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ABSTRACT

One of the most popular applications in real-world problems from the past

into the present is optimization. It is well-known that the concept of extreme points

plays a vital role in optimization, and the existence of extreme points of compact convex

subsets of a locally convex (Hausdorff) vector space can be obtained from the Krein-

Milman theorem. As the usefulness of this application, many researchers follow this

idea to investigate the existence of extreme points in compact convex subsets of various

abstract spaces. In 2016, the research in this direction in asymmetric normed spaces

was proved in Jonard-Pérez and Sánchez-Pérez (2016). Another important concept par-

allel to the concept of extreme points in optimization is the concept of cones. Most

recently, the idea of cones is used to extend asymmetric normed spaces to asymmetric

cone normed spaces, and its topological properties are studied. Surprisingly, nobody

considered the existence of extreme points of compact convex subsets of asymmetric

cone normed spaces. Our goal in this research is to fulfill this direction. Hence, the

sufficient condition for the existence of extreme points of nonempty compact convex

subsets of asymmetric cone normed spaces is invented. An example to illustrate the

main result presented herein is given.
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CHAPTER 1

INTRODUCTION

In 1931, Wilson (Wilson (1931)) initiated the concept of an asymmetric

metric (or a quasi-metric) by deleting the symmetric property from the properties of

metrics. In addition, some properties of asymmetric metric spaces are proved, and re-

lations between asymmetric metric spaces, metric spaces, and topological spaces are

investigated. From the appearance of this space, several results related to asymmetric

metric spaces were further developed by many authors. For instance, in 1993, follow-

ing the idea of asymmetric metrics, Ferrer et al. (Ferrer et al. (1993)) introduced an

asymmetric norm (or a quasi-norm) and investigated several properties in asymmetric

normed spaces, which are similar to properties in normed spaces. Nowadays, there is a

lot of research on asymmetric normed spaces in many fields.

Although the spaces mentioned earlier have many applications, a codomain

of an asymmetric metric or an asymmetric norm is the set of real numbers. In practice,

some real-world problems require more structure of the codomain of the measuring tools

as an asymmetric metric or an asymmetric norm. Going back to the history of this

direction, it seems that Kurepa (Kurepa (1934)) was the first researcher who replaced a

codomain of a metric from the set of real numbers by with arbitrary partially ordered set.

Many researchers used this approach in the mid-20th century, and hence it has various

names such as abstract metric spaces, K-metric spaces, etc. The early appearance of

this space did not receive much attention and prevalence until Long-Guang and Xian

(Long-Guang and Xian (2007)) re-introduced the mentioned type of spaces under the

name of cone metric spaces. In this study, interior points of the cone are used to define

the partial order of the space. In (Long-Guang and Xian (2007)), the assumption of

the normality of the cone is assumed, but later most of the results were obtained for

non-normal cones. However, the results of non-normal cones have more complicated

proofs.

It is well-known that cone metric spaces are metrizable. It causes some

results in cone metric spaces to be obtained from the standard metric spaces. However,

this does not necessarily mean that all developments in cone metric spaces reduce to

their standard metric spaces. For instance, in the fixed point theory, at least some of
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them still depend on the behavior of cones which is used. Therefore, the research in

cone metric spaces is still exciting and has continued until now.

Similar to cone metric spaces, cone normed spaces are presented as a gen-

eralization of normed spaces. The codomain of a norm is replaced by a partially or-

dered real Banach space. The reader can see more details of fundamental results in cone

normed spaces in (Gordji et al. (2012)). It is fascinating that any asymmetric norm

induces a non-symmetric topology on its domain, named X , generated by the set of all

asymmetric open balls. Moreover, this topology is a T0 topology in X such that the

vector sum on X is continuous. Nonetheless, this topology is not even Hausdorff, and

the scalar multiplication is not continuous in general cases. It leads to asymmetric norm

spaces failing to be a topological vector space. The classic example of a non-Hausdorff

asymmetric normed space is an asymmetric normed lattice. This particular asymmetric

normed space is critical and exciting, mainly because of its applications in theoretical

computer science and complexity theory.

Nowadays, the compactness of asymmetric norm spaces has been widely

studied, and the general structure of compact sets in asymmetric normed spaces is pre-

sented in some exciting results (see (Alegre et al. (2008); Garcia-Raffi (2005); Con-

radie and Mabula (2013))). One of the interesting problems related to the compactness

in asymmetric normed spaces is convexity. There are some results showing that con-

vexity plays a vital role while working with compact sets in asymmetric normed spaces

(see (Jonard-Pérez and Sánchez-Pérez (2016))). Concerning convexity, a significant

effort has been made to improve the fundamental results of functional analysis in the

non-asymmetric case (see (Garcia-Raffi et al. (2002))).

One of these classic results is Krein-Milman theorem, which is stated that

every compact convex subset of a locally convex (Hausdorff) vector space, i.e., a locally

convex vector space, whose topology is Hausdorff, is the closure of the convex hull

of its extreme points. In particular, each compact convex subset of a locally convex

(Hausdorff) vector space has at least an extreme point. However, in general, the Krein-

Milman theorem is no longer valid in asymmetric normed spaces, not even in finite-

dimensional asymmetric normed spaces. In 2022, Garcia-Raffi et al. (Garcia-Raffi et

al. (2002)), it was proved that every Hausdorff asymmetric normed space satisfies

Krein-Milman Theorem.
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In another view of the Krein-Milman theorem, a compact convex subset

of a locally convex (Hausdorff) vector space can be characterized by a set of extreme

points. In practice, there are certain cases that are the set of extreme points, and the set of

extreme rays of a convex set identifies its structure. Indeed, in 1957, Klee (Klee (1957))

was interested in studying the Krein-Milman theorem for locally compact closed convex

subsets of a locally convex (Hausdorff) vector space such that these subsets contain no

lines.

Based onKlee’s theorem, in 2016, Jonard-Pérez and Sánchez-Pérez (Jonard-

Pérez and Sánchez-Pérez (2016)) showed that for each compact convex set K in an

asymmetric normed space (X,q), if φ(θX ) is a kernel of q and K + φ(θX ) is locally

compact in the topology determined by qs, where qs (x) := max{q(x),q(−x)} for all
x ∈ X , then K + φ(θX ) is the closed convex hull of set of all its extreme points and

extreme rays. Moreover, the existence of extreme points in nonempty compact convex

subsets of asymmetric normed spaces is presented in such research. The appearance

of this research opens an avenue to the interesting question: Is it possible to establish

the existence result of extreme points of nonempty compact convex subsets of spaces

having a general structure more than asymmetric normed spaces?

Inspired by the question in the previous paragraph, this thesis aims to present

the sufficient condition for the existence of extreme points of a nonempty compact con-

vex subset of an asymmetric cone normed space, which was most recently introduced

by İlkhan (İlkhan (2020)). Finally, An illustrative example is given to demonstrate the

validity of the hypotheses and the degree of utility of the main result in this thesis.
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CHAPTER 2

PRELIMINARIES

Throughout this thesis, unless otherwise specified, Z, Zn, N, Q, R+, R+ and

R denote the set of integers, the set of integers modulo n where n is a natural number,

the set of natural numbers, the set of rational number, the set of positive real numbers,

the set of nonnegative real numbers and the set of real numbers, respectively. In this

chapter, we give a basic definitions, examples, and properties needed in this thesis.

2.1 Relations

In mathematics, the Cartesian product of sets A and B, denoted by A × B,

is the set of all ordered pairs (x, y) such that x belongs to A and y belongs to B, that is,

A × B = {(x, y) |x ∈ A and y ∈ B}.

Example 2.1.1. Let A = {a,b} and B = {1,2,3}. Then

• A × B = {(a,1), (a,2), (a,3), (b,1), (b,2), (b,3)},

• A × A = {(a,a), (a,b), (b,a), (b,b)},

• B × B = {(1,1), (1,2), (1,3), (2,1), (2,2), (2,3), (3,1), (3,2), (3,3)},

• B × A = {(1,a), (1,b), (2,a), (2,b), (3,a), (3,b)}.

Definition 2.1.2. Let A and B be sets. The set R is called a relation from A to B, if R is

a subset of A × B. Moreover, if R is a relation from A to A, we call R a relation on A.

For simplicity, we use the notion xRy whenever (x, y) ∈ R.

Example 2.1.3. From Example 2.1.1, if we define R1, R2 and R3 by

• R1 = {(a,1), (b,2), (b,3)},

• R2 = {(a,1), (a,2)},

• R3 = {(a,a), (a,b)},
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then R1,R2 ⊆ A × B and R3 ⊆ A × A. Therefore, R1 and R2 are relations from A to B,

and R3 is a relation on A.

There are several definitions related to the property of relations. The defi-

nitions involved in this thesis are as follows.

Definition 2.1.4. Let R be a relation on the set X .

• R is said to be reflexive if (x, x) ∈ R for all x ∈ X .

• R is said to be antisymmetric if (x, y) ∈ R and (y, x) ∈ R imply x = y.

• R is said to be transitive if (x, y) ∈ R and (y, z) ∈ R imply (x, z) ∈ R.

Definition 2.1.5. The relation R on a set X is called a partial order relation if R is

reflexive, antisymmetric and transitive.

Example 2.1.6. Let X = R and the relation R on X be defined by

R = {(x, y) ∈ X × X |y − x ∈ R+}.

Then R is a partial order relation on X , and R is denoted by “≤”.

Definition 2.1.7. A relation f from the set X to the set Y is called a function from X

into Y if for all x ∈ X and y1, y2 ∈ Y , (x, y1), (x, y2) ∈ f =⇒ y1 = y2. We use the

notion f : X −→ Y whenever f is a function from X into Y .

Definition 2.1.8. Let X be a set. A function∼: X ×X −→ X is called a binary operation

on X . For (x, y) ∈ X × X , the value of ∼ (x, y) can be written as x ∼ y.

2.2 Fields

Definition 2.2.1. Let F be a set with binary operations “⊕” (addition) and “⊙” (multi-

plication). The set F is called a field if for every a,b,c ∈ F, these operations satisfy the
following properties:

1. (Associativity of addition)

a ⊕ (b ⊕ c) = (a ⊕ b) ⊕ c;
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2. (Commutativity of addition)

a ⊕ b = b ⊕ a;

3. (Additive identity) there exists θ⊕ ∈ F such that

a ⊕ θ⊕ = a = θ⊕ ⊕ a;

4. (Additive inverses) for each a ∈ F, there exists a⊕ such that

a ⊕ a⊕ = θ⊕ = a⊕ ⊕ a;

5. (Associativity of multiplication)

a ⊙ (b ⊙ c) = (a ⊙ b) ⊙ c;

6. (Commutativity of multiplication)

a ⊙ b = b ⊙ a;

7. (Multiplicative identity) there exists θ⊙ ∈ F \ {θ⊕} such that

a ⊙ θ⊙ = a = θ⊙ ⊙ a;

8. (Multiplicative inverses) for each a ∈ F \ {θ⊕}, there exists a⊙ such that

a ⊙ a⊙ = θ⊙ = a⊙ ⊙ a;

9. (Distributivity of multiplication over addition)

a ⊙ (b ⊕ c) = (a ⊙ b) ⊕ (a ⊙ c).

Example 2.2.2. (Q,+, ·), (R,+, ·) and (C,+, ·) are fields.

Example 2.2.3. For a prime number p, we obtain Zp be a finite field.
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2.3 Vector spaces

Definition 2.3.1. Let V be a set and F be a field. Suppose that ⊕ : V × V −→ V

and ⊙ : F × V −→ V are mappings, which are called a vector addition and a scalar

multiplication, respectively. For simplicity, we use the notion x ⊕ y instead of ⊕(x, y)

and α ⊙ x (or αx) instead of ⊙(α, x). The set V is called a vector space over a field F,

if for every u,v,w ∈ V and α, β ∈ F, the following properties hold:

1. (Associativity of vector addition)

u ⊕ (v ⊕ w) = (u ⊕ v) ⊕ w;

2. (Commutativity of vector addition)

u ⊕ v = v ⊕ u;

3. (Vector additive identity) there exists θV ∈ V , which is called a zero vactor, such

that

v ⊕ θV = v = θV ⊕ v;

4. (Vector additive inverses) for each v ∈ V , there exists v⊕ such that

v ⊕ v⊕ = θV = v⊕ ⊕ v;

5. (Compatibility of scalar multiplication)

α ⊙ (β ⊙ v) = (α ⊙ β) ⊙ v;

6. (Identity element of scalar multiplication)

1F ⊙ v = v = v ⊙ 1F,

where 1F is a multiplicative identity element in field F;

7. (Distributivity of a scalar multiplication with respect to a vector addition)

α ⊙ (u ⊕ v) = (α ⊙ u) ⊕ (α ⊙ v);
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8. (Distributivity of scalar multiplication with respect to field addition)

(α + β) ⊙ v = (α ⊙ v) ⊕ (β ⊙ v).

We can also call (V,⊕,⊙) a vector space. Each element in V is called a vector.

Remark 2.3.2. The vector space over a field R (C) is called a real (complex) vector

space.

Example 2.3.3. Let n ∈ N. Define mappings + : Rn ×Rn −→ Rn and · : R×Rn −→ Rn

by

(x1, x2, x3, . . . , xn) + (y1, y2, y3, . . . , yn) = ((x1 + y1), (x2 + y2), (x3 + y3), . . . , (xn + yn))

and

α · (x1, x2, x3, . . . , xn) = (αx1,αx2,αx3, . . . ,αxn)

for every (x1, x2, x3, . . . , xn), (y1, y2, y3, . . . , yn) ∈ Rn and α ∈ R. Then (Rn,+, ·) is a
real vector space.

Definition 2.3.4. Let X be a real vector space. A subset A of X is called an absorbing

set if for every a ∈ X , there exists r > 0 such that ra ∈ A (see an example in Figure

2.1).

Figure 2.1 An example of an absorbing set A in R2

Example 2.3.5. Let (R,+, ·) be a real vector space defined in Example 2.3.3.

• Let A1 = [−1,1] and a ∈ R. If a = 0, there is r = 1 such that ra = 1 · 0 = 0 ∈ A1.

If a , 0, there exists r = 1
|a | > 0 such that ra = a

|a | ∈ A1. Therefore, A1 is an

absorbing set.
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• Let A2 = {−y,0, x} for some x, y ∈ R+. Assume that a ∈ R. If a = 0, there

is r = 1 such that ra = 1 · 0 = 0 ∈ A2. If a > 0, there exists r = x
a > 0

such that ra = x
a · a = x ∈ A2. If a < 0, there exists r = − y

a > 0 such that

ra = − y
a · a = −y ∈ A2. Therefore, A2 is an absorbing set.

Definition 2.3.6. Let (X,+X , ·X ) and (Y,+Y , ·Y ) be vector spaces over the same field F.

A mapping T : X −→ Y is called a linear mapping if

T (α ·X x +X y) = α ·Y T x +Y T y

for all x, y ∈ X and α ∈ F.

2.4 Convexity

Definition 2.4.1. Let (X,+, ·) be a real vector space and x, y ∈ X .

1. A set R := {x + αy |α ≥ 0} is called a ray.

2. A set L := {x + αy |α ∈ R} is called a line.

3. A line passing through x and y is defined to be the following set

{(1 − α)x + αy |α ∈ R}.

4. A closed line segment joining x and y, denoted by [x, y], is defined by

[x, y] = {(1 − α)x + αy |α ∈ [0,1]}.

A point (1 − α)x + αy, where α ∈ [0,1], is called a convex combination of x and

y.

5. An open line segment joining x and y, denoted by (x, y), is defined by

(x, y) = {(1 − α)x + αy |α ∈ (0,1)}.

Definition 2.4.2. Let (X,+, ·) be a real vector space. A subset A of X is called convex

if for every distinct vectors x, y ∈ A, the convex combination of x and y contains in A,

that is,

(1 − α)x + αy ∈ A
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for every α ∈ [0,1]. This definition indicates, in geometry, that for any two points

x, y ∈ A, the closed line segment joining x and y is entirely contained in A (see in

Figure 2.2).

Figure 2.2 An example of a convex set and a non-convex set in R2

Definition 2.4.3. Let (X,+, ·) be a real vector space and A be a subset of X . The set

conv(A) :=
∩
{B |A ⊆ B and B is convex set}

is called a convex hull of A (see an example in Figure 2.3).

Figure 2.3 An example of a convex hull of a non-convex set B in R2

Example 2.4.4. Let X = R be a real vector space with operators +, · onR and A = [0,1].

Suppose that x, y ∈ A and α ∈ [0,1]. Since x, y ∈ A and α, (1 − α) ≥ 0, we get

(1 − α)x + αy ≥ 0. Without loss of generality, we may assume that x ≤ y, we obtain

(1 − α)x + αy ≤ (1 − α)y + αy = y ≤ 1.

Therefore, A is a convex set.
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Example 2.4.5. Let X = R be a real vector space. By using the same technique in

Example 2.4.4, it is easy to show that for all x, y ∈ R, the open interval (x, y) and closed

interval [x, y] in R are convex sets. Moreover, conv((x, y)) = (x, y) and conv([x, y]) =

[x, y].

Example 2.4.6. Let (R2,+, ·) be a real vector space defined in Example 2.3.3. For each

a1,a2,b1,b2 ∈ R, the following sets are convex sets:

• A1 = [a1,b1] × [a2,b2];

• A2 = (a1,b1) × (a2,b2);

• A3 = [a1,b1] × (a2,b2);

• A4 = {(x, y) |x + y < 1 and x, y ≥ 0}.

Moreover, we get conv(Ai) = Ai for all i ∈ {1,2,3,4}.

Definition 2.4.7. Let X be a real vector space and A a convex subset of X . An element

x ∈ A is called an extreme point of A, if the following condition holds: if x = (1−α)y+

αz for some α ∈ [0,1] and y, z ∈ A, then x = y = z (see examples of extreme points in

Figures 2.4 and 2.5). The set of all extreme points of A is denoted by Ext(A).

Figure 2.4 x1, x2, x3 ∈ R2 are extreme points of a convex set in R2

Example 2.4.8. From Example 2.4.4, we get Ext(A) = {0,1}. Form Example 2.4.6,

we get Ext(A1) = {(a1,a2), (a1,b2), (b1,a2), (b1,b2)}, Ext(A2) = Ext(A3) = ∅ and
Ext(A4) = {(0,0)}. Moreover, if A∗ = [x, y] for some x, y ∈ R, we get Ext(A∗) = {x, y}.

Definition 2.4.9. Let X be a real vector space and A be a convex subset of X . A non

zero vector d ∈ X is called a direction of A if for each x ∈ A and α ≥ 0, x + αd ∈ A.

Two directions d1 and d2 of A are called distinct if d1 , αd2 for some α > 0.
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Figure 2.5 y1, y2, y3, y4, y5 ∈ R2 are extreme points of a convex set in R2

Definition 2.4.10. Let X be a real vector space and A be a convex subset of X . A

direction of A is called an extreme direction of A if d cannot be expressed as a positive

combination of two distinct directions. If d is an extreme direction of A, then R =

{x +αd |α ≥ 0}, where x ∈ A is fixed, is called an extreme ray of A. The set of all points

on all extreme rays of A is denoted by Extr(A).

Example 2.4.11. Consider a real vector space (R2,+, ·) defined in Example 2.3.3, and

a convex subset A = {(x, y) ∈ R2 |x, y ≥ 0} of R2. Let (a,b) ∈ A be fixed. It is easy to

see that

• R1 = {(a,b) + α1(0,1) |α1 ≥ 0} ⊆ A,

• R2 = {(a,b) + α2(1,1) |α2 ≥ 0} ⊆ A,

• R3 = {(a,b) + α3(1,0) |α3 ≥ 0} ⊆ A.

Thus, (0,1), (1,1) and (1,0) are directions of A, and (0,1) and (1,0) are extreme direc-

tions. Moreover,

Extr(A) = {(0, y) |y ≥ 0} ∪ {(x,0) |x ≥ 0}.

2.5 Normed spaces

Definition 2.5.1. Let X be a vector space over a field F (R or C). A mapping ∥ · ∥ :
X −→ R is called a norm on X if it satisfies the following conditions for all x, y ∈ X

and α ∈ F:

1. ∥x∥ = 0⇐⇒ x = θX ;

2. ∥αx∥ = |α | ∥x∥;
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3. ∥x + y∥ ≤ ∥x∥ + ∥y∥.

The ordered pair (X, ∥ · ∥) is called a normed space.

Remark 2.5.2. From Definition 2.5.1, it easy to see that ∥x∥ ≥ 0.

Example 2.5.3. Let X = R be a real vector space. Define a mapping | · | : X −→ R by

|x | =


x if x ≥ 0

−x if x < 0.

Then (R, | · |) is a normed space, and | · | is called an absolute-value norm.

Example 2.5.4. Let X = Rn be a real vector space. Define a mapping ∥ · ∥2 : X −→ R
by

∥(x1, x2, x3, . . . , xn)∥2 =
√

x21 + x22 + x23 + . . . + x2n,

for all (x1, x2, x3, . . . , xn) ∈ X . Then (Rn, ∥ · ∥2) is a normed space, and ∥ · ∥2 is called
a Euclidean norm.

Example 2.5.5. Let X = Rn be a real vector space. Define a mapping ∥ · ∥∞ : X −→ R
by

∥(x1, x2, x3, . . . , xn)∥∞ = sup{|x1 |, |x2 |, |x3 |, . . . , |xn |},

for all (x1, x2, x3, . . . , xn) ∈ X . Then (Rn, ∥ · ∥∞) is a normed space.

Example 2.5.6. Let X = CR[0,1] be a set of all continuous mappings f : [0,1] −→ R.
Define a mapping ∥ · ∥∞ : X −→ R by

∥ f ∥∞ = sup{| f (x) | |x ∈ [0,1]}

for all f ∈ X . Then (CR[0,1], ∥ · ∥∞) is a normed space (see in Figure 2.6).

Definition 2.5.7. Let (X, ∥ · ∥) be a normed space and (xn) a sequence in X . A point

x ∈ X is called a limit of the sequence (xn), if for every ϵ > 0 there exists N ∈ N such

that for every n ≥ N ,

∥xn − x∥ < ϵ.

Moreover, the sequence (xn) is said to converge to x, which is denoted by lim
n→∞

xn = x.
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Figure 2.6 Examples of ∥ f1∥∞ and ∥ f2∥∞, where f1, f2 ∈ X in Example 2.5.6

Definition 2.5.8. A sequence (xn) in a normed space (X, ∥ · ∥) is called a Cauchy se-

quence if for every ϵ > 0, there exists N ∈ N such that for every n,m ≥ N ,

∥xn − xm∥ < ϵ.

Definition 2.5.9. A normed space X is said to be complete if every Cauchy sequence in

X converges to an element in X . A complete normed space is called a Banach space.

Definition 2.5.10. Let (X, ∥ · ∥) be a normed space and x ∈ X . For each ϵ > 0, the open

ball of radius ϵ with centered at x, denoted by B(x, ϵ ), is defined by

B(x, ϵ ) := {y ∈ X |∥y − x∥ < ϵ },

and the closed ball of radius ϵ with centered at x, denoted by B[x, ϵ], is defined by

B[x, ϵ] := {y ∈ X |∥y − x∥ ≤ ϵ }.

Definition 2.5.11. Let (X, ∥ · ∥) be a normed space and A a subset of X . A point x ∈ A

is called an interior point of A if there exists ϵ > 0 such that

B(x, ϵ ) ⊆ A.

The set of all interior points of A is denoted by IntA.

2.6 Asymmetric normed spaces

In the definition of normed spaces, if a field is R, we can see that all scalars

in the whole set R are considered. In the next definition, this situation is weeks to half

set. It means that we will consider only the nonnegative scalars in the definition. This

becomes the new definition as follows:
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Definition 2.6.1. Let X be a real vector space. A mapping q : X → R is called an

asymmetric norm on X if it satisfies the following conditions for all x, y ∈ X and α ≥ 0:

1. q(x) ≥ 0;

2. q(x) = q(−x) = 0⇔ x = 0;

3. q(αx) = αq(x);

4. q(x + y) ≤ q(x) + q(y).

The ordered pair (X,q) is called an asymmetric normed space.

Example 2.6.2. Let X = R be a real vector space. Define a mapping q : X −→ R by

q(x) =


x if x ≥ 0,

0 if x < 0.

Then (R,q) is an asymmetric normed space.

Proposition 2.6.3. Let (X,q) be an asymmetric normed space and amapping qs : X −→
R be defined by

qs (x) = max{q(x),q(−x)}

for all x ∈ X . We obtain (X,qs) is a normed space.

Definition 2.6.4. Let (X,q) be an asymmetric normed space and x ∈ X . For every

ϵ > 0, the q-open ball of radius ϵ with centered at x is denote by Bq(x, ϵ ), is defined by

Bq(x, ϵ ) := {y ∈ X |q(y − x) < ϵ },

and the q-closed ball of radius ϵ with centered at x is denoted by Bq[x, ϵ], is defined by

Bq[x, ϵ] := {y ∈ X |q(y − x) ≤ ϵ }.

For an asymmetric normed space (X,q), the family of open balls Bq(x, ϵ )

for all ϵ > 0 is a base of neighborhoods of the point x with respect to the topology τq
on X generated by an asymmetric norm q.

Example 2.6.5. From Example 2.6.2, for x ∈ R and ϵ > 0, we get Bq(x, ϵ ) = {y |y <
x + ϵ } = (−∞, x + ϵ ). In the same way, Bq[x, ϵ] = (−∞, x + ϵ].
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Definition 2.6.6. Let A be a subset of an asymmetric normed space (X,q).

1. A set A is called a q-open set if for each x ∈ A, there exists ϵ > 0 such that

Bq(x, ϵ ) ⊆ A.

2. A set A is called a q-closed set if the complement of A is q-open.

Definition 2.6.7. Let A be a subset of an asymmetric normed space (X,q). The family

C ⊆ τq is called an open cover of a set A if A is contained in the union of C.

Definition 2.6.8. Let (X,q) be an asymmetric normed space. A set K ⊆ X is said to be

q-compact if every open covers of K has a finite subcover.

2.7 Cones

Definition 2.7.1. Let (E, ∥ · ∥E ) be a real Banach space. A set P ⊂ E is called a cone if

it satisfies the following conditions:

1. P is closed, P , {θE } and P , ∅;

2. α, β ∈ R+ and u,v ∈ P =⇒ αu + βv ∈ P;

3. P ∩ (−P) = {θE }, that is, u ∈ P and −u ∈ P =⇒ u = θE .

Example 2.7.2. From Example 2.5.4, let (E, ∥ · ∥E ) = (R2, ∥ · ∥2) be a real Banach space.

We obtain P = {(x, y) ∈ R2 |x, y ≥ 0} is a cone in E.

For a given cone P on a real Banach space (E, ∥ · ∥E), we can define a partial

order ≼P with respect to P by u ≼P v if v − u ∈ P. We also write u ≺ v to indicate

that u ≼P v but u , v and u ≺≺P v to indicate that for v − u ∈ IntP. In this study, the

notations ≼, ≺, ≺≺ are used for the respective cone.

Next, we give two necessary lemmas which are helpful for the proof of main

results in the next chapter.

Lemma 2.7.3 (Turkoglu and Abuloh (2010)). Let P be a cone on a real Banach space

(E, ∥ · ∥E ). Then for each c ∈ E with θE ≺≺ c, there exists δ > 0 such that u ≺≺ c

whenever u ∈ E with ∥u∥E < δ.
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Lemma 2.7.4 (Turkoglu and Abuloh (2010)). Let P be a cone on a real Banach space

(E, ∥ · ∥E ). Then for each c1,c2 ∈ E with θE ≺≺ c1 and θE ≺≺ c2, there exists c ∈ E

with θE ≺≺ c such that c ≺≺ c1 and c ≺≺ c2.

Lemma 2.7.5. Let P be a cone on a real Banach space (E, ∥ · ∥E ). If x ∈ IntP, then
x
n ∈ IntP for every n ∈ N.

Proof. Suppose that x ∈ IntP. Then there exists ϵ > 0 such that B∥·∥E (x, ϵ ) ⊆ P. Let

n ∈ N. Consider y ∈ B∥·∥E ( x
n ,
ϵ
n ). Then ∥y − x

n ∥E <
ϵ
n , that is,

∥ny − x∥E = n∥y − x
n
∥E < n

(
ϵ

n

)
= ϵ .

Thus ny ∈ B∥·∥E (x, ϵ ) ⊆ P and so y =
(
1
n

)
ny ∈ P. This means that B∥·∥E ( x

n ,
ϵ
n ) ⊆ P.

Therefore, x
n ∈ IntP for every n ∈ N. �

Lemma 2.7.6. Let P be a cone on a real Banach space (E, ∥ · ∥E ) and y ∈ P. If x ∈ IntP,
then x + y ∈ IntP.

Proof. Suppose that x ∈ IntP. Then there exists ϵ > 0 such that B∥·∥E (x, ϵ ) ⊆ P.

Consider z ∈ B∥·∥E (x + y, ϵ ). Then ∥z − (x + y)∥E < ϵ , that is, ∥(z − y) − x∥ < ϵ . Thus,
(z− y) ∈ B∥·∥E (x, ϵ ) ⊆ P and so z = (z− y)+y ∈ P. This means that B∥·∥E (x+y, ϵ ) ⊆ P.

Therefore, x + y ∈ IntP. �

Definition 2.7.7. Let P be a cone on a real Banach space (E, ∥ · ∥E ).

1. The cone P is said to be normal if there exists a constant k > 0 such that x, y ∈ E

and θE ≼ x ≼ y implies that ∥x∥E ≤ k ∥y∥E . The least positive number satisfying

the last inequality is called the normal constant of P. Equivalently, the cone P is

normal if the sandwich theorem holds, i.e., if (xn), (yn) and (zn) are sequences in

E such that

xn ≼ yn ≼ zn for all n ∈ N and lim
n→∞

xn = lim
n→∞

zn = x, then lim
n→∞

yn = x.

2. If the cone P is normal with the normal constant 1, i.e., x, y ∈ E and θE ≼ x ≼ y

implies that ∥x∥E ≤ ∥y∥E , then P is said to be monotone.
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3. The cone P is said to be regular if every increasing sequence which is bounded

from above is convergent, that is, if (xn) is a sequence in E such that

x1 ≼ x2 ≼ x2 ≼ · · · ≼ xn ≼ y

for some y ∈ E, then there is x ∈ E such that lim
n→∞

xn = x. Equivalently, the

cone P is regular if and only if every decreasing sequence which is bounded from

below is convergent (see in (Rezapour and Hamlbarani (2008))).

4. The cone P is said to be minihedral if sup{x, y} exists (or equivalently inf{x, y}
exists) for all x, y ∈ E.

5. The cone P is said to be strongly minihedral if every subset of E which is bounded

above has a supremum.

6. The cone P is said to be solid if IntP , ∅.

Lemma 2.7.8 (Rezapour and Hamlbarani (2008); Karapınar (2010)). 1. A regular

cone is a normal cone (see in (Rezapour and Hamlbarani (2008))).

2. Every strongly minihedral normal (not necessarily closed) cone is regular (see in

(Karapınar (2010))).

3. Every strongly minihedral closed cone is normal (see in (Karapınar (2010))).

From the past to the present, there are numerous examples of several types

of cones. Moreover, a lot of spaces which are important in theory of functional analysis

have cones which are normal and non-solid. The following example shows that there

exists a cone which is non-normal and solid.

Example 2.7.9 (Vandergraft (1967)). Let E = C1
R[0,1] be a set of all continuously

differentiable functions x : [0,1] −→ R. Define a norm ∥ · ∥E on E for each x ∈ E by

∥x∥E = ∥x∥∞ + ∥x (1) ∥∞,

where x (1) is the first derivative of x. It is clear that (E, ∥ · ∥E) is a real Banach space.

Define P = {x ∈ E |x(t) ≥ 0 for all t ≥ 0}. Then P is a non-normal cone on E. Indeed,

for each n ∈ N, if xn(t) := tn
n and yn(t) := 1

n for all t ∈ [0,1], then

θE ≼ xn ≼ yn for all n ∈ N
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and lim
n→∞

yn = θE but lim
n→∞

xn , θE . This means that the sandwich theorem does not hold

and so P is a non-normal cone on E. Furthermore, it is easy to see that P is a solid cone.

Therefore, P is a solid non-normal cone.

2.8 Cone normed spaces

Based on the idea of cones on real Banach spaces, we can extend the concept

of a normed space by replacing the codomain of its norm by a given real Banach space

(E, ∥ · ∥E ), and replacing the usual order in properties of norms by ≼P, where P is a cone

on E.

Definition 2.8.1 (Gordji et al. (2012)). Let ≼ be a partial ordering with respect to a

solid cone P on a real Banach space (E, ∥ · ∥E ) and X a vector space over a field F (R or

C). A mapping ∥ · ∥P : X → E is called a cone norm on X if it satisfies the following

conditions for all x, y ∈ X and α ∈ F:

1. θE ≼ ∥x∥P;

2. ∥x∥P = θE ⇐⇒ x = θX ;

3. ∥αx∥P = |α | ∥x∥P;

4. ∥x + y∥P ≼ ∥x∥P + ∥y∥P.

The ordered pair (X, ∥ · ∥P) is called a cone normed space.

Example 2.8.2. Let X = R be a real vector space. Define a Banach space (E, ∥ · ∥E )

and a cone P on E as in Example 2.7.9. Define a mapping ∥ · ∥P : X → E by

∥x∥P = f x , where f x is define by f x (y) = |x | for all y ∈ [0,1].

Thus, (R, ∥·∥P) is a cone normed space (see in Figure 2.7).

Example 2.8.3. Let X = R2 be a real vector space. Define a Banach space with the

cone in Example 2.7.2. Define a mapping ∥ · ∥P : X → E by

∥(x, y)∥P = ( |x |, |y |)

for all (x, y) ∈ X . Then (X, ∥ · ∥P) is a cone normed space (see in Figure 2.8).
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Figure 2.7 An example of ∥x∥P and ∥y∥P, where x, y ∈ X in Example 2.8.2

Figure 2.8 An example of ∥x∥P, ∥y∥P and ∥z∥P, where x, y, z ∈ X in Example 2.8.3

Definition 2.8.4. Let (X, ∥ · ∥P) be an cone normed space and x ∈ X . For every

c ∈ IntP, the ∥ · ∥P-open ball of radius c with centered at x, denoted by B∥·∥P (x,c), is

defined by

B∥·∥P (x,c) := {y ∈ X | ∥ y − x ∥P≺≺ c},

and the ∥ · ∥P-closed ball of radius c with centered at x, denoted by B∥·∥P [x,c], is defined

by

B∥·∥P [x,c] := {y ∈ X | ∥ y − x ∥P≼ c}.

For a cone normed space (X, ∥ · ∥P), the family of open balls B∥·∥P (x,c) for

all c ∈ IntP is a base of neighborhoods of the point x with respect to the topology τ∥·∥P
on X generated by an asymmetric norm ∥ · ∥P.

Definition 2.8.5. Let A be a subset of a cone normed space (X, ∥ · ∥P).

1. The set A is called a ∥ · ∥P-open set if for each x ∈ A, there exists c ∈ IntP such

that B∥·∥P (x,c) ⊆ A.

2. The set A is called a ∥ · ∥P-closed set if the complement of A is ∥ · ∥P-open.
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Definition 2.8.6. Let A be a subset of a cone normed space (X, ∥ · ∥P). The set A is

called a ∥ · ∥P-closure set, if A is a smallest closed subset of A, and it is denoted by

cl-τ∥·∥P (A).

Definition 2.8.7. A sequence (xn) in a cone normed space (X, ∥ · ∥P) is called ∥ · ∥P-
convergent to x ∈ X if for every c ∈ IntP, there exists nc ∈ N such that ∥xn − x∥P ≺≺ c

for all n ≥ nc, and it is denoted by xn
∥·∥P−→ x.

Lemma 2.8.8. Let (X, ∥ · ∥P) be a cone normed space, x ∈ X and c ∈ IntP.

y ∈ cl-τ∥·∥P (B∥·∥P (x,c)) ⇐⇒ ∃(zn) ⊆ B∥·∥P (x,c), zn
∥·∥P−→ y.

Definition 2.8.9. Let (X, ∥ · ∥P) and (Y, ∥ · ∥P) be cone normed spaces. A mapping

T : X −→ Y is called a continuous mapping if for each x ∈ X and c ∈ IntP, there is

t ∈ IntP such that ∥T x − T y∥P ≺≺ c, whenever y ∈ X and ∥y − x∥P ≺≺ t.

2.9 Asymmetric cone normed spaces

Cone normed spaces play an essential role in various fields such as fixed

point theory, optimization theory, control theory, computer science, and some other

branches in functional analysis. In the definition of cone normed spaces, if a field is

R, we can see that all scalars in the whole set R are considered. In the next definition,

this situation is weeks to half set. It means that we will consider only the nonnegative

scalars in the definition. This becomes the new definition as follows:

Definition 2.9.1 (İlkhan (2020)). Let ≼ be a partial ordering with respect to a solid cone
P on a real Banach space (E, ∥ · ∥E ) and X be a real vector space. Amapping pc : X → E

is called an asymmetric cone norm on X if it satisfies the following conditions for all

x, y ∈ X and α ≥ 0:

1. θE ≼ pc(x);

2. pc(x) = pc(−x) = θE ⇔ x = θX ;

3. pc(αx) = αpc(x);

4. pc(x + y) ≼ pc(x) + pc(y).
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The ordered pair (X,pc) is also called an asymmetric cone normed space.

Example 2.9.2. Let X = R2 be a real vector space. Define a Banach space with the

cone in Example 2.7.2. Define a mapping pc : X → E by

pc(x, y) = (max{x,0},max{y,0})

for all (x, y) ∈ X . Then (X,pc) is an asymmetric cone normed space (see in Figure 2.9).

Figure 2.9 An example of pc(x),pc(y) and pc(z), where x, y, z ∈ X in Example 2.9.2

If (X,pc) is an asymmetric cone normed space with respect to a minihedral

cone P, we can define a cone norm ps
c from an asymmetric cone norm pc by

ps
c(x) = sup{pc(x),pc(−x)}

for every x ∈ X , and so (X,ps
c) is a cone normed space.

Definition 2.9.3. Let (X,pc) be an asymmetric cone normed space respect to a cone P

and x ∈ X . For every c ∈ IntP, the pc-open ball of radius c with centered at x, denoted

by Bpc (x,c), is defined by

Bpc (x,c) := {y ∈ X |pc(y − x) ≺≺ c},

and the pc-closed ball of radius c with centered at x, denoted by Bpc (x,c), is defined by

Bpc [x,c] := {y ∈ X |pc(y − x) ≼ c}.

Example 2.9.4. From Example 2.9.2, the pc-open ball of radius (1,1) with centered

(0,0) is

Bpc ((0,0), (1,1)) = {(x, y) ∈ R2 |x, y < 1},
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and the pc-closed ball of radius (1,1) with centered (0,0) is

Bpc [(0,0), (1,1)] = {(x, y) ∈ R2 |x, y ≤ 1}

(see in Figure 2.10).

Figure 2.10 An pc-open ball and a pc-closed ball in Example 2.9.4

Definition 2.9.5. Let (X,pc) be an asymmetric cone normed space respect to cone P

and A is a subset of X . The smallest pc-closed containing A is called a pc-closure of A,

and it is denoted by A, that is,

A =
∩
{B ⊆ X |B is pc-closed and A ⊆ B}

(see in Figure 2.11).

Figure 2.11 A closure of A

Definition 2.9.6. Let (X,pc) be an asymmetric cone normed space respect to a cone P

and A be a subset of X .

1. The family U of subsets of X is called an open cover of A if U satisfies the

following conditions:
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• U ∈ U is pc-open;

• A ⊆ ∪
U∈U

U

(see in Figure 2.12).

2. The set A is called pc-compact if for every open cover of A, there exists a finite

subcoverV ofU such that A ⊆ ∪
V∈V

V .

Figure 2.12 An open coverU of A

2.10 Klee’s theorem

In this section, the important theorem that helps to prove the main results are

discussed. Before giving the important theorem, the following definitions are needed.

Definition 2.10.1. Let X be a set. A collection τ of subsets of X is called a topology on

X if it satisfies the following the following conditions:

1. ∅,X ∈ τ;

2. the arbitrary union of members of τ belongs to τ;

3. the finite intersection of members of τ belongs to τ.

The ordered pair (X, τ) is also called a topological space. Moreover, the elements of τ

are called an open set and a subset C ⊆ X is called a closed set if the complement of C

is open.
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Definition 2.10.2. Let (X, τ) be a topology and S ⊆ X . A subset V ⊆ X is called a

neighborhood of S if V includes an open set U containing S, that is,

S ⊆ U ⊆ V.

Definition 2.10.3. A topology X is said to beHausdorff if any two distinct points x, y ∈
X , there are disjoint neighborhood of x and y (see in Figure 2.13).

Figure 2.13 A disjoint neighborhoodU of x and a neighborhoodV of y

Definition 2.10.4. A topology X is said to be regular if for each closed set A ⊆ X and

a point x ∈ X with x < A, there are a neighborhoodsU of A and a neighborhoodV of

x such thatU ∩V = ∅ (see in Figure 2.14).

Figure 2.14 A disjoint neighborhoodU of A and a neighborhoodV of x

In 1940, Krein-Milman (Krein and Milman (1940)) presented the theory of

extremes which is stated that “If a space X is regular, then any bounded convex closed

set is the convex closed envelope of the set of its extreme points”.

Definition 2.10.5. Let X be a topological space. A set A ⊆ X is called locally compact

if for each x ∈ A there is a compact neighborhood of x.
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Next, we give the statement of the Klee’s theorem, which is an extension of

the Krein-Milman theorem for locally compact closed convex subset of a locally convex

vector space as follows:

Theorem 2.10.6 (Klee’s theorem in (Klee (1957))). Let C be a locally compact closed

convex subset of a locally convex (Hausdorff) vector space. If C contains no line, then

C = conv(Ext(C) ∪ Extr(C)).
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CHAPTER 3

THE SUFFICIENT CONDITION FOR THE EXISTENCE OF

EXTREME POINTS

The aim of this chapter is to investigate the sufficient condition for the ex-

istence of extreme points of nonempty compact convex subsets of asymmetric cone

normed spaces.

3.1 Main results in asymmetric cone normed spaces

Before showing this result, several propositions and lemmas are proved.

Throughout this thesis, for each x in an asymmetric cone normed space (X,pc), we use

the notion φ(x) as the set of all elements y ∈ X such that pc(y − x) = θE , that is,

φ(x) = {y ∈ X |pc(y − x) = θE } .

Proposition 3.1.1. Let (X,pc) be an asymmetric cone normed space andU,K ⊆ X . The

following statements are true:

1. If U is an pc-open set, then U = U + φ(θX ).

2. K is pc-compact if and only if K + φ(θX ) is pc-compact.

Proof. (1) Since θX ∈ φ(θX ), U = U + θX ⊆ U + φ(θX ). It suffices to prove that

U +φ(θX ) ⊆ U. Let x ∈ U +φ(θX ), that is, x = u+ t, where u ∈ U and t ∈ φ(θX ).

Since U is pc-open, there exists an open ball Bpc (u,c) such that Bpc (u,c) ⊆ U ,

where c ∈ E with θE ≺≺ c. It follows form

pc(x − u) = pc(t) = θE ≺≺ c

that x ∈ Bpc (u,c) ⊆ U and so U + φ(θX ) ⊆ U . Therefore, U = U + φ(θX ).

(2) For the first implication, suppose that K is a compact subset of (X,pc) and U is

an open cover of K + φ(θX ). Since K ⊆ K + φ(θX ), we obtainU is also an open
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cover of K . Then there exists a finite subcoverV ofU with it covers K , that is,

K ⊆ ∪
U∈V

U . By the assertion 1 of this proposition, we get

K + φ(θX ) ⊆
∪

U∈V
U + φ(θX ) =

∪
U∈V

U.

Thus,V is a finite subcover ofU with it covers K +φ(θX ). Therefore, K +φ(θX )

is a compact subset of (X,pc). Next, we will show that the converge is true. Let

K + φ(θX ) be a compact subset of (X,pc) and U be an open cover of K . Thus,

Ω := {U + φ(θX ) |U ∈ U} is an open cover of K + φ(θX ). Then there exists a

finite subcover V of Ω with it covers K + φ(θX ), that is, K + φ(θX ) ⊆ ∪
V∈V

V ,

where V = UV + φ(θX ) for some UV ∈ U . By the assertion 1 of this proposition,

we obtain

K ⊆ K + φ(θX ) ⊆
∪

V∈V
V =

∪
V∈V

(UV + φ(θX )) =
∪

V∈V
UV .

Thus {UV |V ∈ V} is a finite subcover of U with it covers K . Therefore, K is a

compact subset of (X,pc).

�

Lemma 3.1.2. If P is a solid cone on a real Banach space E and x ∈ P\(IntP ∪ {θE }),
then there exists c ∈ IntP such that c − x < IntP.

Proof. Suppose that c− x ∈ IntP for all c ∈ IntP. Choosing y ∈ IntP, by Lemma 2.7.5,

we get y
n ∈ IntP. By Lemma 2.7.6, we obtain y

n + x
2 ∈ IntP for all n ∈ N. Hence,

zn :=
y

n
− x
2
=

(
y

n
+

x
2

)
− x ∈ IntP for all n ∈ N.

Then (zn) ⊆ IntP convergs to − x
2 . Since P is closed, we get − x

2 ∈ P. This implies that

−x ∈ P. Thus, x = θE , which is a contradiction. �

Next we will show that for each an asymmetric cone normed space (X,pc)

and c ∈ E with θE ≺≺ c, Bpc (θX ,c) is absorbing.

Lemma 3.1.3. Let (X,pc) be an asymmetric cone normed space and c ∈ E with θE ≺≺
c. Then the open ball Bpc (θX ,c) is absorbing.
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Proof. Let x ∈ X . By Lemma 2.7.3, there exists δ > 0 such that u ≺≺ c whenever

u ∈ E with ∥u∥E < δ. Choosing r = δ
2∥pc (x)∥E , we obtain

∥pc(r x)∥E = ∥rpc(x)∥E =






(

δ

2 ∥pc(x)∥E

)
pc(x)






E
=
δ ∥pc(x)∥E
2 ∥pc(x)∥E

=
δ

2
< δ.

Thus, pc(r x − θX ) = pc(r x) ≺≺ c, that is, r x ∈ Bpc (θX ,c). Therefore, Bpc (θX ,c) is

absorbing. �

Proposition 3.1.4. Let (X,pc) be an asymmetric cone normed space and c ∈ E with

θE ≺≺ c. Then Bpc (θX ,c) contains no line.

Proof. Suppose that there are x, y ∈ X with x , θX such that L = {y + t x |t ∈ R} ⊆
Bpc (θX ,c). We will divide the proof into 2 cases.

Case 1. Let y = θX . Then L = {t x |t ∈ R}. In this case, there are 2 subcases.

Case 1.1: Assume that pc(l) , θE for some l ∈ L. Let xn =
c
n − pc(l), where n ∈ N.

Since nl ∈ Bpc (θX ,c), we obtain npc(l) = pc(nl) ≺≺ c, that is, c − npc(l) ∈
IntP. By Lemma 2.7.5, c

n − pc(l) ∈ IntP and so (xn) is a sequence in P. Let

ϵ > 0. For nc ∈ N with nc >
∥c∥E
ϵ , we have



xnc − (−pc(l))

E =




 c

nc
− pc(l) + pc(l))





E
=




 c

nc





E
=
∥c∥E

nc
< ϵ

Since P is closed, we obtain (xn) converges in P. Thus −pc(l) ∈ P, that is,

pc(l) = θE , which is a contradiction.

Case 1.2: Assume that pc(l) = θE for every l ∈ L. Then pc(l) = pc(−l) = θE for all

l ∈ L. Since x ∈ L, we get x = θX , which is a contradiction.

Case 2. Let y , θX . By Lemma 3.1.3, we have Bpc (θX ,c) is absorbing and then there

exists r > 0, such that r (−y) ∈ Bpc (θX ,c), that is, (−r)y ∈ Bpc (θX ,c). Since

Bpc (θX ,c) is a convex set, we obtain

s((−r)y) + (1 − s)(y + t x) ∈ Bpc (θX ,c) for every s ∈ [0,1] and t ∈ R.

Letting s = 1
1+r in the above relation, we obtain

(−r)
1 + r

y +
(
1 − 1

1 + r

)
(y + t x) =

(
1 − 1

1 + r

)
t x ∈ Bpc (θX ,c) for every t ∈ R

which contradicts Case 1.
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From all cases, we obtain Bpc (θX ,c) contains no line. �

Corollary 3.1.5. An pc-open ball in an asymmetric cone normed space (X,pc) contains

no line.

Proof. Let x ∈ X and c ∈ E with θE ≺≺ c. Suppose that Bpc (x,c) contains a line. We

will show that Bpc (x,c) ⊆ Bpc (θX ,c′) for some c′ ∈ E with θE ≺≺ c′. For y ∈ Bpc (x,c),

we obtain pc(y− x) ≺≺ c, that is, c− pc(y− x) ∈ IntP. Since pc(y) ≼ pc(y− x)+pc(x),

we obtain pc(y − x) + pc(x) − pc(y) ∈ P. For c′ := c + pc(x), by Lemma 2.7.5, we get

c′−pc(y−θX ) = (c+pc(x))−pc(y) = (c−pc(y−x))+(pc(y−x)+pc(x)−pc(y)) ∈ IntP.

Thus, pc(y − θX ) ≺≺ c′ and then y ∈ Bpc (θX ,c′), that is, Bpc (x,c) ⊆ Bpc (θX ,c′).

Hence, Bpc (θX ,c′) contains a line, which contradicts Proposition 3.1.4. Therefore, a

ball in an asymmetric cone normed space contains no line. �

Corollary 3.1.6. If K is a pc-compact subset of an asymmetric cone normed space

(X,pc) and P is a minihedral cone on X , then K contains no line.

Proof. Assume that K is a compact subset of (X,pc) and K contains a line. Let c ∈ X

with θE ≺≺ c. Then {Bpc (x,c) |x ∈ K } is an open cover of K . Since K is com-

pact, there exists a finite subcover {Bpc (xi,c) |xi ∈ K and i = 1,2,3, . . . ,n} such that

K ⊆
n∪

i=1
Bpc (xi,c). From the proof of Corollary 3.1.5, we obtain Bpc (xi,c) ⊆ Bpc (θX ,c+

pc(xi)) for every xi ∈ K . Since P is minihedral cone, we obtain csup = sup{pc(xi) |i =
1,2,3, . . . ,n} exists. Thus, K ⊆

n∪
i=1

Bpc (xi,c) ⊆
n∪

i=1
Bpc (θX ,c + pc(xi)) ⊆ Bpc (θX ,c +

csup), that is, Bpc (θX ,c+csup) contains a line, which contradicts Proposition 3.1.4. There-

fore, K contains no line. �

Proposition 3.1.7. Let K , ∅ be a pc-compact set in an asymmetric cone normed space

(X,pc). Then the set K + φ(θX ) is ps
c-closed.

Proof. Assume that (xm) is a sequence in K + φ(θX ) and it ps
c-converges to x. We sup-

pose that x is not an element in K + φ(θX ). This implies that for every a ∈ K , we obtain

x − a < φ(θX ). Thus, θE ≺ pc(x − a), that is, pc(x − a) ∈ IntP or pc(x − a) < IntP.

From Lemma 3.1.2, if pc(x − a) < IntP, then we can fine cpc (x−a) ∈ IntP such that
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cpc (x−a) − pc(x − a) < IntP. Letting

δa :=


pc(x − a)
2

, if pc(x − a) ∈ IntP.
cpc (x−a)

2
, otherwise.

From this defining, we obtain δa ∈ IntP. Thus, {Bpc (a, δa)}a∈K is an open cover of K .

By Proposition 3.1.1, it is also an open cover of K + φ(θX ). Since K is compact, there

exists a finite subcover {Bpc (ai, δai )}ni=1 such that K ⊆
n∪

i=1
Bpc (ai, δai ) and so

(xm) ∈ K + φ(θX ) ⊆
n∪

i=1
Bpc (ai, δai ) + φ(θX ) =

n∪
i=1

Bpc (ai, δai ).

Then for each m ∈ N there is im ∈ {1,2,3, . . . ,n} such that xm ∈ Bpc (aim , δaim ), that is,

pc(xm − aim ) ≺≺ δaim . (3.1)

Since (xm) pc-converges to x, for each i = {1,2,3, . . . ,n}, there is Ni ∈ N with

ps
c(x − xm) ≺≺ δai for all m ≥ Ni . (3.2)

Let N := max{N1,N2,N3, . . . ,Nn}. From (3.2), we obtain

ps
c(x − xN ) ≺≺ δai for all i = {1,2,3, . . . ,n}. (3.3)

It follow from (3.1) that there is iN ∈ {1,2,3, . . . ,n} such that

pc(xN − aiN ) ≺≺ δaiN . (3.4)

Combining (3.3) and (3.4), we get

pc(x − aiN ) ≼ pc(x − xN ) + pc(xN − aiN )

≼ ps
c(x − xN ) + pc(xN − aiN )

≺≺ δaiN + δaiN

= 2δaiN .

From the above relation, if pc(x − aiN ) ∈ IntP, we obtain

2δaiN = pc(x − aiN ) ≺≺ 2δaiN
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which is a contradiction. Also, if pc(x − aiN ) < IntP, we obtain

pc(x − aiN ) ≺≺ 2δaiN = 2
(cpc (x−aiN )

2

)
= cpc (x−aiN )

which is a contradiction with cpc (x−aiN ) − pc(x − aiN ) < IntP. Therefore, K + φ(θX ) is

ps
c-closed. �

Proposition 3.1.8. Let K be a pc-compact convex subset in an asymmetric cone normed

space (X,pc). Then the set of extreme points of K + φ(θX ) contained in K .

Proof. Suppose that x ∈ K + φ(θX ) is an extreme point of K + φ(θX ) with x < K . We

will claim that for every z ∈ K , there exists cz ∈ IntP such that x < Bpc (z,cz). Indeed,

let z ∈ K . If x ∈ z + φ(θX ) for some z ∈ K and then there exists y ∈ φ(θX )\{θX } such
that x = z + y. Since y ∈ φ(θX ), we get 2y ∈ φ(θX ), that is z + 2y ∈ K + φ(θX ). Now,

we can write x as a convex combination of z, z + 2y ∈ K + φ(θX ), that is,

x = z + y =
1
2

(z) +
1
2

(z + 2y),

which is a contradiction since x is an extreme point of K + φ(θX ). Thus, x < z + φ(θX )

for every z ∈ K , that is, θE ≺ pc(x − z). By using the same process with the proof of

Proposition 3.1.7, we can define

cz :=


pc(x − z)
2

, if pc(x − z) ∈ IntP.
cpc (x−z)

2
, otherwise,

when cpc (x−z) ∈ IntP such that cpc (x−z) − pc(x − z) < IntP. Thus, x < Bpc (z,cz). By

Proposition 3.1.1, we obtain

K + φ(θX ) ⊆
∪
z∈K

Bpc (z,cz) + φ(θX ) =
∪
z∈K

Bpc (z,cz) ⊂ X\{x},

which is a contradiction with x ∈ K + φ(θX ). Therefore, x is contained in K . �

Now, the existence of extreme points of compact convex sets in asymmetric

cone normed spaces is described by the following core result, which is proved by help-

ing of Propositions 3.1.1, 3.1.7, 3.1.8 and Corollary 3.1.6 together with Klee’s theorem

(Theorem 2.10.6).
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Theorem 3.1.9. Let K , ∅ be a pc-compact convex subset in an asymmetric cone

normed space (X,pc) such that K + φ(θX ) is ps
c-locally compact. Then K has at least

one extreme point.

Proof. By Proposition 3.1.7, K + φ(θX ) is ps
c-closed. By Proposition 3.1.1, K + φ(θX )

is pc-compact. By Corollary 3.1.6, K + φ(θX ) contains no line. Since K is convex, we

obtain K + φ(θX ) is convex. Then it follows from Theorem 2.10.6 that

K + φ(θX ) = conv(Ext(K + φ(θX )) ∪ Extr(K + φ(θX ))),

that is, K + φ(θX ) is the smallest closed set of smallest convex set of its extreme points

and extreme rays. By Proposition 3.1.8, we obtain the set of extreme points of K+φ(θX )

contained in K . Therefore, K has at least one extreme point. �

3.2 Obtained results in asymmetric normed spaces

Same as the previous section, for each x in an asymmetric normed space

(X,q), we use the notion φ∗(x) for the set of all elements y ∈ X such that q(y − x) = 0,

that is,

φ∗(x) = {y ∈ X |q(y − x) = 0} .

Because any asymmetric normed space is also an asymmetric cone normed

space, results in asymmetric normed spaces corresponding to all previous results can be

obtained as follows:

Proposition 3.2.1 (Proposition 2.2 in (Jonard-Pérez and Sánchez-Pérez (2016))). Let

(X,q) be an asymmetric normed space.

1. For any q-open subset U ⊆ X , U = U + φ∗(θX ).

2. A set K ⊆ X is q-compact if and only if K + φ∗(θX ) is q-compact.

Corollary 3.2.2 (Corollary 3.5 in (Jonard-Pérez and Sánchez-Pérez (2016))). If K is a

q-compact subset of an asymmetric normed space (X,q), then K contains no line.

Lemma 3.2.3 (Lemma 3.7 in (Jonard-Pérez and Sánchez-Pérez (2016))). Let K be a

q-compact set in an asymmetric normed space (X,q). Then the set K + φ∗(θX ) is qs-

closed.
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Proposition 3.2.4 (Proposition 4.1 in (Jonard-Pérez and Sánchez-Pérez (2016))). Let

K be a q-compact convex subset in an asymmetric normed space (X,q). Then the set of

extreme points of K + φ∗(θX ) contained in K .

The following result is related to the existence of extreme points of compact

convex sets in asymmetric normed spaces, which is derived from Theorem 3.1.9.

Proposition 3.2.5 (Proposition 4.2 in (Jonard-Pérez and Sánchez-Pérez (2016))). Let

K , ∅ be a q-compact convex subset in an asymmetric normed space (X,q) such that

K + φ(θX ) is qs-locally compact. Then K has at least one extreme point.
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CHAPTER 4

AN ILLUSTRATIVE EXAMPLE AND AN OPEN PROBLEM

In this chapter, we furnish an illustrative example to demonstrate the validity

of the hypotheses and degree of utility of Theorem 3.1.9. In addition, an open problem

are given to the reader for further study.

4.1 An illustrative example

Example 4.1.1. Let (E, ∥ · ∥E ) be a Euclidean Banach space (R2, ∥ · ∥E ). Define a cone

P on (E, ∥ · ∥E ) by P = R2+. Also, we let X = R2 and define a mapping pc : X → E by

pc((x, y)) = (x+, y+)

for all (x, y) ∈ X , where a+ := max{a,0} for any a ∈ R. We obtain (X,pc) is an

asymmetric cone normed space with respect to a cone P and

φ((0,0)) = {(x, y) ∈ X |x ≤ 0 and y ≤ 0}.

Let

K = {(x, y) ∈ X | − 1 ≤ x ≤ 1 and − 1 ≤ y ≤ 1}.

It is easy to see that K is a nonempty convex set. Now, we will show that K is a pc-

compact subset in (X,pc). Suppose thatU is an pc-open cover of K . Thus, (1,1) ∈ U

for someU ∈ U . We know that for all (x, y) ∈ K , we have (x, y) ≼ (1,1). This implies

that K ⊆ U and so K is pc-compact.

Finally, we will claim that K + φ((0,0)) = {(x, y) ∈ X |x ≤ 1 and y ≤ 1}
is locally ps

c-compact. For each (h, k) ∈ K + φ((0,0)), there is ϵ > 0 such that an open

ball

Bpsc ((h, k), (ϵ, ϵ )) := {(x, y) ∈ X | |x − h| < ϵ and |y − k | < ϵ }

and a closed ball

Bpsc [(h, k), (ϵ, ϵ )] := {(x, y) ∈ X | |x − h| < ϵ and |y − k | < ϵ }

satisfying

(h, k) ∈ Bpsc ((h, k), (ϵ, ϵ )) ⊆ Bpsc [(h, k), (ϵ, ϵ )]

Ref. code: 25646309031067IPM



36

and Bpsc [(a,b), (r1,r2)] is ps
c-compact. Therefore, K + φ((0,0)) is locally ps

c-compact.

By Theorem 3.1.9, K has at least one extreme point. In this case, we have

Ext(K ) = {(1,1), (1,−1), (−1,−1), (−1,−1)}.

4.2 An open problem

In this section, we would like to mention the interesting structure of an

asymmetric cone locally convex space which was published in Proceedings of the 26th

Annual Meeting in Mathematics. In this research, we define the definition of an asym-

metric cone locally convex space by a family of asymmetric cone norms in the same

Banach space and investigate the precompactness in this space. Based on the idea of

an asymmetric cone locally convex space in such research, we will raise the following

question to the reader for further study:

• Can use the idea in Chapter 3 to invent the novel results concerning the existence

of extreme points of a given subset in asymmetric cone locally convex spaces?
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