 

 Total Factor Productivity (TFP) is defined to represent the productivity 

level when the production process consists of multiple inputs and multiple outputs. TFP 

growth can be decomposed into 3 components attributing to TFP improvement. These 

components include technical efficiency changing effect (TEC), scale efficiency 

changing effect (SEC), and technical changing effect (TC).  

 TEC refers to the ability of a firm to improve technical or operational 

efficiency over the periods. In other words, TEC is called “the catching up effect” or 

the improvement of operating at inefficient to be efficient. SEC refers to the ability of 

a firm to use the size of the firm operating at the optimal scale over the periods. TC 

refers to the ability of a firm to adopt new technologies to improve productivity over 

the periods. It represents the shocks from technological improvements. Figure 3.10 

shows the idea of TEC and SEC measurements. Figure 3.11 shows the idea of TC 

measurement. 

Ref. code: 25646204040080WKG



41 

 
 

 

Figure 3.10 

Productivity, Technical Efficiency and Scale Economies 

 

 

 

 

 

 

 

 

 

Note. From Coelli et al. (2005), p.5. 

 

Figure 3.11 

Technical change effect (TC) 

 

 

 

 

 

 

 

 

 

 

Note. From Fare et al. (1994), p.232. 

 

 From Figure 3.10, the line 𝑂𝐹′ represents a production frontier. Assuming 

3 firms such as A, B, and C are operating under this production technology. Firm A is 

operating beneath the frontier 𝑂𝐹′ whereas firms B and C are operating on the frontier 

𝑂𝐹′. This implies that firm A performs inefficient, whereas firms B and C operate as 

efficient. The productivity of these firms can be measured by the slope of the rays from 
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the origin. At point C, firm C has higher productivity than firm A and B because this 

point has the highest slope under the production technology. This means that firm C 

has the highest productivity and operates at the optimal scale because operation at any 

other point on the production frontier results in lower productivity. Therefore, this point 

represents “scale economies”. Firm A can improve the technical efficiency to obtain a 

higher level of productivity at the frontier curve as firm B. This effect is called the 

“technical efficiency changing effect (TEC)” or the “catch-up effect”. Firm B can use 

the size to operate at optimal point to get the highest productivity as firm C, and this 

effect is called the “scale efficiency changing effect (SEC)”. 

 Figure 3.11 shows that the firm can adopt new technology to improve their 

productivity level from point A in period 𝑡 to point B in period 𝑡 + 1 while still using 

the same amounts of input. This figure represents the idea of the “technical changing 

effect (TC)”. 

 

3.7 Malmquist’s Total Factor Productivity Index (MPI) 

 

 TFP changing over the period can be calculated by employing Malmquist’s 

Total Factor Productivity Index (MPI) model. Caves et al. (1982) and Färe et al. (1994) 

presented a non-parametric or DEA approach to measure and decompose TFP growth. 

Färe et al. (1994) defined the Malmquist TFP growth index using output orientation 

and assuming the CRTS assumption of production technology. MPI can be applied to 

measure the productivity changes for all firms from period to period and within the 

starting point and the ending point of the study periods. MPI can be defined by using 

either the output- or input-oriented assumptions the same as the DEA model. 

 

 3.7.1 Output-oriented MPI Model 

 This model applies the theory of output distance function (𝐷𝑜). Consider 2 

periods (𝑡  and 𝑡 + 1), the output-oriented MPI model must be calculated in both 

periods.  
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  3.7.1.1 The period-t Malmquist TFP Index using output 

orientation. 

 It is defined as the ratio of output distance function based on period 𝑡 

technology using observed data between period 𝑡 + 1 and period 𝑡:   

 

 𝑚𝑡
𝑜(𝑦𝑡, 𝑦𝑡+1, 𝑥𝑡 , 𝑥𝑡+1) =

𝐷𝑡
𝑜(𝑥𝑡+1,𝑦𝑡+1)

𝐷𝑡
𝑜(𝑥𝑡, 𝑦𝑡)

 (3.16) 

 

Where 𝑚𝑡
𝑜(𝑦𝑡, 𝑦𝑡+1, 𝑥𝑡 , 𝑥𝑡+1) is the output-oriented Malmquist’s TFP index of period 

            𝑡. 

            𝐷𝑡
𝑜(𝑥𝑡+1,𝑦𝑡+1)  is the output distance function in period 𝑡  using data of 

            period 𝑡 + 1. 

            𝐷𝑡
𝑜(𝑥𝑡, 𝑦𝑡)  is the output distance function in period 𝑡  using data of period 

            𝑡. 

  3.7.1.2 The period-t+1 Malmquist TFP Index using output 

orientation. 

 It is defined as the ratio of output distance function based on period 𝑡 + 1 

technology using observed data between period 𝑡 + 1 and period 𝑡:   

 

 𝑚𝑡+1
𝑜 (𝑦𝑡, 𝑦𝑡+1, 𝑥𝑡, 𝑥𝑡+1) =

𝐷𝑡+1
𝑜 (𝑥𝑡+1,𝑦𝑡+1)

𝐷𝑡+1
𝑜 (𝑥𝑡, 𝑦𝑡)

 (3.17) 

 

Where 𝑚𝑡+1
𝑜 (𝑦𝑡, 𝑦𝑡+1, 𝑥𝑡, 𝑥𝑡+1) is the output-oriented Malmquist’s TFP index of period 

            𝑡 + 1. 

            𝐷𝑡+1
𝑜 (𝑥𝑡+1,𝑦𝑡+1) is the output distance function in period 𝑡 + 1 using data of 

            period 𝑡 + 1. 

            𝐷𝑡+1
𝑜 (𝑥𝑡, 𝑦𝑡) is the output distance function in period 𝑡 + 1  using data of 

            period 𝑡. 
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  3.7.1.3 The output-oriented Malmquist TFP Growth Index 

between period t and t+1. 

 The output-oriented Malmquist TFP growth is defined as the geometric 

mean of period 𝑡 and 𝑡 + 1 Malmquist TFP index. 

 

𝑚𝑡,𝑡+1
𝑜 (𝑦𝑡 , 𝑦𝑡+1, 𝑥𝑡 , 𝑥𝑡+1) = [𝑚𝑡

𝑜(𝑦𝑡 , 𝑦𝑡+1, 𝑥𝑡 , 𝑥𝑡+1) ×  𝑚𝑡+1
𝑜 (𝑦𝑡 , 𝑦𝑡+1, 𝑥𝑡 , 𝑥𝑡+1)]1/2  

      = [
𝐷𝑡

𝑜(𝑥𝑡+1,𝑦𝑡+1)

𝐷𝑡
𝑜(𝑥𝑡,𝑦𝑡)

∙
𝐷𝑡+1

𝑜 (𝑥𝑡+1,𝑦𝑡+1)

𝐷𝑡+1
𝑜 (𝑥𝑡,𝑦𝑡)

]
1/2

  

                          =
𝐷𝑡+1

𝑜 (𝑥𝑡+1,𝑦𝑡+1)

𝐷𝑡
𝑜(𝑥𝑡,𝑦𝑡)

[
𝐷𝑡

𝑜(𝑥𝑡+1,𝑦𝑡+1)

𝐷𝑡+1
𝑜 (𝑥𝑡+1,𝑦𝑡+1)

∙
𝐷𝑡

𝑜(𝑥𝑡,𝑦𝑡)

𝐷𝑡+1
𝑜 (𝑥𝑡,𝑦𝑡)

]
1/2

 (3.18) 

                                        

Where 𝑚𝑡
𝑜(𝑦𝑡, 𝑦𝑡+1, 𝑥𝑡 , 𝑥𝑡+1) is the output-oriented Malmquist’s TFP index of period 

            𝑡. 

           𝑚𝑡+1
𝑜 (𝑦𝑡, 𝑦𝑡+1, 𝑥𝑡 , 𝑥𝑡+1)  is the output-oriented Malmquist’s TFP index of 

           period 𝑡 + 1. 

 

 The value of 𝑚𝑡,𝑡+1
𝑜 (𝑦𝑡, 𝑦𝑡+1, 𝑥𝑡, 𝑥𝑡+1) is greater than one indicating that 

there exists TFP progress from period 𝑡 to period 𝑡 + 1. In other words, the value is 

smaller than one indicating TFP regress from period 𝑡 to period 𝑡 + 1. 

 The output-oriented Malmquist TFP growth index between period 𝑡 and 

𝑡 + 1 (𝑚𝑡,𝑡+1
𝑜 (𝑦𝑡, 𝑦𝑡+1, 𝑥𝑡, 𝑥𝑡+1)) can be decomposed into “output-oriented technical 

efficiency change (𝑇𝐸𝐶𝑜)” and “output-oriented technical change (𝑇𝐶𝑜)”. 

 

 
𝐷𝑡+1

𝑜 (𝑥𝑡+1,𝑦𝑡+1)

𝐷𝑡
𝑜(𝑥𝑡,𝑦𝑡)

 = Output-oriented technical Efficiency Change (𝑇𝐸𝐶𝑜). It measures the 

change in the technical efficiency between period 𝑡 and 𝑡 + 1. In other words, 

𝑇𝐸𝐶𝑜 measures the changing of operation efficiency of the firm that contributes 

to the higher productivity between periods 𝑡 and 𝑡 + 1.  

 

 Under the output-oriented MPI model, 𝑇𝐸𝐶𝑜 compares the output distance 

function of the same firm between period 𝑡  and 𝑡 + 1. This measures whether the 

operational working system of the firm can promote increasing the amounts of outputs 
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while using the same amounts of inputs. In other words, 𝑇𝐸𝐶𝑜 measures the efficiency 

changing of the working system of the firm between 2 periods to produce more outputs 

while still using the fixed amounts of inputs.   

[
𝐷𝑡

𝑜(𝑥𝑡+1,𝑦𝑡+1)

𝐷𝑡+1
𝑜 (𝑥𝑡+1,𝑦𝑡+1)

∙
𝐷𝑡

𝑜(𝑥𝑡,𝑦𝑡)

𝐷𝑡+1
𝑜 (𝑥𝑡,𝑦𝑡)

]
1/2

= Output-oriented technical change ( 𝑇𝐶𝑜 ). It is a 

geometric mean of the shift in technology in period 𝑡 and 𝑡 + 1 at the same 

input levels 𝑥𝑡 and 𝑥𝑡+1. In other words, 𝑇𝐶𝑜 measures the ability of the firm to 

adopt new technology to obtain productivity growth between periods 𝑡 and 𝑡 +

1.  

 

 Under the output-oriented MPI model, 𝑇𝐶𝑜 compares the performance of 

the same firm between period 𝑡 and 𝑡 + 1. This measures whether the firm can adopt 

the new technology to produce more outputs while still using the fixed amounts of 

inputs. 

 3.7.2 Input-oriented MPI Model 

 This model applies the theory of input distance function (𝐷𝐼). Consider 2 

periods (𝑡 and 𝑡 + 1), the input-oriented MPI model must be calculated in both periods. 

  3.7.2.1 The period-t Malmquist TFP index using input 

orientation. 

 It is defined as the ratio of input distance function based on period 𝑡 

technology using observed data between period 𝑡 + 1 and period 𝑡:   

 

 𝑚𝑡
𝑖 (𝑦𝑡, 𝑦𝑡+1, 𝑥𝑡 , 𝑥𝑡+1) =

𝐷𝑡
𝑖(𝑥𝑡+1,𝑦𝑡+1)

𝐷𝑡
𝑖(𝑥𝑡, 𝑦𝑡)

 (3.19) 

 

Where 𝑚𝑡
𝑖 (𝑦𝑡, 𝑦𝑡+1, 𝑥𝑡 , 𝑥𝑡+1) is the input-oriented Malmquist’s TFP index of period 𝑡. 

            𝐷𝑡
𝑖(𝑥𝑡+1,𝑦𝑡+1) is the input distance function in period 𝑡 using data of period 

            𝑡 + 1. 

            𝐷𝑡
𝑖(𝑥𝑡, 𝑦𝑡) is the input distance function in period 𝑡 using data of period 𝑡. 
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  3.7.2.2 The period-t+1 Malmquist TFP index using input 

orientation. 

 It is defined as the ratio of input distance function based on period 𝑡 + 1 

technology using observed data between period 𝑡 + 1 and period 𝑡:   

 

 𝑚𝑡+1
𝑖 (𝑦𝑡, 𝑦𝑡+1, 𝑥𝑡, 𝑥𝑡+1) =

𝐷𝑡+1
𝑖 (𝑥𝑡+1,𝑦𝑡+1)

𝐷𝑡+1
𝑖 (𝑥𝑡, 𝑦𝑡)

 (3.20) 

 

Where 𝑚𝑡+1
𝑖 (𝑦𝑡, 𝑦𝑡+1, 𝑥𝑡, 𝑥𝑡+1) is the input-oriented Malmquist’s TFP index of period 

𝑡 + 1. 

𝐷𝑡+1
𝑖 (𝑥𝑡+1,𝑦𝑡+1) is the input distance function in period 𝑡 + 1 using data of 

period 𝑡 + 1. 

𝐷𝑡+1
𝑖 (𝑥𝑡, 𝑦𝑡) is the input distance function in period 𝑡 + 1 using data of period 

 𝑡. 

  3.7.2.3 The input-oriented Malmquist TFP Growth Index 

between period t and t+1. 

 The input-oriented Malmquist TFP growth is defined as the geometric 

mean of the period 𝑡 and 𝑡 + 1 Malmquist TFP index. 

 

𝑚𝑡,𝑡+1
𝑖 (𝑦𝑡 , 𝑦𝑡+1, 𝑥𝑡 , 𝑥𝑡+1) = [𝑚𝑡

𝑖 (𝑦𝑡 , 𝑦𝑡+1, 𝑥𝑡 , 𝑥𝑡+1) ×  𝑚𝑡+1
𝑖 (𝑦𝑡 , 𝑦𝑡+1, 𝑥𝑡 , 𝑥𝑡+1)]

1/2
  

              = [
𝐷𝑡

𝑖(𝑥𝑡+1,𝑦𝑡+1)

𝐷𝑡
𝑖(𝑥𝑡,𝑦𝑡)

∙
𝐷𝑡+1

𝑖 (𝑥𝑡+1,𝑦𝑡+1)

𝐷𝑡+1
𝑖 (𝑥𝑡,𝑦𝑡)

]
1/2

  

                                   =
𝐷𝑡+1

𝑖 (𝑥𝑡+1,𝑦𝑡+1)

𝐷𝑡
𝑖(𝑥𝑡,𝑦𝑡)

[
𝐷𝑡

𝑖(𝑥𝑡+1,𝑦𝑡+1)

𝐷𝑡+1
𝑖 (𝑥𝑡+1,𝑦𝑡+1)

∙
𝐷𝑡

𝑖(𝑥𝑡,𝑦𝑡)

𝐷𝑡+1
𝑖 (𝑥𝑡,𝑦𝑡)

]
1/2

 (3.21) 

 

Where 𝑚𝑡
𝑖 (𝑦𝑡, 𝑦𝑡+1, 𝑥𝑡 , 𝑥𝑡+1) is the input-oriented Malmquist’s TFP index of period 𝑡. 

𝑚𝑡+1
𝑖 (𝑦𝑡, 𝑦𝑡+1, 𝑥𝑡 , 𝑥𝑡+1) is the input-oriented Malmquist’s TFP index of period 

𝑡 + 1. 
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 The value of 𝑚𝑡,𝑡+1
𝑖 (𝑦𝑡, 𝑦𝑡+1, 𝑥𝑡, 𝑥𝑡+1) is greater than one indicating that 

there exists TFP progress from period 𝑡 to period 𝑡 + 1. In other words, the value is 

smaller than one indicating TFP regress from period 𝑡 to period 𝑡 + 1. 

 The input-oriented Malmquist TFP growth index (MPI) between period 𝑡 

and 𝑡 + 1  (𝑚𝑡,𝑡+1
𝑖 (𝑦𝑡, 𝑦𝑡+1, 𝑥𝑡 , 𝑥𝑡+1) ) can also be decomposed into “input-oriented 

technical efficiency change (𝑇𝐸𝐶𝑖)” and “input-oriented technical change (𝑇𝐶𝑖)”. 

 

𝐷𝑡+1
𝑖 (𝑥𝑡+1,𝑦𝑡+1)

𝐷𝑡
𝑖(𝑥𝑡,𝑦𝑡)

 = Input-oriented technical efficiency change (𝑇𝐸𝐶𝑖 ). It measures the 

change in the technical efficiency between period 𝑡 and 𝑡 + 1. In other words, 

𝑇𝐸𝐶𝑖 measures the changing of operation efficiency of the firm that contributed 

to the higher productivity growth between period 𝑡 and 𝑡 + 1. 

 

 Under the input-oriented MPI model, 𝑇𝐸𝐶𝑖  compares the input distance 

function of the same firm between period 𝑡  and  𝑡 + 1. This measures whether the 

operation working system of the firm can reduce the amounts of inputs in the production 

process while still producing the same amounts of outputs. In other words, 𝑇𝐸𝐶𝑖 

measures the efficiency changing of the working system of the firm between 2 periods 

about using fewer inputs in the production process while producing the fixed amounts 

of outputs.   

 

[
𝐷𝑡

𝑖(𝑥𝑡+1,𝑦𝑡+1)

𝐷𝑡+1
𝑖 (𝑥𝑡+1,𝑦𝑡+1)

∙
𝐷𝑡

𝑖(𝑥𝑡,𝑦𝑡)

𝐷𝑡+1
𝑖 (𝑥𝑡,𝑦𝑡)

]
1/2

= Input-oriented technical change (𝑇𝐶𝑖). It is a geometric 

mean of the shift in technology in time 𝑡 and 𝑡 + 1 at same input levels 𝑥𝑡 and 

𝑥𝑡+1. In other words, 𝑇𝐶𝑖 also measures the ability of the firm to adopt new 

technology to obtain higher productivity growth between period 𝑡 and 𝑡 + 1 as 

the same as 𝑇𝐶𝑜.  

 

 Under the input-oriented MPI model, 𝑇𝐶𝑖 compares the performance of the 

same firm between period 𝑡 and 𝑡 + 1. This measures whether the firm can adopt new 
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technology to reduce the inputs in the production process while still producing the same 

amounts of outputs. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Ref. code: 25646204040080WKG



49 

 
 

 

CHAPTER 4 

LITERATURE REVIEW 

 

 This chapter aims to discuss previous researches that studied the full 

performance measurement of the airports. This chapter is divided into 4 sections. The 

first section discusses the researches applying the parametric and non-parametric 

methods to measure the operational efficiency of the airports. Section 2 shows 

researches employing Malmquist’s Total Factor Productivity Index (MPI) model to 

measure the productivity growth of the airports. Section 3 reviews researches studied 

about Thailand’s airports. The last section presents the research gap between researches 

using Thailand’s airports and the other airports in developed countries. 

 

4.1 Measuring technical efficiency of the airports. 

 

 Many research papers employed both the parametric method known as 

stochastic frontier analysis (SFA) and the non-parametric method known as data 

envelopment analysis (DEA) to measure the efficiency scores of the airports in the 

studied periods.  

 Yang (2010) employed the data from 12 international airports in the Asia-

Pacific region between 1998 to 2006. This paper defined 3 input variables as the number 

of employees, number of runways, and operating costs while the operating revenues are 

defined as the only one output variable. This paper employed both DEA and SFA 

models to measure the efficiency scores of the individual airports. This paper used 

DEA-Solver Pro 3.0 to compute the technical efficiency scores of the DEA model and 

FRONTIER4.1 to estimate the parameters of the SFA model (Yang, 2010, p.700). This 

paper computed DEA in both terms of the CCR and BCC models. For the SFA model, 

this paper tested 3 hypotheses and found that technical inefficiency had existed. The 

result in the SFA model showed that investing more operating costs can help to increase 

more revenue than human resources. This paper found that the results were obtained 
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from both “DEA and SFA were consistent if complementing the DEA model by 

considering a variable’s significance level obtained from the SFA model (Yang, 2010, 

p.702)”. 

 Sarkis (2000) used DEA to estimate the operational efficiencies of 44 U.S. 

airports. This paper defined four input variables as operating costs, full-time workers, 

number of gates, and number of runways. For the output variables, this paper used 

operating revenues, number of aircraft movements, general aviation movements, 

passenger movements, and amount of cargo shipped. The data used in this paper 

covered the period between 1990 to 1994. The result showed that the airport hubs 

performed better than non-airport hubs.   

 Tsui et al. (2014) applied the DEA model to assess the operational 

efficiencies of 21 Asia-Pacific airports in the first stage, and then employed the Simar 

and Wilson bootstrapping regression analysis (Simar and Wilson, 2007) to identify the 

variations of airport efficiency. This paper measured the operational efficiency of 21 

airports between 2002 to 2011. In the first stage, this paper estimated the operational 

efficiency scores by using the DEA model. They defined four input variables as number 

of employees, number of runways, total runway length, and passenger terminal area in 

meter squares. For the output variables, they defined air passenger numbers, air cargo 

volumes, and the number of aircraft movements. For the second stage, this paper 

applied Simar-Wilson bootstrapping regression to define the determinants of the 

efficiency of Asia-Pacific airports (Tsui et al., 2014, p.21). This paper defined DEA 

efficiency indexes that were obtained from the first stage as a dependent variable in the 

second stage. For the explanatory variables, the paper defined trend, GDP per capita, 

percentage of international passengers, airport hub status, airport management, airport 

operating hours, airport hinterland population, and alliance membership of dominant 

airline. 

 Chen et al. (2017) showed that private airports performed better than public 

airports. This paper obtained data from 14 European and Asia-Pacific countries which 

had composed of 24 airports. This paper defined 4 output variables as number of 

passengers, the amount of cargo in ton, number of aircraft movements, and total 

revenues included in both aeronautical and nonaeronautical activities. For the input 
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variables, the paper employed the number of employees, number of gates, number of 

runways, size of the terminal area (𝑚2), and length of the runway. 

 Fernández et al. (2018) employed the SFA model to estimate 35 Spanish 

airports between 2009 to 2016. The results showed that airports with higher shares of 

“low-cost carriers (LCCs)” tend to be more efficient airports than airports with lower 

shares of LCCs. The results also showed that “airports located in high-density touristic 

areas achieved higher efficiency levels than the non-touristic areas (Fernández et al., 

2018, p.56)”. This paper defined 3 output variables as the number of passengers, ton of 

cargo lifted, and airport revenues. For the input variables, they defined capital invested, 

labor cost, and size of the airports. The interesting point of this paper is that this paper 

considered the external factor that can be affected the operational efficiency scores of 

the airports. These factors included low-cost passengers that stimulated the growth of 

passengers in the touristic areas. The LCCs had increased the airports’ operational 

efficiencies. 

 Scotti et al. (2010) found that public airports had more efficient than private 

and mixed airports. This paper included the annual data of 38 Italian airports between 

2005 to 2008. For 3 output variables, the paper defined aircraft, passenger, and freight 

movements. The runway capacity, the total number of aircraft parking positions, the 

number of baggage claims, and the number of full-time workers were defined as the 

input variables. The results of this paper showed that “airports with higher intensity of 

competition were less efficient than those which benefit from local monopoly power 

(Scotti et al., 2010, p.22)”. This paper also suggested that policymakers could improve 

private airport efficiencies by emphasizing LCCs policy to create new touristic demand. 

 Oum and Yu (2004) considered data of 76 airports including Asia-Pacific, 

Europe, and North America. The interesting point of this paper is “this paper provided 

a summary of the airport’s productivities and efficiencies and investigated the 

relationships between the productivity measures, and airport characteristics and 

management strategies to better understand the observed differences in airport 

performances (Oum and Yu, 2004, p.3)”. This paper employed variable factor 

productivity (VFP) to analyze the data. This paper defined 4 output categories such as 

the number of passengers handled, air cargo in ton handles, the number of aircraft 
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movements handles, and the amount of nonaeronautical service outputs. For the 2 input 

variables, they defined labor and soft cost inputs. However, Gong et al. (2012) showed 

that the results of many research papers about airport privatization were still 

inconclusive. Some privatization programs succeeded to improve airport efficiencies, 

but many of them were not. 

 Lin et al. (2013) employed 3 useful models to measure the performance of 

the North American airports. This paper measured the airport efficiencies by using 3 

models such as the productivity index, DEA, and SFA. This paper included the data of 

55 U.S. airports and 7 Canadian airports in 2006. The 3 output variables included the 

number of passengers, air transport movements, and nonaeronautical revenue. For 2 

input variables, the paper defined the number of employees and soft cost inputs. The 

interesting point of this paper is that “the percentage of non-aeronautical revenue, 

passenger volume, average aircraft size, percentages of international, and connecting 

traffic are the important factors that significant to airport efficiency (Lin et al., 2013, 

p.47)”. 

 Karanki and Lim (2020) employed the DEA model in the first stage and 

Simar and Wilson’s method (Simar and Wilson, 2007) in the second stage. This paper 

employed 59 U.S. airports data covering between 2009 to 2016. They defined five input 

variables as the number of airport employees, the effective number of standard 

runways, airport land area, the number of gates, and total operating expenditures minus 

personal expenditures. For 2 output variables, the paper defined workload unit and 

nonaeronautical revenue. For the second stage, this paper defined agreement types, hub 

size, and governance forms as explanatory variables for airport operational efficiency. 

 Chung et al. (2015) compared the operational efficiencies of the 11 major 

cargo airports in the Asia-Pacific region between 2009 to 2010. This paper employed 

the multi-dimensional scaling analysis instead of the DEA and SFA models to measure 

the airports’ operational efficiencies. The aim of this paper studied “the relationships 

between the efficiency levels and airport characteristics as well as operational strategies 

for better understanding the observed differences in airport clustering, how different 

airport group management strategies and how air cargo handling facilities impact on 

airport group evaluation (Chung et al., 2015, p.86)”.  
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 Pereira et al. (2019) employed both DEA and multiple criteria DEA 

(MCDEA) models. This paper employed 6 central Brazilian airports data in 2015, the 

same dataset as Pereira (2015). This paper defined only one input variable which is the 

total area of the airport size, and 4 output variables such as the number of companies 

that operate in the airport, the number of certificated departures, the weight of departed 

cargo load, and the number of departed passengers. This paper computed efficiency 

scores and applied the new method called “MCDEA”. However, the paper did not 

consider some external factors that can affect airports’ efficiency levels as research 

papers employed Tobit regression or Simar and Wilson regression in the second stage.  

 Some previous research papers studied the operational efficiencies of the 

airports in Latin America. They employed both the CCR DEA and BCC DEA models 

to measure the technical efficiency scores (Perelman and Serebrisky, 2010; Pacheco 

and Fernandes, 2003; Wanke, 2012). However, they did not consider the external 

factors that can affect airports’ operational efficiencies as the research papers that 

studied in Europe, Asia-Pacific, and North America. 

 Lee and Kim (2018) showed that non-aeronautical activities of the airports 

had a significant effect on airports’ efficiency levels. This paper applied the network 

data envelopment analysis (NDEA) to estimate the efficiency scores of aeronautical, 

non-aeronautical, and total. For the aeronautical production process, they defined 

airside capacity that included runway, terminal capacity, and the number of workers as 

input variables. For output variables, they defined aeronautical revenue, cargo, and 

passengers. For the non-aeronautical production process, they defined non-airside 

capacity that included duty-free store size, restaurant size, parking lot capacity, and the 

number of workers as input variables. Non-aeronautical revenue and passengers were 

defined as the 2 output variables. This paper employed the data of 14 airports in South 

Korea between 2011 to 2015. This paper concluded that “the aeronautical efficiency 

does always guarantee the overall efficiency. Moreover, non-aeronautical sides of the 

business are becoming critical due to the volatility of airport markets (Lee and Kim, 

2018, p.9)”. 

 Ngo and Tsui (2020) employed the slack-based measure (SBM) DEA-

window analysis model in the first stage and the instrumental variable (IV)-Tobit 
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regression model in the second stage. SBM DEA-window analysis seems to be fit very 

well for a small sample than just the normal DEA model. This paper employed the data 

of 11 New Zealand airports between 2006 to 2017. For the first stage of SBM DEA-

window analysis, this research defined 3 input variables as employee expenses, 

operating expenses, and length of runways. Aeronautical revenues, nonaeronautical 

revenues, and aircraft movements were defined as the 3 output variables. For the second 

stage of the IV-Tobit regression model, the paper defined the SBM efficiency scores 

derived from the first stage as a dependent variable. Arrival, accommodation, number 

of international destinations connected by airports, number of domestic destinations 

connected by airports, regional GDP per capita, “a dummy variable that takes 1 for the 

period of the global financial crisis in 2008/2009 and 0 otherwise (Ngo and Tsui, 2020, 

p.6)”, a dummy for Christchurch earthquakes, a dummy for LCCs, and a dummy for 

airport privatization were defined as the explanatory variables to estimate whether 

external factors can affect to efficiency scores of the airports. The results from this 

paper showed that 6 variables were positively affected the efficiency scores. These 

variables included arrival, regional GDP per capita, number of domestic destinations 

connected by airports, airport privatization, LCCs, and Christchurch earthquakes event.  

 Martín et al. (2009) evaluated the technical efficiencies of the Spanish 

airports using Markov Chain Monte Carlo (MCMC) simulation to estimate the SFA 

model (Martín et al., 2009, p.163). This paper employed the data of 37 Spanish airports 

covering between 1991 to 1997. The paper defined 2 output variables as the air traffic 

movements and the work-load units. The 3 input variables included labor, capital, and 

materials. 

 The work of Ripoll-Zarraga and Raya (2020) is attractive, but the method 

seems to be complicated. Future research in the field of air transportation can follow 

the idea of this paper. This paper employed the data of 48 Spanish airports between 

2009 to 2013. The paper employed the SFA model in the first stage and tourism 

indicators related to the location of airports as a regression in the second stage. For the 

first stage, they defined three input variables as labor costs, operating costs, and 

depreciation of airside and landside assets, while the output variables included the 

number of passengers, air traffic movements, cargo, and commercial revenues. For the 
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second stage, this paper defined the technical efficiency scores obtained from the first 

stage as a dependent variable in the second stage. The 8 explanatory variables included 

the number of hotels, number of campsites, number of apartments, the expenditure in 

euro spent per day of stay per person, number of employees working in the touristic 

sector, and “the price index represents the cost of labor working in services (Ripoll-

Zarraga and Raya, 2020, p.6)”. “The result from this paper highlighted the relationship 

between airports’ operations efficiency and the geographical location of airports 

(Ripoll-Zarraga and Raya, 2020, p.12)”. The interesting point of this paper is that the 

performances of the airports were analyzed into touristic and non-touristic areas. The 

main idea from this paper can be useful in the research area of air transportation 

management in the Thailand context because this paper studied the context and 

environments of Spain to test the operational efficiencies of the airports through 

different geographical locations. This paper concluded that “airports located in popular 

touristic areas will gain from having more passengers subject to having a good travel 

experience including accommodation (hotels) and leisure activities. Airports located in 

other areas will make efforts to attract airlines and passengers through price 

differentiation and quality of the service provided by the airports (Ripoll-Zarraga and 

Raya, 2020, p.12)”. 

 Tsui et al. (2014) employed the SBM-DEA and MPI models in the first 

stage and Simar-Wilson bootstrapping regression analysis (Simar and Wilson, 2000; 

Simar and Wilson, 2007) in the second stage. This paper included 11 major New 

Zealand airports data between 2010 to 2012. For the first stage, they defined operating 

expenses and the number of runways as the input variables. The operating revenues, air 

passenger movements, and aircraft traffic movements were defined as output variables. 

The SBM-DEA model can be applied when the traditional DEA model cannot give 

“any relevant explanation why an airport may become relative efficient or inefficient 

over time (Tsui et al., 2014, p.79)”. Tone (2001) gave the reason that applying this 

model will indicate the sources of efficiency and inefficiency. The SBM DEA model 

requires the number of airport observations must equal or larger than the product of the 

number of input and output variables for preventing the over airport efficiency scores 

from this model (Boussofiance and Dyson, 1991; Markovits-Somogyi, 2011; Yang, 
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2010). On the other hand, if this requirement is not met, the SBM DEA model will 

produce a higher efficiency score than reality (Tsui et al., 2014, p.80). For the second 

stage, Tsui et al. (2014) defined population around the airport, airport hub status, airport 

operating hours, airport ownership, Christchurch earthquakes, and Rugby World Cup 

in 2011 as the explanatory variables. The SBM DEA efficiency score obtained from the 

first stage was defined as a dependent variable in the second stage. 

 Yu (2004) employed the output-oriented DEA model to measure the 

efficiency scores of 14 domestic Taiwanese airports. The paper studied between 1994 

to 2000. This paper defined four input variables as “runway area, apron area, terminal 

area, and each airport’s number of air routes connecting with the other domestic airports 

(Yu, 2004, p.298)”. For the output variables, the paper had divided the outputs into 

desirable outputs and undesirable output. The desirable outputs were defined as the 

number of aircraft traffic movements and the number of passengers where the only 

undesirable output was defined as aircraft noise.  

 Many research papers showed that the airports that served a lot of LCCs 

had more operational efficiencies because they must increase their operational 

efficiencies to deal with the growth of passengers and air traffic movements. Hong and 

Domergue (2018) employed the DEA model to measure the technical efficiency scores 

of Korean LCCs airlines. This paper also compared the efficiency of many types of 

LCCs airlines. 

 Lam et al. (2009) employed all 5 DEA models with the 11 major 

international airports in Asia-Pacific over the period from 2001 to 2005 and compared 

the efficiency results of these models. This paper defined four input variables as labor, 

capital, soft input, and trade value. For the output variables, Lam et al. (2009) defined 

the number of aeronautic movements, passengers, and tons of cargo. All 5 DEA models 

included the CCR, BCC, SBM, Cost efficiency, and Allocative efficiency models.  
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4.2 Measuring productivity growth of the airports. 

 

 There were a few studies that employed the MPI model to measure the 

productivity changing of the airports within the study periods. The MPI model can 

decompose the productivity changes into the technical efficiency change (TEC) and 

technological change (TC). TEC reflects whether the airport has technical efficiency 

improvement, while TC identifies whether the airport can adopt technology to improve 

the productivity level. Lastly, the product of TEC and TC can be identified whether the 

airport has total factor productivity (TFP) progress or regress.  

 Yang and Huang (2014) estimated the efficiencies and productivity change 

of 12 international airports in the Asia-Pacific region. This paper included the dataset 

between 1998 to 2006. This paper defined 3 input variables as the number of 

employees, the length of runways, and the operating costs. The only output variable 

was operating revenues. This paper employed the SFA model with the Translog 

production function and specified half-normal distribution to estimate technical 

inefficiency. This paper also employed MPI to estimate and decompose the productivity 

changes of the airports. 

 Abbott and Wu (2002) studied the data of the 12 largest Australian airports 

between 1989 to 2000. The paper defined 2 output variables as the number of 

passengers and the amount of freight cargo in ton passing through an airport. For the 3 

input variables, they defined the number of staffs, capital stock in dollar, and runway 

length in kilometers. This paper employed both the MPI and DEA models to analyze 

the performance of 12 Australian airports. 

 Abbott (2015) employed the MPI model to analyze the 3 largest New 

Zealand airports between 1991 to 2012 in the first part of the paper. For the second 

stage, this paper employed the Tobit regression model “to determine the relationships 

between the efficiency scores obtained from the first stage as a dependent variable and 

airport scale and ownership type (Abbott, 2015, p.4)”. In the second stage, the paper 

defined independent variables as size in terms of aircraft movement, dummy variables 

for private ownership, joint venture ownership, and single-authority ownership. 
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4.3 Previous Studies in Thailand’s airports. 

 

 A few research papers had studied using data of the airports in Thailand. 

However, there are no previous studies in the literature investigating the full 

performances of Thailand’s main public airports. 

 Sopadang and Suwanwong (2016a) employed DEA to assess the 

operational performances of 19 airports in ASEAN plus 3. This paper defined only one 

output variable as the number of passengers, and 5 input variables as terminal size, 

number of runways, length of the runway, number of gates, and check-in desks. This 

paper employed both the CCR and BCC DEA models to measure the technical 

efficiency scores. 

 Rapee and Peng (2014) employed the DEA and analytic hierarchy process 

(AHP) models to compute the efficiency scores of the 6 main public airports in Thailand 

in 2013. This paper employed 3 output variables and 3 input variables. The output 

variables included the number of passengers, number of movements, and amount of 

cargo. The number of employees, the terminal area, and the number of runways were 

defined as the input variables. 

 A paper measured the service quality of CNX, DMK, and HKT. Kratudnak 

and Tippayawong (2018) collected the data from a satisfaction survey of 300 

passengers of the 3 airports that were concerned about the service qualities. This paper 

applied 2 stages to estimate the results. In the first stage, this paper employed the 

explanatory factor analysis (EFA) to categorize variables into factors. For the second 

stage, the AHP model was employed to evaluate the service qualities. The results from 

this paper showed that the service qualities of the aviation authorities and airport 

administrators were the key factors to improve service levels of these airports 

(Kratudnak and Tippayawong, 2018, p.1779). 

 Karim et al. (2003) emphasized airport development strategies and plans 

by focusing on Malaysia and Thailand. This paper analyzed strategies and plans for 

making both Kuala Lumpur International Airport (KUL) and BKK becoming the 

international hub airports in South-East Asia.    
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 Sopadang and Suwanwong (2016b) analyzed whether DMK had enough 

capability to be the biggest LCCs hub in ASEAN by employing the NETSCAN model. 

This paper emphasized the airport connectivity between DMK and other airports. This 

paper considered a factor as LCCs because DMK had corporate with the highest LCCs 

in the world in 2015. 

 Pandey (2016) focused on the service qualities of 2 DMK and BKK. This 

paper defined 7 dimensions such as airport service quality measurement by using 

access, check-in, security, finding your way, facilities, environment, and arrival 

services. This paper collected data from questionnaires.  

 Table 4.1 provides a summary of previous researches that measured the 

efficiency and productivity of the airport in terms of data, types of model, and the 

selection of input and output variables.  

“ 
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Table 4.1 

Studies of the efficiency and productivity of the airports 

Authors Sample Models Inputs Outputs 

Sarkis (2000) 
44 U.S. airports from 

1990 to 1994 

DEA (CCR, BCC, 

SXEF, AXEF, RCCR, 

and GTR) 

-Operating Costs 

-No. of full-time workers 

-No. of gates 

-No. of runways 

 

 

-Operating revenues 

-No. of aircraft 

movements 

-No. of general aviation 

movements 

-No. of passenger 

movements 

-Amount of cargo 

shipped (ton) 

 

Abbott and Wu (2002) 

12 largest Australian 

airports from 1989 to 

2000 

 

 

-Malmquist total factor 

productivity index (MPI) 

-DEA (CCR and BCC) 

 

-No. of staffs 

-Capital stock in dollar 

-Runway length (km) 

-No. of passengers 

-Amount of freight cargo 

(ton) 
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Table 4.1 

Studies of the efficiency and productivity of the airports (Cont.) 

Authors Sample Models Inputs Outputs 

Yu (2004) 

14 domestic Taiwanese 

airports from 1994 to 

2000 

DEA (CCR) 

 

-Runway area (𝑚2) 

-Apron area (𝑚2) 

-Terminal area (𝑚2) 

-No. of air routes 

connecting with the 

other domestic airports 

 

 

-No. of aircraft 

movements (desirable 

output) 

-No. of passengers 

(desirable output) 

-Aircraft noises 

(undesirable output) 

Lam et al. (2009) 

11 major international 

airports in Asia-Pacific 

from 2001 to 2005 

DEA (CCR, BCC, SBM, 

Cost efficiency, and 

Allocative efficiency) 

 

-Labor 

-Capital 

-Soft inputs 

-Trade value 

 

 

-No. of aeronautic 

movements 

-No. of passengers 

-Amount of cargo (ton) 

 

  

Ref. code: 25646204040080WKG



 

 
 

 

6
2 

Table 4.1 

Studies of the efficiency and productivity of the airports (Cont.) 

Authors Sample Models Inputs Outputs 

Scotti et al. (2010) 
38 Italian airports from 

2005 to 2008 
SFA 

 

-Runway capacity 

-Total number of aircraft 

parking positions 

-No. of baggage claim 

-No. of full-time workers 

 

-No. of aircraft 

movements 

-No. of work-load unit 

movements 

Yang (2010) 

12 international airports 

of Asia-Pacific region 

from 1998 to 2006 

 

-SFA 

-DEA (CCR and BCC) 

 

-No. of employees 

-No. of runways 

-Operating costs 

 

Operating revenues 
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Table 4.1 

Studies of the efficiency and productivity of the airports (Cont.) 

Authors Sample Models Inputs Outputs 

Lin et al. (2013) 
55 U.S. and 7 Canadian 

airports in 2006 

-Index number method 

-DEA (CCR) 

-SFA 

-No. of employees 

-Soft cost inputs 

 

-No. of passengers 

-No. of air transport 

movements 

-Nonaeronautical 

revenue 

 

Rapee and Peng (2014) 
6 Thailand main public 

airports in 2013 

-DEA (CCR) 

-Analytic Hierarchy 

Process (AHP) 

-No. of employees 

-Terminal area (𝑚2) 

-No. of runways 

 

-No. of passengers 

-No. of aircraft 

movements 

-Amount of cargo (ton) 
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Table 4.1 

Studies of the efficiency and productivity of the airports (Cont.) 

Authors Sample Models Inputs Outputs 

Tsui et al. (2014a) 
21 Asia-Pacific airports 

from 2002 to 2011 

-DEA (VRS in the first 

stage) 

-Simar-Wilson 

bootstrapping regression 

(Second stage) 

 

-No. of employees 

-No. of runways 

-Total runway length 

(km) 

-Passenger terminal area 

(𝑚2) 

 

-No. of passengers 

-Amount of cargo (ton) 

-No. of aircraft 

movements 

Tsui et al. (2014b) 

11 major New Zealand 

airports from 2010 to 

2012 

 

-SBM DEA and MPI 

(first stage) 

-Simar-Wilson 

bootstrapping regression 

(second stage) 

 

-Operating expenses 

-No. of runways 

-Operating revenues 

-No. of passengers 

-No. of aircraft 

movements 
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Table 4.1 

Studies of the efficiency and productivity of the airports (Cont.) 

Authors Sample Models Inputs Outputs 

Yang and Huang (2014) 

 

12 international Asia-

Pacific airports from 

1998 to 2006 

 

-SFA 

-MPI 

 

-No. of employees 

-Runway length (km) 

-Operating costs 

 

Operating revenues 

Sopadang and 

Suwanwong (2016) 

19 airports in ASEAN 

plus 3 in 2014 
DEA (CCR and BCC) 

 

-Terminal size (𝒎𝟐) 

-No. of runways 

-No. of gates 

-No. of check-in desks 

 

No. of passengers 
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Table 4.1 

Studies of the efficiency and productivity of the airports (Cont.) 

Authors Sample Models Inputs Outputs 

Chen et al. (2017) 

24 airports from 14 

countries in both Europe 

and Asia-Pacific 

between 2001-2013 

DEA 

-No. of employees 

-No. of gates 

-No. of runways 

-Terminal area (m2) 

-Length of the runway 

(km) 

 

-No. of passengers 

-Amount of cargo (ton) 

-No. of aircraft 

movements 

-Total revenues from 

aeronautical and 

nonaeronautical 

activities 

 

Fernandez et al. (2018) 
35 Spanish airports from 

2009 to 2016 
SFA 

-Capital invested 

-Labor cost 

-Airport size 

 

 

-No. of passengers 

-Amount of cargo (ton) 

-Airport revenues 
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Table 4.1 

Studies of the efficiency and productivity of the airports (Cont.) 

Authors Sample Models Inputs Outputs 

Lee and Kim (2018) 
14 South Korean airports 

from 2011 to 2015 

Network data 

envelopment analysis 

(NDEA) 

 

For aeronautical 

production process: 

-No. of workers 

-Runway capacity 

-Terminal capacity 

For nonaeronautical 

production process: 

-Duty-free store size 

-Restaurant size 

-Parking lot capacity 

-No. of workers 

 

For aeronautical 

production process: 

-Aeronautical revenues 

-No. of passengers 

-Amount of cargo (ton) 

For nonaeronautical 

production process: 

-Nonaeronautical 

revenues 

-No. of passengers 
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Table 4.1 

Studies of the efficiency and productivity of the airports (Cont.) 

Authors Sample Models Inputs Outputs 

Martin et al. (2009) 
37 Spanish airports from 

1991 to 1997 
SFA 

-Labor 

-Capital 

-Materials 

 

-No. air traffic 

movements 

-No. of passengers 

-Amount of cargo (ton) 

 

Pereira et al. (2019) 
6 Brazilian airports in 

2015 

-DEA 

-Multiple criteria DEA 

(MCDEA) 

The total area of airport 

size 

 

-No. of the company 

operating in the airport 

-No. pf certificated 

departures 

-Weight of departed 

cargo load 

-No. of departed 

passengers 
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Table 4.1 

Studies of the efficiency and productivity of the airports (Cont.) 

Authors Sample Models Inputs Outputs 

Karanki and Lim (2020) 
59 U.S airports from 

2009 to 2016 

-DEA (first stage) 

-Simar-Wilson (second 

stage) 

 

-No. of airport 

employees 

-No. of runways 

-Airport area 

-No. of gates 

-Total operating 

expenditures minus 

personal expenditures 

 

-Work-load unit 

-Nonaeronautical 

revenue 

Ngo and Tsui (2020) 
11 New Zealand airports 

from 2006 to 2017 

 

-SBM DEA window 

analysis (first stage) 

-IV-Tobit regression 

(second stage) 

 

-Employee expenses 

-Operating expenses 

-Length of the runway 

(km) 

 

-Aeronautical revenues 

-Nonaeronautical 

revenues 

-No. of aircraft 

movements 
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Table 4.1 

Studies of the efficiency and productivity of the airports (Cont.) 

Authors Sample Models Inputs Outputs 

Ripoll-Zarraga and Raya 

(2020) 

48 Spanish airports from 

2009 to 2013 
SFA 

-Labor costs 

-Operating costs 

-Depreciation of airside 

and landside assets 

 

-No. of passengers 

-No. of air traffic 

movements 

-Amount of cargo (ton) 

-Commercial revenues 

 

 

Note. From author’s compilation from relevant empirical studies...” 
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4.4 Research gap 

 

 Most research papers before 2010 measured the airport technical efficiency 

and productivity growth by employing the DEA and MPI models, respectively. 

Meanwhile, after 2010 most research papers considered some external factors that can 

affect the operational efficiency scores of the airports. These external factors included 

LCCs, number of hotels in the same cities of the airports, airport privatization, airport 

hub status, and the dummy for some events that happened at the studied airports such 

as earthquake and financial crisis between 2008 to 2009 (Tsui et al., 2014; Ngo and 

Tsui, 2020; Karanki and Lim, 2020; Ripoll-Zarraga and Raya, 2020).  

 However, there is no past study that had investigated the full performances 

and employed the Simar and Wilson method in the second stage for the 6 main public 

airports in Thailand after the COVID-19 pandemic crisis. Therefore, this thesis aims to 

close this gap by applying both the DEA and MPI models to measure both efficiency 

and productivity growth of these airports. In addition, Simar and Wilson Bootstrapping 

regression is applied to test whether external factors affecting the efficiency level of the 

airports. Lastly, this thesis is also the first research that employs the basic time-series 

model forecasting the future performances of the airports. 
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CHAPTER 5 

MODEL SPECIFICATION 

 

 This chapter discusses all models used in this thesis. The theories from 

chapter 3 applied to be useful models include data envelopment analysis (DEA) and 

Malmquist’s Total Factor Productivity Index (MPI). Both models are non-parametric 

and linear programming. DEA model is employed to measure and compare the 

efficiency levels of all airports, while MPI can be employed to measure and decompose 

productivity growth. This chapter also discusses one of the useful regression methods 

called as “Simar-Wilson Bootstrapping Regression model (Simar-Wilson, 2007)”. This 

model is employed in the second stage to test whether external factors will affect the 

efficiency levels of the studied airports.  

 Lastly, this study applies the autoregressive model (𝐴𝑅) to forecast future 

trends of the following variables such as number of passengers, number of aircraft 

movements, and number of employees for the individual airports. This last part will 

provide the trends of airport performances recovered after the COVID-19 pandemic 

crisis in the year 2020. Therefore, this basic time-series model also provides the future 

trend of the Thailand aviation industry. 

 

 Moreover, this study employs the input orientation in both DEA and MPI 

models because the output variables of the airports do not solely depend on the 

production process of the airports. The number of aircraft movements, passenger 

movements, and amounts of cargo shifted in the individual airports depend on the 

comparative advantage of each province in Thailand. The airports locate in Chiang Mai, 

Phuket, and Bangkok have higher chances to handle more tourists than other provinces 

because these provinces are the 3 largest hubs of international tourists who have 

traveled to Thailand. Hence, this study employs the input orientation to test whether the 

6 main public airports in Thailand can spend the amounts of inputs efficiently with the 

amounts of outputs obtained. 
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5.1 The input-oriented CCR DEA Model to estimate the technical efficiency levels 

of the airports. 

 

 For the first model, this study employs “the input-oriented CCR DEA” 

model to calculate the operational efficiencies of all 6 Thailand’s main public airports. 

This model applies the concept of input distance function (𝐷𝐼) and input sets (𝐿(𝑦)) to 

construct the frontier as discussed in chapter 3. The concept of the input-oriented model 

focuses on whether the airports use inputs efficiently to produce the fixed amounts of 

outputs. This method applies linear programming to calculate both the technical 

efficiency and inefficiency scores of the airports in the study periods. 

 To estimate the technical efficiency of the individual airports for each 

period, linear programming of the input-oriented CCR DEA model can be defined as 

 

Min 𝜃𝑗 = 𝜃∗  

Subject to  ∑ 𝜆𝑖𝑗

𝑁

𝑖=1

𝑥𝑘𝑖 ≤ 𝜃𝑗𝑥𝑘𝑗 , 𝑘 =  1, … , 𝐾 

 𝑦𝑚𝑗 ≤ ∑ 𝜆𝑖𝑗

𝑁

𝑖=1

𝑦𝑚𝑗 , 𝑚 =  1, … , 𝑀 

 𝜆𝑖𝑗 ≥ 0, 𝑖 =  1, … , 𝑁 

  (5.1) 

 

Where 𝜃𝑗 or 𝜃∗ is input-oriented TE of the 𝑗𝑡ℎ airports. 

 𝑥𝑘𝑗 is input set of the 𝑗𝑡ℎ airports. 

 𝑦𝑚𝑗 is output set of 𝑗𝑡ℎ airports. 

 𝜆𝑖𝑗 is the intensity variable representing weights of all airports 

 (𝑖 =  1, … , 𝑁) used to construct frontier for the 𝑗𝑡ℎ airports. 

 

 The CCR DEA model applies the concept of CRTS where it calculates the 

efficiency levels at the optimum scale or perfectly competitive assumption.  
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 This study assumes all 6 airports are perfect competition because all 6 

airports locate in different regions. They use the same operation working system, 

technologies and serving many low-cost carriers (LCCs) airlines. Lastly, they are 

international airports that serve tourists from all around the world who travel to 

Thailand with different objectives. 

 This thesis employs 3 output variables and 4 input variables to estimate the 

technical efficiencies of the individual airports between 2007 to 2020. The 3 output 

variables include the number of passenger movements, total aircraft movements, and 

the amounts of cargo shifted in ton. The input variables compose of the number of 

employees, number of runways, apron area in meter squares (𝑚2), and terminal area in 

meter squares (𝑚2). The 14 years data of 6 airports are studied. Hence, the number of 

𝐷𝑀𝑈𝑠 will be 84 (𝑁 = 84), the number of input variables equals 4 (𝐾 = 4), and the 

number of output variables equals 3 (𝑀 = 3). 

 

5.2 The input-oriented MPI model to decompose the productivity changing of the 

airports in the studied periods. 

 

 Next, Malmquist’s Total Factor Productivity Index (MPI) is employed to 

calculate the productivity changes of the airports in the studied periods. The MPI model 

is the DEA model that extends to estimate the productivity growth of the airports.  

 The MPI model can also be decomposed into the specific subjects as the 

“input-oriented technical efficiency changing ( 𝑇𝐸𝐶𝑖 )” and the “input-oriented 

technological changing (𝑇𝐶𝑖)”. 𝑇𝐸𝐶𝑖  reflects whether any airport can improve their 

operation working system efficiently to get more productivity growth. 𝑇𝐶𝑖  reflects 

whether any airport can adjust their organization wisely by adopting new technology to 

improve their productivity growth. Some airports can improve their productivity 

growth by emphasizing either 𝑇𝐸𝐶𝑖 or 𝑇𝐶𝑖, or both. 

 To measure and decompose productivity changing between period 𝑡 and 

𝑡 + 1, the input-oriented MPI model (𝑚𝑡,𝑡+1
𝑖 (𝑦𝑡, 𝑦𝑡+1, 𝑥𝑡 , 𝑥𝑡+1)) can be defined as 

 

Ref. code: 25646204040080WKG



75 

 
 

 

𝑚𝑡,𝑡+1
𝑖 (𝑦𝑡 , 𝑦𝑡+1, 𝑥𝑡 , 𝑥𝑡+1) = [𝑚𝑡

𝑖 (𝑦𝑡 , 𝑦𝑡+1, 𝑥𝑡 , 𝑥𝑡+1) ×  𝑚𝑡+1
𝑖 (𝑦𝑡 , 𝑦𝑡+1, 𝑥𝑡 , 𝑥𝑡+1)]

1/2
  

              = [
𝐷𝑡

𝑖(𝑥𝑡+1,𝑦𝑡+1)

𝐷𝑡
𝑖(𝑥𝑡,𝑦𝑡)

∙
𝐷𝑡+1

𝑖 (𝑥𝑡+1,𝑦𝑡+1)

𝐷𝑡+1
𝑖 (𝑥𝑡,𝑦𝑡)

]
1/2

  

                                   =
𝐷𝑡+1

𝑖 (𝑥𝑡+1,𝑦𝑡+1)

𝐷𝑡
𝑖(𝑥𝑡,𝑦𝑡)

[
𝐷𝑡

𝑖(𝑥𝑡+1,𝑦𝑡+1)

𝐷𝑡+1
𝑖 (𝑥𝑡+1,𝑦𝑡+1)

∙
𝐷𝑡

𝑖(𝑥𝑡,𝑦𝑡)

𝐷𝑡+1
𝑖 (𝑥𝑡,𝑦𝑡)

]
1/2

 (5.2) 

 

Where 𝑚𝑡
𝑖 (𝑦𝑡, 𝑦𝑡+1, 𝑥𝑡 , 𝑥𝑡+1)  is the input-oriented Malmquist’s TFP index of the 

            individual airports in period 𝑡. 

𝑚𝑡+1
𝑖 (𝑦𝑡, 𝑦𝑡+1, 𝑥𝑡 , 𝑥𝑡+1)  is the input-oriented Malmquist’s TFP index of the 

            individual airports in period 𝑡 + 1. 

𝐷𝑡
𝑖(𝑥𝑡, 𝑦𝑡) is the input distance function in period 𝑡 using data of the individual 

            airports in period 𝑡. 

𝐷𝑡+1
𝑖 (𝑥𝑡, 𝑦𝑡) is the input distance function in period 𝑡 + 1 using data of the 

            individual airports in period 𝑡. 

𝐷𝑡
𝑖(𝑥𝑡+1,𝑦𝑡+1)  is the input distance function in period 𝑡  using data of the 

            individual airports in period 𝑡 + 1. 

𝐷𝑡+1
𝑖 (𝑥𝑡+1,𝑦𝑡+1) is the input distance function in period 𝑡 + 1 using data of the 

individual airports in period  𝑡 + 1. 

 

 The value of 𝑚𝑡,𝑡+1
𝑖 (𝑦𝑡, 𝑦𝑡+1, 𝑥𝑡, 𝑥𝑡+1) is greater than one indicating a TFP 

of the airport has progressed from period 𝑡 to period 𝑡 + 1, whereas the value is smaller 

than one indicating that TFP of the airport has regressed from period 𝑡 to 𝑡 + 1. 

 

 The input-oriented MPI model is derived from the calculation of the 4 input 

distance functions including 𝐷𝑡
𝑖(𝑥𝑡, 𝑦𝑡) , 𝐷𝑡

𝑖(𝑥𝑡+1,𝑦𝑡+1) , 𝐷𝑡+1
𝑖 (𝑥𝑡, 𝑦𝑡) , and 

𝐷𝑡+1
𝑖 (𝑥𝑡+1,𝑦𝑡+1). 
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 5.2.1 The input distance function in period 𝒕 using data of period 𝒕 

(𝑫𝒕
𝒊(𝒙𝒕, 𝒚𝒕)) 

 𝐷𝑡
𝑖(𝑥𝑡, 𝑦𝑡)  measures the input-oriented technical efficiency of the 𝑗𝑡ℎ 

airports which can be calculated by employing linear programming as 

 

 𝐷𝑡
𝑖(𝑥𝑡, 𝑦𝑡) = Min 𝜃𝑗 = 𝜃∗  

Subject to  ∑ 𝜆𝑖𝑗

𝑁

𝑖=1

𝑥𝑘𝑖,𝑡 ≤ 𝜃𝑗𝑥𝑘𝑗,𝑡 , 𝑘 =  1, … , 𝐾 

 𝑦𝑚𝑗,𝑡 ≤ ∑ 𝜆𝑖𝑗

𝑁

𝑖=1

𝑦𝑚𝑗,𝑡 , 𝑚 =  1, … , 𝑀 

 𝜆𝑖𝑗 ≥ 0, 𝑖 =  1, … , 𝑁 

  (5.3) 

 

Where 𝜃𝑗 or 𝜃∗ is input-oriented TE of the 𝑗𝑡ℎ airports. In other words, it is the input 

 distance function in period 𝑡 using data of each airport in period 𝑡. 

 𝑥𝑘𝑗,𝑡 is input set of the 𝑗𝑡ℎ airports at period 𝑡. 

 𝑦𝑚𝑗,𝑡 is output set of 𝑗𝑡ℎ airports at period 𝑡. 

 𝜆𝑖𝑗 is the intensity variable representing weights of all airports 

 (𝑖 =  1, … , 𝑁) used to construct frontier for the 𝑗𝑡ℎ airports. 

 5.2.2 The input distance function in period 𝒕 using data of period 𝒕 + 𝟏 

(𝑫𝒕
𝒊(𝒙𝒕+𝟏,𝒚𝒕+𝟏)) 

 𝐷𝑡
𝑖(𝑥𝑡+1,𝑦𝑡+1) measures the input-oriented technical efficiency of the 𝑗𝑡ℎ 

airports which can be calculated by employing linear programming as 

 

 𝐷𝑡
𝑖(𝑥𝑡+1,𝑦𝑡+1) = Min 𝜃𝑗 = 𝜃∗  

Subject to ∑ 𝜆𝑖𝑗

𝑁

𝑖=1

𝑥𝑘𝑖,𝑡 ≤ 𝜃𝑗𝑥𝑘𝑗,𝑡+1 , 𝑘 =  1, … , 𝐾 
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 𝑦𝑚𝑗,𝑡+1 ≤ ∑ 𝜆𝑖𝑗

𝑁

𝑖=1

𝑦𝑚𝑗,𝑡, 𝑚 =  1, … , 𝑀 

 𝜆𝑖𝑗 ≥ 0, 𝑖 =  1, … , 𝑁 

  (5.4) 

 

Where 𝜃𝑗 or 𝜃∗ is input-oriented TE of the 𝑗𝑡ℎ airports. In other words, it is the input 

 distance function in period 𝑡 using data of each airport in period 𝑡 + 1. 

 𝑥𝑘𝑗,𝑡+1 is input set of the 𝑗𝑡ℎ airports at period 𝑡 + 1. 

 𝑦𝑚𝑗,𝑡+1 is output set of 𝑗𝑡ℎ airports at period 𝑡 + 1. 

 5.2.3 The input distance function in period 𝒕 + 𝟏 using data of period 𝒕 

(𝑫𝒕+𝟏
𝒊 (𝒙𝒕, 𝒚𝒕)) 

 𝐷𝑡+1
𝑖 (𝑥𝑡, 𝑦𝑡)  measures the input-oriented technical efficiency of the 𝑗𝑡ℎ 

airports which can be calculated by employing linear programming as 

 

 𝐷𝑡+1
𝑖 (𝑥𝑡, 𝑦𝑡)  = Min 𝜃𝑗 = 𝜃∗  

Subject to ∑ 𝜆𝑖𝑗

𝑁

𝑖=1

𝑥𝑘𝑖,𝑡+1 ≤ 𝜃𝑗𝑥𝑘𝑗,𝑡 , 𝑘 =  1, … , 𝐾 

 𝑦𝑚𝑗,𝑡 ≤ ∑ 𝜆𝑖𝑗

𝑁

𝑖=1

𝑦𝑚𝑗,𝑡+1 , 𝑚 =  1, … , 𝑀 

 𝜆𝑖𝑗 ≥ 0, 𝑖 =  1, … , 𝑁 

  (5.5) 

 

Where 𝜃𝑗 or 𝜃∗ is input-oriented TE of the 𝑗𝑡ℎ airports. In other words, it is the input 

 distance function in period 𝑡 + 1 using data of each airport in period 𝑡. 

 5.2.4 The input distance function in period 𝒕 + 𝟏 using data of period 𝒕 +

𝟏 (𝑫𝒕+𝟏
𝒊 (𝒙𝒕+𝟏,𝒚𝒕+𝟏)) 

 𝐷𝑡+1
𝑖 (𝑥𝑡+1,𝑦𝑡+1) measures the input-oriented technical efficiency of the 𝑗𝑡ℎ 

airports which can be calculated by employing linear programming as 
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 𝐷𝑡+1
𝑖 (𝑥𝑡+1,𝑦𝑡+1) = Min 𝜃𝑗 = 𝜃∗  

Subject to ∑ 𝜆𝑖𝑗

𝑁

𝑖=1

𝑥𝑘𝑖,𝑡+1 ≤ 𝜃𝑗𝑥𝑘𝑗,𝑡+1 , 𝑘 =  1, … , 𝐾 

 𝑦𝑚𝑗,𝑡+1 ≤ ∑ 𝜆𝑖𝑗

𝑁

𝑖=1

𝑦𝑚𝑗,𝑡+1 , 𝑚 =  1, … , 𝑀 

 𝜆𝑖𝑗 ≥ 0, 𝑖 =  1, … , 𝑁 

  (5.6) 

 

Where 𝜃𝑗 or 𝜃∗ is input-oriented TE of the 𝑗𝑡ℎ airports. In other words, it is the input 

 distance function in period 𝑡 + 1 using data of each airport in period 𝑡 + 1. 

 

Figure 5.1 

The basic idea to estimate 𝐷𝑡
𝑖(𝑥𝑡, 𝑦𝑡), 𝐷𝑡

𝑖(𝑥𝑡+1,𝑦𝑡+1), 𝐷𝑡+1
𝑖 (𝑥𝑡, 𝑦𝑡), and 

𝐷𝑡+1
𝑖 (𝑥𝑡+1,𝑦𝑡+1) 

 

 

 

 

 

 

 

 

Note. From Rungsuriyawiboon (2015), p.444. 

 

 Figure 5.1 shows the basic idea for calculating all 4 input distance functions 

of the input-oriented MPI model (𝑚𝑡,𝑡+1
𝑖 (𝑦𝑡, 𝑦𝑡+1, 𝑥𝑡 , 𝑥𝑡+1)). Consider the technology 

in period 𝑡 and 𝑡 + 1, the input and output variables in period 𝑡 (𝑥𝑡, 𝑦𝑡), and the input 
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and output variables in period 𝑡 + 1 (𝑥𝑡+1,𝑦𝑡+1). Therefore, 𝐷𝑡
𝑖(𝑥𝑡, 𝑦𝑡) can be defined 

by 
𝑜𝑎

𝑜𝑏
. 𝐷𝑡

𝑖(𝑥𝑡+1,𝑦𝑡+1) can be defined by 
𝑜𝑐

𝑜𝑑
. 𝐷𝑡+1

𝑖 (𝑥𝑡, 𝑦𝑡) can be defined by 
𝑜𝑎

𝑜𝑓
. Lastly, 

𝐷𝑡+1
𝑖 (𝑥𝑡+1,𝑦𝑡+1) can be defined by 

𝑜𝑐

𝑜𝑒
. All 4 input distance functions are applied to 

measure 𝑇𝐶𝑖 and 𝑇𝐸𝐶𝑖.  

 

 5.2.5 Input-oriented Technical Efficiency Changing (𝑻𝑬𝑪𝒊) 

Measurement. 

 

“The more talent density you have the less process you need. The more process you 

create the less talent you retain.” 

 

Reed Hastings (CEO of Netflix) 

 

 𝑇𝐸𝐶𝑖  or 
𝐷𝑡+1

𝑖 (𝑥𝑡+1,𝑦𝑡+1)

𝐷𝑡
𝑖(𝑥𝑡,𝑦𝑡)

  measures the changing in the input-oriented 

technical efficiency between periods 𝑡 and 𝑡 + 1. Under the input-oriented MPI model, 

𝑇𝐸𝐶𝑖 measures whether the operational efficiency of the airport uses the limited inputs 

quantities efficiently while serving the same amounts of outputs.  

 If 𝑇𝐸𝐶𝑖 is greater than 1, it indicates the progress of the technical efficiency 

of the airport between period 𝑡 to 𝑡 + 1. This means that the airport can improve their 

working system and environment of workplace efficiently to support the production 

processes by reducing the inputs used between period 𝑡  to 𝑡 + 1. The examples to 

improve the technical efficiency scores are the airports adapt their working systems by 

setting the new working systems such as LEAN, AGILE, and Talent Density instead. 

Figure 5.2 shows the theory of the LEAN system and Figure 5.3 shows the concept of 

the AGILE system. 

 If 𝑇𝐸𝐶𝑖 is lower than 1, it indicates the regress of the technical efficiency 

of the airport between period 𝑡 to 𝑡 + 1. This means that the airport operates on working 
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systems inefficiently and wastes inputs using in the production processes between 

period 𝑡 to 𝑡 + 1. An example is the old working systems in terms of labor at the 

airports cannot support productivity growth anymore and also obstruct the sustainable 

growth of the airports. 

 

Figure 5.2 

The LEAN system 

 

 

 

 

 

 

 

 

 

 

Note. From https://kanbanzone.com/2019/lean-management/ 
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Figure 5.3 

The AGILE system 

 

 

 

 

 

 

 

 

 

 

Note. From https://hygger.io/guides/agile/ 

 

 5.2.6 Input-oriented Technical Changing (𝑻𝑪𝒊) Measurement. 

 Under the input-oriented MPI model, 𝑇𝐶𝑖 or [
𝐷𝑡

𝑖(𝑥𝑡+1,𝑦𝑡+1)

𝐷𝑡+1
𝑖 (𝑥𝑡+1,𝑦𝑡+1)

∙
𝐷𝑡

𝑖(𝑥𝑡,𝑦𝑡)

𝐷𝑡+1
𝑖 (𝑥𝑡,𝑦𝑡)

]
1/2

 

measures the ability of the airports taking advantage of new technology to promote 

productivity growth between period 𝑡 and 𝑡 + 1. 

 If 𝑇𝐶𝑖 is greater than 1, it indicates the progress of technology adoption of 

the airport between period 𝑡  to 𝑡 + 1 . This means that the airport can adapt their 

organization smoothly with new technology to reduce the wasted inputs between period 

𝑡 to 𝑡 + 1. For example, smart airports can adopt new technologies such as Big data, 

Artificial Intelligent (AI), self-service check-in kiosks, the internet of things (IOT), and 

face recognition to replace unskilled employees at the airports. These new technologies 

can reduce some costs spent in training at particular positions. The new technologies 

can help smart airports to keep only high-skilled employees and operate their businesses 

productively. Figure 5.4 shows the example of a smart airport from Beijing Daxing 

International Airport, China. This airport was successful to be a smart airport by using 

new technologies such as the face recognition machine, virtual and physical robots, and 

self-check-in kiosks by radio frequency identification (RFID). Figure 5.5 shows the 
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biometric facial recognition machine. Figure 5.6 shows the AR assistant application. 

This application can show the map of the entire airport. Figure 5.7 shows the robot 

assistant at the airport. Some airports such as Heathrow Airport, England and Incheon 

Airport, South Korea use this machine to convenient the passengers. All these 

technologies can stimulate the productivity growth of airports in the long run. 

   

Figure 5.4 

Beijing Daxing International Airport 

 

 

 

 

 

 

 

 

 

 

 

Note. From https://www.mhesi.go.th/index.php/en/all-media/book/3073-2021-01-22-

16-46-51.html 
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Figure 5.5 

The Biometric Facial Recognition 

 

 

 

 

 

 

 

 

 

 

 

Note. From https://globalnews.ca/news/4567183/facial-recognition-technology-u-s-

airports/  

 

Figure 5.6 

AR Assistant at the airport 

 

 

 

 

 

 

 

 

 

 

 

Note. From https://www.dailygizmo.tv/2019/12/02/5-airport-technology/ 
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Figure 5.7 

The Robot Assistant at Incheon Airport 

 

 

 

 

 

 

 

 

 

 

 

 

Note. From http://koreabizwire.com/incheon-airport-introduces-airstar-passenger-

aiding-robot/121298 

 

 If 𝑇𝐶𝑖 is lower than 1, it indicates the regress of technological adoption of 

the airport between period 𝑡 to 𝑡 + 1. This means that the airport cannot adapt their 

working systems wisely with new technology to reduce the wasted inputs quantities 

used between period 𝑡  to 𝑡 + 1 . For example, the airport lacks to adapt their 

environment of workplaces and working systems with the rapid development of new 

technologies. This shows that the airport cannot take the advantage of new technologies 

to help them reduce the wasted inputs and convenience to the passengers. 

 This thesis defines all input variables and output variables of the input-

oriented MPI model to measure productivity growths of the airports are the same as in 

the input-oriented CCR DEA model. 
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5.3 Simar and Wilson Bootstrapping Regression Model 

 

 The efficiency scores of the 6 airports obtained from the input-oriented 

CCR DEA model will be employed in the second stage to test whether the external 

factors in Thailand and the global contexts within the study periods will affect the 

technical efficiency levels of the 6 airports.  

 According to Tsui et al. (2014), the Tobit regression method did not give 

reliable results as the Simar and Wilson’s method (Simar and Wilson, 2007). Hence, 

the authors employed the Simar-Wilson Bootstrapping regression analysis in the second 

stage after obtaining the results from the DEA model in the first stage.  

 This thesis employs the Simar and Wilson Bootstrapping Regression 

technique to test in the second stage whether the external factors will affect the 

operational efficiencies of the 6 main public airports in Thailand.  

 “According to Simar and Wilson (2007), the Simar-Wilson Bootstrapping 

regression model can be written as follow:  

 

𝜃𝑗
∗ = 𝛼 + 𝑧𝑗𝛽 + 𝜀𝑗     𝑤ℎ𝑒𝑟𝑒 𝑗 = 1,2,3, … 𝑛 (5.7) 

 

Where 𝜃𝑗
∗ is the CCR DEA efficiency index of airport j. 

 𝛼 is the constant. 

 𝑧𝑗 is a vector of observation independent variables that are expected to 

 affect the airport j’s efficiency scores. 

 𝛽 is a vector of parameters. 

 𝜀𝑗 is the error term.  

  

 To applying the Simar-Wilson bootstrapping approach, the distribution of 

𝜀𝑗  will be limited to the condition of 𝜀𝑗 ≥ 1 − 𝛼 − 𝑧𝑗𝛽. Thus, the distribution of 𝜀𝑗 

becomes 𝜀𝑗~𝑖𝑖𝑑𝑁(0, 𝜎𝜀
2) (Tsui et al.,2014, p.18)”. 

 All external factors are employed in this thesis include 9 independent 

variables such as a dummy for airport hub status (AHS), a dummy for the global 

financial crisis between 2008 to 2009 (GFC), a dummy for People’s Alliance for 
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Democracy occupied DMK and BKK for a short period at the end of the year 2008 or 

in the fiscal year 2009 (PAD), a dummy for DMK was flooded at the end of the year 

2011 or fiscal year 2012 (FLOOD), a dummy for Thailand’s political conflict between 

2013 to 2014 or in the fiscal year 2014 (TPC), percent of international low-cost carriers 

(LCCs) passengers of the individual airports (PILCCS), percent of domestic LCCs 

passengers of the individual airports (PDLCCS), percent of international passengers of 

the individual airports (PIP), and a dummy for the COVID-19 pandemic in 2020 

(COVID). 

 Table 5.1 shows all independent variables have employed in the second 

stage. GFC and COVID represent the dummy of macro impacted variables. The global 

financial crisis in 2008-2009 and the COVID-19 pandemic in 2020 provided a huge 

negative impact on the global economy. AHS, FLOOD, TPC, and PAD represent micro 

impacted variables. Airport hub status is defined as the airports that handle a large 

number of tourists within each year more than 10 million passengers. Currently, 

Thailand has 4 airport hubs such as BKK, DMK, HKT, and CNX. These 4 micro 

dummy variables represent the events that happened only in Thailand in the studied 

periods. However, PILCCS, PDLCCS, and PIP are not dummy variables. Appendix B 

shows all the abbreviation names of all independent variables. 

 

 

Table 5.1 

List of all independent variables 

Name of all independent 

variables 
Symbol Type of variable 

Airport hub status AHS Dummy variable 

Global financial crisis 

between 2008 to 2009 
GFC Dummy variable 

People’s Alliance for 

Democracy occupied 

DMK and BKK in 2008 

PAD Dummy variable 

Flooding at DMK in 2011 FLOOD Dummy variable 
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Table 5.1 

List of all independent variables (Cont.) 

Name of all independent 

variables 
Symbol Type of variable 

Thailand’s political 

conflict between 2013 to 

2014 

TPC Dummy variable 

COVID-19 pandemic in 

2020 
COVID Dummy variable 

Percent of international 

low-cost carriers of the 

individual airports 

PILCCS Non-dummy variable 

Percent of domestic low-

cost carriers of the 

individual airports 

PDLCCS Non-dummy variable 

Percent of international of 

the individual airports 
PIP Non-dummy variable 

 

Note. From author’s compilation and AOT’s Corporate Presentations between 2007 to 

2020. 

 

5.4 Autoregressive (𝑨𝑹) Model 

 

 For the last part of the analysis, this thesis employs an autoregressive model 

(𝐴𝑅)  to forecast the future data and applies all of them to estimate the future 

performances of all 6 airports in the post-COVID-19 period between 2021 to 2030. 

 𝐴𝑅 model can be used to predict future data based on past data. The process 

of 𝐴𝑅  prediction is a linear combination of past values of the variable. 𝐴𝑅  model 

indicates that it is a regression of the variable against itself. The 𝐴𝑅 model of order 𝑝 

can be defined as: 
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𝑦𝑡 = 𝑐 +  𝜙1𝑦𝑡−1 +  𝜙2𝑦𝑡−2+ . . . + 𝜙𝑝𝑦𝑡−𝑝 +  𝜀𝑡 (5.8) 

 

Where 𝑦𝑡 is forecast value in period 𝑡. 

 𝑦𝑡−1, 𝑦𝑡−2, … , 𝑦𝑡−𝑝 are the lag values from period 𝑡 − 1 to 𝑡 − 𝑝. 

 𝑐 is a constant. 

 𝜙1, 𝜙2, … , 𝜙𝑝 are the parameters of the model. 

 𝜀𝑡 is white noise. 

 

 This thesis applies 𝐴𝑅(1) model to forecast 2 output variables such as the 

number of passengers and total aircraft movements of the individual airports between 

2024 to 2030, and only one input variable as the number of employees between 2021 

to 2030. The 𝐴𝑅(1)  model is autoregressive with order 1 or called “first-order 

autoregressive”. This model can be defined as: 

 

𝑦𝑡 = 𝑐 +  𝜙1𝑦𝑡−1 + 𝜀𝑡 (5.9) 

 

Where 𝑦𝑡 is forecast value in period 𝑡. 

 𝑐 is a constant. 

 𝜙1 is the parameter of the model. 

 𝑦𝑡−1 is the lag value of 𝑦𝑡 from period 𝑡 − 1. 

 𝜀𝑡 is white noise. (Hyndman and Athanasopoulos, 2013; Stephanie, 2015) 

 All forecasting data will be employed to estimate the future performances 

of the airports in the post-COVID-19 period. The results in this part show the recovery 

trends of the technical efficiency scores and productivity growths of the 6 main public 

airports in Thailand after the unexpected shock from the COVID-19 pandemic in 2020.  
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CHAPTER 6 

DATA 

 

 This chapter discusses all data employed in this thesis. All data focus on 

the 6 main public airports of Thailand. They include Suvarnabhumi Airport (BKK), 

Don Mueang International Airport (DMK), Phuket International Airport (HKT), 

Chiang Mai International Airport (CNX), Hat Yai International Airport (HDY), and 

Mae Fah Luang-Chiang Rai International Airport (CEI).  

 The first part explains data between 2007 to 2020 that covers the big shock 

events such as the global financial crisis between 2008 to 2009, flooding in Thailand in 

2011, and the COVID-19 pandemic that started in early 2020. These data are employed 

to measure the technical efficiencies and productivity growths of the airports in the first 

stage. In the second stage, this thesis applies the Simar and Wilson method within this 

study period to test which external factors will affect the technical efficiency scores of 

the airports. This part discusses all input and output variables defined to the efficiency 

and productivity measurement in the first stage, and it also includes all independent 

variables in the second stage. 

 The latter part of this chapter includes data between 2007 to 2030. In this 

part, this thesis employs the basic time-series method called the “Autoregressive (AR) 

model” to forecast the airport’s future data between 2021 to 2030. This part tries to 

forecast the recovery trends of these airports for the next 10 years after the crisis in 

2020. These data are employed to predict the future performances in both terms of 

efficiency changes and productivity growths of the airports. This part also discusses 

some limitations of the data used within this period. 
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6.1 Data used for analyzing the full performances of the 6 main public airports in 

Thailand between 2007 to 2020. 

 

 In the first stage, all variables are employed to estimate the airports’ 

technical efficiency scores and productivity levels between 2007 to 2020, the pre-

COVID-19 pandemic period. Table 6.1 shows descriptive statistics of all data employed 

to estimate DEA and MPI between 2007 to 2020. 

 

Table 6.1 

Descriptive statistics of all data using in first stage estimation between 2007 to 2020 

 

 

 

Input/ 

Output 
Variables Maximum Minimum Average Std. Dev. 

Input 
Number of 

employees 
3,514.00 105.00 807.50 958.05 

Input 
Number of 

runways 
2.00 1.00 1.33 0.47 

Input 
Apron area 

(𝑚2) 
1,033,000.00 28,800.00 359,842.83 420,876.08 

Input 
Terminal 

area (𝑚2) 
563,000.00 14,656.00 158,653.19 206,740.06 

Output 
Number of 

passengers 
64,711,010.00 648,783.00 14,801,188.39 18,057,737.28 

Output 

Number of 

aircraft 

movements 

378,886.00 5,546.00 97,642.17 109,452.34 
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Table 6.1 

Descriptive statistics of all data using in first stage estimation between 2007 to 2020 

(Cont.) 

Input/ 

Output 
Variables Maximum Minimum Average Std. Dev. 

Output 

Cargo 

volumes 

(tons) 

1,500,139.00 1,271.00 226,424.48 468,657.60 

 

Note. From author’s summary. 

 

 This thesis defines 3 output variables such as the number of passengers, 

total aircraft movements, and amount of cargo volumes in tons of the individual airports 

to measure the input-oriented CCR DEA technical efficiency scores and Malmquist’s 

total factor productivity growths in the first stage (Sarkis, 2000; Lam et al., 2009; Lin 

et al., 2013; Tsui et al., 2014; Tsui et al., 2014; Sopadang and Suwanwong, 2016; Chen 

et al., 2017; Ripoll-Zarraga and Raya, 2020). For 4 input variables, this thesis employs 

the number of employees, the number of runways, terminal area (in meter squares), and 

apron area (in meter squares) (Sarkis, 2000; Yu, 2004; Yang, 2010; Lin et al., 2013; 

Tsui et al., 2014; Tsui et al., 2014; Sopadang and Suwanwong, 2016; Chen et al., 2017; 

Kaaranki and Lim, 2020; Ripoll-Zarraga and Raya, 2020).  

 All 3 output variables and the number of employees are derived from 

AOT’s annual reports between 2007 to 2020. The number of runways and the terminal 

area (𝑚2) of the individual airports are obtained from AOT’s corporate presentation 

between 2007 to 2020. Lastly, the apron area (𝑚2) is derived from AOT’s SET56-1 

Form between 2008 to 2020.  

 It is worthy to note that previous researches defined operating revenues and 

operating costs as the output and input variables (Yang, 2010; Tsui et al., 2014b; Yang 

Ref. code: 25646204040080WKG



92 

 
 

 

and Huang, 2014). This thesis cannot use these variables because AOT’s annual reports 

did not collect these data separately for the individual airports. According to Scotti et 

al. (2010), Tsui et al. (2014a), and other researches, they didn’t consider these variables 

as inputs and outputs. However, most of them defined the number of passenger 

movements, air traffic movements, and the amount of air cargo shifted as the output 

variables. For the input variables, they defined the number of employees, runways, the 

terminal size, and the total area of the airports (Abbott and Wu, 2002; Lam et al. 2009; 

Rapee and Peng, 2014).  

 Table 6.1 shows that the number of employees ranges between 105 to 3,514 

and has an average of 807.50 people. The BKK has the highest number of employees 

of 3,514 in 2020, and the CEI has the lowest number of employees of 105 in 2008. The 

number of runways ranges between 1 and 2. Only BKK and DMK have 2 runways. The 

BKK has the largest apron area of 1,033,000 𝑚2 , while the CEI has the smallest area 

of 28,800 𝑚2. The average apron area in meter squares is 359,842.83. The average 

terminal area in meter squares is 158,653.19, while the BKK has the largest terminal 

area of 563,000 𝑚2 and the HDY has the smallest terminal area of 14,656 𝑚2. The 

number of passengers ranges between 648,783 to 64,711,010, and it has an average and 

standard deviation of 14,801,188.9 and 18,057,737.28 people, respectively. The 

number of aircraft movements has a maximum of 378,886 and a minimum of 5,546. 

The average is 97,642.17 and the standard deviation is 109,452.34. The BKK handled 

the highest amount of cargo shifted in 2018 of 1,500,139 tons, while the CEI handled 

the smallest amount of this output in 2020 of 1,271 tons. The average is 226,424.48 

tons and the standard deviation is 468,657.20 tons. 

 For the second stage, this thesis defines a dependent variable as DEA’s 

efficiency scores between 2007 to 2020 derived from the first stage. This stage employs 

9 independent variables to test whether external factors in both terms of micro and 

macro variables can affect the efficiency levels of the airports. These variables include 

the 6 dummy variables and 3 non-dummy variables. The dummy variables include a 

dummy for airport hub status, a dummy for the global financial crisis event that 

happened between 2008 to 2009, a dummy for the COVID-19 pandemic in 2020, a 
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dummy for the People’s Alliance for Democracy (PAD) occupied DMK and BKK for 

the short period at the end of 2008 (the fiscal year 2009), a dummy for DMK was 

flooded at the end of 2011 (the fiscal year 2012), and a dummy for Thailand’s political 

conflict between 2013 to 2014 (the fiscal year 2014). The non-dummy variables include 

the percent of international low-cost carriers (LCCs), percent of domestic LCCs, and 

percent of international passengers at the individual airports (Tsui et al., 2014; 

Fernandex et al., 2018; Karanki and Lim, 2020; Chung et al., 2015; Ngo and Tsui, 2020; 

Tsui et al., 2014). 

 BKK, CNX, and HKT have been holding airport hub status since 2007 

while DMK became the airport hub after 2009. This thesis has obtained the percent of 

international LCCs, percent of domestic LCCs, and percent of international passengers 

from AOT’s corporate presentations between 2007 to 2020. Table 6.2 shows the 

descriptive statistics of all independent variables employed in the second stage. 

 A dummy of airport hub status represents the big airports that handle more 

than 10 million passenger movements per year. One indicates that the airport has the 

airport hub status, and zero otherwise. This variable has an average of 0.62 and a 

standard deviation of 0.49. A dummy of the global financial crisis between 2008 to 

2009 has an average of 0.14 and a standard deviation of 0.35. The percent of 

international LCCs has a maximum of 41 percent and a minimum of 0 percent. Some 

airports did not handle the international LCCs such as DMK between 2007 to 2011, 

CEI between 2007 to 2016, and HDY in 2009. The percent of domestic LCCs has an 

average of 0.42 and a standard deviation of 0.28. The maximum and minimum are 0.98 

and 0, respectively. DMK had the largest share of the domestic LCCs in 2011 by 97%, 

but the smallest share was the BKK in 2014 and 2015 that this airport did not handle 

domestic LCCs. This thesis employs a dummy of the PAD occupied DMK and BKK at 

the end of 2008, the average is 0.02 and the standard deviation is 0.15. At the end of 

2011, DMK was flooded, so a dummy of DMK was flooded is employed in this model. 

Between the end of 2013 until mid of 2014, Thailand had a political conflict again. A 

dummy of Thailand’s political conflict between 2013 to 2014 is also applied in this 

model. Lastly, the world had faced with the beginning period of the COVID-19 
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pandemic in 2020. This thesis employs a dummy of the COVID-19 pandemic in 2020. 

The average and standard deviation are 0.07 and 0.26, respectively. 

 

Table 6.2 

Descriptive statistics of all independent variables used in stage 2 

Explanatory 

Variables 
Maximum Minimum Average Std. Dev. 

Airport hub 

status 
1.00 0.00 0.62 0.49 

Global 

financial crisis 
1.00 0.00 0.14 0.35 

Percent of 

international 

low-cost 

carriers 

0.41 0.00 0.09 0.09 

Percent of 

domestic low-

cost carriers 

0.98 0.00 0.42 0.28 

PAD occupied 

BKK and 

DMK in 2008 

1.00 0.00 0.02 0.15 

Thailand 

political 

conflict 

between 2013 

to 2014 

1.00 0.00 0.07 0.26 

Percent of 

international 

passengers 

0.77 0.00 0.20 0.27 
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Table 6.2 

Descriptive statistics of all independent variables used in stage 2 (Cont.) 

Explanatory 

Variables 
Maximum Minimum Average Std. Dev. 

Flooding at 

DMK in 2011 
1.00 0.00 0.01 0.11 

COVID-19 1.00 0.00 0.07 0.26 

 

Note. From author’s summary. 

 

6.2 Data used for analyzing the full performances of the 6 main public airports in 

Thailand between 2007 to 2030. 

 

 To forecast the performance of the 6 main public airports in Thailand 

between 2021 to 2030, this analysis covers the data from 2007 to 2030. Due to the 

limitation of data on the amounts of cargo volumes, this thesis uses 𝐴𝑅(1) model to 

forecast 2 output variables such as the number of passengers and total aircraft 

movements of an individual airport between 2024 to 2030. Since data on the number of 

runways, terminal area, and apron area are unchanged over the period, only one input 

variable such as the number of employees is used in this stage. 

 In 2020, the news agencies reported all airports of AOT are going to handle 

446,986 of total aircraft movements and 47.91 million passengers in 2021. In 2022, 

there will be 776,763 aircraft movements and 110.88 million people of the total number 

of passengers. In 2023, both the passenger and aircraft movements of the individual 

airports will be recovered to a similar level of 2019 (The Standard, 2020; Thairath, 

2020; Prachachat, 2020).  

 There are 2 limitations of this part. Firstly, the forecasting trend for the 

amounts of cargo volumes cannot be obtained from any sources. The analysis of this 
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part excludes the amount of cargo shifted from the output variables. Secondly, the 

terminal area and apron area are still difficult to forecast. Hence, this thesis assumes the 

size of the terminal and apron area of the individual airports between 2021 to 2030 

remain unchanged as in 2020. Therefore, the analysis of this part forecasts only 2 output 

variables such as the number of passengers and number of aircraft movements, and one 

input variable such as the number of employees to predict the future airports’ technical 

efficiency scores and productivity growths in the post-COVID-19 pandemic period 

(Yu, 2004; Sopadang and Suwanwong, 2016).  

 According to the AOT’s Corporate Presentation in 2020, it shows that 

between the fiscal year 2019 to 2020, the total number of passenger movements of the 

BKK was decreased by 52.48% because of the affecting of the COVID-19 pandemic. 

HKT was the second-worst airport that decreased by 49.07%. The number of passenger 

movements at DMK had decreased from 41,008,378 in 2019 to 22,250,720 in 2020. 

The CNX had also declined by 44.60%. The CEI and HDY had declined by 39.19% 

and 38.48%, respectively. This report shows that the average decreasing rate of the 6 

main public airports from 2019 to 2020 was 48.80 percent. 

 According to AOT’s annual report in 2020, BKK was 41% and 42% of the 

ratio of total air traffic movements and the total number of passenger movements of all 

airports of AOT, respectively. DMK was 32% and 31%. HKT was 12% and 13%. CNX 

was 9% and 9%. HDY was 4% and 3%. Lastly, CEI was 3% and 2% of these 2 output 

variables. This thesis uses the proportions in the year 2020 of all airports to forecast the 

number of passengers and the total number of aircraft movements of the individual 

airports between 2021 to 2022. The thesis assumes the number of passengers and 

aircraft movements of each airport in 2023 will be the same as in 2019 (The Standard, 

2020; Thairath, 2020; Prachachat, 2020). Between 2024 to 2030, this thesis employs 

the 𝐴𝑅(1) model to forecast the 2 output variables.  

 CAAT (2021) forecasted the 3 scenarios of the recovery trends of all 

airports between 2021 to 2029 by assuming that the COVID-19 pandemic has spread 

only in phase one. These scenarios include best case, moderate case, and worst case. 

Figures 6.1-6.6 show forecasting the number of passengers between 2021 to 2030 of all 
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airports by applying the forecasted trends of CAAT (2021) and the 𝐴𝑅 (1) model. Due 

to another limitation, Thailand currently faces phase four of a pandemic, and the 

original COVID-19 virus has mutated to alpha, beta, gamma, and delta variants, 

respectively. The new forecasting trends of Thailand’s aviation sector do not publish 

yet. During the writing of this thesis, Thailand has a total number of COVID-19 patients 

of 736,522 people. The total number of deaths is 6,066 people (Bangkok Post, 2021). 

 It is worthy to note that BKK has plans to open a third runway in 2023 and 

a fourth runway in 2030. Between 2023 to 2029, this thesis assumes BKK has 3 

runways, and it will increase to 4 runways in 2030. 

 The 𝐴𝑅(1) model shows that the number of passenger movements of the 

individual airports will increase again after 2022 when the normal situation is brought 

back and have the same levels as 2019 in 2023. The results from this model are similar 

to the moderate and worst cases. The best case shows that all airports will start to 

recover in 2021 and have the same levels as 2019 in 2022. 

 

Figure 6.1 

Forecasting the number of passengers of Suvarnabhumi Airport (BKK) between 2021 

to 2030 

 

 

 

 

 

 

 

Note. From author’s estimation and CAAT (2021). 

Ref. code: 25646204040080WKG



98 

 
 

 

Figure 6.2 

Forecasting the number of passengers of Don Mueang International Airport (DMK) 

between 2021 to 2030 

 

 

 

 

 

 

 

 

Note. From author’s estimation and CAAT (2021). 

 

Figure 6.3 

Forecasting the number of passengers of Phuket International Airport (HKT) between 

2021 to 2030 

 

 

 

 

 

 

 

Note. From author’s estimation and CAAT (2021). 
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Figure 6.4 

Forecasting the number of passengers of Chiang Mai International Airport (CNX) 

between 2021 to 2030 

 

 

 

 

 

 

 

Note. From author’s estimation and CAAT (2021). 

 

Figure 6.5 

Forecasting the number of passengers of Hat-Yai International Airport (HDY) between 

2021 to 2030 

 

 

 

 

 

 

 

Note. From author’s estimation and CAAT (2021). 

Ref. code: 25646204040080WKG



100 

 
 

 

Figure 6.6 

Forecasting the number of passengers of Mae Fah Luang-Chiang Rai International 

Airport (CEI) between 2021 to 2030 

 

 

 

 

 

 

 

 

Note. From author’s estimation and CAAT (2021). 

 

 AOT’s Corporate Presentation in 2020 reports that between the fiscal year 

2019 to 2020, the effect of the COVID-19 pandemic made the total number of aircraft 

movements of the HKT decreased by 48.36%. BKK was the second-worst airport that 

decreased by 44.42%. The number of aircraft movements of DMK had decreased from 

273,592 in 2019 to 166,184 in 2020. This equals -39.26 percent. The CNX had also 

declined by 41.27%. The CEI and HDY had declined by 35.64% and 32.52%, 

respectively. This report shows that the average decreasing rate of the 6 main public 

airports in this output variable from 2019 to 2020 was 42.51 percent. 

 Figures 6.7-6.12 show forecasting the total aircraft movements between 

2021 to 2030 of all airports by applying the forecasted trends of CAAT (2021) and the 

𝐴𝑅 (1) model. CAAT (2021) forecasted the domestic and international movements 

between 2021 to 2029 by assuming the 3 recovery scenarios in the period of the 

COVID-19 pandemic, such as a best case, moderate case, and worst case. 
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 This thesis employs the same proportions of this variable in 2020 to forecast 

the total aircraft movements between 2021 to 2022. AOT’s annual report in 2020 

reported that BKK was 41% of total air traffic movements of all airports under AOT. 

DMK, HKT, CNX, HDY, and CEI were 32%, 12%, 9%, 4%, and 3%, respectively. In 

2023, this thesis assumes all airports will be back to the normal situation.  

 The 𝐴𝑅 (1) model reports that the air traffic movements will be recovered 

after 2021 and have the same levels as 2019 in 2023. All airports except BKK have 

recovery trends that are similar to the moderate and worst cases of CAAT (2021). The 

BKK is the only airport in this analysis that has the same levels of total aircraft 

movements between 2021 to 2022 as the best case from CAAT (2021). The results from 

AR (1) forecasted are quite similar in the recovery trends to the forecasted from CAAT 

(2021) except BKK after 2023, HDY after 2025, and CEI after 2027.  

 This thesis is the first research that applies the time-series method to predict 

the future performances of airports. Hence, the thesis employs the results from the 

𝐴𝑅 (1) model to estimate the future efficiency scores and productivity growths of the 

airports. Future research can employ other models to forecast and compare with the 

results from CAAT (2021). 
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Figure 6.7 

Forecasting total aircraft movements of Suvarnabhumi Airport (BKK) between 2021 to 

2030 

 

 

 

 

 

 

 

Note. From author’s estimation and CAAT (2021). 

 

Figure 6.8 

Forecasting total aircraft movements of Don Mueang International Airport (DMK) 

between 2021 to 2030 

 

 

 

 

 

 

 

 

Note. From author’s estimation and CAAT (2021). 
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Figure 6.9 

Forecasting total aircraft movements of Phuket International Airport (HKT) between 

2021 to 2030 

 

 

 

 

 

 

 

Note. From author’s estimation and CAAT (2021). 

 

Figure 6.10 

Forecasting total aircraft movements of Chiang Mai International Airport (CNX) 

between 2021 to 2030 

 

 

 

 

 

 

 

 

Note. From author’s estimation and CAAT (2021). 

Ref. code: 25646204040080WKG



104 

 
 

 

Figure 6.11 

Forecasting total aircraft movements of Hat-Yai International Airport (HDY) between 

2021 to 2030 

 

 

 

 

 

 

 

 

Note. From author’s estimation and CAAT (2021). 

 

Figure 6.12 

Forecasting total aircraft movements of Mae Fah Luang-Chiang Rai International 

Airport (CEI) between 2021 to 2030 

 

 

 

 

 

 

 

Note. From author’s estimation and CAAT (2021). 
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 Figures 6.13-6.18 show forecasting the total number of employees between 

2021 to 2030 of the individual airports by employing the 𝐴𝑅 (1) model and Excel 

Linear Forecast function. According to the AOT’s annual report (2020), it shows that 

every airport had the number of employees increased from 2019 to 2020 except HDY 

and CEI that decreased by 21 and 8 people, respectively.  

 Firstly, this thesis has expected to employ the 𝐴𝑅 (1) model to forecast the 

number of employees of the individual airports between 2021 to 2030. The one of 

limitations is the thesis assumes that the number of employees will increase every year 

according to the 𝐴𝑅 (1) results. The results after employing the 𝐴𝑅 (1) model show 

that the BKK’s number of employees will be overestimated after 2026 that is the 

number of employees will be increased by 2,000 people per year. After 2028, the 

number of workers at BKK will be over 10,000 people and reached almost 14,000 

people in 2030. According to the 𝐴𝑅 (1) results, DMK’s forecasted the number of 

workers faces the same problem as BKK in the forecasting process. HKT and CNX 

have also faced the same problems. The number of employees of CEI and HDY will be 

smoothly increased year by year. The results show that it is difficult to trust the 𝐴𝑅 (1) 

model to forecast this variable of the airport hubs. Hence, the Excel Linear Function is 

employed. The results from the Excel Linear Forecast function show the number of 

employees of all airports will be smoothly increased between 2021 to 2030. Only HDY 

has the number of employees forecasted by the Excel Linear Function is higher than 

the 𝐴𝑅 (1) model, and CEI has the same levels in both methods. Appendix A reports 

forecasting and comparing the growth of the number of employees at the individual 

airports between 2021 to 2030 by the 𝐴𝑅 (1) model and the Excel Linear Forecast 

function. 

 All airports except BKK have a limited area to expand. However, there are 

not possible that the airports such as DMK, HKT, and CNX will have the total number 

of employees of over 5,000 people, 2,000 people, and 1,000 people in the next 10 years. 

BKK has plans to build new constructions in the future, but there is not possible that 

the number of employees will be higher than 5,000 after 2023 because the size of the 

airport cannot be increased that much (AOT’s annual report, 2020) within a short 
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period. In summary, this thesis will employ the forecasted data from the Excel Linear 

Forecast function to analyze the DEA and MPI models between 2007 to 2030. 

 

Figure 6.13 

Forecasting the total number of employees of Suvarnabhumi Airport (BKK) between 

2021 to 2030 

 

 

 

 

 

 

 

 

Note. From author’s estimation. 
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Figure 6.14 

Forecasting the total number of employees of Don Mueang International Airport 

(DMK) between 2021 to 2030 

 

 

 

 

 

 

 

Note. From author’s estimation. 

 

Figure 6.15 

Forecasting the total number of employees of Phuket International Airport (HKT) 

between 2021 to 2030 

 

 

 

 

 

 

 

Note. From author’s estimation. 
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Figure 6.16 

Forecasting the total number of employees of Chiang Mai International Airport (CNX) 

between 2021 to 2030 

 

 

 

 

 

 

 

Note. From author’s estimation. 

 

Figure 6.17 

Forecasting the total number of employees of Hat-Yai International Airport (HDY) 

between 2021 to 2030 

 

 

 

 

 

 

 

Note. From author’s estimation. 

Ref. code: 25646204040080WKG



109 

 
 

 

Figure 6.18 

Forecasting the total number of employees of Mae Fah Luang-Chiang Rai 

International Airport (CEI) between 2021 to 2030 

 

 

 

 

 

 

 

Note. From author’s estimation. 

 

 Table 6.3 shows the descriptive statistics of all input and output variables 

employed to measure the technical efficiency scores and productivity growths of the 

airports between 2007 to 2030.  

 

Table 6.3 

Descriptive statistics of all input and output variables used to estimate DEA and MPI 

between 2007 to 2030 

Input/ 

Output 
Variables Maximum Minimum Average Std. Dev. 

Input 
Number of 

employees 
3,827.00 105.00 1,054.00 1,089.86 

Input 
Number of 

runways 
4.00 1.00 1.40 0.62 

Ref. code: 25646204040080WKG



110 

 
 

 

Table 6.3 

Descriptive statistics of all input and output variables used to estimate DEA and MPI 

between 2007 to 2030 (Cont.) 

Input/ 

Output 
Variables Maximum Minimum Average Std. Dev. 

Input 
Apron area 

(𝑚2) 
1,033,000.00 28,800.00 359,842.83 419,823.63 

Input 
Terminal 

area (𝑚2) 
563,000.00 14,656.00 159,968.04 201,148.29 

Output 
Number of 

passengers 
77,644,350.00 648,783.00 19,388,900.95 21,665,516.62 

Output 

Number of 

aircraft 

movements 

434,521.00 5,546.00 124,287.94 127,972.59 

 

Note. From author’s Summary. 

 

 To measure the technical efficiency changes and productivity growths of 

the individual airports between 2007 to 2030, this thesis employs only 2 output 

variables such as the aircraft and passenger movements. For the 4 input variables, they 

include the number of employees, the number of runways, the apron area (𝑚2) and the 

terminal area (𝑚2). The number of employees ranges between 3,827 and 105.  

 The Excel Linear Forecast shows that in 2030 the BKK’s number of 

workers will be 3,827. The average is 1,054.44 people and the standard deviation is 

1,089.86 people. The number of runways ranges within 1 to 4 by BKK will open the 

3rd and 4th runway in 2023 and 2030, respectively. The average terminal area is 

359,842.83 𝑚2 and the standard deviation is 159,968.04 𝑚2. According to the 𝐴𝑅 (1) 

results, BKK will handle the passenger movements of 77,644,350 people in 2030. The 

mean of this variable is 19,338,900.95 people and the standard deviation is 
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21,665,516.62 people. This shows the range of passenger movements between each 

airport is very broad. Lastly, the total number of aircraft movements has a maximum of 

434,521 and a minimum of 5,546. The average is 124,287.94 and the standard deviation 

is 127,972.59. 
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CHAPTER 7 

RESULT 

 

 This chapter is divided into 2 parts. The first part presents 2 two-stage 

measurements of airports’ performances. The first stage measures the full performances 

of Thailand’s 6 main public airports in terms of efficiency scores and productivity 

changes between 2007 to 2020. The second stage employs the Simar and Wilson 

bootstrapping regression model to test which external factors in both micro and macro 

variables will affect the technical efficiencies of the airports in this study period. 

 The second part uses the forecasting data to measure the future 

performances of these airports between 2021 to 2030. This part aims to predict the 

recovery trends of Thailand’s main public airports in the post-COVID-19 pandemic 

period. 

 

7.1 Performance Measurement of Thailand’s 6 main public airports between 2007 

to 2020. 

 

 This section reports the technical efficiency scores and productivity 

growths of the airports between 2007 to 2020. This period covers the events such as the 

global financial crisis between 2008 to 2009, flooding in Thailand in 2011, and the 

beginning period of the COVID-19 pandemic in 2020. This section also tests that which 

external factors in both terms of micro and macro variables affect the technical 

efficiency scores. 

 Section 7.1.1 measures the technical efficiency scores of the airports by 

employing the input-oriented CCR DEA model between 2007 to 2020. Section 7.1.2 

measures productivity changes of the airports between 2007 to 2020 by employing the 

MPI model. Section 7.1.3 employs the Simar and Wilson bootstrapping regression to 

test which external factors affect the efficiency scores obtained from section 7.1.1. 
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7.1.1 Results of technical efficiency scores of 6 main public airports of Thailand 

between 2007 to 2020. 

 This section reports technical efficiency scores obtained from the input-

oriented CCR DEA model of the individual airports over the study period of 2007-

2020. These results allow to measure and compare the performances of Thailand’s 6 

main public airports. 

 

Table 7.1 

Technical efficiency scores of the 6 main public airports of Thailand between 2007 to 

2020 

Year BKK DMK HKT CNX HDY CEI Mean 

2007 0.878 0.332 1.000 0.850 0.423 0.279 0.627 

2008 0.934 0.437 0.877 0.690 0.393 0.299 0.605 

2009 0.741 0.246 0.773 0.670 0.381 0.248 0.510 

2010 0.931 0.287 0.982 0.796 0.463 0.255 0.619 

2011 0.987 0.694 0.947 0.812 0.532 0.245 0.703 

2012 1.000 0.326 1.000 0.909 0.576 0.286 0.683 

2013 0.976 0.870 1.000 0.724 0.571 0.263 0.734 

2014 0.927 0.895 1.000 0.839 0.578 0.357 0.766 

2015 0.951 1.000 1.000 1.000 0.540 0.461 0.825 

2016 0.988 0.978 0.929 0.985 0.590 0.512 0.830 

2017 0.994 0.972 0.963 1.000 0.669 0.595 0.866 

2018 1.000 1.000 1.000 1.000 0.641 0.684 0.888 

2019 1.000 1.000 0.992 1.000 0.594 0.711 0.883 

2020 0.676 0.607 0.512 0.587 0.401 0.458 0.540 

Mean 0.927 0.689 0.927 0.847 0.525 0.404 0.720 

 

Note. From author’s calculation. The names and code names of the airports are 

following as Suvarnabhumi Airport (BKK), Don Mueang International Airport (DMK), 
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Phuket International Airport (HKT), Chiang Mai International Airport (CNX), Hat-Yai 

International Airport (HDY), and Mae Fah Luang-Chiang Rai International Airport 

(CEI). 

 

 Table 7.1 reports the technical efficiency scores of all 6 airports between 

2007 to 2020. The average efficiency score of all airports is 72 percent in this period. 

The average efficiency of all airports was above 60 percent in 2007-2008 and decreased 

to 51 percent in 2009, the period of the global financial crisis. Between 2010 to 2011, 

the recovery period after the crisis, the results show that the average efficiency score 

returned to higher than 60 percent again and reached 70 percent in 2011. At the end of 

the year 2011, Thailand faced a big flooding in many provinces and the DMK was 

flooded. This made the efficiency score of DMK in 2012 was dropped to 32.6 percent, 

in other words, the technical inefficiency score was 67.4 percent. The result shows that 

flooding at the end of 2011 affected only DMK’s efficiency score. The average 

efficiency in 2012 had dropped a little bit to 68.3 percent. After 2012, the average 

efficiency scores were higher than 70 percent every year and higher than 80 percent 

between 2013 to 2019. Between 2013 to 2019, a lot of tourists traveled to Thailand. 

This made the 6 main public airports had to improve their qualities and operational 

efficiencies to bear with the high growth of the tourism sector. At the end of 2019, the 

beginning period of the COVID-19 pandemic from Wuhan, China, this pandemic made 

the world faced a severe problem in terms of life, employment, and economy. So, the 

shock from this pandemic affected the decreasing of air traffic and passenger 

movements because many countries had a lockdown policy in 2020. The average 

efficiency score in 2020 decreased to 54 percent. The average efficiency scores of each 

year in Table 7.1 have been plotted on a graph in Figure 7.1. 

 Figure 7.1 shows the overall means of efficiency between 2007 to 2020. 

The result shows that the trend of main public airports’ efficiency scores was increased 

from 2007 to 2019, and it was dropped in 2009, 2012, and 2020. Declines in technical 

efficiency scores in these periods can be explained by the following events. In 2009, 

the world faced a global financial crisis. The total number of passenger movements of 
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the airports had declined from 58 million people in 2008 to 50 million in 2009. The 

amount of cargo shifted was dropped to 10.4 million tons in 2009, while in 2008, the 

amount of cargo movement was 13.4 million tons. Tsui et al. (2014) and Voltes-Dorta 

and Pagliari (2012) showed the global financial crisis declined the airports’ efficiency 

levels between 2009 to 2010. 

 At the end of 2011 (the fiscal year 2012), Thailand faced a big flooding in 

many provinces, and Don Mueang International Airport (DMK) was flooded. This 

event made the total number of passenger movements of DMK had declined from 39 

million people in the fiscal year 2011 to 27 million people in the fiscal year 2012. The 

effect of this event made the average airports’ technical efficiency score in 2012 was 

dropped by 20 percent from 2011.  

 In 2020, there was the beginning period of the COVID-19 pandemic crisis. 

The total number of passenger movements of the airports was dropped from 141 million 

people in 2019 to 72 million people in 2020. The total aircraft movements were dropped 

to 51 million. This macro shock affected the average airports’ technical efficiency score 

was dropped by more than 30 percent from 2019 to 2020.  
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Figure 7.1 

Means of technical efficiency of the 6 main public airports of Thailand between 2007 

to 2020 

 

 

 

 

 

 

 

 

Note. From author’s calculation. 

  

 After 2009, the result shows the recovery trends after the global financial 

crisis. The average technical efficiency scores of all airports increased to almost 90 

percent in 2018-2019 but dropped to below 60 percent in 2020. The average efficiency 

scores of the individual airports between 2007 to 2020 have been plotted as a bar chart 

in Figure 7.2.  

 Figure 7.2 shows the average technical efficiency levels of the individual 

airport between 2007 to 2020. 
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Figure 7.2 

Means of technical efficiency of the individual airports between 2007 to 2020 

 

 

 

 

 

 

 

 

Note. From author’s calculation. The names and code names of the airports are 

following as Suvarnabhumi Airport (BKK), Don Mueang International Airport (DMK), 

Phuket International Airport (HKT), Chiang Mai International Airport (CNX), Hat-Yai 

International Airport (HDY), and Mae Fah Luang-Chiang Rai International Airport 

(CEI). 

 

 Figure 7.2 shows that BKK and HKT had the highest efficiency scores of 

92.7 percent. In other words, BKK and HKT had technical inefficiencies of 7.3 percent. 

BKK and HKT are the big airports and have airport hub status. Phuket is a popular 

province that many international tourists around the world visit every year. Bangkok is 

the capital of Thailand and BKK is the center of the international air traffic airport of 

Thailand. A lot of international freights and passengers were landing and taking off at 

these airports. Between 2007 to 2019, the number of international passenger 

movements of BKK and HKT had increased by average 1.6 million and 688 thousand 

people per year, while CNX, HDY, and CEI had increased by only 232 thousand, 16 

thousand, and 28 thousand people a year, respectively. DMK had increased by average 

1.4 million people per year, but a high growth of passengers started in 2013. For the 

Ref. code: 25646204040080WKG



118 

 
 

 

domestic passenger movements, DMK had the highest average increase of 1.7 million 

per year. CNX had increased by an average of 430 thousand people per year, and HKT 

had increased by 342 thousand people per year. BKK had increased by 230 thousand 

per year because DMK was the main airport that handled the domestic passenger 

movements in Bangkok. HDY had increased by an average of 207 thousand passengers 

per year. The lowest one was CEI. This airport had increased by an average of 158 

thousand people per year. Hence, both BKK and HKT handled a large number of 

international passenger and aircraft movements every year since 2007, this made the 

airports had the highest average efficiency scores.  

 Between 2007 to 2020, CNX had a technical efficiency of 84.7 percent, 

while DMK had 68.9 percent. CNX and DMK are the airport hubs. CNX had the growth 

of passenger movements after 2009 and handled 10 million passengers in 2017. CNX 

had a lot of Chinese tourists visited between 2014 to 2019 which the international 

passengers were above 1 million people. DMK started to be the airport hub after 2012, 

the recovery period after the big flooding.  

 HDY and CEI have no airport hub status because Songkhla and Chiang Rai 

provinces are not the popular places where tourists visited. Both airports handled the 

number of passengers lower than 500,000 people a year. Considering the periods 

between 2007 to 2020, the average number of passengers of HDY had increased by 87 

thousand people per year and 83 thousand people by CEI. The airport hubs such as 

DMK, HKT, and CNX had an average increase of passengers over 200 thousand people 

per year. Within this period, the average increase of passengers of BKK was negative 

because the total number of passenger movements was declined by 33 million at the 

beginning period of the COVID-19 pandemic in 2020. The result shows that HDY had 

an average efficiency score between 2007 to 2020 of 52.5 percent. CEI had the lowest 

technical efficiency comparing with the other 5 airports. The result shows that CEI had 

a technical inefficiency of almost 60 percent within this period. Between 2007 to 2012, 

CEI had passenger movements below 100,000 people. After 2012, the number of 

passengers had increased every year and reached 300,000 people in 2019. This supports 

the result that the efficiency scores of CEI had been increased every year and above 70 
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percent in 2019 and dropped to less than 50 percent again in 2020, the period of the 

COVID-19 pandemic. This thesis analyzes 4 airport hubs and 2 non-airport hubs. The 

results support that the airport hubs have higher technical efficiency scores than non-

airport hubs. 

 Turning to the performance measurement of the individual airports, Figures 

7.3-7.8 show the technical efficiency scores of each airport over the study period. 

Figure 7.3 shows the efficiency levels of BKK between 2007 to 2020. BKK is a big 

airport hub that opened in 2007. The number of passenger movements was higher than 

40 million between 2007 to 2011 except in 2009, the period of the global financial 

crisis, the total passenger movements were 37 million. After 2011, the number of 

passenger movements was above 50 million every year except in 2014, the period of 

Coup d’etat and Thailand’s political conflict, and 2020, the period of the COVID-19 

pandemic. 

 In the period of the global financial crisis, the result shows that the 

efficiency had declined to 74.1% and recovered to more than 90% in 2010. BKK 

performed fully efficiently every year between 2011 to 2019 except in 2013-2015, the 

period of Thailand’s political conflict and Coup d’etat in 2014. In 2020, the world had 

faced a big shock from the COVID-19 pandemic, the technical efficiency of BKK 

dropped to 67.6 percent. The result shows that in 2020, BKK had the lowest efficiency 

score in 14 years. 
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Figure 7.3 

Efficiency levels of Suvarnabhumi Airport (BKK) between 2007 to 2020 

 

  

 

 

 

 

 

 

Note. From author’s calculation. 

 

 Since 2010, DMK has been focusing on low-cost carriers (LCCs) in both 

domestic and international freights. This policy made DMK handled the highest number 

of LCCs in the world in 2015 (Sopadang and Suwanwong, 2016).   

 Figure 7.4 shows the technical efficiencies of DMK between 2007 to 2020. 

Between 2007 to 2009, the responsibility of DMK overlapped with BKK. DMK closed 

for a short period in 2007. The efficiency scores were lower than 50 percent within this 

period. In 2009, DMK had a technical inefficiency of 75.4 percent, the lowest in the 

study period. In 2010, Thailand’s government defined the new responsible for DMK to 

handle only low-cost carriers. This made DMK had the efficiency score increased to 

69.4 percent in 2011. The effect of this policy contributed to DMK became the biggest 

low-cost carrier airport in 2015. DMK had been flooded from the end of 2011 to the 

early of 2012. The efficiency score dropped to 32.6 percent in 2012. After the flooding, 

DMK recovered the technical efficiency to almost 90% and performed fully efficiently 
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in 2015, 2018, and 2019, respectively. The result shows that in the beginning period of 

the COVID-19 pandemic, the efficiency scores fell to 60.7 percent. 

 

Figure 7.4 

Efficiency levels of Don Mueang International Airport (DMK) between 2007 to 2020 

 

 

 

 

 

 

 

 

Note. From author’s calculation. 

 

 Figure 7.5 shows the technical efficiencies of HKT between 2007 to 2020. 

HKT is the airport hub of Thailand where international tourists around the world visit 

Phuket province every year. The number of passengers had increased since 2009. 

Between 2007 to 2012, the passenger movements were above 5 million but below 10 

million. After 2012, the number of passengers who visited this airport was over 10 

million and almost 20 million in 2018-2019. The result shows that HKT performed 

fully efficiently every year except 2008-2009 and 2020. 

 In 2008 and 2009, HKT was affected by the global financial crisis. The 

inefficiency scores were 12.3 and 22.7 percent, respectively. After the crisis, HKT 

performed fully efficiently almost every year until 2020. In the beginning period of the 

COVID-19 pandemic, the technical efficiency dropped to 51.2 percent, the lowest 
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efficiency score in the study period. This shock made a huge impact on this airport more 

than the financial crisis. 

 

Figure 7.5 

Efficiency levels of Phuket International Airport (HKT) between 2007 to 2020 

 

 

 

 

 

 

 

 

Note. From author’s calculation. 

 

 Figure 7.6 shows the technical efficiencies of CNX between 2007 to 2020. 

Between 2007 to 2012, the number of passenger movements was below 5 million and 

the number of aircraft movements was below 40,000 times. The passenger movements 

had increased every year and handled more than 10 million passengers after 2017 

because many Chinese tourists visited Chiang Mai province. AOT’s annual reports 

between 2007 to 2020 report that the number of passenger and aircraft movements of 

CNX had been increased every year except in 2020, the beginning period of the 

COVID-19 pandemic. The amounts of cargo shifted were higher than 20,000 tons 

between 2007 to 2012 and dropped to 18,451 tons in 2013. CNX handled the cargo 

shifted around 18,000 to 19,000 a year since 2013 except in 2019 and 2020, the cargo 
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volumes were 13,032 and 6,605 tons, respectively. These made the technical efficiency 

scores of CNX increased after 2013 and reached fully efficient after 2014. 

 In 2007, the technical efficiency was 85 percent. In the global financial 

crisis period, the efficiency score dropped to below 70 percent. Between 2010 to 2014, 

the efficiency scores ranged within 80 to 90 percent. Since 2014, CNX was performing 

fully efficient almost every year until 2020 that the efficiency level dropped to 58.7 

percent. A shock from the COVID-19 pandemic also affected the efficiency level of 

this airport to perform the highest inefficient in the study period. 

 

Figure 7.6 

Efficiency levels of Chiang Mai International Airport (CNX) between 2007 to 2020 

 

 

 

 

 

 

 

 

Note. From author’s calculation. 

 

 Figure 7.7 shows the technical efficiencies of HDY between 2007 to 2020. 

HDY is a non-airport hub. The number of passengers was lower than 5 million a pear 

by the international passengers were not above 350,000 people. The number of aircraft 

movements was below 30,000 times a year by the number of international aircraft 

movements was below 3,000 times except in 2018. The amount of cargo shifted was 
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below 15,000 tons a year. These made the HDY’s efficiency scores were quite stable at 

50 percent in this study period.  

 The efficiency levels had slightly decreased between 2008 to 2009 and 

increased to almost 50 percent in 2010. Between 2011 to 2019, the efficiency scores 

ranged within 50 to 70 percent. In 2017, the technical efficiency was 0.669. It was the 

highest efficiency in the study period. In the beginning period of the COVID-19 

pandemic, this airport had a technical inefficiency of 59.9 percent. Comparing with the 

other airports, the result shows that HDY performed the worst in 2020 (Table 7.1). 

 

Figure 7.7 

Efficiency levels of Hat-Yai International Airport (HDY) between 2007 to 2020 

 

 

 

 

 

 

 

Note. From author’s calculation. 

 

 Figure 7.8 shows the technical efficiencies of CEI between 2007 to 2020. 

CEI is another non-airport hub. The result shows that the efficiency scores of CEI were 

below 30 percent between 2007 to 2013. After 2013, the technical efficiencies of the 

airport had increased every year and reached 71.1% in 2019. In 2020, CEI’s technical 

inefficiency rose to 54.2 percent. 
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 Between 2007 to 2013, the total number of air traffic movements every year 

was below 10,000 times. The number of passenger movements was lower 1 million 

except in 2013. The cargo volume was lower than 5,000 tons. These made the CEI’s 

efficiency scores were below 30 percent within this period. 

 Between 2013 to 2019, the number of total aircraft movements and the 

number of passengers had increased from 6,882 to 20,511 and 1,053,863 to 2,953,093, 

respectively (AOT’s Annual Report, 2013, 2019). Because the number of employees 

had slightly increased, this made CEI performed better within this period. 

 

Figure 7.8 

Efficiency levels of Mae Fah Luang-Chiang Rai International Airport (CEI) Between 

2007 to 2020 

 

 

 

 

 

 

 

 

Note. From author’s calculation. 

 

7.1.2 Result of productivity changes of 6 main public airports of Thailand 

between 2007 to 2020. 

 This thesis employs Malmquist’s Total Factor Productivity Index (MPI) 

model to measure the productivity growths of the airports between 2007 to 2020. The 

MPI model allows one to explain what sources are attributed to productivity change of 
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the airport industry such as technical efficiency change (TEC) and technical change 

(TC). TEC measures whether the working systems in labors at the airports can handle 

more the passenger movements, the aircraft movements, and the amount of cargo 

shifted while keeping a low number of employees. An example of TEC improvement 

is the number of employees is increased at a low rate while handling a high growth of 

passenger movements. TC measures whether the airports can take the advantage of new 

technologies to help them promote productivity levels. An example of TC improvement 

is the adoption of new technologies such as self-check-in desks and check-in by using 

smartphones to prevent crowded situations at the airports by reducing the check-in 

counters and labors at the terminal zone. 

 Table 7.2 reports the productivity growths of the overall airports from 2007 

to 2008 until 2019 to 2020. Table 7.3 shows the productivity growths of the individual 

airports between 2007 to 2020. 

 

Table 7.2 

The overall airport's productivity changes from 2007 to 2008 until 2019 to 2020 

Period TEC TC TFPC 

2007 – 2008 1.023 0.972 0.995 

2008 – 2009 0.958 0.885 0.847 

2009 – 2010 0.931 1.260 1.172 

2010 – 2011 1.133 1.086 1.231 

2011 – 2012 0.891 1.076 0.958 

2012 – 2013 1.164 0.974 1.133 

2013 – 2014 1.049 1.037 1.088 

2014 – 2015 1.034 1.036 1.072 

2015 – 2016 1.073 0.947 1.016 

2016 – 2017 1.014 1.051 1.067 

2017 – 2018 0.996 1.040 1.037 

2018 – 2019 0.985 0.990 0.976 
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Table 7.2 

The overall airport's productivity changes from 2007 to 2008 until 2019 to 2020 (Cont.) 

Period TEC TC TFPC 

2019 – 2020 1.041 0.551 0.574 

Geometric Mean 1.020 0.978 0.998 

 

Note. From author’s calculation. 

 

 The analysis between 2007 to 2020 shows that the average total factor 

productivity (TFP) growth index of the 6 main public airports equals 0.998. This means 

that the average productivity level of these airports had declined by 0.2 percent a year 

in this study period. The reason was the average of technical change (TC) had regressed 

by 2.2 percent a year, while the average of technical efficiency change (TEC) had 

progressed by 2 percent a year. This means that within this study period, the 6 main 

public airports cannot take advantage of new technologies to promote productivity 

growth. They emphasized the working system at the airports, but the TEC cannot 

overwhelm the TC to make the TFP growth higher than 1. 

 From 2008 to 2009, the period of the global financial crisis, the overall 

airports faced the regress of both TEC and TC of 4.2% and 11.5%, respectively. These 

made the TFP was regressed by 15.3 percent. This shows that the global financial crisis 

affected both the working systems and the adoption of new technologies at the airports. 

 From 2009 to 2010, the recovery period after the crisis, TC had progressed 

by 26%, but TEC had declined by 6.9%. The result shows that during this period the 

TFP of the overall airports had progressed by 17.2 percent. After the crisis between 

2008 to 2009, the overall airports performed better because of taking advantage of new 

technologies. In this period, the international passenger and aircraft movements were 

recovered because the world air transportation was back to the normal situation again. 
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These made the airports’ technical changes were increased by 26 percent because the 

airports used the machines more efficiently to handle a lot of tourists. 

 After 2010, Table 7.2 shows that the technical efficiency changes of the 

overall airports were progressing until 2017 except between 2011 to 2012, the period 

of Thailand was flooded. 

 Between 2011 to 2012, the effect of flooding made the average TEC of 

these airports declined by 10.9 percent, but the average technological adoption rate 

increased by 7.6 percent. Because of the affected by flooding at the end of the year 

2011, the average TFP of the airports had declined by 4.2 percent. The technical 

efficiency change had regressed because the flooding obstructed the working process 

at the airports. The airports tried to use machines instead of workers in some parts that 

there were affected by flooding. This shows that the airports can take advantage of 

technologies to offset the inefficiency at the airports’ working systems but there was 

not enough to improve the productivity. The shock from flooding in 2011 made the 

TFP of the airports declined again.  

 The average TEC from 2017 to 2018 declined by 0.4%, but the average TC 

increased by 4%. This made the TFP of this period had regressed by 3.7 percent. 

 From 2018 to 2019, the TFP had regressed by 2.4 percent. By the technical 

efficiency and technical changes regressed by 1.5 and 1 percent, respectively. This 

period shows that both TEC and TC had declined. This means that the old working 

system at the airports cannot promote productivity growth anymore. And the airports 

lacked to adopt new technologies to support the production processes. 

 Between 2019 to 2020, the beginning period of the COVID-19 pandemic, 

the TFP had regressed by 42.6 percent. The TEC had increased by 4.1percent, while 

the TC had regressed by 44.9 percent. The result shows that the COVID-19 pandemic 

hurt the technology adoption of the airports but had a positive impact on the technical 

efficiency improvement. The TEC had increased because the airports cannot take 

advantage of new technologies in this period. This means that the airports emphasized 

the operational systems of workers to offset productivity regress instead of adopting 
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new technologies to promote productivity growth because Thailand had a lockdown 

during this period. The total number of passengers had declined more than 45 percent 

from 2019 to 2020. This shock had declined the technological adoption rate by almost 

45 percent. 

 

Table 7.3 

Productivity growths of the individual airports between 2007 to 2020 

Airport Name 

(code name) 
TEC TC TFPC 

Suvarnabhumi 

Airport (BKK) 
1.000 0.972 0.972 

Don Mueang 

International 

Airport (DMK) 

1.065 0.978 1.042 

Phuket 

International 

Airport (HKT) 

1.000 0.972 0.972 

Chiang Mai 

International 

Airport (CNX) 

1.000 0.975 0.975 

Hat-Yai 

International 

Airport (HDY) 

1.024 0.955 0.977 

Mae Fah Luang-

Chiang Rai 

International 

Airport (CEI) 

1.032 1.019 1.051 
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Table 7.3 

Productivity growths of the individual airports between 2007 to 2020 (Cont.) 

Airport Name 

(code name) 
TEC TC TFPC 

Geometric Mean 1.020 0.978 0.998 

 

Note. From author’s calculation. 

 

 Table 7.3 shows the productivity changes of all airports between 2007 to 

2020. Every airport except CEI had an average TC lower than 1. The average TEC of 

these airports was 2 percent a year. The TEC was higher than 1, this means that within 

this study period, the operating system at the airports was good to stimulate productivity 

levels. The results show that these airports concentrated on the using of labor instead 

of taking the innovation wisely. Within this study period, only CEI, the lowest number 

of aircraft and passenger movements, had the highest productivity growth.  

 Only DMK and CEI have no productivity regress in the study period 

between 2007 to 2020. This could be explained that DMK still faced the highest number 

of domestic passengers of almost 15 million people in 2020. The number of both 

international and domestic passenger movements had declined by around 9 million 

people from 2019 to 2020. CEI had the lowest number of passengers that was declined 

by 1.2 million people between 2019 to 2020 because this airport is not the airport hub. 

The number of international passenger movements had declined by only 230 thousand 

people.  

 Considering the pre-COVID-19 period, between 2007 to 2019, all airports 

had the TFP progress where DMK had TFP progress of 10.3 percent a year and CEI 

had the highest rate of TFP progress by 10.4 percent a year. A non-airport hub as HDY 

had a rate of TFP progress by 4.4 percent a year. Hence, the shock from the COVID-

19 pandemic affected all airports had productivity regressed in 2020, but in the analysis 

between 2007 to 2020, Table 7.3 shows that only DMK and CEI still had TFP 
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progressed of 4.2% and 5.1% per year, respectively. BKK and HKT had the same TFP 

regressed. They regressed at 2.8% per year. CNX and HDY also had TFP regressed of 

2.5% and 2.3% per year, respectively.  

 Table 7.3 shows that BKK and HKT were the highest productivity 

regressed airports. When considered between 2007 to 2020, the result shows CEI was 

the highest productivity progress airport.  The technical efficiency changes of all 6 

airports report that they had no regress, but only DMK, HDY, and CEI had the progress 

in efficiency changes. This means that the workers of these airports performed more 

efficiently to promote productivity growth especially DMK that had the highest TEC 

progressed. 

 CEI was the only airport between 2007 to 2020 that had the progress in the 

technological adoption rate by 1.9% per year. CEI performed better in operational 

efficiency improvement and adapted the working system wisely with new technologies 

in this period. Table 7.5 shows that both TEC and TC are higher than 1. There made 

the CEI had productivity progressed. 

 HDY was the worse in TC by regressing at 4.5 percent, but this airport 

performed better in the operation. The TEC was 1.024. In other words, this airport had 

a TEC progressed of 2.4 percent a year. The TFP of HDY had regressed by 2.3 percent 

per year because of a lack of technological adoption rate.  

 BKK and HKT had the same TC that regressed by 2.8% per year. The TEC 

had also no change. This means that BKK and HKT did not perform better in the 

operational process at the airports, and they lacked to adaptive their working process 

smoothly with new technologies to promote productivity. These airports are the airport 

hubs, but they cannot use technologies efficiently to handle the passengers. 

 DMK had a TC regressed by 2.2% per year. DMK became an airport hub 

again after 2010 and was the LCCs largest airport in 2015. This made DMK had the 

highest TEC airport. DMK did not take advantage of technologies efficiently, but the 

airport still had the TFP progressed by a high TEC improvement.  
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 CNX had no change in TEC, but the TC had declined by 2.5 percent a year. 

So, the productivity had regressed by 2.5 percent a year.  

 The result shows that the airport hubs such as BKK, HKT, and CNX had 

no improvement in efficiency changes and cannot adaptive their organizations wisely 

with new technologies between 2007 to 2020. These made the productivity levels had 

declined more than 2 percent a year in this study period. 

 There was an airport hub as DMK and a non-airport hub as CEI can 

promote productivity growth in this study period.  

7.1.3 Stage 2: Simar-Wilson Bootstrapping Regression.  

 This thesis employs the Simar and Wilson bootstrapping regression model 

in the second stage to test whether the external factors in terms of micro and macro 

variables affect the airport’s efficiency scores derived from the first stage. These 

external factors represent the events that happened in Thailand between 2007 to 2020. 

 Tsui et al. (2014a, 2014b) and Karanki and Lim (2020) employed the 

Simar-Wilson model (Simar and Wilson, 2007) to test which external factors in the 

second stage affected the operational efficiency scores of the airports that derived from 

the first stage. On the other hand, Ripoll-Zarraga and Raya (2020) employed the 

ordinary least squares (OLS) model in the second stage. There was no conclusion that 

which model was the best to employ in the second stage. Some research suggested that 

Simar and Wilson bootstrapping regression model was the best model to use in the 

second stage to test which external factors affected the airports’ efficiency scores. 

According to Tsui et al. (2014a), the research showed that the Simar and Wilson 

Bootstrapping regression model is the best model to estimate in the second stage 

because the traditional regression models will be biased when applying with the DEA’s 

efficiency scores. Hence, this thesis follows the Simar and Wilson bootstrapping 

regression model to interpret the results.  

 Appendix B defines the abbreviation names of all variables. Appendix C 

shows that all variables employed in this stage have no problems of collinearity and 

variance inflation factor (VIF). Appendix D shows all estimation results of the ordinary 
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least squares (OLS), Simar and Wilson Bootstrapping regression, fixed effect, and 

random effect models. The signs of all independent variables of these models are the 

same but different in scales. This thesis employs Hausman’s test to obtain the most 

appropriate panel estimation model. The result shows that the random effect model is 

the best one. However, a few research in this field employed panel estimation methods 

to test in the second stage. 

 This thesis uses the input-oriented technical efficiencies obtained from the 

first stage as a dependent variable. For the 9 independent variables, they include a 

dummy for airport hub status, a dummy for the global financial crisis between 2008 to 

2009, a dummy for the PAD occupied DMK and BKK in 2008, a dummy for Thailand’s 

political conflict between 2013-2014, a dummy of flooding at DMK in 2011, percent 

of international LCCs, percent of domestic LCCs, percent of international passengers, 

and a dummy for the COVID-19 pandemic in 2020.  

 Figure D.1 in Appendix D reports the result of the OLS model, the 

𝑅2equals 86.84 percent. The airport hub status had the 1% positively significant on the 

airport’s technical efficiency by 33.9%, while the global financial crisis had a negative 

impact by 10.3%. The percent of international LCCs was 5% positively significant and 

increased the technical efficiencies by 53.7%. The percent of international passengers 

increased the efficiency scores of the airports by 29.7 percent. The flooding in 2011 

declined the DMK’s efficiency score by 41.9 percent. The COVID-19 pandemic in 

2020 decreased the airports’ efficiency scores by 27.4% and was significant at 5%. The 

percent of domestic LCCs, the PAD occupied DMK and BKK in 2008, and a political 

conflict in Thailand in the fiscal year 2014 had insignificant in this model. Table 7.4 

shows the Simar-Wilson Bootstrapping regression result between 2007 to 2020. 

 

 

 

 

Ref. code: 25646204040080WKG



134 

 
 

 

Table 7.4 

Simar-Wilson Bootstrapping regression result between 2007 to 2020 

Explanatory 

variables 
Coefficient z-value Significant 

Constant 0.382 6.430 *** 

Airport hub status 0.290 6.290 *** 

Global financial 

crisis 
-0.098 -2.300 ** 

Percent of 

international low-

cost carriers 

1.008 3.410 *** 

Percent of 

domestic low-cost 

carriers 

0.123 1.420  

PAD occupied 

BKK and DMK in 

2008 

-0.179 -1.900 * 

Thailand political 

conflict between 

2013 to 2014 

-0.044 -0.710  

Percent of 

international 

passengers 

0.492 3.990 *** 

Flooding at DMK 

in 2011 
-0.365 -2.850 *** 

COVID-19 -0.333 -5.850 *** 

 

Note. From author’s calculation. Number of observations = 68, number of efficient 

𝐷𝑀𝑈𝑠 = 16, Wald-Chi2 = 190.38, p-value = 0.0000, *** = 1% significant, ** = 5% 

significant, and * = 10% significant. 
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 Table 7.4 reports that the 𝑊𝑎𝑙𝑑 − 𝐶ℎ𝑖2 equals 190.38. The airport hub 

status was 1% positive significant and had a coefficient of 29%. The percent of 

international LCCs increased the airports’ efficiency scores by more than 100 percent, 

while the percent of international passengers increased the technical efficiencies by 

49.2 percent. The flooding in 2011 declined the DMK’s efficiency score by 36.5% in 

2012. The COVID-19 pandemic decreased the airports’ efficiency levels by 33.3% in 

2020. The global financial crisis was 5 percent significant and declined the efficiency 

levels by 9.8 percent. PAD occupied BKK and DMK was 10 percent significant and 

had declined the airports’ efficiency scores by 17.9 percent. In this model, the percent 

of domestic LCCs and Thailand political conflict between 2013 to 2014 had no 

relationship with the airports’ technical efficiencies. 

 The result of this part supports the previous research (Gillen and Lall, 1997; 

Lin and Hong, 2006; Perelman and Serebrisky, 2010; Tsui et al., 2014; Abbott, 2015). 

They showed that the airport hub status and the global financial crisis had a positive 

and negative effect on the airports’ efficiencies, respectively. The airport hub status had 

a positive effect on the airports’ efficiency scores. This means that the airport hubs 

performed better than non-airport hubs. The global financial crisis between 2008 to 

2009 declined the performances of the airports because the effect from this shock 

declined the passenger and aircraft movements in this period. The percent of 

international LCCs had a positive impact on the airports’ efficiency scores by more than 

100 percent in the Simar-Wilson model and 50 percent in the OLS model (Figure D.1 

in Appendix D). The percent of international passengers had also positively significant. 

This means that the airports that handled a higher number of international passenger 

movements performed better than the others. The flooding at the end of 2011 at DMK 

made a big negative impact on this airport. This shock affected the operational working 

process on this airport to perform inefficiently. Lastly, the shock from the COVID-19 

pandemic in 2020 declined the airports’ efficiency scores more than the shock from the 

global financial crisis between 2008 to 2009. This shock declined the number of 

passenger movements by 45.30 percent and the number of aircraft movements by 39.87 

percent (AOT’s Annual Report, 2020). The result shows that the shock from the 
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COVID-19 pandemic made the 6 main public airports of Thailand performed the worst 

in 11 years (Table 7.1). 

 In this thesis, the Simar and Wilson model is the most appropriate model 

employing to define which external factors affect the airports’ technical efficiency 

scores in Table 7.1. The impacts of new technologies are excluded in this analysis. The 

reason is the proxies of new technologies cannot be defined easily in the Simar-Wilson 

model because the airports adopted these technologies vary over time. For closing this 

gap, the technical changes (TC) in Section 7.1.2 can measure the effectiveness of the 

technology shocks to the airports’ performances within the study period most 

accurately. 

 

7.2 Performance Measurement of Thailand’s 6 main public airports between 2007 

to 2030. 

 

 This part aims to forecast the future performances of the airports after the 

COVID-19 pandemic happened in early 2020. The scope of study ranges between 2007 

to 2030 by assuming that the period from 2020 to 2030 is the post-COVID-19 pandemic 

period. The objective of this section is to predict the recovery trends of the airports after 

the shock and designing future policies to transform the old version airports into smart 

airports within 10 years. 

 Section 7.2.1 forecasts the future technical efficiency scores of the airports 

between 2021 to 2030 by employing the input-oriented DEA model. This section 

compares the technical efficiency scores of the airports between the pre-and post-

COVID-19 pandemic periods. This section also discusses the impact of the COVID-19 

pandemic during the lockdown period between 2020 to 2021.  

 The last section employs the MPI model to predict productivity growths of 

the airports after the pandemic ended. This section compares the airports’ productivity 

changes between the pre-and post-COVID-19 pandemic periods and shows the effect 

of the COVID-19 pandemic on the lockdown period. This section shows the difference 
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in the operating systems between the first and second periods. The first period 

emphasized the number of workers to promote productivity growth. This thesis predicts 

that the airports will take advantage of new technologies instead in the second period. 

 

7.2.1 Result of technical efficiency scores of 6 main public airports of Thailand 

between 2007 to 2030. 

 This thesis forecasts the future technical efficiencies of the airports after 

the COVID-19 pandemic in 2020. This part employs the forecasting data between 2021 

to 2030 derived from the news agencies, the 𝐴𝑅(1)  model, and the Excel Linear 

Forecast function to measure the future airports’ efficiency scores. 

 Table 7.5 reports the technical efficiencies of all 6 airports between 2007 

to 2030. Figure 7.9 shows the mean of airports’ efficiencies between 2007 to 2030. 

 

Table 7.5 

Technical efficiency scores of the 6 main public airports of Thailand between 2007 to 

2030 

Year BKK DMK HKT CNX HDY CEI Mean 

2007 0.682 0.324 1.000 0.738 0.369 0.255 0.561 

2008 0.656 0.415 0.877 0.607 0.327 0.279 0.527 

2009 0.620 0.237 0.773 0.602 0.301 0.230 0.461 

2010 0.660 0.287 0.697 0.718 0.349 0.232 0.536 

2011 0.738 0.694 0.936 0.753 0.366 0.197 0.614 

2012 0.834 0.326 1.000 0.860 0.388 0.223 0.605 

2013 0.783 0.870 0.991 0.700 0.396 0.203 0.657 

2014 0.758 0.895 0.979 0.825 0.483 0.283 0.704 

2015 0.778 1.000 0.831 1.000 0.513 0.357 0.747 

2016 0.834 0.957 0.688 0.943 0.467 0.347 0.706 

2017 0.874 0.947 0.741 0.931 0.516 0.419 0.738 
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Table 7.5 

Technical efficiency scores of the 6 main public airports of Thailand between 2007 to 

2030 (Cont.) 

Year BKK DMK HKT CNX HDY CEI Mean 

2018 0.929 0.977 0.813 0.852 0.465 0.473 0.752 

2019 0.957 0.953 0.789 0.805 0.394 0.439 0.723 

2020 0.527 0.525 0.395 0.471 0.280 0.284 0.414 

2021 0.457 0.474 0.341 0.418 0.227 0.245 0.360 

2022 0.794 0.797 0.589 0.695 0.379 0.423 0.613 

2023 0.726 0.841 0.745 0.753 0.361 0.432 0.643 

2024 0.736 0.869 0.782 0.784 0.374 0.482 0.671 

2025 0.746 0.896 0.818 0.816 0.387 0.540 0.701 

2026 0.762 0.920 0.855 0.850 0.400 0.606 0.732 

2027 0.779 0.942 0.891 0.885 0.413 0.684 0.766 

2028 0.796 0.963 0.927 0.922 0.428 0.776 0.802 

2029 0.813 0.982 0.964 0.960 0.443 0.881 0.841 

2030 0.741 1.000 1.000 1.000 0.457 1.000 0.866 

Mean of all 

periods 
0.749 0.754 0.821 0.787 0.395 0.429 0.656 

Mean of Pre-

COVID-19 
0.777 0.683 0.876 0.795 0.410 0.303 0.641 

Mean of 

Post-

COVID-19 

0.716 0.837 0.755 0.778 0.377 0.578 0.673 

During the 

lock-down 

period 

0.492 0.500 0.368 0.445 0.254 0.265 0.387 

 

Note. From author’s calculation. The names and code names of the airports are 

following as Suvarnabhumi Airport (BKK), Don Mueang International Airport (DMK), 
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Phuket International Airport (HKT), Chiang Mai International Airport (CNX), Hat-Yai 

International Airport (HDY), and Mae Fah Luang-Chiang Rai International Airport 

(CEI). 

 

 Table 7.5 shows that the average efficiency of the overall airports equals 

41.4% in 2020. The overall mean of the technical efficiency scores equals 65.6 percent 

in all periods. In other words, the average technical inefficiency score is 34.4 percent 

between 2007 to 2030. In 2021, the average of technical efficiencies will decline to 36 

percent. This thesis predicts that the average efficiency score will be recovered to 

almost 61.3% by the end of 2022, the beginning of the recovery period after the crisis. 

After 2027, the result shows that the average efficiency will be higher than 80 percent. 

The individual airports must take at least 6 years to recover the average efficiency 

scores to be the same levels as in 2019.  

 This thesis also calculates the means of technical efficiency scores of the 

pre- and post-COVID-19 pandemic periods and during the lockdown period between 

2020 to 2021. The average technical efficiency score of the overall airports was 64.1 

percent during the pre-COVID-19 pandemic period. During the post-COVID-19 

pandemic period, the average efficiency score is 67.3 percent. This means that after the 

pandemic ends, the airports will perform better than in the previous period. The result 

shows that only DMK and CEI can perform better in the post-COVID-19 pandemic 

period. CEI will perform better than the first period more than 27 percent. BKK, HKT, 

CNX, and HDY will perform better in the pre-COVID-19 pandemic period because 

these airports must take a lot of time to recover the number of passenger and aircraft 

movements to be the same level as in 2019.  

 During the lockdown period, the average technical efficiency score is 38.7 

percent. This means that the COVID-19 pandemic makes the airports perform 

inefficiently at 61.3 percent. DMK performs the best, while HDY performs the worst. 

 Figure 7.9 shows that the 6 main public airports in Thailand must spend 7 

years to recover the technical efficiencies be the same levels as 2019. 
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Figure 7.9 

Mean of technical efficiency of the 6 main public airports of Thailand between 2007 to 

2030 

 

 

 

 

 

 

 

 

Note. From author’s calculation. 

 

 Figure 7.10 shows the average technical efficiency scores of the individual 

airport between 2007 to 2030. The result shows that the HKT has the highest efficiency 

score at 82.1 percent. The CNX will be the second-highest efficient airport. The BKK 

and DMK have efficiency scores of 74.9 and 75.4 percent, respectively. The CEI has a 

technical efficiency of 42.9 percent. The HDY performs the worse in this period and 

has an efficiency score of 39.5 percent. 

 Figure 7.10 also shows the average technical efficiencies of the individual 

airports in the periods of the pre-and post- COVID-19 pandemic. Only CEI and DMK 

will perform better in the post- COVID-19 pandemic period. CEI will perform better in 

this period by the average technical efficiency score is 57.8 percent. DMK’s average 

efficiency score is 83.7 percent, while in the pre-COVID-19 pandemic, the average 

efficiency score was 68.3 percent.  
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 In the post-COVID-19 pandemic period, BKK, HDY, HKT, and CNX will 

perform worse than in the pre-COVID-19 pandemic period. HDY will have an average 

efficiency score lower in the post- COVID-19 pandemic of 37.7 percent. The average 

technical efficiency score was 41 percent in the pre-COVID-19 pandemic period. In the 

first period, CNX had an average efficiency score of 79.5 percent. CNX’s average 

efficiency score will decline to 77.8 percent in the second period. The average 

efficiency score of HKT will be 75.5 percent between 2020 to 2030. While in the pre-

COVID-19 pandemic period, the average efficiency score was 87.6 percent. Lastly, 

BKK had an average efficiency score of 77.7 percent in the period of the pre-COVID-

19 pandemic. BKK’s average efficiency score will drop to 71.6 percent in the post-

COVID-19 pandemic period. 

 During the lockdown period, HDY performs the worst in the average 

technical efficiency score by 25.4 percent. CEI has 25.4 percent. HDY has 36.8 percent. 

CNX performs at 44.5 percent. BKK has 49.2 percent. DMK performs the best. The 

average technical efficiency score is 50 percent. 

 The results during the lockdown period show that the airport hubs still 

perform better than non-airport hubs. Domestic aircraft and passenger movements are 

the main factors to drive the efficiency scores. All airports’ average efficiency scores 

are lowest when compared with other periods. 
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Figure 7.10 

Comparing the technical efficiencies for the individual airports between the pre-and 

post-COVID-19 pandemic periods 

 

 

 

 

 

 

 

 

 

 

Note. From author’s calculation. The names and code names of the airports are 

following as Suvarnabhumi Airport (BKK), Don Mueang International Airport (DMK), 

Phuket International Airport (HKT), Chiang Mai International Airport (CNX), Hat-Yai 

International Airport (HDY), and Mae Fah Luang-Chiang Rai International Airport 

(CEI). 

 

 Figures 7.11 to 7.16 show the technical efficiencies of all airports between 

2007 to 2030. The results show that the 6 main public airports of Thailand must spend 

at least 6 years to recover the technical efficiency scores to be the same levels as in 

2019 after the shock from the COVID-19 pandemic in 2020. 

 Figure 7.11 shows the technical efficiency scores of BKK between 2007 to 

2030. This thesis assumes BKK will follow the plans to open the 3rd runway in 2023 

and the 4th runway in 2030. All airports except BKK have less space to build new 
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constructions. BKK is the only airport that has development plans for the next decade 

(AOT’s annual report, 2020).  In 2021, the technical efficiency of BKK will drop to 

45.7 percent. This means that the technical inefficiency in the second year of the 

COVID-19 pandemic has 54.3 percent. In 2022, this thesis forecasts that the efficiency 

score will be back to higher than 75 percent. BKK will open the 3rd runway in 2023. 

This makes the efficiency level in 2023 dropped to 72.6 percent. Between 2024 to 2029, 

the efficiency scores will increase every year and in 2029, the technical efficiency score 

will be higher than 80 percent. In 2030, the BKK has a plan to open the 4th runway, the 

efficiency score will be dropped to 74.1 percent. If the number of passenger and aircraft 

movements is not increased more than the forecast in this thesis, the technical efficiency 

scores will not be recovered to be the same level as in 2019 again for the next 10 years. 

 

Figure 7.11 

Efficiency levels of Suvarnabhumi Airport (BKK) between 2007 to 2030 

 

 

 

 

 

 

 

 

Note. From author’s calculation. 

 

 Figure 7.12 shows the technical efficiency scores of DMK between 2007 

to 2030. The technical efficiency of DMK in the second year of the COVID-19 

pandemic will be dropped to 47.4 percent. The efficiency score will be recovered to 
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higher than 80 percent in 2023 and performed above 90 percent again after 2025. The 

results show that DMK must spend 9 years to recover the efficiency score to be at the 

same level as in 2019. This thesis forecasts that DMK will perform fully efficiently 

again in 2030. 

 

Figure 7.12 

Efficiency levels of Don Mueang International Airport (DMK) between 2007 to 2030 

 

 

 

 

 

 

 

 

 

Note. From author’s calculation. 

 

 Figure 7.13 shows the technical efficiency scores of HKT between 2007 to 

2030. In 2021, the HKT’s efficiency score will be dropped to 34.1 percent. This means 

that in 2021, the efficiency score will be the lowest in this study period. In 2022, the 

beginning of the recovery period after the crisis, the technical efficiency will back to 

58.9 percent. Between 2023 to 2024, the efficiency scores will be higher than 70 percent 

and above 90 percent after 2027. In 2030, this thesis predicts that the HKT will perform 

fully efficiently again. The result shows that HKT must spend 6 years to recover the 

operational efficiency score to be the same as in 2019. 
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Figure 7.13 

Efficiency levels of Phuket International Airport (HKT) between 2007 to 2030 

 

 

 

 

 

 

 

 

Note. From author’s calculation. 

 

 Figure 7.14 shows the technical efficiency scores of CNX between 2007 to 

2030. The CNX will have an efficiency score below 45 percent in 2021. The highest 

technical inefficient in 24 years. In 2022, the technical efficiency will back to almost 

70 percent. Between 2025 to 2027, the CNX’s efficiency scores will be higher than 80 

percent and 90 percent after 2027. This thesis forecasts that the CNX will perform fully 

efficiently again in 2030. The result shows that CNX must spend 6 years to recover the 

efficiency score to be the same level before the COVID-19 pandemic begin. 
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Figure 7.14 

Efficiency levels of Chiang Mai International Airport (CNX) between 2007 to 2030 

 

 

 

 

 

 

 

 

Note. From author’s calculation. 

 

 Figure 7.15 shows the technical efficiency scores of HDY between 2007 to 

2030. In 2021, HDY will have a technical efficiency of 22.7 percent, the period that 

this airport will perform the worst. The technical inefficiency of HDY during the 

lockdown period will be greater than in the period of the global financial crisis. In 2022, 

the HDY’s efficiency score will increase to 37.9 percent. This thesis forecasts that 

between 2025 to 2030, the efficiency scores will be increased every year but there will 

be lower than 50 percent. The result shows that the efficiency score of HDY will not 

back to the same level as 2017, the technical efficiency had higher than 50 percent. 
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Figure 7.15 

Efficiency levels of Hat-Yai International Airport (HDY) between 2007 to 2030 

 

 

 

 

 

 

 

Note. From author’s calculation. 

 

 Figure 7.16 shows the technical efficiency scores of CEI between 2007 to 

2030. In 2021, CEI will have an efficiency score of 24.5 percent. The technical 

efficiency will be recovered to more than 40 percent in 2022. After 2023, the efficiency 

scores will be increased every year and reached 100 percent in 2030. This thesis 

forecasts that this airport will handle the number of passenger movements more than 5 

million people after 2027, and there will handle more than 7 million passengers in 2030. 

The aircraft movements will be higher than 35,000 times after 2028. These will make 

the efficiency scores of this airport increased every year, and its make CEI will perform 

fully efficiently in 2030.  
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Figure 7.16 

Efficiency levels of Mae Fah Luang-Chiang Rai International Airport (CEI) between 

2007 to 2030 

 

 

 

 

 

 

 

 

Note. From author’s calculation. 

 

 The result from this part shows that the technical efficiency scores of all 6 

main public airports will start to recover in 2022. In 2021, the situation will be severe 

than in 2020. The airport hubs except BKK must take 9 years to perform fully 

efficiently in 2030. The technical efficiency scores of BKK will not be higher than 90 

percent after the COVID-19 pandemic crisis passed and tend to decrease after open the 

4th runway in 2030. After recovering from the crisis in 2022, HDY will perform stable 

around 40 percent. CEI will have good progress every year and perform fully efficiently 

for the first time in 2030. 

 It is worthy to note that this section has a limitation. This section employs 

only 2 output variables such as total aircraft and passenger movements because the 

forecasting amount of cargo shifted cannot find from a reliable source. This section 

must exclude this variable. Hence, this makes the technical efficiency scores of the 

airports between 2007 to 2020 on Table 7.5 are less than Table 7.1. Both tables have 

the same trends but different scales. 
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7.2.2 Result of productivity changes of 6 main public airports of Thailand 

between 2007 to 2030. 

 This section also employs the MPI model to forecast the future productivity 

growths of the airports between 2021 to 2030, the period after the COVID-19 pandemic 

happened. Table 7.6 shows the productivity changes of overall airports from 2007 to 

2008 until 2029 to 2030. Table 7.7 shows the productivity changes of the individual 

airports between 2007 to 2030.  

 

Table 7.6 

The overall airports' productivity changes from 2007 to 2008 until 2029 to 2030 

Period TEC TC TFPC 

2007 – 2008 0.994 0.995 0.989 

2008 – 2009 0.931 0.895 0.833 

2009 – 2010 0.932 1.244 1.159 

2010 – 2011 1.135 1.085 1.232 

2011 – 2012 0.895 1.074 0.961 

2012 – 2013 1.179 1.004 1.184 

2013 – 2014 1.107 1.028 1.138 

2014 – 2015 1.038 1.055 1.096 

2015 – 2016 1.055 0.967 1.021 

2016 – 2017 1.024 1.050 1.075 

2017 – 2018 0.999 1.049 1.048 

2018 – 2019 0.982 1.008 0.991 

2019 – 2020 1.039 0.536 0.557 

2020 – 2021 1.000 0.763 0.763 

2021 – 2022 1.000 1.984 1.984 

2022 – 2023 0.962 1.147 1.104 

2023 – 2024 1.000 1.061 1.061 

2024 – 2025 0.998 1.064 1.062 
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Table 7.6 

The overall airports' productivity changes from 2007 to 2008 until 2029 to 2030 (Cont.) 

Period TEC TC TFPC 

2025 – 2026 0.993 1.068 1.060 

2026 – 2027 0.994 1.065 1.059 

2027 – 2028 0.995 1.063 1.057 

2028 – 2029 0.995 1.063 1.057 

2029 – 2030 0.974 1.063 1.035 

Geometric Mean 

of all periods 
1.008 1.034 1.042 

Geometric Mean 

of Proe-COVID-

19 

1.019 1.035 1.055 

Geometric Mean 

of Post-COVID-19 
0.991 1.104 1.094 

Geometric Mean 

of during the 

lockdown period  

1.019 0.640 0.652 

 

Note. From author’s calculation. 

 

 Table 7.6 shows that the geometric mean of TFP growth of the airports 

between 2007 to 2030 is 4.2 percent per year. This table also compares the geometric 

means of TEC, TC, and TFPC of the airports between the pre-and post-COVID-19 

pandemic periods and during the lockdown period.  

 In the period of the pre-COVID-19 pandemic, the geometric means of TEC, 

TC, and TFP had increased by 1.9, 3.5, and 5.5 percent per year, respectively.  
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 For the post-COVID-19 pandemic period, the geometric mean of TEC will 

decline by 9 percent a year. The geometric mean of TC will increase by 10.4 percent 

per year. This means that in the post-COVID-19 pandemic period, the airports will take 

advantage of new technologies more efficiently to improve the growth of productivity. 

In contrast, the old working system at the airports will prevent productivity 

improvement. The result shows that the TFP of the airports will increase by 9.4 percent 

a year in the post-COVID-19 pandemic period. 

 During the lockdown period, the result shows that the geometric of TEC 

has increased 1.9 percent per year. The geometric mean of TC is regressed by 36 percent 

a year. These make the geometric mean of TFP declined by 34.8 percent per year. The 

airports perform the worst within this period when compared with other periods. 

 Table 7.6 shows that between 2020 to 2021, the second year of the COVID-

19 pandemic, the overall TFP change of the airports will be declined again by 23.7 

percent. The TEC has no change, but the technological adoption rate has declined by 

23.7 percent. 

 Between 2021 to 2022, the recovery period after the pandemic, the TFP 

will be increased by 98.4 percent because of the increase of the technical change. The 

TEC has no change in this period. 

 The technical efficiency change will be dropped again between 2022 to 

2023, while the technical change will be increased by 14.7 percent. These make the 

TFP has increased by 10.4 percent. 

 Between 2024-2025 to 2028-2029, the result shows that the productivity 

growths of the 6 main public airports will be higher than 5% per year because of the 

progress of technological improvements. Within these periods, overall airports will be 

regressed in technical efficiency changes. 

 Between 2029 to 2030, Table 7.6 shows that the technical efficiency change 

will be dropped by 2.6 percent, and the technological adoption rate will be increased by 

6.3 percent. These make the average productivity change of the airports in this period 

has inclined by 3.5 percent. 
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 This thesis shows that the average TFP change of the airports will increase 

by an annual 4.2 percent between 2007 to 2030. The average technological adoption 

rate has increased by 3.4% a year. The technical efficiency change has increased only 

0.8% a year. After 2021, the forecasted productivity growths of the airports show that 

all airports do not worry about adopting new technologies to improve their 

performances. The average operational efficiency of the airports tends to decline after 

2024. The results show that the airports will use new technologies effectively to 

improve productivity, but these airports must concern about the working processes at 

the airports by adopting new operating systems to improve the technical efficiency 

change in the long run.  

 

Table 7.7 

Productivity growths of the individual airports between 2007 to 2030 

Airport Name 

(code name) 
TEC TC TFPC 

Suvarnabhumi 

Airport (BKK) 
0.987 1.020 1.006 

Don Mueang 

International 

Airport (DMK) 

1.036 1.025 1.062 

Phuket 

International 

Airport (HKT) 

1.000 1.025 1.025 

Chiang Mai 

International 

Airport (CNX) 

1.001 1.031 1.033 

Hat-Yai 

International 

Airport (HDY) 

0.995 1.040 1.035 
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Table 7.7 

Productivity growths of the individual airports between 2007 to 2030 (Cont.) 

Airport Name 

(code name) 
TEC TC TFPC 

Mae Fah Luang-

Chiang Rai 

International 

Airport (CEI) 

1.028 1.066 1.095 

Geometric Mean 1.008 1.034 1.042 

 

Note. From author’s calculation. 

 

 Between 2007 to 2030, Table 7.7 shows that the BKK will have the TFP 

progress of 0.6% per year by the efficiency change will decrease by 1.3% per year. The 

average technological adoption rate increases an annual 2 percent.  

 CEI will be the highest TFP progress airport that has the TFP progressed 

by 9.5% a year. The TEC and TC will increase by 2.8% and 6.6% per year, respectively. 

This means that CEI will be the best in technology adoption when compared with the 

other airports.  

 DMK will have the TEC increased by 3.6% a year in this period. The TC 

will increase by an annual 2.5 percent. These make the DMK has a productivity growth 

of 6.2 percent a year. 

 The TFP growth of HDY will increase by 3.5% a year between 2007 to 

2030. The TC is going to increase by 4% a year, while the TEC will decrease by 0.5% 

a year. 

 CNX will have the TEC increased only 0.1 percent a year and the TC 

increased by 3.1 percent a year. Table 7.8 shows that between 2007 to 2030, CNX will 

have the TFP progressed by an annual 2.5 percent. 
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 HKT will have no change in the TEC, but the technological adoption rate 

will increase by 2.5% a year. So, the TFP has progressed by an annual 2.5 percent 

between 2007 to 2030.  

 The result shows that all airports will take the advantage of new technology 

to improve the productivity growths and the total factor productivity will be progressed. 

HKT has no change in operational improvement. Only BKK and HDY must concern 

about the airports’ operational processes.  

 This thesis also calculates the TEC, TC, and TFP changes of the individual 

airports between the pre-and post-COVID-19 pandemic periods and during the 

lockdown period. Figure 7.17 shows comparing the technical efficiency changes of the 

individual airports between the pre-and post-COVID-19 pandemic periods and during 

the lockdown period. Figure 7.18 shows comparing the technical changes of the 

individual airports between the pre-and post-COVID-19 pandemic periods and during 

the lockdown period. Figure 7.19 shows comparing the total factor productivity 

changes of the individual airports between the pre-and post-COVID-19 pandemic 

periods and during the lockdown period. 
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Figure 7.17 

Comparing the technical efficiency changes of the individual airports between the pre-

and post-COVID-19 pandemic periods 

 

 

 

 

 

 

 

 

 

 

 

 

Note. From author’s calculation. The names and code names of the airports are 

following as Suvarnabhumi Airport (BKK), Don Mueang International Airport (DMK), 

Phuket International Airport (HKT), Chiang Mai International Airport (CNX), Hat-Yai 

International Airport (HDY), and Mae Fah Luang-Chiang Rai International Airport 

(CEI). 

 

 The results from Figure 7.17 show that every airport except HKT will 

perform poorer in the working system in the post-COVID-19 pandemic period. The 

geometric mean of TEC at CEI in the pre-COVID-19 pandemic period had increased 

by 2.4 percent a year. In the second period, the geometric mean of TEC will increase 

only 2.2 percent a year. This means that the operating system in the post-COVID-19 
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pandemic period at CEI still promotes productivity growth but performs worse than in 

the first period. During the lockdown period, the geometric mean of TEC has increased 

by 6.4 percent a year. The result shows that CEI has the highest geometric mean of TEC 

in this period. 

 In the lockdown period, HDY has the geometric mean of TEC is progressed 

by 5.4 percent a year. In the post-COVID-19 pandemic period, the geometric mean of 

TEC at HDY will decline by 4.5 percent a year. On the opposite, the geometric mean 

of TEC had increased by 2 percent a year in the first period. This means that HDY can 

perform better in the working system at the airport in the first period. For the second 

period, the old operating system cannot promote productivity growth anymore. 

 The geometric mean of TEC at CNX will not change much in the second 

period. The geometric mean will be 1. While in the pre-COVID-19 pandemic period, 

the geometric mean had increased by 0.2 percent a year. The results show that the same 

working system at CNX will not promote productivity growth anymore in the post-

COVID-19 pandemic period, but there will not interrupt productivity growth. During 

the lockdown period, the geometric mean of TEC has no change. 

 The geometric means of TEC at HKT between the first and second periods 

and during the lockdown period will be the same at 1. This implies that the airport’s 

working system cannot promote productivity growth anymore in both the first and 

second periods.  

 In the post-COVID-19 pandemic period and during the lockdown period, 

the geometric mean of TEC at DMK will have no change. But in the first period, the 

geometric mean had increased by 7.1 percent a year. DMK also performs worse in the 

second period. 

 In the second period, BKK will have the TEC regressed by 3 percent a year. 

While in the pre-COVID-19 pandemic period, the geometric mean of TEC was 1.000. 

This means that the operating system at this airport is not good enough to promote 

productivity growth in both the first and second periods. But in the post-COVID-19 
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pandemic period, the old working system will obstruct productivity improvement. 

During the lockdown period, the geometric mean of TEC also has no change. 

 

Figure 7.18 

Comparing the technical changes of the individual airports between the pre-and post-

COVID-19 pandemic periods 

 

 

 

 

 

 

 

 

 

 

 

Note. From author’s calculation. The names and code names of the airports are 

following as Suvarnabhumi Airport (BKK), Don Mueang International Airport (DMK), 

Phuket International Airport (HKT), Chiang Mai International Airport (CNX), Hat-Yai 

International Airport (HDY), and Mae Fah Luang-Chiang Rai International Airport 

(CEI). 
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 Figure 7.18 shows all airports can take advantage of new technologies to 

promote productivity growth in the post-COVID-19 pandemic period than the pre-

COVID-19 pandemic period. This means that new technologies will be the most 

important factor to promote productivity growths of the airports in the period of the 

post-COVID-19 pandemic. This thesis shows that every airport can take benefit from 

new technologies in this period by the geometric mean of the TC will progress at least 

8 percent a year. 

 CEI will have the geometric mean of TC progressed by 12.3 percent per 

year in the post-COVID-19 pandemic period. While in the first period, the TC had 

progressed by 7.8 percent a year. During the lockdown period, the geometric mean of 

TC is regressed by 35 percent a year. 

 In the second period, HDY will have the highest TC progressed when 

compared with other airports. The technological adoption rate will increase by 12.7 a 

year. Between 2007 to 2019, this airport had a TC that progressed only 2.4 percent a 

year. While during the lockdown period, the TC has declined by an annual 35.1 percent.  

 Within the lockdown period, CNX has the geometric mean of TC is 

regressed by 33.9 percent a year. In the pre-COVID-19 pandemic period, CNX had the 

geometric mean of TC progressed by 2.7 percent a year. After the COVID-19 pandemic 

happened in 2020, the result shows that CNX will adopt technology wisely to promote 

productivity growth by the TC will progress by 10 percent per year between 2020 to 

2030. Within the lockdown period, the geometric mean of TC is regressed by 33.9 

percent a year. 

 In the first period, HKT can adopt new technology to promote productivity 

growth by TC progressed at 2.4 percent a year. But in the second period, HKT will 

perform better. The geometric mean of TC will increase by 10.1 percent per year. In 

the lockdown period, HKT has the geometric mean of TC has declined by 38.5 percent 

a year. 

 During the lockdown period, DMK has the geometric mean of TC is 

regressed by 35.7 percent a year. Between 2007 to 2019, DMK also adopted new 
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technologies to promote productivity growth. The TC had increased by 3 percent a year. 

In the post-COVID-19 pandemic period, DMK’s geometric mean of TC will increase 

by 8.8 percent per year. 

 For the BKK, the geometric mean of the TC will increase by 8.3 percent in 

the second period, the lowest TC progressed when compared with the other airports. In 

the pre-COVID-19 pandemic period, the TC had progressed by only 2.8 percent. In the 

lockdown period, the geometric mean of TC has declined by 37.8 percent. 

 The result shows that every airport can use new technologies to help them 

perform better in the period after the COVID-19 pandemic happened. During the 

lockdown period, all airports have the lowest geometric mean of TC when compared 

with other periods. The shock of the COVID-19 pandemic prevents the airports adopt 

new technologies smoothly. 
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Figure 7.19 

Comparing the total factor productivity changes of the individual airports between the 

pre-and post-COVID-19 pandemic periods 

 

 

 

 

 

 

 

 

 

 

 

Note. From author’s calculation. The names and code names of the airports are 

following as Suvarnabhumi Airport (BKK), Don Mueang International Airport (DMK), 

Phuket International Airport (HKT), Chiang Mai International Airport (CNX), Hat-Yai 

International Airport (HDY), and Mae Fah Luang-Chiang Rai International Airport 

(CEI). 

 

 Figure 7.19 shows all airports except DMK will have the TFP growth 

higher in the post-COVID-19 pandemic period. CEI will have the highest TFP 

progressed by 14.8 percent a year in this period. In the pre-COVID-19 pandemic period, 

the TFP had progressed by 10.4 percent per year. While during the lockdown period, 

the TFP is regressed by 30.8 percent a year. 

Ref. code: 25646204040080WKG



161 

 
 

 

 HKT will be the second-highest of TFP progressed. HKT’s productivity 

growth will progress by 10.1 percent a year in the second period. For the pre-COVID-

19 pandemic period, the productivity growth of HKT had increased by 2.4 per year. 

During the lockdown period, HKT has the TFP is regressed by an annual 38.5 percent. 

 CNX will be the third-highest of TFP progressed. The TFP is going to 

progress by 10 percent per year in the post-COVID-19 pandemic period. Between 2007 

to 2019, the TFP increased by only 2.9 percent a year. Within the lockdown period, the 

TFP is declined by 33.9 percent a year. 

 In the pre-COVID-19 pandemic period, HDY had a productivity growth of 

4.4 percent a year. While in the post-COVID-19 pandemic period, HDY will perform 

better. The TFP change will increase by 7.6 percent per year. For the lockdown period, 

the TFP has regressed by an annual 31.6 percent. 

 For BKK, the productivity growth had increased by only 2.8 percent in the 

first period. Between 2020 to 2030, this thesis predicts that the TFP growth of this 

airport will incline by 5.1 percent a year. During the lockdown period, the TFP has 

declined by 37.8 percent per year. 

 Lastly, DMK will be the only airport that has the TFP progressed in the 

second period less than in the first period. The productivity growth will increase by 8.8 

percent per year in the post-COVID-19 pandemic period. In the pre-COVID-19 

pandemic period, this thesis calculates that the TFP growth of DMK increased by 10.3 

percent a year. During the lockdown period, the TFP is regressed by 35.7 percent a 

year. 

 The result shows that all airports except DMK will perform better in the 

post-COVID-19 pandemic period. During the lockdown period, the airports have the 

TFP changes regressed more than 30 percent a year. The reasons are the airports do not 

take advantage of new technologies and the decline of the number of passenger and 

aircraft movements. 

 As mentioned in section 7.2.1, the analysis between 2007 to 2030 employs 

2 output variables such as the number of aircraft and passenger movements. The 
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productivity changes from 2007 to 2020 shown in Table 7.6 are different from Table 

7.2. Both tables have very close TFP changes. Only 3 periods have distinctive 

differences. Between 2007 to 2008, Table 7.2 reports that the TEC of the airports was 

progressed by 2.3 percent, while in Table 7.6, the TEC had declined by 0.6 percent. 

Between 2012 to 2013, Table 7.2 reports the TC had declined by 2.6 percent, while 

Table 7.6 reports the TC had increased by only 0.4 percent. Lastly, between 2018 to 

2019, Table 7.2 reports the TC had regressed by 10 percent, but Table 7.6 reports the 

TC had progressed by only 0.8 percent. 

 

 This thesis assumes that the number of workers in each airport will be 

increased every year and BKK will follow the plans to open the 3rd runway in 2023 and 

the 4th runway in 2030. BKK is the only airport that can be installing the new runways. 

The other 5 airports have no space to install a new runway. BKK must concern about 

the inputs used and the outputs derived in the future. If the total passengers and aircraft 

movements have increased more than the numbers that this thesis forecasts, the 

efficiency scores of this airport will be higher than the result shown in Table 7.5 and 

the productivity growths will be higher than 0.6 percent a year. 

 The technical efficiency changes in the post-COVID-19 pandemic period 

of all airports will be lower. The average TEC of BKK and HDY will decline by 1.3 

and 0.5 percent, respectively. Therefore, BKK and HDY must reorganize the working 

processes to perform more efficiently and concern about the number of employees 

working at the airports urgently than other airports.  
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CHAPTER 8 

DISCUSSION 

 

 This chapter includes 3 parts. The first part discusses the policy 

implications. This part refers to the past performances of the airports and suggests 

future policies for the policymakers to improve the productivity growths of the airports 

in the long run. This thesis emphasizes how to adopt new technology and design a new 

working system to transform classical airports into smart airports. There will discuss 

the details more specifically in this part. 

 The second part discusses the limitations of this thesis. They include the 

data used in this thesis and the method to forecast the variables. 

 The last part shows the research gap after this thesis has been published. 

What the future researchers have left to do in this field and the trend of the research in 

the air transportation of Thailand? The answer will be given in this part. 

 

8.1 Policy implications 

 

 This thesis is the first work in Thailand that analyzes the full performances 

of the 6 main public airports of Thailand operated by AOT for the longest period. This 

thesis analyzes the past performances and forecasts the future performances of the 

airports. 

 This thesis analyzes the past performances in terms of the technical 

efficiency scores and the productivity growths of the airports from the year BKK 

opened until the year of the COVID-19 pandemic started. The results show that airport 

hubs performed better than non-airport hubs. The percent of international passengers in 

both terms of normal and low-cost-carriers passengers affected the efficiency levels of 

the airports. The external shocks such as the global financial crisis in 2008-2009, the 

big flooding in Thailand in 2011, and the COVID-19 pandemic started in 2020 had 
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negative impacts on airports’ efficiency scores especially the airport hubs because these 

airports handled a lot of international passengers. This means that in the future if the 

world faces a big shock again, the technical efficiency scores and productivity levels of 

the international airports will be declined. This thesis can conclude that the number of 

international passengers has very significant to improve technical efficiency scores and 

productivity growths of the airports. The non-airport hubs can promote their growth by 

encouraging tourism in the provinces that the airports locate.  

 For the analysis between 2021 to 2030, this thesis assumes the growth of 

employees at the individual airports will increase at a very low rate between 2021 to 

2030. The results show that the performances of the overall airports will be recovered 

in 2022 and taken at least 6 years to have the same efficiency levels as in 2019. The 

number of international passenger and aircraft movements has a very significant to 

promote the efficiency and productivity levels. BKK will open the 4th runway in 2030. 

If the passenger and aircraft movements increase as the 𝐴𝑅 (1) model forecasted, the 

efficiency score of BKK tends to decline in 2030. DMK, HKT, and CNX will perform 

fully efficiently in 2030. If these airports have higher growths of passenger and aircraft 

movements than the results from the 𝐴𝑅 (1)  model, their efficiency scores and 

productivity growths can be looked better than this thesis estimated. The result shows 

that if the passenger and aircraft movements of CEI have increased like the 𝐴𝑅 (1) 

model predicted, eventually this airport will perform fully efficiently in 2030. HDY can 

be performed fully efficiently like CEI if tourism of Songkhla province has high growth 

every year after the pandemic.  

 According to the findings obtained in this thesis, the foremost 

recommendations to efficiency and productivity improvements are presented as 

follows: 

1. The airports must concern about the inputs wasted in the future if the 

number of aircraft and passenger movements is recovered equal or less 

than the prediction in this thesis. If the number of passenger and traffic 

movements at the airports is increased more than the forecast in this 

thesis, there is possible that the technical efficiency scores and 
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productivity growths will be higher. Otherwise, these values will be 

declined again. 

2. BKK must focus on the inputs used in the future because BKK in the 

post-COVID-19 period will not have the technical efficiency scores 

recovered as the same as in the pre-COVID-19 period again. The 

reasons are the number of employees will increase, and the 3rd and 4th 

runway will be opened. If the number of aircraft and passenger 

movements is increased more than this thesis predicted in the post-

COVID-19 period, the technical efficiency scores will be higher, and 

opening the 3rd runway in 2023 and the 4th runway in 2030 will be good 

strategies. Otherwise, BKK tends to waste inputs to handle a few 

outputs. 

3. All airports will be recovered after 2021, but only DMK, CNX, HKT, 

and CEI will perform fully efficiently in 2030. These airports must take 

at least 6 years to recover the efficiency scores to be the same as in 

2019. Policymakers can help to reduce the recovery time in 2 ways. 

Firstly, they must lay off some of the employees at the airports. This 

will help them to reduce the wasted labor because the size of the airports 

cannot be reduced. Secondly, Thailand must open the country as soon 

as possible by injecting the vaccines to people on a mass scale within 

early 2022. The confidence of international tourists is matters. Injecting 

the good vaccines to 70 percent of people who live in Thailand can 

make more confidence to international tourists traveling to Thailand 

again. If the world’s situation is better, the world’s aviation sector will 

be possible back to normal in the next few years. 

4. The non-airport hubs such as CEI and HDY can be transformed into 

airport hubs by promoting tourism for Chiang Rai and Songkhla 

provinces. These airports can create more routes that connect with the 

other airports of nearby countries.  

5. The technical change is a major factor for driving sustainable growth in 

the aviation industry for the post-COVID-19 period. The airports 
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should consider in adopting new technologies by transforming the 

traditional airports into smart airports for the future. 

6. Thailand is the big hub of international tourists. Hence, the aviation 

industry should not only rely on the international market. There should 

be able to diversify risk or uncertainty events that may be occurred in 

the future. 

 Since the technical change will be a major factor in driving sustainable 

growth in the aviation industry in Thailand, the suggestions for transforming the 

traditional airports into smart airports are presented as follows: 

1. All airports should adopt the new working systems such as agile, lean, 

and hire only talented workers. These will help them to reduce low-

skilled employees and be replaced by specialists instead.  

2. All airports should adopt new technologies such as the biometric facial 

recognition machine, new applications, internet of things (IOT), 

artificial intelligence (AI), Robot Assistants, and big data to promote 

productivity and reduce the wasted inputs such as low-skilled workers 

at the airports. These will help them to keep a low number of workers 

while handling the same amounts of passengers. Big data and AI can 

help policymakers to manage the schedule of the flights wisely. These 

technologies can help to promote air traffic movements on time by 

reducing buffering time. 

3. The airports must set new strategies to create a new environment for the 

working system. They can hire the data analyst team, the data science 

team, and the data engineer team who can work with a lot of data and 

new technologies wisely to design sustainable policies. These will help 

the airports keep very low talented employees because the size of the 

airports cannot be reduced. The few talented employees can replace 

many low-skilled employees, while the productivity and efficiency that 

the airports can be derived will be higher. Successful companies around 
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the world employ these strategies to improve their efficiency, 

productivity, and profits in the long run.  

4. The world after the COVID-19 will be the world that companies must 

adapt themselves to new technologies immediately. The data teams can 

help the airports to inspect some defections in the working processes at 

the airports and design strategies to fix them suddenly. This can be done 

by applying the internet of things (IOT). This technology can reduce 

the number of employees at the airports because it can detect every 

problem at the airports and report them to the responsible workers 

immediately. Although the new technologies will be the main factor to 

drive long-run productivity growths at the airports, the workers are 

going to be significant. The new working systems and technologies can 

support the slower increase of employees at the airports to handle future 

air transportation movements. 

 The suggestions above will help to transform Thailand’s airports into smart 

airports within the short period after the COVID-19 pandemic has ended. These 

suggestions can help the main public airports to save costs and raise the aeronautical 

and non-aeronautical revenues in the long run after the new working systems have 

been set. 

 

8.2 Limitations 

 

 This thesis has 7 main limitations. Firstly, during writing this thesis, 

Thailand faces phase four of the COVID-19 pandemic by the delta variant. The original 

COVID-19 from Wuhan, China has mutated to the alpha, beta, gamma, and delta 

variants. Thailand has a problem with the shortage of vaccines in the first half of 2021 

(CNA, 2021). The new forecasting recovery trends from news agencies and CAAT do 

not publish yet. CAAT (2021) and news agencies (2020) forecasted the number of 

aircraft and passenger movements after the COVID-19 pandemic happened in 2020 by 

assuming Thailand faces only phase one of a pandemic. Hence, this thesis still assumes 
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to use the data to be consistent with what news agencies and CAAT (2021) had 

forecasted. 

 Secondly, this thesis is the first work that employs the time-series model to 

forecast the growths of passenger and aircraft movements of the 6 Thailand’s main 

public airports. This thesis employs the forecasting data between 2021 to 2030 from the 

𝐴𝑅 (1)  model and the Excel Linear Forecast function to estimate the productivity 

growths and the efficiency scores at the airports. The 𝐴𝑅 (1) model is employed to 

predict the recovery trends of the 2 output variables such as total passenger and aircraft 

movements at the airports between 2024 to 2030. Between 2021 to 2023, this thesis 

uses the forecasting data from AOT (The Standard, 2020; Thai Rath, 2020) by assuming 

that in 2023, the passenger and aircraft movements will be back to the same level as in 

2019. The Excel Linear Forecast function is employed to forecast the growths of the 

number of employees of the airports because the results from the 𝐴𝑅 (1) model are 

overestimated in the airport hubs such as BKK, DMK, HKT, and CNX. The total space 

of all airports except BKK is limited. Only BKK has a large space left to create new 

constructions, but the number of employees could not be possible to over 13,000 people 

in 2030. HKT is a fully developed airport. That would not be possible that HKT will 

have employees over 2,000 people in the next 10 years. Hence, this thesis assumes the 

number of workers in each airport will slowly increase and the Excel Linear Forecast 

function gives trustworthy results.  

 Thirdly, this thesis assumes the terminal and apron areas are fixed in the 

post-COVID-19 period. All airports except BKK have less space to expand the sizes. 

Only BKK has plans to build more constructions in the next 10 years, but the size of 

this airport cannot be predicted. 

 Fourth, the results from the 𝐴𝑅 (1) model forecasted the number of aircraft 

movements and the passenger movements are different from the forecasted from 

CAAT’s report (CAAT, 2021). CAAT (2021) forecasted the trends of passenger and 

aircraft movements of the 6 main public airports after the COVID-19 pandemic 

happened to 3 scenarios. They are best case, moderate case, and worst case. The results 

from 𝐴𝑅 (1)  model are different from the best case but they are quite similar to 
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moderate and worst cases in some years. This thesis does not consider the data from 

CAAT (2021) to estimate the efficiency scores and productivity growths. Future 

research in this field can use these data to estimate the future performances of airports 

and compare them with this thesis. 

 Fifth, the forecasting trends of the cargo shifted at the airports cannot find 

from any reliable source. Hence, this variable must be excluded from the output 

variables in the analysis period between 2007 to 2030. This makes the technical 

efficiency scores and productivity growths of the airports between 2007 to 2020 in 

sections 7.1.1 and 7.2.1 are different. 

 Sixth, this thesis assumes the BKK will follow the development projects in 

the third phase and fifth phase to open the 3rd and the 4th runway in 2023 and 2030, 

respectively. The other airports have no space to create a new runway (AOT’s annual 

report, 2020). They can do only renovate their buildings. Only CNX has a plan to build 

the International Passenger building to handle more international tourists in the future. 

 Seventh, this thesis focuses on the 6 main public airports in Thailand 

operated by AOT. Currently, Thailand has 39 public airports across the country. This 

is the first research that focuses on Thailand’s airports with the longest period of data. 

Hence, this thesis focuses on the 6 largest airports of Thailand. Future research can find 

the data of the other 33 public airports to analyze and compare the performances with 

these 6 airports. 

 

8.3 Future research in this field 

 

 This thesis employs the input-oriented CCR DEA and the Malmquist total 

factor productivity index (MPI) models to measure the technical efficiency scores and 

the productivity growths of the airports, respectively. This thesis employs only 

nonparametric models. Future research can employ another model such as the BCC 

DEA model and parametric method to estimate the airports’ efficiency scores. They can 

employ other DEA and MPI models to compare the results. They can use the data that 
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CAAT (2021) forecasted to estimate the efficiency levels and productivity changes and 

compare them for all cases.  

 This thesis is the first research that uses the time-series method so called 

the autoregressive (𝐴𝑅)  model to forecast the data and estimate the future 

performances of the airports. Future research can employ other time-series models such 

as moving average (MA), autoregressive integrated moving average (ARIMA), vector 

autoregressive (VAR), and artificial neural network (ANN) to forecast and compare the 

results. These will help the policymakers to confirm the most appropriate model for 

predicting the growth of this industry. 

 Lastly, future research can collect the data from all airports in Thailand 

across the country to measure the full performances of all Thailand’s airports. Since all 

data from different sources are collected in various ways, it will take more time to 

combine all data in the consistent format. 

 

 It is worth noting that this thesis is the first research in the air transportation 

field of Thailand. There exist some gaps to be filled in the future. Future research can 

extend the boundary of the knowledge in this field more broadly.  
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CHAPTER 9  

CONCLUSION 

 

“If you never miss a plane, you’re spending too much time at the airport.” 

George Stigler (1911-1991) 

 

 This thesis measures the full performances of the 6 main public airports of 

Thailand operated by the Airports of Thailand Public Company Limited between 2007 

to 2020 and forecasts the future performances between 2021 to 2030. This is the first 

research in Thailand that employs the input-oriented CCR DEA and the Malmquist total 

factor productivity index (MPI) models to measure the technical efficiency scores and 

productivity growths of the airports, respectively. This is also the first work that 

employs the Simar and Wilson bootstrapping regression model to test which external 

factors in both micro and macro variables affect the efficiency levels of the airports 

within the study period. This thesis also considers the future performances of the 

airports by employing the autoregressive model to forecast the future performances 

after the COVID-19 pandemic occurred in 2020. 

 The findings indicate that the airport hubs performed better than the non-

airport hubs. The external shocks from the global financial crisis, the big flooding in 

Thailand in 2011, and the COVID-19 pandemic had negative impacts on the airports’ 

efficiency scores and productivity levels. The percent of international passengers in 

both normal and low-cost-carriers passengers had positive effects to promote the 

technical efficiency levels. The analysis between 2007 to 2020 shows that the 6 main 

public airports of Thailand had an average technical efficiency change progressed by 2 

percent per year, but the technical change regressed by 2.2 percent a year. These made 

the total factor productivity of the airports declined by 0.2 percent a year. These 

findings can be concluded that the airports performed better in the operation than 

adopting new technologies to improve productivity between 2007 to 2020. 
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 After the pandemic from the COVID-19 occurred in 2020, this thesis 

forecasts that the overall efficiency scores and productivity growth will increase again 

in 2022. In 2021, the overall situation will be worse than in 2020. The airport hubs 

except BKK will use at least 6 years to recover the efficiency levels to be the same in 

2019. BKK will not operate fully efficient again. DMK, HKT, CNX, and CEI will 

perform fully efficient in 2030. CNX and DMK will take 15 years to perform fully 

efficient again, while HKT will take 16 years. CEI will perform perfectly efficient in 

2030, the first time in 24 years. HDY will not perform over 50 percent again between 

2021 to 2030. The results show that all airports have no problem in adopting new 

technologies to improve productivity growth. Only BKK and HDY tend to use wasted 

inputs for handling the passenger and aircraft movements. These 2 airports must keep 

a low number of employees if the total passenger movements are recovered as predicted 

in this study. These will help to improve the technical efficiency scores. 

 After 2023, this thesis shows that the average technological adoption rate 

of the overall airport will progress by 6 percent a year. Between 2024 to 2030, the 

technical efficiency change will be regressed every year. This implies that the 6 main 

public airports of Thailand must concern about the operating system and the wasted 

inputs. This problem can be solved by setting the new working systems such as agile, 

lean, and talent density. These systems can help the airports to reduce expenses for 

hiring many employees because the size of the airports cannot be reduced.   
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Appendix A 

Forecasting the number of employees at the individual airports 

between 2021 to 2030 

 

Table A.1 

Forecasting and comparing the number of employees at Suvarnabhumi Airport (BKK) 

by employing the 𝐴𝑅 (1) model and the Excel Linear Forecast function 

Year 𝐴𝑅 (1) % of change Excel Linear Forecast % of change 

2020 3,514  3,514  

2021 3,795 8.00% 3,254 -7.39% 

2022 4,150 9.36% 3,318 1.96% 

2023 4,599 10.81% 3,381 1.92% 

2024 5,166 12.33% 3,445 1.88% 

2025 5,882 13.87% 3,509 1.85% 

2026 6,787 15.39% 3,572 1.81% 

2027 7,931 16.85% 3,636 1.78% 

2028 9,376 18.22% 3,700 1.75% 

2029 11,202 19.47% 3,763 1.72% 

2030 13,509 20.59% 3,827 1.69% 

 

Note. From author’s calculation. 
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Table A.2 

Forecasting and comparing the number of employees at Don Mueang International 

Airport (DMK) by employing the 𝐴𝑅 (1) model and the Excel Linear Forecast function 

Year 𝐴𝑅 (1) % of change Excel Linear Forecast % of change 

2020 1,823  1,823  

2021 2,044 12.15% 1,699 -6.81% 

2022 2,293 12.14% 1,805 6.26% 

2023 2,571 12.14% 1,911 5.89% 

2024 2,883 12.13% 2,018 5.56% 

2025 3,233 12.13% 2,124 5.27% 

2026 3,625 12.12% 2,230 5.00% 

2027 4,064 12.12% 2,336 4.77% 

2028 4,556 12.12% 2,443 4.55% 

2029 5,108 12.11% 2,549 4.35% 

2030 5,727 12.11% 2,655 4.17% 

 

Note. From author’s calculation. 
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Table A.3 

Forecasting and comparing the number of employees at Phuket International Airport 

(HKT) by employing the 𝐴𝑅 (1) model and the Excel Linear Forecast function 

Year 𝐴𝑅 (1) % of change Excel Linear Forecast % of change 

2020 1,014  1,014  

2021 1,113 9.73% 1,031 1.66% 

2022 1,217 9.41% 1,101 6.84% 

2023 1,328 9.13% 1,172 6.40% 

2024 1,446 8.88% 1,242 6.02% 

2025 1,572 8.66% 1,313 5.68% 

2026 1,704 8.46% 1,384 5.37% 

2027 1,846 8.28% 1,454 5.10% 

2028 1,995 8.11% 1,525 4.85% 

2029 2,154 7.97% 1,595 4.63% 

2030 2,323 7.83% 1,666 4.42% 

 

Note. From author’s calculation. 
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Table A.4 

Forecasting and comparing the number of employees at Chiang Mai International 

Airport (CNX) by employing the 𝐴𝑅 (1) model and the Excel Linear Forecast function 

Year 𝐴𝑅 (1) % of change Excel Linear Forecast % of change 

2020 483  483  

2021 529 9.58% 470 -2.70% 

2022 580 9.58% 496 5.54% 

2023 636 9.58% 522 5.24% 

2024 696 9.58% 548 4.98% 

2025 763 9.58% 574 4.75% 

2026 836 9.58% 600 4.53% 

2027 916 9.58% 626 4.34% 

2028 1,004 9.59% 652 4.16% 

2029 1,101 9.59% 678 3.99% 

2030 1,206 9.59% 704 3.84% 

 

Note. From author’s calculation. 
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Table A.5 

Forecasting and comparing the number of employees at Hat-Yai International Airport 

(HDY) by employing the 𝐴𝑅 (1) model and the Excel Linear Forecast function 

Year 𝐴𝑅 (1) % of change Excel Linear Forecast % of change 

2020 325  325  

2021 339 4.21% 353 8.48% 

2022 352 4.03% 370 4.95% 

2023 366 3.86% 387 4.72% 

2024 380 3.70% 405 4.51% 

2025 393 3.56% 422 4.31% 

2026 406 3.43% 440 4.13% 

2027 420 3.30% 457 3.97% 

2028 433 3.19% 475 3.82% 

2029 447 3.08% 492 3.68% 

2030 460 2.97% 510 3.55% 

 

Note. From author’s calculation.  
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Table A.6 

Forecasting and comparing the number of employees at Mae Fah Luang-Chiang Rai 

International Airport (CEI) by employing the 𝐴𝑅 (1)  model and the Excel Linear 

Forecast function 

Year 𝐴𝑅 (1) % of change Excel Linear Forecast % of change 

2020 483  483  

2021 529 9.58% 470 -2.70% 

2022 580 9.58% 496 5.54% 

2023 636 9.58% 522 5.24% 

2024 696 9.58% 548 4.98% 

2025 763 9.58% 574 4.75% 

2026 836 9.58% 600 4.53% 

2027 916 9.58% 626 4.34% 

2028 1,004 9.59% 652 4.16% 

2029 1,101 9.59% 678 3.99% 

2030 1,206 9.59% 704 3.84% 

 

Note. From author’s calculation. 
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Appendix B 

Defining the abbreviations of the variables used in the second stage 

 

Table B.1 

The abbreviations of the variables using in the second stage between 2007 to 2020 

Variable Name Abbreviation 

Technical efficiency score te 

Airport hub status ahs 

Global financial crisis fc 

Percent of international low-cost carriers pilcc 

Percent of domestic low-cost carriers pdlcc 

PAD occupied BKK and DMK in 2008 mob 

Thailand political conflict between 2013 to 2014 pc 

Percent of International passengers pip 

Flooding at DMK in 2011 flood 

COVID-19 covid 

 

Note. From author’s compilation. 
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Appendix C 

Checking the Collinearity and Variance Inflation Factor (VIF) 

 

Figure C.1 

Checking Collinearity 

 

 

 

 

 

 

 

 

 

Note. From author’s estimation. 
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Figure C.2 

Checking Variance Inflation Factor (VIF) 

 

 

 

 

 

 

 

 

 

Note. From author’s estimation. 

 

 

  

Ref. code: 25646204040080WKG



202 

 
 

 

Appendix D 

The regression results of the second stage 

 

Figure D.1 

Ordinary Least Squares (OLS) result 

 

 

 

 

 

 

 

 

 

 

 

Note. From author’s compilation. 
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Figure D.2 

Simar and Wilson Bootstrapping regression result 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Note. From author’s compilation. 
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Figure D.3 

Setting the panel data 

 

 

 

 

 

Note. From author’s compilation. 

 

Figure D.4 

Running by the fixed effect model 

 

 

 

 

 

 

 

 

 

 

 

 

Note. From author’s compilation. 
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Figure D.5 

Storing the result of the fixed effect model 

 

 

Note. From author’s compilation. 

 

Figure D.6 

Running and storing the result of the random effect model 

 

 

 

 

 

 

 

 

 

 

 

 

Note. From author’s compilation. 
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Figure D.7 

Employing the Hausman’s test 

 

 

 

 

 

 

 

 

 

 

 

 

Note. From author’s compilation. 

 

 It is worthy to note that if we employ the panel estimations, the p-value of 

the Hausman’s test is higher than 0.05. It can be concluded that the random effect is a 

more appropriate model to test in the second stage than the fixed effect model.  
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