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ABSTRACT 

 

The inventory optimization problems are required an appropriate optimization 

model. In this paper, an (s, S) policy is determined by using a simulation-optimization 

approach for a periodic review inventory system at a pharmacy department of a major 

hospital in Thailand. The simulation, which imitates the inventory system behavior, is 

constructed on a spreadsheet simulation, while the cyclic coordinate method with 

golden section search is adopted as the optimization algorithm. Solutions from the 

search algorithm are evaluated using the simulation, which features randomly generated 

demand and lead time data from empirical distributions of actual data. The objective is 

to minimize total inventory costs, including ordering, holding, and shortage costs. This 

model is applied for ten medicine items, selected as representatives of the entire item 

range in the pharmacy department. According to the simulation results, a minimal cost 

inventory policy for each item is obtained within a short amount of run time. This 

indicates the efficiency and effectiveness of the proposed approach for this type of 

problem.  

 

Keywords: Inventory optimization, Periodic review, Spreadsheet simulation, Stochastic 

demand, Long lead time, Cyclic coordinate method, Golden section search  
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CHAPTER 1 

INTRODUCTION 

 

The inventory optimization problem is an essential problem in the field of 

industrial. In a healthcare system e.g., a pharmacy department in a hospital is a center 

of controlling the drugs transaction system so they are required good management to 

achieve the patient’s demand and the department’s costs minimization. Detail of 

procurement in the medicines ordering could cause the cost in the inventory due to the 

factor of an extra documentary/frequency in ordering, the holding/over-stocking, and 

the patient’s shortages. In this study we used the real data from in hospital in Thailand 

to determine the optimality of reorder point and order-up-to level by optimizing the 

total cost of the inventory, consisting of ordering, holding, and shortage costs from the 

periodic inventory spreadsheet system simulation with a cyclic coordinate method in 

an algorithm of golden section search.   

 

1.1 Problem Statement 

Phra Nang Klao Hospital is located at Nonthaburi, Thailand in the affiliation of 

the Ministry of Health. A pharmacy department is located on the Fourth and fifth floors. 

The fourth floor is where they keep medicines and medical supplements, the production 

department is on the fifth floor. In this research, we’re working on the central drug stock 

room, where they manage the inventory on the fourth floor. The department diagram is 

shown in figure 1.1. From figure 1.1, room 1 is an entrance door into the department. 

The blue boxes in room 1 are refrigerators. Where they keep the vaccine or a specific 

drug, which is needed a low temperature in a range of 2-8 °C. Room 2 on the left is an 

office, the pharmacists and staff are working in this room to control the system and 

document works. Room 3 and room 4. They mainly keep the tablets; it indicates the 

large portion area of the storage room. Which is the most used type of drug. Room 5 is 

for specific case drugs and room 6 is used for keeping narcotics, potion, and external 

drugs. The last room, room 7 is keeping a container or cart for passing an item. 
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Figure 1.1 Pharmacy Department Diagram 

 

The flowchart of the department where they receive the supplement and 

dispense to the other units is shown in figure 1.2. A pharmacy department acquires the 

medicines by purchasing from the supplier, production of the department, donation 

from health facilities, etc. They dispense the medicines to dispensary room in OPD, 

IPD, ER, operation room, etc.;  

Currently, the department uses the (s, S) policy, where a replenishment order is 

placed to bring the inventory position (IP) to the order-up-to level S, when an item’s IP 

falls on or below the reorder point s. Each item at the central drug storage stockroom is 

managed independently regarding how the values of s and S are set. Performance of the 

central stockroom, therefore, relies on how well these values are determined. Unlike 

the random demands from in-patients at medical departments and from outpatients at 

the dispensaries that arrive regularly, demands for an item at the central stockroom are 

much more variable and intermittent. In addition, the incoming lead times of 

replenishment items from the suppliers are relatively long and highly variable due to 
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the suppliers’ delivery schedules. and will order when the stocks are nearly below the 

set point.  

 

 
 

Figure 1.2 Pharmacy Department Flow Chart 

 

1.2 Motivation 

Total cost in a pharmacy is depending on many factors of the current problem. 

Due to the stochastic demand and long lead time could cause an inappropriate reorder 

point quantity order, which is caused by the lacking of an item, which could make an 

effect on the patient’s safety and cost management problem. Both sources of variability 

make the problem very challenging. In this research, we would like to determine the 

order point and order-up-to level for the department by simulating the pharmacy 

department system.  

 

1.3 Objective 

• To Classify the drugs into a group of ABC, VEN, and FMS 

• To determine the appropriate quantity of reorder point and order-up-to level 

point 

• To minimize the total cost of the department 

 

1.4 Thesis outline 

The composition of this thesis is begun with the review of literature in chapter 

2. Where the previous studies were used. Chapter 3 is modeling which is consisting of 

the drug classification and the simulation system. The contents will expand the detail 
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of the calculation in a drug classification and the spreadsheet simulation. Chapter 4 is 

the experiment results and chapter 5 is the conclusion. 
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CHAPTER 2 

REVIEW OF LITERATURE 

 

 In this chapter is a literature review from previous studies in the field of 

inventory management. The literature of this research is consisting of 2 parts. The first 

part is the method of classifying the drugs and the second part is the background of the 

inventory optimization system and model development. 

 

2.1 Classification of drugs 

The hospital inventories are required for stocking the medication material e.g., 

a sanitized equipment. Essentially the medicines are carried out for the patients 

(Maestre, Fernández & Jurado, 2018). Pharmaceutical department really treats the 

medicines into reliability to satisfy patient’s demand (Zepeda, Nyaga & Young,  2016). 

They found one in a portion of three of annually total cost is spent on the supplies 

include the medicine (Khurana, Chhillar & Gautam, 2013). Without planning the 

occasion of supplements and medications material lacking could be occurred and it cost 

the half of the hospital budget to occupying the material (Holm, Rudis & Wilson, 2015). 

An existing department resources are numeric and can be utilized with the analysis, a 

good classification ABC and FMS are required to distinguish the type of the products 

(Devnani, Gupta & R, 2015). The level of emphasis medicines is also important with 

the classification calls VEN analysis, which is to distinguish the level (Nadkarni & 

Ghewari, 2020). 

 

2.2 Model Development 

Managing pharmacy inventory, i.e., medicines and medical supplies, is a major 

challenge for healthcare decision makers (Saha & Ray, 2019a). They are generally 

struggling with a dilemma of having either too much or too little inventory on-hand. 

On the one hand, holding a low inventory level leads to frequent shortages. This 

obviously affects the quality of patient treatment process (Clark, 2012; Saedi, 

Kundakcioglu & Henry, 2016). On the other hand, maintaining a high inventory level 

results in a large amount of capital being tied up (Maestre, Fernández & Jurado, 2018). 

Therefore, healthcare decision makers are constantly in search of an effective method 

Ref. code: 25646222040559RVY



6 

 

 

to manage the inventory such that the responsiveness of their pharmacy department is 

improved, while the total inventory cost is minimized. Such a method is known as 

inventory management policy, which governs the operations of an inventory system 

through a series of parameters that determine the timing and/or the order quantity for 

an item replenishment order, as well as how often to review the level of inventory. In 

other words, searching for an effective inventory management method is equivalent to 

searching for the optimal inventory policy’s parameters.  

To determine the optimal parameters of an inventory policy, analytical approach 

is often referred by many operations researchers. For instance, it is adopted in the 

studies of (Çakıcı, Groenevelt & Seidmann, 2011; Vila-Parrish, Ivy, King & Abel, 

2012; Hani, Basri & Winarso, 2013; Haijema, 2014; Hovav & Tsadikovich, 2015; 

Uthayakumar & Karuppasamy, 2017; Chang, Lu & Shi, 2019; Saha & Ray, 2019b). 

The approach allows these authors to model pharmacy inventory problems as 

mathematical models, from which closed-form expressions for the optimal policy 

parameters are obtained. Although these expressions provide explicit and rigid 

instructions on how to effectively operate an inventory system, they are usually 

complicated and difficult to develop and apply in practice (Tiwari & Gavirneni, 2007). 

In addition to the development and implementation complexity, analytical approach 

suffers another issue associated with the use of standard distributions to model the 

demand of a pharmaceutical product. Indeed, the majority of analytical models often 

assume that the demand follows either Normal or Poisson distribution. Moreover, these 

distributions are also used to approximate lead-time demand or demand during 

protection interval (Silver, Pyke & Thomas, 2016). Unfortunately, this assumption and 

approximation of pharmaceutical demand do not always hold at several pharmacy 

departments (Zhang, Xeiser, Liu, Bonner & Lin, 2014), especially the one considered 

in this study. In fact, the demand for many types of medicines and medical supplies in 

our case are highly fluctuating and intermittent. As a result, analytical approach is not 

suitable for problems, where complexities are coupled with uncertainties. To deal with 

this difficulty, many operations researchers and practioners resort to another approach, 

widely known as simulation-optimization. 

In this approach, a simulation model is developed to imitate the behaviors of an 

inventory system. By using the model, the effectiveness of an inventory policy in terms 
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of the total cost can be evaluated. However, since the ranges of policy parameters are 

relatively large, it would be time consuming to evaluate all possible combinations of 

their values. Therefore, a local search algorithm is integrated into the simulation model 

such that combinations can be evaluated selectively and the knowledge gained from 

solution evaluations can efficiently guide the search process. This integration 

significantly reduces the amount of time an algorithm takes to find an optimal or near-

optimal policy parameters. Several local search algorithms are proposed in the studies 

of (Zheng & Federgruen, 1991; FU & HEALY, 1997; Kleijnen & Wan, 2007). 

Generally, the choice of the search algorithm depends on the demand distribution. For 

instance, Kleijnen & Wan’s (2007) algorithms are suitable for continuous distributions, 

while those from Zheng & Federgruen (1991) and FU & HEALY (1997) are favorable 

for discrete distributions. Because of its capability, simulation-optimization approach 

has been adopted in several studies, including that of (Shang, Tadikamalla, Kirsch & 

Brown, 2008; Pukcarnon, Chaovalitwongse & Phumchusri, 2014; Rosales, Magazine 

& Rao, 2014; Zhang, Xeiser, Liu, Bonner & Lin, 2014). Shang, Tadikamalla, Kirsch & 

Brown, (2008) constructs a spreadsheet model to determine the appropriate level of 

safety stock for a given a service level. The study involves the inventory system of 

GlaxoSmithKline, where the inventory is governed by a periodic review order-up-to 

(𝑇, 𝑆) policy. Both demand and lead time are assumed to be normally distributed. 

Instead of using a well-known policy, Pukcarnon, Chaovalitwongse & Phumchusri, 

(2014) adopt a can-order policy, which is a variation of (𝑠, 𝑆 − 1, 𝑆) policy, for a system 

of one warehouse and N retailers. The customer demand of each retailer is modelled as 

Poisson process. The replenishment lead time is assumed to be negligible. Similarly, 

Rosales, Magazine & Rao, (2014) develops a hybrid inventory policy, a mix of min-

max (𝑠, 𝑆) and continous review (𝑄, 𝑅), for a large hospital in the Midwest of U.S. In 

this model, it is assumed that the demand follows a Poisson process, and the lead time 

is deterministic. Rather than employing standard distributions similar to (Shang, 

Tadikamalla, Kirsch & Brown, 2008; Pukcarnon, Chaovalitwongse & Phumchusri, 

2014; Rosales, Magazine & Rao, 2014; Zhang, Xeiser, Liu, Bonner & Lin, 2014) 

models the demand as a multimodal empirical distribution. Based on the distribution, 

the authors implement a spreadsheet model at Kroger’s pharmacy department, in which 
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inventory is managed by using a (𝑠, 𝑆) policy. The policy parameters are determined 

by adapting a technique proposed by (FU & HEALY, 1997). 

Even though simulation-optimization research in pharmacy inventory 

management has been advanced dramatically in recent years, no study takes lead time 

uncertainty into consideration except that of (Shang, Tadikamalla, Kirsch & Brown, 

2008). The negligence of variable lead time undermines the effectiveness of the optimal 

inventory policy because any delay in a shipment may lead to unexpected shortages. 

Eventhough stochastic lead time is considered in the study of (Shang, Tadikamalla, 

Kirsch & Brown, 2008), the authors assume a normally distributed lead time, which is 

rarely true in practice. In fact, an eligible distribution for lead time should be non-

negative and discrete (Tai, Huyen & Buddhakulsomsiri, 2021). To address the gap in 

the current literature, uncertain lead time is considered in this study. Specifically, both 

lead time and demand in our study are assumed to be discrete and empirically 

distributed. 
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CHAPTER 3 

DRUG CLASSIFICATION AND SYSTEM SIMULATION 

 

 In this chapter is the main research detail where we demonstrated the system. 

We divided the section into two parts. The first part is drug classification, the 3 

classifications method will be shown in analyzing; ABC, VEN, and FMS. Secord part 

will be the system simulation, the expansion of spreadsheet simulation, and algorithm 

of Cyclic Coordinate Method with Golden Section Search.  

The data we used to operate in this research is from the fiscal year of 2019. 

Started from October 2018 to September 2019. During that time a pharmacy department 

carried 1,392 items of medicines and medical supplies. They are consisting of pills, 

powder, injections, mixture/solution, cream/ointment, inhaler large volume parenteral, 

etc. As we mentioned above the data, we received from the department. They were 

demand, lead time, unit price, selling price, policy procurement, and the cost 

components. The factor components are being applied to the simulation system to 

determine the research’s objectives.    

 

3.1 Drug Classification 

The classification is appropriate for the inventory work. To distinguish a level, 

class, type, etc., good classing leads the system to work easier with utilizing the space 

and sequence of the products. In this part, we present the 3 methods of classification. 

Which is using the different factors to analyze.  

 

3.1.1 ABC Classification 

An ABC classification is used to classify the annual expenditure of products in 

each item to organize the items into 3 groups of A, B, and C. Where portion A is in a 

range of 10-15% of all inventory items and clarifies to 70-75% of total annual 

expenditure value. B is 20%-25% of all inventory items and clarifies to 15-20% of total 

annual expenditure. C is 55-60% of all inventory items and clarifies to 5-10% of total 

expenditure value. To classify the item into a group we use the total expenditure value 

cumulative and express them into a percentage. 
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Table 3.1 ABC Analysis 

Item No. 
Annual Expenditure 

(THB) 

Cumulative Annual 

Expenditure (THB) 

Cumulative 

Percentage 

Usage 

Class 

1 9,131,280.00 9,131,280.00 1.65 A 

2 6,891,870.00 16,023,150.00 2.90 A 

. . . . . 

217 691,560.00 412,994,770.08 74.82 A 

218 690,145.28 413,684,915.36 74.95 A 

. . . . . 

. . . . . 

219 682,565.84 414,367,481.20 75.07 B 

220 671,478.50 415,038,959.70 75.19 B 

. . . . . 

588 120,054.00 524,259,204.24 94.98 B 

589 120,000.00 524,379,204.24 95.00 B 

. . . . . 

. . . . . 

590 119,700.00 524,498,904.24 95.02 C 

591 119,500.00 524,618,404.24 95.04 C 

. . . . . 

1391 0 551,982,720.15 100.00 C 

1392 0 551,982,858.21 100.00 C 

 

From the table 3.1, column of annual expenditure shown the expenditure in 

fiscal year of 2019 in each item and next column, cumulative annual expenditure 

column is calculated by the cumulative of annual expenditure in each item straightly to 

the last item. Where we can split the item into the class by the cumulative percentage 

usage. This column calculates by cumulative annual expenditure in each item divided 

by total annual expenditure. For example, the percentage of the item No.1 is 

9,131,280.00

551,982,858.21 
 = 1.65%. The next one, item No.2. the cumulative annual expenditure of 
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this one is 9,131,280.00 + 6,891,870.00 = 16,023,150.00 The cumulative percentage 

usage 
16,023,150.00

551,982,858.21 
 = 2.9%. We divided an A class to be 75%, B class to be 20%, and 

C class to be 5% of the total annual expenditure.  

 

Table 3.2 Summary of ABC Classification  

Class Number of Item % Of Total Item % Of Value 

A 218 15.66 74.95 

B 371 26.65 20.05 

C 803 57.69 5 

Total 1,392 100 100 

 

In a total of 1,392 items. The ABC classification are consisting of, A contents 

218 items in 15.66% in total, B contents 371 items in 26.65% in total, and C contents 

803 items in 57.69% in total. 

 

3.1.2 VEN Classification 

VEN analysis is being used to emphasize the level of each medicine based on 

the data of the pharmacy department. V is Vital medicine; is a medicine with a high 

potential for saving a life. Normally used in a fatal specific case. E is an essential 

medicine; an essential medicine is an important medicine in less severe diseases. This 

essential drug is not at a level of vital e.g., antibiotic, medicine for a system of heart 

and blood vessel. N is non-essential me; a non-essential medicine is used for a non-

serious case. For VEN classification, we use the data from the pharmacy depart to 

classify them shown in table 3.3.  

 

Table 3.3 Summary of VEN Classification  

Class Number of Item % Of Total Item % Of Value 

V 220 15.8 13 

E 1,123 80.68 84.86 

N 49 3.52 2.14 

Total 1,392 100 100 
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From the table 3.3 The numerous classes are essential drugs, which are 

contenting 1,123 items in a percentage of 80.98% with an 84.86% in total annual 

expenditure. For vital drug is 220 items in a percentage of 80.68% with a 13% in total 

of annual expenditure. Last group, the non-essential drug is 49 items in a percentage of 

3.52% with a 2.14% in total annual expenditure 

 

3.1.3 FMS Classification 

F, M, and S stand for fast-, medium- and slow-moving. This classification is 

being applied to determine the frequency of usage. The analysis of FMS can help to 

reach a problem in inventory management. Where we can identify the movement of the 

products in an inventory and easy to plan the layout, where we can place a suitable item 

in positioning, seeing the moving or deadstock of item. E.g., an item with a fast-moving 

should be in a front of the entrance because it is easy to transfer/transport from place to 

place, a slow-moving we can identify the lifetime of the product from the frequency of 

usage with demand and we can also operate an available area for the other item to 

replace.   

 

Table 3.4 FMS Analysis 

Item 

No. 

Annual 

Dispensed 

(units) 

Consumption 

Rate 

(units/day) 

Percentage 

Consumption 

Rate  

Cumulative 

Percentage 

Consumption 

Rate  

Class 

1 270,429 740.90 9.67% 9.67% F 

2 75,280 206.25 2.69% 12.36% F 

. . . . .  

217 5,210 14.27 0.19% 70.64% F 

218 5,105 13.99 0.18% 70.82% F 

. . . . .  

. . . . .  

219 4,950 13.56 0.18% 71.00% M 

220 4,934 13.52 0.18% 71.17% M 
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. . . . .  

313 1,410 3.86 0.05% 89.91% M 

314 1,403 3.84 0.05% 89.96% M 

. . . . .  

. . . . .  

315 1,399 3.83 0.05% 90.01% S 

316 1,397 3.83 0.05% 90.06% S 

. . . . . . 

1391 0 0 0.00% 100.00% S 

1392 0 0 0.00% 100.00% S 

 

 From table 3.4, the consumption rate is used to identify the group of levels for 

an item movement. Column annual dispensed is the total number of each item that is 

dispensed out of the department. In column consumption rate is calculated by annual 

dispensed divined by the number of a year (365 days), so it is shown as a consumption 

rate a units/day. The summation of the consumption rate is the sum of item 1 to item 

1392, which is 7,661.92. The percentage of consumption rate is calculated by the 

consumption rate in each item number divined by the summation of the consumption 

rate column. E.g., Item 1; 
740.90

7,661.92
 = 1.65%.  We sorted a cumulative percentage 

consumption rate as a class. For fast-moving to be a 70% from a consumption rate, M 

20%, and S 10%.       

 

Table 3.5 Summary of FMS Classification  

Class Number of Item % Of Total Item % Of Value 

F 113  8.12  28.45 

M 201  14.44  39.45 

S 1078 77.44 32.11 

Total 1,392 100 100 
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A number of fast-moving classify to 113 items in an 8.12% in a total. Medium-

moving is 201 items in 14.44% of a total and slow-moving 1078 items in 77.44% of a 

total. The account value in FMS classification, is 28.45%, 39.45%, and 32.11%.  

 

3.2 Model Development  

 In this section, we determined the system of the pharmacy inventory system. 

The department keeps their medicines in grouping them. The working area is needed to 

control the temperature for 24/7. The important thing is their policy in procurement. 

The policy and the procurement of the department that used in a fiscal year of 62 told 

us. In each period of review, a few days in a week. Pharmacists and staff will check the 

stock in the department. They set the reorder point as a safety stock by use the history 

of usage ratio in a previous month as 1-month usage, means they will have enough 

stock to dispense in 1 month. E.g., Item A, assuming usage rate in 1 month is 20 

units/day and the stock they have left is 10, 1 month for 30days. The reorder point/safety 

stock will be 20 units/day ×  30 𝑑𝑎𝑦𝑠 = 600 units/month. It means when the stock 

reach or nearly to 600 units. Department will order the quantity as the usage rate in 1 

month’s multiply by 2.5, then minus by the stock. It will be the (600𝑥2.5) − 10 =

 1,490 𝑢𝑛𝑖𝑡𝑠, so we determine the policy in the department as a periodic review 

inventory system (𝑠, 𝑆). They normally receiving the medicines in a Tuesday, 

Wednesday and Thursday. For dispensing depending on the type of items. For tablets 

and pills, routinely on Friday, and the other items will be on Friday. If there are 

emergency cases that occurred except in these two days. The medicines dispensing will 

be allowed.   

 

Table 3.6 Pharmacy Department Dispensing Routine 

Day Receive Dispense Medicine 

Monday - ✓ Others 

Tuesday ✓ - - 

Wednesday ✓ - - 

Thursday ✓ - - 

Friday - ✓ Pills and Tablets 
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 The spreadsheet simulation was built to mimic the pharmacy department 

inventory system. When we determine two decision variables; reorder point (𝑠), order-

up-to level (𝑆). The periodic inventory system (𝑠, 𝑆), is an inventory systematic which 

is review a stock in a period of time to see the stock reach the reorder level (s) and order 

the quantity of level to S-stock.  

 

 
 

Figure 3.1 (s, S) Simulation System 

 

3.2.1 Spreadsheet Simulation 

In the spreadsheet simulation, the system checks the levels of the beginning 

inventory on-hand ohi and position ipi. In each period i (i.e., day), the system places an 

order under two conditions: if the inventory position is on or below the reorder point 𝑠 

and there is no outstanding order, i.e., overlapping of replenishment orders is not 

allowed in the system. An ordering cost Cp is incurred every time an order is placed. A 

shortage cost Cs representing an expedite delivery cost to a patient is charged for every 

up to 𝑊 units of shortage. For example, suppose Cs = 35 THB and W = 20. If there are 

shortage of 𝑠𝑖 = 50 units on day 𝑖. Then, the shortage cost of 𝐶𝑠 × ⌈
𝑠𝑖

𝑊
⌉ = 35 × ⌈

50

20
⌉ =

105 THB is incurred since this amount of shortage incurs three expedite shipment to 

three different patients. After a random lead time of 𝑙, the replenishment order would 

arrive. The arriving inventory will be used to satisfy the cumulative shortage first, and 

the remaining inventory becomes inventory on-hands to satisfy the day’s demand. At 
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the end of the day, a holding cost 𝐶ℎ is applied to every unit of inventory on-hands 

𝑒𝑜ℎ𝑖.  

Before running the simulation, historical daily demand data and historical daily 

lead time data are needed to generate into the empirical distributions as empirical 

distribution of daily demand 𝑓(𝑑) and empirical distribution of lead time 𝑓(𝑙) from the 

probability distribution of them in each item. To perform a simulation run with a 

replication length of 𝑁 days, demand and lead time data of this length are generated 

from 𝑓(𝑑) and 𝑓(𝑙) in a flow chart in figure 3.2.  

 

 

 

 

 

 

 

 

 

 

Figure 3.2 Empirical Daily Demand and Lead time Distributions 

 

The spreadsheet simulation is constructed using VBA (Visual Basic for 

Applications) in Microsoft Excel. Logic flow of the spreadsheet simulation is as shown 

in Figure 3.3. 

 

 
 

Figure 3.3 Spreadsheet simulation logic flow 
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Figure 3.4 Spreadsheet Simulation Interface in Sheet “SM” 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.5 Empirical Demand Data in Sheet “Demand” 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.6 Empirical Demand Data in Sheet “LT” 

 

In figure 3.4 the spreadsheet started from column A to S from row 1 to 30,002. 

This means a given day on this simulation is run in 30,000 days. The simulation is 

computed by 2 inputs of column F “Demand” and L “LT (Lead Time)” which is 

imported from the other sheet “Demand” and “LT” sheets in figure 3.5 and 3.6. The 

simulation in sheet “SM” starts from column A, “Day” represents the day running 

through the simulation. Column B, “Beginning OH” is Beginning on-hand. Where the 

number of products has left in current day. Also, in column C, “Beginning Inventory 
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Position” The number of products has left in the IP current d”. ay. In ordering column 

D, “Order” and column L, “Overlap Order. Two of the columns are related. An overlap 

order column is built for checking the overlapping order by putting the if condition. 

The system will not order when the overlapping is equal to 1. Otherwise, it equals 0 it 

will check the Ending IP if it is less than or equal to the setting value of s (as it sets in 

cell Q2). The system will order the amount equal to the setting value of S (as it sets in 

cell Q3) minus with Ending IP. Column E, “Order Arrived” depends on order and lead 

time day counting. Column G, “Satisfied Demand” is the demand that the system can 

be satisfied using the minimum value of Demand or Beginning OH. Next to is shortage 

calculation in column H by using the minimum of 0 or Demand minus by Beginning 

OH. Followed by column I, “Cumulative Shortage” will find the value of cumulative 

shortage by using the maximum of 0 or cumulative shortage in the day before minus 

the order arrived in the current day and at the end of maximum value, it will add 

shortage in current day. Move to the “Ending OH” in column J is how many products 

the system has left in the current day. Calculated by using the maximum value of 0 or 

Beginning OH minus Satisfied Demand minus Cumulative Shortage. The final column 

of system column K, “Ending IP” is checking the point of inventory position at the end 

of the day by using the value of Beginning IP minus Satisfied Demand minus Shortage.  

In this simulation. There are 2 decision variables. s and S in cell Q2 and Q3. 

The cost of the simulation depends on these 2 variables and it will be searching in the 

setting boundary and observing total inventory cost. The value of s and S will be 

selected which is the optimal value that gives the lowest total cost. The total cost in cell 

Q14 is consists of ordering cost, holding cost, and shortage cost. Ordering cost 

calculated by the number of orders in cell Q10 multiple with ordering cost per time in 

cell Q6. Holding cost calculated by the average of Beginning OH in cell O11 multiple 

with holding cost / day and shortage cost calculate by number of shortages occurred in 

cell multiple with the shortage.  

To be more understanding in a mathematic equations form. All of the conditions 

mentioned above is demonstrated on the equal of (3.1-3.16). On a given day, the system 

first updates the arriving order quantity, the beginning on-hand, and the beginning 

inventory position using Eq. (3.1-3.3). 
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𝐴𝑄𝑖 = {
 𝑄𝑖−𝑙     If 𝑄𝑖−𝑙 > 0 

0 otherwise
       (3.1) 

 

𝑜ℎ𝑖 = 𝑀𝑎𝑥{0, 𝑒𝑜ℎ𝑖−1 + 𝑄𝐴𝑖  −  𝑐𝑠𝑖−1}       (3.2) 

 

𝑖𝑝𝑖 =  𝑄𝑖  +  𝑒𝑖𝑝𝑖−1          (3.3) 

 

An order of  𝑄𝑖 is then placed according to Eq. (3.4), where the conditions in 

which the system will place an order are, (1) if 𝑒𝑖𝑝𝑖−1 ≤ 𝑠, and (2) there is no 

outstanding order, 𝛽𝑖 = 0. The binary variable 𝛽𝑖 that keeps track of whether or not 

there is an outstanding order is updated using Eq. (3.5). Simply, Eq. (3.5) specifies that 

there is an outstanding order if there is an order of  𝑄𝑖 placed on that day, or if there is 

an outstanding order from the previous day that has not yet arrived. 

 

𝑄𝑖 = {
 𝑆 − 𝑒𝑖𝑝𝑖−1     If 𝑒𝑖𝑝𝑖−1 ≤ 𝑠  and 𝛽𝑖−1 = 0 

0 If  𝛽𝑖−1 = 1
    (3.4) 

 

𝛽𝑖 = {
 1     If 𝑄𝑖 > 0  or ((𝛽𝑖−1 = 1) and (𝐴𝑄𝑖 = 0)) 
0 otherwise

   (3.5) 

 

Then, the demand that can be satisfied, shortage, and cumulative shortage are 

computed using Eq. (3.6-3.8).  

𝑑𝑠𝑖  = 𝑀𝑖𝑛{𝑑𝑖 , 𝑜ℎ𝑖}        (3.6) 

 

𝑠𝑖 = 𝑀𝑎𝑥{0, 𝑑𝑖 − 𝑜ℎ𝑖}       (3.7) 

 

𝑐𝑠𝑖 = 𝑀𝑎𝑥{0, 𝑐𝑠𝑖−1 − 𝐴𝑄𝑖} + 𝑠𝑖        (3.8) 

 

To satisfy the cumulative shortage, first, a binary variable 𝛼𝑖 will keep track of 

the order arrival on day i, in Eq. (3.9).  

 

𝛼𝑖 = {
 1     If 𝐴𝑄𝑖  >  0 
0     If  𝐴𝑄𝑖 =  0

       (3.9) 
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Then, according to Eq. (3.10), the cumulative shortage can be satisfied only on 

the day that there is an order arrival, i.e., 𝛼𝑖 = 1. A shortage cost Cs representing 

expedite delivery cost to patient is charged for every multiple of 𝑊 units of shortage. 

That is, the shortage cost is conditional on the capacity of delivery package and the 

amount of shortage that can be satisfied.  

 

𝑠𝑠𝑖 = {
 ⌈

𝑀𝑖𝑛(𝐴𝑄𝑖,𝑐𝑠𝑖−1)

𝑊
⌉     𝐼𝑓 𝛼𝑖  =  1 

0     otherwise
     (3.10) 

 

At the end of the day, the ending inventory on-hand and inventory position are 

updated according to Eq (3.11-3.12), 

  

𝑒𝑜ℎ𝑖  = 𝑀𝑎𝑥{0, 𝑜ℎ𝑖  −  𝑑𝑠𝑖 −  𝑐𝑠𝑖}        (3.11) 

 

𝑒𝑖𝑝𝑖  = 𝑖𝑝𝑖 − 𝑑𝑖        (3.12) 

 

Finally, the system measures of performance and the total cost, which consists 

of ordering, holding and shortage costs, are computed at the end of the simulation run 

according to Eq. (3.13-3.16).  

  

𝐸𝑝 = ∑ ⌊𝑄𝑖 𝑆⁄ ⌋𝑁
𝑖=1         (3.13) 

 

𝐸ℎ =
(∑ 𝑜ℎ𝑖

𝑁
𝑖=1 )

N
         (3.14) 

𝐸𝑠 =  
∑ 𝑠𝑠𝑖

𝑁
𝑖=1

𝑁
         (3.15) 

 

TC = 𝐶𝑝𝐸𝑝 +  𝑁𝐶ℎ𝐸ℎ +  𝐶𝑠𝐸𝑠       (3.16) 

 

3.2.2 Cyclic Coordinate Method with Golden Section Search 

Cyclic coordinate method is applied to find the solution of (𝑠, 𝑆). The method 

alternately searches for an optimal (or near-optimal) solution in each coordinate of the 
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solution space (i.e., each variable). For this inventory policy, the solution space has two 

dimensions, i.e., s and S. The method begins the search by fixing S, and search for the 

solution of s that minimizes the total cost. The initial value of 𝑆 is set to be the maximum 

possible value, that is, the maximum value of daily demand multiplied with the 

maximum value of lead time, and the initial value of s is set to be 1. After finding the 

solution of s, the method turns to search for the new solution of S, while fixing the s at 

the newly found solution. The search keeps alternating until the solution converges.  

In each dimension, the golden section search is applied the find the solutions 

that is associated with the minimal value of the total cost function. Note that the total 

cost of a given solution of (𝑠, 𝑆) is evaluated using the spreadsheet simulation. The GSS 

starts by initializing a lower bound (𝐿), an upper bound (𝑈),  and a threshold for 

stopping criterion,  = 1. The cyclic coordinate method, which features the GSS, is 

coded in VBA and proceeds as follows. 

 

Initialization:  

Set the initial value of the order-up-to level 𝑆0 = 𝑑𝑚𝑎𝑥  ×  𝑙𝑚𝑎𝑥, where 𝑑𝑚𝑎𝑥 is the 

maximum daily demand for the item, and 𝑙𝑚𝑎𝑥 is the maximum lead time, and set the 

initial reorder point 𝑠0 = 1. 

Set the golden ratio 𝜑 =
√5−1

2
= 0.618. 

 

Step 1: Finding the value of 𝑠, while fixing 𝑆 = 𝑆0. 

Step 1.1: Set k = 1, where k is the iteration number of the GSS.  

Step 1.2: Set the search boundary of 𝑠 in the range of {𝐿𝑘 , 𝑈𝑘} = {max[1, (0.9 ×

𝑠0)] , 𝑆0 − 1}. 

Step 1.3: Compute 𝐷𝑘, 𝑋𝐿 and 𝑋𝑈 using Eq. (3.17-3.19), where ≈ denote rounding to 

the nearest integer. 

 

𝐷𝑘  ≈  (𝑈𝑘 − 𝐿𝑘) 𝜑        (3.17) 

𝑋𝑈 = 𝐿𝑘  +  𝐷         (3.18) 

𝑋𝐿 = 𝑈𝑘  −  𝐷          (3.19) 
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Step 1.4: Evaluate two solutions (𝑋𝐿 , 𝑆0) and (𝑋𝑈 , 𝑆0) using the spreadsheet simulation 

to find their total costs, 𝑇𝐶(𝑋𝐿) and 𝑇𝐶(𝑋𝑈). 

Step 1.5: Update the search boundary for the next iteration using Eq. (3.20-3.21). 

 

𝐿𝑘+1 = {
  𝑋𝐿 If 𝑇𝐶(𝑋𝐿) > 𝑇𝐶(𝑋𝑈)
𝐿𝑘 If 𝑇𝐶(𝑋𝐿) < 𝑇𝐶(𝑋𝑈)

      (3.20) 

𝑈𝑘+1 = {
 𝑈𝑘 If 𝑇𝐶(𝑋𝐿) > 𝑇𝐶(𝑋𝑈)
  𝑋𝑈 If 𝑇𝐶(𝑋𝐿) < 𝑇𝐶(𝑋𝑈)

      (3.21) 

 

Step 1.6: Set k = k + 1. Repeat steps 1.3 to 1.5 until value of the 𝐷𝑘 ≤ 1.  

Step 1.7: Set 𝑠∗ = {
  𝑋𝑈 If 𝑇𝐶(𝑋𝐿) > 𝑇𝐶(𝑋𝑈)
𝑋𝐿 If 𝑇𝐶(𝑋𝐿) < 𝑇𝐶(𝑋𝑈)

. 

 

Step 2: If 𝑠∗ ≠ 𝑠0, then continue to Step 3 and set 𝑠0 = 𝑠∗. Otherwise, the cyclic 

coordinate method stops, and the final solution is (𝑠0, 𝑆0). 

 

Step 3: Finding the value of 𝑆, while fixing 𝑠 = 𝑠0. 

Step 3.1: Set k = 1, where k is the iteration number of the GSS.  

Step 3.2: Set the search boundary of 𝑆 in the range of {𝐿𝑘 , 𝑈𝑘} = {𝑠0 + 1 , 1.1 × 𝑆0}. 

Step 3.3: Compute 𝐷𝑘, 𝑋𝐿 and 𝑋𝑈 using Eq. (3.17-3.19). 

Step 3.4: Evaluate two solutions (𝑠0 , 𝑋𝐿) and (𝑠0 , 𝑋𝑈) using the spreadsheet simulation 

to find their total costs, 𝑇𝐶(𝑋𝐿) and 𝑇𝐶(𝑋𝑈). 

Step 3.5: Update the search boundary for the next iteration using Eq. (20-21). 

Step 3.6: Set k = k + 1. Repeat steps 2.3 to 2.5 until value of the 𝐷𝑘 ≤ 1.  

Step 3.7: Set 𝑆∗ = {
  𝑋𝑈 If 𝑇𝐶(𝑋𝐿) > 𝑇𝐶(𝑋𝑈)
𝑋𝐿 If 𝑇𝐶(𝑋𝐿) < 𝑇𝐶(𝑋𝑈)

. 

 

Step 4: If 𝑆∗ ≠ 𝑆0, then go back to Step 3, and set 𝑆0 = 𝑆∗. Otherwise, the cyclic 

coordinate method stops, and the final solution is (𝑠0, 𝑆0). 

 

In the initialization step, the initial values of find the solution of (𝑠0, 𝑆0) = (1, 

𝑑𝑚𝑎𝑥 × 𝑙𝑚𝑎𝑥) is set. In Step 1, the value of 𝑆 = 𝑆0 is fixed, and the golden section 

search is performed to find the value of 𝑠∗ that results in the minimal total cost solution 
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of the (𝑠∗, 𝑆0). Two important points should be made, (1) the minimal total cost solution 

here is based on evaluating the solution for 𝑛 replications using the spreadsheet 

simulation, each of which has a simulation length of 𝑁 days, and (2) each solution is 

evaluated using exactly the same replications of demand and lead time data.  

In Step 2 of the cyclic coordinate method, if it appears that the value of 𝑠∗ is 

different from its initial value 𝑠0, then the final solution has not been found. The value 

of 𝑠0 is updated to be 𝑠∗, and the cyclic coordinate method turns to search in 𝑆 

dimension. In Step 3, while fixing 𝑠 = 𝑠0, the golden section search is performed to 

find the value of 𝑆∗ that results in the minimal total cost of the (𝑠0, 𝑆∗) solution. Then, 

Step 4 checks whether a new 𝑆∗ is different from the previous initial value 𝑆0. If 𝑆∗ is 

a new solution, then set 𝑆0 = 𝑆∗, and the cyclic coordinate method turns to search in 𝑠 

direction. The search repeats in cycle until the final solution is found, i.e., no change in 

the solution. 

Notice that the initial boundary of the golden section search, i.e., Step 1.2 and 

Step 3.2. The boundary is adjusted by a factor of 10%. That is, in Step 1.2, the lower 

bound is set to be 90% of 𝑠0 and in Step 3.2, the upper bound is set to be 110% of 𝑆0. 

This adjustment widens the search boundary to ensure that the minimal cost solution is 

found. 
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CHAPTER 4 

RESULTS 

 

4.1 Drug Classification 

The pharmacy department at the case study hospital carries a total of 1,392 items 

of medicines and medical supplies. These items are classified using three classification 

schemes: (1) VEN (vital, essential, non-essential) classification, which is performed by 

the pharmacists, (2) ABC classification according to annual items total cost, i.e., units 

of satisfied demand multiplied with unit cost, which vary during the course of the year, 

and (3) FMS (fast-, medium-, and slow-moving) classification using the item 

movements for items. Table 4.1 summarizes the number of items in combination of 

VEN and ABC classifications. 

 

Table 4.1 Item classification using VEN and ABC 

Classification V E N Total 

A 29 86 3 218 

B 65 302 4 371 

C 126 635 2 803 

Total 220 1,123 49 1,392 

 

4.2 Item Selection for the Computational Experiment 

Ten items are selected as representatives to demonstrate the proposed 

simulation-optimization approach. Table 4.2 contains key summary statistics of each 

item, including item type, the three cost parameters, package size, percentage of days 

with zero demand that indicate the level of intermittency of the item, average and 

standard deviation of daily demand, coefficient of variation (c.v.), which is the ratio of 

standard deviation to the average, minimal (excluding zero) and maximal daily demand, 

maximum lead time, and the item classes. In addition, items’ annual demand, c.v., and 

total values (used as bubble’s size) are plotted in Figure 4.1 to illustrate that the 10 

selected items are representatives that well cover the range of all items. 
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Table 4.2 Summary statistics of 10 representative items 

Item characteristics Item 1 Item 2 Item 3 Item 4 Item 5 

Type Tablet Vial Tablet Vial Tablet 

𝐶𝑝 (THB/order) 5 5 5 5 5 

𝐶ℎ (THB/day) 0.4077 0.2723 0.1116 0.0384 0.06712 

𝐶𝑠 (THB/package) 40 40 40 40 40 

𝑊 (Package size, unit) 10 5 10 4 12 

% Of zero demand 86% 86% 88% 86% 87% 

μd 30.13 25.29 11.81 18.29 6.43 

σd 75.72 80.15 34.39 49.53 16.13 

cv 2.51 3.17 2.91 2.71 2.51 

dmax 363 400 270 400 120 

dmin 2 20 2 20 2 

lmax 8 9 10 9 12 

VEN/ABC/FMS E/A/F V/C/S E/A/F V/A/M E/B/M 

 

Item characteristics Item 6 Item 7 Item 8 Item 9 Item 10 

Type Capsule Cream Tablet Ampoule Vial 

𝐶𝑝 (THB/order) 5 5 5 5 5 

𝐶ℎ (THB/day) 0.0144 0.0479 0.0345 0.0863 0.0575 

𝐶𝑠 (THB/package) 40 40 40 40 40 

𝑊 (Package size, unit) 8 6 12 5 2 

% Of zero demand 80% 91% 89% 88% 93% 

μd 16.17 2.73 3.78 1.49 1.45 

σd 38.66 10.78 10.49 4.35 6.71 

cv 2.39 3.94 2.77 2.93 4.62 

dmax 330 52 70 30 70 

dmin 2 1 2 1 2 

lmax 10 13 12 12 11 

VEN/ABC/FMS E/B/S E/B/S E/B/S V/C/S E/C/S 
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Figure 4.1 Item coefficient of variation vs. average annual demand 

 

From the summary statistics, even for the fast-moving items their levels of 

intermittency are very high. Also, the c.v., which reflects the levels of uncertainty in 

the daily demand data, are very high. This is the nature of this system with a small 

number of customers, i.e., dispensaries and medical departments in the hospital. The 

replenishment lead times from the suppliers are relatively long, i.e., 1-2 weeks. With 

the system characteristics that have such high variability, simulation is, therefore, an 

appropriate tool to capture the behavior of the system, especially, for the purpose of 

evaluating inventory policy parameters. 

 

4.3 Computational Experiment Setting 

In the computational experiment, first the demand data and lead time data of 

each item are fitted with empirical distributions. The distributions are then used to 

randomly generate the demand and lead time data for the simulation. During the golden 

section search in the cyclic coordinate method, each solution is evaluated to estimate 

the total cost using 20 replications. Each replication length is set to 30,000 days. The 

number of replications is set using a sample size calculation such that the half-width of 

the key measure of performance, i.e., total cost is within 5% of the average value with 

a confidence level of 95%. In addition, the replication length (𝑁 = 30,000) is selected 
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to make sure that the system will reach its steady state and that the estimates of the 

system measures of performance have good precision. For each item, the initial level 

of inventory is set at a relatively high level. The warm-up period is set to be at the point 

when the first replenishment order is placed and the inventory ordering cycle will then 

repeat.  

 

4.4 Numerical Example, Experiment Results and Discussion 

A numerical example of the cyclic coordinate search process is described for 

item 1 (see Table 4.3). The maximal lead time and maximal daily demand gives an 

initial value of 𝑆 = 2,904. In the first step of the cyclic coordinate method, the value 

of 𝑆 = 2,904 is fixed, while the golden section search finds the value of 𝑠∗ = 10 that 

minimizes the total cost from 20 simulation replications. In Step 2, since 𝑠 changes 

from 1 to 10, the cyclic coordinate method continues to Step 3. In Step 3, the search for 

𝑆, while fixing 𝑠 = 10, results in 𝑆∗ = 110. Then, the search continues for two more 

iterations until the final solution (𝑠, 𝑆) = (45, 110) is found. Results of the search 

process from cyclic coordinate method for the other items are summarized in Table 4.4. 

 

Table 4.3 Results of cyclic coordinate method on the simulation model for Item 1 

Step Fixing Golden section search Total cost 

1 𝑆 = 2,904 𝑠∗ = 10 210,508.60 

2 Continue to Step 3 

3 𝑠 = 10 𝑆∗ = 110 31,071.58 

4 Continue to Step 1 

1 𝑆 = 110 𝑠∗ = 45 31,061.66 

2 Continue to Step 3 

3 𝑠 = 45 𝑆∗ = 110 31,061.66 

4 Stop 

 

Table 4.4 Search results for Items 2 to 10 

Item 2  Item 3  Item 4 

𝑠 𝑆 TC/Year  𝑠 𝑆 TC/Year  𝑠 𝑆 TC/Year 
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2 3,600 177,694.61  16 2,700 102,382.73  120 3,600 26,236.00 

2 435 40,871.45  16 80 11,045.77  120 740 10,381.06 

135 435 39,270.50  69 80 10,878.01  360 740 8,004.68 

135 260 37,549.72  69 80 10,878.01  360 508 7,445.96 

210 260 36,898.39      430 508 7,291.86 

210 250 36,887.86      430 510 7,289.54 

210 250 36,887.86      430 510 7,289.54 

           

Item 5  Item 6  Item 7 

𝑠 𝑆 TC/Year  𝑠 𝑆 TC/Year  𝑠 𝑆 TC/Year 

6 1,440 17,202.65  144 3300 8,968.47  9 676 6,137.52 

6 146 3,710.71  144 773 3,472.74  9 109 2,311.75 

86 146 3,199.97  374 773 2,877.17  79 109 1,942.36 

86 130 3,163.04  374 502 2,466.62  79 104 1,922.42 

89 130 3,162.17  363 502 2,463.33  86 104 1,921.01 

89 130 3,162.17  363 502 2,463.33  86 104 1,921.01 

           

Item 8  Item 9  Item 10 

𝑠 𝑆 TC/Year  𝑠 𝑆 TC/Year  𝑠 𝑆 TC/Year 

9 840 5,274.74  8 360 6,031.10  15 770 8,486.09 

9 158 1,720.48  8 48 1,962.28  15 95 2,493.35 

65 158 1,478.96  27 48 1,782.47  55 95 2,177.56 

65 104 1,371.31  27 43 1,772.04  55 74 2,161.19 

73 104 1,369.10  27 43 1,772.04  59 74 2,156.77 

73 110 1,354.02  8 360 6,031.10  59 78 2,137.31 

78 110 1,353.07      62 80 2,128.90 

78 110 1,353.07      62 80 2,126.62 

        64 80 2,126.62 

 

Finally, Table 4.3-4.4 provides the final solutions of all 10 items, the estimated 

annual total cost, breakdowns of the total cost into the three cost components, and then 
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express each component as percentage of the total cost. From the percentages of the 

cost components, it is noticed that the first three items have percentage of shortage cost 

being more dominant than the percentage of inventory holding cost, whereas the 

opposite is true for Items 4-10. Two observations regarding the results are, (1) Items 1 

to 3 contribute higher in terms of their total value, i.e., they have larger bubble sizes 

than the other items (see Figure 4.1), and (2) Item 1 and Item 3, which have significantly 

higher percentage of shortage cost than that of Item 2, are fast-moving item. This 

implies that considerable savings can be gained for fast-moving items with higher 

values by setting the inventory policy parameters (𝑠, 𝑆) lower. This is to reduce the 

holding cost and to rather pays the expedite delivery cost for shortage items, which is 

reasonable because the expedite delivery cost is constant regardless of the item’s value. 

 

Table 4.5 Summary of results 

 

Item Item 1 Item 2 Item 3 Item 4 Item 5 

VEN/ABC/FMS E/A/F V/C/S E/A/F V/A/M E/B/M 

𝑠 (units) 45 210 69 430 89 

𝑆 (units) 110 250 80 510 130 

TC (THB/Year) 31,061.66 36,887.86 15,596.75 7,289.54 3,162.17 

Ordering cost 

(THB/Year) 
200.42 217.25 189.76 167.33 125.39 

Holding cost 

(THB/Year) 
8,195.40 15,326.88 3,394.75 5,616.74 1,986.14 

Shortage cost 

(THB/Year) 
22,665.84 21,343.74 7,293.50 1,505.48 1,050.64 

Ordering cost 

(% of TC) 
0.65% 0.59% 1.74% 2.30% 3.97% 

Holding cost 

(% of TC) 
26.38% 41.55% 31.21% 77.05% 62.81% 

Shortage cost 

(% of TC) 
72.97% 57.86% 67.05% 20.65% 33.23% 
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Item Item 6 Item 7 Item 8 Item 9 Item 10 

VEN/ABC/FMS E/B/S E/B/S E/B/S V/C/S E/C/S 

𝑠 (units) 363 86 78 27 64 

𝑆 (units) 502 104 110 43 80 

TC (THB/Year) 2,463.33 1,921.01 1,353.07 1,772.04 2,126.62 

Ordering Cost 

(THB/Year) 
112.54 72.12 96.41 82.87 58.25 

Holding Cost 

(THB/Year) 
1,900.10 1,529.93 968.14 1,345.58 1,714.68 

Shortage Cost 

(THB/Year) 
450.68 318.96 288.52 343.59 353.69 

Ordering cost 

(% of TC) 
4.57% 3.75% 7.12% 4.68% 2.74% 

Holding cost 

(% of TC) 
77.14% 79.64% 71.55% 75.93% 80.63% 

Shortage cost 

(% of TC) 
18.30% 16.60% 21.32% 19.39% 16.63% 

 

To further demonstrate the effectiveness of our policy parameters, we conduct 

a comparison between the existing policy, which is currently used by the pharmacy 

department at the central stock room, and ours by a simulation. In the current policy, 

the 𝑠 is determined by using three-month moving average of the monthly demand, and 

the 𝑆  is equal to 𝑠 multiplying by a factor of 2.5. For illustration purpose, item 2 is 

arbitrarily chosen and only one replication of the simulation is performed. The 

comparison results are presented in the following table. 
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Table 4.6 Comparison between current and our policies 

 

Policy (𝑠, 𝑆) 

Ordering 

Cost 

(THB/Year) 

Holding 

Cost 

(THB/Year) 

Shortage 

Cost 

(THB/Year) 

TC 

(THB/Year) 

Current (554, 1386) 34.55 89,894.65 1,586.05 91,515.25 

Ours (210, 250) 216.32 15,285.73 21,822.13 37,324.19 

 

Based on Table 4.6, it is observed that the pharmacy department manages to 

keep a large amount of inventory to avoid shortage while our policy results in more 

balance costs between holding and shortage. This leads to a significant savings in total 

annual inventory cost. In addition, since the inventory system is backlogged one, 

customer always receive their drugs through express delivery if these drugs are short. 

Therefore, the large amount of shortage cost resulted from our policy does not affect 

the customer service level. This finding is similar for other items in our experiment.  

The finding above implies that for any inventory system with backlog, one 

needs to evaluate the trade-off between different cost components to arrive at an 

effective inventory management strategy. Specifically, when an item is expensive and 

in high demand, the item’s holding cost is generally high. If the expedite delivery cost 

is relatively lower than the holding cost, it is reasonable to keep a low level of inventory 

for that item. This practice should be applied with care, especially in health industry. 

For instance, the pharmacy department of many hospitals usually use VEN item 

classification and having a low inventory of a high-valued V-class item would be 

undesirable. 

 

 

 

 

 

 

Ref. code: 25646222040559RVY



32 

 

 

CHAPTER 5 

CONCLUSION 

 

In this paper, an inventory optimization of a pharmacy department at a case 

study hospital in Thailand is considered. A simulation-optimization approach is 

proposed to find the minimal cost solution of the (s, S) policy, currently implemented 

by the pharmacy department. The approach consists of two components: (1) the 

simulation component, which is constructed as a spreadsheet model, for solution 

evaluation purposes, and (2) the optimization component, which is based on the cyclic 

coordinate method and the golden section search. Ten items are chosen for the 

computational study. They are carefully selected such that they can represent the entire 

line of items in the pharmacy department. Applying the proposed approach to finding 

the inventory policies for these items offers promising results and fundamental insight 

about managing medicine and medical supply inventories in this case study. If an item 

is fast-moving and high-valued, it is cost-effective to keep a low inventory in exchange 

for an expedited delivery. This is achieved by setting the inventory policy, i.e., s and S, 

at low levels. The trade-off observed in our case study still holds for other healthcare 

inventory systems with similar operational characteristics. 

Furthermore, of the future study, the classification of items is a base of item 

selecting decision and the cost minimization can be implement by more complexity of 

the constraints and more advance technique of simulation algorithm. The difference 

program or coding language could perform more interesting problems and the 

outcomes.  
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APPENDIX A 

SIMULATION INTERFACE EXAMPLE 

 

 

 

 

 

 

 

 

 

 

 

Figure A.1 Finding optimal s* at loop 1 

 

In figure A1 is the example of an item1 where the maximum demand is 363 and 

maximum lead time is 8, so the value of the s is 363 multiplied with 8. It equals to 2904 

in column B1. At the row 3 is shown the first iteration where the 𝐿1 = max[1,0.9(1)] =

1 and 𝑈1 = 2904 − 1 = 2903, when the boundary was set the new boundary for the 

iteration will be calculated as 𝐿𝑘+1 and 𝑈𝑘+1 as X2 and X1 in column C3 and D3. The 

total cost of each value will be calculated and place in the column G3 and H3. The value 

of total cost will be selected from the lowest one of two, the Fx2 is lower than the Fx1 

so in the iteration 1 we rejected the boundary of 𝑈1and continue in the iteration until 

the value of the 𝐷𝑘 ≤ 1. In this figure the iteration 𝑘 is stopped at the 𝑘 = 16. The s* = 

10, where it got the lowest total cost at 17,302,077.02. 
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Figure A.2 Finding optimal S* at loop 2 

 

From the figure A2 is shown as the step 3 of finding the optimal value of 𝑆, 

where the optimal value of s* from the previous calculation is 10. Move forward to the 

𝑆 searching in the range of lower as 𝐿1 = 𝑠0 + 1 = 10 + 1 = 11 and upper as 𝑈1 =

1.1(2904) = 3,194. Repeat the step of the golden section search until the value of 

𝐷𝑘 ≤ 1. It stopped at 𝑘 = 16 where the S* = 110 at the total cost of 2,553,828.90.  
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Figure A.3 Finding optimal s* at loop 3 

 

Back to find the value of the s where it fits the optimal value of the total cost 

with the S* = 110, set the 𝐿1 = max[1,0.9(10)] = 9 and 𝑈1 = 110 − 1 = 109. The 

iteration stops at 𝑘 = 9 where the s* = 45 at the total cost of 2,553,013.17. 
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Figure A.4 Finding optimal S* at loop 4 

 

 At the final loop of the finding the (𝑠, 𝑆) the s* = 45 is set the lower 𝐿1 = 45 +

1 = 46 and upper as 𝑈1 = 1.1(110) = 121. The iteration stops at 𝑘 = 8 where the 

total cost is converted with the previous loop 3 at the S* = 110 and s* = 45 with the total 

cost of 2,553,013.17.  
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