

AN AUTONOMOUS FRAMEWORK FOR

REAL-TIME WRONG-WAY DRIVING

VEHICLE DETECTION FROM CCTV

BY

PINTUSORN SUTTIPONPISARN

A THESIS SUBMITTED IN PARTIAL FULFILLMENT

OF THE REQUIREMENTS FOR THE DEGREE

OF MASTER OF ENGINEERING

(ARTIFICIAL INTELLIGENCE AND INTERNET OF THINGS)

SIRINDHORN INTERNATIONAL INSTITUTE OF TECHNOLOGY

THAMMASAT UNIVERSITY

ACADEMIC YEAR 2021

COPYRIGHT OF THAMMASAT UNIVERSITY

Ref. code: 25646322040400GFX

(1)

Thesis Title AN AUTONOMOUS FRAMEWORK FOR

REAL-TIME WRONG-WAY DRIVING

VEHICLE DETECTION FROM CCTV

Author Pintusorn Suttiponpisarn

Degree Master of Engineering (Artificial Intelligence

 and Internet of Things)

Faculty/University Sirindhorn International Institute of Technology/

Thammasat University

Thesis Advisor Assistant Professor Sasiporn Usanavasin, Ph.D.

Academic Years 2021

ABSTRACT

In 2018, around 22,000 people were killed in road accidents in Thailand and

more than 80% of road accidents involved motorcycles. There are several reasons for

traffic death and one of them is motorcycles driving in the wrong direction. In our

research, we proposed an autonomous framework, WrongWay-LVDC, that can detect

vehicles that drive in the wrong direction from CCTV videos. The framework is

composed of other additional features that allow the detection process to run smoothly

and automatically. The features that are included in the framework are road lane

detecting, correct driving direction validating, detecting the wrong-way driving

vehicles, and evidence image capturing. In total, we have proposed three algorithms and

a feature for our main contributions. The three algorithms are, first, the Road Lane

Boundary Detection based on the CCTV camera angle (RLB-CCTV) algorithm. Second,

is the Majority-Based Correct Direction Detection (MBCDD) algorithm. Third, is the

Distance-based Direction Detection (DBDD) algorithm. The additional feature we

developed is the Inside Boundary Image (IBI) capturing feature that captures the clearest

shot of the wrong-way driving vehicle. Each algorithm and feature will be explained in

terms of its methods, result, and discussion in this thesis. As a result, the framework can

execute continuously and output a report for vehicles’ driving behaviors in each area.

The accuracy of our approach is 95.23% as we tested with several CCTV videos using

Ref. code: 25646322040400GFX

(2)

the DBDD algorithm. Moreover, the framework can be implemented on edge devices

with real-time speed where it is proved that the framework is light-weighted and

consume low resource while executing.

Keywords: Image processing, Deep Learning, Computer Vision, YOLOv4-Tiny,

FastMOT, Wrong-Way Driving, Lane Detection, Hough Transform

Ref. code: 25646322040400GFX

(3)

ACKNOWLEDGEMENTS

 I would like to thank Dr. Chalermpol Charnsripinyo for supervising my

research. He gave me the opportunity to join his group on the theme of a smart living

platform. I would also like to thank my advisor Associate Professor Sasiporn

Usanavasin for advising this research. They always encouraged me to think and grow

as a researcher. Both gave me plenty of guidance and idea to design and develop this

research work. Their support has been invaluable to this success. I also would like to

thank other committee members, Dr. Seksan Laitrakun for his helpful comments and

suggestions to improve the quality of this thesis.

 This research is financially supported by Thailand Advanced Institute of

Science and Technology (TAIST), National Science and Technology Development

Agency (NSTDA), Tokyo Institute of Technology, Sirindhorn International Institute of

Technology (SIIT), Thammasat University (TU) under the TAIST Tokyo Tech

Program.

Pintusorn Suttiponpisarn

Ref. code: 25646322040400GFX

(4)

TABLE OF CONTENTS

 Page

ABSTRACT (1)

ACKNOWLEDGEMENTS (3)

LIST OF TABLES (7)

LIST OF FIGURES (8)

LIST OF SYMBOLS/ABBREVIATIONS (12)

CHAPTER 1 INTRODUCTION

1.1 Background 1

1.2 Statement of Problem 3

1.3 Objectives 3

1.4 Thesis Outline 4

CHAPTER 2 REVIEW OF LITERATURE

2.1 Wrong-Way Driving Detection 6

2.2 Object Detection 8

2.3 Object Tracking 9

2.4 Road Lane Detection 10

2.5 Embedded System 11

CHAPTER 3 WRONGWAY-LVDC FRAMEWORK

3.1 Framework Flow 13

3.2 Framework Version 14

3.3 Input 15

3.3.1 Input Image 16

3.3.2 Vehicle Information 17

Ref. code: 25646322040400GFX

(5)

CHAPTER 4 PROPOSED METHOD: ROAD LANE DETECTION

4.1 Orientation Decision 19

4.2 Image Preprocessing 23

4.3 Area of Interest 26

4.4 Lane Line Decision 28

CHAPTER 5 PROPOSED METHOD: WRONG-WAY DRIVING DETECTION

5.1 Majority Based Correct Direction Detection 35

5.1.1 Correct Direction Validation Part 35

5.1.2 Detection Part 40

5.2 Distance-Based Direction Detection 42

5.2.1 Divide Road Area 43

5.2.2 Determine Area Type 44

CHAPTER 6 INSIDE BOUNDARY IMAGE CAPTURING FEATURE

6.1 Vertical Orientation Image Capturing 48

6.2 Horizontal Orientation Image Capturing 51

CHAPTER 7 EXPERIMENTAL RESULTS

7.1 Dataset 53

7.2 Vehicle Detection 53

7.3 Framework’s Result 54

7.3.1 Road Lane Detection based on CCTV Algorithm 54

7.3.2 Distance-Based Direction Detection Algorithm 55

7.3.3 Inside Boundary Image Capturing Feature 58

CHAPTER 8 CONCLUSION

8.1 Limitations 60

8.2 Challenging Constraints 62

8.3 Summary of Thesis 65

REFERENCES 67

Ref. code: 25646322040400GFX

(6)

BIOGRAPHY 71

Ref. code: 25646322040400GFX

(7)

LIST OF TABLES

Tables Page

2.1 Comparison of wrong-way driving detection papers. 6

5. 1 Information about each unique vehicle ID. 37

7.1 Accuracy of the YOLOv4 Tiny model. 54

7.2 The number of start and stop points on each divided road area. 55

7.3 Numbers of motorcycles were detected as wrong-way and correct-way driving

___using the DBDD algorithm. 57

8.1 MBCDD algorithm in the validation step on Jetson Nano. 61

8.2 Adjusted parameters in mot.json file. 64

Ref. code: 25646322040400GFX

(8)

LIST OF FIGURES

Figures Page

1.1 Image evidence of many motorcycles driving in the wrong direction on

___Paholyothin road, in front of Bangkok University. 2

3.1 WrongWay-LVDC’s framework flow. 13

3.2 System flow for different framework versions. 14

3.3 Roads that do not pass the condition (a) The construction is one the side road

___(b) Many vehicles are blocking the side road. 16

3.4 System flow on the method to obtain the vehicle information and image. 16

3.5 Vehicle Information plotting. 17

4.1 Camera view of CCTV (a) vertical orientation (b) vertical orientation (c)

___horizontal orientation. 19

4.2 System flow of RLB-CCTV algorithm. 19

4.3 The vehicle information was obtained after detecting and tracking all vehicles

___in the video for one minute (a) Horizontal orientation (b) Vertical orientation

___(c) Vertical orientation with two roads. 20

4.4 System flow of Orientation decision step. 20

4.5 Step to obtain the vectors to find the angle (a) Get vehicle information as an

___input (b) Set the lower point to be P1 and the upper point to be P2 (c) Draw a

___vector to the right where the initial point is P1 (d) Obtain the vehicle movement

___vector from P1 and P2 (e) Find the angle in degree. 21

4.6 All possible vectors and angles. 21

4.7 Angle value histogram plot (a) Horizontal orientation (b) Vertical orientation

___(c) Vertical orientation with two lanes. 23

4.8 System flow of image preprocessing step. 23

4.9 Adjust the brightness on the input image (a) Horizontal orientation (b) Vertical

___orientation (c) Vertical orientation with two lanes. 24

4.10 Apply CLAHE and Gaussian blur (a) Horizontal orientation (b) Vertical

___orientation (c) Vertical orientation with two lanes. 25

4.11 Apply Histogram Equalization (a) Horizontal orientation (b) Vertical

___orientation (c) Vertical orientation with two lanes. 25

Ref. code: 25646322040400GFX

(9)

4.12 Apply Canny edge detection (a) Horizontal orientation (b) Vertical

___orientation (c) Vertical orientation with two lanes. 25

4.13 System flow of Area of Interest step. 26

4.14 Apply a convex hull to wrap around all start and stop points from vehicle

___information. (a) Horizontal orientation (b) Vertical orientation (c) Vertical

___orientation with two lanes. Expand the edge of the convex hull shape (d)

___Horizontal orientation (e) Vertical orientation (f) Vertical orientation with two

___lanes. 27

4.15 Apply a bitwise mask between the area of interest and the final output from

___the image preprocessing step (a) Horizontal orientation (b) Vertical orientation

___(c) Vertical orientation with two lanes. Remove the upper and lower

___boundaries (d) Horizontal orientation (e) Vertical orientation (f) Vertical

___orientation with two lanes. 28

4.16 System flow of lane line detection step. 28

4.17 Apply Hough transform to draw straight lines on the image. The red lines are

___the unwanted Hough lines we received. The green lines are the correct Hough

___lines we expected (a) Horizontal orientation (b) Vertical orientation (c)

___Vertical orientation with two lanes. Remove the unwanted red Hough lines (d)

___Horizontal orientation (e) Vertical orientation (f) Vertical orientation with two

___lanes. 30

4.18 Form polygons (a) Horizontal orientation (b) Vertical orientation (c) Vertical

___orientation with two lanes. Overlay start and stop point from vehicle

___information on the polygons (d) Horizontal orientation (e) Vertical orientation

___ (f) Vertical orientation with two lanes. 33

4.19 Final output (a) Horizontal orientation (b) Vertical orientation (c) Vertical

___orientation with two lanes. 34

5.1 System flow for validation part in MBCDD. 36

5.2 Detecting and tracking all vehicles for direction validation. 36

5.3 The direction of most vehicles for each lane of the road. 37

5.4 The method to find the angle value from the vehicle moving direction. 38

5.5 All possible angles for the movement direction. 38

5.6 Degree distribution for each lane of the road. 39

Ref. code: 25646322040400GFX

(10)

5.7 Screenshot of the system detecting vehicles driving direction (a) Correct

___direction in the area one detected (b) Correct direction in the area two detected

___ (c) Wrong direction in the area one detected. 41

5.8 System flow of DBDD algorithm. 43

5.9 Overlay all points from vehicle information on the areas (a) Horizontal

___orientation; (b) Vertical orientation (c) Vertical orientation with two lanes.

___Overlay start points from vehicle information on the areas (d) Horizontal

___orientation (e) Vertical orientation (f) Vertical orientation with two lanes.

___Overlay stop points from vehicle information on the areas (g) Horizontal

___orientation (h) Vertical orientation (i) Vertical orientation with two lanes. 44

5.10 Label the area and get the stopping reference point (a) Horizontal orientation

____with a stop area on the right (b) Vertical orientation with a stop area on the

____bottom (c) Vertical orientation with two lanes with opposite driving

____directions. 45

5.11 Length of detected road boundary from the RLB-CCTV algorithm (a)

____Vertical orientation (b) Horizontal orientation. 46

5.12 The road boundaries are cropped for a range of 3/10 to 7/10 (a) Horizontal

____orientation (b) Vertical orientation (c) Vertical orientation with two lanes. 47

6.1 System flow of IBI capturing feature. 48

6.2 Image coordinate system. 49

6.3 The screenshots when the CY bounding box is lower than YL. 50

6.4 The screenshots when the CY bounding box is above YL by 20 pixels. 51

6.5 The screenshots when the wrong-way driving vehicle is driving upward. 51

6.6 The screenshots when capturing vehicles driving in the wrong direction in the

___vertical oriented video. 52

7.1 Labeling the dataset with three classes: Motorcycle, car, and large vehicle. 53

7.2 Output images with road boundaries using the RLB-CCTV algorithm. 55

7.3 Screenshot of the DBDD algorithm while detecting vehicles driving in the

___correct and wrong direction. 58

7.4 Output images of the wrong-way driving vehicles using the IBI capturing

___feature (a) Vertical orientation road (b) Horizontal orientation road. 58

Ref. code: 25646322040400GFX

(11)

8.1 Detected vehicle movements (a) 1,000 frame length (b) 2,000 frame length (c)

___3,000 frame length. 62

Ref. code: 25646322040400GFX

(12)

LIST OF SYMBOLS/ABBREVIATIONS

Symbols/Abbreviations Terms

WrongWay-LVDC Wrong-Way Driving Detection

 framework with features of Lane

detecting, Validating the direction,

Detecting wrong-way driving

vehicles, and Capturing image

evidence

RLB-CCTV algorithm Road Lane Boundary Detection based

on CCTV camera angle algorithm

MBCDD algorithm Majority-Based Correct Direction

Detection algorithm

DBDD algorithm Distance-Based Direction Detection

algorithm

IBI capturing feature Inside Boundary Image Capturing

feature

Ref. code: 25646322040400GFX

1

 CHAPTER 1

INTRODUCTION

1.1 Background

Looking back a few years ago; according to the 2018 Global Status Report on

Road Safety, Thailand has the highest motorcycle road traffic deaths in the world

(Thongphat, 2019). The total compensation for all accidents is around 500 billion baht.

About half of the motorcycle crashes are caused by: speeding, cutting in front of other

vehicles, poor driving skills, and driving on the wrong side of the road. It is always

better to prevent such bad driving behaviors from occurring, for example, authorizing

stricter motorcycle driving license exams, building special lanes for motorcycles in

urban areas, putting up warning signs for dangerous spots that frequently have

accidents, or using modern technology to monitor, evaluate, and punish the drivers

when they do not follow the law. As a result, the prevention will provide safer roads

for all. For the best possible outcome, no death occurs from motorcycle accidents and

reductions in compensation paid to the victims.

Motorcycles driving in the wrong direction is one of the main issues in Thailand

traffic that causes accidents, especially in the urban area. There are three main reasons

why this wrong-way driving behavior keeps occurring. First, some areas have a distant

U-turn point which is not convenient for the drivers, especially for small vehicle drivers

like motorcycles. Assuming vehicle drivers want to go back a few blocks on a one-way

road. To make it legal, they have to drive forward many kilometers to make a U-turn

and drive back to make another U-turn to reach the destination which is just a hundred

meters away from the initial point. Therefore, it is much more convenient to break the

traffic law by driving in the wrong direction, which saves more time and energy.

Second, Thailand has weak laws and punishments, which makes people not afraid to

break the law in general. Third, traffic police cannot cover every area to take

surveillance and catch misbehaved drivers who break the traffic law. There are some

areas where a lot of wrong direction drivers appear, but there are no traffic police who

are in charge and on duty for surveillance due to a large number of vehicles driving per

day.

Ref. code: 25646322040400GFX

2

For law enforcement, the traffic police have to observe driving behaviors on

roads and give tickets to those who break the law. From May to June 2017, police

officers took serious action to catch those who drove in the wrong directions throughout

Bangkok (Bangkok Biz News, accessed 2022). The total number of wrong ways driving

vehicles that were caught by the police was more than 4,000. However, arresting this

high violation rate is a tedious task and costs high prices in terms of time and energy to

stay on duty.

As a researcher, we see this gap where we could implement today's technology

to help the officers identify those who break the traffic law automatically. Furthermore,

the system we create could report information to the Traffic Police Division and

Department of Land Transport, as the evidence is collected through the camera while

the system is on surveillance.

The police officer, or any department who is concerned about road accidents,

can use our system as a road surveillance monitor. The system can receive videos from

any closed-circuit television (CCTV) that capture the road's view and process to capture

those vehicles that drive in the wrong direction. For further implementation, in case the

camera has a high resolution enough, it can detect the license plate of vehicles that

break the law and escalate to further law enforcement and ticket fines. For example,

some motorcycles are moving in the wrong direction, as shown in Figure 1.1. We are

motivated to create a system to detect and alert when this kind of driving behavior is

found.

Figure 1.1 Image evidence of many motorcycles driving in the wrong direction on

Paholyothin road, in front of Bangkok University.

Ref. code: 25646322040400GFX

3

1.2 Statement of Problem

 There are a high number of accidents due to wrong-way driving vehicles,

especially motorcycles, in Thailand. With the emergence of IoT, many organizations

and region governors install CCTV cameras in their responsible areas for surveillance

and evidence recording. CCTV cameras are substantially installed for surveillance and

road traffic monitoring. The CCTV cameras can also record the driving behavior on

road. Most CCTV cameras that record road traffic is likely to be installed at a high

position such as on the skywalk or the electric poles to allow the camera to record a

wide angle of traffic roads. We used this benefit of a CCTV camera wide-angle to

observe and analyze the rich details that are hidden inside the videos. With the function

of CCTV, it would record a lot of evidence of law-breaking driving behavior on road.

If we could filter out only the moments that there are vehicles that drive in the wrong

direction, it would be great information for the police to evaluate the dangerous level

of that area. If the area has many wrong-way drivers, the police can authorize stricter

surveillance, especially in that area. Therefore, we would like to create a system that

can automatically detect wrong-way driving behavior from CCTV videos in real-time.

The system can validate the correct direction for each road lane by itself. Our system

aims for this kind of vehicle on the road as they mostly appear on the video:

motorcycles, cars, and big vehicles (buses and trucks).

1.3 Objective

To create a system that can detect the wrong-way driving behaviors according

to our motivation, we have set objectives and targets, which later on it is extended to

other additional features to allow the system to be convenient to use. There are five

objectives in this research.

1. To detect and track vehicles on the road to identify if the driving direction is

correct on that specific road direction by using the videos from the CCTV

camera’s viewpoint

2. To propose an efficient correct driving direction validation algorithm on the

road. The algorithm should identify the moving direction of each vehicle on the

road and verify the correct and wrong direction automatically.

Ref. code: 25646322040400GFX

4

3. To create an algorithm that can identify the boundary of the road area from the

CCTV viewpoint’s perspective as an area of interest.

4. To capture images of the wrong-way driving vehicles as we can detect from the

proposed system.

5. To implement the whole system onto an embedded system and be able to run

the detection at real-time speed.

As we aim to detect the road lane boundaries, validate the correct moving

direction of vehicles inside each road boundary, and detect the wrong-way driving

vehicle. Next, we have considered the case where the users want to gather evidence of

the vehicle that drives in the wrong direction in the form of image capturing from the

input video. With this requirement, we have to make sure that the captured image must

be clear and that the vehicles must arrive as close as possible to the CCTV camera

position.

With all of these objectives, it represents each feature that the system could

perform. Each objective is designed to link and execute after one another. Therefore,

we would like to combine all objectives into a framework called “WrongWay-LVDC”.

LVDC stands for the main features that the framework can do, which are Lane

detecting, Validating the correct direction, Detecting wrong-way driving, and

Capturing the evidence images.

1.4 Thesis Outline

This thesis consists of seven chapters. Starts with Chapter one where we

introduce our research with the background, statement of problem, objective, and the

thesis’s outline. In Chapter Two, we reviewed other research and papers that have

related knowledge to our research’s field. In Chapter Three, we explained our proposed

framework along with the required input for the system.

After we have identified the features that will consist in our research, next, we

proposed a solution for each WrongWay-LVDC framework’s features. Beginning with

the road lane detection method, where we proposed Road Lane Boundary Detection

based on the CCTV camera angle (RLB-CCTV) algorithm. RLB-CCTV algorithm is a

proposed algorithm where we used image preprocessing and the Hough transform

method to solve the task in this part. More information about the RLB-CCTV algorithm

Ref. code: 25646322040400GFX

5

will be explained in detail in Chapter Four of this thesis. The next feature of the

framework is to detect wrong-way driving vehicles inside the road lane, which is the

main contribution of our research. In this feature, we proposed two algorithms that use

different techniques. Each technique has its advantage and disadvantage. The first

algorithm for wrong-way driving is the “Majority-Based Correct Direction Detection

(MBCDD) algorithm” and another one is called the “Distance-Based Direction

Detection (DBDD) algorithm”. As we tested these two algorithms, we concluded that

the DBDD algorithm is more efficient in terms of validating and decided to use the

DBDD algorithm as the main algorithm for wrong-way detection in our framework.

More information about these two wrong-way validations will be explained in Chapter

Five. The last feature is to capture the evidence of the wrong-way driving vehicles. In

Chapter Six, we will explain more about the method that we proposed and used for

capturing the moving vehicles in different location settings in each video, where those

images captured must show the clearest shot of the vehicles. In this feature, we used

the “Inside Boundary Image Capturing feature (IBI Capturing)”. After we have

proposed different methods and algorithms for each feature, in Chapter Seven, we will

show the result as we applied our algorithms to the real video data from CCTV. Lastly,

in Chapter Eight, we will conclude our proposed framework’s result.

Ref. code: 25646322040400GFX

6

CHAPTER 2

REVIEW OF LITERATURE

2.1 Wrong-Way Driving Detection

To detect vehicles with wrong driving directions, we need to understand and

study the previous works that are related to this area. As we searched for other

previously published papers, there are some researches with similar ideas and purposes

that aim to detect vehicles in the wrong moving direction. Nevertheless, they are all

presenting different interesting and unique techniques to create the system. After

reviewing each paper, we found out that each paper has its advantages and

disadvantages as shown in Table 2.1. (Monteiro, Ribeiro, Marcos & Batista, 2007;

Usmankhujaev, Baydadaev & Kwon, 2020; Rahman, Ami & Ullah, 2020).

Table 2.1 Comparison of wrong-way driving detection papers.

Papers Monteiro, Ribeiro,

Marcos, and Batista

(2007)

Usmankhujaev,

Baydadaev, and Kwon

(2020)

Rahman, Ami, and

Ullah (2020)

Step 1 Learn the orientation

pattern of vehicles

motion flow

Vehicle detection using

YOLOv3

Vehicle detection

using the YOLO

algorithm

Step 2 Detect opposite

moving object

Tracking using Kalman

filter

Centroid tracking

algorithm

Step 3 Validate from the

appearance-based

approach

Validation Entry-Exit

algorithm

wrong way driving

vehicle detection

Advantage Focus only on the

moving objects

Precisely identify the

correct moving direction

The efficient

proposed tracking

method

Limitation Occluded scenario Manually specify the

correct direction

Only one-way

detection

In the first paper, Monteiro, Ribeiro, Marcos, and Batista (2007) have proposed

a solution to detect the wrong driving direction of vehicles on highways using optical

Ref. code: 25646322040400GFX

7

flow. They separated the process into three stages to learn, detect, and validate the

correct direction. For the first stage, the orientation pattern of vehicle motion flow is

learned and used for detecting the opposite moving object direction in the second stage.

Lastly, an appearance-based approach is being used to detect whether the moving

objects are vehicles. The system has been tested on real highway traffic surveillance

cameras under different weather conditions. The system can detect driving in the wrong

direction successfully. Since the authors focused on detecting wrong-way drivers on

the highway road where vehicles are not crowded and there are no distracting moving

objects, the occlusion situations and roadside noise had not been mentioned and

included. Moreover, the proposed system was not designed to track the vehicle

individually. In this case, it is a challenge to identify each vehicle.

In the second paper, Usmankhujaev, Baydadaev, and Kwon (2020). developed

a real-time system to detect vehicles traveling in the wrong way on the road from

CCTVs. Three stages were proposed: Detection using You Only Look Once Version

three (YOLOv3), Tracking using Kalman filter, and validation with their proposed

algorithm “Entry-Exit”. They showed many comparisons of models and algorithms for

both detection and tracking aspects and they selected the best algorithm for their task.

For the Entry-Exit validation algorithm, the author had to identify manually which areas

were considered incorrect or correct regions for entering or exiting. The result was

91.98% accuracy for detecting wrong-way driving vehicles.

In the third paper, Rahman, Ami, and Ullah (2020) proposed an automatic

wrong-way vehicle detection system from CCTV footage. Their system is also divided

into three stages: vehicle detection using the YOLO algorithm, centroid tracking

algorithm, and detecting the wrong-way driving vehicles. As the authors showed the

detecting result, the perspective of the camera on the road is on the road level and that

caused a lot of vehicle occlusion. However, they achieved great accuracy in their

results. The authors also mentioned that their system can only detect one side of the

road which is their research limitation.

With the previous research we reviewed, we aim to create a system that can

resolve those limitations other papers have found. Therefore, we have set our proposed

wrong-way driving detection system’s objective as follows:

• The system can validate the correct direction by itself

Ref. code: 25646322040400GFX

8

• The system can detect wrong-way driving vehicles on multiple lanes

• At the end of detection, the system can report the exact number of wrong

and correct driving vehicles from each lane

• The system should run at real-time speed

2.2 Object Detection

To detect many vehicles, some of which are occluded, in each frame of the video

precisely and rapidly, we need to select the model that can satisfy our requirements.

Mandal and Adu-Gyamfi (2020) have done comparative studies among different

combinations of deep learning object detectors with the Deep SORT tracking algorithm.

As a result, their study proved that for counting all vehicles on the roadway, YOLOv4

and Deep SORT, Detectron2 and Deep SORT, and CenterNet and Deep SORT were

the most ideal combinations under various weather conditions and they can be further

fine-tuned for other conditions of detection and tracking. The method they used for

proving is by having each of the model combinations tested on a total of 546 video clips

of one minute each. Some models’ prediction returns a very high false positive and false

negative. The combination of CenterNet and Deep SORT achieved an average accuracy

of 95.96%, followed by 92.531% for Detectron2, and 90.98% for YOLOv4 and Deep

SORT. With similar accuracies for detecting objects, speed of detection is also an

important criterion to determine the most suitable model for this task. It is important to

consider a fast model since the system we create aims to implement on an embedded

system. Therefore, we are interested in YOLOv4 as it is proved by Bochkovskiy, Wang,

and Liao (2020) to be one of the fastest object detector models with a real-time speed

of ~65 FPS on Tesla V100 and state-of-the-art 43.5% AP (65.7% AP50) for the MS

COCO dataset. Even if there is proof that YOLOv4 is accurate for detecting but to run

object detection and tracking on embedded systems with small computation ability,

YOLOv4 might not be the best model since it is big and consumes a large number of

resources while detecting. Therefore, we decided to use YOLOv4-tiny instead. As

Oltaen, Florea, Orghidan, and Oltean (2019) mentioned in their research, they adopted

YOLOv3-tiny for real-time vehicle counting systems. YOLO-tiny has a faster training

time and detection time due to the adaptation of the architecture from YOLO to be more

lightweight.

Ref. code: 25646322040400GFX

9

2.3 Object Tracking

After detecting the vehicles, the next step is tracking. There are many traditional

tracking algorithms and the Kalman filter (Gunjal, Gunjal, Shinde, Vanam & Aher,

2018) is one of them. The Kalman filter concept is to predict and compare the next

frame objects’ location in a video and try to update the prediction of the next frame

based on the error it received from each prediction. Due to its accuracy, the Kalman

filter is being used for many real-time tracking applications. Deep SORT (Wojke,

Bewley & Paulus, 2017) is the latter generation and is one of the deep learning-based

tracking approaches where it has adopted the tracking the idea from Kalman Filter.

Deep SORT is an extension to SORT (Simple Online Real-time Tracker) with the

improvement for detecting the uncertainty of object state estimation, such as object

surface. Deep SORT can mostly overcome many tracking challenges such as object

occlusion, tracking ID switches, tracking speed, running in real-time, and handling

multiple objects in a video. Azhar, Zaman, Tahir, and Hashim (2020) applied Deep

SORT in their research for their people tracking system. They showed that the accuracy

of tracking results also depends on the object detection method as well. They compared

YOLOv3 and YOLOv3-tiny detection results with Deep SORT as the tracking

algorithm. YOLOv3 makes the tracking system accurate, but with a tradeoff, the

average frame per second (FPS) is very low. In the meanwhile, YOLOv3-tiny showed

the opposite result, with high FPS but lower accuracy. However, considering Deep

SORT alone, it is a great candidate for the tracking algorithm and we selected it to use

in our system.

In this research, we aim to create a system that has a suitable capability to be

implemented on a small embedded system in real-time. Therefore, speed is one of the

most important criteria to consider. In our previous experiment, we used Deep SORT

for vehicle tracking. As we tried implementing the system on Jetson nano, the speed of

the overall system is around two frames per second, which is too slow for real-time

detection. However, FastMOT (Yang, 2020) seems to be a better choice for the tracking

algorithm. FastMOT is a custom multiple object tracker on YOLO, Deep SORT, and

KLT algorithm, which has two-stage trackers: Object detection and feature extraction.

These two features will run sequentially, which makes the algorithm can track objects

accurately. FastMOT can track objects with high speed even on a Jetson embedded

Ref. code: 25646322040400GFX

10

system because the algorithm itself is improved to run the detector and feature

extraction every N frame and use KLT to fill the gap efficiently. This algorithm has

been evaluated and can process up to 42 frames per second on the MOT17 challenge

for multiple objects tracking benchmark.

2.4 Road Lane Detection

Several works research how to detect the road lane in the Advanced Driver-

Assistance Systems (ADAS). To categorize the method from these researches, there are

two main approaches for road lane detection: Deep learning-based and image

processing-based. For the deep learning-based technique, the road lane images must be

gathered and trained in the deep learning model. Liu, Chen, Zhu, and, Tan (2021)

proposed the CondLaneNet algorithm to detect the road lane. The algorithm can also

overcome the various conditions of road lines, such as dense lines and forks lines with

high accuracy of 78.14% in the F1 score. Another deep learning-based method is by

Chen, Xu, Pan, Cao, and Li (2021), who improved the existing model to become more

efficient. They trained the model with the CUlane dataset. As a result, their model

achieved up to 92.20% on F1 for the normal scenario. The deep learning-based method

for lane detection is great for real-time detection and can return a high accuracy result.

However, this method may require a higher computing performance than the computer

vision-based method. Since our computing edge device has a limited resource for

computing ability and we aim for the system to be computed at a real-time speed.

therefore, image processing-based is more suitable for us in the lane detection

algorithm.

There are many previous successful and interesting lane detection algorithms

based on the image processing approach. The first one is from Andrei, Boiangiu, Tarbă,

and Voncilă (2022), where the authors aimed to detect if the road is turning to the left,

right, or going straight according to the video from the front vehicle’s camera in ADAS.

They preprocess each video frame with the Canny edge detector, Hough transform, and

region of interest identification. In the last step, they try to find the parallelogram lines

for drawing the region of interest instead of a trapezoidal one. As a result, their proposed

method surpassed Sharma, Kumar, Gupta, and Kumar’s (2021) accuracy result by 3%.

The second paper is from Rakotondrajao and Jangsamsi (2019), who used Inverse

Ref. code: 25646322040400GFX

11

Perspective Mapping (IPM) to convert the camera perspective to a bird’s eye view to

be able to detect the four corners of the road lane in ADAS. The third is Franco, Santos,

Yoshino, Yoshioka, and Justo (2021), who create the lane detection for ADAS using

an embedded system. The system consists of three steps: pre-processing (reducing the

noise), processing (extracting useful information), and post-processing (interpreting the

information using computer vision). Their system uses the statistical technique to help

detect the lane, which is computationally less intensive than neural networks and

suitable for running on an embedded system. The fourth is Ghazali, Xiao, and Ma,

(2012) who proposed three steps to detect the road lanes. Beginning with the selection

part, where they remove the unnecessary area of the input image. Next is the image

preprocessing using the proposed H-Maxima method. Lastly, the system detects

straight and curve lines using an improved Hough transform which provides a faster

and more accurate result than the original Hough transform. The last research is from

Farag and Saleh (2018), where the Lane real-time detection (LaneRTD) system is

created with the method of computer vision to detect road lanes in ADAS. This paper

has stated a clear step for image preprocessing. As a result, the speed of lane detection

achieved up to 11 FPS for detecting the lane in challenging videos.

2.5 Embedded System

To create a system that can process in real-time speed, we have to consider the

processing method. Assuming that we would like to install the system onto the one

hundred CCTV, if we let the computation take place on a few computers where all the

videos came from all CCTV via LAN wire, the bottleneck issue would happen on the

computation part. But if the number of the computer is equal to the number of CCTV,

that would be ideal but it is not efficient in terms of cost and energy consumption. If

we use a cloud computing method, where all the video must be uploaded on the internet

and the processing unit is on the cloud computing, it would require a lot of bandwidth

to upload many videos from many different CCTV sources. Pudasaini and Abhari

(2020) also mentioned this in their research as they developed the moving objects

detection and tracking algorithm using the deep learning method. They showed that

using edge devices can decrease latency time and reduce network bandwidth in their

research. Therefore, one of the most efficient tools to process the system in real-time

Ref. code: 25646322040400GFX

12

with a large amount of data is by processing via an edge device. Gu, Ge, Cao, Chen,

Wei, Fu, and Hu (2021) proposed Siamese Convolutional Network for object tracking

running on edge-cloud architecture, which allows the tracking algorithm to process in

real-time speed and is suitable for IoT devices. Nowadays, many edge devices can

handle heavy processing tasks, such as image processing and deep learning with little

power consumption in real-time speed. In terms of image processing, the device can be

installed with a camera attached to it and act like a CCTV. Examples of popular

embedded systems are Google Coral (www.coral.ai, accessed 2022), Raspberry Pi

(www.raspberrypi.org, accessed 2022), and NVIDIA Jetson

(www.developer.nvidia.com, accessed 2022), where each brand has its advantages.

Zualkernan, Dhou, Judas, Sajun, Gomez, and Hussain (2022) have compared several

brands of edge devices. They show that Raspberry Pi consumes the least energy and

Jetson provides the fastest result. As our research is focused on image processing and

deep learning for the wrong-way driving detection, NVIDIA Jetson would be our top

choice for embedded systems. There are many versions for Jetson. Each version has its

unique feature and the level of computing ability and power consumption depends on

the intensity of each project. In our research, we aim to detect the driving direction of

the vehicles, which is straightforward and does not require high computation power.

Therefore, we selected the NVIDIA Jetson Nano Developer Kit

(www.developer.nvidia.com/embedded/jetson-modules, accessed 2022), the lightest

version of Jetson that consumes the least energy with adequate power for computing.

Especially if we would like to implement our system in many locations, the cost is one

of the main factors we should consider too. In this research, we developed the

framework based on the case that the computing unit is based on a PC as our main point

in this research is to propose our idea of this framework. However, we also consider

the requirements that allow the framework can be run on edge devices as well.

Ref. code: 25646322040400GFX

13

CHAPTER 3

WRONGWAY-LVDC FRAMEWORK

3.1 Framework Flow

We have mentioned the proposed algorithms and features inside our

WrongWay-LVDC framework, which are as follows:

• Road Lane Boundary Detection based on CCTV camera angle (RLB-CCTV)

• Distance-based Direction Detection Algorithm (DBDD)

• Inside Boundary Image Capturing Feature (IBI Capturing)

In our proposed framework, these algorithms and features will be called and

executed after one another. Therefore, the framework flow for WrongWay-LVDC is

shown in Figure 3.1 below.

Figure 3.1 WrongWay-LVDC’s framework flow.

In the framework flow shown in Figure 2, to begin with, the system will detect

the road boundaries using the RLB-CCTV algorithm. Next, the wrong-way driving

validation and detection system will validate the correct moving direction of the vehicle

on each detected road boundary using the DBDD algorithm. After the validation, the

system will generate the threshold value that will be used to measure the correct driving

direction in each lane and the detection part will be performed. As the system detect

and track each vehicle in each lane in the detection part, it will compare the moving

direction of the vehicle and whether it corresponds to the given threshold of each lane.

If the vehicle driving correctly or wrongly, the accumulating counters will count the

number of correct and wrong driving vehicles. After the detection part ends, the

counters will be summarized and shown to the user as the report let the user evaluate

the traffic of wrong-way driving level. If the intensity of wrong-way driving is high,

compared to the correct driving, that area will be marked as a dangerous area and send

the alert along with the vehicle counter-report as an output of the system to the users.

Ref. code: 25646322040400GFX

14

The input of the framework is expected to be recorded in video or streamed

video from CCTV cameras. However, we have tested our framework with the recorded

video using the smartphone. In the ideal situation of detecting streaming videos, we

intended to have the input videos of 60-minute length for each video, which means, for

each location, the detection result will be summarized and gathered every hour.

Considering the gap between each streamed video, after a video reached up to 60

minutes, the system will be rebooted. During the reboot time where it might take around

10 seconds running on a computer and around 20 seconds running on Jetson Nano, the

wrong-way driver detection framework might miss some of the detection that may

occur. However, comparing this missed number of detections to the whole detection of

60 minutes, the missing value is insignificant. The framework can still display and

capture the main result of the detection.

One of the reasons for dividing the video into 60-minutes time slots is due to

the data management purpose. As the system detects the vehicles driving at a real-time

speed, either driving in the correct or wrong direction, the unique ID will be given to

each vehicle and will be labeled on top of the vehicle bounding box. Assuming the case

where the system has been run for several hours, the unique ID will keep increasing

endlessly. To restart the system every hour, the unique ID will also be restarted and the

detecting data will be summarized. This is to allow the system to work faster with a

lesser load in the memory.

3.2 Framework Version

Figure 3.2 System flow for different framework versions.

The main purpose of our framework is to let each algorithm and feature

executed automatically after one another. However, there are some concerns about the

performance of our system when it meets some unusual scenarios that might be the

limitation of our algorithm. In such a case, our system might not be accurate such as

Ref. code: 25646322040400GFX

15

the RLB-CCTV algorithm’s limitation, where it cannot detect the road under certain

conditions. As a final result, we still want our system to work in its best performance

and function properly even if there are some unwanted conditions happened. To make

it possible, we design other versions of our framework where the user can manually

draw the road lane boundary instead of using the RLB-CCTV algorithm and validate

the correct direction instead of using the DBDD algorithm. The framework versions

have a workflow as shown in Figure 3.2.

3.3 Input

The concept of our framework is to receive video inputs from CCTV. Normally,

the CCTV will record video for 24 hours a day and record the video periodically with

a length of about one hour per video clip. We tried to obtain the videos that imitate the

CCTV’s angle to test with our proposed system. As we observe, most CCTVs are likely

to be installed somewhere high above the roads, such as on the skywalk or the electric

pole. Therefore, we visited many skywalks around the city and recorded the sample

videos with a length of around five minutes.

After we gather some video data of the road traffic in Thailand, we can observe

several challenging factors to create our road lane detection algorithm. For example,

some road is under construction, the road line color is pale, and the angle of the CCTVs

are different. With the various condition of the road lane that we have observed, the

road with the unusual conditions might be our system’s limitation where our system

might not be able to detect the lane line on those roads properly. Figure 3.3 shows the

images of road lanes that do not have a clear lane line. Therefore, we need to set a clear

scope to select the normal road condition to be used with our proposed system. We

mainly aim to apply this system to the main traffic roads with these given conditions:

• The road must be a straight line.

• The road must have a clear side road line or a clear footpath line.

• There should not be any objects blocking the side of the road.

• The road must not be under construction.

• The road should not have disturbing shadows from the side road objects.

Ref. code: 25646322040400GFX

16

(a) (b)

Figure 3.3 Roads that do not pass the condition (a) The construction is one the side

road (b) Many vehicles are blocking the side road.

After we collect the video input, the videos will be further analyzed, processed,

and transformed into many other types of input. To clearly explain the process, the input

will be transformed into two other inputs, which are: An image input and vehicle

information. In Figure 3.4, we show the system flow of how our system can generate

more data using the CCTV video.

Figure 3.4 System flow on the method to obtain the vehicle information and image.

3.3.1 Input Image

 A still image input will be used in the road lane boundary detection algorithm

for the image processing method to detect the road lane. This image input will be

derived from extracting the first frame of the input video using the OpenCV library

(www.opencv.org, accessed 2022) in the Python programming language.

Ref. code: 25646322040400GFX

17

3.3.2 Vehicle Information

 One of the most useful inputs we use in many systems of our proposed

framework is vehicle information. It is the information that provides the location of

each vehicle driving inside the video frame. There are 3 steps to obtain this input. First,

crop the first one minute out of the main input video. Second, detect and track all

vehicles moving inside the video frame regardless of the road lane. The object detection

algorithm we use is YOLOv4-Tiny as developed from YOLOv4 (Bochkovskiy, Wang

& Liao, 2020) to become smaller and suitable for running on small embedded systems.

For the tracking algorithm, we chose the FastMOT algorithm (Yang, 2020). FastMOT

is improved from the Deep SORT tracking algorithm, where it is revised to be more

suitable to run on small devices without bottleneck issues. The technique of FastMOT

is to run the detector and feature extraction every N frame and use KLT to fill the gap

efficiently. In the third step, we will analyze the data we received. After all the vehicle

has been tracked, the output will look like the image shown in Figure 3.3, where the

plot is the summary of all movement vehicle within the time length of one minute. Each

detected vehicle ID’s information will be stored and displayed in a plot after the video

is finished running. The orange dots inside the plot graph represent the location where

each vehicle ID first appears inside the video frame or the start points. The blue dots

represent the last location that the vehicle ID has been tracked before the vehicle left

the video frame or the stop points. The black lines linked between the orange and the

blue dot represent the movement direction each vehicle went. In Figure 3.5, we can

roughly tell that there is one road lane appearing in this video frame, where most of the

vehicle in the lane is driving downward.

Figure 3.5 Vehicle Information plotting.

Ref. code: 25646322040400GFX

18

CHAPTER 4

PROPOSED METHOD: ROAD LANE DETECTION

As we plan our system to be able to detect the vehicle driving direction on

multiple road lanes at the same time, therefore, we need to specify the boundary of each

road lane for these given reasons:

1. Identify the area of interest to remove the side road noises, such as vehicles

parking or bicycle riding outside the interested road lane

2. Reduce the confusion in the system as we track vehicles on multiple lanes.

The easiest and most accurate method to identify the road boundary of interest

is the manual drawing from users. However, if we plan to install the system on many

CCTV, we have to individually draw the lane boundaries of interest for each of the road

lanes. In this case, automatic drawing would be a great help to identify the road

boundaries on multiple CCTV. As a result, this inspired us to create another algorithm

that can automatically identify the road lane boundaries inside the video frame using

the image processing technique.

As we have mentioned earlier, there are several research papers on lane

detection based on the image processing method. Most of the research has similar main

steps to achieve the result: image preprocessing, select area of interest, and lane line

decision. Moreover, there are many interesting techniques we can adopt and redesign

to suit our research purpose. For example, the technique of Canny edge detection

(Canny, 1986) in the image preprocessing step was used in the papers from Andrei,

Boiangiu, Tarbă, and Voncilă, (2022), Franco, Santos, Yoshino, Yoshioka, and Justo

(2021), and Farag and Saleh (2018). This technique produces an output where it focuses

only on the contrast edge of the object inside the image, which makes the road lane

clear, outstanding, and easy to detect. Another interesting technique is Hough transform

(Duda & Hart, 1972). All of the research papers use Hough transform to make a

decision and draw the line of the road lane. The last example technique is Gaussian

Blur (Gedraite & Hadad, 2011) where Andrei, Boiangiu, Tarbă, and Voncilă, (2022),

Franco, Santos, Yoshino, Yoshioka, and Justo (2021), and Farag and Saleh (2018) use

in image preprocessing to reduce the excessive noise from the image.

Ref. code: 25646322040400GFX

19

 From the research we reviewed, all of them are designed for ADAS. Our

research has a different purpose as we designed for the CCTV camera angle. Mostly,

the setting of the CCTV camera has a high and center position to view the road at a

clear angle. With this position, the CCTV will see the road in the position of driving up

and down as shown in Figures 4.1 (a) and (b). However, we also consider the minor

case where the CCTV is installed on the side of the road too, which the angle the CCTV

will see will be in another position as shown in Figure 4.1 (c).

(a) (b) (c)

Figure 4.1 Camera view of CCTV (a) vertical orientation

(b) vertical orientation (c) horizontal orientation.

These three cases of the camera angle have an impact on us creating the lane

detection algorithm. Our proposed RLB-CCTV algorithm consists of four main parts:

orientation decision, image preprocessing, area of interest, and lane line decision. The

input for this algorithm will consist of image input and vehicle information. The system

flow of the overall algorithm is shown in Figure 4.2.

Figure 4.2 System flow of RLB-CCTV algorithm.

4.1 Orientation Decision

In the first step of the RLB-CCTV algorithm, the system will determine the lane

orientation of the received video whether the lane is showing horizontal or vertical. The

Ref. code: 25646322040400GFX

20

input of this step is the vehicle information, which we show the example in Figures 4.3

(a), (b), and (c).

(a) (b) (c)

Figure 4.3 The vehicle information was obtained after detecting and tracking all

vehicles in the video for one minute (a) Horizontal orientation

(b) Vertical orientation (c) Vertical orientation with two roads.

From the above figures, we can instinctively tell that Figure 4.3 (a) contains a

road lane with a horizontal angle, Figure 4.3 (b) contains a vertical one, and Figure

4.3 (c) contains the vertical one with two road lanes. However, we have to create a

method to let the system identify the orientation automatically by itself, where our

proposed system flow is as shown in Figure 4.4 below.

Figure 4.4 System flow of Orientation decision step.

The main idea of our solution is to find the majority of each vehicle’s movement

angle and set the road orientation of that input video. To understand the concept of the

vehicle’s movement angle, we have to understand the basic concept of the angle

between two vectors on the cartesian coordinate system. The angle has two types: radius

and degree.

The two vectors we use in our calculation are obtained from the following

sources: The vehicle movement and the imaginary horizontal drawn vector. To obtain

the vehicle movement vector, the initial point of the vector must be either the start or

Ref. code: 25646322040400GFX

21

stop vehicle location where it has a lower x value on a plot graph as the pseudo-code

explained in Algorithm 1 on lines number 3 to 9. The reason for this setting is to remove

the case where the vector is pointing downward, which reduces the confusion when

identifying the road orientation range. The example demonstration of how to obtain the

two vectors and the angle is shown in Figure 4.5 below.

(a) (b) (c) (d) (e)

Figure 4.5 Step to obtain the vectors to find the angle (a) Get vehicle information as

an input (b) Set the lower point to be P1 and the upper point to be P2 (c) Draw a

vector to the right where the initial point is P1 (d) Obtain the vehicle movement

vector from P1 and P2 (e) Find the angle in degree.

In this case, we will use the degree system with the range of 0 degrees to 180

degrees as the direction of the vector indicate the angle and degree as shown in Figure

4.6.

Figure 4.6 All possible vectors and angles.

After we obtain the angle for each vehicle movement in the vehicle information,

next, we have to set the range of the angle where we will consider it as a horizontal

orientation or vertical orientation. The condition we set is as shown in Algorithm 1 on

lines number 11 and 13.

Algorithm 1. Pseudo Code for the Orientation Decision Step

Input: Vehicle Information

Output: Road Orientation

Auxiliary Variables: Horizontal Count, Vertical Count

Ref. code: 25646322040400GFX

22

Initialization: Horizontal Count = 0, Vertical Count = 0

Begin Orientation Decision Algorithm

1 for (Each Vehicle Movement ∈ Vehicle Information) do

2 Start location, Stop location = extract information (Each Vehicle Movement)

3 if (Start location (y) < Stop location(y)) then

4 Point 1 = Start location

5 Point 2 = Stop location

6 else

7 Point 1 = Stop location

8 Point 2 = Start location

9 end if

10 Each Angle = Find Angle (Point 1, Point 2)

11
 if ((Each Angle <= 180) AND (Each Angle > 155)) OR ((Each Angle >= 0)

AND (Each Angle < 35)) then

12 Horizontal Count = Horizontal Count + 1

13 elseif (Each Angle >= 35) AND (Each Angle <= 155) then

14 Vertical Count = Vertical Count + 1

15 end if

16 end for

17 if Horizontal Orient > Vertical Orient then

18 Road Orientation = Horizontal

19 else

20 Road Orientation = Vertical

21 end if

22 return Road Orientation

End Orientation Decision Algorithm

After finding the angle of all vehicle information, the result is shown in the

histogram plot where Figure 4.7 (a) is the histogram result of Figure 4.3 (a), Figure 4.7

(b) is the result of Figure 4.3 (b), and Figure 4.7 (c) is the result of Figure 4.3 (c). The

angle result corresponds to the method we have set, the range between 0 to 180. As well

as the result of finding the road orientation, where Figure 4.7 (a) is a vertical orientation

and Figure 4.7 (b) is a horizontal orientation. However, Figure 4.7 (c) is quite hard to

identify by eyes on which the orientation is it, but as we compute it with our algorithm,

it is a vertical orientation.

Ref. code: 25646322040400GFX

23

Figure 4.7 Angle value histogram plot (a) Horizontal orientation (b) Vertical

orientation (c) Vertical orientation with two lanes.

4.2 Image Preprocessing

In this step, the system will perform the image preprocessing onto the input

image to extract only the major details, especially the road lanes, and remove the noises

that re-side inside the image. The input image will be preprocessed with a total of five

techniques as shown in Figure 4.8. We will explain each technique in each step of the

image preprocessing method.

The first step is brightness adjustment. The system will check the brightness

level of the input image by converting the image into grayscale and get the average

pixel brightness value using the ImageStat library module in Python (ImageStat

Module, accessed 2022). If the input image originally has a low level of brightness, the

output value will be near zero. If the image has a high level of brightness, the output

value will be near 255. To increase the brightness of the image, it will show some

hidden detail that was dimmed and dark. However, the brightness should be increased

according to the original image condition.

Figure 4.8 System flow of image preprocessing step.

(a) (b) (c)

Ref. code: 25646322040400GFX

24

To increase the brightness of the image, it will show some hidden detail that

was dimmed and dark. However, the brightness should be increased according to the

original image condition. If the brightness in the image is already high, we should not

increase the brightness on that image anymore because that will cause the over bright-

ness exposure. Therefore, the brightness value will be subtracted by the threshold value

that we have set at 130. We have tested with several images to make sure that 130 is

the adequate level of brightness so that the image will not be too bright or too dim.

After we find the difference between the brightness value and the threshold value, we

will use that difference value to increase the brightness of the original image by

converting the image into the HSV system (HSL and HSV, accessed 2022) and

increasing the brightness according to the difference value we found. The result of

brightness adjusting is shown in Figures 4.9 (a), (b), and (c)

Figure 4.9 Adjust the brightness on the input image (a) Horizontal orientation (b)

Vertical orientation (c) Vertical orientation with two lanes.

The second step is to increase the global contrast to the image by using Contrast

Limited Adaptive Histogram Equalization (CLAHE) (Yadav, Maheshwari & Agarwal,

2014) to make the road line look clearer. Followed by the third step, Gaussian Blur,

where this technique will exclude some unnecessary small details not to be drawn in

the edge decision step. With the OpenCV library, we have to apply Gaussian Blur 6

times to make the road image cover and hide all small detail. The result of steps two

and three are shown in Figures 4.10 (a), (b), and (c).

(a) (b) (c)

Ref. code: 25646322040400GFX

25

Figure 4.10 Apply CLAHE and Gaussian blur (a) Horizontal orientation (b) Vertical

orientation (c) Vertical orientation with two lanes.

The fourth step is to add Histogram Equalization (Patel, Maravi & Sharma,

2013) in OpenCV. The image needs to be converted into grayscale before applying this

technique. As a result, as shown in Figures 4.11 (a), (b), and (c), the image will be

increased its contrast to another level and the main detail is very clear in this stage.

Figure 4.11 Apply Histogram Equalization (a) Horizontal orientation (b) Vertical

orientation (c) Vertical orientation with two lanes.

The fifth step is applying the Canny edge detection (Canny, 1986) to reduce the

noise and only focus on the edge of the object. The final output from the image

preprocessing step is shown in Figures 4.12 (a), (b), and (c).

Figure 4.12 Apply Canny edge detection (a) Horizontal orientation (b) Vertical

orientation (c) Vertical orientation with two lanes.

(a) (b) (c)

(a) (b) (c)

(a) (b) (c)

Ref. code: 25646322040400GFX

26

4.3 Area of Interest

After we have the preprocessed image, we can see that the image still includes

some side road areas where it will not contribute to our algorithm’s purpose. These

unwanted areas will decrease the lane line detection accuracy. The simplest method is

to identify the Area of Interest (AOI). However, each road image has a unique position

of AOI, so we should not fix the AOI for all images. The system flow for this step is

shown in Figure 4.13.

Figure 4.13 System flow of Area of Interest step.

The vehicle information allows the system to know the location where the

vehicles are likely to drive. The vehicle drives on roads; therefore, the roads are our

target AOI. As an assumption, we will focus on the area where vehicles are driving

inside the video frame, and that area will be used as the AOI. To begin with, we use the

technique of the convex hull (Sharif, 2011), which is the method to draw the lines that

connect the dots that are positioned in the outer area of the geometric shape. We apply

the convex hull onto the vehicle information we have, to draw a shape that wraps around

all points (start point and stop point of the vehicles) as shown in Figures 4.14 (a), (b),

and (c). The red line shape that is drawn will be considered as the area where the

vehicles appear. However, those areas do not include the road sideline as the vehicle

will not drive on the side road. Then, we need to increment the convex hull shape we

drew to be larger by applying the Buffer points method and drawing a convex hull on

the new buffer points. As a result, the areas are expanded and cover the road line as

shown in Figures 4.14 (d), (e), and (f), where we will use this area as the AOI.

Ref. code: 25646322040400GFX

27

Figure 4.14 Apply convex hull to wrap around all start and stop points from vehicle

information. (a) Horizontal orientation (b) Vertical orientation (c) Vertical orientation

with two lanes. Expand the edge of the convex hull shape (d) Horizontal orientation

(e) Vertical orientation (f) Vertical orientation with two lanes.

Since we have the AOI area, the next step is to overlay the AOI area onto the

output image from the image preprocessing part by using the technique of OpenCV

called bitwise mask (OpenCV Bitwise AND, OR, XOR, and NOT, accessed 2022). The

bitwise mask will select to keep the part of the image we want and discard the rest. The

result of this step is shown in Figures 4.15 (a), (b), and (c), where we can see that these

two images have different locations and sizes of the AOI, and the drawn AOI fit to

show the road area only for that image.

At this stage, we can see that in Figure 4.15 (a) remain some sideroad noises on

the top, as well as in Figure 4.15 (b) where the top part of the image still has some noise.

To remove those noises, we use the upper and lower boundary technique as once

mentioned in Ghazali, Xiao, and Ma, (2012)’s the paper where the author uses this same

technique to remove the sky area of the image. To find the upper and lower boundary,

we use the vehicle information, where we get the points, either start or stop points, with

(a) (b) (c)

(d) (e) (f)

Ref. code: 25646322040400GFX

28

the highest and lowest y value in the cartesian coordinate system. Those points will be

drawn a line over in a horizontal line and those lines are called the upper and lower

boundary. Using the same technique, we, once again, apply the bit-wise mask of the

upper and lower boundaries onto the image. The final result will be shown in Figures

4.15 (d), (e), and (f). The noises are removed and now the image is ready to apply to

the next step of the RLB-CCTV algorithm, the lane line decision.

Figure 4.15 Apply a bitwise mask between the area of interest and the final output

from the image preprocessing step (a) Horizontal orientation (b) Vertical orientation

(c) Vertical orientation with two lanes. Remove the upper and lower boundaries (d)

Horizontal orientation (e) Vertical orientation (f) Vertical orientation with two lanes.

4.4 Lane Line Decision

Figure 4.16 System flow of lane line detection step.

In lane line detection, the algorithm we use to detect the line is the Hough

transform algorithm [28]. However, there are other decisions to make to select the most

accurate Hough line, where the step is as shown in Figure 4.16. We set the system to

draw 12 Hough lines in one image, to make sure all expected lane lines will be drawn.

(a) (b) (c)

(d) (e) (f)

Ref. code: 25646322040400GFX

29

However, some unwanted Hough line has been drawn along the way, as shown in

Figure 4.17 (a), (b), and (c). The red Hough line is the line where we detect it as an

incorrect drawing. The method we filter those lines is based on the orientation of the

lane, which we retrieved from the orientation decision. The system will check the slope

value of each line, where the slope is calculated from the two endpoints of the Hough

line. If the orientation is vertical like in Figure 4.17 (b) or (c), the blue color upper and

lower boundaries will be drawn and the endpoints of the Hough lines will meet there.

The slope of the accepted Hough line in the vertical orientation must meet this

condition.

|(𝑦 𝑣𝑎𝑙𝑢𝑒 𝑜𝑓 𝑒𝑛𝑑𝑝𝑜𝑖𝑛𝑡 2 – 𝑦 𝑣𝑎𝑙𝑢𝑒 𝑜𝑓 𝑒𝑛𝑑𝑝𝑜𝑖𝑛𝑡 1) ∗ 2|

𝑖𝑠 𝑔𝑟𝑒𝑎𝑡𝑒𝑟 𝑡ℎ𝑎𝑛 |𝑥 𝑣𝑎𝑙𝑢𝑒 𝑜𝑓 𝑒𝑛𝑑𝑝𝑜𝑖𝑛𝑡 2 – 𝑥 𝑣𝑎𝑙𝑢𝑒 𝑜𝑓 𝑒𝑛𝑑𝑝𝑜𝑖𝑛𝑡 1|

(4.1)

If the orientation is horizontal like in Figure 4.15 (a), the left and right

boundaries will be drawn and the endpoints of the Hough lines will be extended to meet

the two blue boundary lines. The slope of the accepted Hough line must meet this

condition.

|(𝑥 𝑣𝑎𝑙𝑢𝑒 𝑜𝑓 𝑒𝑛𝑑𝑝𝑜𝑖𝑛𝑡 2 – 𝑥 𝑣𝑎𝑙𝑢𝑒 𝑜𝑓 𝑒𝑛𝑑𝑝𝑜𝑖𝑛𝑡 1) ∗ 2|

𝑖𝑠 𝑔𝑟𝑒𝑎𝑡𝑒𝑟 𝑡ℎ𝑎𝑛 |𝑦 𝑣𝑎𝑙𝑢𝑒 𝑜𝑓 𝑒𝑛𝑑𝑝𝑜𝑖𝑛𝑡 2 – 𝑦 𝑣𝑎𝑙𝑢𝑒 𝑜𝑓 𝑒𝑛𝑑𝑝𝑜𝑖𝑛𝑡 1|

(4.2)

The red Hough line we draw in Figures 4.17 (a), (b), and (c) is an example to

show the lines that do not meet the above condition we stated. As an output, the

accepted Hough lines are drawn on the original input image, to compare and check the

correctness as shown in Figures 4.17 (d), (e), and (f). However, we can see that several

accepted lines are drawn on the image. We can remove the duplicated line but which

lines should be removed. If we remove the inner lines and keep only the outer lines,

that would work only in the case in Figures 4.17 (d) and (e), but would not work in the

case where there is two-way traffic like in Figure 4.17 (f).

Ref. code: 25646322040400GFX

30

(a) (b) (c)

(d) (e) (f)

Figure 4.17 Apply Hough transform to draw straight lines on the image. The red lines

are the unwanted Hough lines we received. The green lines are the correct Hough

lines we expected (a) Horizontal orientation (b) Vertical orientation (c) Vertical

orientation with two lanes. Remove the unwanted red Hough lines (d) Horizontal

orientation (e) Vertical orientation (f) Vertical orientation with two lanes.

To design the method that can cover several cases, the next step is to draw the

polygon area from the accepted Hough line. The technique that we proposed has the

following method. First, we gather the locations of all intersection points between

Hough lines and boundary lines. If the orientation is vertical, we will gather the x value

of all intersection points, and if the orientation is horizontal, we will gather the y value

of all intersection points. In the case of vertical, let’s represent a list of the x values of

the intersection point in the upper boundary with UpperX, where upperxi is each x

value contained inside UpperX:

𝑈𝑝𝑝𝑒𝑟𝑋 = [𝑢𝑝𝑝𝑒𝑟𝑥1, 𝑢𝑝𝑝𝑒𝑟𝑥2, 𝑢𝑝𝑝𝑒𝑟𝑥3, 𝑢𝑝𝑝𝑒𝑟𝑥4, … , 𝑢𝑝𝑝𝑒𝑟𝑥𝑛] (4.3)

Let’s represent a list of the x values of the intersection point in the upper

boundary with LowerX, where lowerxi is each x value contained inside LowerX:

𝐿𝑜𝑤𝑒𝑟𝑋 = [𝑙𝑜𝑤𝑒𝑟𝑥1, 𝑙𝑜𝑤𝑒𝑟𝑥2, 𝑙𝑜𝑤𝑒𝑟𝑥3, 𝑙𝑜𝑤𝑒𝑟𝑥4, … , 𝑙𝑜𝑤𝑒𝑟𝑥𝑛] (4.4)

Ref. code: 25646322040400GFX

31

Both UpperX and LowerX lists are sorted ascendingly. In the vertical

orientation, the y value of the lower and upper boundaries will be fixed, as the boundary

is a horizontal line. Therefore, the y value is a constant for all intersections of the lower

and upper boundaries. In this case, we assign the y value of the upper boundary as

UpperY and the y value of the lower boundary as LY. To create a four-corner polygon,

we select the four points from the two lists, every two values from each list as the

pseudo-code shown in Algorithm 2. From Algorithm 2 Line 7, it represents the method

to create the polygon by using the Shapely geometry python library (The Shapely User

Manual, accessed 2022). This method requires only four points as corners to draw a

polygon.

Algorithm 2. Pseudo Code for Polygon Forming in Vertical Orientation

Input: UX, LX, UY, LY

Output: Polygon corners

Auxiliary Variables: Polygon_list

Initialization: Polygon_list = []

Begin Polygon Forming in Vertical Orientation

1 While (element number in UX > 1) do

2 Current_intersect_1 = UX [0]

3 Current_intersect_2 = LX [0]

4 Next_intersect_1 = UX [1]

5 Next_intersect_2 = LX [1]

6
 Polygon corners = [[Current_intersect_1, UY], [next_intersect_1, UY],

[next_intersect_2, LY], [Current_intersect_2, LY]]

7 Polygon_list.append(Shapely.polygon(Polygon corners))

8 Remove UX [0] from UX

9 Remove LX [0] from LX

10 end while

11 return Polygon_list

End Polygon Forming in Vertical Orientation

In the case of horizontal orientation, the algorithm and concept to form the polygon for

a horizontal camera angle are similar to the vertical one. We gather the intersection

point between accepted Hough lines and the two left and right vertical boundaries as an

example shown in Figure 4.15 (d). We gather the x value of all intersection points. Let’s

Ref. code: 25646322040400GFX

32

represent a list of the y values of the intersection point in the left boundary with LeftY,

where leftyi is each y value contained inside LeftY:

𝐿𝑒𝑓𝑡𝑌 = [𝑙𝑒𝑓𝑡𝑦1, 𝑙𝑒𝑓𝑡𝑦2, 𝑙𝑒𝑓𝑡𝑦3, 𝑙𝑒𝑓𝑡𝑦4, … , 𝑙𝑒𝑓𝑡𝑦𝑛] (4.5)

let’s represent a list of the y values of the intersection point in the right boundary with

RightY, where rightyi is each y value contained inside RightY:

𝑅𝑖𝑔ℎ𝑡𝑌 = [𝑟𝑖𝑔ℎ𝑡𝑦1, 𝑟𝑖𝑔ℎ𝑡𝑦2, 𝑟𝑖𝑔ℎ𝑡𝑦3, 𝑟𝑖𝑔ℎ𝑡𝑦4, … , 𝑟𝑖𝑔ℎ𝑡𝑦𝑛] (4.6)

Similar to the vertical orientation, the intersection x value of the horizontal orientation

case will be constant numbers, represent by LeftX and RightX. The step to form the

polygon is as shown in the pseudo-code in Algorithm 3.

Algorithm 3. Pseudo Code for Polygon Forming in Horizontal Orientation

Input: LeftX, RightX, LeftY, LeftY

Output: Polygon corners

Auxiliary Variables: Polygon_list

Initialization: Polygon_list = []

Begin Polygon Forming in Horizontal Orientation

1 While (element number in LeftY > 1) do

2 Cur_intersect_1 = LeftY [0]

3 Cur_intersect_2 = RightY [0]

4 Next_intersect_1 = LeftY [1]

5 Next_intersect_2 = RightY [1]

6
 Polygon corners = [[XLeft, Cur_intersect_1], [XLeft, next_intersect_1], [XRight,

next_intersect_2], [XRight, Cur_intersect_2]]

7 Polygon_list.append(Shapely.polygon(Polygon corners))

8 Remove LeftY [0] from LeftY

9 Remove RightY [0] from RightY

10 end while

11 return Polygon_list

End Polygon Forming in Horizontal Orientation

Ref. code: 25646322040400GFX

33

(a) (b) (c)

Figure 4.18 Form polygons (a) Horizontal orientation (b) Vertical orientation (c)

Vertical orientation with two lanes. Overlay start and stop point from vehicle

information on the polygons (d) Horizontal orientation (e) Vertical orientation (f)

Vertical orientation with two lanes.

As we plot all the polygons we have received in this stage, the image will look

like Figure 4.18 (a), (b), and (c) we can see that some polygons are not correctly referred

to as the road lane. The method we use to choose which polygon is the road area is to

overlay the vehicle information, start and stop point, onto the image like in Figure 4.18

(d), (e), and (f). It is obvious in Figure 4.18 (f) that some area does not have any start

or stop points on, which is the grass area in the middle of the two roads. With this

notice, we set the condition to select which polygon area to keep, and which one to

remove. The number of points inside each polygon is set as the below equation.

𝑃𝑜𝑖𝑛𝑡𝑠 = [𝑛𝑢𝑚_𝑝𝑜𝑖𝑛𝑡1, 𝑛𝑢𝑚_𝑝𝑜𝑖𝑛𝑡2, 𝑛𝑢𝑚_𝑝𝑜𝑖𝑛𝑡3, … , 𝑛𝑢𝑚_𝑝𝑜𝑖𝑛𝑡𝑛] (4.7)

Since we know the number of points inside each polygon, next we will check

the number of points with the condition below. If the number of points is less than 20,

which is the number we have tested with and proved that it is a number that is good

with the vehicle information from a one-minute video.

(d) (e) (f)

Ref. code: 25646322040400GFX

34

𝐴𝑐𝑐𝑒𝑝𝑡𝑒𝑑 𝑃𝑜𝑙𝑦𝑔𝑜𝑛𝑠 = {
𝐴𝑑𝑑 𝑡𝑜 𝑎𝑐𝑐𝑒𝑝𝑡𝑒𝑑 𝑝𝑜𝑙𝑦𝑔𝑜𝑛 𝑙𝑖𝑠𝑡, 𝑛𝑢𝑚 𝑝𝑜𝑖𝑛𝑡 ≥ 20

𝑟𝑒𝑚𝑜𝑣𝑒 𝑡ℎ𝑒 𝑝𝑜𝑙𝑦𝑔𝑜𝑛, 𝑛𝑢𝑚 𝑝𝑜𝑖𝑛𝑡 < 20
 (4.8)

After checking all polygons with this condition, we will have only polygons that

represent the road areas. Sometimes, an area of the road is separated into two areas due

to the detection of the Hough transform where it detects the centerline of the road. To

fix this, we also set a condition to merge two areas that are next to each other to combine

those two areas and correctly identify them as one area. As a final result of this step,

the example result is shown in Figure 4.19 (a), (b), and (c).

Figure 4.19 Final output (a) Horizontal orientation (b) Vertical orientation (c)

Vertical orientation with two lanes.

(a) (b) (c)

Ref. code: 25646322040400GFX

35

CHAPTER 5

PROPOSED METHOD: WRONG-WAY DRIVING DETECTION

 Many techniques have been introduced creatively to verify and detect wrong-

way driving vehicles (Usmankhujaev, Baydadaev & Woo, 2020; Monteiro, Ribeiro,

Marcos & Batista, 2007; Rahman, Ami & Ullah, 2020). However, there are some

limitations from each paper that could be improved, for example, the vehicle detection

in an occluded scenario, the manual validation of the correct moving direction, and

multiple road lanes for wrong-way driving detection. In our proposed method, we

aimed to improve the algorithm to overcome those challenges. The main concept of

creating the wrong-way driving vehicle detection algorithm is to detect a vehicle that

drives in the opposite direction from the majority direction on a specific lane. We based

our assumption on the scenario where most of the vehicles are driving in the correct

direction with a few law-breaking wrong-way driving vehicles. There are two proposed

methods that we have introduced, where each of the methods has a different idea to

detect vehicles driving in the minority direction.

5.1 Majority-Based Correct Direction Detection

The first algorithm is Majority-Based Correct Direction Detection (MBCDD)

where the algorithm will find the majority angle of all vehicles driving on a specific

road lane and use that majority angle to draw a range of the accepted range of angle

that would be considered as correct moving direction. There are two main parts to

detecting wrong-way drivers using this algorithm: the validation part and the detection

part.

5.1.1 Correct Direction Validation Part

To validate the correct direction in the MBCDD algorithm, we need to get the

vehicle moving direction for each road lane. The method to obtain this information is

what we have explained in Chapter 3.2.2. The overall system flow for the validation

part in MBCDD is shown in Figure 5.1.

Ref. code: 25646322040400GFX

36

Figure 5.1 System flow for validation part in MBCDD.

We begin with cropping the first one-minute video from the original input video.

Then, we overlay the road lane boundaries that we have detected using the previous

step algorithm, RLB-CCTV, onto all of the video frames. In this stage, the area outside

the boundaries will be painted in black color, where we use the technique from OpenCV

called “Bitwise mask”. Next, we detect and track all vehicles, including cars,

motorcycles, and trucks, driving inside the boundaries while running the one-minute

video. The example screenshot of the system while tracking and collecting each

vehicle's information on the main road with a two-way direction is shown in Figure 5.2.

Figure 5.2 Detecting and tracking all vehicles for direction validation.

After finishing the validation video, the system will show the total information

that has been collected during the validation part as shown in Figure 5.3. The result

shows two plots, where each plot presents one road boundary. The grey straight line

inside each plot indicates the displacement of a vehicle driving direction from the start

location, orange dots, to the stop location, green dots, as the video is playing.

Ref. code: 25646322040400GFX

37

Figure 5.3 The direction of most vehicles for each lane of the road.

 The five main values of each vehicle that the system collects are: Vehicle unique

Identifier, start location, including x and y value, and stop location, including x and y

value. The example piece of collected information is shown in Table 5.1.

Table 5. 1 Information about each unique vehicle ID.

Vehicle

ID

Start

x

Start

y

Stop

x

Stop

y

Direction Degree

Angle

Angle divided

by ten

16 509 459 246 223 138.097 13

4 280 247 242 219 135.764 13

88 283 521 208 379 117.842 11

41 403 520 201 244 126.2 12

79 98 317 111 545 -86.737 -8

75 571 518 243 224 138.129 13

55 491 502 489 500 135.0 13

The total number of vehicles detected is seven vehicles and most of them are

driving in the correct direction. To obtain the measurable value to identify the moving

direction, we use the technique of angle calculation. We converted the start (Start x and

Start y in Column 2 and Column 3) and stop (Stop x and Stop y in Column 4 and

Column 5) location to be a vector. Then we draw another vector, where the start point

Ref. code: 25646322040400GFX

38

is shared with the first vector and the head of the arrow heading in the right direction

with zero degrees as shown in Figure 5.4 in the red line. Next, we calculate and find the

angle value between the two vectors.

Figure 5.4 The method to find the angle value from the vehicle moving direction.

The possible value of an angle will range from -180 to 180 as shown in Figure

5.5 below. Assuming that a vehicle is driving vertically upward, the movement angle

that the vehicle will be equivalent to is 90 degrees. Oppositely, if a vehicle is driving

downward, the movement angle will be -90 degrees instead. With the huge different

value between 90 and -90, we can conclude that these two vehicles are driving in the

opposite direction from each other.

Figure 5.5 All possible angle for the movement direction.

As we calculate all of the vector directions in Table 5.1, we will receive the

result of the angle value in Column 6 in Table 5.1. To find the majority angle and obtain

the result, we divided all of the angle values by ten, to easily find the mode value. From

the final result in the last column of Table 5.1, we could see that most of the vehicle is

driving in a similar direction except for vehicle ID 79, where its movement value is -8

Ref. code: 25646322040400GFX

39

while another vehicle ID has a movement value in the relatively similar value, range

between 11 and 13. With this information, we can conclude that most vehicles are

driving in the direction of 13, where we will set this value as the threshold. Moreover,

the standard deviation value will be found with the below equation to determine the

acceptable range of lowest value and highest value that the system will receive and

verify as the moving correct direction. SD in the equation stands for Standard Deviation

and the mean value is the average value of all the movement angles in Column 7 Table

5.1.

𝑆𝐷 = √
∑(𝑚𝑜𝑣𝑒𝑚𝑒𝑛𝑡 𝑎𝑛𝑔𝑙𝑒 − 𝑀𝑒𝑎𝑛 𝑣𝑎𝑙𝑢𝑒)2

𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑎𝑙𝑙 𝑣𝑒ℎ𝑖𝑐𝑙𝑒

(5.1)

After we propose the concept of angle movement value, threshold value, and

standard deviation value, the histogram plot of all the movement directions in angle

value we found in Figure 5.3 is shown in Figure 5.6 as the left plot is the first road lane

and the right plot is the right road lane from Figure 5.2.

Figure 5.6 Degree distribution for each lane of the road.

 With this histogram plot for each road lane, we can see the high peaks on each

plot where it indicates the most occurrence driving angle direction. We then select the

highest peak value, or the statistic mode value, from each plot. As a result, the left plot’s

mode value is 14 and the right plot’s mode value is -2. Moreover, the standard deviation

value is found in the two plots as well, where the left plot’s standard deviation value is

Ref. code: 25646322040400GFX

40

3.92 and the right plot is 1.11. The final output from this step will be the upper and

lower bound of the vehicle moving direction that the system accepts as the correct

moving direction, where the equation for upper and lower bound is shown in the

equation below.

𝐿𝑜𝑤𝑒𝑟 𝑏𝑜𝑢𝑛𝑑 = 𝑇ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 − (𝑆𝐷 ∗ 2)

𝑈𝑝𝑝𝑒𝑟 𝑏𝑜𝑢𝑛𝑑 = 𝑇ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 + (𝑆𝐷 ∗ 2)

(5.2)

 From our example location, we can conclude that the upper and lower bound

for the first road lane are 21.84 and 6.16 respectively. The upper and lower bound for

the second road lane are -4.44 and 0.22 respectively. However, the upper bound for the

first lane is 21.84, which exceeds the range of all possible angles that the system would

produce, which is 18, or 180 degrees. In this case, we will set a condition to limit the

possible value for upper bound and lower bound not to be greater than 18 and not to be

lower than -18 respectively. If the value of the upper or the lower bound does not meet

the condition, the highest and lowest value in the upper and lower bound will be set to

18 and -18 automatically.

5.1.2 Detection Part

 After we found the insight information about the vehicle moving direction in

each road lane according to our location example, next, we use the information, which

is upper and lower bounds, to indicate the correct moving direction of each road lane.

In this part, the video that will run is the video from the same location as the validation

video but with a longer length. In this example, the testing video we use in the detection

part has a length of 5 minutes. The screenshot of the video while the vehicles inside are

being detected is shown in Figures 5.7 (a), (b), and (c), where the type of vehicle that

the system is detecting is the motorcycle only because the motorcycle is the type of

vehicle that is often found driving in the wrong direction in Thailand. However, the

system can also detect other kinds of vehicles which are cars, buses, and big trucks.

Figure 5.7 (a) shows the detection of motorcycles driving in the correct direction in the

first road lane. The tail of the green direction arrow indicates the first location this

motorcycle is detected in this road lane.

Ref. code: 25646322040400GFX

41

(a)

(b)

(c)

Figure 5.7 Screenshot of the system detecting vehicles driving direction (a) Correct

direction in the area one detected (b) Correct direction in the area two detected (c)

Wrong direction in the area one detected.

Ref. code: 25646322040400GFX

42

To check with the condition of the upper and lower bound that we have found in

the validation part, in the first lane, the correct driving vehicle should have an angle

value within the upper and lower bound of 18 and 6.16. For the second lane, the correct

driving direction is between the upper and lower bound of -4.44 and 0.22. The

motorcycle detected in Figure 5.7 (a) has the moving direction’s angle of 14, which is

the value inside the upper and lower bound. For Figure 5.7 (b), the detected motorcycle

inside the second road lane has a moving angle of -2. These two motorcycles from

Figure 5.7 (a) and (b) are considered in the correct moving direction. However, in

Figure 5.7 (c), the detected motorcycle inside the first road lane has the moving

direction’s angle of -8, which is not in the acceptable range we found from the

validation step. Therefore, that motorcycle is being detected as a wrong-way moving

vehicle.

5.2 Distance-Based Direction Detection

 In our previous research (Suttiponpisarn, Charnsripinyo, Usanavasin &

Nakahara, 2021) we have introduced the Majority-Based Correct Direction Detection

(MBCDD) algorithm which is an algorithm that can validate the correct direction for

each road lane, and detect the vehicle that drives in the wrong direction in that lane

automatically. However, our previously proposed method, the MBCDD algorithm, still

has some areas that need to be improved. MBCDD algorithm requires a one-minute

cropped input video as input for validation, which is different from the DBDD

algorithm which requires vehicle information. Even though the MBCDD algorithm is

accurate and fast, in the process of direction validation on the edge device, it took twice

as long time compared to the length of the input video. With this flaw, we tried to

improve the algorithm and eventually come up with a more optimal algorithm that is

more suitable to run on an embedded system. This newly proposed algorithm is called

the Distance-Based Direction Detection (DBDD) algorithm. DBDD algorithm consists

of two main parts: the validation part and the detection part, where the overall system

flow is as shown in Figure 5.8.

Ref. code: 25646322040400GFX

43

Figure 5.8 System flow of DBDD algorithm.

The information that we have, supports us to come up with a straightforward algorithm

to validate the correct direction of a straight road lane. In the DBDD algorithm, the

required input is the detected road lane boundary from the RLB-CCTV algorithm and

the vehicle information. There are 5 steps to perform this validation step of the DBDD

algorithm.

5.2.1 Divide Road Area

To begin with, we divide the road lane area into two halves. If the orientation is

vertical, the area will be divided into upper and lower areas. If the orientation is

horizontal, the area will be divided into the left and the right areas. The second step is

to overlay all the vehicle information onto the divided areas. As shown in Figures 5.9

(a), (b), and (c). The red dots are the start location of each vehicle, and the green dots

are the stop location of each vehicle. With this information, we can roughly see that the

start location, red points, of most vehicles, if the detection is fast enough and correctly,

happens in the upper area of the road lane in Figure 5.9 (b). As well as the stop location

of most vehicles tends to end in the lower area. To make the separate plot graph for

clearer visualization, we plot Figures 5.9 (d), (e), and (f) to show only the start location

of all vehicles in green dots, and in Figures 5.9 (g), (h), and (i) show only the stop

location of all vehicle in red dots. After we have a clear distinction between the number

of dots in each area, next, the third step is to decide on area type.

Ref. code: 25646322040400GFX

44

Figure 5.9 Overlay all points from vehicle information on the areas (a) Horizontal

orientation; (b) Vertical orientation (c) Vertical orientation with two lanes. Overlay

start points from vehicle information on the areas (d) Horizontal orientation (e)

Vertical orientation (f) Vertical orientation with two lanes. Overlay stop points from

vehicle information on the areas (g) Horizontal orientation (h) Vertical orientation

(i) Vertical orientation with two lanes.

5.2.2 Determine Area Type

We compare the number of dots that appear in each area for each of the start

and stop locations. If the area has more start dots than the stop dots, then that area is the

start area. If the area has more stop dots than the start dots, then that area is the stop

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Ref. code: 25646322040400GFX

45

area. We color the start area with green color and the stop area with red color as shown

in Figures 5.10 (a), (b), and (c). The fourth step of the validation part is to plot the

reference stopping point. Assuming that a vehicle driving correctly in Figure 5.10 (b),

the vehicle start location should start from the upper area, and come down to the stop

area. This is the general moving behavior the vehicle should be like. In this step, we set

an imaginary reference point on the stop area's side. The reference point only stores the

y value from the cartesian coordinate system, where the y value is obtained from the

location of the further edge of the stop area. This reference point will be used to check

the distance between the vehicle's location and the reference point. The last step is to

calculate the distance and determine if a vehicle is driving in the correct direction or

wrong direction. The distance will be constantly calculated frame by frame as the video

is running. The distance between the start location of each vehicle and the reference

point will be kept as an initial distance value. As the vehicle is moving, the second

location of the vehicle will be updated. The system will calculate the new distance value

as well.

Figure 5.10 Label the area and get the stopping reference point (a) Horizontal

orientation with a stop area on the right (b) Vertical orientation with a stop area on the

bottom (c) Vertical orientation with two lanes with opposite driving directions.

In this stage, the system will compare the old distance and the new distance. If

the value decreases, it means that the vehicle is driving toward the reference point that

is drawn on the stop area side, or the vehicle is driving in the correct direction. However,

if the value increases, it means that the vehicle is driving away from the reference point,

or the vehicle is driving in the wrong direction. In the third frame of the video, the new

distance value is calculated. The system will compare this distance value with the first

(a) (b) (c)

Ref. code: 25646322040400GFX

46

initial distance value. As a result, this should confirm the moving direction that the

vehicle is driving toward.

However, there is an observation about the reference point that instead of

marking the reference point on the stop location, it can be marked on the start location

as well. These choices of setting for the algorithm do not make an important difference

in results. The reference point can refer to the start location as well, but the condition

to check the moving vehicle should be changed accordingly as to when the vehicle's

moving distance is increasing, it would mean it is driving in the correct direction.

Figure 5.11 Length of detected road boundary from the RLB-CCTV algorithm (a)

Vertical orientation (b) Horizontal orientation.

With the concept of the reference point, we can observe the moving direction of

each vehicle that drives inside the boundary. Moreover, we have considered the case

where the lane boundary could be shorter in length for the shorter computing time of

the system and a higher accuracy rate. The system is designed to track all vehicles inside

the boundary and calculate the distance between each vehicle and the reference point.

If the length of the road is long, the calculation on each vehicle is longer too. As we use

YOLOv4 Tiny to detect the vehicles on the road. We focused on detecting the vehicle

with visible size. Some far vehicles would confuse the detector. For the two stated

reasons. We cropped the length of the road boundary by dividing the road into 10 ranges

as shown in Figures 5.11 (a) and (b).

In the range of 3/10 to 7/10 will be the focused section of the DBDD algorithm.

We chose this range of sections due to the result when we run the sample video on our

(a) (b)

Ref. code: 25646322040400GFX

47

proposed system. We remove the range 0/10 to 3/10 because as the vehicle approach

closer to the camera in the vertical orientation, the discontinue tracking is likely to

happen.

Figure 5.12 The road boundaries are cropped for a range of 3/10 to 7/10

(a) Horizontal orientation (b) Vertical orientation

(c) Vertical orientation with two lanes.

We removed the range 7/10 to 10/10 because the far objects are hardly detected.

The range we remain is adequate for the system to detect each vehicle by the time they

are moving, and objects are not too close nor too far. For the horizontal orientation, in

Figure 5.11 (b), the purpose for cropping the range is solely because of less computation

time. As a result, the road boundaries from Figure 5.10 are cropped as shown in Figure

5.12.

(a) (b) (c)

Ref. code: 25646322040400GFX

48

CHAPTER 6

INSIDE BOUNDARY IMAGE CAPTURING FEATURE

After detecting the vehicles that drive in the wrong direction, the DBDD

algorithm will return the summary report counting the total number of vehicles driving

in each direction. Apart from the summary number, we would like to collect the

information output in the form of images, where the system will capture the image of

the wrong driver in the act. The challenging part of this algorithm is the high-speed

movement of the vehicles on road, where we have to find the right moment to capture

the clearest and closest shot of that driving vehicle. The proposed algorithm we

designed for this task is called the Inside Boundary image capturing feature (IBI

Capture). The benefit of this image capturing algorithm is to identify the individual

driver appearance who drives in the wrong direction and to trace back the evidence of

wrong driving behavior. However, in this research, we do not further use any personal

information of the driver. The experiment of our research is just to test the system’s

accuracy and clearness only. The system flow for IBI capturing feature is shown in

Figure 6.1.

Figure 6.1 System flow of IBI capturing feature.

There are two moving orientations of the road depending on the location and

camera angle. To create the IBI capturing feature, we need to consider both orientations.

The flowchart in Figure 6.1 will help determine the steps and decisions of how our

proposed IBI capturing feature will perform on different kinds of road angle orientation.

6.1 Vertical Orientation Image Capturing

In the case that road orientation is vertical, the vehicle can drive upward and

downward. The moment that we can see the vehicle come closest to us is when the

Ref. code: 25646322040400GFX

49

vehicle is start closest to the lower boundary or the CCTV camera. With this idea, we

try to capture images of the vehicles that drive in the wrong direction with a condition

where the vehicle comes close to the lower boundary as much as possible.

There will be two cases where we are concerned about the vertical orientation.

First, when the correct driving direction is to drive upward, the wrong driving vehicle

will drive downward. The closest moment to capturing the wrong driving vehicle is

when the vehicle is about to leave the lower boundary. Second, if the correct driving

direction is to drive downward, the wrong driving vehicle will drive upward. The

closest moment to capturing the wrong driving vehicle is when the vehicle first appears

into the lower boundary. With these two different cases, we apply different methods to

capture the image.

When working with images on the OpenCV library, the coordinate system will

be arranged in the form of an image coordinate system where the y-axis value will be

flipped from the normal coordinate, as shown in Figure 6.2.

Figure 6.2 Image coordinate system.

The method to determine if the wrong-way driving vehicle is going to drive

upward or downward is to check with the height of the stopping area reference value

and the height of the lower boundary as shown in the equation below.

𝑊𝑟𝑜𝑛𝑔 𝑤𝑎𝑦 𝑑𝑟𝑖𝑣𝑖𝑛𝑔 𝑑𝑖𝑟𝑒𝑐𝑡𝑖𝑜𝑛

= {
𝑢𝑝𝑤𝑎𝑟𝑑, ℎ𝑒𝑖𝑔ℎ𝑡 𝑜𝑓 𝑟𝑒𝑓𝑒𝑟𝑒𝑛𝑐𝑒 𝑝𝑜𝑖𝑛𝑡 = ℎ𝑒𝑖𝑔ℎ𝑡 𝑜𝑓 𝑙𝑜𝑤𝑒𝑟 𝑏𝑜𝑢𝑛𝑑𝑎𝑟𝑦
𝑑𝑜𝑤𝑛𝑤𝑎𝑟𝑑, ℎ𝑒𝑖𝑔ℎ𝑡 𝑜𝑓 𝑟𝑒𝑓𝑒𝑟𝑒𝑛𝑐𝑒 𝑝𝑜𝑖𝑛𝑡 > ℎ𝑒𝑖𝑔ℎ𝑡 𝑜𝑓 𝑙𝑜𝑤𝑒𝑟 𝑏𝑜𝑢𝑛𝑑𝑎𝑟𝑦

(6.1)

Ref. code: 25646322040400GFX

50

To find the closest and clearest moment to capture the images, the system will

require the y value of the current location of the vehicle, represented with CY, and the

y value of the lower boundary, represented with YL. If we are considering the case

where the wrong way driving vehicle will drive downward, we will calculate the

difference value between CY and YL. The moment that the system will capture the

image is when the difference value of CY and YL is as close as zeros. If the difference

value is zero or lower, it means that the lower part of the vehicle bounding box is laying

on or below the lower boundary line. In that case, we would not get a whole component

of the vehicles. As an example, shown in Figure 6.3, the motorcycle’s front wheel is

being blocked by the road lane boundary. Therefore, we set a value of 20 pixels to be

the maximum difference value between the CY and YL points to make a screenshot

image of the vehicle. The value of 20 pixels has been evaluated to be a proper value to

leave some distance between the vehicle’s bounding box and the YL as examples of

captured images are shown in Figure 6.4.

Figure 6.3 The screenshots when the CY bounding box is lower than YL.

Ref. code: 25646322040400GFX

51

Figure 6.4 The screenshots when the CY bounding box is above YL by 20 pixels.

For the case where the wrong way driving vehicle is driving upward, the

system will capture the first frame where the vehicle appears and detected it as wrong-

way driving as an example screenshot is shown in Figure 6.5.

Figure 6.5 The screenshots when the wrong-way driving vehicle is driving upward.

6.2 Horizontal Orientation Image Capturing

The image capturing in horizontal orientation is a bit trickier on how to find the

closest moment where the vehicle is closest to the camera. However, the method we

proposed is to select the frame where the bounding box of detection is the biggest. The

Ref. code: 25646322040400GFX

52

example screenshot of the vehicle driving in the wrong direction in horizontal

orientation is shown in Figure 6.6.

Figure 6.6 The screenshots when capturing vehicles driving in the wrong direction in

the vertical oriented video.

Ref. code: 25646322040400GFX

53

CHAPTER 7

EXPERIMENTAL RESULTS

7.1 Dataset

The image dataset we collected came from various locations and times. The

location where we capture the images is on several skywalks around Bangkok and

Pathum Thani province using our smartphones to capture the images. In most locations,

we can see lots of cars and motorcycles. Some area also has a lot of large vehicles such

as truck and bus. The example image we gather is shown in Figure 7.1. We gathered a

total of 437 images. To detect the various kind of vehicles on the road, we annotated

the objects into three classes: Motorcycles, cars, and large vehicles. The majority of the

camera angle we gathered in the dataset is vertical orientation, which is the front view

of the vehicles.

Figure 7.1 Labeling the dataset with three classes: Motorcycle, car, and large vehicle.

7.2 Vehicle Detection

As we have prepared the dataset and the label, we then train the model with YOLOv4-

Tiny. The portion of the train set and validation set is in the ratio of 80 to 20 where the

augmentation of the dataset is included. The total image for training is 1068 images.

The result and accuracy of the model after training for motorcycles, cars, and large

vehicles are as shown in Table 7.1.

Ref. code: 25646322040400GFX

54

Table 7.1 Accuracy of the YOLOv4 Tiny model.

Parameters Class (percent) mAP

(percent)
Motorcycle Car Big vehicle

Results 71.89 78.0 86.25 78.71

 With the requirement to apply the vehicle detector on an embedded system, we

choose to use YOLOv4 Tiny as it is fast and consumes less time to detect. However,

YOLOv4 Tiny has a trade-off with accuracy. Song, Liang, Li, Dai, and Yun (2019)

train a vehicle detection model on YOLOv3 with more than 10,000 images of the

dataset. With more than ten times greater number of datasets, their accuracy achieved

up to 87.88% for mAP. To compare the result with other research that implements

YOLOv4 Tiny onto the pedestrian detection system, Roszyk, Nowicki, and

Skrzypczyński (2022) show that the average accuracy is 0.557 for mAP50. With this

observation, if we would like to implement a small detector that can run on an

embedded system at a real-time speed, YOLOv4 Tiny would perform that task perfectly

but it might not achieve high accuracy as YOLOv4 or YOLOv3. However, our trained

model is accurate compared to other results and can detect the target objects in our

framework.

7.3 Framework’s Result

7.3.1 Road Lane Boundary Detection based on CCTV Algorithm

After collecting several videos from many locations, we test the videos with our

proposed algorithm to detect the road lane boundary. Some video contains one road,

and some contain two roads. According to the result that we have generated, all of them

have a satisfactory result where it has achieved their task to detect the road lane. Some

of the locations we have gathered and the lane boundary detection result is as shown in

Figure 7.2.

Ref. code: 25646322040400GFX

55

Figure 7.2 Output images with road boundaries using the RLB-CCTV algorithm.

7.3.2 Distance-Based Direction Detection Algorithm

In the DBDD algorithm, there are two steps to proceed: validation and detection

steps. First, we show the result of the system after validating the correct moving

direction by determining the start area and the stop area from the road lane boundary

we obtained from RLB-CCTV. As we had described, DBDD will divide the road

boundary into two areas. If the road boundary’s orientation is vertical, the boundary

will be split into the upper and lower area. If the road boundary is horizontal, the

boundary will be split into a left area and a right area. Table 7.2 shows the result from

the DBDD algorithm in the validation step, where it shows the information on the

number of the start and stop points in each area and determines the area type compared

to the ground truth.

Table 7.2 The number of start and stop points on each divided road area.

Video
Length

(minute)
Area

Number of Points Area Type

Start Stop Prediction Ground Truth

1
2:12 Area 1 0 95 Stop Stop

Area 2 50 35 Start Start

Ref. code: 25646322040400GFX

56

Area 3 23 2 Start Start

Area 4 2 53 Stop Stop

2

3:01 Area 1 0 28 Stop Stop

Area 2 18 1 Start Start

Area 3 21 0 Start Start

Area 4 0 23 Stop Stop

3
5:00 Area 1 4 119 Stop Stop

Area 2 68 40 Start Start

4
2:31 Area 1 2 64 Stop Stop

Area 2 46 31 Start Start

5
2:59 Area 1 111 37 Start Start

Area 2 2 194 Stop Stop

6
2:04 Area 1 100 35 Start Start

Area 2 4 228 Stop Stop

7
4:07 Area 1 72 34 Start Start

Area 2 0 151 Stop Stop

8
2:00 Area 1 3 88 Stop Stop

Area 2 43 35 Start Start

9
2:03 Area 1 0 71 Stop Stop

Area 2 50 16 Start Start

10
2:02 Area 1 3 41 Stop Stop

Area 2 105 21 Start Start

From Table 7.2, we can see that all areas from road boundaries were

determined correctly using the DBDD algorithm in the validation part. The sample

location we use for testing our algorithm is a mixture of vertical and horizontal

camera orientation. Some location has two-lane and some have one lane. This result

shows that our algorithm can handle verifying the start and stop areas accurately.

After we have done the validation step, next is the detection step. In the detection

step, the system will detect the wrong-way driving vehicle by calculating the distance

between the vehicle and the edge of the stop area boundary. If the distance keeps

Ref. code: 25646322040400GFX

57

decreasing in each frame as the vehicles are moving, then, those vehicles are driving

in the correct direction. The result of our algorithm that has been tested with videos

from ten locations is shown in Table 7.3.

Table 7.3 Numbers of motorcycles were detected as wrong-way and correct-way

driving using the DBDD algorithm.

Video

Lane

Ground truth Computer Embedded system

Correct

driving

Wrong

driving

Correct

driving

Wrong

driving

Correct

driving

Wrong

driving

Speed

(FPS)

1
1 9 1 9 1 9 1 22

2 6 0 5 0 6 1

2
1 8 0 9 0 7 0 23

2 3 0 2 0 3 0

3 1 51 15 51 15 49 17 27

4 1 20 6 19 6 19 6 27

5 1 44 4 46 5 47 3 18

6 1 26 5 25 5 26 5 19

7 1 70 1 68 1 68 1 26

8 1 25 10 26 11 28 10 25

9 1 32 2 29 2 33 2 32

10 1 13 5 14 6 12 6 29

We have tested our system on a normal computer and on an embedded system

(Jetson Nano). The results of detection are quite similar and close to the ground truth.

There is some slight error value of detection due to the accuracy of object detection and

tracking of our system. To evaluate the accuracy of our proposed system with these ten

videos, the accuracy of our system is 95.225% when running on a personal computer.

The accuracy our system achieved when running on Jetson Nano is slightly lower due

to limited resources for object detection and tracking, which is 94.663%. The average

FPS when running the detection on Jetson Nano is around 24 FPS, which is suitable for

real-time detection. Figure 7.3 shows the screenshot of the detection process while the

Ref. code: 25646322040400GFX

58

system is detecting the wrong-way driving vehicle on a video with vertical orientation.

The system can track and detect vehicles accurately.

Figure 7.3 Screenshot of the DBDD algorithm while detecting

vehicles driving in the correct and wrong direction.

7.3.3 Inside Boundary Image Capturing Feature

(a)

(b)

Figure 7.4 Output images of the wrong-way driving vehicles using the IBI capturing

feature (a) Vertical orientation road (b) Horizontal orientation road.

To capture the clearest image, IBI capturing feature can capture the closest

moment where the vehicle comes closest to the camera. As a result, shown in Figure

7.4 represent the screenshot image that has been cropped to the size of the vehicle that

drives in the wrong direction. Suppose we have a high-resolution CCTV or camera; the

screenshots might be able to bring out all the detail of the law-breaking driver and the

Ref. code: 25646322040400GFX

59

vehicle they are using. However, since we were collecting the sample videos with the

smartphone, the resolution is limited and this feature is the ideal concept of what the

framework can do. Figure 7.4 (a) are the example captured images with IBI capturing

feature when vehicles are driving in the vertical orientation. For the video that has the

horizontal orientation, the example captured images from the IBI capturing feature are

shown in Figure 7.4 (b).

Ref. code: 25646322040400GFX

60

CHAPTER 8

CONCLUSION AND DISCUSSION

 In this thesis, we have introduced our proposed approaches that are used for

wrong-way driving vehicle detection with the additional features of road lane detection

algorithm and evidence capturing for wrong-way drivers. As a final result, we

combined all algorithms and features into one pipeline of algorithms execution and call

it, the “WrongWay-LVDC Framework”. However, there are some limitations and

challenges that have been raised during the framework development and we would like

to mention them in this Chapter.

8.1 Limitations

 The scope of our research is to detect the road lane with a straight lane line and

be able to implement the system onto an embedded system, such as a Jetson Nano, with

a real-time running speed. Therefore, there are three main limitations to our system we

would like to identify

The first limitation is running the system on Jetson Nano. Jetson Nano is an

effective embedded system that can perform image processing tasks. However, to

achieve the high number of FPS, there are several circumstances we have to adjust that

would be most suitable for the embedded system, such as, do not show the detecting

video, and narrow the road boundary to be smaller. If the boundary is at its original

size, it would take more computing time to compute a large area. Therefore, we decided

to reduce the size of the road boundary after detecting it with the Road-CCTV

algorithm.

The second limitation is the various road condition. It is challenging to accept

all types of roads to process in our system. However, there are several factors that would

make the system become inaccurate and get confused with the overload data in the

RLB-CCTV algorithm and DBDD algorithm. If we do not set a condition where the

eligible video of the road must not have the side road blocking the road line, the RLB-

CCTV algorithm will not be able to detect the side road as it should. This is an

interesting challenge and needs deeper research on how to detect the side road even if

there are objects blocking it. Another case is the curve line road. Our system could not

Ref. code: 25646322040400GFX

61

function properly if the road is not straight because the DBDD algorithm is designed

for either horizontal or vertical orientation. To determine the orientation of the curved

road, it would not be functional and need a more advanced algorithm to handle such

situations.

The last limitation is the capability to validate the correct driving direction in

terms of speed and accuracy for MBCDD, which leads to the replacement of the

proposed wrong-way driving vehicle detection algorithms from MBCDD to DBDD. In

our WrongWay-LVDC framework, we use DBDD as the algorithm to detect the vehicle

that drives in the wrong direction. According to our experimental results, MBCDD

serves a great accuracy and performance in vehicle wrong-way detection as well.

However, there are some aspects in the validation step that MBCDD remains at a weak

point. Generally, we would like to spend a shorter period of time validating the correct

direction on a road boundary with great accuracy. Therefore, the length of the validating

video should be short but the challenging part is, can a short validating video produce

a threshold value with enough accuracy especially the validation on an embedded

system. We have tested this idea by trimming the video length to be 1,000 frames

length, 2,000 frames length, and 3,000 frames length. In Table 8.1, we test MBDCC

with the stated configuration of the video’s length for the validation step on Jetson

Nano.

Table 8.1 MBCDD algorithm in the validation step on Jetson Nano.

Video

Length

(Frame)

Validation Detection

STD

Threshold Time

taken

(Seconds)

Speed

(FPS)

Correct-

way

driving

vehicle

Wrong-

way

driving

vehicle

Speed

(FPS)

1,000 6.053 0 174 7 51 8 23

2,000 6.130 7 303 7 52 12 20

3,000 6.498 14 450 7 52 15 20

Ref. code: 25646322040400GFX

62

From the result in Table 8.1, threshold values are increasing according to the

number of frame lengths. Figure 8.1 shows the detected vehicle movements that are

used in the validation step. The higher number of frames will increase the accuracy of

the majority direction most vehicles are moving toward.

(a) (b) (c)

Figure 8.1 Detected vehicle movements (a) 1,000 frame length (b) 2,000 frame length

(c) 3,000 frame length.

The detection result from Table 8.1 shows a varying number. However, the

ground truth of vehicles moving in the correct and wrong direction in this sample road

area is 51 for correct moving vehicles and 15 for wrong-way driving vehicles. To

compare the error, frame number at 1,000 produces 7 miscount vehicles, frame number

at 2,000 produces 4 miscount vehicles, and frame number at 3,000 produces 1 miscount

vehicle. With this information, we can tell that the minimum number of frame length

to use in the validation step for MBCDD running on Jetson Nano is 3,000 frames, which

takes around 7.5 minutes to validate the direction while the actual video run times for

3,000 frames should be only around 1 minute and 40 seconds. For DBDD, the validation

step is simpler where the video frame length at 1,000 frames already produces an

accurate validation result. With these concerns, we decided to use our proposed DBDD

algorithm to be a part of our WrongWay-LVDC framework.

8.2 Challenging Constraints

To test our proposed algorithms and whether they would handle various types

of scenarios and constraints, we have gathered different possible scenarios that would

happen while we run the framework. As a result, there are four cases of challenging

constraints that the framework may face and the method that the system would handle

those situations.

Ref. code: 25646322040400GFX

63

The first case to consider is the resolution of the general CCTV cameras. As we

could not access the CCTV camera for the video, in this research, we imitate the CCTV

camera angle and recorded the video using the smartphone. The video we have received

from the smartphone is in the resolution of 1920 pixels in width and 1080 pixels in

height. We converted the resolution to 1280 pixels in width and 720 pixels in height for

faster processing. As we checked the resolution of CCTV, the converted resolution of

the input video is equivalent to 720p HD video from CCTV. There are many several

higher resolutions of video that are collected from CCTV. However, as long as the

resolution of the input video from the actual CCTV is greater than 1280 x 720 pixels,

the input video should be compatible with our system.

The second case is when the system meets the heavy traffic scenario. During

rush hour, we can often face bad traffic, where all vehicles on the road move slowly or

do not move at all for a certain time. As the system’s default requires one minute video

for the validation part, in the case of traffic jams, the distances of each moving vehicle

in the video might be too short and the system might not get the significant information

to validate the correct direction of a road lane. In the case that the vehicle is moving

slowly for the video length of one minute, for the MBCDD algorithm, this case would

not affect the efficiency of the system to validate the correct moving direction because

even the tiny direction movement all the vehicles produce, it is enough for the system

to understand the majority moving direction of all vehicle. However, this will severely

affect the validation part of the DBDD algorithm since the algorithm will divide the

road into two areas, the start and stop area. If the vehicles do not have enough time,

within one minute, to drive across from the start area to the stop area, the system will

fail to validate the correct direction. However, this situation can be solved directly by

increasing the time for the validation video to be longer, depending on the time of the

day of the video that is selected to be the validation video. The system should avoid

using the video during rush hour to validate the correct direction. If it is unavoidable,

the longer length of the video, such as 3 or 5 minutes, should be used to validate instead,

as this will be a solution for the system to obtain more accuracy in direction validation.

The third case is when there is a vehicle that is driving too fast. Oppositely to

the previous case, we also consider the capability of the system to detect fast-moving

Ref. code: 25646322040400GFX

64

vehicles. The collected video has a resolution of 30 frames per second. In the case that

the vehicle is driving too fast and it appears in only one frame in the video, the system

will not be able to track the moving direction due to the low information provided. The

possibility of detection is when a fast-moving vehicle appears for at least two frames

inside a video. In this case, there will be two challenges for our proposed systems:

tracking capability and direction specification.

FastMOT tracking algorithm can track multiple vehicles at the same time and

have a high ability to continuously track an object that moves fast. As we tested,

FastMOT can be adjusted the configuration and is reliable for object tracking. In the

configuration parameter inside the mot.json file in the FastMOT algorithm, some

parameters will support the tracking of fast-moving vehicles without discontinuous

tracking. The value of parameters we have adjusted to support this function is shown in

Table 8.1

Table 8.2 Adjusted parameters in mot.json file.

Parameter Adjusted Value Description

Detector_frame_skip 1 Track object on every one frame

Conf_thresh 0.5 the higher, the refiner the detection will

get.

Max_reid_cost 0.6 the higher, the fewer number of tracking

Iou_thresh 0.1 the tracking is not disconnected

For direction validation, this might be a challenge to detect the moving direction

of a vehicle that appears inside the video for two frames. However, even a small number

of the frame that a vehicle appears in, our algorithms can detect and specify the moving

direction. Both of our wrong-way driving detectors, MBCDD, and DBDD, only require

the two locations of a vehicle to determine the distance and moving angle of a vehicle.

With this idea, we can conclude that even if a vehicle is moving very fast, with only

two frames it appears, our algorithms can verify the moving direction of that vehicle.

 As we tested our system and get the experimental results, we tested our system

with short video clips of around 3 to 5 minutes. However, we are also concerned in the

Ref. code: 25646322040400GFX

65

case where the input video would take a longer length as the ideal length of around one

hour per video clip, where the performance of detection will be affected. Therefore, the

fourth challenging case is the long length of the video input. As we run the wrong-way

driver detection on PC, the speed is up to 80 FPS in a normal traffic scenario. With the

high performance on PC, the trend of detecting speed will not drop below the real-time

speed, which is around 30 FPS, even if the input video is very long. However, running

a long video on small embedded is a major concern because embedded systems have

limited resources, and always gets easier to get a high temperature and decrease the

performance of detection. As we tested our system on Jetson Nano, the average speed

is around 24 FPS. In the scenario where the traffic is heavy on the testing video, the

speed may drop below 20 FPS. Therefore, there will be many factors that would affect

the speed of wrong-way driver detection on an embedded system. There are potential

solutions that support the wrong-way driver detection. First, keep the temperature of

the embedded system to be low and avoid the overheat condition while detecting.

Second, skip the frame of detection for the input video. If the device detects all vehicles

every frame, it will consume excessive energy and would slow down the process.

Lastly, turned off the interface display while running the system, to reduce the power

consumption. With these approaches, the detection on embedded systems would remain

in a good performance detecting long video clips.

8.3 Summary of Thesis

We have proposed the WrongWay-LVDC framework, which is designed to

perform the three main tasks: Lane detection using the RLB-CCTV algorithm,

Validating and Detecting wrong-way driving vehicles using the DBDD algorithm, and

Capturing evidence images of the wrong-way vehicles using IBI capturing feature.

Each of these tasks will run in a seamless pipeline flow manner automatically, which is

convenient and functional to use in a broad traffic area. Furthermore, our system has

proven for being able to implement in an embedded system at a real-time speed of 24

FPS on average. The accuracy of our framework is 95.23% while running on a personal

computer and 94.66% while running on an embedded system.

During our experiment to develop this framework, we proposed an MBCDD

algorithm for driving direction validation and wrong-way driving detection. The result

Ref. code: 25646322040400GFX

66

of the MBCDD algorithm produces a high accuracy. However, as we try running this

algorithm on an embedded system in the validation part, the speed has dropped.

Therefore, we created a new algorithm that solved the speed issue when validating the

system on an embedded system.

With all the work we have developed and dedicated our time to, it requires us

to do a lot of research about image preprocessing, deep learning, object detection, object

tracking, and much more knowledge in the related field. Then, we proposed a solution

for each task where the ability of each algorithm to answer our set objective they are

improved from other research. Finally, we hope our research thesis would benefit and

be useful to those who are interested in this research field and who have a motivation

to enhance the technology in smart cities.

Ref. code: 25646322040400GFX

67

REFERENCES

Andrei, M.-A., Boiangiu, C.-A., Tarbă, N., & Voncilă, M.-L. (2022) Robust Lane

Detection and Tracking Algorithm for Steering Assist Systems. doi:

https://doi.org/10.3390/machines10010010

Azhar, M. I. H., Zaman, F. H. K., Tahir, N. M., & Hashim, H. (2018). People tracking

system using DeepSORT. 10th IEEE International Conference on Control

System, Computing and Engineering (ICCSCE). (pp. 137-141)

Bangkok Biz News. (2017) More than 7,000 motorcycles get caught within 2

months for driving on the footpath and driving in the wrong direction.

Retrieved from https://www.bangkokbiznews.com/news/762121.

Bochkovskiy, A., Wang, C. Y., & Liao, H. M. (2020). YOLOv4: Optimal Speed and

Accuracy of Object Detection. arXiv Trans. Computer Vision and Pattern

Recognition (cs.CV); Image and Video Processing (eess.IV). Academia Sinica,

Taiwan.

Canny, J. (1986) A Computational Approach To Edge Detection. IEEE Trans. Pattern

Analysis and Machine Intelligence. (8(6):679–698).

Chen, L., Xu, X., Pan, L., Cao, J., & Li, X. (2021) Real-time lane detection model based

on non-bottleneck skip residual connections and attention pyramids. PLoS ONE

16(10): e0252755. https://doi.org/10.1371/journal.pone.0252755.

Duda, R.O., & Hart, P. E. (1972) Use of the Hough Transformation to Detect Lines and

Curves in Pictures. Comm. ACM. (Vol. 15, pp. 11–15).

Farag, W., & Saleh, Z. (2018) Road Lane-Lines Detection in Real-Time for Advanced

Driving Assistance Systems. 2018 International Conference on Innovation and

Intelligence for Informatics, Computing, and Technologies (3ICT). (pp. 1-8).

doi: 10.1109/3ICT.2018.8855797.

Franco, F., Santos, M.M.D., Yoshino, R.T., Yoshioka, L.R., & Justo, J.F. (2021)

ROADLANE—The Modular Framework to Support Recognition Algorithms

of Road Lane Markings. Appl. Sci. 2021. doi: 10.3390/app112210783

Gedraite, E., & Hadad, M. (2011) Investigation on the effect of a Gaussian Blur in

image filtering and segmentation.

Ref. code: 25646322040400GFX

68

Ghazali, K., Xiao, R., & Ma, J. (2012) Road Lane Detection Using H-Maxima and

Improved Hough Transform. 2012 Fourth International Conference on

Computational Intelligence, Modelling and Simulation. (pp. 205-208). doi:

10.1109/CIMSim.2012.31.

Gunjal, P. R., Gunjal, B. R., Shinde, H. A., Vanam, S. M., & Aher, S. S. (2018). Moving

Object Tracking Using Kalman Filter. 2018 International Conference On

Advances in Communication and Computing Technology (ICACCT). (pp. 544-

547). doi: 10.1109/ICACCT.2018.8529402.

Gu, H., Ge. Z., Cao, E., Chen, M., Wei, T., Fu, X., & Hu. S. (2021) A Collaborative

and Sustainable Edge-Cloud Architecture for Object Tracking with

Convolutional Siamese Networks. IEEE Transactions on Sustainable

Computing. (vol. 6, no. 1, pp. 144-154). doi: 10.1109/TSUSC.2019.2955317.

HSL and HSV. Retrieved from: https://en.wikipedia.org/wiki/HSL_and_HSV

ImageStat Module. Retrieved from https://pillow.readthedocs.io/en/stable/reference/

ImageStat.html

Jetson Nano Developer Kit. Retrieved from https://developer.nvidia.com/embedded/

jetson-nano-developer-kit

Liu, L., Chen, X., Zhu, S., & Tan, P. (2021) CondLaneNet: a Top-to-down Lane

Detection Framework Based on Conditional Convolution. Proceedings of the

IEEE/CVF International Conference on Computer Vision (ICCV). (pp. 3773-

3782).

Mandal, V., & Adu-Gyamfi, Y. (2020). Object Detection and Tracking Algorithms for

Vehicle Counting: A Comparative Analysis.

Monteiro, G., Ribeiro, M., & Marcos, J. (2007). Wrongway drivers detection based on

optical flow. 2007 IEEE International Conference on Image Processing (vol. 5

pp. V-141-V–144).

Oltean, G., Florea, C., Orghidan, R., & Oltean, V. (2019). Towards real time vehicle

counting using YOLO-tiny and fast motion estimation. IEEE 25th International

Symposium for Design and Technology in Electronic Packaging (SIITME). (pp.

240–243).

OpenCV Bitwise AND, OR, XOR, and NOT. Retrieved from

https://pyimagesearch.com/2021/01/19/opencv-bitwise-and-or-xor-and-not/

Ref. code: 25646322040400GFX

69

Patel, O., Maravi, Y., Sharma, S. (2013) A Comparative Study of Histogram

Equalization Based Image Enhancement Techniques for Brightness

Preservation and Contrast Enhancement. Signal & Image Processing: An

International Journal. 4. 10.5121/sipij.2013.4502.

Pudasaini, D., & Abhari, A. (2020) Scalable Object Detection, Tracking and Pattern

Recognition Model Using Edge Computing. Spring Simulation Conference

(SpringSim) (pp. 1-11). doi: 10.22360/SpringSim.2020.CNS.003.

Rahman, Z., Ami, A. M., & Ullah, M. A. (2020). A real-time wrong-way vehicle

detection based on YOLO and centroid tracking. 2020 IEEE Region 10

Symposium (TENSYMP) (pp. 916–920).

Rakotondrajao, F. & Jangsamsi, K. (2019) Road Boundary Detection for Straight Lane

Lines Using Automatic Inverse Perspective Mapping. 2019 International

Symposium on Intelligent Signal Processing and Communication Systems

(ISPACS). (pp. 1-2). doi: 10.1109/ISPACS48206.2019.8986330.

Roszyk, K., Nowicki, M.R., & Skrzypczyński, P. (2022) Adopting the YOLOv4

Architecture for Low-Latency Multispectral Pedestrian Detection in

Autonomous Driving. Sensors 2022, doi: 10.3390/s22031082.

Sharif, M. (2011) A new approach to compute convex hull. Innovative Systems Design

and Engineering. 2. 187-193.

Sharma, A., Kumar, M., Gupta, R.K., & Kumar, R. (2021) Lane detection using Python.

IJIRMPS 2021, 9, 917.

Song, H., Liang, H., Li, H., Dai, Z., & Yun, X. (2019) Vision-based vehicle detection

and counting system using deep learning in highway scenes. European

Transport Research Review. 11. 10.1186/s12544-019-0390-4.

Suttiponpisarn, P., Charnsripinyo, C., Usanavasin, S., & Nakahara, H. (2021) Detection

of Wrong Direction Vehicles on Two-Way Traffic. the 13th International

Conference on Knowledge and Systems Engineering.

The Shapely User Manual. Retrieved from https://shapely.readthedocs.io/en/

stable/manual.html

Thongphat, N. (2019) Motorcycles key to solving road deaths. Retrieved from

https://www.bangkokpost.com/opinion/opinion/1628238/motorbikes-

key-to-solving-road-d

Ref. code: 25646322040400GFX

70

Usmankhujaev, D., Baydadaev, S., & Kwon, J. W. (2020). Real-Time, Deep Learning

Based Wrong Direction Detection. Inha University, Korea.

Wojke, N., Bewley, A., & Paulus, D. (2017) Simple Online and Realtime Tracking with

a Deep Association Metric. doi: 10.48550/arXiv.1703.07402.

Yadav, G., Maheshwari, S., & Agarwal, A. (2014) Contrast limited adaptive histogram

equalization based enhancement for real time video system. 2014 International

Conference on Advances in Computing, Communications and Informatics

(ICACCI) (pp. 2392-2397). doi: 10.1109/ICACCI.2014.6968381.

Yang, Y. (2020) FastMOT: High-Performance Multiple Object Tracking Based on

Deep SORT and KLT. Retrieved from https://github.com/GeekAlexis/

FastMOT.

Zualkernan, I., Dhou, S., Judas, J., Sajun, A.R., Gomez, B.R., & Hussain, L.A. (2022)

An IoT System Using Deep Learning to Classify Camera Trap Images on the

Edge. Computers 2022. https://doi.org/10.3390/computers11010013.

Ref. code: 25646322040400GFX

71

BIOGRAPHY

Name Pintusorn Suttiponpisarn

Education 2020: Bachelor of Engineering (Computer

Engineering)

Sirindhorn International Institute of Technology

Thammasat University

Publications

Suttiponpisarn, P., Charnsripinyo, C., Usanavasin, S., & Nakahara, H. (2021)

Detection of Wrong Direction Vehicles on Two-Way Traffic. the 13th

International Conference on Knowledge and Systems Engineering.

Suttiponpisarn, P., Charnsripinyo, C., Usanavasin, S., & Nakahara, H. (2022) An

Enhanced System for Wrong Way Driving Vehicle Detection with Road

Boundary Detection Algorithm. International Conference on Industry Science

and Computer Sciences Innovation 2022.

Ref. code: 25646322040400GFX

