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ABSTRACT 
 

The two-parameter exponential distribution is widely used in applications, 

such as lifetime, survival, medical sciences, and reliability. Since the data related to this 

distribution are continuous outcomes, the characteristic of population in mean is of 

interest. The objective of this thesis is to construct the confidence intervals for the 

population mean of a two- parameter exponential distribution, using the method of 

variance of estimates recovery (MOVER) and Wald-type method. Unbiased estimators 

for the parameters given in this probability model are also applied in interval estimation. 

The new estimated variance formulas for the mean estimator are derived in this current 

work. The performance of these confidence intervals is investigated in terms of 

coverage probability and expected length via Monte Carlo simulations.  The results 

indicate that the MOVER confidence interval using pivotal method performs well in all 

situations in the study. This is because it provides coverage probability greater than or 

close to the target probability level with an acceptable expected length. The confidence 

interval based on the Wald-type method can be used as an alternative statistical tool for 

large sample sizes.  We also illustrate our confidence intervals using a real-world 

example in the area of environmental pollution. 
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CHAPTER 1 

INTRODUCTION 

 

1.1 Statement of the problems and importance of the research 

 

A direct investigation of population characteristics is quite difficult to do, 

it takes both a long time and many resources.  As a result, to draw a conclusion, it is 

necessary to depend on the characteristics of the samples that will refer to or 

characterize the population.  So that the sample data must be able to properly 

characterize the characteristics of population.  The previous statistical procedures are 

referred to as statistical inference.  The mainly statistical inference has two main 

branches:  parameter estimation and testing statistical hypothesis.  This thesis is 

classified as part of parameter estimation because we are interested in point estimator 

and constructing a confidence interval. Generally, the main objective of the estimation 

method is to estimate an unknown parameter value. The theory of statistical hypothesis 

testing, on the other hand, is used to accept or reject the hypothesis concerning the 

unknown parameter or is concerned with the question of whether a sample is compatible 

with a specified hypothesis or not.  In other words, it may be used to see if the sample 

data supports or refuse the investigator's hypothesis regarding the parameter's real 

value.  However, in fact, there have been researches done confidence intervals for 

testing the hypotheses, see Barr (1969) , Gardner and Altman (1986) , Payton et al. 

( 2000) , and Greenlan et al.  (2016) .  This means confidence interval is more useful 

approaches in statistical inference. 

One of the most important parts of statistical inference is estimation of 

unknown parameter.  This is useful in forming conclusions about the population of 

interest.  There are two types of parameter estimations that are commonly used.  The 

first type is known as a point estimation, while the second is known as interval 

estimation. Point estimators are a function of a random samples that is used to estimate 

the value of a true parameter. This gives a statistic or single estimate used to refer to a 

parameter of interest. However, in fact, there has no probability guarantee or confidence 

level that a given statistic will capture a parameter of interest.  Moreover, sometimes a 
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point estimator may provide more than one value, for example mode.  Interval 

estimation, on the other hand, is an interval defined by two integers generated from 

computations on the observed values of the random variable and is assumed to contain 

the true value of the parameter on its inside.  As a result, range of estimate is more 

comprehensive of interest than point estimation and can discover possible inaccuracies 

(Casella & Berger, 2002, p. 419). The parameter is defined assuming that it falls inside 

a (1 ) 100% , say 95% , or greater probability interval, also referred to as the 

confidence level that can define form, which is 1  , where   is a significant level. 

The confidence interval is a representation of how reliable an estimate is. The standard 

form of the estimate range is denoted as  ,L U  or  L U  , where   is an 

interesting generic parameter, L  is the lower limit, and U  is the upper limit.  The 

parameters that is often interesting in practical applications are including mean, 

variance, coefficient of variation, and proportion of a population.  However, in this 

work, the parameter of interest is the mean.  The reason is that the mean or expected 

value of a random variable is not only an average value that is weighted according to 

the probability distribution but is also considered as the parameter of interest to 

represent a measure of the center of a population.  We hope to obtain a number that 

summarizes a typical or expected value of an observation of the data. 

The three major theories in statistical inference are as follows, First, the 

classical theory, which is a frequentist concept.  The inference is based on the sample 

distribution and assumes that the parameter of interest is a constant. Second, likelihood 

inference is the Fisher's concept, which differs from Frequentist in that statistical 

inference, is the process of evaluating the statistical evidence for parameter values by 

likelihood function.  Third, the Bayesian statistic is the process of connecting the 

observed data and the inference (statements about the parameters) .  The parameter of 

interest is a random variable that has a density function or is called prior distribution. It 

has a probability distribution referred to as the prior distribution and then calculates the 

posterior distribution that is used for inference (Rohde, 2014, p. 13-14). In this thesis, 

we focus on the first approach, as this method is widely used, simple, and always 

applied in several applications. 
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In probability and statistics, the two- parameter exponential distribution is 

a probability model related to the data on the time to failure of the unit being observed. 

It has extensive applications in the field of reliability, queuing theory, lifetime analysis, 

survival, medicine, environmental pollution, economics, life insurance, and reliability 

analysis.  For example, Freireich et al.  (1963)  used the data on the time (weeks)  to 

relapse of patients after being treated by a drug 6-mercaptopurine (6-MP) and a placebo. 

Dunsmore (1983)  described a rock crushing machine operating in such a way that it 

must be reset if the size of the rock being crushed is larger than any other that has been 

crushed before.  Rahman and Pearson ( 2001)  presented the time between successive 

failures that the data on the 25 system failures have occurred in 100 days period.  AL-

Ani et al.  (2020)  applied the actual data taken from Babel Tires Factory, where the 

working time (hours)  between failures were deducted by the time recorded in the 

internal statements of the factory for six months.  Li et al.  (2022) , originally given in 

Bain & Engel, 1973; Gui, 2018, presented a dataset of floods collected from two 

stations on Fox River, Wisconsin, and a dataset of a high- voltage current in a P- type 

high- voltage metal oxide semiconductor ( MOS)  transistor (HPM) data from a wafer 

acceptable testing.  The data used in the previous literature reviews fitted the two-

parameter exponential distribution.  This shows that the distribution can be found in 

areas.  

In probability theory, we suppose that X  is a random variable.  If X  is a 

two- parameter exponential distribution, denoted as  ,Exp   , the probability density 

function of  X is given by 

    1
; ,X

x
f x exp


 

 
 

  
 

, (1-1) 

where x  , 0  , and . The mean or expected value of X is given by   . 

Here,   and   are the scale and location parameters, respectively.  We describe and 

give more details for this model in Chapter 2. Since this distribution is applied in many 

fields, accurate parameter estimation is then important, especially interval estimation 

because the confidence interval more accurately represents and provides information 

on the parameter of interest than the point estimator, as we pointed out in the beginning 

of this section.  There have been several works related to confidence intervals for 
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parameters.  For example, Roy and Mathew (2005)  constructed an exact lower 

confidence limit for the reliability function of two- parameter exponential distribution 

using the generalized confidence interval (GCI) approach. Fernandez (2007) developed 

the confidence interval from Roy and Mathew (2005), and presented a modified pivotal 

quantity related to reliability for constructing the confidence intervals. Jiang and Wong 

(2012) constructed confidence intervals for both scale and location parameters in two-

parameter exponential distribution using the approximate Studentization method. 

Jianhong and Hongmei (2013)  introduced the methods of interval estimation for the 

difference and the ratio of means based on the concept of generalized variable and 

proposed the generalized pivotal quantity for the mean.  Li et al.  (2015)  proposed the 

simultaneous confidence intervals of differences for mean in two- parameter 

exponential distribution based on the parametric bootstrap (PB) approach. Sangnawakij 

and Niwitpong (2017) considered confidence intervals for the single and the difference 

of coefficients of variation using the method of variance estimates recovery (MOVER), 

the generalized confidence interval (GCI) , and the asymptotic confidence interval 

(ACI) , where the maximum likelihood (ML)  estimators for scale and location 

parameters were used.  Thangjai and Niwitpong (2018)  created the simultaneous 

confidence intervals ( SCIs)  based on PB approach and the two new SCIs using GCI 

and MOVER. Khooriphan and Niwitpong (2020) provide confidence intervals for the 

mean of a delta two- parameter exponential distribution based on PB method, standard 

bootstrapping (SB) , GCI, and MOVER.   The latter works calculated the two- single 

parameters based on the ML estimators.  However, the estimation of the parameter to 

obtain a good estimator is also significant, because these estimators may produce more 

effective ranges when used to build confidence intervals.  There have been studies 

introduced the estimation of parameters in the two-parameter exponential distribution. 

For instance, Cohen and Helm (1973) proposed the point estimator in the two-parameter 

exponential distribution using a variation of the ordinary method of moments to obtain 

the best linear unbiased estimators (BLUE). They compared this estimator with the ML 

estimator, moment estimator, and the modified moment estimator.  Rahman and Larry 

( 2001)  presented point estimation for scale and location parameters in two-parameter 

exponential distribution and compare parameter estimators which are calculated from 

the ML estimator, unbiased estimator, the method of product spacing, and the method 
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of quantile estimated.  Rashid and Akhter (2011)  introduced the estimation of 

parameters using the least squares method (LSM), relative least squares method, ridge 

regression method, moment method, modified moment method, and ML method. 

Although many papers have studied estimation of parameters and examined confidence 

intervals for parameters of the two- parameter exponential distribution, those used the 

ML estimation.  There has no research applied the unbiased estimators for scale and 

location parameters to construct the confidence interval for the population mean. 

Therefore, this is an interesting method we would like to address in this thesis.  

The rest of this thesis is organized as follows.  Chapter 2 introduces the 

definitions of the interested distribution, the methods used to construct the confidence 

interval, and literature reviews according to point and interval estimation for the two-

parameter exponential distribution.  The proposed confidence intervals related to the 

unbiased estimator for the two- parameter exponential distribution are derived in 

Chapter 3.  We used two main approaches in construction:  the Wald- type method and 

the MOVER approach.  Chapter 4 presents the performance of the proposed interval 

estimators. It is evaluated in terms of coverage probability and expected length through 

simulation studies.  In addition, all proposed confidence intervals are demonstrated 

using a real- world example in the field of environmental pollution in Thailand.  The 

thesis ends with Chapter 5, containing some concluding remarks. 

 

1.2 Research objectives 

 

The objectives of this research are as follows. 

1. To propose the confidence intervals for the population mean of two- parameter 

exponential distribution. 

2. To compare the performance of the parameter estimators obtained from the 

maximum likelihood estimator and unbiased estimator for parameters of the 

two-parameter exponential distribution.   

3. To study the performance of confidence intervals for the population mean of 

two-parameter exponential distribution. 
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1.3 Research scope  

 

The scope of this research is presented as follows.  

1. Let  1 2, ,..., nX X X X  be an independent random sample of size n  from the 

two- parameter exponential distribution, denoted as  ,iX Exp   .  The 

probability density function of X  given by 

   1
; ,

 
  

 
i

i
X i

x
f x exp


 

 
,           (1-2) 

where  1 2, ,..., nx x x x  is the observed value of  1 2, ,..., nX X X X , ix  , 

0  , and , for 1,2,...,i n .    is scale parameter and   is location 

parameter.  The mean and variance of iX  are denoted as  iE X     and 

  2
iVar X  , respectively.  In this work, we focus on estimating the mean 

parameter,   . 

2. The maximum likelihood estimators and the unbiased estimator for parameters 

  and   are studied.  The properties of these estimators are conducted using 

simulations.  The details will be given in Chapter 3.  We investigate the 

performance of point estimator in this step- in order to make it clear that we 

choose the best method for constructing interval for the population mean.  

3. The confidence intervals for the single parameter   and   are derived using 

the asymptotic method, profile likelihood method, classical method, and pivotal 

method.  

4. The confidence intervals for the parameter of interest or    are constructed 

based on the method of variance estimates recovery ( MOVER)  and the Wald-

type method.  Moreover, these confidence intervals are conducted the 

performance via simulations, again the details are given in Chapter 3. 

5. Absolute bias and mean squared error are used as the measures to evaluate the 

performance of the point estimator are given in step 2. 
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6. The performance of the confidence interval is investigated in terms of coverage 

probability and expected length. 

7. The RStudio programing language (https://www.rstudio.com/) is used in the 

simulation. All simulation settings given in Chapter 3. 

 

1.4 Research advantage 
 

This research would provide the following advantages. 

1. The confidence intervals proposed in this thesis can be used as an alternative 

method to estimate the mean of real- world data that have a two- parameter 

exponential distribution, such as environmental pollution and economics. 

2. In this thesis, we provide the statistical knowledge of the MOVER method and 

the Wald- type method for the population mean of two-parameter exponential 

distribution. These methods can be applied to construct the confidence interval 

for other functions of parameters and distribution.  

3. Example of R- code used in applications is provided with this thesis.  This will 

be useful in the data analysis. 

 

1.5 Abbreviations 
 

Symbols Terms 

AD : Anderson-Darling statistics 

ACI : The asymptotic confidence interval 

 .Cov  : Covariance 

CP  : Coverage probability 

 .E  : Expectation 

E L  : Expected length 

 .Exp  : The exponential distribution 

MLE : Maximum likelihood estimator 

MME : Method of moment estimator 

MOVER : The method of variance of estimates recovery 
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n  : Sample size 

 .Var  : Variance 

2
df a  : The chi-square distribution with a  degrees of freedom  

1
2

Z 


 : The value corresponding to a cumulative area of 1
2


  from the   

   standardized normal distribution 

 

1.6 Notations 

 

Symbols Terms 

  : Scale parameter 

  : Location parameter 

   : The mean in two-exponential distribution 

2  : The variance in two-exponential distribution 

̂  
: Maximum likelihood estimator for parameter   

̂  
: Maximum likelihood estimator for parameter   

ûnbias  : Unbiased estimator for parameter   

ûnbias  : Unbiased estimator for parameter   

M̂ME  : Method of moment estimator for parameter   

M̂ME  : Method of moment estimator for parameter   

 ˆMSE   : Mean squared error of an estimator ̂  

 ˆMSE   : Mean squared error of an estimator ̂  

 ûnbiasMSE   : Mean squared error of an estimator ûnbias  

 ûnbiasMSE   : Mean squared error of an estimator ûnbias  

 ˆABS   : Absolute bias of an estimator ̂  
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 ˆABS   : Absolute bias of an estimator ̂  

 ûnbiasABS   : Absolute bias of an estimator ûnbias  

 ûnbiasABS   : Absolute bias of an estimator ûnbias  

1ACI  : The asymptotic confidence interval for   

2ACI  : The asymptotic confidence interval for   

1mCI  : The asymptotic confidence interval based on the MOVER for 

   

wCI  : The profile likelihood confidence interval for   

2mCI  : The profile likelihood confidence interval based on the MOVER  

for    

cCI  : The classical confidence interval for   

3mCI  : The classical confidence interval based on the MOVER for    

pCI  : The pivotal confidence interval for   

4mCI  : The pivotal confidence interval based on the MOVER for    

5mCI  : The asymptotic confidence interval based on the Wald-type method 

for    
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CHAPTER 2 

REVIEW OF LITERATURE 

 

In this part, theoretical backgrounds of distributions, methods used to 

construct the confidence interval, and literature reviews related to this thesis are 

presented. The important statistical topics related are provided as follows. 

 

2.1 Two-parameter exponential distribution 

 

Let  1 2, ,..., nX X X X  be a random variable of size n  drawn from a two-

parameter exponential distribution with parameters   and  .  This is denoted by 

 ~ ,X Exp   .  The probability density function of X  is represented in equation       

(1-1). The scale parameter, or  , is the mean lifetime, while the location parameter, or 

 , is the minimum or guaranteed time before, which no failure event arises. Thus, the 

two- parameter exponential probability model is used to represent the time to failure, 

where failure will never occur prior time  . This distribution can be used to model the 

data as the service times of agents in a system (Queuing theory), the time it takes before 

the next telephone call, the time until a radioactive particle decays, the distance between 

mutations on a DNA strand, and the extreme values of annual snowfall or rainfall. 

However, if 0  , the model given in (1-1)  becomes the one-parameter exponential 

distribution. The latter is a special case of the two-parameter exponential distribution.  

The two-parameter exponential distribution is a right-skewed distribution. 

Various densities of this distribution are shown in Figures 2-1 and 2-2.  In Figure 2-1, 

the values of   are varied as 1, 2, 3, and 7, and   is fixed at 3. It can be seen that the 

probability distribution has longer tail if   is increased. Meanwhile, in Figure 2-2 ,   

is fixed at 3 but   are set as 1, 3, 5, and 7.  We can see that the probability density 

function will be more skewed to the right when   is decreased. 
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The properties of the two-parameter exponential distribution are as follows. 

Let  ~ ,X Exp   .  The moment generating function of X  is    
1X

exp t
M t

t







, 

where 1t  .  

 

 

FIGURE 2-1 Two-parameter exponential density curve with various values of   
 

 

FIGURE 2-2 Two-parameter exponential density curve with various values of   
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Since   and   are unknown parameters, we consider the point estimator 

for the parameters shown in equation (1-1) .  In general, the maximum likelihood 

estimation is often used. This method based on defining a likelihood for calculating the 

conditional probability of observed data given probability distribution.  For 

 ~ ,X Exp   , the likelihood function of   and   is given by 

    1 2
1

1 1
, | , , ,

n

n i
in n

L x x x exp X  
  

 
   

 
  (2-1) 

It is more convenient to work with the logarithm of the likelihood function as follows 

    
1

1
, ln  ,   ln

n

i
i

n
l L X n

    
 

    . (2-2) 

Note that      1 2 ... nX X X    are order statistics of 1 2, , ..., nX X X .  Since the first-

order statistics  1X  maximizes in  ln ,L   , the likelihood function is maximized 

with respect to   by taking         1 1 2,ˆ   , ..., nX min X X X   , the first- order statistic. 

Furthermore, the cumulative density function of  1X  is given by 

     1 1 1  X

n
F Xe pX x 


    

 
, 

with the probability density function of  1X   

           
1

'
1 1 1  X

n n
f F expX X X 

 
    

 
, 

where  1X  . Thus,  1X  follows the distribution of  , Exp n
  . We take the first-

order partial derivatives of  ,l    into equation (2-2) with respect to   and solve the 

equation. The expression can be written as 

  2 2
1

1
,  0

n

i
i

n n
l X

 
   


   

  . 

The maximum likelihood estimator for   is therefore given by 

 1
ˆ ˆX X X     . 

In this thesis, the parameter of interest is   .  Based on the invariant property of the 

maximum likelihood estimator (Casella & Berger, 2002, p. 320), ̂  and ̂  are 
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substituted into   and  , respectively. The maximum likelihood estimator of    is 

therefore given as X .  

 

2.2 Normal distribution 

 

The normal distribution, also called the Gaussian distribution, is one of the 

most widely used in statistics.  There are three main reasons for this.  First, the normal 

distribution and distributions associated with it are very tractable analytically. Second, 

the normal distribution has the familiar bell shape, whose symmetry makes it appealing 

choice for many population models.  Although there are many other distributions that 

also bell-shaped, most do not possess the analytic tractability of the normal.  Finally, 

there is the Central limit theorem, which shows that, under mild conditions, the normal 

distribution can be used to approximate a large variety of distributions in large samples 

( Casella & Berger, 2002, p. 102) .  The normal distribution is described by two 

parameters:  the mean parameter ( )  which describes the location and the variance 

parameter, 2 , which presents the spread of the distribution.  If 0   and 1  , we 

refer to distribution as the standard normal distribution.  In many connections, it is 

sufficient to use this simpler form, because   and   simply may be regarded as a 

location and scale parameter, respectively. In Figure 2-3, we show plots of probability 

density of normal distributions. 

In probability theory, let X  be a random sample.  If X  is a normal 

distribution, denoted as  2~ ,X N   , the probability density function of X  is 

written as 

 
2

2

1 1

22
X

x
f x exp




     
   

, 

where x ,    , and 0  .  The cumulative distribution function of 

the normal distribution is given by 

 
2

2

1 1

22

x x
F x exp dt




     
   

 . 
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FIGURE 2-3 Probability density plot of the normal distributions 
 

The moment generating function of X  is 2 21

2
exp t t   

 
,  it has developed into a 

standard of reference for many probability problems, including regression analysis, 

hypothesis testing, and confidence interval.  

One of the most important results in probability theory is the Central Limit 

Theorem.  This basically states that the z-transform of the sample mean is 

asymptotically standard normal.  The amazing thing about the Central Limit Theorem 

is that no matter what the shape of the original distribution is, the (sampling) 

distribution of the mean approaches a normal probability distribution. 

 

Definition 2.1 (Central Limit Theorem). If 1 2, , , nX X X  is a random sample from an 

infinite population with mean  , variance 2 , and the moment- generating function 

 XM t  , then the limiting distribution of  

n

X
Z

n





  

as n  is the standard normal probability distribution. That is, 

  2 /21
lim

2

z
t

n
n

P Z z e dt







    
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(Ramachandran & Tsokos, 2009, p. 168). 

 

2.3 Method of moments 

 

The moment method is a parameter estimation that assumes the sample 

moment equal to the population moment. Then it uses a simple method for solving the 

equation to obtain the estimator for the parameter.  

 

Definition 2.1 (Order thk  moment) .  The thk  moment of a random variable 

1 2( , , , )nX X X X   taken about the origin is defined to be  kE X , for 1,2,k  , and 

is denoted by 
'
k . 

 

Definition 2.2 (Sample order thk  moment).  The sample thk  moment of random 

variable 1 2( , , , )nX X X X   taken about the origin is defined as '

1

1 n
k

k i
i

m X
n 

  , for 

1,2,k   (Wackerly et al., 2008, p. 138).  

 

Let 1 2( , , , )nX X X X   be a sample of size n  drawn from a population 

with the probability function 1( | , , )kf x    and 1, , k   are parameters.  Method of 

moments estimators are found by equating the first k  sample moments to the 

corresponding k  population moments and solving the resulting system of 

simultaneous equations. More precisely, we define 

1
1

1

1 n

i
i

m X
n 

  ,    ' 1
1 E X  , 

2
2

1

1 n

i
i

m X
n 

  ,    ' 2
2 E X  , 

 

1

1 n
k

k i
i

m X
n 

  ,    ' k
k E X  . 
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The population moment 
'
i  is a function of 1, , k  , say  '

1, , i k   . The method of 

moment estimators  1, , k    of  1, , k   are obtained by solving the following 

system of equation for  1, , k   in terms of 1( , , )km m : 

 '
1 1 1  , , km     , 

 '
2 2 1  , , km     , 

 

 '
1  , , k k km      

(Casella & Berger, 2002, p.  312-313).  In this thesis, the moment method will be used 

to find the estimator for the mean parameter of the two- parameter exponential 

distribution. Again, we present this in Chapter 3. 

 

2.4 Definition of confidence interval 

 

Interval estimation is a statistical technique determined by two numbers 

obtained from computation on the observed values of a random variable.  The two 

statistics, lower and upper limits, are expected to contain the true value of the parameter 

in its interior with a given probability.  Let  1 2, , ..., nx x x x  be a data set of 

observations taken from a population 1 2( , , , )nX X X X   with a distribution with 

unknown generic parameter  .  The set of all possible values of   is called a 

parametric space and is denoted as  .  Inference on   for a set problem is the 

statement that  C x  , where  C x    and  C x  is determined by the value of the 

data x .  If   is a real- valued, then we usually prefer the set estimate C  to be an 

interval (Casella & Berger, 2002, p. 417-418). 

 

Definition 2.3 ( Interval estimation) .  The estimation of interval for a true value 

parameter   is depended on a sample value  1 2, , ..., nx x x x  from the sample a 

random variable 1 2( , , , )nX X X X   is a pair of functions  L x  and  U x , where 
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     L x U x   for all x X .  For the observed data x , the inference    L x U x   

is made. The random interval    ,L x U x    is called an interval estimator, and denoted 

as    ,L x U x    a  1 100%  confidence interval for   if  

     1P L x U x     , for any   . 

Here, a confidence level 1   is a probability of coverage of   and 0 1  .  Note 

that  L x  and  U x  are the lower bound and upper bound of the confidence interval, 

respectively.  

In most situations, we usually construct the two- sided confidence interval, 

that is    ,L x U x   . However, there is sometime interest in the one-sided confidence 

interval. That means, we define there is not mention of a lower bound or upper bound, 

which the interval is denoted as   ,U x    or   ,L x  .  There have been several 

methods interested in constructing the confidence interval for parameter, for example, 

asymptotic or large- sample method, profile likelihood method, pivotal method, Wald-

type method, and method of variance of estimated recovery. However, in this thesis we 

focus on a two-sided confidence interval and the method of variance of estimated 

recovery is highlighted. This will be detailed in the following section. 

 

2.5 Method of variance of estimates recovery 

 

General details of the method of variance of estimates recovery are given 

in this section.  Donner and Zou (2010)  introduced the method to construct the 

confidence interval for the functions of generic parameter, including 1 2  , 1 2  , 

and 1

2


 . This method is named the method of variance of estimate recovery (MOVER) 

or so called the closed form method of variance estimation. The concept of this method 

is to find the separate confidence intervals for two- single parameters, 1  and 2 , 

recover variance estimates from these confidence intervals, and then form the 

confidence interval for the function of parameters of interest.  In this thesis, it is of 
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interest to construct a  1 100%  two-sided confidence interval  ,L U  for 1 2  , as 

it is similar to the form of our parameter of interest   . By the central limit theorem 

and under the assumption of independence between the point estimate 1̂  and 2̂ . The 

general form of a  1 100%  two-sided confidence interval for 1 2   is given by 

        1 2 1 2
1

2

ˆ ˆ ˆ ˆ,L U Z Var Var   


    , (2-3) 

where 
1

2

Z 


 is the value corresponding to a cumulative area of 1
2


  from the 

standardized normal distribution, and  îVar   is unknown variance of î , for 1, 2.i   

Donner and Zou (2010) supposed that the given separate confidence limits 

for i  are given as  ' ', i il u , for i  1, 2.  Therefore,  ' '
1 1, l u  contains the possible 

parameter value for 1 , and  ' '
2 2, l u  contains the possible parameter value for 2 . And 

then noted that 
' '
1 2l l  is similar to the lower limit L , and 

' '
1 2u u  is similar to the upper 

limit U  because both L  and U  must be closer to 
' '
1 2l l  and 

' '
1 2u u  are than 1 2ˆ ˆ  , 

respectively. By  ,L U  is the target confidence interval for 1 2   in equation (2-3). 

Since the variance of î  is unknown, the estimation of  îVar   for 

obtaining L  is computed based on the condition that 
' i il  .  According to the central 

limit theorem,  

 

'

1
2

ˆ

ˆ
  i i

i

l
Z

Var






  and  

'
2

1

2

2

(
 

)
 

ˆ

ˆ
i i

i

l
Z

Var





 , 

and the estimated variance for the lower limit L  is computed by 

   2'

2

1
2

ˆ   
î i

L i

l
Var

Z 







 . 

Similarly, under the condition that 
' i iu  , the estimated variance for the upper limit U  

can be computed by 
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 

'

1
2

  
ˆ

ˆ
i i

i

u
Z

Var






  and  

'
2

1

2

2

ˆ
 

ˆ
(
 

)i i

i

u
Z

Var




 . 

The estimated variance for the upper limit U  is derived by 

   2'

2

1
2

ˆ
  ˆ

i i

U i

u
Var

Z 







 . 

Substituting the variances,  ˆL iVar   and  ˆU iVar   for i  1, 2, into equation (2-3), the 

general form of the confidence interval for 1 2ˆ ˆ   based on the MOVER method is 

given by 

 
'

1 1
2 2

1 1 1 1
2 2

' 2 ' 2 ' 2 2
1 1 2 2 1 1 2 2

1 2 1 22 2 2

2

2

2

ˆ ˆ ˆ ˆ( ) ( ) ( ) ( )
ˆ ˆ ˆ ˆ( ) , ( ),

l l u u
Z Z

Z Z Z Z
L U  

   

      
 

   

 
    

       
 
 

 

            2 2 2 2' ' ' '
1 2 1 1 2 2 1 2 1 1 2 2   ,   ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆl l u u                   

 
. (2-4) 

 

Advantage of the MOVER is that i)  it can be used to construct the 

confidence interval for a complex parameter function, ii) the basic statistical method is 

used however it provides a good performance for confidence interval, as noted in the 

review of literature of this chapter, and iii) it does not require computer-based method 

in computation as it has close- form solution.  The confidence intervals for   and  , 

and the MOVER confidence intervals for    of the two-parameter exponential 

distribution introduced in this thesis will be discussed again in Chapter 3.  

Besides the MOVER, the confidence interval for a parameter function can 

also be constructed in another method.  When considering the general form and the 

estimated variance is unknown, we can construct the confidence interval for the 

function of parameter.  The next section discusses one more approach as an alternative 

method to find a confidence interval. 
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2.6 Profile likelihood method 

 

Visualization of a multidimensional likelihood function of parameters is in 

general difficult, so instead, one might want to look at one-dimensional likelihood 

function of the component.  For a probability distribution that has two unknown 

parameters   and  , the likelihood function will contain all available parameters that 

are   and   and is denoted  ,L   .  In the case that   is interested and needed to 

estimate only, but not for   although it involves in the model.  The latter parameter is 

then called the nuisance parameter.  In statistical inference, we can use the Fisherian 

concept to eliminate the nuisance parameter   by estimating it using the maximum 

likelihood estimator and obtaining the profile likelihood.  The definition of the profile 

likelihood is as follows. 

 

Definition 2.4 (Profile likelihood). Let  ,L    be the joint likelihood function of the 

parameter of interest   and the nuisance parameter  .  Let  ˆML   be the maximum 

likelihood estimator with respect to  ,L    for fixed  . Then, 

        ,   , ˆp MLL max L L


        

is called the profile likelihood of  .  The value of the profile likelihood at a particular 

parameter value   is obtained through maximizing the joint likelihood  ,  L   with 

respect to the nuisance parameter   (Held & Bové, 2020, p. 130). This can be used in 

statistical inference, such as constructing score statistic and confidence interval.  

 

2.7 Pivotal method 

 

The pivotal method is a general method of constructing a confidence 

interval using a pivotal quantity function. General pivotal quantity is based on a random 

sample with has a probability distribution.  
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Definition 2.5 (Pivot) .  A pivotal quantity or pivot  ,t X   is a function of a random 

sample 1 2( , , , )nX X X X   and the true parameter   in which its distribution does not 

depend on  .  The distribution of  ,t X   is called pivotal distribution.  Furthermore, 

an approximate pivot is a pivot, where its distribution does not asymptotically depend 

on the true parameter  .  This relies on the knowledge of sampling distribution.  In 

conclusion, a pivotal quantity must be satisfied the following two characteristics. 

i) It is a function of the random sample (a statistic or an estimator ̂ ) and 

the unknown parameter  , where   is the only unknown quantity. 

ii) It has a probability distribution that does not depend on the parameter   

and any nuisance parameter. 

From i)  and ii) , it is important to note that the pivotal quantity depends on 

the parameter, but its distribution is independent of the parameter.  The process of 

converting the probability statement about the pivot to a statement about the parameter 

is called the inversion (Ramachandran & Tsokos, 2009, p. 293). 

In this thesis, the pivotal method is used to construct confidence intervals 

for single parameter and function of parameters in the two- parameter exponential 

distribution. The pivotal function will be given in the next chapter. 

 

2.8 Definition of unbiased estimator 

 

An estimator should be “ close”  in some sense to the true value of the 

unknown parameter.  Formally, we say that ̂  is an unbiased estimator of   if the 

expected value of ̂  is equal to  .  This is equivalent to say that the mean of the 

probability distribution of ̂  (or the mean of the sampling distribution of ̂ ) is equal to 

 . 

Definition 2. 6 (Unbiased estimator) .  A point estimator ̂  is called an unbiased 

estimator of parameter  if  ˆE    for all possible values of  .  When ̂  is the 

unbiased estimator, its bias is equal to zero, that is      0ˆ ˆ B E     . 
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Definition 2.7 (Biased estimator). If   ˆ  E   , ̂  is said to be the biased estimator of 

parameter . Furthermore, the bias valued is given by     0ˆ ˆ  B E     . 

 

There are many criteria for choosing a desired point estimator. The 

estimator satisfies the consistency property if the sample estimator has a high 

probability of being close to the population value  for a large sample size. The concept 

of efficiency is based on comparing variances of the different unbiased estimators.  If 

there are two unbiased estimators, it is desirable to have the one with the smaller 

variance.  The estimator has the sufficiency property if it fully uses all the sample 

information. Minimal sufficient statistics are those that are sufficient for the parameter 

and are functions of every other set of sufficient statistics for those same parameters 

(Ramachandran & Tsokos, 2009, p. 227). 

 

2.9 Definition of mean squared error      

 

In theatrical and applied research, it is necessary to use the unbiased 

estimator in analysis.  However, sometimes, unbiased estimators are found, mean 

squared error is then an important measure to determine the better point estimator. Let 

̂  is an estimator of parameter  .  The mean squared error of ̂  is defined as the 

expected squared difference between ̂  and  .   

 

Definition 2.8 (Mean squared error, MSE). The mean squared error of an estimator ̂  

of parameter    is defined as     

   2

  ˆ ˆMSE E    . 

This can be rewritten as  

           2 2 2ˆ ˆ ˆ ˆ ˆ  ˆMSE E E E Var B            , 

where  ˆB   is bias of an estimator (Montgomery & Runger, 2018, p. 161).  If ̂  is an 

unbiased estimator for  ,  ˆ 0B    and    ˆ ˆMSE Var  . 
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2.10 Definition of coverage probability  

 

Definition 2. 9 ( Coverage probability). A coverage probability for the confidence 

interval    ,L X U X    is      ,P L X U X      .  It is the probability that the 

random interval    ,L X U X    cover the true value of the parameter  . 

 

In comparison, we choose a confidence interval which has a coverage 

probability greater than or close to the nominal coverage level. This makes we have the 

confidence interval that more accurately estimates the true parameter. If a Monte Carlo 

simulation is studied, the estimated coverage probability is computed by 

 
  

c L U
CP

M

 
 , 

where  c L U   is the number of simulations runs for a generic parameter   that 

lies within the confidence interval, L  and U  are the lower and upper confidence limits 

of parameter, respectively, and M  is the total number of simulations runs or run 

simulations until the measurement of interest, here  CP becomes stable. 

 

2.11 Definition of expected length 

 

The length of a confidence interval    ,L X U X    is defined as the 

difference between the lower limit  L X  and upper limit  U X .  By definition, the 

interval length is given as 

         l X U X L X  .  

The expected length of a confidence interval is the expected value of 

  ,l X which is denoted as 

       E l X E U X L X        , 

(Sangnawakij, 2016) .  In numerical simulation, the estimated expected length is 

computed by  
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 
1  

M

h h
h

U L
EL

M






, 

where hL  and hU  are the lower bound and upper bound of the confidence interval in 

the h - th simulation run, respectively, and and M  is the total number of simulations 

runs. Generally, we choose a confidence interval which has the short width interval. As 

a result, we obtain a confidence interval that more accurately estimates the true value. 

 

2.12 Literature review 

 

In this part, we would like to present a literature review on the authors and 

researchers used in this thesis. The two-parameter exponential distribution also known 

as a right-skewed probability model is frequently used in many studies. Most research 

is interested in estimating parameters first.  After that have constructed a confidence 

interval for parameters and functions of parameters in two- parameter exponential 

distribution, including scale parameter, mean, and reliability functions, using a range 

of methods. 

In 1973, Cohen and Helm introduced the point estimator in the two-

parameter exponential distribution using a variation of the ordinary method of moments 

to obtain the best linear unbiased estimators (BLUE) and studied the estimator proposed 

by Mann (1969) and them (1970) that are estimated by maximum likelihood estimation, 

method of moment, and the modified method of moments.  They compared the biased 

estimator and unbiased estimator of the scale parameter, location parameter, and mean 

in two-parameter exponential distribution.  

Next, Rahman and Pearson ( 2001)  presented the point estimation method 

for parameters of two-parameter exponential distribution.  They compared the 

maximum likelihood method (MLE) , the unbiased estimates which are linear function 

of maximum likelihood method (UMLE) , the method of product spacing (MPS) , and 

the method of quantile estimates (QE)  using bias, root mean squared error (RMSE) , 

average absolute ( )absD , and average of the maximum absolute ( )maxD .  In this paper, 
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UMLE is recommended for estimating both parameters because this method has the 

lowest bias, ( )absD , and ( )maxD . 

Donner and Zou (2010) proposed the confidence intervals for functions of 

mean and standard deviation that are ratio (coefficient of variation) and difference ratio 

based on the method of variance estimates recovery (MOVER). The confidence limits 

for the ratio of MOVER are calculated by the normal percentile, p pK Z    , and 

the standardized mean   .  They compared these confidence intervals from the 

MOVER with exact method.  Moreover, they described constructing confidence 

intervals by replacing variance.  

Next, in 2011, Akhter and Rashid compared the mean squared error (MSE) 

and total deviation (TD) of point estimation of parameters in two-parameter exponential 

distribution. The parameters are calculated from the following nine methods: the least 

squares method (LSM), relative least squares method (RELS), ridge regression method 

( RR) , moment estimators (ME) , modified moment estimators (MME) , maximum 

likelihood estimators (MLE), and modified maximum likelihood estimation (MMLE). 

The results show that the estimates of parameters from the LSM are too close to the 

true values and the values of MSE and TD are very small. 

In 2013, Zheng considered the estimation problem of two unknown 

parameters in two- parameter exponential distribution.  He proposed new estimates for 

both parameters are unbiased and uniformly minimum variance unbiased estimators 

(UMVUE), using penalized maximum likelihood estimation.  

In 2016, Sangnawakij et al.  introduced new confidence intervals for the 

ratio of coefficients of variation in two-parameter exponential distribution based on the 

method of variance of estimates recovery (MOVER)  and the generalized confidence 

interval (GCI). They calculated coverage probability (CP) and expected length (EL) of 

confidence intervals and compared the performances of CP and EL.  It concluded that 

the CP of confidence intervals based on GCI has CP close to the nominal coverage level 

0.95 in all cases. Meanwhile, the CP of the MOVER is much greater than 0.95 in many 

cases.  In addition, the expected lengths of these confidence intervals decrease when 

sample size increase. As a result, the GCI and MOVER methods are recommended for 
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constructing confidence intervals for the ratio of coefficient of variation in two-

parameter exponential distribution. 

In 2017, Sangnawakij and Niwitpong investigated the performance of new 

confidence intervals for the single coefficient of variation and the difference of 

coefficients of variation in the two-parameter exponential distributions. The confidence 

intervals are constructed using the method of variance of estimates recovery (MOVER), 

the generalized confidence interval ( GCI) , and the asymptotic confidence interval 

(ACI) .  They compared these confidence intervals in term of coverage probability and 

average length are evaluated by a Monte Carlo simulation.  The results show that the 

coverage probabilities of the GCI maintain the nominal level in general cases.  The 

MOVER performs well in terms of coverage probability when data only consist of 

positive values, but it has a wider expected length.  The coverage probabilities of the 

ACI satisfy the target for large sample sizes.  They also illustrate our confidence 

intervals using a real-world example in the area of medical science. 

Next, Thangjai and Niwitpong (2017)  proposed new confidence intervals 

for the weighted coefficients of variation (CV)  of two- parameter exponential 

distributions based on the adjusted method of variance estimates recovery method 

( adjusted MOVER) , then compare with the generalized confidence interval method 

(GCI) and the large sample method. The adjusted MOVER method is motivated based 

on concepts of the large sample method and MOVER method. The performance of four 

confidence intervals in terms of coverage probability and average length are compared 

via a Monte Carlo simulation. The results found that the generalized confidence interval 

GCICI  performs the best confidence interval compared with the other confidence 

intervals when   is a negative value. The adjusted MOVER confidence interval 2AMCI  

and GCICI  performs well for large sample sizes and   is a positive value.  Moreover, 

2AMCI  performs as well as the large sample confidence interval LSCI .  The adjusted 

MOVER confidence interval 1AMCI  is a conservative confidence interval.  Hence, the 

GCICI  should be chosen to estimate the weighted coefficients of variation of two-

parameter exponential distributions. 
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Next, Somsamai and Srisuradetchai ( 2017)  constructed the confidence 

intervals for shape parameters in Weibull distribution, using modified and non-

modified profile likelihood functions.  They compared the coverage probability and 

length of these confidence intervals under different sample sizes. The results indicated 

that modified profile likelihood has coverage probability close to 0. 95 in all sample 

sizes while coverage probability of profile likelihood is close to 0. 95 when the sample 

size is about 35. 

In 2018, Thangjai et al. applied some of the results from Li et al (2015) to 

develop simultaneous confidence intervals (SCIs) using the parametric bootstrap (PB) 

for differences of means of several two-parameter exponential distributions and 

propose new SCIs based on the generalized confidence interval (GCI)  method and 

method of variance estimates recovery (MOVER) .  Then, these approaches are 

compared with PB approach.  The performance of these three approaches is evaluated 

through the coverage probabilities, the average lengths, and the standard errors of the 

confidence intervals. The GCI method and MOVER method perform much better than 

the PB approach in terms of coverage probability for all sample sizes, and by comparing 

the average lengths, it is seen that the MOVER method performs shorter than GCI 

method.  In addition, all performance methods do not depend on the value of i  and 

i . As a result, the MOVER method is recommended for this paper. 

In 2018, Saothayanun and Thangjai examined confidence intervals for the 

signal to noise ratio (SNR) of two-parameter exponential distribution, using the method 

of variance estimates recovery ( MOVER) , the generalized confidence interval (GCI) , 

and large sample (LS). After that compare the coverage probability and average length 

of the confidence intervals.  The results indicate that the GCI method performs well in 

terms of coverage probability for all cases.  Furthermore, as a result of analyzing real-

world data, the length of the generalized confidence interval is shorter than those of the 

other confidence intervals. Consequently, the GCI method is proposed as an alternative 

for estimating the confidence interval for the SNR of a two- parameter exponential 

distribution. 

Next, Thangjai and Niwitpong (2018)  extended the paper of Saothayanun 

and Thangjai (2018)  from one population to two populations and constructed new 
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confidence intervals for difference of signal to noise ratios (SNRs) based on parametric 

bootstrap ( PB) .  They compared this method with the generalized confidence interval 

( GCI)  approach, large sample approach, method of variance estimates recovery 

(MOVER) approach. The results show that the PB method provides better in terms of 

coverage probability, but the average lengths of the GCI approach are shorter than the 

other approaches. In addition, the result of analyzing data from the medical science, the 

interval length of the GCI is smaller than the interval length of other confidence 

intervals.  It is clear that the results correspond simulation study in term of interval 

length. However, the performance of PB method is satisfactory as compared with other 

methods.  As a result, the PB method is recommended to establish the confidence 

intervals for the difference of SNRs of two-parameter exponential distribution.  

In 2022, Khooriphan et al. proposed confidence intervals for the mean of a 

delta two-parameter exponential distribution, using parametric bootstrapping ( PB) , 

standard bootstrapping (SB), the generalized confidence interval (GCI), and the method 

of variance estimates recovery (MOVER)  and compared the performance these 

methods.  The results show that GCI performs well in terms coverage probability for 

small- to- moderate sample sizes and small delta whereas the PB and the SB methods 

provide the best for large sample and large delta. Moreover, GCI is the best method for 

constructing confidence intervals for the mean of the sulfur dioxide data because it 

provided coverage probabilities close to 0. 95 and shorter average lengths than PB and 

SB.  Therefore, this paper introduces the GCI method for constructing confidence 

intervals for the mean of delta in two-parameter exponential distribution. 

 

From the review, it can be seen that several papers have done on confidence 

intervals for parameters in the two-parameter exponential distribution.  The estimators 

used in construction are based on maximum likelihood estimation. This is because it is 

a popular method. However, in fact, maximum likelihood estimator may lack of a good 

property of point estimation, especially unbiasedness.  This thesis will show the 

behaviour of the maximum likelihood estimators for   and   in the two- parameter 

exponential distribution in terms of bias and compare to that of unbiased estimators. As 

it can be seen that there has not been research studied the confidence intervals for mean 
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of the two- parameter exponential distribution using unbiased estimator. This is 

addressed in the next section. 
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CHAPTER 3 

RESEARCH METHODOLOGY 

 

In this chapter, theoretical results and proofs are focused.  The maximum 

likelihood estimator, method of moments estimator, and unbiased estimator are used in 

point estimation. Moreover, we construct the confidence intervals for single parameters 

  and   in the two-parameter exponential distribution using the asymptotic method, 

profile likelihood method, classical method, and pivotal method.  Then, these 

confidence intervals are applied to establish the newly proposed confidence intervals 

for the mean in the two-parameter exponential distribution using method of variance of 

estimates recovery. The Wald-type method is noted in this work, as a traditional method 

in estimation. 

 

3.1 Method of moments and maximum likelihood estimation 

 

Let  1 2, , ..., nX X X X  be a random sample of size n  from a two-

parameter exponential distribution with parameters   and  . The probability model 

of X  is given in (1-1) .  The mean and variance of X  are given as  E X     and 

  2Var X  , respectively. To estimate   and  , maximum likelihood estimation is 

firstly noted in this section.  The proofs of maximum likelihood estimators for   and 

  are given in Chapter 2. They are given as 

  1
ˆ X X     and   1

ˆ X  , (3-1) 

where 
1

1
  

n

i
i

X X
n 

   and  1X  is the first order statistic. Approximating ̂  and ̂   in   

and  , the maximum likelihood estimator for    or the population mean of X  is 

therefore given as X .  

Not only maximum likelihood estimation is useful in parameter estimation, 

but the method of moments is so.  Next, we find the estimators for the two parameters 

  and   using this approach.  Based on the moment method, it is assumed that the 

estimators of population mean and variance are found by equating the first two sample 
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moments about the origin (  

1

1k
n

k
X i

i

M X
n 

  , for k 1, 2)  to the corresponding two 

population moments ( ' ( )k
k E X  , for k 1, 2), and then solving the resulting system 

of simultaneous equations. From this concept, it can be given as follows. 

Consider the first- order population and sample moments about the origin, 

if they are assumed to be equal, we have 

 1'
1 XM   

 
1

1 n

i
i

E X X
n 

   

 X   . (3-2) 

We next evaluate the second-order moments, 

 2'
2 XM   

 2 2

1

1 n

i
i

E X X
n 

   

   2 2

1

1 n

i
i

Var X E X X
n 

    

 22 2

1

1 n

i
i

X
n

  


     

 2 2 2 2 2

1 1

1 1

 

 
  


 


 

n n

i i
i in

X X X nX
n

 . (3-3) 

From (3-2) and (3-3), hence 
1

1 n

i
i

X X
n 

   and 2 S  2 2

1

1



 
 
 


n

i
i

nX
n

X  are the method of 

moments estimators of    and 2 , respectively.  

It is important to note that the estimated mean estimators obtained from the 

moment and maximum likelihood methods are identical.  Therefore, the mean or 

expected value of X  is given by 

    
1

1
 .

n

i
i

E X E X
n

 


    (3-4) 

In conclusion, X  is the unbiased estimator for   .  
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3.2 Unbiased estimator for 𝝀 and 𝜽 

 

From  ~ ,X Exp   , we know that      E X   .  It is estimated by 

1

1
  

n

i
i

X X
n 

  . According to section 2.1 in Chapter 2,  1X  has a two-parameter 

exponential distribution, denoted as    1 ~ ,X Exp n
  .  So that the mean of  1X  is 

given as (1)( )  E X
n

  .  To find the unbiased estimators of   and  , Cohen and 

Helm (1973) proved that 
  1  

 
1

ˆ
ˆ   

1unbias

n X X n

n n




 
 

 and 
 1

1
ˆ   unbias

nX X

n






. These are 

obtained from the basic idea as follows. 

Cohen and Helm (1973)  supposed that   E X X  and (1) (1)( )E X X , 

where X  and (1)X  are the mean and the first-order statistic in a random sample of size 

n , obtained from the method of modified moments proposed in Helm et al.  (1970) . 

From the above information, hence it is easy to see that 

    E X X    ,   X     or  X    

and  

     1 1E X X
n

    . (3-5) 

Substituting X   into   of equation (3-5). It can be expressed as 

   1  X X
n

     

   11   n X X
n


    

   1  
  

1 1

ˆ
ûnbias

n X X n

n n




 
 

.  (3-6) 

We next substitute X   into   of equation (3-5), the desired estimator is given by  

 1  
X

X
n

 
   
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 1  n nX X     

  1

1
ˆ   unbias

nX X

n






.    (3-7) 

The estimators given in (3-6)  and (3-7)  are conducted in terms of 

unbiasedness. The expected values for ûnbias  and ûnbias  are 

      1 1
        

1 1 1
ˆ

                          
unbias

n X X nn n
E E

n n n n n

      

and 

       1 11
        

1 1 1ûnbias

nX X n
E E n

n n n n

    
                    

. 

Hence, 
1

ˆ
ûnbias

n

n

 


 and  1

1
ˆ   unbias

nX X

n






 are unbiased estimators of   and  , 

respectively.  Furthermore, we can find the variance of ûnbias . It is given as 

    
 

        
2

1

1 12    2 ,
1

ˆ
1

unbias

n X X n
Var Var Var X Var X Cov X X

n n


 
    
  
 

 

 
        

2

1 12
 2  

1
  



n
Var X Var X Var X

n
 

 

2 2 2 2 2

2 2
 2  

11

     
          

n

n n n nn
. 

The variance of ûnbias  is  

   

          1 2
1 12

2ˆ 1
,

1 1
unbias

nX X
Var Var n Var X Var X Cov nX X

n n


 
    
   

 

          2
1 12

1
 2

1
n Var X Var X nVar X

n
  


 

   
2 2 2 2

2
2 2 2

1
 2   

11

     
        










 
n n

n n n n nn
. 
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Note that the covariance of  1X  and X  is shown in Sangnawakij and Niwitpong 

(2017).  If   and   are estimated, as well as   ûnbiasVar   and  ûnbiasVar  , the 

estimated variances can be used in inferential statistic, including confidence interval 

estimation.  

In this paper,  the performance of 
1

ˆ
ûnbias

n

n

 


 and  1

1
ˆ   unbias

nX X

n






 are 

investigated in terms of the absolute bias (ABS)  and mean squared error (MSE) , and 

compare to  1
ˆ X X    and  1

ˆ X  , before applying in interval estimation.  All 

details are given in Chapter 4.  It is heighted here that ûnbias  and  ûnbias  perform better 

than those two estimators in both criteria.  Hence, ûnbias  and  ûnbias are suitable to use 

in the next method for constructing the confidence intervals for mean in  ,Exp   . 

 

3.3 Proposed confidence interval for the population mean based on MOVER 

 

To construct the confidence interval by MOVER interval, the separate 

confidence intervals for all single parameters should be firstly considered. Then we will 

combine them into the confidence interval for parameter of interest.  Here,    is of 

interest, the confidence intervals for    based on MOVER are presented as follows. 

 

3.3.1 MOVER confidence interval using asymptotic method 

Let  X  ,Exp   . As shown in the previous section, we know that 

1

ˆ
ˆ  
unbias

n

n

 


, 
 1

,ˆ
1unbias

nX X

n






  ûnbiasE   ,  ûnbiasE   ,  

2

1ûnbiasVar
n

 


, 

and    
2

1ûnbiasVar
n n

 


. Hence the general pivotal statistic for ûnbias  is obtained by 

 
   2

ˆ
  

1

1

ˆ ˆ

ˆˆ

unbias unbias

unbias

n
E

nZ
Var

n



  



  



, 
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where Z  converges to the standard normal distribution  0,1N .  By the central limit 

theorem, we establish the confidence limits for   based on the probability statement  

 
1 1

2 2

    1  P Z Z Z  
 

 
     
 

, (3-8) 

where Z  is a generic pivotal quantity and 
1

2

Z 


 is the value corresponding to a 

cumulative area of 1
2


  from the standardized normal distribution.  For instance, if 

0.05  , we obtain the probability statement  

0.05 0.05
1 1

2 2

1 0.05P Z Z Z
 

 
     
 

 

 0.975 0.975 0.95P Z Z Z     

 1.96 1.96 0.95P Z     

(Berenson et al., 2011, p. 283).  Using Z , we have 

2 2
21 1
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
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 

     
 
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       
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1 1

    ˆ  1 
1

ˆ
1

n Z n n Z n

P
n n

 

   
 

       
    

            
    

. 

Thus the  1 100%  confidence interval for   is 

  
1 1

2 2
1 1 1

1 1

 ,    , ,
1 1

ˆ ˆ
A A A

n Z n n Z n

CI l u
n n

 

 
 

       
    

          
    

    (3-9) 

where 
1

2

Z 


 is the value corresponding to a cumulative area of 1
2


  from the 

standardized normal distribution. 
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Similarly, the general pivotal statistic for ûnbias  can be derived as  

 
  

 

 

1

2ˆ

  
1

1

ˆ ˆ

ˆ
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nZ
Var

n n



 




  



, 

where Z   converges to the  0,1N .  Again, using the probability statement shown in 

(3-8), we obtain  

 

 
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1 1 1

ˆ

1
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 

 
 
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1 1

1
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      1 
1 11

ˆ ˆ

1
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      
    

. 

Therefore, the  1 100%  confidence interval for   is 

   

 
 

 1

1

2

1

2 2

2

2
1

  ,    ,  ,
11

ˆ

1

ˆ

1A A A

nX X nX X
CI l u Z Z

n nn n n n
 

 
 

  
    
    

 (3-10) 

where 
1

2

Z 


 is the value corresponding to a cumulative area of 1
2


  from the 

standardized normal distribution. 

To establish the confidence interval for   , MOVER with the 

above confidence limits is applied.  The confidence interval from equations ( 3-9)  and 

(3-10) is applied to construct the lower and upper limits in equation (2-4) of Chapter 2. 

We set the estimators 1
ˆ̂  , 2

ˆ̂  , '
1 1 Al l , '

2 2Al l , '
1 1Au u , and '

2 2Au u . Thus, the 

proposed MOVER confidence interval using asymptotic method for    is given by 
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 1 1 1,mCI L U  
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 

2

1
2

1

2

2

2
2ˆ

ˆ ˆ ˆ
1

1
1 1unbias

n Z n

X Z
n n n




  





                          

, (3-11) 

where 
 1

1
ˆ   unbias

nX X

n






 and 

1
2

Z 


 is the value corresponding to a cumulative area of 

1
2


  from the standardized normal distribution. 

 

3.3.2 MOVER confidence interval using profile likelihood method  

In this section, the confidence interval is constructed based on the 

profile likelihood method.  Suppose that X  is distributed as  ,Exp   , we consider 

the situation where   is the parameter of interest and   is the nuisance parameter. 

Here, we first consider the likelihood and the log-likelihood functions of   and   that 

are shown in (2-1)  and (2-2) , respectively.  As a result, the maximum likelihood 

estimators for   and   are 

  1
ˆ    X X    and   1

ˆ  X  . (3-12) 
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Thus the profile likelihood of   is obtained by substituting  1
ˆ  X   into   of equation 

(2-2). It can be derived as  

        , , ˆ  ,pl max L x L


        

    
1

1 1
 ln

n

i i
i

n X nX
 

    

       1
1

1
ln ( )

n

i
i

n X X
 

    , (3-13) 

where (3-13)  depends on only  .  The score function is obtained by taking the            

first-order partial derivatives of  pl   with respect   as follows 

              
  p

p

l
S










  

  1
1

1
 ln

n

i
i

n X X
n


 

 
      

  

                          12
1

1
 

n

i
i

n
X X

  


   . (3-14) 

The solution of the score equation   0pS    is the maximum likelihood estimator for 

 , i.e.  1
ˆ    X X  .  

We next find the Fisher information from (3-14)  by taking partial 

derivatives of  pS   with respect  . For this we calculate 

 
  12
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1
  

n
p
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i

S n
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
    
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      
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 1 2
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      12 3
1

2
 .

n

i
i

n
X X

  

    

Hence, the Fisher information is  

    
  12 3

1

2
    

n
p

p i
i

S n
I X X




   

  
      

  (3-15) 

with the expectation of the Fisher information 
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      2 3 2

2 2
 1   

n n
n

  


    . (3-16) 

We calculate the inverse of   pJ   by 

    
2

1 1
     

2


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p
p

J
J n




. (3-17) 

As a result, the variance estimates of ̂  is 
2

2n




.  Based on the large- sample 

approximation, the  1 100%  confidence interval for   is therefore given by  

  
2 2

1 1
2 2

ˆ ˆ
ˆ,  , ˆ

2 2w w wCI l u Z Z
n n 
  

 

 
    
   

, (3-18) 

where 
1

2

Z 


 is the value corresponding to a cumulative area of 1
2


  from the 

standardized normal distribution. 

According to the MOVER, we set the estimators 1
ˆ̂  , 2

ˆ̂  , 

'
1   wl l , '

2 2  Al l , '
1   wu u , and '

2 2  Au u , and replace them in equation ( 2- 4) , where 

 ,w wl u  and  2 2,A Al u  are the confidence intervals for   and  , given in equations 

(3-18) and (3-10), respectively. Hence, the  1 100%  MOVER confidence interval 

using profile likelihood method for    is given by 

 

 

 

Ref. code: 25646309030127EGZ



40 
 

 

 2 2 2  ,mCI L U  

           1

2
2

1

2
2

2 2

ˆ ˆ
ˆ ˆ ˆ ˆ ˆ ˆ  ,  

2 1unbiasZ Z
n n n 
      

 

                                    

    

2 2
2 2

2 2
1 12

ˆ ˆ
ˆ ˆ

1
ˆ ˆ ˆ ˆ

unbiasZ Z
n n n 
      

 

                                   

     

        
 

2
2

2
1

2

1
2

ˆ ˆ
ˆ ˆ  ,  

2 1
unbiasX Z Z

n n n
 

  
 

                 

  

             
 

2
2

1
2 1

ˆ ˆ

2
ˆ ˆ
unbiasX Z

n n n


  


            

, (3-19) 

where 
2

1
Z 


 is the value corresponding to a cumulative area of 1

2


  from the 

standardized normal distribution. 

 

3.3.3 MOVER confidence interval using classical method 

The confidence interval based on the basic method described in this 

section is the most common and easiest method for calculating the confidence interval. 

However, there have been researches applied in areas. This is called the pivotal method 

for large-sample confidence interval.  

Since we know that the unbiased estimator of   is 
1

ˆn

n


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.  By the 

normal approximation we take the z-transform of 
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where Z  has a limiting standard normal distribution for large sample size.  Using the 

statement in (3-8) and Z  given in the above equation, so we have 

1 1
2 2

   1    
ˆ

1 
1

n
P Z n Z

n
 

 
 

 
         

. 

Suppose that  
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and inverse function is  ˆ L  . The inequality above is rearranged as follows  
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(3-20) 

The statistic given on the right hand side of (3-20) is the upper confidence limit of  .  

Similarly, assuming that  
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and the inverse function is  ˆ U  . So, the lower inequality above be rearranged as  
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. 
(3-21) 

The lower limit for   is on the right hand side of (3-21) .  In conclusion, (3-20)  and     

(3-21) can be written in the form  
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 
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, (3-22) 

which is the confidence interval for  .  

To construct the  1 100%  confidence interval for    based on 

MOVER in equation (2-4). We use  ,c cl u  and  2 2,A Al u  given in (3-22) and (3-10), 

respectively, and define the estimators 1̂  ˆ   and 2ˆ   ˆ  .  As a result, the  1 100%  

MOVER confidence interval using classical method for    is given by 
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(Continuous) 
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1

Z
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X
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
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, (3-23) 

where 
1

2

  1 1c n Z n


 
    

 
 and 

1
2

  1 1k n Z n


 
     

 
and 

1
2

Z 


 is the value 

corresponding to a cumulative area of 1
2


  from the standardized normal distribution. 

 

3.3.4 MOVER confidence interval using pivotal method  

Pivotal quantity is similar to the general pivot, but the former 

provides an exact distribution for a random function and can be used to construct the 

confidence interval.  This confidence interval is then valid for any sample size.  Here, 

suppose that X  be distributed as  ,Exp   . The pivot of   can be given by  

 
2

 
ˆ

 
n

W



  (3-24) 

( Lawless, 2003, p. 192) .  Since   1
1

  
n

i
i

S X X


   follows a gamma distribution with 

parameter 1n  and  , denoted as  1,Gamma n  , and it has moment generating 

function  
  1

1

1
S n

M t
t 


 (Rohatgi and Saleh, 2015).  It follows that  wM t  is  

    2 2
w S

StM t E exp M
t


    
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where the distribution of W  does not depend on  , it is called the pivot. Using W , it 

can be derived by 

2 2

,2 2 1 ,2 2
2 2

ˆ2
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n n

n
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  
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  

 
     
 
 

. 

Therefore, the  1 100%  confidence interval for   is 

   2 2

1 ,2 2 ,2 2
2 2

2 2
  ,   ,

ˆ
 

ˆ
p p p

n n

n n
CI l u

 

 
 

  

 
   
 
 

, (3-25) 

where 2

,2 2
2

n



 and 2

1 ,2 2
2

n


 
 are the lower and upper 1

2
00 th

 
 
 

 percentile of the        

chi-square distribution with 2 2n  degrees of freedom  2
2 2n  . 

The confidence intervals shown in (3-10)  and (3-25)  are applied to 

construct the lower and upper limits using MOVER. We set the estimators 1̂  ˆ  , 2 ,ˆˆ      

'
1   pl l , '

2 2  Al l , '
1   pu u , and '

2 2  Au u .  Hence, the MOVER confidence interval using 

pivotal method for    is given by   
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(Continuous) 
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. (3-26) 

where 2

,2 2
2

n
  and 2

1 ,2 2
2

n


 
 are the lower and upper 1

2
00 th

 
 
 

 percentile of the chi-

square distributions with 2 2n  degrees of freedom  2
2 2n   and

1
2

Z 


 is the value 

corresponding to a cumulative area of 1
2


  from the standardized normal distribution. 

 

3.4 Wald-type confidence interval 

 

In this section, we construct the confidence interval for    by using the 

Wald-type method. The idea of this approach is based on variance approximation. Here, 

we use the moment estimator for    shown in (3-1).  By the normal approximation, 

the mean and variance of X  are given by    E X E X      and  
2

Var X
n


 , 

respectively.  Using the central limit theorem, we can be derived the general pivot for 

X  as  
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 
  

 
2

 

ˆ

X E X X E X
Z

Var X
n



 
  , 

(3-27) 

where Z  has the standard normal distribution for large sample size.  Using the 

probability statement in equation (3-8), we now obtain 

 
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. 

Therefore, the  1 100%  Wald-type confidence interval for    is given by 

 
1 1

2

2

5

2

2

,
ˆ ˆ

mCI X Z X Z
n n 
 

 

 
   
 
 

, (3-28) 

where 
1

2

Z 


 is the value corresponding to a cumulative of 1
2


  from the standardized 

normal distribution. 

A question arises at the end of this section that which interval method has 

a good performance in estimating the mean in two- parameter exponential distribution.   

In this thesis, the behaviour of confidence intervals for    presentes in equations     

(3-11) , (3-19) , (3-23) , (3-26) , and (3-28)  will be investigated via simulations.  We 

provide the step and simulation settings in the next section.  

 

3.5 Simulation study 

 

The main objective of the computational part is to compare the coverage 

probabilities and average interval lengths of confidence intervals for the population 

mean in two- parameter exponential distribution.  In order to perform simulations, we 

first need to fix the values of parameters and sample size.  Then, we perform the 
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following steps to get the desired results for this work. Each simulation is repeated M  

times using the following steps. 

1. We generate a random variable  1 2  , , ..., nX X X X  from the two-parameter 

exponential distribution with parameters   and  .  Since there has no function or 

package in R to generate data in two-parameter exponential distribution, we use the 

following steps based on the inverse transform method 

Step 1: Generate  ~ 0,1X U  

Step 2: Set  1X F U  

Let  U F X  

 1 
X

U exp



    

 
 

 ln 1
X

U





    

 ln 1X U     

Step 3: Compute  ln 1   X U , which follows a two-parameter 

exponential distribution. 

2. The population mean      is fixed at 1. 5, 2, 3.5, 4, 6, and 8, reflecting small 

to large values and varying distributions as shown in Figures (2-1) and (2-2). If   

is fixed at 1 and 3,   is computed by      .  Therefore, the values of  ,   

are (1,0.5), (1,1), (1,3), (1,5), (3,0.5), (3,1), (3,3), (3,5).  

3. The sample size ( )n  is given as 10, 30, 50, 100, 200, and 500. 

4. The confidence level  1   is 0.95. 

5. We calculate the point estimators, both biased and unbiased estimators, of   and 

.  They are given by  1  ˆ X X   ,  1
ˆ  X   , 

1

ˆ
ˆ  

  unbias

n

n

 


 , and 
 1  .ˆ

1unbias

nX X

n






 

6. We compute the  1 100%  confidence intervals for the population mean by the 

following formulas: 
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and 
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. 

7. Steps 1 to 6 are repeated for 5,000M   times to obtain the 5,000 estimators for 

each method. 

8. The mean squared error (MSE) and absolute bias (ABS) are computed by 

    
5,000

2

1

1
  

5,000 i
i

M T TSE 


   

and  

 
5,000

1

  
5,000

i

i

A S
T

B T 


  , 

where T  is an estimator for its parameter  .  Here, T  will be ˆ   , ˆ  , 
ûnbias
 , or 

ˆ .
unbias
  

9. We compute the estimated coverage probability and expected length from  

 
  

5,000

c L U
CP

 
   

and   

 
5,000

1 
5,000

h h
h

U L
EL 





, 

where  c L U   is the number of simulations runs for   that lie within the 

confidence interval, hL  and hU  are lower bound and upper bound of the 

confidence interval in the h -th simulation run, respectively. 

 

Monte Carlo simulation used in this work is carried out using the R 

statistical package to investigate the coverage probability and expected length of the 

confidence intervals. The simulation process is shown by chart given in Figure 3-1. On 

decision, a confidence interval which has a coverage probability greater than or close 

to the nominal coverage probability level  1   and a short length interval is 

preferred to be the suitable method in a situation.  
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FIGURE 3-1 Flowchart of simulation study 
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CHAPTER 4 

RESULTS AND DISCUSSION 
 

In this chapter, we investigate the performance of estimators given in 

Chapter 3. The criteria for comparing the maximum likelihood and unbiased estimators 

are the absolute bias and mean squared error. Thes are based on simulations in various 

situations, for example sample sizes and parameter values.  Moreover, we compare the 

coverage probabilities and expected lengths of the confidence intervals for the mean. 

In order to demonstrate the practical application of all confidence intervals for the 

population mean, the last section of this chapter these confidence intervals are applied 

to a real-world example in the field of environmental pollution.  

A Monte Carlo simulation is carried out using the RStudio program to 

compute the absolute bias (ABS)  and mean squared error (MSE)  for point estimators, 

and estimate the coverage probability (CP)  and expected length (EL)  for interval 

estimator.  In the simulation, the data are generated from ( , )Exp   , where the 

parameters  ,   are (1,0.5), (1,1), (1,3), (1,5), (3,0.5), (3,1), (3,3), and (3,5). The 

sample sizes are 10, 30, 50, 100, 200, and 500. The nominal coverage probability is 

0.95. The symbols used in the Figures and Tables of this section are defined as follows. 

 

Symbols Terms 

1mCI  The MOVER confidence interval using asymptotic method 

2mCI  The MOVER confidence interval using profile likelihood method 

3mCI  The MOVER confidence interval using classical method 

4mCI  The MOVER confidence interval using pivotal method 

5mCI  The Wald-type method 
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4.1  Comparative analysis of point estimators 
 

We start with an analysis of absolute bias and mean squared error for the 

point estimators for   and  .  The results are summarized numerically in Table 4- 1. 

The results show that the absolute biases of the unbiased estimator of  , or ˆ
unbias ,  

are close to zero than those of the maximum likelihood estimator of  , or ̂ , in all 

simulations in the study. Similarly, the unbiased estimator of  , or ûnbias  has the 

absolute bias closer to zero than the maximum likelihood estimator of  , or ̂ . This 

means that ˆ
unbias  and ûnbias  provide the estimated values closer to its parameter values 

than ̂  and ̂ , respectively. For the mean squared errors of  ûnbias , they are smaller 

than the mean squared errors of  ̂ ,  whereas the mean squared errors of ˆ
unbias  are 

slightly greater than those of  ̂ . But the mean squared errors of  ˆ
unbias  and ̂  are 

approximately if the sample sizes are large. These results confirm that ˆ
unbias  and ûnbias  

are more precisely estimators than ̂  and ̂ . Moreover, the absolute biases and mean 

squared errors of ̂ , ̂ , ˆ
unbias  and ûnbias  do not depend on parameter values of   

and  , also the population mean. However, they depend on sample sizes. That means 

the absolute biases and mean squared errors of the estimators decrease when sample 

sizes are increased. 

Furthermore, the absolute biases and mean squared errors of these four 

estimators decrease when the sample sizes are increased. This corresponds to the central 

limit theorem.  In clonclusion, ûnbias  and ûnbias  outperform ̂  and ̂  in terms of their 

efficiency and accuracy estimation. Therefore, the unbiased estimators ûnbias  and 

ûnbias  for the parameters ̂  and ̂  are applied to use in confidence interval estimation. 
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TABLE 4-1 The Absolute Bias (ABS) and Mean Squared Error (MSE) of estimators 
in the two-parameter distribution 

n  
True Values ABS MSE 

( , )      ̂  ˆ
unbias  ̂  ˆ

unbias  ̂  ˆ
unbias  ̂  ˆ

unbias  

10 

(1,0.5) 1.5 0.1004 0.0004 0.1005 0.0005 0.0995 0.1104 0.0201 0.0112 

(1,1) 2 0.0981 0.0021 0.0999 0.0003 0.0959 0.1065 0.0201 0.0112 

(1,3) 4 0.0941 0.0066 0.0992 0.0014 0.1024 0.1156 0.0193 0.0107 

(1,5) 6 0.0964 0.0040 0.1001 0.0003 0.1019 0.1144 0.0206 0.0116 

(3,0.5) 3.5 0.3113 0.0126 0.2997 0.0009 0.9072 1.0005 0.1771 0.0981 

(3,1) 4 0.3044 0.0049 0.3040 0.0045 0.9168 1.0175 0.1829 0.0993 

(3,3) 6 0.2785 0.0239 0.2996 0.0027 0.8844 0.9967 0.1828 0.1015 

(3,5) 8 0.3175 0.0195 0.3048 0.0068 0.8822 0.9650 0.1880 0.1056 

30 

(1,0.5) 1.5 0.0349 0.0017 0.0331 0.0002 0.0342 0.0353 0.0022 0.0011 

(1,1) 2 0.0365 0.0032 0.0329 0.0004 0.0337 0.0346 0.0021 0.0011 

(1,3) 4 0.0337 0.0004 0.0337 0.0004 0.0337 0.0348 0.0023 0.0012 

(1,5) 6 0.0364 0.0032 0.0338 0.0006 0.0327 0.0336 0.0023 0.0012 

(3,0.5) 3.5 0.1022 0.0023 0.1009 0.0009 0.3068 0.3171 0.0207 0.0109 

(3,1) 4 0.1084 0.0087 0.1006 0.0009 0.2954 0.3036 0.0201 0.0103 

(3,3) 6 0.1069 0.0071 0.0991 0.0007 0.2930 0.3014 0.0191 0.0097 

(3,5) 8 0.0932 0.0071 0.0997 0.0006 0.2955 0.3070 0.0199 0.0105 

50 

(1,0.5) 1.5 0.0179 0.0021 0.0196 0.0004 0.0197 0.0202 0.0008 0.0004 

(1,1) 2 0.0162 0.0039 0.0199 0.0001 0.0195 0.0201 0.0008 0.0004 

(1,3) 4 0.0196 0.0004 0.0201 0.0000 0.0205 0.0210 0.0008 0.0004 

(1,5) 6 0.0186 0.0014 0.0200 0.0000 0.0195 0.0200 0.0008 0.0004 

(3,0.5) 3.5 0.0564 0.0037 0.0593 0.0008 0.1795 0.1836 0.0070 0.0035 

(3,1) 4 0.0582 0.0018 0.0605 0.0005 0.1803 0.1842 0.0072 0.0036 

(3,3) 6 0.0638 0.0038 0.0607 0.0008 0.1774 0.1804 0.0073 0.0037 

(3,5) 8 0.0510 0.0092 0.0601 0.0001 0.1853 0.1903 0.0074 0.0039 

Note:  Bold text reports that the estimator performs well in terms of absolute bias and mean 
squared error for the situation. 
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TABLE 4-1 (CONTINUED) 

n  
True Values ABS MSE 

( , )      ̂  ˆ
unbias  ̂  ˆ

unbias  ̂  ˆ
unbias  ̂  ˆ

unbias  

100 

(1,0.5) 1.5 0.0102 0.0002 0.0099 0.0001 0.0099 0.0100 0.0002 0.0001 

(1,1) 2 0.0116 0.0016 0.0100 0.0000 0.0103 0.0104 0.0002 0.0001 

(1,3) 4 0.0122 0.0022 0.0100 0.0000 0.0100 0.0101 0.0002 0.0001 

(1,5) 6 0.0108 0.0008 0.0102 0.0002 0.0101 0.0102 0.0002 0.0001 

(3,0.5) 3.5 0.0299 0.0001 0.0300 0.0000 0.0945 0.0955 0.0018 0.0009 

(3,1) 4 0.0303 0.0003 0.0304 0.0004 0.0888 0.0896 0.0018 0.0009 

(3,3) 6 0.0280 0.0021 0.0297 0.0003 0.0913 0.0924 0.0018 0.0009 

(3,5) 8 0.0275 0.0026 0.0302 0.0002 0.0947 0.0959 0.0018 0.0009 

200 

(1,0.5) 1.5 0.0042 0.0008 0.0051 0.0001 0.0049 0.0049 0.0001 0.0000 

(1,1) 2 0.0052 0.0002 0.0050 0.0000 0.0050 0.0050 0.0000 0.0000 

(1,3) 4 0.0058 0.0008 0.0051 0.0001 0.0051 0.0051 0.0001 0.0000 

(1,5) 6 0.0053 0.0003 0.0050 0.0000 0.0049 0.0050 0.0000 0.0000 

(3,0.5) 3.5 0.0205 0.0056 0.0147 0.0003 0.0441 0.0442 0.0004 0.0002 

(3,1) 4 0.0149 0.0001 0.0153 0.0003 0.0445 0.0448 0.0005 0.0002 

(3,3) 6 0.0172 0.0022 0.0153 0.0003 0.0452 0.0454 0.0005 0.0002 

(3,5) 8 0.0147 0.0003 0.0153 0.0003 0.0469 0.0471 0.0005 0.0002 

500 

(1,0.5) 1.5 0.0020 0.0000 0.0020 0.0000 0.0020 0.0021 0.0000 0.0000 

(1,1) 2 0.0020 0.0000 0.0020 0.0000 0.0019 0.0019 0.0000 0.0000 

(1,3) 4 0.0017 0.0003 0.0020 0.0000 0.0020 0.0020 0.0000 0.0000 

(1,5) 6 0.0018 0.0002 0.0020 0.0000 0.0020 0.0020 0.0000 0.0000 

(3,0.5) 3.5 0.0113 0.0053 0.0061 0.0001 0.0178 0.0177 0.0001 0.0000 

(3,1) 4 0.0053 0.0007 0.0059 0.0001 0.0175 0.0175 0.0001 0.0000 

(3,3) 6 0.0045 0.0015 0.0060 0.0000 0.0176 0.0176 0.0001 0.0000 

(3,5) 8 0.0071 0.0011 0.0060 0.0000 0.0179 0.0179 0.0001 0.0000 

Note:  Bold text reports that the estimator performs well in terms of absolute bias and mean 
squared error for the situation. 
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4.2  Comparative analysis of confidence intervals 
 

The performance of confidence intervals for the mean in two-parameter 

exponential distribution is shown in Table 4-2. For small sample sizes, where 10n  

and 30n , the coverage probabilities of 3mCI  and 4mCI  are greater than the nominal 

confidence level at 0.95. Meanwhile, 1mCI , 2mCI , and 5mCI  have the coverage 

probabilities lower than 0.95.  Moreover, 3mCI  and 4mCI  provide the coverage 

probabilities close to 0.95 when the sample sizes are increased. 1mCI  and 2mCI  give the 

coverage probabilities lower than 0. 95 when 100n .  Conversely, when 100n  , the 

coverage probabilities of 1mCI  and 2mCI  are increased and are also close to the 0.95. 

Similarly, when 200,n 5mCI  performs well in term coverage probability.  These 

results are also shown by graphs given in Figure 4-1 to Figure 4-12.  It can be seen that 

4mCI  has the highest efficiency of the coverage probability, followed by 3mCI , 1mCI , 

2mCI , and 5mCI , respectively in all cases. Furthermore, the coverage probabilities of all 

methods do not depend on the parameter mean, but they depend on the sample sizes. 

As we can seen in Table 4-2 that the coverage probabilities of 1mCI , 2mCI , and 5mCI  

increase and are close to 0.95, and 3mCI  and 4mCI  decrease and go to 0.95 if the sample 

sizes are increased. 

The expected lengths of the confidence interval for the mean in two-

parameter exponential distribution are given in Table 4-3. It can be seen that the 

expected lengths of the confidence interval bases on Wald- type method, or 5mCI  are 

the shortest. However, the expected lengths of this method are slightly shorter than that 

of 1mCI .  The results also show that the expected lengths of all methods decrease if the 

sample sizes are increased.  
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TABLE 4-2 The coverage probability (CP) of the 95% confidence intervals for the 
mean in the two-parameter distribution 

n  
True Values CP 

       1mCI  2mCI  3mCI  4mCI  5mCI  

10 

1 

0.5 1.5 0.9188 0.9056 0.9682 0.9624 0.8822 

1 2 0.9232 0.9098 0.9712 0.9690 0.8830 

3 4 0.9170 0.9008 0.9658 0.9628 0.8776 

5 6 0.9162 0.9058 0.9626 0.9616 0.8784 

3 

0.5 3.5 0.9160 0.9030 0.9700 0.9682 0.8772 

1 4 0.9168 0.9036 0.9642 0.9594 0.8774 

3 6 0.9182 0.9060 0.9652 0.9610 0.8796 

5 8 0.9168 0.9046 0.9720 0.9626 0.8808 

30 

1 

0.5 1.5 0.9402 0.9326 0.9488 0.9488 0.9240 

1 2 0.9388 0.9340 0.9534 0.9516 0.9258 

3 4 0.9404 0.9340 0.9480 0.9514 0.9248 

5 6 0.9440 0.9380 0.9516 0.9554 0.9262 

3 

0.5 3.5 0.9374 0.9324 0.9506 0.9512 0.9218 

1 4 0.9460 0.9356 0.9548 0.9574 0.9262 

3 6 0.9446 0.9362 0.9516 0.9542 0.9284 

5 8 0.9440 0.9404 0.9552 0.9534 0.9314 

50 

1 

0.5 1.5 0.9480 0.9436 0.9488 0.9502 0.9376 

1 2 0.9486 0.9456 0.9498 0.9514 0.9390 

3 4 0.9440 0.9406 0.9474 0.9490 0.9352 

5 6 0.9464 0.9418 0.9492 0.9506 0.9364 

3 

0.5 3.5 0.9424 0.9396 0.9496 0.9478 0.9336 

1 4 0.9436 0.9414 0.9492 0.9478 0.9342 

3 6 0.9446 0.9412 0.9498 0.9488 0.9358 

5 8 0.9446 0.9440 0.9394 0.9430 0.9372 

Note: Bold text reports that the confidence interval performs well in terms of coverage 
probability for the situation. 
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TABLE 4-2 (CONTINUED) 

n  
True Values CP 

       1mCI  2mCI  3mCI  4mCI  5mCI  

100 

1 

0.5 1.5 0.9496 0.9476 0.9460 0.9480 0.9450 

1 2 0.9470 0.9418 0.9484 0.9498 0.9392 

3 4 0.9460 0.9452 0.9488 0.9500 0.9410 

5 6 0.9432 0.9428 0.9468 0.9498 0.9408 

3 

0.5 3.5 0.9406 0.9402 0.9448 0.9424 0.9374 

1 4 0.9486 0.9486 0.9484 0.9504 0.9456 

3 6 0.9438 0.9436 0.9452 0.9454 0.9404 

5 8 0.9418 0.9380 0.9406 0.9400 0.9354 

200 

1 

0.5 1.5 0.9538 0.9520 0.9488 0.9512 0.9504 

1 2 0.9446 0.9456 0.9466 0.9482 0.9436 

3 4 0.9474 0.9450 0.9488 0.9490 0.9434 

5 6 0.9486 0.9484 0.9480 0.9488 0.9476 

3 

0.5 3.5 0.9526 0.9528 0.9528 0.9544 0.9508 

1 4 0.9542 0.9530 0.9540 0.9546 0.9512 

3 6 0.9500 0.9478 0.9520 0.9512 0.9462 

5 8 0.9420 0.9418 0.9432 0.9438 0.9396 

500 

1 

0.5 1.5 0.9500 0.9486 0.9426 0.9448 0.9484 

1 2 0.9510 0.9516 0.9524 0.9518 0.9506 

3 4 0.9502 0.9488 0.9496 0.9498 0.9484 

5 6 0.9466 0.9444 0.9436 0.9448 0.9440 

3 

0.5 3.5 0.9524 0.9516 0.9510 0.9520 0.9508 

1 4 0.9484 0.9498 0.9484 0.9478 0.9490 

3 6 0.9496 0.9504 0.9506 0.9502 0.9488 

5 8 0.9478 0.9466 0.9518 0.9508 0.9458 

Note:  Bold text reports that the confidence interval performs well in terms of coverage 
probability for the situation. 
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FIGURE 4-1 Coverage probability of confidence intervals when 10n , 1   

 
 

 

FIGURE 4-2 Coverage probability of confidence intervals when 10n , 3   

 

 

Ref. code: 25646309030127EGZ



59 
 

 

 

FIGURE 4-3 Coverage probability of confidence intervals when 30n  , 1   

 
 

 

FIGURE 4-4 Coverage probability of confidence intervals when 30n  , 3   
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FIGURE 4-5 Coverage probability of confidence intervals when 50n  , 1   

 
 

 

FIGURE 4-6 Coverage probability of confidence intervals when 50n  , 3   
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FIGURE 4-7 Coverage probability of confidence intervals when 100n  , 1   

 
 

 

FIGURE 4-8 Coverage probability of confidence intervals when 100n  , 3   
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FIGURE 4-9 Coverage probability of confidence intervals when 200n  , 1   

 
 

 

FIGURE 4-10 Coverage probability of confidence intervals when 200n  , 3   
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FIGURE 4-11 Coverage probability of confidence intervals when 500n  , 1   

 
 

 
FIGURE 4-12 Coverage probability of confidence intervals when 500n  , 3   

 

 

 

 

 

Ref. code: 25646309030127EGZ



64 
 

 

TABLE 4-3 The Expected Length (EL) of the 95% confidence intervals for the mean 
in the two-parameter distribution 

n  
True Values EL 

       1mCI  2mCI  3mCI  4mCI  5mCI  

10 

1 

0.5 1.5 1.2584 1.3150 2.3963 1.7249 1.1151 

1 2 1.2615 1.3183 2.4023 1.7293 1.1179 

3 4 1.2672 1.3243 2.4131 1.7370 1.1230 

5 6 1.2640 1.3209 2.4069 1.7326 1.1201 

3 

0.5 3.5 3.7610 3.9304 7.1619 5.1555 3.3329 

1 4 3.7707 3.9405 7.1803 5.1688 3.3415 

3 6 3.8069 3.9784 7.2493 5.2184 3.3736 

5 8 3.7522 3.9212 7.1452 5.1435 3.3251 

30 

1 

0.5 1.5 0.7183 0.7293 0.8580 0.7945 0.6907 

1 2 0.7172 0.7281 0.8566 0.7932 0.6896 

3 4 0.7192 0.7302 0.8591 0.7955 0.6915 

5 6 0.7172 0.7282 0.8567 0.7933 0.6896 

3 

0.5 3.5 2.1568 2.1898 2.5763 2.3856 2.0739 

1 4 2.1523 2.1851 2.5708 2.3806 2.0695 

3 6 2.1534 2.1863 2.5721 2.3818 2.0706 

5 8 2.1636 2.1966 2.5843 2.3931 2.0803 

50 

1 

0.5 1.5 0.5573 0.5625 0.6179 0.5916 0.5444 

1 2 0.5583 0.5635 0.6190 0.5926 0.5454 

3 4 0.5563 0.5615 0.6168 0.5906 0.5435 

5 6 0.5569 0.5621 0.6174 0.5911 0.5440 

3 

0.5 3.5 1.6704 1.6859 1.8520 1.7731 1.6318 

1 4 1.6693 1.6849 1.8509 1.7720 1.6308 

3 6 1.6662 1.6817 1.8474 1.7687 1.6277 

5 8 1.6734 1.6890 1.8554 1.7764 1.6348 

Note:  Bold text reports that the confidence interval performs well in terms of expected length 
for the situation. 
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TABLE 4-3 (CONTINUED) 

n  
True Values EL 

       1mCI  2mCI  3mCI  4mCI  5mCI  

100 

1 

0.5 1.5 0.3925 0.3944 0.4128 0.4043 0.3880 

1 2 0.3919 0.3938 0.4122 0.4037 0.3874 

3 4 0.3917 0.3936 0.4119 0.4034 0.3872 

5 6 0.3923 0.3941 0.4125 0.4040 0.3878 

3 

0.5 3.5 1.1778 1.1834 1.2386 1.2130 1.1643 

1 4 1.1776 1.1832 1.2384 1.2128 1.1641 

3 6 1.1786 1.1842 1.2394 1.2138 1.1650 

5 8 1.1788 1.1844 1.2396 1.2140 1.1652 

200 

1 

0.5 1.5 0.2776 0.2783 0.2846 0.2817 0.2760 

1 2 0.2773 0.2780 0.2843 0.2814 0.2757 

3 4 0.2772 0.2778 0.2841 0.2812 0.2756 

5 6 0.2773 0.2780 0.2843 0.2814 0.2757 

3 

0.5 3.5 0.8306 0.8326 0.8515 0.8428 0.8259 

1 4 0.8322 0.8342 0.8531 0.8444 0.8274 

3 6 0.8315 0.8335 0.8524 0.8438 0.8268 

5 8 0.8322 0.8343 0.8531 0.8445 0.8275 

500 

1 

0.5 1.5 0.1754 0.1755 0.1771 0.1764 0.1750 

1 2 0.1754 0.1755 0.1771 0.1764 0.1750 

3 4 0.1754 0.1756 0.1771 0.1764 0.1750 

5 6 0.1754 0.1756 0.1771 0.1764 0.1750 

3 

0.5 3.5 0.5251 0.5257 0.5303 0.5282 0.5239 

1 4 0.5262 0.5267 0.5314 0.5292 0.5250 

3 6 0.5263 0.5268 0.5315 0.5294 0.5251 

5 8 0.5259 0.5264 0.5311 0.5289 0.5247 

Note:  Bold text reports that the confidence interval performs well in terms of expected length 
for the situation. 
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4.3 Application 
 

To illustrate the computation of the confidence intervals proposed in this 

thesis, the data of particulate matter mass concentration denoted as PM 2.5 3( / )g m  

in Bang Na district of Bangkok are used. The PM 2.5 data are obtained from 1 January 

2019 to 31 December 2021, 36 monthly observations. These are reported by the 

Division of Air Quality and Noise Management Bureau, Pollution Control Department, 

Thailand (http://air4thai.pcd.go.th/webV2/history/).  We show the data of PM 2.5 by 

graph that are given in Figure 4-13. The result shows that the data have the right-skewed 

distribution. It seems these data are similar to a two-parameter exponential distribution. 

To clarify we will use the test of significance and compare the minimum Akaike 

information criterion (AIC) and Bayesian information criterion (BIC) of five 

distributions. 

 

 

FIGURE 4-13 Histogram of PM 2.5 

 
Now, we consider the distribution of these data by testing. The related 

hypotheses are  

0H : the data are a two-parameter exponential distribution 

1H : the data are not a two-parameter exponential distribution. 
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Using the Anderson- Darling test, these data follow the two-parameter exponential 

distribution with a p-value of 0.25. Furthermore, the results in Table 4-4 show that the 

lowest AIC = 253.7837 and BIC = 264.1178 for two-parameter exponential model, 

which is thus the most suitable distribution. It seems the PM 2.5 dataset is reasonable 

to use for the study in this chapter.  This result is matched the P-P plot given in Figure 

4-14.  

 

TABLE 4-4 AIC and BIC results of PM 2.5 data 

Models AIC BIC 

Exponential 290.6398 292.2233 

Gamma 266.6492 269.8162 

Weibull 270.0079 273.1749 

Cauchy 284.2087 287.3757 

Two-parameter exponential 253.7837 264.1178 

 

 

FIGURE 4-14 Probability plot of PM 2.5 

 

The summary basic statistics for the PM 2.5 data are 20.2648X   , 

36n   with the maximum likelihood estimator and unbiased estimators for   being 

11.8132̂   and 7ˆ 12.150unbias  , for   being 8.4516̂   and 1ˆ 8.114unbias  , 

respectively.  
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TABLE 4-5 The 95% two-sided confidence intervals for the mean of PM 2.5 data in 
Thailand 

Methods 
Confidence intervals for    3( / )g m  

Length of intervals 
Lower Upper 

1mCI  16.5542 24.5276 7.9734 

2mCI  16.1725 24.2481 8.0755 

3mCI  17.4021 26.6299 9.2279 

4mCI  17.2363 25.9049 8.6686 

5mCI  16.4059 24.1237 7.7178 

 

We then compute the 95%  two- sided confidence interval for    using 

the MOVER approach and Wald- type method. The estimated means are reported in 

Table 4- 5.  The Wald- type method, or 5mCI  has the shortest length.  However, the 

expected length of this method slightly differs from that of other methods. According 

to the results of simulation, in case of 30n , the coverage probabilities of 3mCI  and 

4mCI  are greater than the nominal confidence level of 0.95 but the expected lengths of 

4mCI  are lower than these of 3mCI . We then use 4mCI . Although 5mCI  gives the 

shortest length, it cannot work well in estimating the mean espeacially for 100n . As a 

result, the numerical results from a real data set confirm the simulation studies from the 

previous section. 

Finally, in the period of study the mean of PM 2.5 in Bang Na district 

should is between 17. 2363 and 25. 9049 3/g m . It is reported that the air quality is 

very good.  
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CHAPTER 5 

CONCLUSIONS AND RECOMMENDATIONS 

 

The objective of this thesis is to estimate the parameter and construct the 

confidence interval for the population mean of a two- parameter exponential 

distribution.  The first section is summarized in two main parts: theoretical and 

computational parts. The final section ends with the future work. We give more details 

as in the following. 

 

5.1 Conclusions 
 

In theoretical part, we estimate the parameters of the two- parameter 

exponential distribution.  The maximum likelihood (bias estimator) and unbiased 

estimator of   and   are given by  1
ˆ X X   ,  1

ˆ X  , 

  1
,

ˆ
ˆ  

  
1 1unbias

n X X n

n n




 
 

 and 
 1

1
ˆ   unbias

nX X

n






.   After that, we construct the 

confidence intervals for the population mean of the two-parameter exponential 

distribution.  The method of variance of estimates recovery (MOVER)  using the 

asymptotic theory, the MOVER using profiled likelihood method, the MOVER using 

classical method, the MOVER using pivotal method, and the Wald- type method are 

applied to construct the interval estimators. These confidence intervals have the close-

form solutions. Thus, it is easy to use in computation without software package in 

applications.  

In the computational part, the two- parameter exponential random number 

are generated by using the inverse transform method in RStudio. For each situation, the 

experiment is repeated 5,000 times to obtain the absolute bias, mean squared error, 

coverage probability, and expected length.  We first consider the performance of the 

point estimators for   and   in terms of absolute bias and mean squared error.  We 

prefer the estimator which has a small absolute bias and low mean squared error. 

Furthermore, the criteria for deciding about the performance of interval estimators is 

the coverage probability and expected length. We choose a confidence interval that has 
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a coverage probability greater than or close to the nominal coverage level and has a 

short length interval.  The simulation results of the point and interval estimators are 

given in Chapter 4.  For point estimation, the unbiased estimators perform better than 

the maximum likelihood estimator.  This is because the absolute bias of unbiased 

estimators are lower than the comparators in all situations.  Whereas the mean squared 

error of unbiased estimators are slightly differs from that of maximum likelihood 

estimators. In general theory, the maximum likelihood estimators can be biased or 

unbiased estimator; in this case, the estimators from this method are biases, especially 

for small sample sizes. According to the formula in Chapter 3, the unbiased estimators 

are derived from maximum likelihood estimators. The performance of this estimator is 

adjusted which has more efficient.   In summary, it is noticed that when sample sizes 

are small, the absolute bias and mean squared error of the estimators are greater than 

the large sample size. Most significantly, as sample sizes increase, the magnitude of the 

absolute bias and mean square error for estimators decreases and approaches zero as 

n , which corresponds to the central limit theorem.  

For interval estimation, when sample sizes are large, the coverage 

probabilities of all methods are close to the nominal confidence level at 0. 95. This 

corresponds to the central limit theorem.  Although the Wald- type method gives the 

shortest expected lengths when compared to other methods.  However, its coverage 

probability is less than 0. 95 in all situations.  This confidence interval should not be 

used to estimate the population mean of the two- parameter exponential distribution. 

The coverage probabilities of the MOVER using pivotal method are satisfied the 

nominal level in all cases of the study. Moreover, the coverage probability and expected 

length of the MOVER using pivotal method are nearly the same as the MOVER using 

classical method and are different only at the third or the fourth decimal place.  It can 

be seen that although these methods are based on central limit theorem, they perform 

well in terms of coverage probability when the sample sizes are small.  However, the 

expected length of the MOVER using pivotal method is shorter than the expected length 

of the MOVER using classical method in all cases.  

Therefore, the MOVER using pivotal method is recommended to use for 

estimating the population mean in the two- parameter exponential distribution.  Each 
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estimator has advantages in different situations, and we propose a method for each case 

in the table below. 

 

TABLE 5-1 The most appropriate confidence interval for each situation 
Situation Suggested method 

10n   The MOVER using pivotal method and MOVER using classical method  

30n   The MOVER using pivotal method and MOVER using classical method  

50n   The MOVER using pivotal method and MOVER using classical method  

100n   The MOVER using pivotal method and MOVER using classical method  

200n   The MOVER using pivotal method, MOVER using classical method, 

MOVER using asymptotic method, and MOVER using profile 

likelihood method   

500n   The MOVER using pivotal method, MOVER using classical method, 

MOVER using asymptotic method, and MOVER using profile 

likelihood method   

Noted that the first method is the best and the other is the alternative method. 

 

5.2 Recommendations for future work 
 

The following ideas are interesting for further works. 

1. In this thesis, we studied the confidence interval for the mean in one population. 

Our methods can be extended to construct confidence intervals in the two 

populations. 

2. There are many exceptionally interesting methods for constructing confidence 

intervals. The generalized pivot method and bootstrap approach may be used in 

estimation. 

3. According to very wide applications of the two-parameter exponential 

distribution, we can try to apply it in other fields such as economy and medical 

sciences. 
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APPENDIX A 

TESTING THE DISTRIBUTION OF RANDOM VARIABLE 

 
Since there has no package in the R language directly to find the random number 

in the two- parameter exponential distribution, we used the inverse transformation 

method to derive the solution to obtain the random number. A question is then arised 

whether this method is correct. We used the simulation given in Chapter 3 with the 

settings 20n  , 3  , and 5   to generate the data based on the inverse transform 

method. Simulated data were given by  

10.5322,  8.4385,  8.5231,  9.8699,  18.7857,  

6.5371,  8.3126,  9.8337,  7.8737,  5.1364,  

7.6128,  5.7611,  5.9770,  6.3036,  7.2338,  

5.7186,  6.4431,  18.1292,  6.8815,  5.4951 

We consider the distribution of these simulated data using the Anderson- Darling test. 

It was found that these data follow the two- parameter exponential distribution with a 

probability value of 0.25 (see also Figure A1). As a result, the inverse transform method 

we used to generate the random variable provide the data followed a two- parameter 

exponential distribution.  

 

 

FIGURE A1 The probability plot of data when 20n  , 3   and 5   
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For the case, 100n  , 3   and 5  , the simulated data are shown in Figure 

A2. Again, these data obtained from the inverse transform method based on simulation 

using the R programming followed the two- parameter exponential distribution with a 

probability value of 0.25 (see Figure A3).  

 

 

FIGURE A2 Histogram of data when 100n  , 3   and 5   
 

 

FIGURE A3 The probability plot of data when 100n  , 3   and 5   
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APPENDIX B 

THE REAL DATASET 

 

The real data of PM 2.5 mass concentration in Bang Na area (36 observations) used in 

Chapter 4 are given in the following.  

 

45.1613,  16.8214,  18.5484,  13.7000, 18.1667,  

12.0000,  14.9677,  9.7742,  19.3000,  22.7742,  

30.6667,  34.9032,  9.7742,  19.3000,  22.7742,  

30.6667,  34.9032,  40.3871,  38.3448,  18.2258,  

17.9000,  12.4839,  8.6333,  9.7742,  10.3548,  

10.2667,  16.3871,  22.7000,  28.3226,  39.7419,  

39.0714,  21.8065,  17.2333,  11.6774,  10.7000,  

8.5484,  8.4516,  10.8667,  13.4194,  20.0333,  

37.4194 
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APPENDIX C 

THE PROGRAM FOR CALCULATING CONFIDENCE INETERVAL FOR 
MEAN IN TWO-PARAMETER EXPONENTIAL  

 
#FUNTION 2EXP 

EXP <- function(lambda, theta, n, alpha, M){ 

  Var1 <- rep(0, M) 

  Var2 <- rep(0, M) 

  Var3 <- rep(0, M) 

  Var4 <- rep(0, M) 

   

  mse1 <- rep(0, M) 

  mse2 <- rep(0, M) 

  mse3 <- rep(0, M) 

  mse4 <- rep(0, M) 

   

  L1 <- rep(0, M) ; U1 <- rep(0, M) ; CP1 <- rep(0, M) ; len1 <- rep(0, M) 

  L2 <- rep(0, M) ; U2 <- rep(0, M) ; CP2 <- rep(0, M) ; len2 <- rep(0, M) 

  L3 <- rep(0, M) ; U3 <- rep(0, M) ; CP3 <- rep(0, M) ; len3 <- rep(0, M) 

  L4 <- rep(0, M) ; U4 <- rep(0, M) ; CP4 <- rep(0, M) ; len4 <- rep(0, M) 

  L5 <- rep(0, M) ; U5 <- rep(0, M) ; CP5 <- rep(0, M) ; len5 <- rep(0, M) 

  

   mean.para <- lambda + theta     #parameter used to find CP EL 

   

   ##start for loop 

   for(i in 1:M) { 

 

## Generate data from 2-exp distribution 

    # random sample 

    u = runif(n, 0, 1) 

    X = ifelse(u < 0, 0, theta - lambda*log(1 - u)) 

    lambda.MLE <- mean(X) - min(X) 

    Var1[i] <- lambda.MLE  
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    lambda.un <- n* lambda.MLE /(n - 1) 

    Var2[i] <- lambda.un  

     

    theta.MLE <- min(X) 

    Var3[i] <- theta.MLE 

     

    theta.un <- (n*min(X) - mean(X)) / (n - 1) 

    Var4[i] <- theta.un 

     

# Confidence Interval for mean 

    z <- qnorm(1 - alpha/2) 

    CIL.theta.un <- theta.un - z*lambda.MLE*sqrt(1/(n^2-n)) 

    CIU.theta.un <- theta.un + z*lambda.MLE*sqrt(1/(n^2-n)) 

     

    ##### 1 Asymptotic -> both unbiased 

     

    mean.un = lambda.un + theta.un  

    #lambda.MLE + theta.MLE 

    k2 <- (z*sqrt(n - 1) + n)/(n - 1) 

    c2 <- (-z*sqrt(n - 1) + n)/(n - 1) 

     

    U1[i] <- mean(X) + sqrt((lambda.MLE*k2 - lambda.MLE)^2 + (CIU.theta.un - 

theta.MLE)^2) 

    L1[i] <- mean(X) - sqrt((lambda.MLE - lambda.MLE*c2)^2 + (theta.MLE - 

CIL.theta.un)^2) 

    #cbind(L1,U1) 

     

    #basic method 

    #L1.new <- (lambda.MLE + theta.MLE) - sqrt((lambda.MLE - (lambda.un - 

z*sqrt(lambda.MLE^2/(n-1))))^2 + (theta.MLE - CIL.theta.un)^2) 
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    ##### 2 Profile likelihood 

     

    U2[i] <- (lambda.MLE + theta.MLE) + sqrt((z^2*lambda.MLE^2)/(n-

2)+(CIU.theta.un - theta.MLE)^2) 

    L2[i] <- (lambda.MLE + theta.MLE) - sqrt((z^2*lambda.MLE^2)/(n-

2)+(theta.MLE - CIL.theta.un)^2) 

    #cbind(L2,U2) 

     

    ##### 3 Classical  

     

    # Pivot-lambda, PN-theta 

    k1 <- sqrt(n - 1)*(-z + sqrt(n - 1))   #upper 

    c1 <- sqrt(n - 1)*(z + sqrt(n - 1))    #lower 

    U3[i] <- lambda.MLE + theta.MLE + sqrt((n*lambda.MLE/k1 - lambda.MLE)^2 + 

(CIU.theta.un - theta.MLE)^2) 

    L3[i] <- lambda.MLE + theta.MLE - sqrt((lambda.MLE - n*lambda.MLE/c1)^2 + 

(theta.MLE - CIL.theta.un)^2) 

    #cbind(L3,U3) 

     

    ##### 4 Pivot function 

     

    chiU <- qchisq(alpha/2, 2*n - 2) 

    chiL <- qchisq(1 - alpha/2, 2*n - 2) 

    U4[i] <- lambda.MLE + theta.MLE + sqrt(((2*n*lambda.MLE)/chiU - 

lambda.MLE)^2 + (CIU.theta.un - theta.MLE)^2) 

    L4[i] <- lambda.MLE + theta.MLE - sqrt((lambda.MLE - 

(2*n*lambda.MLE)/chiL)^2 + (theta.MLE - CIL.theta.un)^2) 

    #cbind(L4,U4) 

     

    ##### 5 Delta-method 
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    # X-bar 

    U5[i] <- mean(X) + qnorm(1 - alpha/2) * sqrt(lambda.MLE^2 / n) 

    L5[i] <- mean(X) - qnorm(1 - alpha/2) * sqrt(lambda.MLE^2 / n) 

    #cbind(L5,U5) 

 

## Find MSE 

    mse1[i] <- (lambda - lambda.MLE)^2 

    mse2[i] <- (lambda - lambda.un)^2 

    mse3[i] <- (theta - theta.MLE)^2 

    mse4[i] <- (theta - theta.un)^2 

     

## Find CP and EL  ## 

    ### CP 

    if(L1[i] <= mean.para & mean.para <= U1[i]) { CP1[i] <- 1  

    } else { CP1[i] <- 0 } 

    CP2[i] <- ifelse(L2[i] <= mean.para & mean.para <= U2[i], 1, 0) 

    CP3[i] <- ifelse(L3[i] <= mean.para & mean.para <= U3[i], 1, 0) 

    CP4[i] <- ifelse(L4[i] <= mean.para & mean.para <= U4[i], 1, 0) 

    CP5[i] <- ifelse(L5[i] <= mean.para & mean.para <= U5[i], 1, 0) 

 

    ### EX length 

    len1[i] <- U1[i] - L1[i] 

    len2[i] <- U2[i] - L2[i] 

    len3[i] <- U3[i] - L3[i] 

    len4[i] <- U4[i] - L4[i] 

    len5[i] <- U5[i] - L5[i] 

     

  } # end loop  

 

## Standrad erorr 

   V1 <- sqrt(var(Var1))/M      #lambda.MLE 

   V2 <- sqrt(var(Var2))/M      #lambda.UN 
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   V3 <- sqrt(var(Var3))/M       #theta.MLE 

   V4 <- sqrt(var(Var4))/M       #theta.UN 

 

## MSE 

   M1 <- mean(mse1)  

   M2 <- mean(mse2) 

   M3 <- mean(mse3)  

   M4 <- mean(mse4)  

    

## Abs bias  

   B1 <- abs(mean(Var1) - lambda)    #lambda.MLE 

   B2 <- abs(mean(Var2) - lambda)    #lambda.UN 

   B3 <- abs(mean(Var3) - theta)     #theta.MLE 

   B4 <- abs(mean(Var4) - theta)     #theta.UN  

        

## Average values from M simulation runs   

  CP.1 <- mean(CP1) 

  CP.2 <- mean(CP2) 

  CP.3 <- mean(CP3) 

  CP.4 <- mean(CP4) 

  CP.5 <- mean(CP5) 

 

  len.1 <- mean(len1) 

  len.2 <- mean(len2) 

  len.3 <- mean(len3) 

  len.4 <- mean(len4) 

  len.5 <- mean(len5) 

   

 

  Var <- cbind(V1, V2, V3, V4, NA) 

  Bias <- cbind(B1, B2, B3, B4, NA) 

  MSE <- cbind(M1, M2, M3, M4, NA) 
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  cp <- cbind(CP.1, CP.2, CP.3, CP.4, CP.5) 

  len <- cbind(len.1, len.2, len.3, len.4, len.5) 

   

  output <- data.frame(cp, len, Var, Bias, MSE) 

   

  return(output) 

   

} # end EXP program 

 

library("writexl") 

 

M = 5000 

alpha = 0.05 

 

# n = 10 

case1.0 <- EXP(lambda = 1, theta = 0.5, n = 10, alpha, M) 

case2.0 <- EXP(lambda = 1, theta = 1, n = 10, alpha, M) 

case3.0 <- EXP(lambda = 1, theta = 3, n = 10, alpha, M) 

case4.0 <- EXP(lambda = 1, theta = 5, n = 10, alpha, M) 

case5.0 <- EXP(lambda = 3, theta = 0.5, n = 10, alpha, M) 

case6.0 <- EXP(lambda = 3, theta = 1, n = 10, alpha, M) 

case7.0 <- EXP(lambda = 3, theta = 3, n = 10, alpha, M) 

case8.0 <- EXP(lambda = 3, theta = 5, n = 10, alpha, M) 

 

C0 <- rbind(case1.0, case2.0, case3.0, case4.0, case5.0, case6.0, case7.0, case8.0) 

#write_xlsx(C0,"Downloads/CASE0.xls") 

 

# n = 30 

case1.1 <- EXP(lambda = 1, theta = 0.5, n = 30, alpha, M) 

case2.1 <- EXP(lambda = 1, theta = 1, n = 30, alpha, M) 

case3.1 <- EXP(lambda = 1, theta = 3, n = 30, alpha, M) 
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case4.1 <- EXP(lambda = 1, theta = 5, n = 30, alpha, M) 

case5.1 <- EXP(lambda = 3, theta = 0.5, n = 30, alpha, M) 

case6.1 <- EXP(lambda = 3, theta = 1, n = 30, alpha, M) 

case7.1 <- EXP(lambda = 3, theta = 3, n = 30, alpha, M) 

case8.1 <- EXP(lambda = 3, theta = 5, n = 30, alpha, M) 

 

C1 <- rbind(case1.1, case2.1, case3.1, case4.1, case5.1, case6.1, case7.1, case8.1) 

#write_xlsx(C1,"Downloads/CASE1.xls") 

 

# n = 50 

case1.2 <- EXP(lambda = 1, theta = 0.5, n = 50, alpha, M) 

case2.2 <- EXP(lambda = 1, theta = 1, n = 50, alpha, M) 

case3.2 <- EXP(lambda = 1, theta = 3, n = 50, alpha, M) 

case4.2 <- EXP(lambda = 1, theta = 5, n = 50, alpha, M) 

case5.2 <- EXP(lambda = 3, theta = 0.5, n = 50, alpha, M) 

case6.2 <- EXP(lambda = 3, theta = 1, n = 50, alpha, M) 

case7.2 <- EXP(lambda = 3, theta = 3, n = 50, alpha, M) 

case8.2 <- EXP(lambda = 3, theta = 5, n = 50, alpha, M) 

 

C2 <- rbind(case1.2, case2.2, case3.2, case4.2, case5.2, case6.2, case7.2, case8.2) 

#write_xlsx(C2,"Downloads/CASE2.xls") 

 

# n = 100 

case1.3 <- EXP(lambda = 1, theta = 0.5, n = 100, alpha, M) 

case2.3 <- EXP(lambda = 1, theta = 1, n = 100, alpha, M) 

case3.3 <- EXP(lambda = 1, theta = 3, n = 100, alpha, M) 

case4.3 <- EXP(lambda = 1, theta = 5, n = 100, alpha, M) 

case5.3 <- EXP(lambda = 3, theta = 0.5, n = 100, alpha, M) 

case6.3 <- EXP(lambda = 3, theta = 1, n = 100, alpha, M) 

case7.3 <- EXP(lambda = 3, theta = 3, n = 100, alpha, M) 

case8.3 <- EXP(lambda = 3, theta = 5, n = 100, alpha, M) 
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C3 <- rbind(case1.3, case2.3, case3.3, case4.3, case5.3, case6.3, case7.3, case8.3) 

#write_xlsx(C3,"Downloads/CASE3.xls") 

 

# n = 200 

case1.4 <- EXP(lambda = 1, theta = 0.5, n = 200, alpha, M) 

case2.4 <- EXP(lambda = 1, theta = 1, n = 200, alpha, M) 

case3.4 <- EXP(lambda = 1, theta = 3, n = 200, alpha, M) 

case4.4 <- EXP(lambda = 1, theta = 5, n = 200, alpha, M) 

case5.4 <- EXP(lambda = 3, theta = 0.5, n = 200, alpha, M) 

case6.4 <- EXP(lambda = 3, theta = 1, n = 200, alpha, M) 

case7.4 <- EXP(lambda = 3, theta = 3, n = 200, alpha, M) 

case8.4 <- EXP(lambda = 3, theta = 5, n = 200, alpha, M) 

 

C4 <- rbind(case1.4, case2.4, case3.4, case4.4, case5.4, case6.4, case7.4, case8.4) 

#write_xlsx(C4,"Downloads/CASE4.xls") 

 

# n = 500 

case1.5 <- EXP(lambda = 1, theta = 0.5, n = 500, alpha, M) 

case2.5 <- EXP(lambda = 1, theta = 1, n = 500, alpha, M) 

case3.5 <- EXP(lambda = 1, theta = 3, n = 500, alpha, M) 

case4.5 <- EXP(lambda = 1, theta = 5, n = 500, alpha, M) 

case5.5 <- EXP(lambda = 3, theta = 0.5, n = 500, alpha, M) 

case6.5 <- EXP(lambda = 3, theta = 1, n = 500, alpha, M) 

case7.5 <- EXP(lambda = 3, theta = 3, n = 500, alpha, M) 

case8.5 <- EXP(lambda = 3, theta = 5, n = 500, alpha, M) 

 

C5 <- rbind(case1.5, case2.5, case3.5, case4.5, case5.5, case6.5, case7.5, case8.5) 

#write_xlsx(C5,"Downloads/CASE5.xls") 

 

row <- rbind(C0,C1,C2,C3,C4,C5) 

write_xlsx(row,"Downloads/row.xls") 
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######## Comparing confidence interval ######## 

library(readxl) 

Results <- read_excel("Desktop/Thesis/works/Results.xlsx", sheet = "Plot") 

#View(Results) 

#attach(Results) 

#names(Results) 

x <- c(0.5, 1, 3, 5)  #parameter lambda 

 

par(mfrow = c(1,2)) 

 

## n=10, lambda=1 

plot(x, CP1[1:4], ylim = c(0.85,1), lty = 1, cex = 1, type = "o", pch = 16, 

     xlab = expression(theta), ylab = "Coverage probability", xlim = c(0.5,6)) 

lines(x, CP2[1:4], col = "purple3", lwd = 0.3, lty = 1, cex = 1, type = "o", pch = 16, 

add = T)  

lines(x, CP3[1:4], col = "blue", lwd = 0.3, lty = 1, cex = 1, type = "o", pch = 16, add = 

T)  

lines(x, CP4[1:4], col = "green4", lwd = 0.3, lty = 1, cex = 1, type = "o", pch = 16, 

add = T)  

lines(x, CP5[1:4], col = "orange2", lwd = 0.5, lty = 1, cex = 1, type = "o", pch = 16, 

add = T) 

abline(h = 0.95, lty = 2, col = "red") 

legend("bottomright", legend = paste(c("CI1", "CI2", "CI3", "CI4", "CI5")), lwd = 1,  

       col = c("black", "purple3", "blue","green4","orange2"), pch = c(16, 16, 16, 16, 

16), 

       cex = 0.6, pt.cex = 1)  

title(main = expression(paste("n = 10  ", lambda, " = 1")), cex.main = 1.2, col.lab = 

"black") 

 

 

## n=10, lambda=3 

plot(x, cp1[5:8], ylim = c(0.85,1), lty = 1, cex = 1, type = "o", pch = 16, 
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     xlab = expression(theta), ylab = "Coverage probability", xlim = c(0.5,6)) 

lines(x, CP2[5:8], col = "purple3", lwd = 0.3, lty = 1, cex = 1, type = "o", pch = 16, 

add = T)  

lines(x, CP3[5:8], col = "blue", lwd = 0.3, lty = 1, cex = 1, type = "o", pch = 16, add = 

T)  

lines(x, CP4[5:8], col = "green4", lwd = 0.3, lty = 1, cex = 1, type = "o", pch = 16, 

add = T)  

lines(x, CP5[5:8], col = "orange2", lwd = 0.5, lty = 1, cex = 1, type = "o", pch = 16, 

add = T) 

abline(h = 0.95, lty = 2, col = "red") 

legend("bottomright", legend = paste(c("CI1", "CI2", "CI3", "CI4", "CI5")), lwd = 1,  

       col = c("black", "purple3", "blue","green4","orange2"), pch = c(16, 16, 16, 16, 

16), 

       cex = 0.6, pt.cex = 1)  

title(main = expression(paste("n = 10  ", lambda, " = 3")), cex.main = 1.2, col.lab = 

"black") 

 

## n=30, lambda=1 

plot(x, cp1[9:12], ylim = c(0.85,1), lty = 1, cex = 1, type = "o", pch = 16, 

     xlab = expression(theta), ylab = "Coverage probability", xlim = c(0.5,5.5)) 

lines(x, CP2[9:12], col = "purple3", lwd = 0.3, lty = 1, cex = 1, type = "o", pch = 16, 

add = T)  

lines(x, CP3[9:12], col = "blue", lwd = 0.3, lty = 1, cex = 1, type = "o", pch = 16, add 

= T)  

lines(x, CP4[9:12], col = "green4", lwd = 0.3, lty = 1, cex = 1, type = "o", pch = 16, 

add = T)  

lines(x, CP5[9:12], col = "orange2", lwd = 0.5, lty = 1, cex = 1, type = "o", pch = 16, 

add = T) 

abline(h = 0.95, lty = 2, col = "red") 

legend("bottomright", legend = paste(c("CI1", "CI2", "CI3", "CI4", "CI5")), lwd = 1,  

       col = c("black", "purple3", "blue","green4","orange2"), pch = c(16, 16, 16, 16, 

16), 
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       cex = 0.6, pt.cex = 1)  

title(main = expression(paste("n = 30  ", lambda, " = 1")), cex.main = 1.2, col.lab = 

"black") 

 

## n=30, lambda=3 

plot(x, cp1[13:16], ylim = c(0.85,1), lty = 1, cex = 1, type = "o", pch = 16, 

     xlab = expression(theta), ylab = "Coverage probability", xlim = c(0.5,5.5)) 

lines(x, CP2[13:16], col = "purple3", lwd = 0.3, lty = 1, cex = 1, type = "o", pch = 16, 

add = T)  

lines(x, CP3[13:16], col = "blue", lwd = 0.3, lty = 1, cex = 1, type = "o", pch = 16, 

add = T)  

lines(x, CP4[13:16], col = "green4", lwd = 0.3, lty = 1, cex = 1, type = "o", pch = 16, 

add = T)  

lines(x, CP5[13:16], col = "orange2", lwd = 0.5, lty = 1, cex = 1, type = "o", pch = 16, 

add = T) 

abline(h = 0.95, lty = 2, col = "red") 

legend("bottomright", legend = paste(c("CI1", "CI2", "CI3", "CI4", "CI5")), lwd = 1,  

       col = c("black", "purple3", "blue","green4","orange2"), pch = c(16, 16, 16, 16, 

16), 

       cex = 0.6, pt.cex = 1)  

title(main = expression(paste("n = 30  ", lambda, " = 3")), cex.main = 1.2, col.lab = 

"black") 

 

## n=50, lambda=1 

plot(x, cp1[17:20], ylim = c(0.85,1), lty = 1, cex = 1, type = "o", pch = 16, 

     xlab = expression(theta), ylab = "Coverage probability", xlim = c(0.5,5.5)) 

lines(x, CP2[17:20], col = "purple3", lwd = 0.3, lty = 1, cex = 1, type = "o", pch = 16, 

add = T)  

lines(x, CP3[17:20], col = "blue", lwd = 0.3, lty = 1, cex = 1, type = "o", pch = 16, 

add = T)  

lines(x, CP4[17:20], col = "green4", lwd = 0.3, lty = 1, cex = 1, type = "o", pch = 16, 

add = T)  
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lines(x, CP5[17:20], col = "orange2", lwd = 0.5, lty = 1, cex = 1, type = "o", pch = 16, 

add = T) 

abline(h = 0.95, lty = 2, col = "red") 

legend("bottomright", legend = paste(c("CI1", "CI2", "CI3", "CI4", "CI5")), lwd = 1,  

       col = c("black", "purple3", "blue","green4","orange2"), pch = c(16, 16, 16, 16, 

16), 

       cex = 0.6, pt.cex = 1)  

title(main = expression(paste("n = 50  ", lambda, " = 1")), cex.main = 1.2, col.lab = 

"black") 

 

## n=50, lambda=3 

plot(x, cp1[21:24], ylim = c(0.85,1), lty = 1, cex = 1, type = "o", pch = 16, 

     xlab = expression(theta), ylab = "Coverage probability", xlim = c(0.5,5.5)) 

lines(x, CP2[21:24], col = "purple3", lwd = 0.3, lty = 1, cex = 1, type = "o", pch = 16, 

add = T)  

lines(x, CP3[21:24], col = "blue", lwd = 0.3, lty = 1, cex = 1, type = "o", pch = 16, 

add = T)  

lines(x, CP4[21:24], col = "green4", lwd = 0.3, lty = 1, cex = 1, type = "o", pch = 16, 

add = T)  

lines(x, CP5[21:24], col = "orange2", lwd = 0.5, lty = 1, cex = 1, type = "o", pch = 16, 

add = T) 

abline(h = 0.95, lty = 2, col = "red") 

legend("bottomright", legend = paste(c("CI1", "CI2", "CI3", "CI4", "CI5")), lwd = 1,  

       col = c("black", "purple3", "blue","green4","orange2"), pch = c(16, 16, 16, 16, 

16), 

       cex = 0.6, pt.cex = 1)  

title(main = expression(paste("n = 50  ", lambda, " = 3")), cex.main = 1.2, col.lab = 

"black") 

 

## n=100, lambda=1 

plot(x, cp1[25:28], ylim = c(0.85,1), lty = 1, cex = 1, type = "o", pch = 16, 

     xlab = expression(theta), ylab = "Coverage probability", xlim = c(0.5,5.5)) 
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lines(x, CP2[25:28], col = "purple3", lwd = 0.3, lty = 1, cex = 1, type = "o", pch = 16, 

add = T)  

lines(x, CP3[25:28], col = "blue", lwd = 0.3, lty = 1, cex = 1, type = "o", pch = 16, 

add = T)  

lines(x, CP4[25:28], col = "green4", lwd = 0.3, lty = 1, cex = 1, type = "o", pch = 16, 

add = T)  

lines(x, CP5[25:28], col = "orange2", lwd = 0.5, lty = 1, cex = 1, type = "o", pch = 16, 

add = T) 

abline(h = 0.95, lty = 2, col = "red") 

legend("bottomright", legend = paste(c("CI1", "CI2", "CI3", "CI4", "CI5")), lwd = 1,  

       col = c("black", "purple3", "blue","green4","orange2"), pch = c(16, 16, 16, 16, 

16), 

       cex = 0.6, pt.cex = 1)  

title(main = expression(paste("n = 100  ", lambda, " = 1")), cex.main = 1.2, col.lab = 

"black") 

 

## n=100, lambda=3 

plot(x, cp1[29:32], ylim = c(0.85,1), lty = 1, cex = 1, type = "o", pch = 16, 

     xlab = expression(theta), ylab = "Coverage probability", xlim = c(0.5,5.5)) 

lines(x, CP2[29:32], col = "purple3", lwd = 0.3, lty = 1, cex = 1, type = "o", pch = 16, 

add = T)  

lines(x, CP3[29:32], col = "blue", lwd = 0.3, lty = 1, cex = 1, type = "o", pch = 16, 

add = T)  

lines(x, CP4[29:32], col = "green4", lwd = 0.3, lty = 1, cex = 1, type = "o", pch = 16, 

add = T)  

lines(x, CP5[29:32], col = "orange2", lwd = 0.5, lty = 1, cex = 1, type = "o", pch = 16, 

add = T) 

abline(h = 0.95, lty = 2, col = "red") 

legend("bottomright", legend = paste(c("CI1", "CI2", "CI3", "CI4", "CI5")), lwd = 1,  

       col = c("black", "purple3", "blue","green4","orange2"), pch = c(16, 16, 16, 16, 

16), 

       cex = 0.6, pt.cex = 1)  
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title(main = expression(paste("n = 100  ", lambda, " = 3")), cex.main = 1.2, col.lab = 

"black") 

 

## n=200, lambda=1 

plot(x, cp1[33:36], ylim = c(0.85,1), lty = 1, cex = 1, type = "o", pch = 16, 

     xlab = expression(theta), ylab = "Coverage probability", xlim = c(0.5,5.5)) 

lines(x, CP2[33:36], col = "purple3", lwd = 0.3, lty = 1, cex = 1, type = "o", pch = 16, 

add = T)  

lines(x, CP3[33:36], col = "blue", lwd = 0.3, lty = 1, cex = 1, type = "o", pch = 16, 

add = T)  

lines(x, CP4[33:36], col = "green4", lwd = 0.3, lty = 1, cex = 1, type = "o", pch = 16, 

add = T)  

lines(x, CP5[33:36], col = "orange2", lwd = 0.5, lty = 1, cex = 1, type = "o", pch = 16, 

add = T) 

abline(h = 0.95, lty = 2, col = "red") 

legend("bottomright", legend = paste(c("CI1", "CI2", "CI3", "CI4", "CI5")), lwd = 1,  

       col = c("black", "purple3", "blue","green4","orange2"), pch = c(16, 16, 16, 16, 

16), 

       cex = 0.6, pt.cex = 1)  

title(main = expression(paste("n = 200  ", lambda, " = 1")), cex.main = 1.2, col.lab = 

"black") 

 

## n=200, lambda=3 

plot(x, cp1[37:40], ylim = c(0.85,1), lty = 1, cex = 1, type = "o", pch = 16, 

     xlab = expression(theta), ylab = "Coverage probability", xlim = c(0.5,5.5)) 

lines(x, CP2[37:40], col = "purple3", lwd = 0.3, lty = 1, cex = 1, type = "o", pch = 16, 

add = T)  

lines(x, CP3[37:40], col = "blue", lwd = 0.3, lty = 1, cex = 1, type = "o", pch = 16, 

add = T)  

lines(x, CP4[37:40], col = "green4", lwd = 0.3, lty = 1, cex = 1, type = "o", pch = 16, 

add = T)  
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lines(x, CP5[37:40], col = "orange2", lwd = 0.5, lty = 1, cex = 1, type = "o", pch = 16, 

add = T) 

abline(h = 0.95, lty = 2, col = "red") 

legend("bottomright", legend = paste(c("CI1", "CI2", "CI3", "CI4", "CI5")), lwd = 1,  

       col = c("black", "purple3", "blue","green4","orange2"), pch = c(16, 16, 16, 16, 

16), 

       cex = 0.6, pt.cex = 1)  

title(main = expression(paste("n = 200  ", lambda, " = 3")), cex.main = 1.2, col.lab = 

"black") 

 

## n=500, lambda=1 

plot(x, cp1[41:44], ylim = c(0.85,1), lty = 1, cex = 1, type = "o", pch = 16, 

     xlab = expression(theta), ylab = "Coverage probability", xlim = c(0.5,5.5)) 

lines(x, CP2[41:44], col = "purple3", lwd = 0.3, lty = 1, cex = 1, type = "o", pch = 16, 

add = T)  

lines(x, CP3[41:44], col = "blue", lwd = 0.3, lty = 1, cex = 1, type = "o", pch = 16, 

add = T)  

lines(x, CP4[41:44], col = "green4", lwd = 0.3, lty = 1, cex = 1, type = "o", pch = 16, 

add = T)  

lines(x, CP5[41:44], col = "orange2", lwd = 0.5, lty = 1, cex = 1, type = "o", pch = 16, 

add = T) 

abline(h = 0.95, lty = 2, col = "red") 

legend("bottomright", legend = paste(c("CI1", "CI2", "CI3", "CI4", "CI5")), lwd = 1,  

       col = c("black", "purple3", "blue","green4","orange2"), pch = c(16, 16, 16, 16, 

16), 

       cex = 0.6, pt.cex = 1)  

title(main = expression(paste("n = 500  ", lambda, " = 1")), cex.main = 1.2, col.lab = 

"black") 

 

## n=500, lambda=3 

plot(x, cp1[45:48], ylim = c(0.85,1), lty = 1, cex = 1, type = "o", pch = 16, 

     xlab = expression(theta), ylab = "Coverage probability", xlim = c(0.5,5.5)) 
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lines(x, CP2[45:48], col = "purple3", lwd = 0.3, lty = 1, cex = 1, type = "o", pch = 16, 

add = T)  

lines(x, CP3[45:48], col = "blue", lwd = 0.3, lty = 1, cex = 1, type = "o", pch = 16, 

add = T)  

lines(x, CP4[45:48], col = "green4", lwd = 0.3, lty = 1, cex = 1, type = "o", pch = 16, 

add = T)  

lines(x, CP5[45:48], col = "orange2", lwd = 0.5, lty = 1, cex = 1, type = "o", pch = 16, 

add = T) 

abline(h = 0.95, lty = 2, col = "red") 

legend("bottomright", legend = paste(c("CI1", "CI2", "CI3", "CI4", "CI5")), lwd = 1,  

       col = c("black", "purple3", "blue","green4","orange2"), pch = c(16, 16, 16, 16, 

16), 

       cex = 0.6, pt.cex = 1)  

title(main = expression(paste("n = 500  ", lambda, " = 3")), cex.main = 1.2, col.lab = 

"black") 

 

##### Application ##### 

library(readxl) 

Results <- read_excel("Desktop/Thesis/works/Results.xlsx",sheet = "DATA") 

View(PM) 

X <- Results$PM 

X 

n <- length(Results$PM) 

n 

mean(X) 

lambda.MLE <- mean(X) - min(X) 

lambda.MLE # 11.8132 

lambda.un <- n*lambda.MLE / (n - 1) 

lambda.un  # 12.15072 

theta.MLE <- min(X) 

theta.MLE  # 8.451613 

theta.un <- (n*min(X) - mean(X)) / (n - 1) 
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theta.un   # 8.114093 

 

## CI of theta unbiased estimator 

alpha <- 0.05 

z <- qnorm(1 - alpha/2) 

CIL.theta.un <- theta.un - z*lambda.MLE*sqrt(1/(n^2-n)) 

CIU.theta.un <- theta.un + z*lambda.MLE*sqrt(1/(n^2-n)) 

 

##### 1 Asymptotic -> both unbiased 

k2 <- (z*sqrt(n - 1) + n)/(n - 1) 

c2 <- (-z*sqrt(n - 1) + n)/(n - 1) 

CIL.theta.un <- theta.un - z*lambda.MLE*sqrt(1/(n^2-n)) 

CIU.theta.un <- theta.un + z*lambda.MLE*sqrt(1/(n^2-n)) 

 

U1 <- mean(X) + sqrt((lambda.MLE*k2 - lambda.MLE)^2 + (CIU.theta.un - 

theta.MLE)^2) 

L1 <- mean(X) - sqrt((lambda.MLE - lambda.MLE*c2)^2 + (theta.MLE - 

CIL.theta.un)^2) 

#cbind(L1,U1) 

el1 <- U1 - L1 

 

#basic method 

#L1.new <- (lambda.MLE + theta.MLE) - sqrt((lambda.MLE - (lambda.un - 

z*sqrt(lambda.MLE^2/(n-1))))^2 + (theta.MLE - CIL.theta.un)^2) 

 

##### 2 Profile likelihood 

z <- qnorm(1 - alpha/2) 

CIL.theta.un <- theta.un - z*lambda.MLE*sqrt(1/(n^2 - n)) 

CIU.theta.un <- theta.un + z*lambda.MLE*sqrt(1/(n^2 - n)) 

U2 <- (lambda.MLE + theta.MLE) + sqrt((z^2*lambda.MLE^2)/(n-2)+(CIU.theta.un 

- theta.MLE)^2) 
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L2 <- (lambda.MLE + theta.MLE) - sqrt((z^2*lambda.MLE^2)/(n-2)+(theta.MLE - 

CIL.theta.un)^2) 

#cbind(L2,U2) 

el2 <- U2 - L2 

 

##### 3 Classical  

# Pivot-lambda, PN-theta 

k1 <- sqrt(n - 1)*(-z + sqrt(n - 1))   #upper 

c1 <- sqrt(n - 1)*(z + sqrt(n - 1))    #lower 

U3 <- lambda.MLE + theta.MLE + sqrt((n*lambda.MLE/k1-lambda.MLE)^2 + 

(CIU.theta.un - theta.MLE)^2) 

L3 <- lambda.MLE + theta.MLE - sqrt((lambda.MLE - n*lambda.MLE/c1)^2 + 

(theta.MLE - CIL.theta.un)^2) 

#cbind(L3,U3) 

el3 <- U3 - L3 

 

##### 4 Pivot function 

z <- qnorm(1 - alpha/2) 

chiU <- qchisq(alpha/2, 2*n - 2) 

chiL <- qchisq(1 - alpha/2, 2*n - 2) 

U4 <- lambda.MLE + theta.MLE + sqrt(((2*n*lambda.MLE)/chiU - lambda.MLE)^2 

+ (CIU.theta.un - theta.MLE)^2) 

L4 <- lambda.MLE + theta.MLE - sqrt((lambda.MLE - (2*n*lambda.MLE)/chiL)^2 + 

(theta.MLE - CIL.theta.un)^2) 

cbind(L4,U4) 

el4 <- U4 - L4 

 

##### 5 Delta-method 

# X-bar 

U5 <- mean(X) + qnorm(1 - alpha/2) * sqrt(lambda.MLE^2 / n) 

L5 <- mean(X) - qnorm(1 - alpha/2) * sqrt(lambda.MLE^2 / n) 

#cbind(L5,U5) 
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el5 <- U5-L5 

 

L <- c(L1, L2, L3, L4, L5) 

U <- c(U1, U2, U3, U4, U5) 

EL <- c(el1, el2, el3, el4, el5) 

output <- data.frame(L, U, EL) 

output 

 

##### Fitting distributions ##### 

#install 'fitdistrplus' package if not already installed 

#load package 

install.packages('fitdistrplus') 

install.packages('MASS') 

library(fitdistrplus) 

library(MASS) 

 

#fit our dataset to a gamma distribution using mle 

 

######  2-parameter expo 

k = 2 

l2expo <- (1/(lambda.MLE^36)) * exp(-(1/(lambda.MLE))*(sum(X) - n*theta.MLE)) 

l2expo 

aic2expo <- -2*log(l2expo ) + 2*(2) 

aic2expo 

 

bic2expo <- -2*log(l2expo ) + 2*(2)*log(36) 

bic2expo 

 

######  gamma 

fitgam = fitdist(X, "gamma") 

gofstat(fitgam) 

summary(fitgam) 
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aicgam <- -2*(-131.3246) + 2*(2) 

aicgam 

 

bicgam <- -2*(-131.3246) + 2*(2)*log(36) 

bicgam 

 

######  weibull 

fitwei = fitdist(X, "weibull") 

gofstat(fitwei) 

summary(fitwei) 

 

######  cauchy 

fitcau = fitdist(X, "cauchy") 

gofstat(fitcau) 

summary(fitcau) 

 

#######  Expo 

fitexpo = fitdist(X, "exp") 

gofstat(fitexpo) 

summary(fitexpo) 

lexpo <- (1/(mean(X)^36)) * exp(-(1/(mean(X)))*sum(X)) 

lexpo 

log(lexpo) 

aicexpo <- -2*log(lexpo) + 2*(1) 

aicexpo 

 

bicexpo <- -2*log(lexpo) + (2*log(36)) 

bicexpo 
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